
Chapter 10
Optimal Design of Base-Isolated Systems Under
Stochastic Earthquake Excitation

Hector A. Jensen, Marcos A. Valdebenito, and Juan G. Sepulveda

Abstract The development of a general framework for reliability-based design of
base-isolated structural systems under uncertain conditions is presented. The uncer-
tainties about the structural parameters as well as the variability of future excitations
are characterized in a probabilistic manner. Nonlinear elements composed by hys-
teretic devices are used for the isolation system. The optimal design problem is
formulated as a constrained minimization problem which is solved by a sequential
approximate optimization scheme. First excursion probabilities that account for the
uncertainties in the system parameters as well as in the excitation are used to charac-
terize the system reliability. The approach explicitly takes into account all non-linear
characteristics of the combined structural system (superstructure-isolation system)
during the design process. Numerical results highlight the beneficial effects of iso-
lation systems in reducing the superstructure response.

1 Introduction

There has been a growing interest during the last years in the application of base
isolation techniques in order to improve the earthquake resistant performance of
civil structures such as buildings, bridges, nuclear reactors, etc. [8, 10, 23, 30, 33].
In fact, the potential advantages of seismic isolation and the recent advancements in
isolation-system products have lead to the design and construction of an increasing
number of seismically isolated structural systems. Also, seismic isolation is exten-
sively used for seismic retrofitting of existing structures [11, 26]. One of the diffi-
culties in the design of base-isolated structural systems is the explicit consideration
of the nonlinear behavior of the isolators during the design process. Similarly, the
consideration of uncertainty about the structural model and the potential variability
of future ground motions is a major challenge in the analysis and design of these
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systems. The goal of this work is the development of a general framework for relia-
bility based design of base-isolated systems under uncertain conditions. In particu-
lar, base-isolated building structures subject to earthquake excitation are considered
in this study. A probabilistic approach is adopted for addressing the uncertainties
about the structural model as well as the variability of future excitations. The un-
certain earthquake excitation is modeled as a non-stationary stochastic process with
uncertain model parameters. Specifically, a point-source model characterized by the
moment magnitude and epicentral distance is adopted in this formulation [6]. Isola-
tion elements composed by hysteretic devices are used for the isolation system. The
hysteretic behavior of the devices is characterized by a Bouc–Wen type model [5].
The model provides general parametric hysteresis rules that gives a smooth transi-
tion of the change of stiffness as the deformation of the nonlinear elements changes.
The reliability-based optimization problem is formulated as the minimization of
an objective function subject to multiple design requirements including reliability
constraints. First excursion probabilities are used as measures of system reliability.
Such probabilities are estimated by an adaptive Markov Chain Monte Carlo proce-
dure [4]. A sequential optimization approach based on global conservative, convex
and separable approximations is implemented for solving the optimization problem
[14, 18, 21]. The approach explicitly takes into account all non-linear characteristics
of the structural response and it allows for a complex characterization of structural
systems and excitation models. The solution of the equation of motion of the com-
bined system (superstructure-isolation system) required during the simulation pro-
cess is computed by a modified Runge–Kutta scheme of fourth-order. A numerical
example is presented in order to illustrate the applicability and effectiveness of the
proposed framework for reliability-based design of base-isolated buildings.

2 Reliability-Based Design Problem

The optimal design problem is defined as the identification of a vector {φ} of design
variables that minimizes an objective function, that is

Minimize f
({φ}) (10.1)

subject to design constraints

hj

({φ}) ≤ 0, j = 1, . . . , nc (10.2)

and side constraints

φl
i ≤ φi ≤ φu

i , i = 1, . . . , nd (10.3)

The objective function is defined in terms of quantities such as initial, construc-
tion, repair, or downtime costs. On the other hand, the design constraints are given
in terms of reliability constraints and/or constrains related to deterministic design
requirements. In a stochastic setting the reliability constraints are usually defined in
terms of failure probabilities. These probabilities provide a measure of the plausibil-
ity of the occurrence of unacceptable behavior (failure) of the system, based on the
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available information. The probability of failure PFj
({φ}) corresponding to a failure

event Fj evaluated at the design {φ} can be expressed in terms of the multidimen-
sional probability integral [13, 15]

PFj

({φ}) =
∫

Θ

IFj

({φ}, {θ})q({θ})d{θ} (10.4)

where IFj
({φ}, {θ}) is the indicator function for failure, which is equal to one if

the system fails and zero otherwise, and {θ}, θi , i = 1, . . . , nu is the vector that
represents the uncertain system parameters involved in the problem (structural pa-
rameters and excitation). The uncertain system parameters {θ} are modeled using a
prescribed probability density function q({θ}) which incorporates available knowl-
edge about the system. Note, that the failure probability function PFj

({φ}) accounts
for the uncertainty in the system parameters as well as the uncertainties in the exci-
tation. A model prediction error, that is, the error between the response of the actual
system and the response of the model, can also be considered in the formulation
[12, 31]. In this case the prediction error may be modeled probabilistically by aug-
menting the vector {θ} to form an uncertain parameter vector composed of both the
structural and excitation model parameters as well as the model prediction-error.
The failure domain ΩFj

({φ}) corresponding to the failure event Fj evaluated at the
design {φ} is typically described in terms of a performance function gj as

ΩFj

({φ}) = {{θ} | gj

({φ}, {θ}) ≥ 0
}

(10.5)

Then, the probability of failure can also be expressed as the integral of the probabil-
ity density function q({θ}) over the failure domain in the form

PFj

({φ}) =
∫

ΩFj
({φ})

q
({θ})d{θ} (10.6)

With the previous notation, a reliability constraint can be written as hj ({φ}) =
PFj

({φ}) − P ∗
Fj

≤ 0, where P ∗
Fj

is the target failure probability. The last inequality
expresses the requirement that the probability of system failure must be smaller than
an appropriate tolerance. It is noted that in the context of stochastic design a system
that corresponds to a feasible design can not be certified with complete certainty,
but with a tolerance P ∗

Fj
. In other words, the system will operate safely within the

pre-specified probability of failure tolerance.

3 Structural Model

In general, base-isolated buildings are designed such that the superstructure remains
elastic. Hence, the structure is modeled as a linear elastic system in the present for-
mulation. The base and the floors are assumed to be infinitely rigid in plane. The
superstructure and the base are modeled using three degrees of freedom per floor
at the center of mass. Each nonlinear isolation element is modeled explicitly using
the Bouc–Wen model. Let {xs(t)} be the n-th dimensional vector of displacements
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Fig. 10.1 Schematic
representation of the
base-isolated structural model

for the superstructure with respect to the base, and [Ms], [Cs], and [Ks] be the cor-
responding mass, damping and stiffness matrices. Also, let {xb(t)} be the vector
of base displacements with respect to the ground and [Gs] be the matrix of earth-
quake influence coefficients of dimension n × 3, that is, the matrix that couples the
excitation components of the vector {ẍg(t)} to the degrees of freedom of the su-
perstructure. The schematic representation of the base-isolated structural system as
well as the displacement coordinates are shown in Fig. 10.1. The equation of motion
of the elastic superstructure is then expressed in the form

[Ms]
{
ẍs(t)

} + [Cs]
{
ẋs(t)

} + [Ks]
{
xs(t)

}

= −[Ms][Gs]
({

ẍb(t)
} + {

ẍg(t)
})

(10.7)

where {ẍb(t)} is the vector of base accelerations relative to the ground. On the other
hand, the equation of motion of the base can be written as

([Gs]T [Ms][Gs] + [Mb]
)({

ẍb(t)
} + {

ẍg(t)
})

+ [Gs]T [Ms]
{
ẍs(t)

} + {fis} = {0} (10.8)

where [Mb] is the diagonal mass matrix of the rigid base, and {fis} is the vector
containing the linear and nonlinear isolation elements forces (three components).
The characterization of such forces is treated in a subsequent Section. Rewriting the
previous equations, the combined equation of motion of the base-isolated structure
system can be formulated in the form

[ [Ms] [Ms][Gs]
[Gs]T [Ms] [Mb] + [Gs]T [Ms][Gs]

]{{ẍs(t)}
{ẍb(t)}

}
+

[[Cs] [0]
[0]T [0]

]{{ẋs(t)}
{ẋb(t)}

}

+
[[Ks] [0]
[0]T [0]

]{{xs(t)}
{xb(t)}

}

= −
{ [Ms][Gs]
[Mb] + [Gs]T [Ms][Gs]

}{
ẍg(t)

} −
{ {0}
{fis(t)}

}
(10.9)



10 Optimal Design of Base-Isolated Systems Under Earthquake Excitation 165

It is noted that elastic and viscous isolation elements can also be incorporated in
the isolation model. Also, the above formulation can be directly extended to more
complex cases, for example, to nonlinear models for the superstructure.

4 Earthquake Excitation Model

The ground acceleration is modeled as a non-stationary stochastic process. In par-
ticular, a point-source model characterized by the moment magnitude M and epi-
central distance r is considered here [3, 6]. The model is a simple, yet powerful
means for simulating ground motions and it has been successfully applied in the
context of earthquake engineering. The time-history of the ground acceleration for
a given magnitude M and epicentral distance r is obtained by modulating a white
noise sequence by an envelope function and subsequently by a ground motion spec-
trum through the following steps: (1) generate a discrete-time Gaussian white noise
sequence ω(tj ) = √

I/Δtθj , j = 1, . . . , nT , where θj , j = 1, . . . , nT , are inde-
pendent, identically distributed standard Gaussian random variables, I is the white
noise intensity, Δt is the sampling interval, and nT is the number of time instants
equal to the duration of the excitation T divided by the sampling interval; (2) the
white noise sequence is modulated by an envelope function h(t,M, r) at the dis-
crete time instants; (3) the modulated white noise sequence is transformed to the
frequency domain; (4) the resulting spectrum is normalized by the square root of
the average square amplitude spectrum; (5) the normalized spectrum is multiplied
by a ground motion spectrum (or radiation spectrum) S(f,M, r) at discrete fre-
quencies fl = l/T , l = 1, . . . , nT /2; (6) the modified spectrum is transformed back
to the time domain to yield the desired ground acceleration time history. Details of
the characterization of the envelope function h(t,M, r) and the ground accelera-
tion spectrum S(f,M, r) are provided in the subsequent sections. The probabilistic
model for the seismic hazard at the emplacement is complemented by considering
that the moment magnitude M and epicentral distance r are also uncertain. The un-
certainty in moment magnitude is modeled by the Gutenberg–Richter relationship
truncated on the interval [6.0,8.0], which leads to the probability density function
[24]

p(M) = be−bM

e−6.0b − e−8.0b
, 6.0 ≤ M ≤ 8.0 (10.10)

where b is a regional seismicity factor. For the uncertainty in the epicentral dis-
tance r , a lognormal distribution with mean value r̄ (km) and standard deviation
σr (km) is used. The point source stochastic model previously described is well
suited for generating the high-frequency components of the ground motion (greater
than 0.1 Hz). Low-frequency components can also be introduced in the analy-
sis by combining the above methodology with near-fault ground motion models
[25].
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Fig. 10.2 Envelope function for epicentral distance r = 20 km and moment magnitudes M = 5
and M = 7

4.1 Envelope Function

The envelope function for the ground acceleration is represented by [6, 28]

h(t,M, r) = a1

(
t

tn

)a2

e−a3(t/tn) (10.11)

where

a2 = −0.2 ln(0.05)

1 + 0.2(ln(0.2) − 1)
, a3 = a2

0.2
, a1 =

(
e1

0.2

)a2

(10.12)

The envelope function has a peak equal to unity when t = 0.2tn, and h(t,M, r) =
0.05 when t = tn, with tn = 2.0Tgm, where Tgm is the duration of ground motion,
expressed as a sum of a path dependent and source dependent component Tgm =
0.05

√
r2 + h2 + 0.5/fa , where r is the epicentral distance, and the parameters h

and fa (corner frequency) are moment dependent given by log(h) = 0.15M − 0.05
and log(fa) = 2.181 − 0.496M [3]. As an example Fig. 10.2 shows the envelope
function for r = 20 km, and M = 5 and M = 7. Note that increasing the moment
magnitude increases the duration of the envelope function, as expected.
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4.2 Ground Motion Spectrum

The total spectrum of the motion at a site S(f,M, r) is expressed as the product of
the contribution from the earthquake source E(f,M), path P(f, r), site G(f ) and
type of motion I (f ), i.e.

S(f,M, r) = E(f,M)P (f, r)G(f )I (f ) (10.13)

The source component is given by

E(f,M) = CM0(M)Sa(f,M) (10.14)

where C is a constant, M0(M) = 101.5M+10.7 is the seismic moment, and the factor
Sa is the displacement source spectrum given by [3]

Sa(f,M) = 1 − ε

1 + (f/fa)2
+ ε

1 + (f/fb)2
(10.15)

where the corner frequencies fa and fb, and the weighting parameter ε are defined,
respectively, as log(fa) = 2.181−0.496M , log(fb) = 2.41−0.408M , and log(ε) =
0.605 − 0.255M . The constant C is given by C = URΦV F/4πρsβ

3
s R0, where U is

a unit dependent factor, RΦ is the radiation pattern, V represents the partition of total
shear-wave energy into horizontal components, F is the effect of the free surface
amplification, ρs and βs are the density and shear-wave velocity in the vicinity of
the source, and R0 is a reference distance.

Next, the path effect P(f, r) which is another component of the process that
affects the spectrum of motion at a particular site it is represented by functions that
account for geometrical spreading and attenuation

P(f, r) = Z
(
R(r)

)
e−πf R(r)/Q(f )βs (10.16)

where R(r) is the radial distance from the hypocenter to the site given by R(r) =√
r2 + h2. The attenuation quantity Q(f ) is taken as Q(f ) = 180f 0.45 and the ge-

ometrical spreading function is selected as Z(R(r)) = 1/R(r) if R(r) < 70.0 km
and Z(R(r)) = 1/70.0 otherwise [3]. The modification of seismic waves by local
conditions, site effect G(f ), is expressed by the multiplication of a diminution func-
tion D(f ) and an amplification function A(f ). The diminution function accounts
for the path-independent loss of high frequency in the ground motions and can be
accounted for a simple filter of the form D(f ) = e−0.03πf [2]. The amplification
function A(f ) is based on empirical curves given in [7] for generic rock sites. An
average constant value equal to 2.0 is considered. Finally, the filter that controls the
type of ground motion I (f ) is chosen as I (f ) = (2πf )2 for ground acceleration.
The particular values of the different parameters of the stochastic ground acceler-
ation model are given in Table 10.1 (see Application Problem Section). For illus-
tration purposes Fig. 10.3 shows the ground acceleration spectrum for a nominal
distance r = 20 km, moment magnitudes M = 5 and M = 7, and model parameters
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Fig. 10.3 Ground acceleration spectrum for epicentral distance r = 20 km and moment magni-
tudes M = 5 and M = 7

given in Table 10.1. As the moment magnitude increases, the spectral amplitude in-
creases at all frequencies, with a shift of dominant frequency content towards the
lower frequency regime, as anticipated.

5 Isolation Model

Several isolation elements can be used to model isolation systems. They include
elastic, viscous, nonlinear fluid dampers, hysteretic (uniaxial or biaxial) elements
for bilinear elastomeric bearings, hysteretic (uniaxial or biaxial) elements for sliding
bearings, etc. Uniaxial elastomeric bearings with hysteretic behavior, such as lead
rubber bearings, are considered in the present implementation. They are modeled
using the Bouc–Wen model as [5]

Uyż(t) =
{

ẋb(t)[α − zn(t)(γ sgn(ẋb(t)z(t)) + β)] if n is even

ẋb(t)[α − zn(t)(γ sgn(ẋb(t)) + β sgn(z(t)))] if n is odd
(10.17)

where z(t) is a dimensionless hysteretic variable, α, β , and γ are dimensionless
quantities, Uy is the yield displacement, xb(t) and ẋb(t) represent the base displace-
ment and velocity, respectively, and sgn(·) is the sign function. The forces activated
in the elastomeric isolation bearing are modeled by an elastic-viscoplastic model
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with strain hardening

fis(t) = kpxb(t) + cvẋb(t) + (ke − kp)Uyz(t) (10.18)

where ke is the pre-yield stiffness, kp is the post-yield stiffness, cv is the viscous
damping coefficient of the elastomeric bearing, and Uy is the yield displacement. If
the post-yield stiffness is written as kp = αLke, where αL is a factor which defines
the extent to which the force is linear, the isolator forces can be expressed as

fis(t) = αLkexb(t) + cvẋb(t) + (1 − αL)keU
yz(t) (10.19)

6 Sequential Approximate Optimization

The solution of the reliability-based optimization problem given by Eqs. (10.1)–
(10.3) is obtained by transforming it into a sequence of sub-optimization problems
having a simple explicit algebraic structure. Thus, the strategy is to construct suc-
cessive approximate analytical sub-problems. To this end, the objective and the con-
straint functions are represented by using approximate functions dependent on the
design variables. In particular, a hybrid form of linear, reciprocal and quadratic ap-
proximations is considered in the present formulation [14, 20, 27]. The approximate
discrete sub-optimization problems take the form (k = 1,2, . . .)

Minimize f̃k

({φ}) (10.20)

subject to

h̃jk

({φ}) ≤ 0, j = 1, . . . , nc (10.21)

with side constraints

φl
i ≤ φi ≤ φu

i , i = 1, . . . , nd (10.22)

where f̃k and h̃jk , j = 1, . . . , nc represent the approximate objective and constraint
functions at the current point {φk} in the design space, respectively. The approximate
objective function is obtained as

f̃k

({φ}) = f1k

({φ}) + f2k

({φ}) + f3k

({φ}) (10.23)

where f1k({φ}) is a linear function in terms of the design variables, f2k({φ}) is a
linear function with respect to the reciprocal of the design variables, and f3k({φ}) is
a quadratic function of the design variables. They are given by

f1k

({φ}) =
∑

(i+)

∂f ({φk})
∂φi

φi, f2k

({φ}) = −
∑

(i−)

∂f ({φk})
∂φi

(φk
i )2

φi

(10.24)

f3k

({φ}) = −2χf
∑

(i−)

∂f ({φk})
∂φi

φi

(
φi

φk
i

− 2

)
(10.25)
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where (i+) is the group that contains the variables for which the partial deriva-
tive of the objective function is positive at the expansion point {φk}, (i−) is the
group that includes the remaining variables, and χf is a user-defined positive scalar
that control the conservatism of the approximation [17, 18]. On the other hand, the
constraint functions involving reliability measures (reliability constraints) are first
transformed as ht

j ({φ}) = ln[PFj
({φ})]. Then the transformed constraint functions

are approximated in the form

h̃t
jk

({φ}) = ht
j1k

({φ}) + ht
j2k

({φ}) + ht
j3k

({φ}) + h̄t
jk

({
φk

})
(10.26)

where

ht
j1k

({φ}) =
∑

(i+j )

∂ht
j ({φk})
∂φi

φi, ht
j2k

({φ}) = −
∑

(i−j )

∂ht
j ({φk})
∂φi

(φk
i )2

φi

(10.27)

ht
j3k

({φ}) = −2χ
ht

j

∑

(i−j )

∂ht
j ({φk})
∂φi

φi

(
φi

φk
i

− 2

)
(10.28)

h̄t
jk

({
φk

}) = ht
j

({
φk

}) −
∑

(i+j )

∂ht
j ({φk})
∂φi

φk
i

− (
2χ

ht
j − 1

)∑

(i−j )

∂ht
j ({φk})
∂φi

φk
i (10.29)

where
∑

(i+j ) and
∑

(i−j ) mean summation over the variables belonging to group

(i+j ) and (i−j ), respectively, and χ
ht

j is as before a user-defined positive scalar that

control the conservatism of the approximations. Group (i+j ) contains the variables

for which ∂ht
j ({φk})/∂φi is positive, and group (i−j ) includes the remaining vari-

ables. The same type of approximations can be applied to the deterministic con-
straint functions. The explicit discrete sub-optimization problems (10.20)–(10.22)
are solved by standard methods that treat the problem directly in the primal design
variable space such as evolution-based optimization techniques [16]. The level of
effectiveness of the above sequential optimization scheme depends on the degree of
convexity of the functions involved in the optimization problem. For example, if the
curvatures are not too large and relatively uniform throughout the design space the
proposed algorithm converges within few iterations [9, 21, 29]. For more general
cases methods based on trust regions and line search methodologies may be more
appropriate [1, 19, 22].
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7 Reliability and Sensitivity Assessment

The characterization of the sub-optimization problems (10.20)–(10.22) requires the
estimation of first excursion probabilities and their sensitivities. In order to esti-
mate the excursion probabilities at a given design high-dimensional integrals need
to be evaluated. This difficulty favors the application of Monte Carlo Simulation as
fundamental approach to cope with the probability integrals. However, in most en-
gineering applications the probability that a particular system fails is expected to be
small, e.g. between 10−4–10−6. Direct Monte Carlo is robust to the type and dimen-
sion of the problem, but it is not suitable for finding small probabilities. Therefore,
advanced Monte Carlo strategies are needed to reduce the computational efforts. In
particular a generally applicable method, called subset simulation, is implemented
in this work [4]. On the other hand, the sensitivity of the failure probability functions
with respect to the design variables is estimated by an approach recently introduced
in [32]. The approach is based on the approximate local representation of two dif-
ferent quantities. The first approximation involves the performance functions that
define the failure domains while the second includes the probability of failure in
terms of the maximum response levels for safe system operation. For a detailed
discussion of the approach the reader is referred to [22, 32].

8 Application Problem

8.1 Description

A four-story building with a base-isolation system under earthquake motion is con-
sidered as an application problem. The plan view, as well as the dimensions for each
floor are shown in Fig. 10.4. The elevation of one resistant element (A-axis) is il-
lustrated in Fig. 10.5. Each of the four floors is supported by 80 columns of square
cross section. The first floor has a height equal to 3.5 m while the other floors have
a constant height equal to 3.0 m, leading to a total height of 12.5 m.

As previously pointed out (see Structural Model Section) each floor is repre-
sented by three degrees of freedom, i.e. two translational displacements in the di-
rection of the x axis and y axis, and a rotational displacement. The associated active
masses in the x and y direction are taken constant for the first three floors and equal
to 2.50 × 106 kg and 1.50 × 106 kg for the last floor. The corresponding mass mo-
ments of inertia are taken as 2.10 × 109 kg·m2 and 1.20 × 109 kg·m2, respectively.
On the other hand, the mass of the base is equal to 6.0×106 kg, and its mass moment
of inertia 5.00×109 kg·m2. The Young’s modulus and the modal damping ratios are
treated as uncertain system parameters. The Young’s modulus is modeled by a trun-
cated normal random variable with most probable value Ē = 2.50 × 1010 N/m2 and
coefficient of variation of 20%. Moreover, the damping ratios are modeled by inde-
pendent Log-normal random variables with mean value ζ̄ = 0.03 and coefficient of
variation of 40%. The base isolation system is composed of 80 uniaxial lead rubber
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Fig. 10.4 Plan view of the structural model

Fig. 10.5 Elevation view of
axis A

bearings with hysteretic behavior. The nonlinear behavior of these devices is mod-
eled using the equations described in Sect. 5 with model parameters n = 1, α = 1.0,
β = −0.65, γ = 0.5, Uy = 0.5 cm, αL = 0.1, ke = 3 × 106 N/m, and cv = 0.0.
Figures 10.6 and 10.7 show a schematic representation of a lead rubber bearing and
a typical displacement-restoring force curve of the isolation element, respectively.
The structural system is excited horizontally by a ground acceleration applied in
the y direction. The induced ground acceleration is characterized as in Sect. 4, with
model parameters listed in Table 10.1.

8.2 Optimal Design Problem

The objective function f is defined as the volume of the column elements of the
structural system. The design variables {φ} are chosen as the dimensions of the
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Fig. 10.6 Lead rubber
bearing

Fig. 10.7 Typical
displacement-restoring force
curve of the isolation element
(lead rubber bearing)

columns throughout the height, grouped in four design variables, i.e. the dimensions
of the columns of each floor constitute each of the design groups. The failure event is
formulated as a first passage problem during the duration of the ground acceleration.
The structural responses to be controlled are the 4 interstorey drift displacements.
The threshold value is chosen equal to 0.2% of the floor height for the interstorey
drift displacements. Thus, the failure domains evaluated at the design {φ} are given

Table 10.1 Parameters for the stochastic ground acceleration model

Parameter Numerical Value Parameter Numerical Value

r̄ (km) 20.0 σr (km) 9.0

b 1.8 U 10−20

ρs (gm/cc) 2.8 βs (km/s) 3.5

V 1/
√

2 RΦ 0.55

F 2.0 R0 (km) 1.0

T (s) 20.0 Δt (s) 0.01
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Table 10.2 Initial and final designs

Design variable Initial design Final design

Problem 1 Problem 2

φ1 (m) 0.90 0.68 0.85

φ2 (m) 0.80 0.59 0.75

φ3 (m) 0.75 0.57 0.72

φ4 (m) 0.70 0.51 0.64

Normalized objective function 1.00 0.56 0.88

by

ΩFj

({φ}) =
{
{θ} | max

tk,k=1,...,2001

∣∣δj

(
tk, {φ}, {θ})∣∣ − δ∗ ≥ 0

}
, j = 1, . . . ,4

(10.30)

where δj (tk, {φ}, {θ}) is the relative displacement between the (j − 1, j)-th floor
evaluated at the design {φ}, tk are the discrete time instants, δ∗ is the critical thresh-
old level, and {θ} is the vector that represents the uncertain system parameters
(structural parameters and excitation). Note that more than two thousand random
variables are involved in the characterization of the uncertain model parameters.
The reliability-based optimization problem is defined as

Min f
({φ})

subject to

PFj

({φ}) ≤ P ∗
F , j = 1,2,3,4

0.30 ≤ φi ≤ 1.10, i = 1, . . . ,4
(10.31)

Two target failure probabilities are considered: P ∗
F = 10−2 and P ∗

F = 10−4. The
first case can be interpreted as a design problem with a moderate level of reliability
while the second case corresponds to a high level of reliability. In what follows the
first case will be referred as Problem 1 while the second case as Problem 2.

8.3 Results

The initial and final designs of Problems 1 and 2 are given in Table 10.2. The results
of the optimization process are presented in Figs. 10.8, 10.9 and 10.10 in terms of
the evolution of the objective function and failure probabilities, respectively.

The objective function is normalized by its value at the initial design. It is ob-
served that only a few optimization cycles are required for obtaining convergence.
Moreover, most of the improvement of the objective function takes place in the first
3 iterations. It is also seen that the method generates a series of steadily improved
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Fig. 10.8 Iteration history in
terms of the objective
function. Problem 1:
moderate level of reliability.
Problem 2: high level of
reliability

Fig. 10.9 Iteration history in
terms of the reliability
constraints. Problem 1

Fig. 10.10 Iteration history
in terms of the reliability
constraints. Problem 2

feasible designs that move toward the optimum. The results indicate that the value
of the objective function at the final design of Problem 2 is greater than the cor-
responding value of Problem 1. This is turn implies that the structural components
(columns) at the final design of Problem 2 are bigger than the corresponding compo-
nents of Problem 1, as expected. The beneficial effects of the base isolation system
are shown in Table 10.3. This table shows the value of the objective function at the
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Table 10.3 Objective function value of models with and without the base isolation system

Model Normalized objective function
at the final design

Problem 1 Problem 2

With base isolation system 0.56 0.88

Without base isolation system 0.78 1.21

Difference 39% 38%

Table 10.4 Constraint
violations Problem 2

PF 1/P
∗
F 103

PF 2/P
∗
F 55

PF 3/P
∗
F 20

PF 4/P
∗
F 2

P ∗
F = 10−4

final designs of Problems 1 and 2 for models with and without the isolation system.
The effect of the isolation system is clear from these results. The difference between
the values of the objective functions is almost 40% in both Problems.

Finally, the effect of the base isolation system can also be observed from a con-
straint violation viewpoint. Table 10.4 shows the probability of occurrence of the
failure events associated with the final design of Problem 2 (see Table 10.2) for the
case where no base isolation is considered. The probability is normalized by the
target failure probability P ∗

F = 10−4. It is seen for example that the probability of
occurrence of failure event F1 is more than 100 times greater than the target fail-
ure probability. Once again, the effect of the isolation system is evident from these
results.

9 Conclusions

A general framework for reliability-based design of base-isolated buildings under
uncertain conditions has been presented. The reliability-based design problem is
formulated as an optimization problem with a single objective function subject to
multiple reliability constraints. First excursion probabilities that account for the un-
certainties in the system parameters as well as in the excitation are used to character-
ize the system reliability. The high computational cost associated with the solution
of the optimization problem is addressed by the use of approximate reliability anal-
yses during portions of the optimization process. The proposed approach takes into
account all nonlinear characteristics of the structural response in the design process
and it allows for a complex characterization of structural systems and excitation
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models. At the same time, uncertainties in structural and excitation model parame-
ters are considered explicitly during the design process. The numerical results and
additional validation calculations highlight the beneficial effects of base-isolation
systems in reducing the superstructure response. This in turn implies more robust
and safer designs.

Acknowledgements This research was partially supported by CONICYT (National Commis-
sion for Scientific and Technological Research) under grant 1110061. This support is gratefully
acknowledged by the authors.

References

1. Alexandrov, N.M., Dennis, J.E. Jr., Lewis, R.M., Torczon, V.: A trust-region framework for
managing the use of approximation models in optimization. Struct. Optim. 15(1), 16–23
(1998)

2. Anderson, J.G., Hough, S.E.: A model for the shape of fhe Fourier amplitude spectrum of
acceleration at high frequencies. Bull. Seismol. Soc. Am. 74(5), 1969–1993 (1984)

3. Atkinson, G.M., Silva, W.: Stochastic modeling of California ground motions. Bull. Seismol.
Soc. Am. 90(2), 255–274 (2000)

4. Au, S.K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset
simulation. Probab. Eng. Mech. 16(4), 263–277 (2001)

5. Baber, T.T., Wen, Y.: Random vibration hysteretic, degrading systems. J. Eng. Mech. Div.
107(6), 1069–1087 (1981)

6. Boore, D.M.: Simulation of ground motion using the stochastic method. Pure Appl. Geophys.
160(3–4), 635–676 (2003)

7. Boore, D.M., Joyner, W.B., Fumal, T.E.: Equations for estimating horizontal response spectra
and peak acceleration from western North American earthquakes: a summary of recent work.
Seismol. Res. Lett. 68(1), 128–153 (1997)

8. Ceccoli, C., Mazzotti, C., Savoia, M.: Non-linear seismic analysis of base-isolated rc frame
structures. Earthquake Eng. Struct. Dyn. 28(6), 633–653 (1999)

9. Chickermane, H., Gea, H.C.: Structural optimization using a new local approximation method.
Int. J. Numer. Methods Eng. 39, 829–846 (1996)

10. Chopra, A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering.
Prentice Hall, New York (1995)

11. De Luca, A., Mele, E., Molina, J., Verzeletti, G., Pinto, A.V.: Base isolation for retrofitting his-
toric buildings: evaluation of seismic performance through experimental investigation. Earth-
quake Eng. Struct. Dyn. 30(8), 1125–1145 (2001)

12. Der Kiureghian, A.: Analysis of structural reliability under parameter uncertainties. Probab.
Eng. Mech. 23(4), 351–358 (2008)

13. Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods. Wiley, New York (1996)
14. Fleury, C., Braibant, V.: Structural optimization: a new dual method using mixed variables.

Int. J. Numer. Methods Eng. 23(3), 409–428 (1986)
15. Freudenthal, A.M.: Safety and the probability of structural failure. Trans. Am. Soc. Civ. Eng.

121, 1337–1397 (1956)
16. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley, Reading (1989)
17. Groenwold, A.A., Etman, L.F.P., Snyman, J.A., Rooda, J.E.: Incomplete series expansion for

function approximation. Struct. Multidiscip. Optim. 34(1), 21–40 (2007)
18. Groenwold, A.A., Wood, D.W., Etman, L.F.P., Tosserams, S.: Globally convergent optimiza-

tion algorithm using conservative convex separable diagonal quadratic approximations. AIAA
J. 47(11), 2649–2657 (2009)



178 H.A. Jensen et al.

19. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization, 3rd edn. Kluwer Academic,
Norwell (1992)

20. Jensen, H.A.: Structural optimization of non-linear systems under stochastic excitation.
Probab. Eng. Mech. 21(4), 397–409 (2006)

21. Jensen, H.A., Sepulveda, J.G.: Structural optimization of uncertain dynamical systems con-
sidering mixed-design variables. Probab. Eng. Mech. 26(2), 269–280 (2011)

22. Jensen, H.A., Valdebenito, M.A., Schuëller, G.I., Kusanovic, D.S.: Reliability-based optimiza-
tion of stochastic systems using line search. Comput. Methods Appl. Mech. Eng. 198(49–52),
3915–3924 (2009)

23. Kelly, J.M.: Aseismic base isolation: review and bibliography. Soil Dyn. Earthq. Eng. 5(4),
202–216 (1986)

24. Kramer, S.L.: Geotechnical Earthquake Engineering. Prentince Hall, New York (2003)
25. Mavroeidis, G.P., Papageorgiou, A.S.: A mathematical representation of near-fault ground

motions. Bull. Seismol. Soc. Am. 93(3), 1099–1131 (2003)
26. Mokha, A.S., Amin, N., Constantinou, M.C., Zayas, V.: Seismic isolation retrofit of large

historic building. J. Struct. Eng. 122(3), 298–308 (1996)
27. Prasad, B.: Approximation, adaptation and automation concepts for large scale structural op-

timization. Eng. Optim. 6(3), 129–140 (1983)
28. Saragoni, G.R., Hart, G.C.: Simulation of artificial earthquakes. Earthquake Eng. Struct. Dyn.

2(3), 249–267 (1974)
29. Schittkowski, K., Zillober, C., Zotemantel, R.: Numerical comparison of nonlinear program-

ming algorithms for structural optimization. Struct. Optim. 7(1–2), 1–19 (1994)
30. Taflanidis, A.A.: Robust stochastic design of viscous dampers for base isolation appli-

cations. In: Computational Methods in Structural Dynamics and Earthquake Engineering
(COMPDYN), 22–24 June, Rhodes, Greece (2009)

31. Taflanidis, A.A., Beck, J.L.: Stochastic subset optimization for optimal reliability problems.
Probab. Eng. Mech. 23(2–3), 324–338 (2008)

32. Valdebenito, M.A., Schuëller, G.I.: Efficient strategies for reliability-based optimization in-
volving non linear, dynamical structures. Comput. Struct. 89(19–20), 1797–1811 (2011)

33. Zou, X.-K., Wang, Q., Li, G., Chan, C.-M.: Integrated reliability-based seismic drift design
optimization of base-isolated concrete buildings. J. Struct. Eng. 136(10), 1282–1295 (2010)


	Chapter 10: Optimal Design of Base-Isolated Systems Under Stochastic Earthquake Excitation
	1 Introduction
	2 Reliability-Based Design Problem
	3 Structural Model
	4 Earthquake Excitation Model
	4.1 Envelope Function
	4.2 Ground Motion Spectrum

	5 Isolation Model
	6 Sequential Approximate Optimization
	7 Reliability and Sensitivity Assessment
	8 Application Problem
	8.1 Description
	8.2 Optimal Design Problem
	8.3 Results

	9 Conclusions
	References


