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  Abstract   The main objective of this investigation was to identify an optimal 
con fi guration to enable irrigation canals to withstand future uncertainties from 
climate change and uncontrolled urbanization. To accomplish this objective, a set of 
factors was selected based on their in fl uence on the stability and functionality of 
irrigation canals. The selected factors were of two types: conducive, which increase 
the ef fi ciency of irrigation canals, and deductive, which decrease it. All the variables 
were rated with respect to their capacity to increase ef fi ciency on a scale of one to 
nine, where nine is assigned for ef fi ciency-increasing ability and one is assigned 
to ef fi ciency-decreasing abilities. All possible combinations one the nine-point 
scale rating of the factors were created to make a combinatorial data matrix that 
represents every possible situation that might arise in an irrigation canal. The data 
set was then clusterized with the help of guided neuroclustering methods (GNCM) 
and an agglomerative decision tree algorithm (DTA). According to the clusterization 
and comparison of the two methods, the sample with the optimal confi guration that 
both clustering algorithms had selected within their optimal clusters was identifi ed. 
The selected combination was recommended in the construction of new canals to 
increase the canals’ longevity. According to the clusterization method,  fl ow volume 
in the canal can be semihigh, but variation in the  fl ow must be very low. Channel 
loss and demand from farmers must be semi and extremely low, respectively, 
and there should be as many buffer ponds as possible and the contribution from 
groundwater must be maximized. The amount of sedimentation must be minimized. 
That is, an irrigation canal must be developed in such a way that demand from farmers 
is highly regulated. A large number of buffer ponds must be created in and around 
the canal. Preventive measures must be strictly imposed to control in fl ow volume, 
channel loss,  fl ow turbulence, and sedimentation. Infrastructure to store excess 
water must be available so that excess water from extreme events can be stored for 
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use in times of high demand. Only canals with the above recommended con fi gurations 
will be able to withstand the vulnerabilities that will arise in the near future from 
abrupt changes in climate and uncontrolled growth in urban populations.  

  Keywords   Irrigation canals  •  Decision tree algorithms  •  Neuro-clustering      

    15.1   Introduction    

 The demand for water from the domestic, agricultural and industrial consumers is 
increasing due to the rapid scale of urbanization observed in most of the major cities of 
the World. Keeping in view of the impact of climate change due to global warming and 
uncontrolled growth in population the quality and quantity of the available water resource 
is shrinking. As a result of population overgrowth, demand for food is rising which in 
turn has increased the use of water for irrigation. The large scale industrialization to 
satisfy the demand from the rising population has also increased the demand for water 
from the industrial sector. That is why rivers all over the world, especially tributaries and 
dis-tributaries, which are one of the major sources of water, are under threat of extinction 
from this ever-rising demand. Large scale industrilization and rapid increase in the urban 
population has also incremented the pollution content of the water bodies. 

 Indexes are now widely used for qualitative as well as quantitative, but logical, deci-
sion making. For example, Sheng    et al. ( 1997 ) used a geographic information system 
(GIS) for classifi cation of watersheds in developing countries. Hajeka and Boyd ( 1994 ) 
attempted to design an index to select suitable sites for aquaculture ponds. The metho-
dology was similar to that developed for systems used in the evaluation of soil for 
irrigation, road construction, waste disposal, and residential development. The potential 
impact of agriculture drainage on quality of water of receiving streams was evaluated 
by Brenner and Mondok ( 1995 ) with the help of a watershed delivery factor, animal 
nutrient factor, management factors that were actually indices with fecal coliform and 
phosphorus as the in fl uential parameters, and a groundwater delivery factor where 
nitrate concentration of the streams was found to be most the in fl uential determinant. 
Heathwaite et al. ( 2000 ) developed an index    to identify the sources and transport path-
ways that control phosphorus and nitrogen transport. According to the index, P loss 
was found to be maximum in well-de fi ned areas of watershed, whereas nitrate loss 
was observed mainly upstream of the watershed. Wanqa et al. (1997) conceptualized 
the index of biotic integrity (IBI) to determine the relationship between biotic richness 
and urbanization of a watershed. The index was found to be directly correlated with 
forest cover but indirectly    related to agricultural land, which is again proportional to 
the amount of urbanization. From the study it was concluded that more than 10–20% 
urbanization is not good for biotic integrity. Indices also were used in site selection for 
shrimp farming. Slope, land-use type, soil thickness, elevation, soil type, soil texture, 
soil pH, distance to sea, distance to roads, local markets, and hatcheries were selected 
as deciding parameters. Areas that were not allowed to be used for shrimp farming 
were excluded. A series of GIS    models was employed to identify and prioritize the 
suitable areas for shrimp farming. Only 31% of the land of the study area (in Hiphong) 
was found to be optimal for shrimp farming. Karthika et al. ( 2005 ) used a land-use 
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index to identify suitable sites for brackish water aquaculture in Thane districts of 
Maharashtra, India. Stagnitti and Austin ( 1998 ) developed an independent software 
tool for the selection of new aquaculture facilities. Principal component clusterization 
was performed to classify watersheds for environmental  fl ow predictions based on 
spatial characteristics. The method included 56 para meters to form 5 representative 
groups of watersheds. The study was conducted by Alcázar and Palau (2010) for the 
Mediterranean countries. Shaw and Cooper ( 2008 ) developed an index that represents 
the relationship between watershed, stream reaches, and plant type. A study was con-
ducted by Falcone et al. ( 2010 ) to compare indices representing the relative severity of 
human disturbance in watersheds. According to the results, indices composed of many 
variables performed better than those with single variables. A “threshold method of 
scoring using six uncorrelated variables: housing unit density, road density, pesticide 
application, dam storage, land cover along a mainstream buffer, and distance to nearest 
canal/pipeline” was found to be best representative of anthropogenic disturbances of 
the watersheds. Jacobs et al. ( 2010 ) developed an index of wetland conditions with the 
help of hydrogeomorphic variables. The index was applied to classify the wetlands of 
Nanticoke River watersheds. The variables were scored with respect to “range 
check, responsiveness and metric redundancy.” Water quality, evapotranspiration, 
runoff, species diversity, species health, and stakeholder participation were used by 
He et al. (2000) to develop an ecological indicator for the assessment of the conditions 
of altered watersheds. The fuzzy set models were used to prioritize watersheds with 
respect to the scope of fi sheries and abatement of non-point-source pollution by Wenger 
et al. ( 1990 ). Both stream use and stream conditions were utilized to develop the indi-
ces for application in the Kewaunee River Basin in Wisconsin, USA. Wang et al. ( 2010 ) 
proposed a framework to evaluate the impacts on watershed ecosystems caused by 
hydropower development. Watershed ecosystem services were classi fi ed into four 
categories – provisioning, regulating, cultural services, and supporting services – with 
the help of 21 indicators. Various evaluation techniques (market value method, oppor-
tunity cost approach, project restoration method, travel cost method, and contingent 
valuation method) were used for the calibration of the models. The models helped to 
identify the key impacts of hydropower development on watershed ecology, like on 
biodiversity; water quality was found to be negatively impacted by development; the 
average environmental cost per unit of electricity was derived to be three times the 
on-grid power tariff, and overall the degradation in watersheds was found to be 
compensated adequately by extracting maximum utility from the hydropower plant. 
Zhang and Barten developed an information system for the analysis of the impact of 
watershed degradation on water yield. The Watershed Forest Management Information 
System has three submodules. The  fi rst module has to do with the prioritization of 
watersheds based on conservation and restoration requirement. The second module, 
Forest Road Evaluation System, is concerned with impact analysis of road networks on 
forest cover. The last module, Harvest Schedule Review System, was developed for the 
evaluation of multiyear and multiunit forest harvesting, which will assist in reducing 
the impact of these factors on water yield and associated changes in water quality. 

 The success of the indices in the identi fi cation, delineation, or representation of 
a decision with respect to related parameters encouraged the authors to create indices 
for the irrigation canals to rate them according to their ability to suppress ever-
increasing demand and number of extreme events.  
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    15.2   Arti fi cial Neural Network 

 An arti fi cial neural network (ANN) can be de fi ned as a network of complex 
interactive signal processing networks that mimics the human nervous system 
while transporting an error signal. The methodology for the development of neural 
networks for practical problem solving comprises three major steps: building, 
training, and testing the network. The neural network topology i.e. number of hidden 
layers necessary to yield accurate results are fi rst identifi ed by the applications of 
trial and error or any search algorithms. The next step is to train the model for 
identifi cation of optimal values of weightage with the help of available dataset 
(referred as training dataset) of the present problem. This goal is achieved by the 
use of various training algorithms like Quick Propagation, Conjugate Gradient 
Descent, Batch Back Propagation etc which continuously generates values of 
weightage and the corresponding predictions are compared with the outputs given 
in the training data set. In the last phase, the model is tested with a set of dataset 
which are not used in the training dataset but output of them is known. This step is 
necessary for verifying the model for its accuracy with datasets that are not utilized 
in the training data (i.e., dataset with which the model has learned the problem). 
The model predictions are verifi ed with the help of common performance metrics 
like Root Mean Square Error, Correlation, Covariance etc. and until and unless the 
desired accuracy is achieved the model is not allowed for prediction of unknown 
situations   . 

 Neural networks can be classi fi ed based on their topology, error path followed, 
and activation function used. A network can contain input, output, and hidden layers. 
Hidden layers are simply a set of pseudo-input layers that creates an additional set 
of input layers so that the entire error reduction procedure is followed twice before 
the prediction of the output. The objective problem determines the con fi guration of 
the network topology along with the error achieved. Generally, trial and error is fol-
lowed, but scientists nowadays use specialized search algorithms to  fi nd the optimal 
con fi guration of neural networks. 

 The neural network is a topology that the error signals of a problem follow 
to reduce errors. According to the path followed by the error signal, neural net-
works can be grouped into feedforward and feedback network systems. The 
names followed in a feedforward neural network error always propagate to the 
forward layer of the network, and in the case of feedback the same signal will 
follow the back path based on a comparative analysis to evaluate the existing 
accuracy. 

 In the case of training algorithms, perceptron algorithms (Rosenblatt  1957  ) , 
gradient descent (Snyman  2005  ) , and batch back-propagation (Bryson and Ho 
 1969  )  algorithms are the most popular. During a training session the main objec-
tive of the network is to reduce error by applying different algorithms to solve the 
problem. Many authors have tried to achieve different objectives and solve com-
plex problems through simple or modi fi ed versions of neural models. Below is an 
overview (Table     15.1 ):   



22315 Rating Irrigation Canals Using Cognitive Indexes

   Ta
bl

e 
15

.1
  

  R
el

ev
an

t s
tu

di
es

 r
el

at
ed

 to
 a

pp
lic

at
io

n 
of

 n
eu

ra
l n

et
w

or
ks

 in
 c

lu
st

er
iz

in
g 

a 
re

pr
es

en
ta

tiv
e 

da
ta

 s
et

   

 R
ef

er
en

ce
s 

 Ty
pe

 o
f 

ne
ur

al
 n

et
w

or
k 

ap
pl

ie
d 

 St
ud

y 
ob

je
ct

iv
e 

 R
em

ar
ks

 

 R
aj

u 
et

 a
l. 

 (  2
00

6  )
  

 Su
st

ai
na

bl
e 

ir
ri

ga
tio

n 
pl

an
ni

ng
 

 R
od

ri
gu

ez
 a

nd
 M

ar
to

s 
 (  2

01
0  )

  
 Su

rf
ac

e 
ir

ri
ga

tio
n 

pa
ra

m
et

er
 id

en
ti fi

 ca
tio

n 
 C

ha
ve

z 
an

d 
K

oj
ir

i  (
  20

07
  )  

 St
oc

ha
st

ic
 f

uz
zy

 n
eu

ra
l n

et
w

or
k 

 M
ax

im
um

 w
at

er
 u

se
 a

nd
 im

pr
ov

em
en

ts
 to

 w
at

er
 q

ua
lit

y 
 Y

an
g 

et
 a

l. 
 (  2

00
9  )

  
 G

en
er

al
iz

ed
 r

eg
re

ss
io

n 
ne

ur
al

 n
et

w
or

k 
 Pr

ed
ic

tio
n 

of
 le

af
 a

re
a 

in
de

x,
 g

re
en

 le
af

 c
hl

or
op

hy
ll 

de
ns

ity
 o

f 
ri

ce
 b

as
ed

 o
n 

re
 fl e

ct
an

ce
, a

nd
 it

s 
th

re
e 

di
ff

er
en

t t
ra

ns
fo

rm
at

io
ns

:  fi
 rs

t-
de

ri
va

tiv
e 

re
 fl e

ct
an

ce
, s

ec
on

d-
de

ri
va

tiv
e 

re
 fl e

ct
an

ce
, 

an
d 

lo
g-

tr
an

sf
or

m
ed

 r
e fl

 ec
ta

nc
e 

 G
au

ta
m

 e
t a

l. 
 (  2

00
4  )

  
 B

ac
k-

pr
op

ag
at

io
n 

al
go

ri
th

m
 

 E
ff

ec
t o

f 
br

id
ge

 c
on

st
ru

ct
io

n 
on

 s
pa

tia
l v

ar
ia

tio
n 

of
 g

ro
un

dw
at

er
 le

ve
l 

 To
rf

s 
an

d 
W

ój
ci

k 
 (  2

00
1  )

  
 L

oc
al

 p
ro

ba
bi

lis
tic

 n
eu

ra
l n

et
w

or
ks

 
 A

na
ly

zi
ng

 e
ff

ec
tiv

en
es

s 
of

 a
 n

ew
 A

N
N

 a
lg

or
ith

m
 th

at
 

tr
ie

s 
to

 p
ro

ve
 th

at
 w

he
n 

in
pu

ts
 a

re
 la

gg
ed

, a
cc

ur
ac

y 
is

 m
ax

im
iz

ed
 in

 th
e 

ca
se

 o
f 

in
pu

ts
 n

ea
r 

th
e 

ac
tu

al
 v

al
ue

. 
A

 c
as

e 
st

ud
y 

of
 p

re
di

ct
in

g 
di

sc
ha

rg
e 

fo
r 

a 
sm

al
l 

w
at

er
sh

ed
 w

as
 u

se
d 

to
 s

ub
st

an
tia

te
 th

e 
ab

ov
e 

ob
je

ct
iv

e 
 Fi

lh
o 

an
d 

Sa
nt

os
  (

  20
06

  )  
 T

hr
ee

-l
ay

er
 f

ee
df

or
w

ar
d 

A
N

N
 tr

ai
ne

d 
w

ith
 li

ne
ar

 le
as

t-
sq

ua
re

s 
si

m
pl

ex
 

tr
ai

ni
ng

 a
lg

or
ith

m
 

 Fl
oo

d 
w

av
e 

si
m

ul
at

io
n 

w
ith

 r
ai

nf
al

l, 
st

ag
e 

le
ve

l, 
or

 s
tr

ea
m

  fl
 ow

 a
s 

in
pu

t 

 Y
oo

n 
et

 a
l. 

 (  2
01

1  )
  

 B
ac

k-
pr

op
ag

at
io

n 
al

go
ri

th
m

 
 Pr

ed
ic

te
d 

gr
ou

nd
w

at
er

 le
ve

l w
ith

 p
as

t g
ro

un
dw

at
er

 le
ve

l, 
tid

e 
le

ve
l, 

an
d 

pr
ec

ip
ita

tio
n 

as
 in

pu
t 

 W
u 

an
d 

C
ha

u 
 (  2

01
1  )

  
 M

od
ul

ar
 a

rt
i fi

 ci
al

 n
eu

ra
l n

et
w

or
k 

(M
A

N
N

) 
an

d 
da

ta
 p

re
pr

oc
es

si
ng

 
by

 s
in

gu
la

r 
sp

ec
tr

um
 a

na
ly

si
s 

(S
SA

) 

 T
hi

s 
pa

pe
r 

ai
m

s 
to

 e
lim

in
at

e 
th

e 
la

g 
ef

fe
ct

 o
f 

A
N

N
 m

od
el

s 
in

 r
ai

nf
al

l–
ru

no
ff

 m
od

el
s 

 M
ou

gi
ak

ak
ou

 e
t a

l. 
 (  2

00
5  )

  
 C

la
ss

ic
 N

N
 m

od
i fi

 ed
 u

si
ng

 
ge

ne
tic

 a
lg

or
ith

m
s 

 T
hi

s 
pa

pe
r 

cl
as

si
 fi e

d 
th

e 
la

nd
 u

se
 p

ic
tu

re
s 

of
 1

06
 

di
ff

er
en

t l
oc

at
io

ns
, d

iv
id

ed
 in

to
 c

om
m

on
, n

or
m

al
, a

nd
 

di
st

in
ct

iv
e 

cl
as

se
s,

 w
ith

 r
es

pe
ct

 to
 th

ei
r 

sc
en

ic
 b

ea
ut

y 



224 M. Majumder

    15.3   Decision Tree Algorithm (DTA) 

 In statistics and data mining, decision tree learning is used to categorize data sets 
according to predetermined attributes. The learning algorithm of a DTA uses a 
decision tree “as a predictive model which maps observations about an item to 
conclusions about the item’s target values”. The DTA is also known as classi fi cation 
trees or regression trees where leaves represent classi fi cations and branches represent 
conjunctions of features that lead to those classi fi cations. 

 DTAs are known to be useful for classi fi cation purposes. Although they have 
been used rarely, they are popular for their well-known classi fi cation ability. Some 
examples are listed below:

    (a)     Release rule con fi guration of a  fl ood-control reservoir (Wei and Hsu  2009  )   
    (b)     Water quality analysis (Litaor et al.  2010  )   
    (c)     Reconstruction of missing daily data (Kim and Pachepsky  2010  )   
    (d)     Change detection analysis (Pilloni et al.  2010  )   
    (e)     Image classi fi cation (Yang et al.  2003  )   
    (f)     Topological classi fi cation (Simon et al.  2007  )      and in many other decision-

making approaches.  

    15.4   Methodology 

 The problem of developing an index lies in the selection of its independent parameters 
upon which a decision about the ratings could be undertaken. Volume of  fl ow, 
annual variation of  fl ow, channel loss, storage capacity, groundwater contribution, 
demand from farms, presence of buffer ponds, and sedimentation were considered 
as independent parameters of incident that are also merely correlated with each 
other. The justi fi cation for the selection of these parameters is given below:

    1.     Volume of  fl ow (Q) : one of the most important parameters of irrigation canal 
design is volume of  fl ow. The Dimensional properties of the hydraulic structure 
is estimated based on the volume of  fl ow.  

    2.     Annual variation of  fl ow (Q  
 v 
  ) : the distribution pattern of the annual variation in 

monthly water discharge represents the maximum and minimum amount of  fl ow in 
the canal. Design of canals for highly varied  fl ow is prone to errors and often is the 
main cause of over fl ow and submergence of agricultural lands at a buffer. But for a 
steady  fl ow the canal faces less uncertainty, making the task for designers easy.  

    3.     Channel loss (L) : the loss of water from a canal can be determined as the amount 
of water that has either in fi ltrated or evaporated during the time of  fl ow through 
the canal. This parameter also represents the canal ef fi ciency when loss and 
water withdrawn are deducted from the volume of in fl ow and divided by only 
in fl ow. The more water is lost, the less able it will be to withstand uncertainty and 
stress from extreme events.  
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    4.     Storage capacity (S) : the capacity of a canal to store water. The higher the 
storage, the lower will be the chance of over fl ow. The hydraulic structure of the 
canal will determine its storage capacity. The storage capacity of a canal can 
be calculated with the help of the hydraulic radius and depth along with the 
length of the river canal.  

    5.     Groundwater contribution (G) : Irrigation canals are generally fed by groundwa-
ter during the summer season, and groundwater is recharged by the canal during 
the monsoon season. This ef fl uence and af fl uence relationship between the canal 
and groundwater helps to maintain the water level so that adequate water can be 
available for harvesting.  

    6.     Demand from farms (D) : The demand of water from adjacent agricultural land 
depends upon the type and frequency of crop harvested, where hydrophilic crops 
create more demand and hydrophobic crops have lesser requirements for water. But 
as most cash crops are of the hydrophilic type, demand for water is generally high 
from the buffering irrigation  fi elds, which again increases the stress on the canal and, 
often due to the overuse of the canal, creates water scarcity. Again multicrop prac-
tices will entail higher demand than monocrop agro lands. The method of water 
withdrawal from agro- fi elds will also in fl uence the demand for water from the canal. 
A sprinkler-irrigated  fi eld will demand more water but lose less water than drip irri-
gation, which will have lower demand but greater loss of water. The type of irrigation 
practice will also depend on the type of crops being harvested. Thus, such parameters 
were not considered explicitly. The method of withdrawal of water will also in fl uence 
the amount of water required. If pumps are used, then large amounts of water will be 
withdrawn per cycle, but if withdrawal is done by collectors or tube wells, then the 
amount of water withdrawn per cycle will be less than pump-controlled irrigation.  

    7.     Presence of buffer ponds (B) : buffer ponds are generally made to store water in 
times of scarcity. During summer or in the absence of rain for a long duration 
such ponds are used by farmers. The presence of buffer ponds greatly reduces the 
stress on canals. Thus, the more ponds there are, the higher will be the canals’ 
ability to sustain uncertain periods.  

    8.     Sedimentation (V  
 s 
  ) : the amount of sedimentation will impact the amount of water 

that can be carried or stored within the canal. A heavily silted canal will not be 
able to withstand high volumes of water during positive extreme events like  fl oods.     

 The classi fi cation work was performed by a neural network due to its pattern 
identi fi cation ability as observed and discussed in many scienti fi c studies. The factors 
were fed to the model as input parameters. The networks’ categorization ability was 
utilized to estimate the cluster of the data sets. At  fi rst a training data set was fed 
to the model so that the characteristics of individual clusters could be identi fi ed. 
Based on the characteristics of clusters the new data set representing situations of 
uncertainty was fed to the model. This new data set was clusterized, and, because 
the characteristics of the clusters were already known, the decision-making process 
about the ability of the canal to sustain uncertainty could easily be estimated. 

 The same data set was again classi fi ed with respect to the DTA. The threshold 
values were determined with the help of the Euclidean distance from the mean. 
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 Before the data were fed for clustering, the entire data set was rated on a scale of 
1–9, where the higher limit was given to the conducive data set and the lower limit 
was  fi xed for the deductive data set. That means the rating was inversely proportional 
to the suitability of canals to withstand abnormal climate conditions.  

    15.5   Results and Discussion 

 The clustering of the available sample was performed with the help of neural 
networks with 11 inputs, 1 output, a log-sigmoid activation function, 1,000 iterations, 
and 0.3 initial weight, and the clustering radius was kept at 30%. There are a total 
of 1,138 data samples. The data set for training consisted of 9 rows of data, which 
clearly portrays the characteristics desired in the nine clusters. Cluster 1 was found 
to include the most suitable combinations of input factors where the canals could 
withstand prevailing climate uncertainties. Table  15.2  presents the maximum and 
minimum values of the factors for each cluster of the training data set. Clearly, 
Cluster 1 will contain the combination of factors by which a canal will be able to 
withstand the uncertainties of climate change and urbanization.  

 Figure  15.1  depicts the weight pro fi le or distribution of clusters within the sample 
data set, where of 1,138 samples 10.82% were found to be most suitable and 11.43% 
least suitable to withstand abnormalities in climate and human population changes.  

 Analysis of the cluster characteristics revealed that Clusters 1 and 9 did not 
represent the most and least suitable irrigation canals. For example, sample locations 
that had high sedimentation, low concentration of buffer ponds, low storage capacity, 
high variation of  fl ow, and high channel loss were also grouped into Cluster 1. But 
samples with a high storage capacity and moderate groundwater contribution and 
frequency of buffer ponds were grouped into Cluster 9. 

 That is why the neuroclustering method was found to be error-prone and did not 
represent the true situation of the samples. 

 In addition, a guided neuroclustering method (GNCM) was followed where 
a summation of all the factor ratings of the conducive factors were divided by 
the summation of all the deductive factors and the normalized results of the same 
were added as an input variable and the samples were re-clustered:

      ( ) ( ) v sObjective Function Obj QXSXGXB / (Q XLXDXV )=
   (15.1)   

 For each of the samples,  Eq.    15.1    was calculated and normalized according to 
Eq.    15.2   : 

     

( )
( )

Obj Normalized Obj of the present sample maximum of all Obj /

maximum of all Obj minimum of all Obj

-

-

=

   (15.2)   

 Figure  15.2  depicts the output of the guided clustering procedure.  
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 In the case of the GNCM method, Cluster 4 was found to represent the most 
suitable canals with a high volume of  fl ow, low annual  fl ow variation, high channel 
loss, very high storage capacity, moderate concentration of buffer ponds, very 
low sedimentation, and low demand from farmers. Although the channel loss was 

  Fig. 15.1    Cluster weights and pro fi les for available sample data set according to neuroclustering 
methods       

  Fig. 15.2    Cluster weights and pro fi les for available sample data set according to guided neuro-
clustering method (GNCM)       
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higher in the cluster, it was mitigated by the high storage capacity and low demand 
from farmers. 

 From the cluster weight it was found that only 10.63% of the sample population 
had the characteristic of Cluster 4 and was suitable for withstanding uncertainties 
from climate change and rapid urbanization. Cluster 3 was found to have the least 
suitable canals, but within the sample nearly 13.01% of the total population had the 
characteristics of the Cluster 3 canals. 

 The sample population was prepared considering every possible combination. 
In the case of climate change, any canal would face high volume and variation in 
 fl ow along with high loss of water and deposition of sedimentation. The demand 
from farmers would be greater due to excess demand from the dependent population. 
The clusterization procedure revealed that only 10.63% of the total samples that 
include the impact of climate change and urbanization could mitigate the abnor-
malities. The remaining combinations would be unable to withstand the uncertainties 
imposed on them. That is why if the characteristics of Cluster 4 canals were 
followed in developing new canals, then those canals would not be vulnerable to 
climatic abnormalities as well as urbanization impacts. 

 After the application of GNCM the DTA was applied to the same sample popula-
tion with the help of the following rule:

    If the objective function is greater than 85% and less than 100%,   
   Then assign the canal to Cluster 1   
   Else   
   If the objective function is greater than 75% and less than 84%,   
   Then assign the canal to Cluster 2   
   Else   
   If the objective function is greater than 65% and less than 74%,   
   Then assign the canal to Cluster 3   
   Else   
   If the objective function is greater than 55% and less than 64%,   
   Then assign the canal to Cluster 4   
   Else   
   If the objective function is greater than 45% and less than 54%,,   
   Then assign the canal to Cluster 5   
   Else   
   If the objective function is greater than 35% and less than 44%,   
   Then assign the canal to Cluster 6   
   Else   
   If the objective function is greater than 25% and less than 34%,,   
   Then assign the canal to Cluster 7   
   Else   
   If the objective function is greater than 15% and less than 24%,,   
   Then assign the canal to Cluster 8   
   Else   
   Assign the canal to Cluster 9     
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 After the DTA was applied to the sample data set, it was found that Cluster 1 of 
the DTA was similar to Cluster 9 and 4 of GNCM and Cluster 9 of the DTA was 
comparable to all clusters of GNCM except Cluster 4. 

 That is why Cluster 4 is the only cluster that represents channel con fi gurations 
that can withstand future uncertainties. In the case of the DTA it was found that only 
0.17% of the total sample was predicted to have an optimal Cluster 1 whereas 
18.10% of the population was found to have rejected Cluster 9 (Fig.  15.3 ).  

 As both the DTA and GNCM selected the L191 sample within the optimal cluster 
[DTA assigned Cluster 1 to the sample whereas GNCM assigned the same sample 
to Cluster 4; the cluster pro fi le (Fig.  15.2 ) also supported the selection] the charac-
teristics of L191 were selected as the optimal con fi guration for a canal to withstand 
the onslaught of climate and anthropogenic events (Table     15.3 ).   

    15.6   Conclusion 

 The present investigation tried to classify different characteristics of irrigation 
canals to identify features of a canal that would be able to withstand climatic and 
urbanization impacts. DTA and GNCM neural networks were applied to clusterize 
every possible combination of the inputs if all of them were rated on a scale of one 
to nine according to their impact on canal suitability. The scale was con fi gured in 
such a way that the suitability of canals was enhanced when the conducive variables 
increased toward nine and deductive ones decreased towards 1. After the GNCM 
was applied, it was found that the characteristics of Cluster 4 canals could be 

   Table 15.3    Optimal con fi guration of irrigation canals for withstanding future uncertainties ( blue : 
conducive variables;  black : deductive variables)   

 Volume 
of  fl ow 

 Annual 
variation 
of  fl ow 

 Channel 
loss 

 Storage 
capacity 

 Groundwater 
contribution 

 Demand from 
the agricultural 
 fi eld 

 Presence of 
buffer ponds  Sedimentation 

 7/9  2/9  3/9  8/9  6/9  1/9  9/9  3/9 

  Fig. 15.3    Cluster weights for available sample data set according to guided DTA method       
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identi fi ed as a standard for future canal design. But application of DTA revealed that 
Cluster 1 had the characteristics that engineers should follow to make canals feasi-
ble for uncertain situations. It was also found that canals having Cluster 1 in DTA 
had acquired all the Cluster 4 and 9 characteristics in GNCA but canals having 
Cluster 9 in DTA had achieved all the Clusters except 4 in GNCA. The sample L191 
was found to have con fi gurations that GNCM had assigned to Cluster 4 and DTA 
had grouped it under Cluster 1. That is why it was concluded that because both 
GNCM and DTA indicate those canals with the most suitable characteristics to 
counter future uncertainties, that con fi guration of the canal may be recommended 
when new canals are developed in the future. Thus, the ideal irrigation canal in the 
future must have the characteristics presented in Table  15.3  to make prepare them 
for the looming changes in climate and human populations.      
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