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  Abstract   Hydropower is claimed to be one of the least expensive but most reliable 
sources of renewable energy. The frequency of power generation depends directly 
on the  fl ow of water on which the power production facility has been constructed. 
The  fl ow of water depends on the upstream rainfall, which contributes to the surface 
runoff to create the  fl ow in the channel which rotates the turbine for production of 
electricity. The utilization factor of a hydropower plant (HPP) is de fi ned as the ratio 
between the energy actually produced to the energy production capacity of the 
hydropower plant (HPP). It is synonymous with load factor if the capacity of the HPP 
and the maximum energy produced become equal. The present study will aim to 
identify the optimal zones where minimum rainfall and maximum utilization can be 
achieved by employing particle swarm optimization within the known constraints of 
small scale hydropower plant. The result of the study will highlight the adjustments 
required to be followed in the hydropower plants in generating optimal power output 
even in the days of scarce rainfall.  
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    3.1   Introduction 

 The utilization factor is the ratio of the maximum load on a power plant to the rated 
plant capacity, whereas (electrical) load factor can be de fi ned as the average power 
divided by the peak power over a period of time. If the peak power is equal to the 
rated plant capacity, then the utilization factor and load factor will be equal. 

 In the case of a hydropower plant (HPP), the utilization factor depends mainly 
on the amount of upstream and local rainfall which is the driving force of any 
hydropower plant. The rated plant capacity will depend on the maximum possible 
 fl ow that was observed in the  fl ow duration curve of the river on which the power 
plant was developed. The maximum load on the other hand will depend upon the 
demand of power from the plant. 

 The demand for power depends on various factors where change in rainfall is one 
of the main parameters for which a change in production capacity is observed. 
During summer, the demand for electricity is high because of the continuous 
requirement for fans, air-conditioners, and other cooling devices. But during winter, 
the demand for power is reduced because requirements for electricity diminish. 
The only major requirement in terms of energy use during this time of year is for 
running the air-heating devices. 

 In the case of HPPs, the generation of power also varies with regional climate 
patterns because the power production capacity of any HPP depends mainly on the 
velocity of  fl ow, which again is a function of rainfall and head difference   . And as 
demand for power varies with climate also, the average load will vary with change 
in weather pattern. 

 That is why, in summary, it can be stated that both the load factor and utilization 
factor are functions of rainfall. If power demand and rainfall both changes, then the 
zone in which the load factor reaches its maximum will also change. This study aims 
to identify the status of the power demand and rainfall when the load factor will 
become nearly equal to utilization factor. The study used the inherrent searching 
capability of particle swarm optimization (PSO) to accomplish this objective. 
There are various types of hydropower plant and this zone where utilization and 
load factor will become equal also varies with the type of hydropower plant. In the 
present investigation te small scale hydropower plants are only considered. The next 
section explains the classifi cation of HPP. 

    3.1.1   Classi fi cation of Hydropower Plants 

 Based on water head, HPPs can be classi fi ed into three types: low-head, medium-head, 
and high-head HPPs. 

    3.1.1.1   Low-Head Hydroelectric Power Plants 

 Low-head HPPs can be de fi ned as power plants where the available water head is 
less than 30 m. Most of the time, due to the very short head of such power plants, 
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dams are not constructed; instead, a weir is used and the inherent  fl ow of water 
   in the canal/river is used to generate electricity. The low-head types of HPPs 
are of the nonstorage type and generate electricity only when suf fi cient  fl ow of 
water is available. Thus, their relationship to rainfall is directly proportional, 
i.e., they can produce electricity only during particular seasons like the monsoon 
season, when abundant  fl ow of water is available. Because the available head of 
water is directly proportional to electricity production capacity of any HPP, 
the power-producing capacity or utilization factor of such plants is very low 
due to lack of reliability and stability in the availability of kinetic energy in the 
canal/river.  

    3.1.1.2   Medium-Head Hydroelectric Power Plants 

 HPPs having a working head of water more than 30 m but less than 300 m are 
referred to as medium-head HPPs. These HPPs have their own storage systems and 
are usually developed in mountainous or hilly regions so that the advantage of the 
height difference can be used for power generation.  

    3.1.1.3   High-Head Hydroelectric Power Plants 

 High-head HPPs have a head of water varying from 300 to 1,000 m. Large reservoirs 
of water in dams that can store water at very high heads are developed, and turbines 
are connected through penstock so that the water from the dam can be used to rotate 
it and produce huge amount of power from the generators. Water is mainly stored 
during the rainy season and can be used in the lean season. Thus, high-head HPPs 
can generate electricity throughout the year. The total height of the dam will be a 
function of a number of factors like quantity of available water, power to be generated, 
surrounding area, natural ecosystem, etc. 

 In the present study the optimal points were identi fi ed only for the low-head HPP 
that varies directly with rainfall.   

    3.1.2   Impact of Climate Change on Hydropower Plants 

 The production of greenhouse gases from the domestic and industrial sectors has 
increased the average temperature of the planet. Due to this global warming 
phenomenon rainfall patterns have apparently changed in many places around 
the world. As rainfall is directly related to the generation of hydropower, the 
effect of warming will hit these plants as well. Thus, it has been asserted that 
the relationship between the load factor and rainfall will become a vital concern 
for the engineers in designing the HPPs. 

 An increase in temperature will also increase the average load. Thus, the load 
factor will also change by the change in the climate.  
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    3.1.3   Objective and Scope 

 The objective of the present study is to determine the tradeoff zones between rainfall, 
power demand, and load factor. The optimal zones, i.e., minimum rainfall but 
maximum utilization, will be identi fi ed using particle swarm optimization. 

 These zones can inform engineers about the optimal values of independent 
variables and highlight the feasibility of a project using the number and magnitude 
of tradeoff zones.  

    3.1.4   Brief Methodology 

 The rainfall data of a low-head river  fl owing through the northeastern states of India 
are  fi rst collected on a per-month basis. The power demand per month from the 
adjacent areas of the river is estimated from governmental sources. The discharge of 
water through the river is estimated from the water balance equation, and the power 
equation is used for estimation of power production. 

 After rainfall, demand, and power production are derived, tradeoff zones was 
generated and identi fi ed by the utilization of PSO.   

    3.2   Particle Swarm Optimization 

 PSO (Eberhart and Kenedy,  1995 ) is a population-based search algorithm that 
follows the behavior of  fl ocks of birds or schools of  fi sh. In this algorithm, random 
particles are considered as the solution to a given problem space. Each of the particles 
is a probable solution to the given problems. It    gradually converges to the optimal 
solution based on two criteria:

    1.    Local best  
    2.    Global best     

 The iteration starts by selecting random positions for the particles. Each particle 
has an objective to converge toward the optimal solution in the search domain. 
The velocity of the particle is updated in the following manner:

      1 1t t tx x V+ += +    (3.1)  

where

      
( ) ( ) ( )1 1 lb 2 gbrand 0,1 ( ) rand 0,1t t t tV V c x V v c x V V+ = + × − + × −

   (3.2)   

  V  
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  = new velocity of the particle as it converges toward the optimal solution;  
V  

 t 
  = old velocity acquired by the particle in the previous iteration;  x  

 t +1
  = new posi-

tion;  x  
 t 
  = old position attained after the last iteration;  c  
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  and  c  

2
  = learning factors 
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and random functions that generate random numbers between 0 and 1;  V  
lb
  = velocity 

attained for optimal value of  fi tness function when compared within the old and 
new positions; and  V  

gb
  = velocity obtained for the best  fi tness function achieved 

until the present iteration. The previous velocity can be updated at each iteration 
based on the value of the  fi tness function attained after each iteration, but the value 
of the latter is generally updated once a better output of the  fi tness function is 
achieved. 

 PSO is similar to many evolutionary computation techniques such as genetic 
algorithms (GAs). But unlike GAs, the ef fi ciency of PSO does not depend on 
evolutionary parameters like crossover and mutations. 

 The simplicity in PSO’s application and the need to adjust just a few parameters 
have made PSO a sought-after iteration technique for optimization problems. PSO 
has been successfully applied in many areas: engineering design (Feng et al.  2010  ) , 
multiobjective optimization (Mousa et al.  2012  ) , multiobjective planning (Sahoo 
et al.  2012  ) , arti fi cial neural network training (Chau  2006  )  and topology selection 
of neural networks (Mingo et al.  2012  ) , fuzzy systems (   Zhao et al.  2010  ) , para-
meter estimation (Wang et al.  2011  ) , parameter selection (Parsopoulos and Vrahatis 
 2007  ) , data clustering (Tsai and Kao  2011  ) , and solving high-dimensional problems 
(Jia et al.  2011  ) . 

 Many new variants of PSO are also being developed to improve the accuracy and 
reliability of the algorithm including discrete PSO, constricted constraints, bare-
bones PSO (Zhang et al.  2012  ) , pooled-neighbor swarm optimization (Guo and 
Zhao  2006  ) , chaotic multihybrid (Mukhopadhyay and Banerjee  2012  ) , hybrid PSO 
(Shelokar et al.  2007  )  and chaotic PSO (Khajehzadeh et al.  2011  ) , particle visual 
modeling analysis considering the degree of particle distribution and dimensional 
distance (Zhao et al.  2009  ) , grammatical PSO (Lopez et al.  2012  ) , multiswarm 
cooperative particle swarm optimizer (Zhang et al.  2011  ) , perturbed PSO (involving 
linear algorithms for position updates to maintain the diversity of the generated data 
and prevent premature convergence) (Xinchao  2010  ) , and fully informed PSO 
(Mendes et al.  2004  ) . 

 To date, there are nearly 7,209 articles and approximately 3,963 book chapters 
published in various reputable international journals and books about different 
applications of PSO in practical problem solving.  

    3.3   Necessity of Hydropower Plans 

 Power is one of the most essential inputs for sustaining the economic development 
of a country, but it also invites degradation of the environment and increases in 
greenhouse gases, which are the main culprit in climate change. “The inevitable 
increase in the use of fossil fuels to keep pace with the economic growth has 
associated side effects of threat to energy security of the country and environ-
mental degradation through climate change” (Anonymous). The ever-growing 
world population and economic development have put pressure on existing 
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resources for power generation. According to the latest reports, the size of the 
world economy will increase at a rate of 3–5 times by the year 2050 and by 
10–15 times by the year 2100 with respect to the present economy. In contrast, 
the energy requirements of the world will increase 1.5-to 3-fold by 2050 and 2-to 
5-fold by 2100. 

 At present the primary energy consumption of the world is dominated by fossil 
fuels like oil (36%), natural gas (21%), and coal (24%). Biomass (9%), nuclear 
fuels (6%), and large hydro and other renewable energy sources (2%) complete the 
global power consumption scenario. The dependency on fossil fuels has caused 
several detrimental effects on the environment and ecological balance. Due to the 
combustion of such  fi nite sources of energy greenhouse gases like sulfur, nitrogen 
oxides, carbon monoxide, and suspended particulate matter are abundantly present 
in the atmosphere causing global warming and concomi tant climate change. Ozone 
layer depletion, land degradation, air and water pollution, sea level rise, and loss of 
biodiversity are other negative impacts of using fossil fuels. 

 The global consumption of primary energy is increasing at a rate of 2% per 
year (68 J/capita/year and 1.6 tonnes of oil equivalent/capita). The three primary 
energy sources are found to have 0.4, 2.3, 1.5, and 0.9% ratio of supply to reserve 
respectively for coal, oil, natural gas, and total energy sources. Although a minor 
part of the available reserves are used for consumption, still not all reserves have 
a 100% utilization factor (Nakicenovic  2012  and HDR  1998 ). 

    3.3.1   Global Scenario of Renewable Energy 

 Energy that can be naturally replenished is referred as renewable energy. The major 
sources of such energy are sunlight, wind, rain, tides, and geothermal heat. Only 16% 
of global  fi nal energy consumption comes from renewable sources; this  fi gure was 
only 13% in 1998. The major share of renewable energy is biomass (10%), followed 
by 3.4% from hydroelectricity. New renewable (small hydro, modern biomass, wind, 
solar, geothermal, and biofuels) contributes another 2.8% (REN21  2011a    ) . “The share 
of renewables in electricity generation is around 19%, with 16% of global electricity 
coming from hydroelectricity and 3% from new renewables” (REN21  2011a    ) . 

 The contribution of wind power to global renewable energy generation is 30% 
annually (REN 2011), and the installed capacity of photovoltaic energy is more than 
40 GW (REN 2011). Brazil has the largest renewable energy program in the world, 
where energy from ethanol provides 19% of the total energy requirements of the 
country. 

 Renewable energy sources are environmentally friendly and do not produce 
greenhouse gases, and, although renewable energy is in fi nite, the cost of conversion 
and the uncertainty in its availability earlier discouraged the governments of different 
countries from opting for such energy sources to satisfy their energy needs. But due 
to the rapid pace of economic development, the growth in energy demands to sustain 
this trend, and the damaging impacts of fossil fuel, many countries have opted for 
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renewable energy. According to the latest reports, small solar PV systems provide 
electricity to several million households, and micro-hydro con fi gured into mini-grids 
serves many more. Over 44 million households use biogas made in household-scale 
digesters for lighting or cooking, and more than 166 million households rely on a 
new generation of more-ef fi cient biomass cook stoves (REN21  2011  b  ) . 

 In the case of hydropower, at least 50% of the electricity production in 66 countries 
and at least 90% in 24 countries is supplied from the energy produced from HPPs.  

    3.3.2   Classi fi cation of Hydropower Plants 

 HPPs are generally classi fi ed based on quantity of water, water head, and nature of 
load. 

    3.3.2.1   Classi fi cation with Respect to Quantity of Water 

 HPPs can be classi fi ed based on the amount of water used in the following way: 

      Runoff River Plants Without Pondage 

 These kinds of plants do are unable to store water and use water as and when available. 
That is why such plants are dependent on the rate of  fl ow of water; during the rainy 
season, a high  fl ow rate may mean that some water is wasted, whereas during low 
run-off periods, due to low  fl ow rates, the generating capacity will be low.  

      Runoff River Plants with Pondage 

 In these plants pondage permits storage of water during off-peak periods and use of 
this water during peak periods. Depending on the size of pondage provided, it may 
be possible to cope with hour-to-hour  fl uctuations. This type of plant can be used on 
parts of the load curve as required and is more useful than a plant without storage or 
pondage. 

 This type of plant is comparatively more reliable, and its generating capacity is 
less dependent on the available rate of water  fl ow.  

      Reservoir Plants 

 A reservoir plant is one that has a reservoir of such a size as to permit carrying over 
storage from the wet season to the next dry season. Water is stored behind a dam and 
is available to the plant with control, as required. The plant  fi rm capacity can be 
increased and can be used either as a base load plant or as a peak load plant as 
required. The majority of hydroelectric plants are of this type.   
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    3.3.2.2   Classi fi cation by Availability of Water Head 

 Based on the availability of the water head, an HPP can be subdivided into Low or 
Small head (less than 30 m) (SSHP), medium-head (30–300 m), and high-head 
hydroelectric plants (1,000 m and above). Low-head HPPs can be further subdi-
vided into small-, mini-, and micro-head HPPs.  

    3.3.2.3   Classi fi cation with Respect to Nature of Load 

 Classi fi cation according to the nature of load is as follows: 
 Base load plants: a base load power plant is one that provides a steady  fl ow of 

power regardless of total power demand by the grid. These plants run at all times 
throughout the year except in the case of repairs or scheduled maintenance. 

 Peak load plants: these are power plants for electricity generation that, due to 
their operational and economic properties, are used to cover peak loads. Gas tur-
bines and storage and pumped storage power plants are used as peak load power 
plants. The ef fi ciency of such plants is approximately 60–70%. 

 The present investigation selected a small-scale HPP for optimization of load 
factor using PSO algorithms.    

    3.4   Methodology 

 The main objective of the present investigation is to optimize the load factor in such 
a manner that it attains a value of 1 or close to 1 because at that value the average 
load and peak demand become equal, which means the power plant can function at 
an ef fi ciency of nearly 100%. 

 The variables for the present study are the amount of rainfall and demand for 
power. The constraints of the study were as follows:

      

( )Precipitation in the Catchment Area of the SSHP Rain 2,500 mm

Demand for Power ( ) 20 MWD

<
<     

 The objective function is taken as the resulting value of the subtraction of the 
load factor from one. Minimization of this resulting value will be the optimal output 
possible from the Small Scale Hydropower Plant (SSHP) of the present study. 

 PSO is used to generate different values of rainfall and demand for power in a 
restricted search domain where the upper limit is determined by the constraints 
imposed on the variables. 

  C  
1
  and  C  

2
 , the scale factors, are taken as two, and the  fi tness function is the objec-

tive function itself. If its value is lower than for the previous iteration, then the local 
best is updated; if the value is the lowest of all iterations up to that point, then the 
global best is updated. 
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 In this manner 300,000 iterations were performed and the 30 most optimal results 
were selected from among them. Figure  3.1  depicts the 30 most optimal results of 
the search and the corresponding normalized values of the variables and objective 
function L, which was actually derived from 

      ( )1 / .L D P= −
   (3.3)   

 When the difference between the load factor (Eq.  3.3 ) and unity is at a minimum, 
the SSHP will operate optimally at that reference point and those conditions of the 
variables. 

 To generate the different values for the selected variables of the present optimiza-
tion study, the positions generated by the PSO are multiplied by the upper limit of 
the problem domain so that the regenerated swarm of solutions stays inside the 
required boundaries of the problem space. 

 The amount of power that can be generated is derived from the water balance and 
power equation. Demand values are selected with respect to the common magnitude 
of demand faced by any SSHP in the world, and rainfall limits are derived from the 
data of rainfall patterns in tropical countries.  
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  Fig. 3.1    Classi fi cation of HPP with respect to different attributes       
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    3.5   Results and Discussion 

 PSO was used to adjust the value of the variables within the given upper limit. The 
value of the rainfall and demand for power was varied 300,000 times, and each time 
a new load factor was generated. The load factor was compared with unity and the 
lower the value of the difference, the more optimal the selection. From the 300,000 
load factors 100 values per generation were collected. The values were then ranked 
and the minimum value obtained (Eq.  3.3 ) was identi fi ed and saved to a data matrix. 
Similarly, for 30 separate iterations, 100 values were collected and ranked in ascending 
order. The top-ranked objective function was identi fi ed and, along with its variable, 
saved to the same data matrix. The data matrix was normalized and ranked to 
identify the minimum. The output of this procedure is shown in Fig.  3.2 .  

 For 60%-plus cases the convergence of PSO toward the optimal solution was 
observed before 50,000 iterations, but for the remaining case the optimal solution 

  Fig. 3.2    Thirty most optimal outputs from 30,000 generations of solutions using PSO ( rain : rainfall 
percentile,  D : demand for power, percentile;  L : objective function deducting one from load factor; 
 red columns : rank of objective function)       
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was identi fi ed after 50,000 iterations and for 10% of the cases it was observed after 
90,000 iterations, although the best solution among all the iterations was observed 
only at the 270,000th iteration. 

 PSO is known to be a quick convergent, but the present investigation shows that the 
best solution is obtained only after 90% of considered iterations were completed.  

    3.6   Conclusion 

 The present investigation tried to optimize the load factor of a small-scale HPP 
(10 m head). A PSO algorithm was used to generate data for the variables consider-
ing the upper limit imposed on those variables. After the iteration procedure it was 
found that a rainfall in the 62.5th percentile and a demand in the 65.65th percentile 
are required for the SSHP to perform at optimal load factor. The study results can be 
used in the planning of an SSHP during the feasibility analysis phase. Although 
PSO is considered a fast convergent, according to the present study, it takes more 
than 90% model time to identify the optimal solution. Determining the reasons for 
such results is left to future researchers.      
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