
Chapter 17
Transcriptional Networks – Control of Lung
Maturation

Yan Xu and Jeffrey A. Whitsett

Abstract This chapter provides examples of the application of tools of bioinfor-
matics and functional genomics to integration of large-scale gene expression data
with array independent genomic information to reveal transcriptional regulatory
networks. The focus is on networks that control lung maturation and surfactant
homeostasis, which can serve as a prototype for study of other complex biological
processes. Prenatal maturation of the respiratory system is fundamentally important
for the transition to airbreathing at birth. Lung immaturity is a major cause of
morbidity and mortality in newborn infants and underlies the pathogenesis of
acute respiratory failure (respiratory distress syndrome) and chronic respiratory
dysfunction (bronchopulmonary dysplasia), associated with preterm birth. The
immaturity of type II alveolar epithelial cells and the lack of pulmonary surfactant
lipids and proteins that are needed to reduce surface tension in the alveolar saccules
cause atelectasis and respiratory insufficiency after preterm birth. Lung maturation
includes diverse structural, cellular, and biochemical changes in lung architecture
and function that are precisely coordinated by genetic and environmental factors
that synchronize the length of gestation with the process of lung maturation.
Analysis of lung specific gene deletion and mutation mouse models, using tools
of functional genomics, permits the identification of new genes and pathways
controlling surfactant lipid homeostasis and lung maturation. The signaling and
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transcriptional mechanisms that influence lung growth and maturation needed to
support the abrupt adaptation to airbreathing at birth are of considerable interest, and
will provide a rational basis for the design of new treatment strategies for neonatal
pulmonary disease.

17.1 Introduction

The lung is a complex organ consisting of more than 40 distinct cell types derived
from ectodermal, mesenchymal and endodermal precursors that serve diverse spe-
cialized functions related to gas exchange, host defense, and ion transport (Whitsett
and Matsuzaki 2006). Perinatal lung “maturation” is necessary for the transition
from intrauterine to extra-uterine life. The maturation process includes structural,
biochemical and physiologic changes that in the mouse begin approximately at
embryonic day 15 and increase dramatically prior to birth. During late gestation,
epithelial cells lining the airways and lung saccules differentiate in association
with increased production of surfactant, a complex mixture of lipids and proteins
that is essential for reducing surface tension created at the air-liquid interface
in the alveoli required for air breathing at birth (McMurtry 2002; Burri 1984).
Epithelial cell differentiation is accompanied by dilation of peripheral lung saccules,
the thinning of mesenchyme, and extensive growth of the pulmonary vasculature.
Lung maturation is a carefully timed process. Preterm infants with immature lungs
are not able to make sufficient surfactant, causing Respiratory Distress Syndrome
(RDS), the major cause of mortality and morbidity in preterm infants (Dubin 1990;
Grenache and Gronowski 2006). Since the discovery that RDS is caused by the
lack of pulmonary surfactant (Avery and Mead 1959), the structure, function and
clinical relevance of surfactant lipid and proteins have been studied extensively
in both human and animals (Weaver and Beck 1999; Weaver and Whitsett 1991;
Whitsett 2006; Whitsett et al. 1995; Whitsett and Weaver 2002). Although the
introduction of surfactant replacement therapy and antenatal glucocorticoid treat-
ment for prevention of RDS have significantly reduced perinatal morbidity and
mortality, preterm birth rates and associated pulmonary morbidities have increased
progressively during recent decades in North America (Goldenberg et al. 2008;
Gravett et al. 2010). New and alternative treatments for the clinical problems related
to lung immaturity are needed. Progress in prevention and therapy of lung disease in
preterm infants will rest on understanding of genetic, environmental, and hormonal
inputs that control lung maturation and surfactant homeostasis.

The post-genomic era has provided unanticipated tools enabling the elucidation
of the complex biological processes critical for organ formation and function. The
availability of complete sequences of the human, mouse and other genomes and the
introduction of mRNA microarray and other high throughput technologies for study
of gene and protein expression enable simultaneous quantification of expression
levels of thousands of genes/proteins. These technologies bring new perspectives
to the study of gene networks and their regulation, providing access to molecular
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mechanisms underlying various diseases and phenotypes. While phenotypic out-
comes of experiments that are designed to manipulate the expression or function
of genes of interest in animal models of disease have been highly successful in
the study of disease pathogenesis, the global impact of gene perturbations remains
to be fully explored. Systems biology, supported by bioinformatic, proteomic,
and genomic data, is providing increasing insight into the pathogenesis of human
disease, including those affecting the lung. The density of bioinformatics data
relevant to lung biology is increasing exponentially, the thorough analysis of which
will provide insights into the processes underlying lung maturation and function.
In this chapter, we share experiences applying mRNA microarray analyses and
functional genomic applications in conjugation with transgenic mouse models to
identify key genes and pathways regulating lung maturation. We provide examples
regarding the application of systems biology to integrating lung specific gene
expression data with array independent data to generate transcriptional networks
regulating surfactant homeostasis during lung development. These approaches can
serve as models for study of transcriptional networks that regulate development
in other organ systems, especially the use of informatics tools to analyze large
data sets.

17.2 Lung Maturation and Surfactant Homeostasis

Lung development can be divided into five morphologically distinct stages that
begin near mid-gestation and continue through the early postnatal period. The
embryonic stage is distinguished by the formation of the lung buds and division
of the trachea and esophagus (E9–11.5) (days 9–11.5 of embryonic development of
the mouse). The pseudoglandular stage (E11.5–15.5) is characterized by branching
of the conducting airways, formation of the peripheral acinar tubules and buds,
and vasculogenesis; the canalicular stage (E15.5–17.5), by expansion of the acinar
tubules and buds, angiogenesis, and differentiation of alveolar epithelial type I and
II cells; the saccular stage (E17.5 – PN5), by dilation of the terminal respiratory
sacs, thinning of the mesenchyme, and deposition of elastin; and the alveolar
stage (PN5-30), by maturation of the alveolar-capillary bed, alveolar ducts and
alveoli (Perl and Whitsett 1999; Maeda et al. 2007). “Perinatal lung maturation”
occurs within the canalicular and saccular stages, at which time differentiation
of peripheral distal respiratory epithelial cells mediates increased production of
pulmonary surfactant lipids and proteins that are essential for lung function and
host defense after birth.

Lung surfactant is a complex mixture of lipid and protein, composed of
approximately 80% phospholipids, 10% neutral lipids (particularly cholesterol)
and 10% surfactant-associated proteins (SP-A, -B, -C and -D). The most abundant
phospholipid is phosphatidylcholine with saturated dipalmitoyl-PC (DPPC) as
the predominant form. DPPC is responsible for the surface tension–lowering
properties of surfactant (Goerke 1998). The lipid components are synthesized in the
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endoplasmic reticulum of the type II cell, modified in Golgi apparatus, transported to
the lamellar bodies where surfactant is assembled, stored and secreted by exocytosis
into the alveolar airspace (Perez-Gil and Weaver 2010). In late gestation, alveolar
type II cells dramatically increase production of surfactant lipid and protein to
reduce surface tension created at the air-liquid interface and prepares the lung for
extrauterine life (Johansson and Curstedt 1997).

17.3 Gene Expression Profiling and Transcriptional
Regulatory Network

Advances in genomic and proteomic technologies have been heralded as the new
biological revolution after completion of the human genome project. Gene profiling
is considered to be the heart of ‘omics’ because it not only enables a global view
regarding expression of genes as cells contribute to specific biological processes, but
also infers regulatory relationships between individual genes (Bonner et al. 2003;
Bullinger and Valk 2005; Liang et al. 2004; Margalit et al. 2005).

Lung development is a highly coordinated and precisely timed process. During
lung maturation, distinct groups of genes are induced or suppressed at specific
developmental stages to guide cell proliferation, morphogenesis, and differentiation.
An important aspect of gene regulation is mediated by transcription factors (TFs),
which bind to cis-elements of the target genes (TGs). Signaling molecules (SM)
activate TF responses to biological signals that change the transcription rates of TGs,
allowing cells to make needed proteins at the right times and in the right amounts.
The interactions between TF and TG can be graphically represented by Transcrip-
tional Regulatory Networks (TRN), in which TF/SMs and TGs are represented as
nodes and the interaction relationships are represented as edges. TFs do not function
alone in higher organisms, instead, TFs form complexes and bind to cis regulatory
modules (CRMs), DNA sequences (typically 50–1,000 bp in size) that contain
multiple transcription factor binding sites (TFBSs) clustered into modular structures
(Jeziorska et al. 2009). CRMs are responsive to specific combinations of TFs, the
precise combinatorial interactions of transcription factors providing transcriptional
activation appropriate to cell conduct and function (Jeziorska et al. 2009).

A fundamental challenge in the “post genomic era” is to decode transcriptional
networks that direct intricate patterns of gene expression typical of complex organs.
Although many key regulators have been identified in the lung, how TFs interact
with each other and with SMs to regulate groups of target genes mediating perinatal
lung development remains unclear. Here, we summarize recent work seeking
to decipher transcriptional networks regulating lung maturation and surfactant
homeostasis and consider current efforts directed toward the more challenging
problem of generating predictive models that account for the dynamic and context
dependent TRNs of lung function and disease.
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17.4 Functional Genomics to Study Lung Maturation
and Surfactant Homeostasis

Microarray technology has been widely applied to many aspects of pulmonary
biology (Mayburd et al. 2006; Minn et al. 2005; Wang et al. 2000; Zuo et al.
2002). Our own studies have contributed to the contemporary body of knowledge
applying functional genomics approaches to study the transcriptional regulatory
programs controlling lung development, function, and disease. In the lung, distinct
sets of signaling molecules and transcription factors interact to implement the
structural maturation and cell type specific differentiation of the lung. Through
the manipulation of a number of key transcription factors and signaling molecules
in transgenic mouse models and the application of genome-wide transcriptional
profiling analysis to these models, we have identified target genes, pathways, and
physiologic consequences in response to the deletion or mutation of many lung
transcription factors (Nkx2-1, Foxa1/a2, C/EBP’, Hif1’, STAT3, NFAT, SREBP,
SPDEF, SOX17, PTEN, NF1, Nkx2-9, KLF5, FOXM1, and CATNB) and signaling
molecules (MIA, SHH, CSF2R, FGF, RSPO1) (Bridges et al. 2006; Dave et al.
2006; DeFelice et al. 2003; Lian et al. 2004; Martis et al. 2006; Matsuzaki et al.
2006; Metzger et al. 2007; Miller et al. 2004; Mucenski et al. 2005; Wan et al. 2004,
2005, 2008; Xu et al. 2003, 2006, 2007, 2009; Maeda et al. 2011). Many of the
key regulators of lung maturation are also critical for early embryogenesis, their
disruption often causing embryonic lethality preceding lung formation that begins
at approximately E9 in the mouse. The application of conditional mutagenesis in
specific lung compartments has been useful in identifying the role of factors critical
to early embryogenesis, lung morphogenesis and differentiation. Through these
studies, multiple TFs and signaling pathways have been implicated in the structural
and functional adaption of the lung at birth (Maeda et al. 2007). Factors important
for lung development and function are not exclusively lung-specific; lung specificity
is derived from the unique combinations and interactions of TFs. An understanding
of the individual TFs and their interactions in the context of lung development
requires systemic approaches to connect distinct but interrelated components to
define the transcription networks governing lung maturation and differentiation.

Substantial gaps remain in causally linking patterns of gene expression to the
transcriptional mechanisms regulating cell behavior. Microarray data alone cannot
distinguish direct and indirect cellular responses. While using genome expression
data to elucidate TRNS is far from transparent, additional layers of information
and integrative approaches are needed to link gene expression, cell biology, and
lung function.

17.4.1 Clustering

Genes belonging to the same co-expression cluster are likely to be co-regulated by
similar TFs or belong to the same transcriptional regulatory network. Clustering
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provides important insights into regulatory networks by grouping genes on the basis
of similarity of their expression patterns under various experimental conditions.
Genes selected from microarray analyses are often grouped into distinct clusters.
Genes in each cluster are further classified according to Gene Ontology (GO)
and shared transcription factor binding sites in the regulatory regions of genes
within the cluster to identify the potential biological themes and common regulatory
mechanism represented by these unique gene sets. Classical clustering algorithms
including K-means, SOM and Hierarchical clustering generally emphasize clear
group separations; any given entity will be assigned to only one cluster. In real
biology, however, many proteins have multiple roles in cellular responses to various
conditions. Fuzzy Heuristic Partition (Fu and Medico 2007; Gasch and Eisen 2002)
considers each gene to be a member of every cluster with a variable degree of
membership and enables the assignment of genes to more than one cluster with
different degrees of membership. Using stringent membership cutoffs, most of
the genes in each cluster are highly correlated across all experimental conditions.
As the degree of membership decreases, additional genes join the cluster based
on their expression similarity under various experimental conditions, enabling the
identification of context-dependent regulation. We prefer to evaluate clustering
performance based on its ability to produce biologically meaningful clusters using
the GO database as a common reference (Datta and Satten 2008; Pihur et al. 2007)
rather than to emphasize cluster separation.

Clustering is most commonly used to identify co-expressed genes. Genes also
may be clustered based on their functional annotations, shared promoter/regulatory
cis-elements, and biochemical and morphological measurements. Figure 17.1 is
an example of using multivariate correlation analysis of mRNA expression with
lung physiology, biochemical, and morphological measurements. As depicted in
Fig. 17.1a, qPCR data analysis of 53 mRNAs previously associated with lung
function and structure revealed three major clusters. Cluster 1 genes (including
surfactant, Abca3 and Slc34a2) are induced dramatically before birth; cluster 2
genes (Nkx2-1, Pdgfa, Lpcat, etc.) are moderately induced, while cluster 3 genes do
not significantly change during perinatal lung maturation. Using mouse embryonic
day 15 (E15) mRNA expression as baseline and 1-day before birth as peak
maturation, the rate of gene induction prior to birth can be assessed. Clusters 1 and
2 genes are induced earlier and faster in B6 mice (born after 19.5 days gestation)
than in A/J mice (born after 20.5 days gestation), indicating the dynamic mRNA
changes in cluster 1 are required for the “shortened” lung maturation process. In
Fig. 17.1b, multivariate correlation analysis of mRNA expression with dynamic
changes of body weight, lung weight, SatPC and morphometric measurements, we
identified a subset of mRNAs, including Sftpa, Sftpb, Sftpc, Sftpd, Slc34a2, Scgb1a1,
Cebpa and Aqp5, that were highly correlated with SatPC, body weight, lung weight,
and the fractional area of airspace, biochemical and morphological features of lung
maturation. Likewise, mRNAs associated with lipid homeostasis, including Scd1,
Abca3, Fabp5, and Lpcat1, were correlated with lung weight and fractional area
of airspace; while another distinct subset of mRNAs, including Tubb3, Pygb, and
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Fig. 17.1 Clustering analysis on selective lung maturation markers: (a) Dynamic mRNA
expression levels of 53 lung maturation markers were measured by qPCR in both A/J and B6 mouse
strains. qPCR data analysis revealed three major clusters. Profile chart is generated based on the
normalized cluster mean and standard error of each gene cluster. The X-axis represents days before
and after birth (E15-P2): 0 is the day of birth. The Y-axis represents relative expression normalized
to E15. (b) Dynamic mRNA expression profiles of 53 genes at different gestation ages for the A/J
mice were correlated with body weight (BW), lung weight (LW), SatPC (�mol/gLW, �mol/gBW,
and total), and morphometric measurements (airspace, tissue) at corresponding gestational ages
using multivariate correction function from JMP 9 (SAS Institute Inc, NC). The heat map was
generated based on data from A/J mice using Ward’s minimum variance method to estimate cluster
similarity. Gradients in the red and green color range indicate positive and negative correlation,
respectively. The levels of mRNAs in red clusters were highly correlated with ontogenic changes in
lung SatPC and fractional area of airspace mRNAs in blue clusters were moderately correlated with
SatPC, but closely correlated with fractional area of airspace mRNAs in green clusters correlated
well with the fractional area of the tissue compartment (Adapted with permission from Figure S5
in Besnard et al. 2011)

Igfbp2, were best correlated with fractional area of the tissue compartment (i.e.,
mesenchyme). Thus, expression of a subset of mRNAs that encode proteins involved
in surfactant homeostasis was highly correlated with increasing SatPC (surfactant
lipid), body weight, lung weight, and structural maturation of the lung as gestation
proceeded.
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17.4.2 Functional Classification

After identifying the major co-expressed gene groups, one general question to
address is: “What is unique about this gene set?” There are two common approaches
to this question; a reductionism or “cherry-picking” approach and a systems
approach. A widely used hypothesis driven approach is gene centric, identifying
mRNAs of your interest and choosing them for further study. The systems approach
is unbiased, seeking to understand the general themes, trends, and biological
meanings buried in the data, rather than to identify a single gene or gene network of
interest. Biological knowledge and concepts integration represent an unbiased way
to identify the potential biological themes represented by distinct gene data sets.
Such processes also help in assigning putative roles to previously uncharacterized
genes. As each gene is associated with multiple biological annotations from
various resources (Gene Ontology terms, Medical Subject Headings and keywords,
pathways, protein–protein interactions, protein functional domains, phenotypes,
literature/abstract etc.), enrichment of genes in certain functional categories can
be determined using Fisher’s exact test to compare the occurrence of the term in
the experimental gene set of interest, with annotations in the rest of the genome as
reference. Thus overrepresented functional categories can be identified in your gene
list. Multiple pre-compiled web-based functional annotation tools including Onto-
Express (Khatri et al. 2002), GoMiner (Zeeberg et al. 2003), DAVID (Dennis et al.
2003), GSEA (Subramanian et al. 2005), and ToppGene (Chen et al. 2009) have
been developed that release the user from the burden of compiling and updating the
vast and increasing abundance of annotations. Most of these methods are capable of
implementing corrections by comparing functional representations within random
gene lists and then generating adjusted p-values that represent the probability of
observing a given categorical enrichment in experimental data sets. For genes
within a cluster, Kappa similarity can be measured to estimate functional similarity
between genes based on the number of shared annotation terms (McGinn et al.
2004). Kappa similarity values range from 0 to 1, the higher the value of Kappa,
the stronger the overall agreement in annotation terms.

17.4.3 Identification of Common TFBS Motifs and Modules

It is reasonable to predict that co-expressed genes are likely to be co-regulated
through common regulatory mechanisms, via the presence and function of common
TFBS and binding modules at regulatory sites within the genome. Because “motif”
searches are associated with many false positive predictions due to the short and
degenerate nature of many TFBS motifs, several approaches can be used to reduce
false positives and improve predictive accuracy.
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• Apply comparative genomics: Programs such as Genome RVista (http://
genome.lbl.gov/vista/) and DiRE (http://dire.dcode.org) are used to identify
evolutionarily conserved regulatory elements in co-expressed gene clusters.
These programs define precompiled evolutionary conserved regions (ECR) via
human and mouse whole genome alignment. The locations of putative TFBSs
are precomputed for each genome using vertebrate position weighted matrices
from TRANSFAC matrix library. Evolutionarily conserved TFBSs are identified
at specific genome locations (promoter, intron, UTR or intergenic regions, etc.)
at defined strengths.

• Search for over-represented TFBSs in proximal promoter regions: cis-Element
over-representation (Clover) (Frith et al. 2004) can be used to identify conserved
TFBSs that are over- or under-represented in the given promoter set.

• Search for motif cluster and CRM: Since it is known that TFBS are not evenly
distributed, finding motif peaks within the promoter region is likely to indicate
functional regulatory regions. Cluster-Buster, a Hidden Markov Model based
method (Frith et al. 2003) can be used to identify clusters of motifs in a given
gene sequence. Matbase (Genomatix) contain well documented, experimentally
confirmed promoter modules with synergistic, antagonistic or additive functions.
Comparison of predicted CRMs with the known TF modules is used to identify
and cross validate meaningful TFBS combinations.

17.4.4 Concept Integration

The combination of approaches that include unsupervised clustering analysis, gene
set enrichment analysis, promoter and literature mining with microarray analysis
is useful in identifying general modes of action and in forming initial hypotheses
regarding the potential targets and regulatory mechanisms underlying experimental
data. Bioinformatics data mining and wet-bench confirmation is then integrated to
study selected genes and associated pathways. Figure 17.2 provides an example
of an integrative analysis of a gene cluster containing 45 genes derived from
microarray analysis of 194 samples under 27 conditions. GO classification indicates
a significant enrichment of genes involved in lipid metabolism (P D 0.000472) and
phosphate transport (P D 0.0055). Motif and module search were carried out to
search for phylogenetically conserved common regulatory elements. EBOX, SP1F,
SREB and EGRF are the most significantly enriched TFBS for this gene cluster.
Among these, EBOX was detected in 43 out of 45 gene promoters. SREB shares
high matrix similarity with EBOX. SREBP binds to both EBOX and SREB in
vivo (Bennett et al. 1995). Further, SREB/SP1F and EGRF/ZBPF likely form a
regulatory module in the promoters of genes in this cluster. SREBP-SP1 may play
important role in controlling lung lipid homeostasis, a concept supported by the
demonstration that SREB regulates a number of genes involved in lipogenesis in the
lung (Plantier et al. 2012; Besnard et al. 2009; Mason et al. 2003).

http://genome.lbl.gov/vista/
http://genome.lbl.gov/vista/
http://dire.dcode.org
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Fig. 17.2 Integrative analysis of a “Lipid” enriched cluster: (a) Heatmap represents gene
expression profiles across 27 conditions. Intensity in the red and green color range indicates
up-regulated and down-regulated mRNAs, respectively. Each row represents a single gene. Each
column represents a particular experimental condition. Each box represents the normalized RNA
intensity value. Similarity measures were assessed utilizing Euclidean distance. (b) Significant
functional classifications. Colored boxes indicate genes with the respective classification. The
calculated P value for the enriched classifications is shown at the bottom. (c) Promoter analysis.
SREB (pink), SP1F (red), EGRF (green) and ZFPF (blue) were indicated in the 2 kb upstream
promoter sequences of the cluster genes. Those TFBSs are overly represented in this cluster,
conserved across human and mouse genomes and tend to form composite modules as shown in
the top Table

17.4.5 Meta-Analyses of Microarray Data

As a result of the wide application of mRNA microarray technology, there are
rapidly growing collections of available microarray data sets that can be used for
subsequent analysis. “Meta-analysis” of microarray data uses statistical tools to
combine and synthesize results from several related, but independent, microarray
experiments (Hong and Breitling 2008). The objectives include increasing power
to detect an overall treatment effect, assessment of the variability among studies,
and maximizing the use of data available. We have carefully studied genome wide
responses to experimental perturbations in more than 80 distinct mRNA microarray
experiments. These data are a useful resource for mapping transcriptional networks
regulating various aspects of lung development, function, and disease. Applying
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meta-analysis to combinations of existing lung microarray datasets has been useful
in testing hypotheses and revealing insights into potential regulatory mechanisms.
Using this strategy, we have compared mRNA microarray experiments from distinct
mouse models that share delayed lung maturation phenotypes (details see below).

17.4.6 Analysis of Genetic Models Influencing Lung
Maturation

Lung function at birth is highly dependent on the differentiation and function
of the respiratory epithelium that, in turn, produces pulmonary surfactant lipids
and proteins. Studies from the conditional deletion or mutation of specific genes
led to the identification of several transcription factors and signaling molecules
that serve cell-autonomous roles in the respiratory epithelium that are critical for
respiratory adaptation at birth, including NKX2-1, FOXA2, C/EBP’, MIA1 and
CNB1. Thyroid transcription factor gene 1 (TTF-1/NKX2-1) belongs to the NK2
class of homeobox transcription factors. Nkx2-1(�/�) embryos die at birth from
respiratory failure due to a profound failure of lung formation (Kimura et al.
1996); absence of Nkx2-1 activity leads to inhibition of distal lung morphogenesis
and epithelial cell differentiation (Yuan et al. 2000). Mice bearing a mutation in
Nkx2-1 (i.e., serine phosphorylation sites are mutated to alanine), substantially
rescued lung formation, but impaired lung maturation, causing respiratory failure
at birth (DeFelice et al. 2003). Deletion of Foxa2 (forkhead box protein A2, a
winged-helix transcription factor), Cebpa (CCAAT enhancer binding protein ’)
and Cnb1 (Calcineurin b1) from lung epithelial cells or misexpression of Mia1
(Melanoma inhibitory activity protein) in lung epithelial cells caused respiratory
distress at birth with phenotypic and biochemical changes similar to those observed
in NKX2-1 mutant mice, namely: decreased expression of surfactant mRNA and
proteins, lack of appropriate differentiation of type I and II cells, and absence of
lamellar body formation, indicating delayed peripheral lung maturation (Dave et al.
2006; DeFelice et al. 2003; Martis et al. 2006; Wan et al. 2004; Lin et al. 2008).
To better understand the mechanisms underlying the similarity of the perinatal
lung maturational defects, we employed genome-wide transcriptional profiling to
study genomic responses to phosphorylation mutation of Nkx2-1, lung epithelial cell
specific deletion of Foxa2, Cebpa, Cnb1 and misexpression of Mia1. Meta-analysis
of these microarray datasets showed that although these transcription factors and
signaling molecules act through different signaling pathways and bind to distinct
cis-elements, they influence the expression of many common targets involved in
surfactant protein and lipid biosynthesis (e.g., Abca3, Scd1, Pon1, Sftpa, Sftpb,
Sftpc and Sftpd), fluid and solute transport (e.g., Aqp5, Scnn1g, Slc34a2) and innate
host defense (e.g., Lys, Sftpa, Sftpd and Scgb1a1), suggesting that Foxa2, CEBP’,
Cnb1, Mia1 and TTF-1 may share a common transcriptional network regulating
perinatal lung maturation and postnatal respiratory adaptation (Fig. 17.3a).
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Based on the assumption that co-expressed genes sharing similar phenotypes are
likely controlled by the same sets of TFs, the altered genes from the “phenocluster”
analysis were subjected to promoter common TFBS search to identify statistically
over-represented TFBSs and CRMs as compared to their general occurrence in
promoter regions of the mouse genome. Using a p-value of 0.05, TFBSs were
ranked based on the total binding frequency in the promoter region of genes in the
cluster presence (Fig. 17.3c). Cytoscape v2.8.2 was used to generate transcriptional
regulatory networks for visualizing molecular interaction networks between this
group of genes and predicted TFs. Nfatc3, Nkx2-1 and Foxa1/a2 were among
the most over-represented TFs in the lung with high connectivity to this group of
genes in the network (Fig. 17.3b). We linked the TFs to their potential target genes,
generating data that further supports the concept that these TFs work in concert to
control the transcription of genes involved in lung maturation.

17.4.7 mRNA Microarray and ChIP-seq Integration

Chromatin immunoprecipitation (ChIP) followed by genomic tiling microarray
(ChIP-chip) or massive parallel sequencing (ChIP-seq) are two of the most widely
used approaches for genome-wide identification of physical interactions between
TFs and the regulatory DNA sequences to which they bind. Such studies provide
direct evidence of regulatory relationships (Ho et al. 2011). The integration of
ChIP-seq and mRNA microarray results enables further dissection of the direct vs.
indirect effects of selected TFs in vivo. Differentially expressed genes identified
from mRNA microarray analysis with positive binding sites from ChIP-seq analysis
are considered to be direct transcriptional targets. Genes with altered expression
in mRNA microarray analysis, but not in ChIP-seq, are likely indirect targets.
Promising peaks that are not associated with changes in mRNA level are likely
to be nonfunctional binding sites. Because expression data and ChIP-seq data
provide complementary information, predictions of TF-TG relationships based on
integration of their data are more accurate than predictions based on single data
sources. For instance, to more fully understand the NKX2-1 transcriptional activities

J
Fig. 17.3 Meta-analysis of microarrays from mouse models sharing common perinatal
respiratory distress phenotypes at birth: (a) Comparative microarray analysis of lung selective
deletions of Foxa2, Cebpa, Cnb1, mutation of Nkx2-1 and misexpression of Mia1 revealed common
targets involved in surfactant biosynthesis, fluid and solute transport and innate defense. (b) Over-
represented TFBS were identified using Clover and TRANSFAC software in the 2 kb promoter
regions of the genes altered in all five microarrays. Cytoscape v2.8.2 was used to generate TRN
via mapping TF matrix to predicted target genes. Each white rectangle represents a TF matrix
family and each blue oval represents a target gene. (c) The summary of binding frequency of each
TF to its potential TGs within 2 kb promoter regions. If multiple TFs are associated with the same
TF matrix family, only TFs with abundantly expressed in lung were selected as representative TFs
in the table
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and direct downstream targets in lung, we preformed integrative analysis of NKX2-1
ChIP-seq and NKX2-1 over-expression mRNA microarray data (Secondary analysis
of data from (Maeda et al. 2012) ) in following steps: (1) identify differentially
expressed genes in response to the NKX2-1 overexpression through mRNA microar-
ray analysis, (2) determine high confidence peaks containing a NKX2-1 binding
sites through peak calling of ChIP-seq data, (3) annotate the peak regions and find
closest gene in the region, (4) map differentially expressed genes to high confidence
peak regions, (5) discover novel motifs and mapping known TFBSs by scanning
the known TFBS library using position weighted matrix, (6) build an NKX2-1
consensus binding site, and (7) identify NKX2-1 containing cis-regulatory modules
by searching for the presence of additional TFBS within NKX2-1 containing peak
sequences that represent potential NKX2-1 interacting partners. We show that the
AP1, GATA, RXR, and PAX family of TFs are ranked highest to form cis-regulatory
modules with NKX2-1 (Fig. 17.4). Based on our previous studies, Nkx2-1, Cnb1,
Cebpa and Foxa2 belong to same “phenoclusters” (i.e., when perturbed, exhibit
phenotypes with similar morphological features) and shared a group of common
downstream genes that are known to play important roles in lung maturation
and function. Taking advantage of next generation sequencing, we assessed the
probability that these TFs form cis-regulatory modules. We scanned the presence
of NFAT, CEBPA and FOXA2 binding sites within the peak regions containing
NKX2-1 binding site as well as their association with changes in expression
from corresponding mRNA microarray analysis. We used random sequences of
fragments as reference to calculate the binomial probability of their association.
Interestingly, the co-binding probability and frequency of NKX2-1/CEBPA, NKX2-
1/FOXA2 and NKX2-1/NFAT were significantly enriched in the positive peak
regions compared with random DNA fragments, as indicated in Fig. 17.4. These
data support the concept that CEBPA, FOXA2 and NFAT act as interaction
partners with NKX2-1 to regulate gene expression during lung development and
maturation.

Through comparative mRNA microarray data from experiments with related
phenotypes, clustering, promoter analysis, gene set functional enrichment analysis,
literature mining and correlation with experimental data (physiology, biochemistry
and morphometric measurements), we have made substantial progress in mapping
the transcription regulation of lung “maturation.” A similar approach could be taken
to identification of transcriptional regulatory networks underlying the development
and maturation of other tissues and organs.

17.5 Toward a Systems Level Understanding of Surfactant
Homeostasis

While microarray data can be used for unbiased gene and pathway discovery,
identifying direct versus indirect genomic responses remain challenging. Functional
enrichment analysis and literature mining enable the association of genes with
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Fig. 17.4 Nkx2-1 Chip-Seq analysis: (a) Logos of the motifs discovered by peak-motifs for
Nkx2-1. Peaks was selected using MACS peak detection program in Galaxy package with p-
value < e-40. Next, we applied ‘peak-motifs’ in RSAT package to discover binding motifs in the
detected peak regions and compare discovered motifs to TRANSFAC and JASPAR databases to
predict associated transcription factors. (b) Examples of peaks and TFBSs (Nkx2-1: dark blue,
CEBPA: red, FOXA2: green and NFAT: baby blue) detected in the human SFTPC and ABCA3
gene locus. (c) The top enriched TFBS modules that co-occurred within 5–100 bp of NKX2-1-
binding sequences were determined by RegionMiner (Genomatix) within all peaks identified from
ChIP-seq analysis and listed at left panel. The probability of NKX2-1 forming modules with NFAT,
FOXA2 and CEBPA were determined within peaks associating with genes altered expression from
corresponding NKX2-1 mRNA microarray analysis. The results are compared with random picked
sequence fragments with the length similar to the NKX2-1 containing peak regions to determine
the binomial probability (right panel)

biological processes and pathways, but are limited to current annotated knowledge.
Correlations between regulators and potential targets are largely based on their
shared expression patterns, taking into account the likelihood that expression pat-
terns of TF and their targets are often correlated and groups of genes sharing highly
correlated expression profiles are likely to share TF(s). This approach, however,
will miss TFs that regulate their targets via processes that are independent of their
own levels of expression, for example, their activity may be mediated primarily by
post-transcriptional mechanisms. Analyses seeking conserved or common TFBSs
in promoters of co-expressed genes can identify the potential cis-elements, but
does not prove the actual binding of the TF; moreover, TFBS prediction is often
associated with high numbers of false positive predictions because of the short
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Fig. 17.5 Work flow for construction of a TRN regulating surfactant lipid homeostasis: In
order to predict TF-TG interactions using combined evidence, we developed an algorithm to
integrate expression profiling with expression-independent data (protein interactions, functional
annotation, promoter analyses, and literature mining). TFs were further clustered according to
an integrated matrix compiled from data sources including TF-TG functional similarity, TF-TG
expression correlation matrix and TF-TG interaction matrix. Each value in the four matrices
was scaled from 0 to 1 and summed into the integrated TF-TG matrix. TGs were grouped
into sub-clusters based on an integrated matrix, combining and capturing information from four
data sources: gene expression, TF-TG correlation, promoter TFBS prediction and GO functional
similarity. We calculated the relative confidence score of TF-TG associations by combining the
data obtained

(generally encompassing 5–15 base pairs), and degenerate nature of many TFBS
motifs. Likewise, the important regulatory roles of non-coding RNAs are not readily
identified in the RNA microarray platforms.

To generate a model by which surfactant homeostasis is controlled, we retrieved
194 mRNA microarray samples from 27 distinct mouse models in which TF/SMs
modifications were made in mouse models of lung disease. We utilized a systems
approach to integrate expression profiling with evidence from other resources,
including TF-TG correlation, protein interactions, functional annotation, promoter
analyses, and literature mining. Figure 17.5 illustrates the workflow used to build
our network model. Detailed methodologies can be found in (Xu et al. 2010).
Briefly, we identified 1,498 genes that significantly changed in mRNA microarray
analyses in response to the gene perturbations under at least 5 out of 27 experimental
conditions. We further clustered differentially expressed genes using Fuzzy clus-
tering by a local approximation of membership algorithm (Fu and Medico 2007).
Three co-expressed gene clusters that were highly enriched in genes influencing
lipid synthesis and transport were identified. For each cluster, over-represented
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TF binding sites, TF-TG expression correlations, TF-TG functional similarity and
TF-TG protein-protein interaction were determined. TFs were further clustered
according to an integrated matrix compiled from four types of data sources:
TFBS-TG scoring, TF-TG functional similarity, TF-TG expression correlations, and
TF-TG interaction matrices. Each value in the four matrices was scaled from 0 to 1
and summed into the integrated TF-TG matrix. TGs were grouped into sub-clusters
based on an integrated matrix, combining and capturing information from four data
sources: gene expression, TF-TG correlation, promoter TFBS prediction and GO
functional similarity. In the integrated matrix, each row represents a gene, and each
column represents a feature from one of the four matrices. We calculated the relative
confidence score of TF-TG associations by combining the resulting data. Confidence
describes the possibility of a true positive TF-TG relationship according to the
integrated information available. The TFBS-TG pairs with the highest Confidence
scores represent candidates for experimental validation.

Based on predicted, ranked TF-TG relationships, we constructed a “lung lipid
regulatory network.” In Fig. 17.6, we show a sub-network consisting of the TFs with
the highest connectivity (score �0.6, top 4.5%) among three gene clusters. SREBP,
HNF3, ETSF, CEBP, GATA and IRFF are clear regulatory hubs in this network,
and are TFs likely to be key regulators controlling surfactant lipid homeostasis via
control of genes within three lipid-related clusters. The roles of several key TFs in
the proposed network have been partially confirmed by previous studies, including
SREBP1, FOXA2, CEBPA, ETV5 and GATA6 (Martis et al. 2006; Wan et al. 2004;
Besnard et al. 2009; Bruno et al. 2000; Lin et al. 2006; Liu et al. 2002). IRF1 encodes
interferon regulatory factor 1, a member of the interferon regulatory transcription
factor family. The finding that IRF may serve as an important regulator in lung
lipid homeostasis merits further experimental validation. Transcriptional regulators
of surfactant homeostasis that had previously been experimentally validated were
identified as key hubs in this unbiased network, supporting the reliability of the
proposed model. The TFBS of SREBP, HNF3 and CEBP are commonly enriched
in all three lipid related clusters and share many downstream targets, suggesting
complex interactions among CEBP, SREBP and HNF3 in the proposed lung
lipid network. Many of the network predictions for the targets of Cebpa, Srebf1
and Foxa2 were validated through the combination of promoter reporter assays,
transgenic animal models, and literature mining (Xu et al. 2010).

17.6 Transcriptional Programs Controlling Perinatal
Lung Maturation

Complex genetic programs that are influenced by multiple environmental and
temporal dependent factors likely control the timing of lung maturation. Cross-
sectional integrative gene expression profiling analysis does not take into account
the dynamic nature of the transcriptional programs accompanying lung maturation.
We have recently combined genetic, genomic and bioinformatics methods to
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Fig. 17.6 TRN composed of predicted TF-TG pairs with the highest connectivity: (a) The
graphic representation of a sub-network consisting of predicted TF-TG pairs with confidence cutoff
as 0.60 (top 4.5%) and the top 6 TFs with the highest connectivity. The network has 183 nodes and
386 links. Round nodes represent TGs, red diamond nodes represent TFs. Blue edges indicate the
TF-TG predictions from C1, red edges for C2, green for C28, yellow for both C1 and C2, brown
for both C1 and C28, light blue for both C2 and C28, and pink edges for TF-TG predication from
C1, C2, and C28. The thickness of the edge corresponds to the frequency of the TF-TG prediction
from all three clusters. (b) Confidence score was calculated based on the integrative evidence of
TF-TG relationship. The overall connectivity of each TF to its potential TGs within three clusters
were calculated and summarized in b. The corresponding TFs expressed in lung were also listed
(Adapted with permission from Figure 2 in Xu et al. 2010)

elucidate the relationship between the length of gestation and lung function at
birth in two inbred mouse strains (C57BL/6 J and A/J), whose gestational length
differed by 1 day (Besnard et al. 2011; Murray et al. 2010; Xu et al. 2012).
Lung maturation, as indicated by SatPC (surfactant lipid), lung histology, and
the expression of surfactant genes, occurs earlier in B6 than A/J mice. Shorter
gestation in B6 mice was associated with advanced morphological and biochemical
pulmonary development and better perinatal survival when compared to A/J pups
born prematurely (Besnard et al. 2011).

17.6.1 Dynamic Profiling

Taking into account the dynamic nature of the transcriptional programs
accompanying lung maturation, we designed genome-wide, time-course microarray
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studies to systemically explore the dynamic regulation of lung maturation in both
B6 and A/J mouse strains in order to discover genes, pathways, and associated
transcriptional networks underlying lung maturation in the two strains of mice that
differ in gestational length (Xu et al. 2012). Briefly, lung samples from each mouse
strain were collected daily from E15.5 to PN0 at precise gestational ages (Murray
et al. 2010). Lung RNAs isolated from the two mouse strains at different time points
in development were hybridized to Mouse Gene 1.0 ST Array (n D 3/strain/time).
Dynamic lung mRNA expression profiling from B6 and A/J mice were compared to
identify: (1) genes and bioprocesses commonly altered in both strains during lung
maturation, (2) transcription factors and signaling molecules (TF/SMs) that changed
at different stages of lung maturation, (3) pathways and transcriptional networks
controlling lung maturation, and (4) strain dependent effects on lung maturation.

To identify temporal-dependent gene expression changes during lung matura-
tion, a functional Bayesian approach (Angelini et al. 2008) was used to analyze
time dependent changes in lung mRNAs from both mouse strains. Next, we
identified temporal dependent expression patterns and matched dynamic profiles
of transcription factors and targets during lung maturation using STEM (Short
Time-series Expression Miner), a clustering algorithm specifically designed for the
analysis of short time series gene expression datasets (5–8 time points) (Ernst and
Bar-Joseph2006). Comprehensive knowledge integration was employed to identify
temporal dependent bioprocesses, key TF/SMs and associated TRNs and to reveal
the potential biological interrelationships among the matched TF/SMs and their
proposed target genes within each cluster.

To identify strain dependent gene expression during lung maturation, we selected
genes that were differentially expressed in A/J and B6 mice at E18.5, but unchanged
when comparing A/J at E19.5 vs. B6 at E18.5. The selection is based on two sets of
evidence: (1) sample correlation analysis suggested that B6 mRNAs at E18.5 were
most similar to A/J mRNAs at E19.5 and least similar to A/J mRNAs at E18.5.
(2) A/J fetuses delivered 2 days prematurely (at E18.5) failed to expand their lungs
and died of respiratory failure soon after birth, while A/J fetuses delivered 1 day
prematurely (at E19.5) survived (87.4%), a survival rate similar to that for B6 mice
born 1 day prematurely at E18.5 (82.5%) (Besnard et al. 2011). Together these
data support the concept that lung mRNAs differ most between the two strains at
E18.5 and that mRNAs modulated during “catch up” in A/J mice at E19.5, are likely
important for lung maturation and function.

Through comprehensive bioinformatics data mining, both temporal and strain
dependent gene expression patterns were identified during lung maturation. As
illustrated in Fig. 17.7, bioprocesses and key regulators associated with different
stages of lung development were identified. Lung development, cell adhesion and
movement, lipid metabolism, and proliferation were induced early in lung matu-
ration (E15–16 in the pseudoglandular stage). Hopx, Cebpa, Tcf21 and Klf5 were
predicted to be important transcriptional regulators at this stage, a finding consistent
with gene deletion studies that support their important roles in prenatal lung
maturation (Martis et al. 2006; Wan et al. 2008; Quaggin et al. 1999; Yin et al. 2006).
TF/SMs regulating vasculature development and apoptosis were induced at E16–17
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Fig. 17.7 Dynamic regulation of lung maturation: (a) Heatmap of temporal dependent gene
expression changes during lung maturation (E15-PN0). (b) Schematized depiction of bioprocesses
and predicted key regulators changed dynamically with advancing gestation

(canalicular stage), Vegfa, Sox17 and Stat3/6 representing important regulators at
this stage. Innate defense/immune responses, cell differentiation, protein phospho-
rylation, ion transport, and cilium formation were induced at later gestational ages
(E18–20, in the saccular stage), Stat1, Tgfb1 and Foxj1 being important regulators
associated with this stage of maturation. Cell cycle and chromatin assembly were
repressed during lung maturation. FOXM1, PLK1, chromobox, SWI/SNF and high
mobility group families of transcription factors were predicted to play important
roles in the negative regulation of lung cell proliferation that occurs in late gestation.

Prior to birth, innate immune responses and surfactant production are critical
and connected processes that positively influence lung maturation necessary for
respiration and survival after birth. In contrast, epigenetic regulators are likely
to play a repressive role by altering chromatin structure and controlling the cell
cycle. We hypothesize that precise regulation and balance among the positive and
negative gene networks are likely critical determinants coordinating the timing of
lung maturation with gestational length that differs in the B6 and A/J mouse strains.
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17.6.2 Sub-networks Control Distinct Biological Processes
During Lung Maturation

Transcriptional regulatory networks can be divided into sub-networks of intercon-
nected genes, each of which represents a functional unit of the entire network. Each
unit is driven by tissue or cell type specific TFSM hubs and acts at specific times
and in specific cell types. All units work coordinately to control spatiotemporal pro-
cesses of lung development and maturation. Due to the complexity and modularity
of the TRNs, it is more desirable and experimentally feasible to focus on sub-
networks. For example, in our recent genome-wide time-course mRNA microarray
study in two strains of mice, we identified multiple bioprocesses induced during the
saccular stage of lung development, at E16.5–E17.5, including cell adhesion, lipid
metabolism/transport and vasculature development. These major bioprocesses were
controlled by CAV1/CDH1, CEBPA/PPARG and VEGFA centered sub-networks,
respectively. Innate defense/immune responses were induced at later gestational
ages (E19.5–20.5). STAT1, AP1, and EGFR are important regulators of these re-
sponses in the sub-network. Expression of RNAs associated with the cell cycle was
repressed during prenatal lung maturation and was associated with a FOXM1/PLK1
centered sub-network. These sub-networks consist of a small group of effector
genes, usually centered around one or several interrelated hubs. Effector genes in the
sub-network tend to be co-expressed, transcriptionally co-regulated, and perform a
similar cellular function or work in concert to influence a specific developmental
process. Perturbations and experimental validation of hubs and effector genes in
the sub-networks will help further delineate the complicated biological processes
involved in lung maturation.

17.7 Conclusions and Future Directions

In this chapter, we have summarized functional genomic and systems biology
approaches that can be applied to the study of transcriptional regulation of tissue
and organ development. The example chosen to illustrate uses of tools and databases
is perinatal lung maturation and surfactant homeostasis. We have emphasized the
importance of using integrative approaches to achieve comprehensive understanding
of regulatory mechanisms controlling lung maturation at systems level. To date,
none of the transcription factors participating in lung development are exclusively
lung-specific. The unique combinations and interactions among TF/SMs are likely
to provide the basis for emergence of lung structural and functional specificities that
drive lung maturation. A systems level identification of the individual TF/SMs and
their unique interactions in the context of different stages of lung development will
be needed to further understand the temporal regulation of structural and functional
changes involved in lung maturation prior to birth. A thorough understanding of
the molecular mechanisms controlling the timing of normal lung maturation will
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promote the understanding of the pathogeneses of lung diseases associated with
preterm birth, providing new therapeutic and diagnostic tools to treat pulmonary
diseases in infants. This approach takes full advantage of genomic resources
to provide an accurate prediction of lung transcriptional networks. The systems
biology strategy discussed in this review is powerful and will be highly relevant
to studies of other diseases and developmental processes. Like RDS, most lung
diseases are complex, and a single gene or protein approach is less likely to
identify the cause of acute and chronic lung diseases. Systems biology strategies
will facilitate our understanding the pathogenesis and treatment of diseases of the
lung and other organs in the future.

Looking forward, we anticipate that transcriptome analysis, ChIP-seq, expression
profiling, and assessment of the important regulatory roles of non-coding RNAs
will provide essential building blocks for the construction of TRNs regulating
signaling and metabolic pathways underlying the complexity of organ formation
and function. The emerging view is that many developmental sub-networks are
largely operative at the level of individual cells, each of which expresses a unique
combination of proteins. Studies of the transcriptome at the level of single cells
level pose major technical challenges that have not yet been solved. Currently,
the use of mRNA microarray technology has been widely applied at the organ
level. The examples described in this chapter are largely based on studies using
whole lung samples. Nevertheless, the lung is a complex organ consisting of more
than 40 distinct cell types that may be regulated by cell type-specific TF/SMs
combinations that activate additional sub-networks of genes to determine the cell
fate and function, for example, those involved in Type I and II cell differentiation
and surfactant production. Isolating cell-type-specific mRNA, using Laser Capture
Microdissection (LCM) and Fluorescence Activated Cell Sorting (FACS) will be
useful in measuring RNA expression patterns at a single cell level (Okaty et al. 2011;
Chung et al. 2005; Arlotta et al. 2005). These approaches will significantly improve
the sensitivity and resolution of mRNA analyses and enable the construction of
TRNs that directly reflect the regulation of expression in a cell autonomous manner.

The validation and reconstruction of TRNs based on experimental data presents
a major scientific challenge. Currently, TRNs can be experimentally validated via
TF-centered (Protein to DNA) or gene-centered (DNA to protein) methods (Arda
and Walhout 2010). TF-centered methods such as chromatin immunoprecipitation
and gene-centered methods such as reporter gene assays are commonly used to
delineate TF-TG relationships. However, these methods are difficult to apply to
larger sets of genes, complex network predictions, and within the context of intact
chromatin. The recent introduction of ChIP-seq and high throughput siRNA/shRNA
based loss-of-function studies provide powerful tools for functional validation of
predictions made by computational analyses. How to translate cell culture findings
to in vivo responses also remains a major issue. New technologies and experimental
approaches may be required to bring the process of experimental validation to the
next level that are compatible with the complex computational network predictions
and high-throughput, genome-wide technologies.
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