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Preface

The considerable influence of inherent uncertainties on structural behavior has led
the engineering community to recognize the importance of a stochastic approach to
structural problems. Issues related to uncertainty quantification and its influence on
the reliability of the computational models, are continuously gaining in significance.
In particular, the problems of dynamic response analysis and reliability assessment
of structures with uncertain system and excitation parameters have been the subject
of continuous research over the last two decades as a result of the increasing avail-
ability of powerful computing resources and technology. This book is a follow up
of a previous book with the same subject and focuses on advanced computational
methods and software tools which can highly assist in tackling complex problems
in stochastic dynamic/seismic analysis and design of structures. The selected chap-
ters are authored by some of the most active scholars in their respective areas and
represent some of the most recent developments in this field.

This edited book is primarily intended for researchers and post-graduate students
who are familiar with the fundamentals and wish to study or to advance the state
of the art on a particular topic in the field of computational stochastic structural
dynamics. Nevertheless, practicing engineers could benefit as well from it as most
code provisions tend to incorporate probabilistic concepts in the analysis and de-
sign of structures. The book consists of 21 chapters which are extended versions of
papers presented at the recent COMPDYN 2011 Conference. The chapters can be
grouped into several thematic topics including dynamic analysis of stochastic sys-
tems, reliability-based design, structural control and health monitoring, model up-
dating, system identification, wave propagation in random media, seismic fragility
analysis and damage assessment.

In Chap. 1, A. Batou and C. Soize examine the random dynamic response of a
multibody system with uncertain rigid bodies. A stochastic model of an uncertain
rigid body is constructed by modeling the mass, the center of mass and the tensor
of inertia by random variables. The prior probability distributions of these random
variables are computed using the maximum entropy principle under the constraints
defined by the available information. Several uncertain rigid bodies are linked to
each other in order to calculate the random response of a multibody dynamic system.

vii
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A numerical application consisting of five rigid bodies is proposed to illustrate the
theoretical developments.

In Chap. 2, V. Papadopoulos and O. Kokkinos extend the concept of Variability
Response Functions (VRFs) to linear stochastic systems under dynamic excitation.
An integral form for the variance of the dynamic response of stochastic systems
is considered, involving a Dynamic VRF (DVRF) and the spectral density func-
tion of the stochastic field modeling the uncertain system properties. The uncertain
property considered is the flexibility of the system. The same integral expression
can be used to calculate the mean response of a dynamic system using a Dynamic
Mean Response Function (DMRF) which is a function similar to the DVRF. These
integral forms are used to efficiently compute the mean and variance of the tran-
sient system response along with time dependent spectral-distribution-free upper
bounds.

A. Kundu and S. Adhikari provide the theoretical development and simulation
results of a novel Galerkin subspace projection scheme for damped linear dynamic
systems with stochastic coefficients and homogeneous Dirichlet boundary condi-
tions (Chap. 3). The fundamental idea is to solve the stochastic dynamic system
in the frequency domain by projecting the solution into a reduced finite dimen-
sional spatio-random vector basis spanning the stochastic Krylov subspace to ap-
proximate the response. Galerkin weighting coefficients are employed to minimize
the error induced by the use of the reduced basis. The statistical moments of the
solution are evaluated at all frequencies to illustrate and compare the stochastic
system response with the deterministic case. The results are validated with direct
Monte Carlo simulation for different correlation lengths and variability of random-
ness.

An efficient approach for modeling nonlinear systems subjected to general non-
Gaussian excitations is developed by X.F. Xu and G. Stefanou in Chap. 4. This
chapter describes the formulation of an n-th order convolved orthogonal expansion
(COE) method. For linear vibration systems, the statistics of the output are directly
obtained as the first-order COE about the underlying Gaussian process. The COE
method is next verified by its application on a weakly nonlinear oscillator. In dealing
with strongly nonlinear dynamics problems, a variational method is presented by
formulating a convolution-type action and using the COE representation as trial
functions.

In Chap. 5 by L. Pichler et al., various finite difference (FD) and finite element
methods (FEM) are discussed for the numerical solution of the Fokker–Planck equa-
tion allowing the investigation of the evolution of the probability density function
of linear and nonlinear systems. The results are compared using various numeri-
cal examples. Despite the greater numerical effort, the FEM is preferable over FD,
because it yields more accurate results. However, at this moment the FEM is only
suitable for dimension less or equal to 3. In the case of 3D and 4D problems, a sta-
bilized multi-scale FEM provides a tool with a high order of accuracy, preserving
numerical efficiency due to the fact that a coarser mesh size can be used.

There are various approaches to deal with uncertainty propagation in stochastic
dynamics. In Chap. 6, M. Corradi et al. examine some classical structural problems
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in order to investigate which probabilistic approach better propagates the uncertainty
from input to output, in terms of accuracy and computational cost. The examined
methods are: Univariate Dimension Reduction methods, Polynomial Chaos Expan-
sion, First-Order Second Moment method, and algorithms based on the Evidence
Theory for epistemic uncertainty. The performances of these methods are compared
in terms of moment estimations and probability density function construction cor-
responding to several scenarios of reliability-based design and robust design. The
structural problems examined are: (i) the static, dynamic and buckling behavior of
a composite plate, (ii) the reconstruction of the deformed shape of a beam from
measured surface strains.

Chapter 7 by F. Steinigen et al. is devoted to enhanced computational algorithms
to simulate the load-bearing behavior of reinforced concrete structures under dy-
namic loading. In order to take into account uncertain data of reinforced concrete,
fuzzy and fuzzy stochastic analyses are presented. The capability of the fuzzy dy-
namic analysis is demonstrated by an example in which a steel bracing system and
viscous damping connectors are designed to enhance the structural resistance of a
reinforced concrete structure under seismic loading.

W. Verhaeghe et al. use the concept of interval fields to deal with uncertainties of
spatial character arising in the context of groundwater transport models needed to
predict the flow of contaminants (Chap. 8). The main focus of the chapter is on the
application of interval fields to a geo-hydrological problem. The uncertainty taken
into account is the material layers’ hydraulic conductivity. The results presented are
the uncertainties on the contaminant’s concentration near a river. Another objective
of the chapter is to define an input uncertainty elasticity of the output, i.e. to identify
the locations in the model, whose uncertainties mostly influence the uncertainty
on the output. Such a quantity indicates where to perform additional in situ point
measurements to reduce the uncertainty on the output the most.

Although reliability analysis methods have matured in recent years, the problem
of reliability-based structural design still poses a challenge in stochastic dynamics.
In Chap. 9, A. Naess et al. extend their recently developed enhanced Monte Carlo
approach to the problem of reliability-based design. The objective is to optimize
a design parameter α so that the system, represented by a set of failure modes or
limit states, achieves a target reliability. Monte Carlo sampling occurs at a range
of values for α that result in failure probabilities larger than the target and thus the
design problem essentially amounts to a statistical estimation of a high quantile.
Several examples of the approach are provided in the chapter.

Chapter 10 by H. Jensen et al. presents a general framework for reliability-based
design of base-isolated structural systems under uncertain conditions. The uncer-
tainties about the structural parameters as well as the variability of future excita-
tions are characterized in a probabilistic manner. Nonlinear elements composed by
hysteretic devices are used for the isolation system. The optimal design problem is
formulated as a constrained minimization problem which is solved by a sequential
approximate optimization scheme. First excursion probabilities that account for the
uncertainties in the system parameters as well as in the excitation are used to charac-
terize the system reliability. The approach explicitly takes into account all nonlinear
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characteristics of the combined structural system (superstructure-isolation system)
during the design process. Numerical results highlight the beneficial effects of iso-
lation systems in reducing the superstructure response.

The influence of structural uncertainties on actively controlled smart beams is
investigated in Chap. 11 by A. Moutsopoulou et al. The dynamical problem of a
model smart composite beam is treated using a simplified modeling of the actuators
and sensors, both being realized by means of piezoelectric layers. In particular, a
practical robust controller design methodology is developed, which is based on re-
cent theoretical results on H∞ control theory and μ-analysis. Numerical examples
demonstrate the vibration-suppression property of the proposed smart beams under
stochastic loading.

The field of Structural Health Monitoring (SHM) has significantly evolved in the
last years due to the technological advances and the evolution of advanced smart
systems for damage detection and signal processing. In Chap. 12, G. Saad and
R. Ghanem present a robust data assimilation approach based on a stochastic varia-
tion of the Kalman Filter where polynomial functions of random variables are used
to represent the uncertainties inherent to the SHM process. The presented method-
ology is combined with a non-parametric modeling technique to tackle SHM of a
four-story shear building subjected to a base motion consistent with the El-Centro
earthquake and undergoing a preset damage in the first floor. The purpose of the
problem is localizing the damage in both space and time, and tracking the state of
the system throughout and subsequent to the damage time. The application of the
introduced data assimilation technique to SHM enhances its applicability to a wide
range of structural problems with strongly nonlinear dynamic behavior and with
uncertain and complex governing laws.

The accurate prediction of the response of spacecraft systems during launch and
ascent phase is a crucial aspect in design and verification stages which requires
accurate numerical models. The enhancement of numerical models based on ex-
perimental data is denoted model updating and focuses on the improvement of the
correlation between finite element (FE) model and test structure. In aerospace in-
dustry, the examination of the agreement between model and real structure involves
the comparison of the modal properties of the structure. Chapter 13 by B. Goller
et al. is devoted to the efficient model updating of a satellite in a Bayesian setting
based on experimental modal data. A detailed FE model of the satellite is used for
demonstrating the applicability of the employed updating procedure to large-scale
complex aerospace structures.

In Chap. 14, B. Rosič and H. Matthies deal with the identification of properties
of stochastic elastoplastic systems in a Bayesian setting. The inverse problem is for-
mulated in a probabilistic framework where the unknown uncertain quantities are
embedded in the form of their probability distributions. With the help of stochastic
functional analysis, a new update procedure is introduced as a direct, purely alge-
braic way of computing the posterior, which is comparatively inexpensive to eval-
uate. Such description requires the solution of the convex minimization problem in
a stochastic setting for which the extension of the classical optimization algorithm
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in predictor-corrector form is proposed as the solution procedure. The identification
method is finally validated through a series of virtual experiments taking into ac-
count the influence of the measurement error and the order of the approximation on
the posterior estimate.

Chapter 15 deals with the study of SH surface waves in a half space with random
heterogeneities. C. Du and X. Su prove both theoretically and numerically that sur-
face waves exist in a half space which has small, random density, but the mean value
of the density is homogeneous. Historically, this type of half space is often treated
as homogeneous using deterministic methods. In this investigation, a closed-form
dispersion equation is derived stochastically and the frequency spectrum, disper-
sion equation and phase/group velocity are computed numerically to study how the
random inhomogeneities will affect the dispersion properties of the half space with
random density. The results of this research may find their application in various
fields, such as in seismology and in non-destructive test/evaluation of structures
with randomly distributed micro-cracks or heterogeneities.

The following six chapters are devoted to earthquake engineering applications.
P. Jehel et al. (Chap. 16) investigate the seismic fragility of a moment-resisting rein-
forced concrete frame structure in the area of the Cascadia subduction zone situated
in the South-West of Canada and the North-West of the USA. According to shaking
table tests, the authors first validate the capability of an inelastic fiber beam/column
element, using a recently developed concrete constitutive law, for representing the
seismic behavior of the tested frame coupled to either a commonly used Rayleigh
damping model or a proposed new model. Then, for each of the two damping mod-
els, they perform a structural fragility analysis and investigate the amount of uncer-
tainty to be induced by damping models.

In Chap. 17 by Y. Vargas et al., a detailed study of the seismic response of a re-
inforced concrete building is conducted using a probabilistic approach in the frame-
work of Monte Carlo simulation. The building is representative for office buildings
in Spain but the procedures used and the results obtained can be extended to other
types of buildings. The purpose of the work is twofold: (i) to analyze the differences
when static and dynamic analysis techniques are used and (ii) to obtain a measure
of the uncertainties involved in the assessment of structural vulnerability. The re-
sults show that static procedures are somehow conservative and that uncertainties
increase with the severity of the seismic actions and with the damage. Low damage
state fragility curves have little uncertainty while high damage state fragility curves
show great scattering.

Seismic pounding can induce severe damage and losses in buildings. The corre-
sponding risk is particularly relevant in densely inhabited metropolitan areas, due to
the inadequate clearance between buildings. Chapter 18 by E. Tubaldi and M. Bar-
bato proposes a reliability-based procedure for assessing the level of safety corre-
sponding to a given value of the separation distance between adjacent buildings ex-
hibiting linear elastic behavior. The seismic input is modeled as a non-stationary ran-
dom process and the first-passage reliability problem corresponding to the pounding
event is solved employing analytical techniques involving the determination of spe-
cific statistics of the response processes. The proposed procedure is applied to esti-
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mate the probability of pounding between linear single-degree-of-freedom systems
and to evaluate the reliability of simplified design code formulae used to determine
building separation distances. Furthermore, the capability of the proposed method
to deal with complex systems is demonstrated by assessing the effectiveness of the
use of viscous dampers in reducing the probability of pounding between adjacent
buildings modeled as multi-degree-of-freedom systems.

In Chap. 19, A. Elenas provides a methodology to quantify the relationship
between seismic intensity parameters and structural damage. First, a computer-
supported elaboration of ground motion records provides several peak, spectral and
energy seismic parameters. After that, nonlinear dynamic analyses are carried out to
provide the structural response for a set of seismic excitations. Among the several re-
sponse characteristics, the overall structure damage indices after Park/Ang and the
maximum inter-storey drift ratio are selected to represent the structural response.
Correlation coefficients are evaluated to express the grade of interrelation between
seismic acceleration parameters and structural damage. The presented methodology
is applied to a reinforced concrete frame building, designed according to the rules
of the recent Eurocodes, and the numerical results show that the spectral and energy
parameters provide strong correlation to the damage indices.

As demonstrated in the previous chapter, there is interdependence between seis-
mic intensity parameters and structural damage. In Chap. 20, A. Elenas et al. pro-
ceed to the classification of seismic damage in buildings using an adaptive neuro-
fuzzy inference system. The seismic excitations are simulated by artificial accelero-
grams and their intensity is described by seismic parameters. The proposed system
is trained using a number of seismic events and tested on a reinforced concrete struc-
ture. The results show that the proposed fuzzy technique contributes to the devel-
opment of an efficient blind prediction of seismic damage. The recognition scheme
achieves correct classification rates over 90%.

The book closes with a study on damage identification of historical masonry
structures under seismic excitation by G. De Matteis et al. (Chap. 21). The seismic
behavior of a physical 1:5.5 scaled model of the church of the Fossanova Abbey
(Italy) is examined by means of numerical and experimental analyses. As it mostly
influences the seismic vulnerability of the Abbey, the central transversal three-bay
complex of the church was investigated in detail by means of a shaking table test on
a 1:5.5 scaled physical model in the Laboratory of the Institute for Earthquake Engi-
neering and Engineering Seismology in Skopje. In this chapter, a brief review of the
numerical activity related to the prediction of the shaking table test response of the
model is first proposed. Then, the identification of frequency decay during collapse
is performed through decomposition of the measured power spectral density matrix.
Finally, the localization and evolution of damage in the structure is analyzed and
the obtained numerical results show a very good agreement with the experimental
data.

The book editors would like to express their deep appreciation to all contributors
for their active participation in the COMPDYN 2011 Conference and for the time
and effort devoted to the completion of their contributions to this volume. Special
thanks are also due to the reviewers for their constructive comments and suggestions
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which enhanced the quality of the book. Finally, the editors would like to thank
the personnel of Springer for their most valuable support during the publication
process.

Manolis Papadrakakis
George Stefanou

Vissarion Papadopoulos

Athens, Greece
April 2012
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Chapter 1
Random Dynamical Response of a Multibody
System with Uncertain Rigid Bodies

Anas Batou and Christian Soize

Abstract This work is devoted to the construction of the random dynamical re-
sponse of a multibody system with uncertain rigid bodies. We construct a stochastic
model of an uncertain rigid body by modeling the mass, the center of mass and the
tensor of inertia by random variables. The prior probability distributions of these
random variables are constructed using the maximum entropy principle under the
constraints defined by the available information. A generator of independent real-
izations are then developed. Several uncertain rigid bodies can be linked each to the
others in order to calculate the random response of a multibody dynamical system.
An application is proposed to illustrate the theoretical development.

1 Introduction

This work is devoted to the construction of a probabilistic model of uncertainties
for a rigid multibody dynamical system made up of uncertain rigid bodies. In some
cases, the mass distribution inside a rigid body is not perfectly known and must be
considered as random (for example, the distribution of passengers inside a vehicle)
and therefore, this unknown mass distribution inside the rigid body induces uncer-
tainties in the model of this rigid body. Here, we propose a new probabilistic model-
ing for uncertain rigid bodies in the context of the multibody dynamics. Concerning
the modeling of uncertainties in multibody dynamical system, a very few previous
researches have been carried out. These researches concerned parameters which de-
scribe the joints linking each rigid body to the others and the external sources (see
[3, 8, 12, 13, 16]), but not rigid bodies themselves. In the field of uncertain rigid
bodies, a first work has been proposed in [9, 10], in which the authors take into
account uncertain rigid bodies for rotor dynamical systems using the nonparamet-

A. Batou (�) · C. Soize
Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université
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2 A. Batou and C. Soize

ric probabilistic approach [19, 20] consisting in replacing the mass and gyroscopic
matrices by random matrices.

In this paper, a general and complete stochastic model is constructed for an uncer-
tain rigid body. The mass, the center of mass and the tensor of inertia which describe
the rigid body are modeled by random variables. The prior probability distributions
of the random variables are constructed using the maximum entropy principle [6, 7]
from Information Theory [17, 18]. The generator of independent realizations cor-
responding to the prior probability distributions of these random quantities are de-
veloped and presented. Then, several uncertain rigid bodies can be linked each to
the others in order to calculate the random response of an uncertain multibody dy-
namical system. The stochastic multibody dynamical equations are solved using the
Monte Carlo simulation method.

Section 2 is devoted to the construction of the nominal model for the rigid multi-
body dynamical system by using the classical method. In Sect. 3, we propose a gen-
eral probability model for an unconstrained uncertain rigid body and then, the un-
certain rigid multibody dynamical system is obtained by joining this unconstrained
uncertain rigid body to the other rigid bodies. The last section is devoted to an ap-
plication which illustrates the proposed theory.

2 Nominal Model for the Rigid Multibody Dynamical System

In this paper, the usual model of a rigid multibody dynamical system for which all
the mechanical properties are known will be called the nominal model. This section
is devoted to the construction of the nominal model for a rigid multibody dynamical
system. This nominal model is constructed as in [14, 15] and is summarized below.

2.1 Dynamical Equations for a Rigid Body of the Multibody
System

Let RBi be the rigid body occupying a bounded domain Ωi with a given geome-
try. Let ξ be the generic point of the three dimensional space (see Fig. 1.1). Let
x = (x1, x2, x3) be the position vector of point ξ defined in a fixed inertial frame
(O,x0,1, x0,2, x0,3), such that x=−→Oξ . A rigid body is classically defined by three
quantities.

1. The first one is the mass mi of RBi which is such that

mi =
∫
Ωi

ρ(x) dx, (1.1)

where ρ(x) is the mass density.
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Fig. 1.1 Rigid body RBi

2. The second quantity is the position vector ri of the center of mass Gi , defined in
the fixed inertial frame, by

ri = 1

mi

∫
Ωi

xρ(x) dx. (1.2)

3. Let (Gi, x′i,1, x′i,2, x′i,3) be the local frame for which the origin isGi and which is

deduced from the fixed frame (O,x0,1, x0,2, x0,3) by the translation
−−→
OGi and a

rotation defined by the three Euler angles αi , βi and γi . The third quantity is the
positive-definite matrix [Ji] of the tensor of inertia in the local frame such that

[Ji]u=−
∫
Ωi

x′ × x′ × uρ
(
x′
)
dx′, ∀u ∈R

3, (1.3)

in which the vector x′ = (x′1, x′2, x′3) of the components of vector
−−→
Giξ are given

in (Gi, x′i,1, x′i,2, x′i,3). In the above equation, u × v denotes the cross product
between the vectors u and v.

2.2 Matrix Model for the Rigid Multibody Dynamical System

The rigid multibody dynamical system is made up of nb rigid bodies and ideal
joints including rigid joints, joints with given motion (rheonomic constraints) and
vanishing joints (free motion). The interactions between the rigid bodies are real-
ized by these ideal joints but also by springs, dampers or actuators which produce
forces between the bodies. In this paper, only nc holonomic constraints are consid-
ered. Let u be the vector in R

6nb such that u = (r1, . . . , rnb , s1, . . . , snb ) in which
si = (αi, βi, γi) is the rotation vector. The nc constraints are given by nc implicit
equations which are globally written as ϕ(u, t)= 0. The (6nb × 6nb) mass matrix
[M] is defined by
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[M] =
[ [Mr ] 0

0 [Ms]
]
, (1.4)

where the (3nb × 3nb) matrices [Mr ] and [Ms] are defined by

[
Mr

]=
⎡
⎢⎣
m1[I3] · · · 0
...

. . .
...

0 · · · mnb [I3]

⎤
⎥⎦ , [

Ms
]=

⎡
⎢⎣
[J1] · · · 0
...

. . .
...

0 · · · [Jnb ]

⎤
⎥⎦ , (1.5)

in which [I3] is the (3× 3) identity matrix. The function {u(t) ∈ [0, T ]} is then the
solution of the following differential equation (see [15])[ [M] [ϕu]T

[ϕu] [0]
][

ü
λ

]
=

[
q− k

− d
dt

ϕt − [ ddt ϕu]u̇
]
, (1.6)

with the initial conditions

u(0)= u0, u̇(0)= v0, (1.7)

in which k(u̇) is the vector of the Coriolis forces and where [ϕu(u(t), t)]ij =
∂ϕi(u(t), t)/∂uj (t) and ϕt = ∂ϕ/∂t . The vector q(u, u̇, t) is constituted of the ap-
plied forces and torques induced by springs, dampers and actuators. The vector λ(t)

is the vector of the Lagrange multipliers. Equation (1.6) can be solved using an
adapted integration algorithm (see for instance [2]).

3 Stochastic Model for a Multibody Dynamical System with
Uncertain Rigid Bodies

Firstly, a stochastic model for an uncertain rigid body of the multibody dynamical
system is proposed and secondly, the stochastic model for the multibody dynamical
system with uncertain rigid bodies is constructed joining the stochastic model of the
uncertain rigid bodies.

3.1 Stochastic Model for an Uncertain Rigid Body of the
Multibody Dynamical System

The properties of the nominal model of the rigid body RBi are defined by its mass
mi , the position vector r0,i of its center of mass Gi at initial time t = 0 and the ma-
trix [J i] of its tensor of inertia with respect to the local frame (Gi, x

′
i,1, x

′
i,2, x

′
i,3).

The probabilistic model of uncertainties for this rigid body is constructed by re-
placing these three parameters by the following three random variables: the random
massMi , the random position vector R0,i of its random center of mass Gi at initial
time t = 0 and the random matrix [Ji] of its random tensor of inertia with respect
to the random local frame (Gi , x′i,1, x′i,2, x′i,3). The probability density functions



1 Random Dynamical Response of a Multibody System 5

(PDF) of these three random variables are constructed using the maximum entropy
principle (see [6, 7, 17]), that is to say, in maximizing the uncertainties in the model
under the constraints defined by the available information.

3.1.1 Construction of the PDF for the Random Mass

(i) Available information.
Let E{·} be the mathematical expectation. The available information for the
random mass Mi is defined as follows. Firstly, the random variable Mi must
be positive almost surely. Secondly, the mean value of the random mass Mi
must be equal to the value mi of the nominal model. Thirdly, as it is proven in
[20], the random mass must verify the inequality E{M−2

i }<+∞ in order that
a second-order solution exists for the stochastic dynamical system. In addition,
it is also proven that this constraint can be replaced by |E{logMi}|<+∞.

(ii) Maximum entropy principle.
The probability density function μ �→ p

Mi
(μ) of the random variable Mi is

constructed by maximizing the entropy under the constraints defined above.
The solution of this optimization problem is the PDF of a gamma random vari-
able defined on ]0,+∞[. This PDF depends on two parameters which are the
nominal value mi and the coefficient of variation δ

Mi
of the random variable

Mi such that δMi = σMi /mi where σ
Mi

is the standard deviation of the random
variable Mi . Therefore, the PDF of the random mass is completely defined by
the mean value mi and by the dispersion parameter δ

Mi
.

3.1.2 Construction of the PDF for the Random Position Vector R0,i

In this subsection, the PDF of the random initial position vector R0,i of the center
of mass of RBi at initial time t = 0 is constructed.

(i) Available information.
The position vector r0,i of the center of mass Gi at initial time t = 0 of the
nominal model is given. However, the real position is not exactly known and
r0,i only corresponds to a mean position. Consequently, there is an uncertainty
about the real position and this is the reason why this position is modeled by the
random vector R0,i . Some geometrical and mechanical considerations lead us
to introduce an admissible domainDi of random vector R0,i . We introduce the
vector h of the parameters describing the geometry of domain Di . In addition,
the mean value of the random vector R0,i must be equal to the value r0,i of the
nominal model. Therefore, the available information for random variable R0,i
can be written as

R0,i ∈Di(h) a.s., (1.8a)

E{R0,i} = r0,i ∈Di(h). (1.8b)
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(ii) Maximum entropy principle.
The probability density function a �→ pR0,i

(a) of random variable R0,i is then
constructed by maximizing the entropy with the constraints defined by the
available information in Eqs. (1.8a) and (1.8b). The solution of this optimiza-
tion problem depends on two parameters which are r0,i and vector-valued pa-
rameter h, and is such that

pR0,i
(a;h)= 1Di(h)(a)C0e

−〈λ,a〉. (1.9)

The positive valued parameter C0 and vector λ are the unique solution of the
equations

C0

∫
Di(h)

e−〈λ,a〉 da= 1, (1.10a)

C0

∫
Di(h)

ae−〈λ,a〉 da= r0,i . (1.10b)

(iii) Generator of independent realizations.
The independent realizations of random variable R0,i must be generated using
the constructed PDF pR0,i

. Such a generator can be obtained using the Monte

Carlo Markov Chain (MCMC) method (Metropolis–Hastings algorithm [5]).

3.1.3 Random Matrix [Ji] of the Random Tensor of Inertia

In this subsection, the random matrix [Ji] of the random tensor of inertia with re-
spect to (Gi , x′i,1, x′i,2, x′i,3) is defined and an algebraic representation of this ran-
dom matrix is constructed. The mass distribution around the random center of mass
Gi is uncertain and consequently, the tensor of inertia is also uncertain. This is the
reason why the matrix [J i] of the tensor of inertia of the nominal model with respect
to (Gi, x

′
i,1, x

′
i,2, x

′
i,3) is replaced by a random matrix [Ji] which is constructed by

using the maximum entropy principle. We introduce the positive-definite matrix [Zi]
independent of mi such that

[Zi] = 1

mi

{
tr([Ji])

2
[I3] − [Ji]

}
. (1.11)

Then [Ji] can be calculated as a function of [Zi],
[Ji] =mi

{
tr
([Zi])[I3] − [Zi]}. (1.12)

It can be proven that [Zi] is positive definite and that each positive definite matrix
[Ji] constructed using Eq. (1.12), where [Zi] is a given positive definite matrix, can
be interpreted as the matrix of a tensor of inertia of a physical rigid body (see [1]). In
the literature, the matrix mi[Zi] is referred as to the Euler tensor. The probabilistic
modeling [Ji] of [Ji] consists in introducing the random matrix [Zi] and in using
Eq. (1.12) in which mi is replaced by the random variable Mi and where [Zi] is
replaced by [Zi]. We then obtain
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[Zi] = 1

Mi

{
tr([Ji])

2
[I3] − [Ji]

}
, (1.13)

[Ji] =Mi
{
tr
([Zi])[I3] − [Zi]}. (1.14)

(i) Available information concerning random matrix [Zi].
Let us introduce (1) the nominal value [Zi] of deterministic matrix [Zi] such
that [Zi] = (1/mi){tr([J i])/2[I3] − [J i]} and (2) the upper bound [Zmax

i ] of
random matrix [Zi]. Then, the available information for [Zi] can be summa-
rized as follows,

[Zi] ∈M
+
3 (R) a.s.,{[

Zmax
i

]− [Zi]} ∈M
+
3 (R) a.s.,

E
{[Zi]}= [Zi],

E
{
log

(
det[Zi]

)}= Cli ,
∣∣Cli

∣∣<+∞,
E
{
log

(
det

([
Zmax
i

]− [Zi]))}= Cui ,
∣∣Cui

∣∣<+∞.

(1.15)

For more convenience, random matrix [Zi] is normalized as follow. Ma-
trix [Zi] being positive definite, its Cholesky decomposition yields [Zi] =
[LZi ]T [LZi ] in which [LZi ] is an upper triangular matrix in the set M3(R)

of all the (3× 3) real matrices. Then, random matrix [Zi] can be rewritten as

[Zi] = [LZi ]T [Gi][LZi ], (1.16)

in which the matrix [Gi] is a random matrix for which the available information
is

[Gi] ∈M
+
3 (R) a.s.,{[

Gmax
i

]− [Gi]} ∈M
+
3 (R) a.s.,

E
{[Gi]}= [I3],

E
{
log

(
det[Gi]

)}= Cli ′,
∣∣Cli ′

∣∣<+∞,
E
{
log

(
det

([
Gmax
i

]− [Gi]))}= Cui ′,
∣∣Cui ′

∣∣<+∞,

(1.17)

in which Cli
′ = Cli − log(det[Zi]), Cui ′ = Cui − log(det[Zi]) and where the

matrix [Gmax
i ] is an upper bound for random matrix [Gi] and is defined by

[Gmax
i ] = ([LZi ]T )−1[Zmax

i ][LZi ]−1.
(ii) Maximum entropy principle.

The probability distribution of random matrix [Gi] is constructed using the
maximum entropy principle under the constraints defined by the available in-
formation given by Eq. (1.17). The probability density function p[Gi ]([G])with
respect to the volume element d̃G of random matrix [Gi] is then written as

p[Gi ]
([G])= 1

M
+
3 (R)

([G])× 1
M
+
3 (R)

([
Gmax
i

]− [G])×CGi × (
det[G])−λl

× (
det

([
Gmax
i

]− [G]))−λu × e− tr([μ][G]), (1.18)
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in which the positive valued parameter CGi is a normalization constant, the
real parameters λl < 1 and λu < 1 are Lagrange multipliers relative to the two
last constraints defined by Eq. (1.17) and the symmetric real matrix [μ] is a
Lagrange multiplier relative to the third constraint defined by Eq. (1.17). This
probability density function is a particular case of the Kummer-Beta matrix
variate distribution (see [4, 11]) for which the lower bound is a zero matrix.
Parameters CGi , λl , λu and matrix [μ] are the unique solution of the equations

E
{
1
M
S
3 (R)

([Gi])}= 1,

E
{[Gi]}= [I3],

E
{
log

(
det[Gi]

)}= Cli ′,
E
{
log

(
det

([
Gmax
i

]− [Gi]))}= Cui ′.
(1.19)

For fixed values of λl and λu, parameters CGi and [μ] can be estimated using
Eq. (1.19). In Eq. (1.19), since the parameters Cli

′
and Cui

′ have no real physical
meaning, the parameters λl and λu are kept as parameters which then allows
the “shape” of the PDF to be controlled. If experimental data are available for
the responses of the dynamical system, then the two parameters λl and λu can
be identified solving an inverse problem. If experimental data are not available,
these two parameters allow a sensitivity analysis of the solution to be carried
out with respect to the level of uncertainties.

(iii) Properties for random matrix [Ji].
It is proven in [1] that using Eq. (1.14) and the available information defined
by Eq. (1.15), the following important properties for random matrix [Ji] can
be deduced, {

1

2
tr
([Ji])[I3] − [Ji]

}
∈M

+
3 (R) a.s., (1.20a)

{[
Jmax
i

]− [Ji]} ∈M
+
3 (R) a.s., (1.20b)

E
{[Ji]}= [J i], (1.20c)

{λl <−2}⇒E
{∥∥[Ji]−1

∥∥2}
<+∞, (1.20d)

in which the random matrix [Jmax
i ], which represents a random upper bound

for random matrix [Ji], is defined by
[
Jmax
i

]=Mi{tr
([
Zmax
i

])[I3] − [
Zmax
i

]}
. (1.21)

It should be noted that Eq. (1.20a) implies that each realization of random
matrix [Ji] corresponds to the matrix of a tensor of inertia of a physical rigid
body. In addition, this equation implies that random matrix [Ji] is almost surely
positive definite. Equation (1.20b) provides a random upper bound for ran-
dom matrix [Ji]. Equation (1.20c) corresponds to a construction for which the
mean value of random matrix [Ji] is equal to the nominal value [J i]. Finally,
Eq. (1.20d) is necessary for that the random solution of the nonlinear dynami-
cal system be a second-order stochastic process.
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(iv) Generator of independent realizations for random matrix [Ji].
The generator of independent realizations of random matrix [Gi] is based on
the Monte Carlo Markov Chain (MCMC) (Metropolis–Hastings algorithm [5]
with the PDF defined by Eq. (1.18). Then, independent realizations of random
matrix [Zi] are obtained using Eq. (1.16). Finally, independent realizations of
random matrix [Ji] are obtained using Eq. (1.14) and independent realizations
of random massMi .

3.2 Stochastic Matrix Model for a Multibody Dynamical System
with Uncertain Rigid Bodies and Its Random Response

In order to limit the developments, it is assumed that only one of the nb rigid bodies
denoted by RBi of the rigid multibody system is uncertain. The extension to sev-
eral uncertain rigid bodies is straightforward. Let the 6nb random coordinates be
represented by the R

6nb -valued stochastic process U = (R1, . . . ,Rnb ,S1, . . . ,Snb )
indexed by [0, T ] and let the nc random Lagrange multipliers be represented by
the R

nc -valued stochastic process Λ indexed by [0, T ]. The deterministic Eq. (1.6)
becomes the following stochastic equation

[ [M] [ϕ
u
]T

[ϕ
u
] [0]

][
Ü
Λ

]
=

[
q−K

− d
dt

ϕt − [ ddt ϕu
]U̇

]
, (1.22)

U(0)=U0, U̇(0)= v0, a.s. (1.23)

in which the vector U0 = (r0,1, . . . ,R0,i , . . . , r0,nb , s0,1, . . . , s0,nb ) is random due to
the random vector R0,i . For all given real vector u̇, the vector K(u̇) of the Coriolis
forces is random due to the random matrix [Ji]. The random mass matrix [M] is
defined by

[M] =
[ [Mr ] 0

0 [Ms]
]
, (1.24)

in which the (3nb × 3nb) random matrices [Mr ] and [M]s are defined by

[
Mr

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1[I3] · · · 0
. . .

... Mi[I3]
...

. . .

0 · · · mnb [I3]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (1.25)
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Fig. 1.2 Rigid multibody
system

[
Ms

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[J1] · · · 0
. . .

... [Ji]
...

. . .

0 · · · [Jnb ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (1.26)

Random Eqs. (1.22) and (1.23) are solved using the Monte Carlo simulation method.

4 Application

In this section, we present a numerical application which validates the methodology
presented in this paper.

4.1 Description of the Nominal Model

The rigid multibody model is made up of five rigid bodies and six joints which are
described in the fixed frame (O,x0,1, x0,2, x0,3) (see Fig. 1.2). The plan defined by
(O,x0,1, x0,2) is identified below as the “ground”. The gravity forces in the x0,3-
direction are taken into account.

(i) Rigid bodies.
In the initial configuration, the rigid bodies Rb1, Rb2, Rb3 and Rb4 are cylin-
ders for which the axes follow the x0,3-direction. In the initial configuration,
the rigid body Rb5 is supposed to be symmetric with respect to the planes
(G5, x0,1, x0,2) and (G5, x0,1, x0,3) in which G5 is the center of mass of Rb5.

(ii) Joints.

– The joint Ground-Rb1 is made up of a prismatic joint following x0,3-
direction. The displacement following x0,3-direction (see Fig. 1.2), denoted
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Fig. 1.3 Imposed displacement u1(t) (left figure) and u2(t) (right figure)

by u1(t), is imposed. The joint Ground-Rb2 is a prismatic joint following
x0,3-direction. The displacement following x0,3-direction (see Fig. 1.2), de-
noted by u2(t), is imposed. The displacement following x0,1-direction is un-
constrained. Imposed displacements u1(t) and u2(t) are plotted in Fig. 1.3
for t in [0,0.03] s.

– The joints Rb1-Rb3 and Rb2-Rb4 are constituted of 6D spring-dampers.
– Finally, the joints Rb3-Rb5 and Rb4-Rb5 are x0,2-direction revolute joints.

4.2 Random Response of the Stochastic Model

Rigid body Rb5a is considered as uncertain and is therefore modeled by a random
rigid body. As explained in Sect. 3, the elements of inertia of the uncertain rigid
Body Rb5 are replaced by random quantities. The fluctuation of the response is
controlled by four parameters δ

M5
, h, λl and λu. A sensitivity analysis is carried out

with respect to these four parameters. Statistics on the transient response are esti-
mated using the Monte Carlo simulation method with 500 independent realizations.
The initial velocities and angular velocities are zero. The observation point Pobs
belongs to Rb5. Four different cases are analyzed:

1. Case 1:M5 is random, R0,5 is deterministic and [Z5] is deterministic.
We choose δ

M5
= 0.5. The confidence region, with a probability level Pc = 0.90,

of the random acceleration of point Pobs is plotted in Fig. 1.4. It can be noted
that the acceleration is sensitive to the mass uncertainties.

2. Case 2:Mi is deterministic, R0,5 is random and [Z5] is deterministic.
The domain of R0,5 is supposed to be a parallelepiped which is centered at point
(0,0,0.55) for which its edges are parallel to the directions x0,1, x0,2 and x0,3
and for which the lengths following these three directions are respectively 0.5,
0.2 and 0.02. The confidence region, with a probability level Pc = 0.90, of the
random acceleration of point Pobs is plotted in Fig. 1.5. We can remark that the
angular acceleration is sensitive to uncertainties on initial center of mass of Rb5.
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Fig. 1.4 Random transient acceleration of point Pobs , Case 1: confidence region (upper and lower
solid lines) and mean response (dashed line); x0,3-acceleration (left figure) and x0,1-angular accel-
eration (right figure)

Fig. 1.5 Random transient acceleration of point Pobs , Case 2: confidence region (upper and lower
solid lines) and mean response (dashed line); x0,3-acceleration (left figure) and x0,1-angular accel-
eration (right figure)

3. Case 3:M5 is deterministic, R0,5 is deterministic and [Z5] is random.
We choose λl = −5 and λu = −5 for random matrix [Z5]. The confidence re-
gion, with a probability level Pc = 0.90, of the random acceleration of point
Pobs is plotted in Fig. 1.6. We can remark, as it was expected, that the angular
acceleration is very sensitive to uncertainties on the tensor of inertia. We can also
remark a high sensitivity of the acceleration.

4. Case 4:M5, R0,5 and [Z5] are random.
The values of the parameters of the PDF are those fixed in the three previous
cases. The confidence region, with a probability level Pc = 0.90, of the random
acceleration of point Pobs is plotted in Fig. 1.7. It can be viewed that (1) the
randomness on the acceleration is mainly due to the randomness of mass M5,
(2) the randomness on the angular acceleration is mainly due to the randomness
of the initial position R0,5 of the center of mass and the random tensor [Z5].
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Fig. 1.6 Random transient acceleration of point Pobs , Case 3: confidence region (upper and lower
solid lines) and mean response (dashed line); x0,3-acceleration (left figure) and x0,1-angular accel-
eration (right figure)

Fig. 1.7 Random transient acceleration of point Pobs , Case 4: confidence region (upper and lower
solid lines) and mean response (dashed line); x0,3-acceleration (left figure) and x0,1-angular accel-
eration (right figure)

5 Conclusion

We have presented a complete and general probabilistic modeling of uncertain rigid
bodies taking into account all the known mechanical and mathematical properties
defining a rigid body. This probabilistic model of uncertainties is used to construct
the stochastic equations of uncertain multibody dynamical systems. The random dy-
namical responses can then be calculated. In the proposed probabilistic model, the
mass, the center of mass and the tensor of inertia are modeled by random variables
for which the prior probability density functions are constructed using the maxi-
mum entropy principle under the constraints defined by all the available mathemat-
ical, mechanical and design properties. Several uncertain rigid bodies can be linked
each to the others in order to obtain the stochastic dynamical model of the uncertain
multibody dynamical system. The theory proposed has been illustrated analyzing a
simple example. The results obtained clearly show the role played by uncertainties
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and the sensitivity of the responses due to uncertainties on (1) the mass (2) the cen-
ter of mass and (3) the tensor of inertia. Such a prior stochastic model allows the
robustness of the responses to be analyzed with respect to uncertainties. If experi-
mental data were available on the responses, then the parameters which control the
level of uncertainties could be estimated by solving an inverse stochastic problem.
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Chapter 2
Dynamic Variability Response for Stochastic
Systems

Vissarion Papadopoulos and Odysseas Kokkinos

Abstract In this study we implement the concept of Variability Response Functions
(VRFs) in dynamic systems. The variance of the system response can be readily
estimated by an integral involving the Dynamic VRF (DVRF) and the uncertain
system parameter power spectrum. With the proposed methodology spectral and
probability distribution-free upper bounds can be easily derived. Also an insight
is provided with respect to the mechanisms controlling the system’s response. The
necessarily asserted conjecture of independence of the DVRF to the spectral density
and the marginal probability density is validated numerically through brute-force
Monte Carlo simulations.

Keywords Dynamic Variability Response Functions · Stochastic finite element
analysis · Upper bounds · Stochastic dynamic systems

1 Introduction

Over the past two decades a lot of research has been dedicated to the stochastic
analysis of structural systems involving uncertain parameters in terms of material
or geometry with the implementation of stochastic finite element methodologies.
Although these methods have proven to be highly accurate and computationally ef-
ficient for a variety of problems, there is still a wide range of problems in stochastic
mechanics involving combinations of strong non-linearities and/or large variations
of system properties as well as non-Gaussian system properties that can be solved
with reasonable accuracy only through a computationally expensive Monte Carlo
simulation approach [3–5, 12].

In all aforementioned cases, the spectral/correlation characteristics and the
marginal probability distribution function (pdf) of the stochastic fields describing
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the uncertain system parameters are required in order to estimate the response vari-
ability of a stochastic static or dynamic system. As there is usually a lack of ex-
perimental data for the quantification of such probabilistic quantities, a sensitivity
analysis with respect to various stochastic parameters is often implemented. In this
case, however, the problems that arise are the increased computational effort, the
lack of insight on how these parameters control the response variability of the sys-
tem and the inability to determine bounds of the response variability.

In this framework and to tackle the aforementioned issues, the concept of the
variability response function (VRF) has been proposed in the late 1980s [10], along
with different aspects and applications of the VRF [1, 13]. A development of this
approach was presented in a series of papers [7–9], where the existence of closed-
form integral expressions for the variance of the response displacement of the form

Var[u] =
∫ ∞

−∞
VRF(κ, σff )Sff (κ) dκ (2.1)

was demonstrated for linear stochastic systems under static loads using a flexibility-
based formulation. It was shown that the VRF depends on standard deviation σff
but appears to be independent of the functional form of the spectral density func-
tion Sff (κ) modeling the inverse of the elastic modulus. The existence however of
this integral expression had to be conjectured for statically indeterminate as well as
for general stochastic finite element systems. A rigorous proof of such existence is
available only for statically determinate systems for which VRF is independent of
σff as well [8]. Further investigations [6] verified the aforementioned results but
showed that VRF has a slight dependence on the marginal pdf of the stochastic field
modeling the flexibility.

The present paper extends the aforementioned approach to linear statically de-
terminate stochastic systems under dynamic excitations. Although the derivation of
an analytic expression for the variability response function of the dynamic system
(DVRF), if possible at all, is extremely cumbersome, a numerical computation of
the DVRF can be easily achieved to provide results for the variance time history
of the dynamic system response. As in previous works [7–9], the existence of the
DVRF and a similar to Eq. (2.1) integral form expression has to be conjectured. This
assumption is numerically validated by comparing the results from Eq. (2.1) with
brute force Monte Carlo simulations. It is demonstrated that the DVRF is highly
dependent on the standard deviation σff of the inverse of the elastic modulus and,
based on numerical evidence further presented but, to this point, not to a full proof
verification technique, appears to be almost independent of the functional form of
Sff (κ) as well as of the marginal pdf of the flexibility. In addition, an integral
expression similar to that of Eq. (2.1) is proposed for the mean system response in-
volving a Dynamic Mean Response Function (DMRF), which is a function similar
to the DVRF.

Both integral forms for the mean and variance can be used to efficiently compute
the first and second order statistics of the transient system response with reason-
able accuracy, together with time dependant spectral-distribution-free upper bounds.
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Fig. 2.1 One degree of freedom oscillator: (a) Geometry and loading (b) Static displacement for
unit load

They also provide an insight into the mechanisms controlling the uncertainty propa-
gation with respect to both space and time and in particular the mean and variability
time histories of the stochastic system dynamic response.

2 Dynamic Analysis of a Stochastic Single Degree of Freedom
Oscillator

For the single degree of freedom statically determinate stochastic oscillator of length
L and mass Ms in Fig. 2.1(a), loaded with a dynamic deterministic load P(t), the
inverse of the elastic modulus is considered to vary randomly along the length of
the beam according to the following expression:

1

E(x)
= F0

(
1+ f (x)) (2.2)

is the elastic modulus, F0 is the mean value of the inverse of E(x), and f (x) is a
zero-mean homogeneous stochastic field modeling the variation of 1/E(x) around
its mean value F0.

The displacement time history u(t) of the oscillator can be derived from the
solution of Duhamel’s integral:

u(t)= 1

ωD

∫ t

0
P(τ)e−ξω(t−τ) sin

(
ωD(t − τ)

)
dτ (2.3)

where ξ is the damping ratio and ωD = ω
√

1− ξ2 with ω being the circular fre-
quency of the system. Due to the system uncertainty in Eq. (2.2), the circular fre-
quency ω is a random variable given by the following relation:

ω=√
k/Ms (2.4)

where k is the stiffness of the oscillator which can be derived from the static dis-
placement of the oscillator for a unit static deterministic load at the end of the beam
(Fig. 2.1(b)) as follows:

k = 1

ust
=

[
−F0

I

∫ L

0
(x − α)M(α)(1+ f (α))dα

]−1

(2.5)

where I is the moment of inertia of the beam andM(α) is the moment at position α.
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In the general case where the load is arbitrary and the system is initially at
rest, the deterministic displacement at the right end of the beam can be derived
by numerically solving the Duhamel’s integral. In the special case of a sinusoidal
P(t) = P0 sin(ω̄t) the solution of Eq. (2.3) leads to the following expression for
u(t):

u(t)= u0(t)+ up(t) (2.6)

where

u0(t)= e−ξωt (A sinωDt +B cosωDt) (2.7a)

up(t)= C1 sin ω̄t +C2 cos ω̄t (2.7b)

A= P0

K
∗ 1

(1− β2)2 + (2ξβ)2 ∗
2βξ2 − (1− β2)β√

1− ξ2
(2.7c)

B=−P0

K
∗ 2ξβ

(1− β2)2 + (2ξβ)2 (2.7d)

C1 = P0

K
∗ 1

(1− β2)2 + (2ξβ)2
(
1− β2) (2.7e)

C2 =−P0

K
∗ 1

(1− β2)2 + (2ξβ)2 (2ξβ) (2.7f)

β = ω̄/ω (2.7g)

In the trivial case in which a static load P(t) = P0 is suddenly applied, the re-
sponse displacement is given by

u(t)= P0

k

[
1−

(
cosωDt + ξ√

1− ξ2
sinωDt

)
e−ξωt

]
(2.7h)

3 Response Variance and Mean Value of the Dynamic Response

Following a procedure similar to the one presented in [8] for linear stochastic sys-
tems under static loading, it is possible to express the variance of the dynamic re-
sponse of the stochastic system in the following integral form expression:

Var
[
u(t)

]=
∫ ∞

−∞
DVRF(t, κ, σff )Sff (κ) dκ (2.8a)

where DVRF is the dynamic version of a VRF, assumed to be a function of deter-
ministic parameters of the problem related to geometry, loads and (mean) material
properties and the standard deviation σff of the stochastic field that models the sys-
tem flexibility. A similar integral expression can provide an estimate for the mean
value of the dynamic response of the system using the Dynamic Mean Response
Function (DMRF) [9]:

ε
[
u(t)

]=
∫ ∞

−∞
DMRF(t, κ, σff )Sff (κ) dκ (2.8b)
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DMRF is assumed to be a function similar to the DVRF in the sense that it also
depends on deterministic parameters of the problem as well as σff . It is extremely
difficult however, to prove that the DVRF (same counts for DMRF) is independent
(or even approximately independent) of the marginal pdf and the functional form
of the power spectral density of the stochastic field f (x). As in [7–9], the afore-
mentioned assumptions are considered to form a conjecture which is numerically
validated here by comparing the results from Eqs. (2.8a) and (2.8b) with brute force
MCS.

The derivation of an analytic expression for the DVRF and DMRF, if possible
at all, is an extremely cumbersome task. A numerical computation, however can
be easily achieved, as described in the following section and then fed into the Eqs.
(2.8a) and (2.8b) to provide estimates of the mean and variance of the dynamic
system response.

3.1 Numerical Estimation of the DVRF and the DMRF Using Fast
Monte Carlo Simulation

The numerical estimation of DVRF and DMRF involves a fast Monte Carlo sim-
ulation (FMCS) whose basic idea is to consider the random field f (x) as a ran-
dom sinusoid [7, 8] and plug its monochromatic power spectrum into Eqs. (2.8a)
and (2.8b), in order to compute the respective mean and variance response at vari-
ous wave numbers. The steps of the FMCS approach are the following:

(i) Generate N (10–20) sample functions of the below random sinusoid with stan-
dard deviation σff and wave number κ̄ modeling the variation of the inverse
of the elastic modulus 1/E around its mean F0:

fj (x)=
√

2σff cos(κ̄x + ϕj ) (2.9)

where j = 1,2, . . . ,N and ϕj varies randomly under uniform distribution in
the range [0,2π].

(ii) Using these N generated sample functions it is straightforward to compute
their respective dynamic mean and response variance, ε[u(t)]κ̄ and Var[u(t)]κ̄ ,
respectively for a given time step t .

(iii) The value of the DMRF at wave number κ̄ can then be computed as follows

DMRF(t, κ̄, σff )= ε[u(t)]κ̄
σ 2
ff

(2.10a)

and likewise the value of the DVRF at wave number κ̄

DVRF(t, κ̄, σff )= Var[u(t)]κ̄
σ 2
ff

(2.10b)

Both previous equations are direct consequences of the integral expressions
in Eqs. (2.8a) and (2.8b) in the case that the stochastic field becomes a random
sinusoid.
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(iv) Get DMRF and DVRF as a function of both time t and wave number κ by
repeating previous steps for various wave numbers and different time steps. The
entire procedure can be repeated for different values of the standard deviation
σff of the random sinusoid.

3.2 Bounds of the Mean and Variance of the Dynamic Response

Upper bounds on the mean and variance of the dynamic response of the stochastic
system can be established directly from Eqs. (2.8a) and (2.8b), as follows:

ε
[
u(t)

]=
∫ ∞

−∞
DMRF(t, κ, σff )Sff (κ) dκ

≤DMRF
(
t, κmax(t), σff

)
σ 2
ff (2.11a)

Var
[
u(t)

]=
∫ ∞

−∞
DVRF(t, κ, σff )Sff (κ) dκ

≤DVRF
(
t, κmax(t), σff

)
σ 2
ff (2.11b)

where κmax(t) is the wave number at which DMRF and DVRF, corresponding to a
given time step t and value of σff , reach their maximum value. An envelope of time
evolving upper bounds on the mean and variance of the dynamic system response
can be extracted from Eqs. (2.11a) and (2.11b). As in the case of linear stochastic
systems under static loads [7–9], this envelope is physically realizable since the
form of the stochastic field that produces it is the random sinusoid of Eq. (2.9) with
κ̄ = κmax(t).

4 Numerical Example

For the cantilever beam shown in Fig. 2.1 with length L = 4 m, the inverse of the
modulus of elasticity is assumed to vary randomly along its length according to
Eq. (2.2) with F0 = (1.25 × 108 kN/m)−1 and I = 0.1 m4. A concentrated mass
Ms = 3.715× 103 kg is assumed at the right end of the beam. The damping ratio is
taken as ξ = 5% and the mean eigenperiod of this one d.o.f. oscillator is calculated
at T0 = 0.5 s.

Two load cases are considered: LC1 consisting of a concentrated dynamic peri-
odic load P(t)= 100 sin(ω̄t) and LC2 consisting of P(t)=−MsÜg(t)where Üg(t)
is the acceleration time history of the 1940 El Centro earthquake.

The spectral density function (SDF) of Fig. 2.2 was used for the modeling of the
inverse of the elastic modulus stochastic field, given by:

Sff (κ)= 1

4
σ 2b3κ2e−b|κ| (2.12)

with b= 10 being a correlation length parameter.
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Fig. 2.2 Spectral density
function for stochastic field
f (x) standard deviation
σff = 0.2

In order to demonstrate the validity of the proposed methodology, a truncated
Gaussian and a lognormal pdf were used to model f (x). For this purpose, an un-
derlying Gaussian stochastic field denoted by g(x) is generated using the spectral
representation method [11] and the power spectrum of Eq. (2.12). The truncated
Gaussian field f TG(x) is obtained by simply truncating g(x) in the following way:
−0.9≤ g(x)≤ 0.9, while the lognormal f L(x) is obtained from the following trans-
formation as a translation field [2]:

fL(x)= F−1
L

{
G
[
g(x)

]}
(2.13)

The SDF of the underlying Gaussian field in Eq. (2.12) and the correspond-
ing spectral densities of the truncated Gaussian and the Lognormal fields denoted
SfTGfTG(κ) and SfLfL(κ), respectively, will be different. These are computed from
the following formula

Sfifi (κ)=
1

2πLx

∣∣∣∣
∫ Lx

0
fi(x)e

−iκx dx
∣∣∣∣
2

; i = TG,L (2.14)

where Lx is the length of the sample functions of the non-Gaussian fields modeling
flexibility. As the sample functions of the non-Gaussian fields are non-ergodic, the
estimation of power spectra in Eq. (2.14) is performed in an ensemble average sense
[2].

LC1: Dynamic Periodic Load at the End of the Beam Figures 2.3 and 2.4
present DMRF and DVRF, respectively, computed with FMCS for a periodic load
with frequency ω̄= 2 and three different values of the standard deviation σff = 0.2,
σff = 0.4 and σff = 0.6. From these figures it can be observed that DVRF do not
follow any particular pattern with respect to any increase or decrease of σff in con-
trast to DMRF and to what has been observed in Papadopoulos and Deodatis [7] for
the corresponding static problem, albeit the mean and variability response increases
as σff increases, as shown in Fig. 2.4. Figures 2.5(a) and (b) present plots of DMRF
and DVRF as a function of t for a fixed wave number κ = 2 and σff = 0.2. From
the above Figs. 2.3, 2.4 and 2.5 it appears that DMRF and DVRF have a significant
variation along the wave number κ axis and the time axis t . Both functions and es-
pecially DVRF have an initial transient phase and then appear to be periodic. It is
reminded here that DVRF and DMRF are functions of the imposed dynamic load-
ing. This explains the fact that they do not approach zero with t increasing, since
the applied dynamic load is periodic with constant amplitude which does not decay.
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Fig. 2.3 DMRF as a function
of σff for (a) t = 1 s,
(b) t = 3 s and (c) t = 5 s

Figures 2.6(a) and (b) present comparatively the results of the computed response
variance time histories using the integral expression of Eq. (2.8a) and MCS, for two
different standard deviations of a truncated Gaussian stochastic field used for the
modeling of flexibility. The underlying Gaussian field is modeled with the power
spectral density of Eq. (2.12) and two different standard deviations σgg = 0.4 and
σgg = 0.6. The corresponding standard deviations of the truncated Gaussian field
f (x) are computed as σff = 0.3912 and σff = 0.5286, respectively. Figures 2.7(a)
and (b) present the same results with Fig. 2.8 but for the mean response of the
oscillator. The deterministic displacement time history is also plotted in Fig. 2.7(c)
for comparison purposes. From these figures it can be observed that the mean and
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Fig. 2.4 DVRF as a function
of the σff for (a) t = 1 s,
(b) t = 3 s and (c) t = 5 s

variability response time histories obtained with the integral expressions of Eqs.
(2.8a) and (2.8b) are in close agreement with the corresponding MCS estimates. In
all cases examined the maximum error in the computed Var[u(t)], observed at the
peak values of the variance, is less than 25%, while in all other time steps this error
is less than 3–4%. In the case of ε[u(t)], the predictions of Eq. (2.8b) are almost
identical to the ones obtained with MCS, with an error of less than 3% in all cases.
From Figs. 2.7(a)–(c), it can be observed that in all cases, the mean response time
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Fig. 2.5 DMRF (a) and
DVRF (b) as a function of t
for κ = 2 rad/s and σff = 0.2

history for all cases examined is almost identical to the deterministic one, with the
exception of the first cycle where slight differences in the peak values are observed.

Figures 2.8(a) and (b) repeat the same comparisons with the previous Figs. 2.6
and 2.7 but for the case of a lognormal stochastic field used for the modeling of
flexibility with σff = 0.2 and lower bound lb = −0.8. The conclusions extracted
previously for the case of truncated Gaussian fields also apply here.

LC2: El Centro Earthquake Figures 2.9(a) and (b) present 3D plots of the
DMRF and DVRF as a function of frequency κ and time t (s) for σff = 0.2. From
these figures it can be observed that DMRF and DVRF have a significant variation
in both κ and t axis, without being periodic in contrast to what has been observed in
LC1. In addition, both DMRF and DVRF approach a zero value with time increasing
due to the fact that ground accelerations decay and vanish after some time.

Fig. 2.6 Time histories of the variance of the response displacement for a truncated Gaussian field
with (a) σgg = 0.4, and (b) σgg = 0.6. Comparison of results obtained from Eq. (2.11a) and MCS
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Fig. 2.7 Time histories of: (a) mean response displacement for a truncated Gaussian field with
σgg = 0.4, (b) σgg = 0.6 and (c) the deterministic displacement. Comparison of results obtained
from Eq. (2.11b) and MCS

Fig. 2.8 Comparative results from Eqs. (2.11a) and (2.11b) and MCS for a lognormal field with
σff = 0.2 for (a) the variance and (b) the mean of the response displacement time history

Figures 2.10(a) and (b) present a comparison of the response variance com-
puted with Eq. (2.8a) and MCS, in the case of a truncated Gaussian stochastic field
modeling flexibility with σgg = 0.4 and 0.6, while Figs. 2.11(a) and (b) present
the same results for the mean dynamic response of the stochastic oscillator along
with the corresponding deterministic displacement time history (Fig. 2.11(c)). Fig-
ures 2.12(a) and (b) repeat the same comparisons for the case of a lognormal
stochastic field used for the modeling of flexibility and σff = 0.3 and lower bound
lb =−0.8.

From the above figures it can be observed that, as in LC2, the mean and vari-
ability response time histories obtained with the integral expressions of Eqs. (2.8a)
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Fig. 2.9 3D plots of (a)
DMRF and (b) DVRF, as a
function of frequency
κ (rad/m) and time t (s) for
LC2 and σff = 0.2

and (2.8b) are in close agreement with the corresponding MCS estimates, in all
cases. Again, the maximum error in the computed Var[u(t)] was observed at the
peak values of the variance and is less than 25%, while in all other time steps
this error is less than 3–4%. In the case of ε[u(t)], the predictions of Eq. (2.8b)
are very close to the ones obtained with MCS, with a error of less than 3%
in all cases. From Figs. 2.9(a)–(c), it can be observed that, in contrast to what
was observed in LC2, the mean response time history differs significantly from
the corresponding deterministic one, in terms of both frequencies and ampli-
tudes.

Upper Bounds on the Mean and Variance of the Response of LC3 Spectral-
distribution-free upper bounds on both the mean and variance of the response are
obtained via Eqs. (2.11a) and (2.11b), respectively. Results of this calculation are
presented in Figs. 2.13(a) and (b), in which the time dependant upper bounds on
the mean and variance of the response displacement are plotted against time for a
standard deviation σff = 0.4.
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Fig. 2.10 Time histories of the variance of the response displacement for a truncated Gaussian
field for (a) σgg = 0.4 and (b) σgg = 0.6. Comparison of results obtained from Eq. (2.8a) and MCS

Fig. 2.11 Time histories of the mean response displacement for a truncated Gaussian field with
(a) σgg = 0.4, (b) σgg = 0.6 and (c) of the deterministic response displacement. Comparison of
results obtained from Eq. (2.8b) and MCS

Sensitivity Analysis for LC3 Using the Integral Expressions in Eqs. (2.8a) and
(2.8b) Finally, a sensitivity analysis is performed using Eqs. (2.8a) and (2.8b) at
minimum computational cost, with respect to three different values of the correlation
length parameter of the SDF in Eq. (2.12) and σff = 0.2. Respective results are
shown in Figs. 2.14(a) and (b).
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Fig. 2.12 Comparative results from Eqs. (2.11a) and (2.11b) and MCS for a lognormal field with
σff = 0.2 for (a) the variance and (b) the mean of the response displacement time history

Fig. 2.13 Upper bounds on
the (a) mean and (b) variance
of the response displacement
for LC2 and σgg = 0.4

5 Concluding Remarks

In the present work, Dynamic Variability Response Functions and Dynamic Mean
Response Functions are obtained for a linear stochastic single d.o.f. oscillator with
random material properties under dynamic excitation. The inverse of the modulus
of elasticity was considered as the uncertain system parameter.

It is demonstrated that, as in the case of stochastic systems under static loading,
DVRF and DMRF depend on the standard deviation of the stochastic field modeling
the uncertain parameter but appear to be almost independent of its power spectral
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Fig. 2.14 (a) Mean and (b) variance time histories of the response displacement computed from
Eqs. (2.8b) and (2.8a), respectively for three different values of the correlation length parameter b
of the SDF in Eq. (2.12)

density and marginal pdf. The results obtained from the integral expressions are
close to those obtained with MCS reaching a maximum error of the order of 20–
25%.

As in the case of stochastic systems under static loading, the DVRF and DMRF
provide with an insight of the dynamic system sensitivity to the stochastic param-
eters and the mechanisms controlling the response mean and variability and their
evolution in time.
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Chapter 3
A Novel Reduced Spectral Function Approach
for Finite Element Analysis of Stochastic
Dynamical Systems

Abhishek Kundu and Sondipon Adhikari

Abstract This work provides the theoretical development and simulation results
of a novel Galerkin subspace projection scheme for damped dynamic systems with
stochastic coefficients and homogeneous Dirichlet boundary conditions. The funda-
mental idea involved here is to solve the stochastic dynamic system in the frequency
domain by projecting the solution into a reduced finite dimensional spatio-random
vector basis spanning the stochastic Krylov subspace to approximate the response.
Subsequently, Galerkin weighting coefficients have been employed to minimize the
error induced due to the use of the reduced basis and a finite order of the spectral
functions and hence to explicitly evaluate the stochastic system response. The statis-
tical moments of the solution have been evaluated at all frequencies to illustrate and
compare the stochastic system response with the deterministic case. The results have
been validated with direct Monte-Carlo simulation for different correlation lengths
and variability of randomness.

1 Introduction

Due to the significant development in computational hardware it is now possible to
solve very high resolution models in various computational physics problems, rang-
ing from fluid mechanics to nano-bio mechanics. However, the spatial resolution is
not enough to determine the credibility of the numerical model, the physical model
as well its parameters are also crucial. Since neither of these may not be exactly
known, there has been increasing research activities over the past three decades to
model the governing partial differential equations within the framework of stochas-
tic equations. We refer to few recent review papers [5, 25, 32]. Consider a bounded
domain D ∈R

d with piecewise Lipschitz boundary ∂D , where d ≤ 3 is the spatial
dimension and t ∈R

+ is the time. Further, consider that (Θ,F ,P ) is a probability
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space where θ ∈Θ is a sample point from the sampling space Θ , F is the complete
σ -algebra over the subsets of Θ and P is the probability measure. We consider a
linear stochastic partial differential equation (PDE) of the form

Fα
[
u(r, t, θ)

]+Lβ
[
u(r, t, θ)

]= p(r, t); r in D (3.1)

with the associated Dirichlet condition

u(r, t, θ)= 0; r on ∂D . (3.2)

These second order time varying equations typically arise in case of structural vibra-
tion problems in mechanical engineering. Here Fα and Lβ denote the linear stochas-
tic differential operators with coefficients α(r, θ) and β(r, θ) as the second order
random fields such that α,β :Rd ×Θ→R. We assume the random fields to be sta-
tionary and square integrable. Depending on the physical problem the random fields
α[u(r, θ)] and β[u(r, θ)] can be used to model different physical quantities. p(r, t)
denotes the deterministic excitation field for which the solution u(r, t, θ) is sought.
The purpose of this paper is to investigate a new solution approach for Eq. (3.1)
after the discretization of the spatio-random fields using the well established tech-
niques of stochastic finite element method (SFEM) as can be found in references
[10, 14, 21].

The random fields in Eq. (3.1) can be discretized to represent them as spectral
functions using a finite number of random variables using one of the established
techniques available in literatures [10, 16]. Hence the stochastic PDE along with the
boundary conditions would result in an equation of the form

M(θ)ü(θ, t)+C(θ)u̇(θ, t)+K(θ)u(θ, t)= f0(t) (3.3)

where M(θ) = M0 +∑p1
i=1μi(θ)Mi ∈ R

n×n is the random mass matrix, K(θ) =
K0+∑p2

i=1 νi(θ)Ki ∈R
n×n is the random stiffness matrix along with C(θ) ∈R

n×n
as the random damping matrix. Here the mass and stiffness matrices have been ex-
pressed in terms of their deterministic components (M0 and K0) and the correspond-
ing random contributions (Mi and Ki ) obtained from discretizing the stochastic field
with a finite number of random variables (μi(θ) and νi(θ)) and their corresponding
spatial basis functions. This has been elaborated in Sect. 2.1. In the present work
proportional damping is considered for which C(θ)= ζ1M(θ)+ ζ2K(θ), where ζ1
and ζ2 are deterministic scalars. For the harmonic analysis of the structural system
considered in Eq. (3.3), it is represented in the frequency domain as

[−ω2M(θ)+ iωC(θ)+K(θ)
]̃
u(θ,ω)= f̃0(ω) (3.4)

where ũ(θ,ω) is the complex frequency domain system response amplitude and
f̃0(ω) is the amplitude of the harmonic force. Now we group the random variables
associated with the mass and damping matrices of Eq. (3.3) as

ξi(θ)= μi(θ) for i = 1,2, . . . , p1
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and

ξi+p1(θ)= νi(θ) for i = 1,2, . . . , p2.

Thus the total number of random variables used to represent the mass and the stiff-
ness matrices becomes p = p1 + p2. Following this, the expression for the linear
structural system in Eq. (3.4) can be expressed as

(
A0(ω)+

p∑
i=1

ξi(θ)Ai (ω)

)
ũ(ω, θ)= f̃0(ω) (3.5)

where A0 and Ai ∈ C
n×n represent the complex deterministic and stochastic parts

respectively of the mass, the stiffness and the damping matrices ensemble. For the
case of proportional damping the matrices A0 and Ai can be written as

A0(ω)=
[−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0 (3.6)

and

Ai (ω)=
[−ω2 + iωζ1

]
Mi for i = 1,2, . . . , p1

Ai+p1(ω)= [iωζ2 + 1]Ki for i = 1,2, . . . , p2.
(3.7)

The paper has been arranged as follows. In Sect. 2 a brief overview of spec-
tral stochastic finite element method is presented. The projection theory in the vec-
tor space is developed in Sect. 3. In Sect. 4 an error minimization approach in the
Hilbert space is proposed. The idea of the reduced orthonormal vector basis is intro-
duced in Sect. 5. The post processing of the results to obtain the response moments
are discussed in Sect. 6. Based on the theoretical results, a simple computational ap-
proach is shown in Sect. 7 where the proposed method of reduced orthonormal basis
is applied to the stochastic mechanics of an Euler–Bernoulli beam. From the theo-
retical developments and numerical results, some conclusions are drawn in Sect. 8.

2 Overview of the Spectral Stochastic Finite Element Method

2.1 Discretization of the Stochastic PDE

First consider a(r, θ) is a Gaussian random field with a covariance function Ca :
R
d × R

d → R defined in the domain D . Since the covariance function is square
bounded, symmetric and positive definite, it can be represented by a spectral de-
composition in an infinite dimensional Hilbert space. Using this spectral decompo-
sition, the random process a(r, θ) can be expressed [see for example, [10, 27]] in a
generalized Fourier type of series known as the Karhunen–Loève (KL) expansion

a(r, θ)= a0(r)+
∞∑
i=1

√
νi ξ̃i (θ)ϕi(r) (3.8)
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Here a0(r) is the mean function, ξ̃i (θ) are uncorrelated standard Gaussian random
variables, νi and ϕi(r) are eigenvalues and eigenfunctions satisfying the integral
equation ∫

D
Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀j = 1,2, . . . (3.9)

The Gaussian random field model is not applicable for strictly positive quanti-
ties arising in many practical problems. Equation (3.8) could also represent the
Karhunen–Loève expansion of a non-Gaussian random field, which is also well de-
fined. Alternatively, when a(r, θ) is a general non-Gaussian random field, it can be
expressed in a mean-square convergent series in random variables and spatial func-
tions using the polynomial chaos expansion. For example Ghanem [9] expanded
log-normal random fields in a polynomial chaos expansion. In general, non Gaus-
sian random fields can be expressed in a series like

a(r, θ)= a0(r)+
∞∑
i=1

ξi(θ)ai(r) (3.10)

using Wiener–Askey chaos expansion [33–35]. Here ξi(θ) are in general non-
Gaussian and correlated random variables and ai(r) are deterministic functions. In
this paper we use this general form of the decomposition of the random field.

Truncating the series in Eq. (3.10) upto the M-th term and using the same ap-
proach for the governing PDE (3.1) with boundary conditions, the discretized sys-
tem equation in the frequency domain (3.3) can be represented by Eq. (3.5), with
M = p. It is given here once again for convenience.

[
A0(ω)+

M∑
i=1

ξi(θ)Ai (ω)

]
u(θ,ω)= f0(ω). (3.11)

The ‘tilde’ sign has been omitted from the notations of the frequency domain quan-
tities of u(θ,ω) and f0(ω) for the sake of notational convenience and this shall be
followed henceforth. The global matrices in Eq. (3.11) can be expressed as

Ai =
∑
e

A(e)i ; i = 0,1,2, . . . ,M (3.12)

The element matrices A(e)i are defined over an element domain De ∈D such that
De ∩De′ =∅ for e �= e′ and

⋃
∀eDe =D and can be given by

A(e)0 =
∫

De

a0(r)B(e)
T

(r)B(e)(r)dr (3.13)

and

A(e)i =√νi
∫

De

ai(r)B(e)
T

(r)B(e)(r)dr; i = 1,2, . . . ,M (3.14)
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In the above equations the B(e)(r) is a deterministic matrix related to the shape func-
tion used to interpolate the solution within the element e. For the elliptic problem
it can be shown [37] that B(e)(r) = ∇N(e)(r). The necessary technical details to
obtain the discrete stochastic algebraic equations from the stochastic partial differ-
ential equation (3.1) have become standard in the literature. Excellent references,
for example [2, 3, 10, 20] are available on this topic. In Eq. (3.11), A0(ω) ∈ C

n×n
and Ai (ω) ∈ C

n×n; i = 1,2, . . . ,M are symmetric matrices which are determin-
istic in nature, u(ω, θ) ∈ C

n is the solution vector and f0 ∈ C
n in the input vec-

tor. We assume that the eigenvalues of the generalized eigenvalue problem with
the deterministic mass (M0) and stiffness matrices K0 are distinct. The number of
terms M in Eq. (3.11) can be selected based on the accuracy desired for the rep-
resentation of the underlying random field. One of the main aim of a stochastic
finite element analysis is to obtain u(ω, θ) for θ ∈ Θ from Eq. (3.11) in an effi-
cient manner and is the main topic of this paper. We propose a solution technique
for Eq. (3.11) when ξi(θ) are in general non-Gaussian and correlated random vari-
ables.

2.2 Brief Review of the Solution Techniques

The solution of the set of stochastic linear algebraic equations (3.11) is a key step
in the stochastic finite element analysis. As a result, several methods have been
proposed. These methods include, first- and second-order perturbation methods
[14, 18], Neumann expansion method [1, 36], Galerkin approach [11], linear al-
gebra based methods [6, 7, 17] and simulation methods [26]. More recently effi-
cient collocation methods have been proposed [8, 19]. Another class of methods
which have been used widely in the literature is known as the spectral methods
(see [25] for a recent review). These methods include the polynomial chaos (PC)
expansion [10], stochastic reduced basis method [22, 29, 30] and Wiener–Askey
chaos expansion [33–35]. According to the polynomial chaos expansion, second-
order random variables uj (θ) can be represented by the mean-square convergent
expansion

uj (θ) = ui0h0 +
∞∑
i1=1

ui1h1
(
ξi1(θ)

)

+
∞∑
i1=1

i1∑
i2=1

ui1,i2h2
(
ξi1(θ), ξi2(θ)

)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3h3
(
ξi1(θ), ξi2(θ), ξi3(θ)

)
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+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4h4
(
ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)

)

+ · · · , (3.15)

where ui1,...,ir are deterministic constants to be determined and hr(ξi1(θ), . . . ,
ξir (θ)) is the r th order homogeneous Chaos. When ξi(θ) are Gaussian random
variables, the functions hr(ξi1(θ), . . . , ξir (θ)) are the r th order Hermite polyno-
mial so that it becomes orthonormal with respect to the Gaussian probability
density function. The same idea can be extended to non-Gaussian random vari-
ables, provided more generalized functional basis are used [33–35] so that the
orthonormality with respect to the probability density functions can be retained.
When we have a random vector, as in the case of the solution of Eq. (3.11),
then it is natural to replace the constants ui1,...,ir by vectors ui1,...,ir ∈ R

n. Sup-
pose the series is truncated after P number of terms. The value of P depends
on the number of basic random variables M and the order of the PC expansion r
as

P =
r∑
j=0

(M + j − 1)!
j !(M − 1)! =

(
M + r
r

)
(3.16)

After the truncation, there are P number of unknown vectors of dimension n. Then
a mean-square error minimization approach can be applied and the unknown vec-
tors can be solved using the Galerkin approach [10]. Since P increases very rapidly
with the order of the chaos r and the number of random variables M , the final
number of unknown constants Pn becomes very large. As a result several methods
have been developed (see for example [4, 22, 29–31]) to reduce the computational
cost. In the polynomial chaos based solution approach, the only information used
to construct the basis is the probability density function of the random variables.
In the context of the discretized Eq. (3.11), more information such as the matri-
ces Ai , i = 0,1,2, . . . ,M are available. It may be possible to construct alternative
basis using these matrices. Here we investigate such an approach, where instead
of projecting the solution in the space of orthonormal polynomials, the solution
is projected in an orthonormal vector basis generated from the coefficient matri-
ces.

3 Spectral Decomposition in the Vector Space

3.1 Derivation of the Spectral Functions

Following the spectral stochastic finite element method, or otherwise, an approx-
imation to the solution of Eq. (3.11) can be expressed as a linear combination of
functions of random variables and deterministic vectors. Recently Nouy [23, 24]
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discussed the possibility of an optimal spectral decomposition. The aim is to use
small number of terms to reduce the computation without loosing the accuracy.
Here an orthonormal vector basis is considered. Fixing a value of θ , say θ = θ1,
the solution of Eq. (3.11) u(θ1) can be expanded in a complete basis as u(θ1) =
α
(1)
1 φ1 + α(1)2 φ2 + · · · + α(1)n φn. Repeating this for θ1, θ2, . . . eventually the whole

sample-space can be covered and it would be possible to expand u(θ), ∀θ ∈Θ as a
linear combination of φ1,φ2, . . . ,φn.

We use the eigenvectors φk ∈R
n of the generalized eigenvalue problem

K0φk = λkM0φk; k = 1,2, . . . , n (3.17)

Since the matrices K0 and M0 are symmetric and generally non-negative definite,
the eigenvectors φk for k = 1,2, . . . , n form an orthonormal basis. Note that in prin-
ciple any orthonormal basis can be used. This choice is selected due to the analyti-
cal simplicity as will be seen later. For notational convenience, define the matrix of
eigenvalues and eigenvectors

λ0 = diag [λ1, λ2, . . . , λn] ∈R
n×n and Φ = [φ1,φ2, . . . ,φn] ∈R

n×n (3.18)

Eigenvalues are ordered in the ascending order so that λ1 < λ2 < · · · < λn. Since
Φ is an orthonormal matrix we have Φ−1 =ΦT so that the following identities can
easily be established

ΦTA0Φ = ΦT
([−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0

)
Φ

= (−ω2 + iωζ1
)
I+ (iωζ2 + 1)λ0 which gives,

ΦTA0Φ = Λ0; A0 =Φ−TΛ0Φ
−1 and A−1

0 =ΦΛ−1
0 ΦT (3.19)

where Λ0 = (−ω2 + iωζ1)I+ (iωζ2 + 1)λ0 and I is the identity matrix. Hence, Λ0
can also be written as

Λ0 = diag [λ01 , λ02, . . . , λ0n] ∈C
n×n (3.20)

where λ0j = (−ω2 + iωζ1)+ (iωζ2 + 1)λj and λj is as defined in Eq. (3.18). We
also introduce the transformations

Ãi =ΦTAiΦ ∈C
n×n; i = 0,1,2, . . . ,M. (3.21)

Note that Ã0 =Λ0 is a diagonal matrix and

Ai =Φ−T ÃiΦ−1 ∈C
n×n; i = 1,2, . . . ,M. (3.22)

Suppose the solution of Eq. (3.11) is given by

û(ω, θ)=
[

A0(ω)+
M∑
i=1

ξi(θ)Ai (ω)

]−1

f0(ω) (3.23)
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Using Eqs. (3.18)–(3.22) and the orthonormality of Φ one has

û(ω, θ) =
[
Φ−TΛ0(ω)Φ

−1 +
M∑
i=1

ξi(θ)Φ
−T ÃiΦ−1

]−1

f0(ω)

= ΦΨ
(
ω, ξ(θ)

)
ΦT f0(ω) (3.24)

where

Ψ
(
ω, ξ(θ)

)=
[
Λ0(ω)+

M∑
i=1

ξi(θ)Ãi (ω)

]−1

(3.25)

and theM-dimensional random vector

ξ(θ)= {
ξ1(θ), ξ2(θ), . . . , ξM(θ)

}T (3.26)

Now we separate the diagonal and off-diagonal terms of the Ãi matrices as

Ãi =Λi +Δi , i = 1,2, . . . ,M (3.27)

Here the diagonal matrix

Λi = diag [Ãi] = diag [λi1, λi2, . . . , λin] ∈C
n×n (3.28)

and the matrix containing only the off-diagonal elements Δi = Ãi −Λi is such that
Trace (Δi )= 0. Using these, from Eq. (3.25) one has

Ψ
(
ω, ξ(θ)

)=
[
Λ0(ω)+

M∑
i=1

ξi(θ)Λi (ω)

︸ ︷︷ ︸
Λ(ω,ξ(θ))

+
M∑
i=1

ξi(θ)Δi (ω)

︸ ︷︷ ︸
Δ(ω,ξ(θ))

]−1

(3.29)

where Λ(ω, ξ(θ)) ∈ C
n×n is a diagonal matrix and Δ(ω, ξ(θ)) is an off-diagonal

only matrix. In the subsequent expressions we choose to omit the inclusion of fre-
quency dependence of the individual matrices for the sake of notational simplicity,
so that Ψ (ω, ξ(θ))≡ Ψ (ξ(θ)) and so on. Hence,we rewrite Eq. (3.29) as

Ψ
(
ξ(θ)

)= [
Λ
(
ξ(θ)

)[
In +Λ−1(ξ(θ))Δ(

ξ(θ)
)]]−1 (3.30)

The above expression can be represented using a Neumann type of matrix series
[36] as

Ψ
(
ξ(θ)

)=
∞∑
s=0

(−1)s
[
Λ−1(ξ(θ))Δ(

ξ(θ)
)]s

Λ−1(ξ(θ)) (3.31)
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Taking an arbitrary r-th element of û(θ), Eq. (3.24) can be rearranged to have

ûr (θ)=
n∑
k=1

Φrk

(
n∑
j=1

Ψkj
(
ξ(θ)

)(
φTj f0

))
(3.32)

Defining

Γk
(
ξ(θ)

)=
n∑
j=1

Ψkj
(
ξ(θ)

)(
φTj f0

)
(3.33)

and collecting all the elements in Eq. (3.32) for r = 1,2, . . . , n one has

û(θ)=
n∑
k=1

Γk
(
ξ(θ)

)
φk (3.34)

This shows that the solution vector û(θ) can be projected in the space spanned by
φk .

Now assume the series in Eq. (3.31) is truncated after m-th term. We define the
truncated function

Ψ (m)
(
ξ(θ)

)=
m∑
s=0

(−1)s
[
Λ−1(ξ(θ))Δ(

ξ(θ)
)]s

Λ−1(ξ(θ)) (3.35)

From this one can obtain a sequence for different m

û(m)(θ)=
n∑
k=1

Γ
(m)
k

(
ξ(θ)

)
φk; m= 1,2,3, . . . (3.36)

Since θ ∈Θ is arbitrary, comparing (3.11) and (3.23) we observe that û(m)(θ) is the
solution of Eq. (3.11) for every θ when m→∞. This implies that

Prob
{
θ ∈Θ : lim

m→∞ û(m)(θ)= û(θ)
}
= 1 (3.37)

Therefore, û(θ) is the solution of Eq. (3.11) in probability. In this derivation, the
probability density function of the random variables has not been used. Therefore,
the random variables can be general as long as the solution exists.

Remark 1 The matrix power series in (3.31) is different from the classical Neu-
mann series [36]. The classical Neumann series is a power series in A−1

0 [ΔA(ξ(θ))],
where the first term is deterministic and the second term is random. The elements
of this matrix series are polynomials in ξi(θ). In contrast, the series in (3.31) is in
terms of [Λ−1(ξ (θ))][Δ(ξ(θ))], where both terms are random. The elements of this
matrix series are not simple polynomials in ξi(θ), but are in terms of a ratio of poly-
nomials as seen in Eq. (3.39). The convergence of this series depends on the spectral



40 A. Kundu and S. Adhikari

radius of

R=Λ−1(ξ(θ))Δ(
ξ(θ)

)
(3.38)

A generic term of this matrix can be obtained as

Rrs = Δrs
Λrr

=
∑M
i=1 ξi(θ)Δirs

λ0r +
∑M
i=1 ξi(θ)λir

=
∑M
i=1 ξi(θ)Ãirs

λ0r +
∑M
i=1 ξi(θ)Ãirr

; r �= s (3.39)

Since A0 is positive definite, λ0r > 0 for all r . It can be seen from Eq. (3.39) that the
spectral radius of R is also controlled by the diagonal dominance of the Ãi matrices.
If the diagonal terms are relatively larger than the off-diagonal terms, the series will
converge faster even if the relative magnitude of λ0r is not large.

The series in (3.36) approaches to the exact solution of the governing Eq. (3.11)
for every θ ∈Θ for m→∞. For this reason it converges in probability 1.

Definition 1 The functions Γk(ξ(θ)), k = 1,2, . . . , n are called the spectral func-
tions as they are expressed in terms of the spectral properties of the coefficient ma-
trix A0 arising in the discretized equation.

For certain class of problems the series in Eq. (3.34) can give useful physical
insights into the uncertainty propagation. For structural mechanics problems, the
matrix A0 is the stiffness matrix and its eigenvectors φk are proportional to vibra-
tional mode with a lumped mass assumption [28]. Equation (3.34) says that the
response of a stochastic system is a linear combination of fundamental deformation
modes weighted by the random variables Γk .

3.2 Properties of the Spectral Functions

In this section we discuss some important properties of these functions. From the
series expansion in Eq. (3.31) we have

Ψ
(
ξ(θ)

) = Λ−1(ξ(θ))−Λ−1(ξ(θ))Δ(
ξ(θ)

)
Λ−1(ξ(θ))

+Λ−1(ξ(θ))Δ(
ξ(θ)

)
Λ−1(ξ(θ))Δ(

ξ(θ)
)
Λ−1(ξ(θ))

+ · · · (3.40)

Since Λ(ξ(θ)) is a diagonal matrix, its inverse is simply a diagonal matrix contain-
ing the inverse of each of the diagonal elements. Also recall that the diagonal of
Δ(ξ(θ)) contains only zeros. Different terms of the series in (3.40) can be obtained
using a simple recursive relationship [36]. The numerical computation of the series
is therefore computationally very efficient. For further analytical results, truncating
the series upto different terms, we define spectral functions of different order.



3 Reduced Basis Approach of Stochastic Dynamical Systems 41

Definition 2 The first-order spectral functions Γ (1)k (ξ(θ)), k = 1,2, . . . , n are ob-
tained by retaining one term in the series (3.40).

Retaining one term in (3.40) we have

Ψ (1)
(
ξ(θ)

)=Λ−1(ξ(θ)) or Ψ
(1)
kj

(
ξ(θ)

)= δkj

λ0k +
∑M
i=1 ξi(θ)λik

(3.41)

Using the definition of the spectral function in Eq. (3.33), the first-order spectral
functions can be explicitly obtained as

Γ
(1)
k

(
ξ(θ)

)=
n∑
j=1

Ψ
(1)
kj

(
ξ(θ)

)(
φTj f0

)= φTk f0

λ0k +
∑M
i=1 ξi(θ)λik

(3.42)

From this expression it is clear that Γ (1)k (ξ(θ)) are correlated non-Gaussian random

variables. Since we assumed that all eigenvalues λ0k are distinct, every Γ (1)k (ξ(θ))

in Eq. (3.42) are different for different values of k.

Definition 3 The second-order spectral functions Γ (2)k (ξ(θ)), k = 1,2, . . . , n are
obtained by retaining two terms in the series (3.40).

Retaining two terms in (3.40) we have

Ψ (2)
(
ξ(θ)

)=Λ−1(ξ(θ))−Λ−1(ξ(θ))Δ(
ξ(θ)

)
Λ−1(ξ(θ)) (3.43)

or

Ψ
(2)
kj

(
ξ(θ)

) = δkj

λ0k +
∑M
i=1 ξi(θ)λik

−
∑M
i=1 ξi(θ)Δikj

(λ0k +
∑M
i=1 ξi(θ)λik )(λ0j +

∑M
i=1 ξi(θ)λij )

(3.44)

Using the definition of the spectral function in Eq. (3.33), the second-order spectral
functions can be obtained in closed-form as

Γ
(2)
k

(
ξ(θ)

) = φTk f0

λ0k +
∑M
i=1 ξi(θ)λik

−
n∑
j=1
j �=k

(φTj f0)
∑M
i=1 ξi(θ)Δikj

(λ0k +
∑M
i=1 ξi(θ)λik )(λ0j +

∑M
i=1 ξi(θ)λij )

(3.45)

The second-order function can be viewed as adding corrections to the first-order
expression derived in Eq. (3.42).
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Definition 4 The vector of spectral functions of order s can be obtained by retaining
s terms in the series (3.40) and can be expressed as

Γ (s)
(
ξ(θ)

)= [
In−R

(
ξ(θ)

)+R
(
ξ(θ)

)2−R
(
ξ(θ)

)3
. . . sth term

]
Γ (1)

(
ξ(θ)

)
(3.46)

where In is the n-dimensional identity matrix and R is defined in Eq. (3.38) as
R(ξ(θ)) = [Λ−1(ξ(θ))][Δ(ξ(θ))]. Different terms of this series can be obtained
recursively from the previous term [36].

4 Error Minimization Using the Galerkin Approach

In Section 3.1 we derived the spectral functions such that a projection in an or-
thonormal basis converges to the exact solution in probability 1. The spectral func-
tions are expressed in terms of a convergent infinite series. First, second and higher
order spectral functions obtained by truncating the infinite series have been derived.
We have also showed that they have the same functional form as the exact solution
of Eq. (3.11). This motivates us to use these functions as ‘trial functions’ to con-
struct the solution. The idea is to minimize the error arising due to the truncation.
A Galerkin approach is proposed where the error is made orthogonal to the spectral
functions.

We express the solution vector by the series representation

û(θ)=
n∑
k=1

ckΓ̂k
(
ξ(θ)

)
φk (3.47)

Here the functions Γ̂k :CM→C are the spectral functions and the constants ck ∈C

need to be obtained using the Galerkin approach. The functions Γ̂k(ξ(θ)) can be the
first-order (3.42), second-order (3.45) or any higher-order spectral functions (3.46)
and φk are the eigenvectors introduced earlier in Eq. (3.17). Substituting the ex-
pansion of û(θ) in the governing equation (3.11), the error vector can be obtained
as

ε(θ)=
(
M∑
i=0

Aiξi(θ)

)(
n∑
k=1

ckΓ̂k
(
ξ(θ)

)
φk

)
− f0 ∈C

n (3.48)

where ξ0 = 1 is used to simplify the first summation expression. The expression
(3.47) is viewed as a projection where {Γ̂k(ξ(θ))φk} ∈ C

n are the basis functions
and ck are the unknown constants to be determined. We wish to obtain the coeffi-
cients ck using the Galerkin approach so that the error is made orthogonal to the
basis functions, that is, mathematically

ε(θ)⊥ (
Γ̂j

(
ξ(θ)

)
φj

)
or

〈
Γ̂j

(
ξ(θ)

)
φj ,ε(θ)

〉= 0 ∀j = 1,2, . . . , n (3.49)
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Here 〈u(θ),v(θ)〉 = ∫
Θ
P (dθ)u(θ)v(θ) defines the inner product norm. Imposing

this condition and using the expression of ε(θ) from Eq. (3.48) one has

E

[(
Γ̂j

(
ξ(θ)

)
φj

)T
(
M∑
i=0

Aiξi(θ)

)(
n∑
k=1

ckΓ̂k
(
ξ(θ)

)
φk

)

− (
Γ̂j

(
ξ(θ)

)
φj

)T f0

]
= 0 (3.50)

Interchanging the E[·] and summation operations, this can be simplified to

n∑
k=1

(
M∑
i=0

(
φTj Aiφk

)
E
[
ξi(θ)Γ̂

T
j

(
ξ(θ)

)
Γ̂k

(
ξ(θ)

)])
ck

= E
[
Γ̂ Tj

(
ξ(θ)

)](
φTj f0

)
(3.51)

or
n∑
k=1

(
M∑
i=0

ÃijkDijk

)
ck = bj (3.52)

Defining the vector c = {c1, c2, . . . , cn}T , these equations can be expressed in a
matrix form as

Sc= b (3.53)

with

Sjk =
M∑
i=0

ÃijkDijk; ∀j, k = 1,2, . . . , n (3.54)

where

Ãijk = φTj Aiφk, (3.55)

Dijk = E
[
ξi(θ)Γ̂

T
j

(
ξ(θ)

)
Γ̂k

(
ξ(θ)

)]
(3.56)

and

bj = E
[
Γ̂ Tj

(
ξ(θ)

)](
φTj f0

)
. (3.57)

Higher order spectral functions can be used to improve the accuracy and conver-
gence of the series (3.47). This will be demonstrated in the numerical examples
later in the paper.

Remark 2 (Comparison with the classical spectral SFEM) We compare this
Galerkin approach with the classical spectral stochastic finite element approach
for further insight. The number of equations to be solved for the unknown coef-
ficients in Eq. (3.53) is n, the same dimension as the original governing equation
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(3.11). There are only n unknown constants, as opposed to nP unknown constants
arising in the polynomial chaos expansion. The coefficient matrix S and the vector
b in Eq. (3.53) should be obtained numerically using the Monte Carlo simulation or
other numerical integration technique. In the classical PC expansion, however, the
coefficient matrix and the associated vector are obtained exactly in closed-form. In
addition, the coefficient matrix is a sparse matrix whereas the matrix S in Eq. (3.53)
is in general a fully populated matrix.

The series in Eq. (3.47) can also be viewed as an enhanced Neumann expansion
method where the approximating functions have been generated using a Neumann
type expansion. It can be observed that the matrix S in Eq. (3.53) is symmetric.
Therefore, one need to determine n(n + 1)/2 number of coefficients by numeri-
cal methods. Any numerical integration method, such as the Gaussian quadrature
method, can be used to obtain the elements of Dijk and bj in Eq. (3.55). In this pa-
per Monte Carlo simulation is used. The samples of the spectral functions Γ̂k(ξ(θ))
can be simulated from Eqs. (3.42), (3.45) or (3.46) depending on the order. These
can be used to compute Dijk and bj from Eq. (3.55). The simulated spectral func-
tions can also be ‘recycled’ to obtain the statistics and probability density function
(pdf) of the solution. In summary, compared to the classical spectral stochastic finite
element method, the proposed Galerkin approach results in a smaller size matrix
but requires numerical integration techniques to obtain its entries. The numerical
method proposed here therefore can be considered as a hybrid analytical-simulation
approach.

5 Model Reduction Using a Reduced Number of Basis

The Galerkin approach proposed in the previous section requires the solution of
n×n algebraic equations. Although in general this is smaller compared to the poly-
nomial chaos approach, the computational cost can still be high for large n as the
coefficient matrix is in general a dense matrix. The aim of this section is to reduce it
further so that, in addition to large number of random variables, problems with large
degrees of freedom can also be solved efficiently.

Suppose the eigenvalues of A0 are arranged in an increasing order such that

λ01 < λ02 < · · ·< λ0n (3.58)

From the expression of the spectral functions observe that the eigenvalues appear in
the denominator:

Γ
(1)
k

(
ξ(θ)

)= φTk f0

λ0k +
∑M
i=1 ξi(θ)λik

(3.59)

The numerator (φTk f0) is the projection of the force on the deformation mode. Since

the eigenvalues are arranged in an increasing order, the denominator of |Γ (1)k+r (ξ(θ))|
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is larger than the denominator of |Γ (1)k (ξ(θ))| according a suitable measure. The
numerator (φTk f0) depends on the nature of forcing and the eigenvectors. Although
this quantity is deterministic, in general an ordering cannot be easily established
for different values of k. Because all the eigenvectors are normalized to unity, it is
reasonable to consider that (φTk f0) does not vary significantly for different values
of k. Using the ordering of the eigenvalues, one can select a small number ε such
that λ1/λq < ε for some value of q , where λj is the eigenvalue of the generalized
eigenvalue problem defined in Eq. (3.17). Based on this, we can approximate the
solution using a truncated series as

û(θ)≈
q∑
k=1

ckΓ̂k
(
ξ(θ)

)
φk (3.60)

where ck , Γ̂k(ξ(θ)) and φk are obtained following the procedure described in the
previous section by letting the indices j, k only upto q in Eqs. (3.54) and (3.55).
The accuracy of the series (3.60) can be improved in two ways, namely, (a) by
increasing the number of terms q , or (b) by increasing the order of the spectral
functions Γ̂k(ξ(θ)).

Model reduction techniques have been widely used within the scope of proper
orthogonal decomposition (POD) method [12, 13, 15]. Here the eigenvalues of a
symmetric positive definite matrix (the covariance matrix of a snapshot the system
response) are used for model reduction. In spite of this similarity, the reduction
method proposed here is different from a POD since it only considers the operator
and not the solution itself. Reduction based on eigen-solution is of classical nature in
various areas of applied mathematics, engineering and physics and extensive studies
exist on this topic. It should be noted that the truncation in series (3.60) introduces
errors. A rigorous mathematical quantification of error arising due to this trunca-
tion is beyond the scope of this article. The ratio of the eigenvalues λ1/λq gives a
good indication, but the projection of the force on the eigenvector (φTk f0) is also of
importance. Since this quantity is problem dependent, care should be taken while
applying this reduction method.

Remark 3 The reduction of the original problem by a projection on the set of domi-
nant eigenvectors of a part of the operator is rather classical in model reduction tech-
niques. It relies on the strong hypothesis that the solution can be well represented
on this set of vectors. The impact of this truncation on the solution or a quantity of
interest is not estimated in the article. The truncation criteria is based on the spectral
decay of a part of the operator but not on the solution itself. By introducing this
reduction, some essential features of the solution may not be always captured. The
proposed method will only capture the projection of the solution u on the reduced
basis φk , k = 1,2, . . . , q , which could be unadapted to the complete representation
of u.
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Fig. 3.1 Schematic diagram of the Euler–Bernoulli beam with a point load at the free end

6 Post Processing: Moments of the Solution

For the practical application of the method developed here, the efficient computa-
tion of the response moments and pdf is of crucial importance. A simulation based
algorithm is proposed in this section. The coefficients ck in Eq. (3.51) can be calcu-
lated from a reduced set of equations given by (3.53). The reduced equations can be
obtained by letting the indices j, k upto q < n in Eqs. (3.54) and (3.55). After ob-
taining the coefficient vector c ∈ C

q , the statistical moments of the solution can be
obtained from Eqs. (3.61) and (3.62) using the Monte Carlo simulation. The spectral
functions used to obtain the vector c itself, can be reused to obtain the statistics and
pdf of the solution. The mean vector can be obtained as

ū= E
[∣∣û(θ)∣∣]=

q∑
k=1

|ck|E
[∣∣Γ̂k(ξ(θ))∣∣]φk (3.61)

where | · | is the absolute value of the complex quantities. The covariance of the
solution vector can be expressed as

Σu = E
[(∣∣û(θ)∣∣− ū

)(∣∣û(θ)∣∣− ū
)]=

q∑
k=1

q∑
j=1

|ckcj |ΣΓkjφkφj (3.62)

where the elements of the covariance matrix of the spectral functions are given by

ΣΓkj = E
[(∣∣Γ̂k(ξ(θ))∣∣− E

[∣∣Γ̂k(ξ(θ))∣∣])(∣∣Γ̂k(ξ(θ))∣∣− E
[∣∣Γ̂k(ξ(θ))∣∣])] (3.63)

Based on the results derived in the paper, a hybrid reduced simulation-analytical
approach can thus be realized in practice. The method is applicable to general struc-
tural dynamics problems with general non-Gaussian random fields. In the following
section this approach has been applied to a physical problem.

7 Illustrative Application: The Stochastic Mechanics of an
Euler–Bernoulli Beam

In this section we apply the computational method to a cantilever beam with stochas-
tic bending modulus. Figure 3.1 shows the configuration of the cantilever beam with
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a harmonic point load at its free end. We assume that the bending modulus is a ho-
mogeneous stationary Gaussian random field of the form

EI(x, θ)= EI0
(
1+ a(x, θ)) (3.64)

where x is the coordinate along the length of the beam, EI0 is the estimate of the
mean bending modulus, a(x, θ) is a zero mean stationary Gaussian random field.
The autocorrelation function of this random field is assumed to be

Ca(x1, x2)= σ 2
a e
−(|x1−x2|)/μa (3.65)

where μa is the correlation length and σa is the standard deviation. We use the
base-line parameters as the length L = 1 m, cross-section (b × h) 39× 5.93 mm2

and Young’s modulus E = 2× 1011 Pa. In study we consider deflection of the tip
of the beam under harmonic loads of amplitude f̃0 = 1.0 N. The correlation length
considered in this numerical study is μa = L/2. The number of terms retained (M)
in the Karhunen–Loève expansion (3.8) is selected such that νM/ν1 = 0.01 in order
to retain 90% of the variability. For this correlation length the number of terms
M comes to 18. For the finite element discretization, the beam is divided into 40
elements. Standard four degrees of freedom Euler–Bernoulli beam model is used
[37]. After applying the fixed boundary condition at one edge, we obtain the number
of degrees of freedom of the model to be n= 80.

7.1 Results

The proposed method has been compared with a direct Monte Carlo Simulation
(MCS), where both have been performed with 10,000 samples. For the direct MCS,
Eq. (3.23) is solved for each sample and the mean and standard deviation is derived
by assembling the responses. The calculations have been performed for all the four
values of σa to simulate increasing uncertainty. This is done to check the accuracy
of the proposed method against the direct MCS results for varying degrees of uncer-
tainty.

Figure 3.2(a) presents the ratio of the eigenvalues of the generalized eigenvalue
problem (3.17) for which the ratio of the eigenvalues is taken with the first eigen-
value. We choose the reduced basis of the problem based on λ1/λq < ε, where
ε = 0.01, and they are highlighted in the figure. Figure 3.2(b) shows the frequency
domain response of the deterministic system for both damped and undamped con-
ditions. We have applied a constant modal damping matrix with the damping coef-
ficient α = 0.02 (which comes to 1% damping). It is also to be noted that the mass
and damping matrices are assumed to be deterministic in nature, while it has to be
emphasized that the approach is equally valid for random mass, stiffness and damp-
ing matrices. The frequency range of interest for the present study is 0–600 Hz with
an interval of 2 Hz. In Fig. 3.2(b), the tip deflection is shown on a log scale for a unit
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Fig. 3.2 The eigenvalues of the generalized eigenvalue problem involving the mass and stiffness
matrices given in Eq. (3.17). For ε = 0.01, the number of reduced eigenvectors q = 7 such that
λ1/λj < ε

amplitude harmonic force input. The resonance peak amplitudes of the response of
the undamped system definitely depends on the frequency resolution of the plot.

The frequency response of the mean deflection of the tip of the beam is shown
in Fig. 3.3 for the cases for cases of σa = {0.05,0.10,0.15,0.20}. The figures show
a comparison of the direct MCS simulation results with different orders of the so-
lution following Eq. (3.31), where the orders s = 2,3,4. A very good agreement
between the MCS simulation and the proposed spectral approach can be observed
in the figures. All the results have been compared with the response of the deter-
ministic system which shows that the uncertainty has an added damping effect at
the resonance peaks. This can be explained by the fact that the parametric varia-
tion of the beam, results in its peak response for the different samples to get dis-
tributed around the resonance frequency zones instead of being concentrated at
a particular frequency, and when the subsequent averaging is applied, it smooths
out the response peaks to a fair degree. The same explanation holds for the anti-
resonance frequencies. It can also be observed that increased variability of the para-
metric uncertainties (as is represented by the increasing value of σa) results in an
increase of this added damping effect which is consistent with the previous expla-
nation.

The standard deviation of the frequency domain response of the tip deflection for
different spectral order of solution of the reduced basis approach is compared with
the direct MCS and is shown in Fig. 3.4, for different values of σa . We find that the
standard deviation is maximum at the resonance frequencies which is expected due
to the differences in the resonance peak of each sample. It is again observed that the
direct MCS solution and the reduced order approach give almost identical results,
which demonstrate the effectiveness of the proposed approach.

Figure 3.5 shows the standard deviation of the response of the beam at two fre-
quencies 154 Hz and 412 Hz, which correspond to the anti-resonance and reso-
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Fig. 3.3 The frequency domain response of the deflection of the tip of the Euler–Bernoulli beam
under unit amplitude harmonic point load at the free end. The response is obtained with 10,000
sample MCS and for σa = {0.05,0.10,0.15,0.20}. The proposed Galerkin approach requires the
solution of a 7× 7 linear system of equation only

nance frequencies of the cantilever beam respectively. The standard deviation val-
ues have been obtained for a set of 4 values of σa , which represents the differ-
ent degrees of variability of the system uncertainty. The results obtained with the
Galerkin approach for the different order of spectral functions have been compared
to the direct MCS, and a good agreement between the two results have been ob-
tained. It is interesting to point out here that the standard deviation decreases with
the values of σa for the anti-resonance frequency while it increases for the res-
onance frequencies. This is consistent with the results shown in Fig. 3.4 which
shows that an increased value of the variance of the random field has the effect
of an increasing added damping on the system, when an averaging is done over
the sample space. Thus the resonance response is expected to reduce with the in-
creased variability of the random field while the anti-resonance response will in-
crease.

The probability density function of the deflection of the tip of the cantilever
beam for different degrees of variability of the random field is shown in Fig. 3.6.
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Fig. 3.4 The standard deviation of the tip deflection of the Euler–Bernoulli beam under unit am-
plitude harmonic point load at the free end. The response is obtained with 10,000 sample MCS and
for σa = {0.05,0.10,0.15,0.20}

The probability density functions have been calculated at the frequency of 412 Hz,
which is a resonance frequency of the beam. The results indicate that with the in-
crease in the degree of uncertainty (variance) of the system, the lower values of
deflection has a higher probability which is absolutely consistent with the standard
deviation curve shown in Fig. 3.5(a) and the comparison of the mean deflection of
the stochastic system with the deterministic response in Fig. 3.3. This shows that
the increase in the variability of the stochastic system has a damping effect on the
response.

The results establish the applicability of this spectral reduced basis method with
Galerkin error minimization technique as a satisfactory working model for provid-
ing solution of the stochastic structural systems. The method is found to be consis-
tent with the direct MCS approach, while being much more computationally effi-
cient than the latter.
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Fig. 3.5 The standard deviation of the deflection of the tip versus the variability (σa ) of the ran-
dom field of the Euler–Bernoulli beam under unit amplitude harmonic point load at the free end at
two frequencies 154 Hz and 412 Hz, which correspond to off-resonance and resonance frequen-
cies respectively. The plots are shown for 4 different values of σa = {0.05,0.10,0.15,0.20} and
calculated with 10,000 random samples

8 Conclusions

Here we have considered the discretized stochastic partial differential equation
for structural systems with generally non-Gaussian random fields. In the classical
spectral stochastic finite element approach, the solution is projected into an infi-
nite dimensional orthonormal basis functions and the associated constant vectors
are obtained using the Galerkin type of error minimization approach. Here an al-
ternative approach is proposed. The solution is projected into a finite dimensional
reduced vector basis and the associated coefficient functions are obtained. The co-
efficient functions, called as the spectral functions, are expressed in terms of the
spectral properties of the matrices appearing in the discretized governing equa-
tion. It is shown that then the resulting series converges to the exact solution in
probability 1. This is a stronger convergence compared to the classical polynomial
chaos which converges in the mean-square sense in the Hilbert space. Using an
analytical approach, it is shown that the proposed spectral decomposition has the
same functional form as the exact solution, which is not a polynomial, but a ra-
tio of polynomials where the denominator has a higher degree than the numera-
tor.

Using the spectral functions, a Galerkin error minimization approach has been
developed. It is shown that the number of unknown constants can be obtained by
solving a system of linear equations which have a dimension much smaller than
the dimension of the original discretized equation. A simple numerical approach to
obtain the reduced dimension has been suggested based on the ratio of the eigen-
values of the generalized eigenvalue problem involving the deterministic mass and
stiffness matrices of the baseline model. A numerical approach using a general-
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Fig. 3.6 The probability density function (PDF) of the tip deflection of the Euler–Bernoulli beam
at 210 Hz under unit amplitude harmonic point load at the free end. The response is obtained with
10,000 samples and for σa = {0.05,0.10,0.15,0.20}

order spectral function has been developed. Based on these, a hybrid analytical-
simulation approach is proposed to obtain the statistical properties of the solu-
tion.

The computational efficiency of the proposed reduced spectral approach has been
demonstrated for large linear systems with non-Gaussian random variables. It may
be possible to extend the underlying idea to the class of non-linear problems. For
example, the proposed spectral approach can be used for every linearisation step or
every time step. Further research is necessary in this direction.
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Chapter 4
Computational Stochastic Dynamics Based
on Orthogonal Expansion of Random
Excitations

X. Frank Xu and George Stefanou

Abstract A major challenge in stochastic dynamics is to model nonlinear sys-
tems subject to general non-Gaussian excitations which are prevalent in realistic
engineering problems. In this work, an n-th order convolved orthogonal expansion
(COE) method is proposed. For linear vibration systems, the statistics of the out-
put can be directly obtained as the first-order COE about the underlying Gaussian
process. The COE method is next verified by its application on a weakly nonlin-
ear oscillator. In dealing with strongly nonlinear dynamics problems, a variational
method is presented by formulating a convolution-type action and using the COE
representation as trial functions.

1 Introduction

To evaluate the probabilistic response of a structural dynamic system subject to
parametric and external excitations, there are generally two approaches [6]. The
first approach uses Fokker–Planck–Kolmogorov (FPK) equation to directly find the
probability density function (PDF) by assuming a white noise excitation. To solve
FPK equation especially for nonlinear systems, various techniques have been pro-
posed, including weighted residual, path integral, etc., which however are all limited
to systems of low dimension. The second approach includes perturbation method,
moment closure method, and statistical equivalent techniques. While the perturba-
tion method is limited to weak nonlinearity, the accuracy of moment closure method
and statistical equivalent techniques on highly nonlinear problems remains an open
question. Solutions of nonlinear random oscillators subject to stochastic forcing
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have also been obtained by means of the generalized polynomial chaos expansion,
as described in [5].

A major deficiency of the existing approaches is their incapability in dealing
with general non-Gaussian excitations which are prevalent in realistic engineering
problems [8]. The marginal PDF and power spectral density (PSD) of a loading
process play a major role in determining the response of systems, e.g. seismic wave
in earthquake engineering. Therefore, a new approach to model dynamic systems
subject to non-Gaussian excitations is highly desired.

A novel stochastic computation method based on orthogonal expansion of ran-
dom fields has been recently proposed [10]. In this study, the idea of orthogonal
expansion is extended to the so-called n-th order convolved orthogonal expansions
(COE) especially in dealing with nonlinear dynamics. The COE is first verified
by its application on a weakly nonlinear oscillator. Next in dealing with strongly
nonlinear dynamics problems, a variational method is presented by formulating the
convolution-type action and using the COE representation as trial functions [12].
Theoretically, substitution of the trial response function into the stochastic action
will lead to the optimal solution. The effect of using different trial functions (COE
of different orders) on the accuracy and efficiency of the proposed approach will be
the subject of future investigation.

2 Convolved Orthogonal Expansions

2.1 The Zero-th Order Convolved Orthogonal Expansion

An underlying stationary Gaussian excitation h1(t, ϑ) is characterized with the au-
tocorrelation function ρ(t) and unit variance, where ϑ ∈Θ indicates a sample point
in random space. Based on the so-called diagonal class of random processes [1],
the zero-th order convolved (or memoryless) orthogonal expansion of h1(t, ϑ) is
proposed as [10]

u(t,ϑ)=
∑
i=0

ui(t)hi(t, ϑ) (4.1)

where the random basis function hi corresponds to the i-th degree Hermite polyno-
mial with h0 = 1. According to the generalized Mehler’s formula [7] the correlations
among the random basis functions are given as

Rs1s2···sn(t1, t2, . . . , tn)

= hs1(t1, ϑ) · · ·hsn(tn,ϑ)

=
∞∑
ν12=0

· · ·
∞∑

νn−1,n=0

δs1r1 · · · δsnrn
∏
j<k

ρνjk (tj − tk)
νjk! s1! · · · sn! (4.2)
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where

rk =
∑
j �=k
νjk, νjk = νkj , δskrk =

{
1, sk = rk
0, sk �= rk

and the overbar denotes ensemble average. Following Eq. (4.2), the two-point and
three-point correlation functions are specifically obtained as

Rij (t1 − t2)= hi(t1, ϑ)hj (t2, ϑ)= δij i!ρi(t1 − t2) (4.3)

Rijk(t1 − t2, t1 − t3, t2 − t3)= hi(t1, ϑ)hj (t2, ϑ)hk(t3, ϑ)

= i!j !k!
i′!j ′!k′!ρ

k′(t1 − t2)ρj ′(t1 − t3)ρi′(t2 − t3) (4.4)

i′ = j + k − i
2

, j ′ = i + k− j
2

, k′ = i + j − k
2

where i′, j ′, k′ must be non-negative integers, otherwise Rijk = 0.
The correlation relations can be extended to the derivatives of the random basis

functions, e.g.

Rij,pq(t1 − t2) = h(0)i,p(t1, ϑ)h(0)j,q(t2, ϑ)= δij i!
∂p+q

∂t
p

1 ∂t
q

2

ρi(t1 − t2)

= δij (−1)q i! ∂
p+q

∂τp+q
ρi(τ ) (4.5)

where τ = t1 − t2, and the subscripts p, q denote p-th and q-th derivatives. Simi-
larly, the derivations can be made for the convolution of the random basis functions,
e.g.

Cij = hi(t1, ϑ) ∗ hj (t2, ϑ)= δij i!
∫ ∞

−∞
ρi(t1 − 2t2) dt2 = δij i!τi

Cij,11 = hi,1(t1, ϑ) ∗ hj,1(t2, ϑ)= δij i!
∫ ∞

−∞
∂2

∂t1 ∂t2
ρi(t1 − 2t2) dt2 = 0

(4.6)

where τi =
∫∞

0 ρi(t) dt is the correlation time.

2.2 n-th Order Convolved Orthogonal Expansion

The idea of the memoryless orthogonal expansion presented above can be general-
ized to an n-th order convolved orthogonal expansion (COE) for representation of
nonlinear output processes

u(t,ϑ)=
∑
n=0

∑
i=0

u
(n)
i (t)h

(n)
i (t, ϑ) (4.7)
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h
(n)
i (t, ϑ)=

n︷ ︸︸ ︷
g ∗ g ∗ · · · ∗ g ∗hi = g∗n ∗ hi (4.8)

where g is a given kernel, and the symbol * denotes the convolution operator. For
notational simplicity, the superscript (0) of the zero-th order COE is usually omitted
throughout the paper. The memoryless orthogonal expansion thus corresponds to the
zero-th order COE with n = 0 in (4.7). The correlation functions of the n-th order
basis functions are therefore obtained as

Rm1···mn
s1···sn (t1, t2, . . . , tn)

= h(m1)
s1 (t1, ϑ) · · ·h(mn)sn (tn,ϑ)

=
∞∑
ν12=0

· · ·
∞∑

νn−1,n=0

δs1r1 · · · δsnrn
∫ ∞

−∞
· · ·

∫ ∞

−∞
g∗m1(t1, τ1) · · ·g∗mn(tn, τn)

×
∏
j<k

ρνjk (tj − tk)
νjk! s1! · · · sn!dτ1 · · · dτn (4.9)

with the two-point correlations

Rmnij (t1, t2) = h(m)i (t1, ϑ)h
(n)
j (t2, ϑ)

= δij i!
∫ ∞

−∞

∫ ∞

−∞
g∗m(t1, τ1)g∗n(t2, τ2)ρi(τ1 − τ2) dτ1 dτ2 (4.10)

The derivatives of the n-th order basis functions can be similarly obtained, e.g.

Rmnij,pq(t1, t2)

= h(m)i,p (t1, ϑ)h(n)j,q(t2, ϑ)

= δij i! ∂
p+q

∂τ
p

1 ∂τ
q

2

∫ ∞

−∞

∫ ∞

−∞
g∗m(t1, τ1)g∗n(t2, τ2)ρi(τ1 − τ2) dτ1 dτ2 (4.11)

When the kernel g is stationary, by letting U = F (u), H = F (h), S = F (R),
Gn = F (g∗n) and ρ̂∗i = F (ρi), with F being the Fourier transform operator, we
specially rewrite the two-point correlation functions of the COE basis functions in
frequency domain

Smnij (ω) = H(m)i (ω,ϑ)H
(n)
j (ω,ϑ)= δij i!Gm(ω)G̃n(ω)ρ̂∗i (ω) (4.12)

Smnij,pq(ω) = (ω
√−1)p+qH (m)i (ω,ϑ)H̃

(n)
j (ω,ϑ)

= δij i!(ω
√−1)p+qGm(ω)G̃n(ω)ρ̂∗i (ω) (4.13)

where the tilde denotes complex conjugate.
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Remark The advantage of the n-th order COE (4.7) can be demonstrated by com-
paring it with the classical Volterra series expansion [9]

u(t,ϑ) =
∑
n=0

1

n!
∫ ∞

−∞
· · ·

∫ ∞

−∞
k(n)(t1, t2, . . . , tn)

× h(t − t1, ϑ)h(t − t2, ϑ) · · ·h(t − tn,ϑ) dt1 dt2 · · · dtn (4.14)

and the random variable-based polynomial chaos expansion (PCE)

u(t,ϑ)=
∑
n=0

un(t)ξn(ϑ) (4.15)

The Volterra representation typically suffers from severe difficulties in solving for
the unknown kernels k(n). In the COE representation, the kernels are all explicitly
given, and the problem is significantly reduced to solving of the unknown coeffi-
cients u(n)i . The random variable-based PCE, on the other hand, suffers from curse
of dimensionality in using random variables ξn(ϑ) to represent random processes.
By using random process-based expansions, the COE (4.7) circumvents much of
this deficiency.

3 The COE Method in Random Vibration

3.1 Linear Oscillators

Suppose the linear oscillator

ü+ 2ζωnu̇+ω2
nu= f/m

u(0)= u̇(0)= 0
(4.16)

is subjected to a non-stationary non-Gaussian translation input, i.e.

f (t,ϑ)=
∑
i=0

fi(t)hi(t, ϑ) (4.17)

By using the Green function

g(t)= 1

ωn
√

1− ζ 2
e−ζωnt sin

(
ωn

√
1− ζ 2t

)

G(ω)= 1

ω2
n −ω2 +√−12ζωωn

(4.18)
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the first three correlations of the non-stationary output u can be directly calculated
from

ū(t) =
∫ t

0
g(t − τ)f0(τ ) dτ (4.19)

Ruu(t1, t2) =
∫ t2

0

∫ t1

0
g(t1 − τ1)g(t2 − τ2)

×
∑
i=0

i!ρi(τ1 − τ2)fi(τ1)fi(τ2) dτ1 dτ2 (4.20)

Ruuu(t1, t2, t3) =
∫ t3

0

∫ t2

0

∫ t1

0
g(t1 − τ1)g(t2 − τ2)g(t3 − τ3)

×
∑
i,j,k=0

Rijk(τ1 − τ2, τ1 − τ3, τ2 − τ3) dτ1 dτ2 dτ3 (4.21)

where Rijk is given in Eq. (4.4).
When the excitation in Eq. (4.16) is stationary, each term fi of Eq. (4.17) be-

comes constant and the output can be directly given as

u(t,ϑ)=
∑
i=0

fih
(1)
i (t, ϑ) (4.22)

which is a special case of the COE representation (4.7). Note that, with the Green
function g and the underlying Gaussian process being given, the stationary PDF of
the output in Eq. (4.22) can be rapidly estimated by using Monte Carlo method in
the frequency domain.

A numerical example of application of the COE on linear oscillator is given in
[10]. Hereby we extend this example to provide a parametric study demonstrating
the effect of the PSD of the excitation on the output statistics. The excitation force f
is assumed to be a stationary lognormal random process f (t,ϑ)= exp(σzZ(t,ϑ)),
with the underlying process Z being Gaussian–Markov with the correlation function

ρ(τ)= exp

(
−|τ |
tc

)
(4.23)

The lognormal excitation can be represented as a zeroth-order COE

f (t,ϑ)=
N∑
i=0

fihi(t, ϑ) (4.24)

with

fn = 1√
2πn!

∫ +∞

−∞
exp(σzz)Φn(z)e

−z2/2 dz= σ
n
z

n! exp

(
σ 2
z

2

)
(4.25)
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Fig. 4.1 The three points
selected corresponding to a
fast mode, probabilistic
resonance and a slow mode,
respectively (from left to
right)

The correlation function of the lognormal process can be derived from Eqs. (4.24)–
(4.25) as ρf (τ) = [exp(σ 2

z ρ(τ )) − 1]/[exp(σ 2
z ) − 1] with the corresponding PSD

expressed in terms of Gamma function and incomplete Gamma function

ρ̂f (ω) = − δ(ω)

eσ
2
z − 1

+ tc

(eσ
2
z − 1)π

[(−σ 2
z

)√−1ωtc(Γ (−√−1ωtc)− Γ
(−√−1ωtc,−σ 2

z

))

+ (−σ 2
z

)−√−1ωtc(Γ (√−1ωtc)− Γ
(√−1ωtc,−σ 2

z

))]
, ω ≥ 0 (4.26)

Let the mass be normalized as m = 1/ωn, σz = 1, and choose the natural fre-
quency ωn = 40π . To study the effect of PSD of the non-Gaussian lognormal ex-
citation on the response, we modulate the PSD of the lognormal process by using
three values of tc, i.e. 0.0108, 0.05 and 0.00254 (Fig. 4.1). The first value corre-
sponds to the maximum of the PSD at ωn = 40π , i.e. to “probabilistic resonance”.
The excitation with tc = 0.00254 the smallest correlation time is highly fluctuating,
and is termed as a fast mode. Accordingly the excitation with tc = 0.05 is termed
as a slow mode. Note the above tc values are selected based on the undamped fre-
quency, which approximate well the damped cases in most of engineering applica-
tions.

As shown in Fig. 4.2, the mean displacement of Eq. (4.19) is independent of
PSD. Figure 4.3 shows that the variance of probabilistic resonance is the largest for
lightly damped cases. The fast mode has the smallest variance, which is similar to
the amplitude of the harmonic motion. It is interesting to note that in the moderately
damped case (when ζ is larger than approximately 0.2), the variance of probabilis-
tic resonance is smaller than that of the slow mode. In Fig. 4.4, the coefficient of
variation consistently decreases from probabilistic resonance to slow mode, and to
fast mode, respectively.

The third centered moment (Fig. 4.5) decreases with the frequency mode, i.e. the
fast mode has very small values of the third centered moment. As expected, this
trend is also observed for the skewness in Fig. 4.6, where it is shown that, when the
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Fig. 4.2 Mean of
displacement with the curves
from exterior to interior
corresponding to damping
ratio ζ = 0,0.05,0.1,0.2,
0.3,0.5, respectively

excitation mode becomes faster, the displacement output tends to the Gaussian case
in terms of skewness.

With regard to the multi-degree-of-freedom linear systems, the oscillator equa-
tions given above can be directly applied by using the modal decomposition as
shown in [11].

Fig. 4.3 Variance of displacement with the curves from top to bottom corresponding to damping
ratio ζ = 0,0.05,0.1,0.2,0.3,0.5, respectively. (a) fast mode, (b) probabilistic resonance, (c) slow
mode
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Fig. 4.4 Coefficient of variation of displacement with the curves from top to bottom correspond-
ing to damping ratio ζ = 0,0.05,0.1,0.2,0.3,0.5, respectively. (a) fast mode, (b) probabilistic
resonance, (c) slow mode

3.2 Weakly Nonlinear Oscillators

The accurate computation of the response of nonlinear single-degree-of-freedom
(SDOF) oscillators under stochastic loading is important in earthquake engineering
where equivalent nonlinear SDOF systems are often used in order to avoid the com-
putationally intensive nonlinear response history analysis of MDOF systems, see
e.g. [3].

In this section, a Duffing oscillator subjected to a Gaussian white noise excitation
with intensity D is considered

ü+ 2ζωnu̇+ω2
n

(
u+ αu3)=W (4.27)

The Gaussian response of the linear filter can be given as u0 = σ0h1 where h1 is
characterized by unit variance and PSD [2]

S = D

σ 2
0

∣∣G(ω)∣∣2 (4.28)

σ 2
0 =

1

2π
D

∫ ∞

−∞

∣∣∣∣ 1

ω2
n −ω2 +√−12ζωωn

∣∣∣∣
2

dω= D

4ζω3
n

(4.29)
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Fig. 4.5 Third centered moment of displacement with the curves from top to bottom correspond-
ing to damping ratio ζ = 0,0.05,0.1,0.2,0.3,0.5, respectively. (a) fast mode, (b) probabilistic
resonance, (c) slow mode

For small α, the nonlinear output of Eq. (4.27) can be approximated as

u= σ0h1 − αω2
nσ

3
0 g ∗ h3

1 + 3α2ω4
nσ

5
0 g ∗

(
h2

1g ∗ h3
1

)+O(
α3) (4.30)

By noting h3
1 = h3 + 3h1 and h2

1 = h2 + 1, Eq. (4.30) can be rewritten in terms of
the random basis functions

u = σ0h1 − αω2
nσ

3
0 g ∗ (h3 + 3h1)

+ 3α2ω4
nσ

5
0 g ∗

[
(h2 + 1)g ∗ (h3 + 3h1)

]+O(
α3) (4.31)

U = σ0H1 − αω2
nσ

3
0G(H3 + 3H1)

+ 3α2ω4
nσ

5
0G

[(
H2 + δ(0)

) ∗G(H3 + 3H1)
]+O(

α3) (4.32)

By using the correlations of Eqs. (4.3)–(4.4) and (4.12), it follows that the sta-
tionary mean

ū=O(
α3) (4.33)

and the stationary PSD

SUU =UŨ = σ 2
0 S − 3αω2

nσ
4
0 (G+ G̃)S +O

(
α2) (4.34)
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Fig. 4.6 Skewness of displacement with the curves from bottom to top corresponding to damping
ratio ζ = 0,0.05,0.1,0.2,0.3,0.5, respectively. (a) fast mode, (b) probabilistic resonance, (c) slow
mode

Since

∫ ∞

−∞
2(ω2

n −ω2)

(ω2
n −ω2)2 + (2ζωωn)2

∣∣∣∣ 1

ω2
n −ω2 +√−12ζωωn

∣∣∣∣
2

dω= π

2ζω5
n

(4.35)

(see e.g. [2]) the variance calculated from the first two terms of Eq. (4.34) is simply
obtained as

σ 2 = σ 2
0

(
1− 3ασ 2

0

)
(4.36)

which is identical to the result obtained using other approaches e.g. [4, 6]. In ad-
dition to serving as verification to the COE method, this example shows simplicity
and efficiency of the orthogonal expansions in nonlinear problems.

3.3 Strongly Nonlinear Oscillators

For strongly nonlinear systems, the perturbation method is inapplicable. In this part,
a variational method will be presented following the variational principles formu-
lated for random media elastodynamics [12]. The variational functional, or action,



66 X.F. Xu and G. Stefanou

of a nonlinear oscillator

ü+ 2ζωnu̇+ω2
n

(
u+ g(u, u̇))= f (4.37)

can be formulated by using the convolution form

δ�= δu ∗ [ü+ 2ζωnu̇+ω2
n

(
u+ g(u, u̇))− f ]= 0 (4.38)

For a convolved nonlinear term g(u, u̇) = αu∗3, the action is derived from
Eq. (4.38) as

�(u) = 1

2
u̇ ∗ u̇+ ζu ∗ u̇+ 1

2
ω2
nu ∗ u

+ 1

4
αω2

n(u ∗ u ∗ u ∗ u)− f ∗ u+ u̇(0)u (4.39)

where any trial function u satisfies the specified initial condition u(0). To the au-
thors’ knowledge, the action (4.39) is the first convolution-type variational form
formulated for nonlinear dissipative systems. It is especially noted that the classical
point-wise Lagrangian form does not work on the dissipative term.

For nonlinear random vibrations, the stochastic action is directly obtained by
taking ensemble average of Eq. (4.39), i.e.

δ�̄= 0 (4.40)

with the trial function u based on the COE representation (4.7).
For stationary solutions, Eq. (4.40) can be rewritten in frequency domain as

δL̄(U)= 0

L̄(U)=
(
−1

2
ω2 +√−1ωζ + 1

2
ω2
n

)
U2 + 1

4
αω2

nU
4 − FU

(4.41)

Suppose the excitation is stationary

f (t,ϑ)=
∑
i=0

fihi(t, ϑ) (4.42)

and choose the zeroth-order COE

u(t,ϑ)=
∑
i=0

uihi(t, ϑ) (4.43)

as the trial function for the stationary solution. By substituting Eq. (4.43) into Eqs.
(4.39)–(4.40) and taking derivative with respect to ui , it leads to a series of equations
to solve for ui

∂�̄

∂ui
= 0 (4.44)
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Similarly the first- or higher-order COE can be chosen as the trial function. The
detail of numerical examples and investigation of accuracy and computational effi-
ciency of the different trial functions will be the subject of future research.

4 Conclusion

By developing a diagonal class of random fields/stochastic processes to repre-
sent high-dimensional uncertainty, the proposed convolved orthogonal expansion
method opens a new direction to deal with nonlinear stochastic dynamics. The ad-
vantages of the proposed method over the classical Volterra series representation
and the random variable-based polynomial chaos expansions have been highlighted
in the preceding sections. Future work will be devoted to the investigation of its
efficiency in computing of large and strongly nonlinear dynamical systems.
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Chapter 5
Numerical Solution of the Fokker–Planck
Equation by Finite Difference and Finite
Element Methods—A Comparative Study

L. Pichler, A. Masud, and L.A. Bergman

Abstract Finite element and finite difference methods have been widely used,
among other methods, to numerically solve the Fokker–Planck equation for investi-
gating the time history of the probability density function of linear and nonlinear 2d
and 3d problems; also the application to 4d problems has been addressed. However,
due to the enormous increase in computational costs, different strategies are re-
quired for efficient application to problems of dimension ≥ 3. Recently, a stabilized
multi-scale finite element method has been effectively applied to the Fokker–Planck
equation. Also, the alternating directions implicit method shows good performance
in terms of efficiency and accuracy. In this paper various finite difference and finite
element methods are discussed, and the results are compared using various numeri-
cal examples.

1 Introduction

The response of linear systems subjected to additive Gaussian white noise or lin-
early filtered Gaussian white noise is Gaussian. The derivation for an N-dimensional
system can be found, e.g. in [11]. For the case of nonlinear systems subjected to
additive Gaussian white noise, analytical solutions are restricted to certain scalar
systems. It has been shown (see [2]), that the response of a multi-dimensional mem-
oryless nonlinear system subjected to additive Gaussian white noise forms a vector
Markov process, with transition probability density function satisfying both the for-
ward (Fokker–Planck) and backward Kolmogorov equations for which numerical
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approximations in terms of finite element and finite difference methods can be pur-
sued.

1.1 Scope of This Work

A number of numerical methods have been introduced over the past five decades
to obtain approximate results for the solution of the Fokker–Planck equation (FPE).
Many of these approximations can be shown to be accurate. This work deals with
a review of several finite element and finite difference methods. A comparison and
assessment of different methods is carried out by means of various numerical exam-
ples including a 2d linear, 2d unimodal and bimodal Duffing oscillators, 3d linear
and 3d Duffing oscillators.

The goal is to evaluate the transient solution for the probability density func-
tion (PDF) of the oscillator due to stochastic (white noise) excitation. Thus, the
forward Kolmogorov or Fokker–Planck equation is of interest and will be approxi-
mated within the numerical methods.

1.2 Background

The finite element method was first applied by [1] to determine the reliability
of the linear, single degree-of-freedom oscillator subjected to stationary Gaussian
white noise. The initial-boundary value problem associated with the backward Kol-
mogorov equation was solved numerically using a Petrov–Galerkin finite element
method.

Reference [10] solved the stationary form of the FPE adopting the finite element
method (FEM) to calculate the stationary probability density function of response.
The weighted residual statement for the Fokker–Planck equation was first integrated
by parts to yield the weak form of the equation.

The transient form of the FPE was analyzed in [16] using a Bubnov–Galerkin
FEM. It was shown that the initial-boundary value problem can be modified to eval-
uate the first passage problem. A comparison for the reliability was carried out with
the results obtained from the backward Kolmogorov equation.

A drawback of the FEM is the quickly increasing computational cost with in-
creasing dimension. Thus, while 2 and 3 dimensional systems have been analyzed
in the literature, the analysis of 4d or 5d problems reaches the limits of today’s
computational capabilities and are not yet feasible.

Computationally more economical—in terms of memory requirements, and
when considering the effort spent for the assembly of the mass and stiffness
matrices—are finite difference methods. The application of central differences is,
as expected, only feasible for the case of 2d linear systems because of stability is-
sues. The stability is a function of the nonlinearity and the dimension (ratio Δt and∏n
i=1Δxi ), thus being unfavorable for the use of this simple method.
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A successful approach to overcome the limitations of simple finite differences
was achieved by [20] in terms of higher order finite differences. The solution of a
4d system using higher order finite differences is reported in [20]. A comparison of
various higher order FD formulations is presented in [9].

A viable approach to achieve higher accuracy is the application of operator split-
ting methods. Their capabilities with respect to the numerical solution of the FPE
has so far received little attention. Operator splitting methods provide a tool to re-
duce the computational costs by the reduction of the solution to a series of problems
of dimension one order less than the original problem. Thus, more efficiency, re-
quired for the solution of problems of larger dimension (≥3), can be achieved. An
operator splitting method for the solution of the 2d Duffing oscillator is presented in
[23]. An operator splitting scheme for 3d oscillators subjected to additive and multi-
plicative white noise is given by [22]. The method consists of a series of consecutive
difference equations for the three fluxes and is numerically stable. The alternating
directions implicit method (ADI) [15] is adopted in this paper for a series of prob-
lems, and acceptably accurate results are achieved at low cost. The implementation
of the method is straightforward and can be readily extended to higher dimensions.

Recent work by Masud et al. introduced a stabilized multi-scale finite element
method which allows for a reduction of the number of elements for given accuracy
and, thus, the efficiency of the computation can be increased by an order of magni-
tude when solving a 3d problem.

Several four-state dynamical systems were studied in [17, 18] in which the
Fokker–Planck equation was solved using a global weighted residual method and
extended orthogonal functions.

Meshless methods were proposed in [6, 7] to solve the transient FPE and [8] for
the stationary FPE. Considerable reduction of the memory storage requirements is
expected due to coarse meshes employed, and thus a standard desktop PC suffices
to carry out the numerical analysis.

In addition, many numerical packages now provide the capability to solve par-
tial differential equations by means of finite element and finite difference methods.
However, in most cases these tools are limited to 2d and can only solve special
forms of elliptic, parabolic or hyperbolic partial differential equations (PDE). The
implementation of FD and FEM into computational software is shown for the cases
of COMSOL (2d linear) and FEAP (general 3d).

2 The Fokker–Planck Equation

The Fokker–Planck equation for a n-dimensional system subjected to external Gaus-
sian white noise excitation is given by

∂p

∂t
=−

n∑
j=1

∂

∂xj
(zjp)+ 1

2

(
n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
(Hijp)

)
(5.1)
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where p denotes the transition probability density function, x the n-dimensional
state space vector and z(x) and H(x) denote the drift vector and diffusion matrix,
respectively.

The normalization condition for the probability density function is given by

∫
pX(x, t) dx= 1, (5.2)

and the initial conditions are given by pX(x0,0). Examples for initial conditions
are, e.g., deterministic, given by the Dirac delta function

pX(x0,0)=
n∏
i=1

δ
(
(xi − x0i )

)
(5.3)

and the n-dimensional Gaussian distribution

pX(x0,0)= 1

(2π)n/2|Σ |1/2 exp

(
−1

2
(x−μ)TΣ−1(x−μ)

)
(5.4)

in the random case.
At infinity, a zero-flux condition is imposed

p(xi, t)→ 0 as xi→±∞, i = 1,2, . . . , n (5.5)

Without loss of generality, and for a better comparison, the various methods in-
troduced will be examined for the 2d linear case,

{
ẋ1
ẋ2

}
=

[
x2

−2ξωx2 −ω2x1

]
+

[
0
1

]
w(t) (5.6)

The corresponding FPE is

∂p

∂t
=−∂(x2p)

∂x1
+ ∂[(2ξωx2 + x1)p]

∂x2
+D∂

2p

∂x2
2

(5.7)

which, after application of the chain rule, becomes

∂p

∂t
=−x2

∂p

∂x1
+ (2ξωx2 + x1)

∂p

∂x2
+ 2ξωp+D∂

2p

∂x2
2

(5.8)

3 Finite Difference and Finite Element Methods

Many references deal with the application of FE and FD methods to the numerical
solution of the Fokker–Planck equation (see e.g. [9, 19]).
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3.1 Central Finite Differences

In terms of central finite differences, Eq. (5.8) becomes

pm+1
i,j − pmi,j
Δt

= −x2
pmi+1,j − pmi−1,j

2Δx1

+ 2ξωpmi,j + (2ξωx2)
pmi,j+1 − pmi,j−1

2Δx2

+Dp
m
i,j+1 − 2pmi,j + pmi,j−1

Δx2
2

(5.9)

and an explicit formulation is obtained for the probability density function

pm+1
i,j = pmi,j +Δt

(
−x2

pmi+1,j − pmi−1,j

2Δx1

+ 2ξωpmi,j + (2ξωx2)
pmi,j+1 − pmi,j−1

2Δx2

+Dp
m
i,j+1 − 2pmi,j + pmi,j−1

Δx2
2

)
(5.10)

The boundary conditions are given by pi,j = 0 for i, j = 1,N . The discretization
using central finite differences leads to an explicit scheme, which means that the
values pm+1

i,j can be calculated directly from values pmi,j . Thus, the linear system
of equations can be solved directly, and no inversion of the matrix relating pmi,j to

pm+1
i,j is required.

Explicit finite differences represent the simplest approximation; however, due to
stability issues, implicit FD formulations are generally required.

Implicit, higher order finite difference schemes to solve Fokker–Planck equations
have been developed by [20]. Higher order FD lead to more accurate results, but they
are not used for comparison herein.

3.2 Alternating Directions Implicit Method

The alternating directions implicit method (ADI) is a finite difference scheme, for
which the finite difference steps in each direction are resolved separately and in each
step implicitly for one dimension and explicitly for the others, leading to a stable
formulation. The main advantages are that the resulting operational matrix is tridiag-
onal and, thus, its inverse can be computed efficiently. Moreover, the dimensionality
of the problem is reduced by one, and the problem is reduced to the solution of a
series of problems of dimension of one order lower.

In Eq. (5.8), finite differences are first applied implicitly to the x1-direction
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p
m+1/2
i,j − pmi,j
Δ(t/2)

= −x2
p
m+1/2
i+1,j − pm+1/2

i−1,j

2Δx1
+ 2ξωpmi,j

+ (2ξωx2)
pmi,j+1 − pmi,j−1

2Δx2

+Dp
m
i,j+1 − 2pmi,j + pmi,j−1

Δx2
2

(5.11)

and then to the x2-direction.

pm+1
i,j − pm+1/2

i,j

Δ(t/2)
= −x2

p
m+1/2
i+1,j − pm+1/2

i−1,j

2Δx1
+ 2ξωpm+1/2

i,j

+ (2ξωx2)
pm+1
i,j+1 − pm+1

i,j−1

2Δx2

+Dp
m+1
i,j+1 − 2pm+1

i,j + pm+1
i,j−1

Δx2
2

(5.12)

Both Eq. (5.11) and Eq. (5.12) give M − 2 tridiagonal linear systems of equa-
tions in x1 for the j = 2, . . . ,M − 1 values of x2, and in case of Eq. (5.11) M − 2
tridiagonal linear systems of equations in x2 for the i = 2, . . . ,M − 1 values of x1.

The computational cost is mainly due to the n times N matrix inversions which
are encountered in the n-loops solution for a full time step; n denotes the dimension
of the problem and N the number of nodes per dimension.

3.3 Finite Element Method

Reduction of Eq. (5.1) to the weak form and the introduction of shape functions of
C0 continuity lead to

Cṗ+Kp = 0 (5.13)

where

Cers =
∫
Ωe
Nr(x)Ns(x) dx (5.14)

and

Kers =
∫
Ωe

(
n∑
i=1

zi(x)Ns
∂

∂xi
Nr dx−

n∑
i=1

n∑
j=1

∂

∂xi
Nr

∂

∂xi
[HijNs]dx

)

×Nr(x)Ns(x) dx (5.15)

The integration over time can be performed in a suitable way using the Crank–
Nicholson scheme (θ = 0.5).
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Fig. 5.1 Probability density
function p(0,0, t) at central
node over time

3.4 Multi-scale Finite Element Method

The multi-scale FEM used herein was introduced by [14] for the numerical treat-
ment of advection-diffusion equations in fluid dynamics. Then, the methodology
was extended by [13] to the special case of the Fokker–Planck equation. Finally, the
method was applied to the numerical solution of the Fokker–Planck equation of a
3d linear system [12]; [5] provide an overview of stabilized finite element methods
and recent developments of their application to the advection-diffusion equation.

For a description of the method the reader is referred to the aforementioned refer-
ences. Basically, a multi-scale FEM means that an approximation of the error term
from the traditional FE formulation is included at a fine scale into the formulation;
the probability density function is then given by

p = p̂+ p′ (5.16)

where p̂ represents the contribution of the coarse scale and p′ the contribution of
the fine scale.

3.5 Implementation Within COMSOL/FEAP

The FE code COMSOL provides the possibility to solve partial differential equa-
tions by finite differences. For an extensive discussion, refer to the COMSOL doc-
umentation [4]. Figure 5.1 shows the results obtained for the FPE for the 2d linear
oscillator with parameters to be discussed later.

The multiscale finite element method was implemented by Masud and cowork-
ers into the finite element code FEAP and is used herein for comparison of the 3d
examples.

4 Numerical Examples

The numerical methods used in this comparison are:

1. central finite differences (FD)
2. alternating directions implicit method (ADI)
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Table 5.1 Parameter for the
linear oscillator μ σ ξ ω D

[5,5] 1
9 I(2) 0.05 1 0.1

Fig. 5.2 FEM: 61× 61—
Probability density function
p(t) over time

3. Bubnov–Galerkin finite element method (FEM)
4. stabilized multiscale finite element method (MSFEM)

The methods 1–3 are coded in MATLAB and the analysis was carried out on a
64-bit Windows server (32 GB). The results for method 4 are obtained on 32 bit
Linux or Windows machines with 2 GB memory using an implementation within
FEAP [13].

4.1 2-d Linear Oscillator

The different methods are applied to solve the FPE for the linear oscillator (see
Eq. (5.6)). The parameters of the oscillator are chosen according to [16] and are
described in Table 5.1, were I(2) denotes the identity matrix in 2-d:

Finite element results obtained using a 61× 61 mesh are shown in Fig. 5.2 and
Fig. 5.3. All results are calculated with a time increment of Δt = 0.001 and a to-
tal time of τ = 20 natural periods. The state space is discretized on the domain
[−10,10] × [−10,10];

Figure 5.2 shows the evolution of the probability density function over time. In
Fig. 5.3 the transient solution for the PDF at the origin is given. The exact stationary
value at the origin is pstat (0,0)= 1.5915e− 1.

The accuracy of the numerical solutions are compared at stationarity (i.e., after
t = 20 cycles) using two error measures. The first, the maximum norm

‖e‖∞ =
∥∥pex − pnum∥∥∞ (5.17)
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Fig. 5.3 FEM: 61× 61—
Probability density function
at central node p(0,0, t) over
time

is a measure of the maximum error across the entire mesh. The second, the Eu-
clidean norm

‖e‖2 =
∥∥pex − pnum∥∥2 (5.18)

can be used to describe the average nodal error e = ‖e‖2/nnodes , where nnodes is
the total number of nodes.

Table 5.2 correctly visualizes the increasing accuracy for all methods when the
mesh is refined. It can also be seen that the FD and ADI deliver similar results.
The advantage of the ADI over FD is that the stability of the method allows one to
use larger time steps. The FEM provides more accurate results for the same mesh
refinement as the finite difference methods. The FEM is the preferable method to in-
vestigate the first passage problem in case small probabilities of failure are involved
and a highly accurate method is required.

Alternatively, the accuracy of the solution at stationarity can also be represented
by comparison of the exact and numerical covariance matrices Kxx , the latter com-
puted from FE/FD results for the PDF.

The transient solution for the probability density at the center node can be ob-
tained with all three methods as listed in Table 5.2. Figure 5.4 shows a comparison
for the PDF at the origin using finite difference method and different mesh sizes.

Table 5.2 Comparison of the accuracy for the linear oscillator

Method/Mesh 61× 61 81× 81 101× 101 121× 121

‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

FD 7.05e-3 2.99e-2 4.169e-3 2.405e-2 2.983e-3 2.201e-2 2.371e-3 2.199e-2

ADI 1.66e-2 4.61e-2 4.144e-3 2.375e-2 2.931e-3 2.149e-2 2.305e-3 2.124e-2

FEM 2.04e-3 1.00e-2 1.712e-3 1.152e-2 1.550e-3 1.370e-2 1.464e-3 1.613e-2
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Fig. 5.4 FD—Comparison
for probability density
function at central node
p(0,0, t) over time

Table 5.3 Parameters for the
unimodal Duffing oscillator μ σ ξ ω D γ

[0,10] 1
2 I(2) 0.2 1 0.4 0.1

4.2 2-d Duffing Oscillator

Both, the unimodal Duffing-oscillator and the bimodal Duffing-oscillator as well are
investigated in the following.

4.2.1 Unimodal

The unimodal Duffing oscillator is considered next:

[
ẋ1
ẋ2

]
=

[
x2

−2ξωx2 −ω2x1 −ω2γ x3
1

]
+

[
0
1

]
w(t) (5.19)

The parameters of the oscillator are chosen as in Table 5.3.
The state space is discretized on the domain [−15,15] × [−15,15].
It is known that central finite differences are not suitable in case of nonlinearities,

but ADI can be utilized nonetheless. When the Duffing-oscillator is analyzed, it is
found that the ADI can be used due to its implicit formulation with the largest time
step Δt , thus providing a good compromise between accuracy and efficiency as can
be seen from Table 5.4. The time steps used are Δt = 1e − 2 (ADI), Δt = 1e − 3
(FEM) and Δt = 5e− 4 (FEM: mesh 101).
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Table 5.4 Comparison of the accuracy for the unimodal Duffing oscillator

Method/Mesh 61× 61 81× 81 101× 101

‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 1.7832e-2 4.9323e-2 9.6731e-3 3.5553e-2 6.1694e-3 2.8444e-2

FEM 2.6002e-3 1.1587e-2 1.3999e-3 8.5297e-3 9.3290e-4 6.8215e-3

Fig. 5.5 FEM: 101× 101—
Probability density function
at central node p(0,0, t) over
time

The exact analytical expression for the stationary PDF of the unimodal Duffing
oscillator of Eq. (5.19) is given by

σ 2
x0
= πG0

4ξω3
0

σ 2
v0
= ω2

0σ
2
x0

pX(x)= C exp

(
− 1

2σ 2
x0

(
x2 + γ

2
x4

)
− 1

2
σ 2
v0
v2

)
(5.20)

The value of the stationary probability density function at the central node is
pstat (0,0) = 1.6851e − 1. Figure 5.5 shows the evolution of the PDF at central
node p(0,0, t) over time using the FEM and a mesh of 101× 101.

4.2.2 Bimodal

The equations for the bimodal Duffing oscillator are characterized by the changed
sign of the term ω2x1.

[
ẋ1
ẋ2

]
=

[
x2

−2ξωx2 +ω2x1 −ω2γ x3
1

]
+

[
0
1

]
w(t) (5.21)
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Table 5.5 Parameter for the
bimodal Duffing oscillator μ σ ξ ω D γ

[0,10] 1
2 I(2) 0.2 1 0.4 0.1

Fig. 5.6 61× 61: Stationary
probability density function
pstat

The parameters of the oscillator are chosen according to [16] and are given in
Table 5.5.

The state space is discretized on the domain [−15,15] × [−15,15]. Again, the
ADI provides a tool for obtaining accurate results rather quickly.

In Fig. 5.6 the PDF is depicted for stationary conditions and a 61 × 61 mesh.
A comparison of the evolution of the probability density function at the origin is
shown in Fig. 5.7 for FEM and different meshes.

To compare the solution, the analytical expression according to [3] should be
used. The exact analytical expression for the bimodal Duffing oscillator of Eq. (5.21)
is given as

pX(x)= C exp

(
− 1

2σ 2
x0

(
−x2 + γ

2
x4

)
− 1

2
σ 2
v0
v2

)

The value of the stationary PDF at the central node is pstat (0,0)= 8.3161e− 3.
Table 5.6 shows a comparison of the accuracy for different mesh sizes for the bi-
modal Duffing oscillator. The maximum value of the stationary PDF of the bimodal
oscillator at x1,2 = ±√1/γ = ±3.1623 and y1,2 = 0 is pstat (x1,2,0) = 0.1013.
A comparison of the evolution of the probability density function at the mesh point
(x = 3, y = 0) which is closest to the maximum of the PDF is shown in Fig. 5.8 for
FEM and different meshes; pstat (3,0)= 0.0988.



5 Numerical Solutions of the Fokker–Planck Equation 81

Fig. 5.7 FEM: Comparison
of the probability density
function at the central node
p(0,0, t) over time

4.3 3-d Linear Oscillator

A 3-rd state variable is introduced in terms of a low pass filter for the white noise
excitation which is applied to the linear 2d system.

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦=

⎡
⎣ x2

−2ξωx2 −ω2x1 + x3
−αx3

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦w(t) (5.22)

The parameters of the 3d linear oscillator are given in Table 5.7.
Tables 5.8 and 5.9 show a comparison of the accuracy of the results for the lin-

ear oscillator. The time step is chosen to be Δt = 0.01, and only for FEM (net
813) Δt = 0.001 is required. The exact stationary value of the PDF at the origin is
pstat (0,0,0)= 0.2409. Figure 5.9 shows a comparison for the evolution of the PDF
at the central node. The exact analytical solution is compared with the ADI and the
FEM using various mesh sizes.

Table 5.6 Comparison of the accuracy for the bimodal Duffing oscillator

Method/Mesh 61× 61 81× 81 101× 101

‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 4.7186e-2 1.8229e-1 1.1899e-2 4.2491e-2 7.5077e-3 3.0640e-2

FEM 6.8085e-3 1.9074e-2 2.6024e-3 1.1265e-2 2.8419e-3 1.3709e-2
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Fig. 5.8 FEM: Comparison
of the probability density
function at the node p(3,0, t)
over time

Table 5.7 Parameter for the
3d linear oscillator μ σ ξ ω D α

[0,0,0] 0.2I(3) 0.2 1 0.4 1

4.4 3-d Duffing Oscillator

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦=

⎡
⎣ x2

−2ξωx2 −ω2x1 −ω2γ x3
1 + x3

−αx3

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦w(t) (5.23)

The parameters of the 3d Duffing oscillator are given in Table 5.10.

Table 5.8 Comparison of the accuracy for the 3-d linear oscillator

Method/Mesh 253 413

‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 1.8009e-1 3.6649e+0 4.8336e-2 4.8748e-1

FEM 6.5802e-3 4.6480e-2 3.5574e-3 4.6357e-2

MSFEM 1.2533e-2 5.0262e-2 — —

Table 5.9 Comparison of the accuracy for the 3-d linear oscillator

Method/Mesh 613 813 1013

‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 1.2542e-2 2.1170e-1 6.9165e-3 1.8067e-1 4.3899e-3 1.6063e-1

FEM 1.4081e-3 3.4554e-2 3.9016e-4 2.4920e-2 — —
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Fig. 5.9 Probability density
function at the central node
p(0,0,0, t) over time

Table 5.10 Parameters for
the 3d Duffing oscillator μ σ ξ ω D α γ

[0,0,0] 0.2I(3) 0.2 1 0.4 1 0.1

Fig. 5.10 Probability density
function at the central node
p(0,0,0, t) over time

Figure 5.10 shows converged results for the evolution of the PDF at the origin
over time using ADI for two different degrees of nonlinearity and for the corre-
sponding linear system (γ = 0).

5 Discussion

Despite the greater numerical effort, the FEM is preferable over FD, because it
yields more accurate results. However, at this time the FEM is only suitable for
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dimension ≤ 3. In the case of 3d and 4d problems, the stabilized multi-scale FEM
provides a tool with a high order of accuracy, preserving numerical efficiency due
to the fact that a coarser mesh size can be used.

The first effective numerical solution for 4d problems was reported by [21] in
terms of high-order finite differences. The advantage of operator splitting methods
including the ADI is the stability of the method, meaning that larger time steps
(when compared to FEM) can be used, thus speeding up the analysis as the dimen-
sionality of the problem is reduced by one.

The recently introduced PUFEM (see Kumar et al.) represents a possibility to
obtain good results with coarse mesh sizes. The price paid is the computational
overhead required in order to allow for the proposed coarse mesh size.

From the above discussion it is clear that future developments will be bounded
by the so-called curse of dimensionality for some time.
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Chapter 6
A Comparative Study of Uncertainty
Propagation Methods in Structural Problems

Manuele Corradi, Marco Gherlone, Massimiliano Mattone,
and Marco Di Sciuva

Abstract Several uncertainty propagation algorithms are available in literature:
(i) MonteCarlo simulations based on response surfaces, (ii) approximate uncer-
tainty propagation algorithms, and (iii) non probabilistic algorithms. All of these
approaches are based on some a priori assumptions about the nature of design
variables uncertainty and on the models and systems behavior. Some of these as-
sumptions could misrepresent the original problem and, consequently, could yield
to erroneous design solutions, in particular where the prior information is poor or
inexistent (complete ignorance). Therefore, when selecting a method to solve an un-
certainty based design problem, several aspects should be considered: prior assump-
tions, non-linearity of the performance function, number of input random variables
and required accuracy. It could be useful to develop some guidelines to choose an
appropriate method for a specific situation.

In the present work some classical structural problems will be studied in order
to investigate which probabilistic approach, in terms of accuracy and computational
cost, better propagates the uncertainty from input to output data. The methods un-
der analysis will be: Univariate Dimension Reduction methods, Polynomial Chaos
Expansion, First-Order Second Moment method, and algorithms based on the Ev-
idence Theory for epistemic uncertainty. The performances of these methods will
be compared in terms of moment estimations and probability density function con-
struction corresponding to several scenarios of reliability based design and robust
design. The structural problems presented will be: (1) the static, dynamic and buck-
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ling behavior of a composite plate, (2) the reconstruction of the deformed shape of
a structure from measured surface strains.

1 Introduction

The design for reliability, as well as robust design, is phased in over last decades
in the structural design. Although these concepts are well-known in many engineer-
ing fields, the high computational cost of the mathematical approaches needed to
perform these kinds of analysis, have set back their application in the aerospace
structural design. Although in this last field, the problems that deal with the in-
put variable uncertainties are known since the beginning of the aviation history,
they are coped with deterministic methods based on the safety factor approach. The
diffusion of components based on composite materials, in secondary and primary
aerospace structures, and the dropping of aerospace and aviation companies’ profit
have reawaken the interest in design philosophies that deal with the uncertainty in
a more effective way. For this reason, mathematicians and researchers have been
urged on the study of new numerical approaches for an accurate Uncertainty Prop-
agation (UP) from input to output data. Traditionally, both the reliability and the
robustness of a design configuration have been studied using the MonteCarlo sim-
ulation; although it is the most accurate method, its computational cost could be
prohibitive. For this reason several alternative approaches have been developed to
face UP.

Most of the available UP algorithms have particular characteristics that make
them appropriate for some specific problems but their capabilities are not fully ex-
ploited in all kinds of applications. First of all it is possible to distinguish between al-
gorithms for the study of aleatory uncertainty and approaches that deal with the epis-
temic uncertainty. This classification can be based on the prior hypotheses needed to
simulate the prior uncertainty. In order to model the epistemic uncertainty by means
of probabilistic (aleatory) algorithms, some prior hypotheses should be adopted to
transform the epistemic information into a probability distribution function (epis-
temic algorithms need not such assumptions). On the other hand, a probabilistic
problem may be studied by means of an epistemic algorithm if the prior probability
density functions are transformed into set-based information.

The UP algorithms based on the probability theory are usually classified into
five categories [1]: (1) Simulation based methods: these techniques are based on the
simulation of the problem in proper trial points, selected according to the stochastic
characteristics of the input variables. MonteCarlo Simulation (MCS) is certainly the
most known and used of these methods. (2) Local expansion based methods: these
algorithms, also known as perturbation methods, are based on the local series expan-
sion of output functions in terms of input random parameters. The methods based
on Taylor expansion, such as the FOSM (First Order Second Moment) or the SOSM
(Second Order Second Moment) methods, belong to this class. (3) Most Proba-
ble Points (MPP) based methods: this class includes the First and Second Order
Reliability Methods (FORM and SORM, respectively). (4) Functional expansion
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based methods: they rely on a stochastic expansion of the performance function.
The most known method of this class is the Polynomial Chaos Expansion (PCE).
(5) Numerical integration based methods: these techniques are based on the numer-
ical solving of integral equations for the statistical moments. These methods don’t
yield directly the performance joint probability function, but the corresponding sta-
tistical moments; by using the Pearson System and knowing the first four statistical
moments, the probability distribution function can be obtained.

Several factors affect the choice of a suitable UP approach: (i) the identification
and the classification of the input uncertainty, (ii) the definition of the required out-
puts (the first two statistical moments in robust design and the probability density
function or the most probable points in a reliability based analysis), and (iii) the
mathematical characteristics of the studied model (if the first order interactions can-
not be neglected the Univariate Dimension Reduction method does not yield accu-
rate prediction while if the performance function is non linear the methods based
in Taylor local expansion are not accurate). This last information can be obtained
using some numerical tools, such as the sensitivity analysis.

The main objective of this work is a comparative study of some of the most com-
mon and newest UP algorithms for both aleatory and epistemic uncertainties. As
far as the first ones, the limits and merits of the Univariate Dimension Reduction
method (UDR), of the Polynomial Chaos Expansion (PCE), and of the First Order
Second Moments algorithm (FOSM) will be analyzed and discussed. These meth-
ods will be tested and compared on some numerical test functions and a classical
structural problem: the probabilistic study of static, dynamic and buckling behavior
of a composite plate. The sensitivity analysis has been performed in order to study
the mathematical characteristics of the model. In the second part of the present work
a probabilistic approach based on the UDR is compared with an epistemic approach
based on the evidence theory. The structural application used as a test case for the
comparison is an inverse problem: reconstruction of the deformed shape of a beam
from measured surface strains using the inverse Finite elements Method (iFEM)
[2, 3].

2 Uncertainty Propagation Algorithms

In this section, a review of some uncertainty propagation algorithms will be pre-
sented in order to set the framework for the assessment and comparison, through
some structural applications, discussed in Sect. 3.

2.1 The Univariate Dimension Reduction Method (UDR)

This method involves an additive decomposition of a multidimensional integral
function to multiple one-dimensional integral functions. The technique is suitable
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for calculating the stochastic moments of a system response function, as Rahman
and Xu have shown [4–6].

The stochastic moments of a probability distribution may be calculated as follows

ml = ζ
[
Y l(X)

]=
∫ +∞

−∞
· · ·

∫ +∞

−∞
yl(x)fX(x)dx l = 0,1, . . . ,L (6.1)

where ml is the lth-order statistical moment (i.e., l = 1 is the mean value, l = 2
is the variance, etc.), fX(X) is the system response joint probability density func-
tion, y(X) is the deterministic response when the input variables assume the values
collected in the vector X = {x1, . . . , xn}T , and Y(X) = yl(X)fX(X) is the perfor-
mance function. The latter can be approximated as the sum of univariate functions,
each one depending on only one random variable at a time and the other variables
being fixed to nominal values

Y(x1, . . . , xn) ∼= Ỹ (X)

≡
N∑
j=1

Y(μ1, . . . ,μj−1, xj ,μj+1, . . . ,μN)− · · ·

+ (N − 1) · y(μ1, . . . ,μN) (6.2)

where μj is the first moment of the stochastic variable xj , Y(μ1, . . . ,μj−1, xj ,

μj+1, . . . ,μN) is the stochastic response of the system only depending on the xj
random variable, and y(μ1, . . . ,μN) is the deterministic response of the system
depending on the nominal value of the N input variables. Adopting the dimension-
reduction procedure, the expression of statistical moments (6.1) can be rewritten
as:

ml =
∫ +∞

−∞
· · ·

∫ +∞

−∞

N∑
j=1

(
Y(μ1, . . . ,μj−1, xj ,μj+1, . . . ,μN)−

+ (N − 1) · y(μ1, . . . ,μN)

)l
dx (6.3)

To solve the univariate integration in the context of the UDR method, Xu and Rah-
man [4] suggest the use of the moment based quadrature rule. The evaluation of
integration points xj involves the solution of the following equation

xnj − rj,1xn−1
j + rj,2xn−2

j − · · · + (−1)nrj,n = 0 (6.4)

where the coefficients rj are solution of the following linear system of equations

⎡
⎢⎢⎢⎢⎣

μj,n−1 −μj,n−2 μj,n−3 · · · (−1)n−1μj,0
μj,n −μj,n−1 μj,n−2 · · · (−1)n−1μj,1
μj,n+1 −μj,n μj,n−1 · · · (−1)n−1μj,2
· · · · · · · · · · · · · · ·

μj,2n−2 −μj,2n−3 μj,2n−4 · · · (−1)n−1μj,n−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

rj,1
rj,2
rj,3
· · ·
rj,n

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

μj,n
μj,n+1
μj,n+2
· · ·

μj,2n−1

⎤
⎥⎥⎥⎥⎦

(6.5)
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μj,i (i = 1, . . . , n) represents the ith stochastic moment of the jth input variable.
Thus, the univariate integral can be numerically solved as

∫ ∞

−∞
yl(μ1,, . . . , xj , . . . ,μN)fXj (xj ) · dxj

∼=
n∑
i=1

wj,iy
l(μ1,, . . . , xj , . . . ,μN) (6.6)

where fxj is the probability density function of input variable xj . The weight wj,i
appearing in Eq. (6.6) are evaluated using the following expression

wi,j =
∑n−1
k=0(−1)kμj,(n−h−1) · qj,(ik)∏n

k=1,k �=1(xj,i − xj,k)
qj,i0 = 1; qj,ik = rj,k − xj,i · qj,i(k−1)

(6.7)

2.2 The Polynomial Chaos Expansion (PCE)

The Polynomial Chaos Expansion was introduced by Wiener [7] and is based on the
approximation of each random variable by means of a suitable polynomial expan-
sion about centered normalized Gaussian variables.

Any set X = {x1, . . . , xn}T of independent variables (i.e. a set of Gaussian vari-
ables) can be expressed as function of a set ξ = {ξ1, . . . , ξn} of independent normal
variables; this is also known as normalization process.

X = f (ξ) (6.8)

Hence, a performance function y = Y(X) could be transformed into a function ex-
pressed in terms of ξ and, afterwards, approximated by means of the Polynomial
Chaos Expansion (PCE) on the vector space

Y(X) = a0Γ0 +
∞∑
i1=1

ai1Γ1(ξ1)+
∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1, ξi2)+

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1, ξi2, ξi3)+ · · · (6.9)

where a = [a0, . . . , an] is the vector of the expansion unknown terms and Γp(ξ1, . . . ,
ξn) are the multidimensional Hermite polynomials (only if the input random vari-
ables are defined by a normal probability distribution) of order p.

Cameron and Martin have shown that this kind of series is convergent in the L2-
sense [8]. In order to simplify the notation a univocal relation between the functional
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Γ and a new functional Ψ is defined. Hence, the PCE expansion, expressed by
Eq. (6.9), can be rewritten as follows

Y(X)=
∞∑
k=0

βkΨk
(
ξ(X)

)
(6.10)

In the present work the classical convention is adopted:

• Ψ0 = 1: is the 0th-order polynomial
• βk are the constant coefficients of the expansion
• Ψk are multivariate Hermite polynomials, orthogonal in the L2-space. These

polynomials are the product of the proper set of univariate Hermite polynomi-
als [9].

The expansion is normally truncated at a selected order P

Y(X)≈ Ŷ (X)=
P∑
k=0

βkΨ (ξ)k (6.11)

The number of unknown coefficients βk (6.11) can be evaluated using the following
expression

P + 1= (p+ n)!
p!n! (6.12)

The procedure described above is general, but the Hermite polynomials can be used
only in the case of input variables with Gaussian probability distribution function.
Xiu and Karniadakis [9] have extended the PCE applicability to all kinds of input
distribution function, adopting the Wiener–Askey scheme for non Gaussian input
distribution. They have proposed to use the Askey scheme to combine the non Gaus-
sian input distribution with orthogonal polynomial family; in this way the expansion
convergence is guaranteed for all kind of input PDF. As well as the Hermite polyno-
mials are orthogonal in the Hilbert space, in the same way all polynomials, adopted
in the Wiener–Askey [9] scheme are orthogonal in the Hilbert space and form an
Hilbert basis of the corresponding space.

The set β = {β0, . . . , βn}T of the PCE unknown coefficients, can be approxi-
mated by a new vector β̂ , obtained solving the following least squares problem

β̂ = arg min
β

N∑
i=1

(
Y(Xi)−

P∑
k=0

βkψk(ξi)

)2

(6.13)

where N is the training points set size; generally, it is convenient that N > p+ 1.
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2.3 The First Order Second Moment Algorithm (FOSM)

In this approach a performance function Y(X) is approximated by means of a first
order Taylor-series expansion around the design point [10]

Y(X)∼= Y(X̄)+
n∑
i=1

∂Y

∂xi

∣∣∣∣
X̄

(xi − x̄i ) (6.14)

Substituting Eq. (6.14) in the expectation definition (mean)

E
[
Y(X)

]=E[
Y(X̄)

]+E
[
n∑
i=1

∂Y

∂xi

∣∣∣∣
X̄

(xi − x̄i )
]

(6.15)

and considering that:

E

[
n∑
i=1

∂Y

∂xi

∣∣∣∣
X̄

(xi − x̄i )
]
=

n∑
i=1

∂Y

∂xi

∣∣∣∣
X̄

E
[
(xi − x̄i )

]= 0 (6.16)

E
[
(xi − x̄i )

]=E(xi)− x̄i = x̄i − x̄i = 0 (6.17)

the performance function mean value, estimated by means of FOSM, assumes the
following expression

E
[
Y(X)

]= Y(X̄) (6.18)

Now, given the variance definition

Var
[
Y(X)

]=E[(
Y(X)−E(

Y(X)
)2)]≡ σ 2[Y(X)] (6.19)

and substituting in it Eq. (6.14), the variance assumes the following expression

σ
[
Y(X)

]=
n∑
i=1

m∑
j=1

∂Y

∂xi

∣∣∣∣
x̄i

∂Y

∂xj

∣∣∣∣
xj

·COV(xi, xj ) (6.20)

where COV(xi, xj ) is the covariance matrix.

2.4 The Evidence Theory

The Evidence Theory is a non probabilistic approach used to characterize the effect
of epistemic uncertainty on a system.

Given a design variable x1, the prior information, or evidence, consists of n in-
tervals, obtained from s sources [xl1,i , xu1,i] (with i = 1, . . . , s) that enclose the sup-
posed true value. Clearly, the traditional probability theory cannot handle this type
of evidence, without making some assumptions that can misrepresent the nature of
the information. Several combination rules have been formulated to handle this kind
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of prior information [11, 12]; in this work, the Dempster–Shafer combination rule
is adopted.

When a source provides a set of information, this means that the variable can
assume any value inside the interval. The probability that a variable x1 assumes the
value x̄1 is not defined by a probability distribution function but is included between
a maximum probability (plausibility), and a minimum probability (belief). In order
to define the plausibility and the belief, the basic probability assignment (m) must
be introduced; m defines a mapping of the variable prior information. Formally the
basic probability assignment function is defined by means of the following expres-
sions

m : P(x1)→[0,1] (6.21)

m(∅)= 0 (6.22)

m= 1 if x̄1 ∈ Si with i = 1, . . . , s (6.23)

where P(x1) represents the power set of x1 (defined, according to the axiomatic set
theory [12] as the set of all subset of S), while ∅ is the null set and Si is the ith

evidence set. According to the previous equations, the basic probability assignment
(BPA) assumes any value included between 0 and 1; if x̄1 does not belong to any
subset, the basic probability assignment assumes value 0 while if x̄1 belongs to
every subset, it assumes the value 1. Once defined the basic probability assignment
m, the plausibility and belief probability measures can be introduced. Given a set
C = [D(x1)

−, x̄1], where x̄1 is a generic value of the variable x1 on its domain
D(x1), while D(x1)

− represents the lower domain boundary, the plausibility can be
expressed by

Pl(C1)=
∑

C1∩six1 �=0

mx1,i

(
Six1

)
(6.24)

while the belief is defined as

Bel(C1)=
∑
Six1
⊆C1

mx1

(
Six1

)
(6.25)

In other words, the plausibility is the sum of all BPA of the sets Six1
which intersect

the set of interest C1, hence it represents the maximum probability that a variable x1
assumes a given value x̄1. On the other hand, the belief is defined as the sum of all
BPA of the sets Six1

that Six1
⊆ C1 hence it is a measure of the minimum probability

that a variable x1 assumes a given value x̄1.
The probability lies between the plausibility and the belief

Bel(C1)≤ P(C1)≤ Pl(C1) (6.26)

and, only when plausibility and belief are overlapped, it can be univocally defined.
In a problem with n input variables there is the need to transfer the BPA values

mxj , evaluated for each variable, into an equivalent information in the n-dimensional
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Fig. 6.1 Propagation of evidence from input to output space

design variables space. Assuming that all the variables are uncorrelated, the proba-
bility of each elementary set in the design variables space is defined by

mx1,x2,...,xn

([
S
j
x1

]
, . . . ,

[
S
j
xn1

])=mx1

([
S
j
x1

]) · · · · ·mx1

([
S
j
xn

])
(6.27)

Once defined the uncertainty acting on the design variables, its effects on the per-
formance function can be evaluated. Given a generic function y = Y(X), linking
the output with the input variables X = {x1, . . . , xn}, the evidence about y must be
estimated from the joint body of evidence previously described in Eq. (6.27). By
means of two optimization problems, for each evidence-set of the input variables
space, the lower and upper boundary of the corresponding set into the output space
are evaluated

find X̄ = {x̄1, . . . , x̄n} ∈Σj
([
S
j
x1

]
,
[
S
j
x2

]
, . . . ,

[
S
j
xn

])
t.c max / miny = f (X)
⇓
S
j
y =

[
y
j
l , y

j
u

]
(6.28)

The above optimization problems yield an evidence set on output-space Sjy for
each set Σj of the joint body of evidence (Fig. 6.1). Hence, in order to propagate
the uncertainty from input to output, two optimizations for each set Σj have to be
performed.

3 Numerical Examples

In this section some numerical examples will be presented in order to verify the
accuracy of the UP methods described above. Some test functions and a structural
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Table 6.1 Test functions used to test the UP methods

Function PDF PDF Parameters

y = xk1xk2 + 2x4
3 , k = 2,3,5 Gaussian μ= [1,1,1]

σ = 0.1,0.2,0.4,0.8

y = sinx1 + a sin2 x2 + bx4
3 sinx1 Gaussian μ= [π/4,π/4,π/4]

σ = 0.05,0.1,0.2,0.5

problem (static, dynamic and buckling behavior of a composite plate) will be the test
cases considered for assessing the methods for stochastic uncertainty. A comparison
between stochastic and epistemic approaches when applied to a structural shape
sensing problem will be then discussed.

3.1 Test Functions

Two test functions are used to compare the performance of the UP methods intro-
duced in the previous paragraphs (Table 6.1).

The first example is a three-variate function, chosen to compare the performance
of the UP algorithms against the first order effects of the input variables. In order to
better understand this example and the capabilities of each method can be useful de-
fined what are the main and high order effects. They deal with how the uncertainty
on input parameters influences the output. In detail the main effects measure the
influence of each single input parameter on the output, while the high order effects
give information about the influence of each possible combination of input param-
eters (i.e. X1X2,X1X3) on the output. More details about the numerical methods
used to evaluate these measures are beyond the purpose of this paper refer to [13]
for further details.

The input variables follow a Gaussian distribution centered in X = [1,1,1] and
four values of standard deviation are tested (σ = 0.1,0.2,0.4,0.8). In addition, the
effect of the interactions among the variables is studied changing the value of k.
The analysis of the accuracy of each method is performed comparing the predicted
values of the statistical moments with those evaluated using a MonteCarlo Simu-
lation, based on 106 observations. In this example the effect of an increasing input
variability is combined with that of an increasing interaction effect.

In Table 6.2 the main effects and the interactions are listed for each value of k.
These indices are evaluated by means of the Polynomial Chaos Expansion [14]. We
can observe that changing the value of k the interaction x1x2 increases its effect on
the output, becoming gradually the most important factor.

In Fig. 6.2 the errors in the estimation of the mean value are plotted as function
of the input variables standard deviation for different values of k. As a general rule,
when the input variability increases, all the UP methods here discussed become less
accurate. This phenomenon is negligible if the first order interactions are marginal;
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Table 6.2 Main and first
order effects Main and First Order Effects

k= 2 k= 3 k= 5

X1 0.011 0.0838 0.0575

X2 0.011 0.0838 0.0572

X3 0.9587 0.4734 0.0006

X1X2 0.01927 0.359 0.8808

X1X3 9.60E-25 8.78E-25 5.82E-04

X2X3 4.84E-26 8.34E-25 1.22E-03

on the contrary, in problems where the interaction effects are more important (k = 3
or k = 5) the results become more sensitive to the input variability.

As shown in Fig. 6.2(A), the UDR yields a good estimation of the mean values
when the interaction between the variables is low (k = 2), also in the case of high

Fig. 6.2 Error in the estimation of the output mean value: (A) Error due to the UDR method
(B)–(D) Error due to the PCE of 2nd, 3rd and 5th order, respectively. (E) Error due to the FOSM
alghorithm
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Fig. 6.3 Error in the estimation of the output variance: (A) Error due to the UDR method (B)–(D)
Error due to the PCE of 2nd, 3rd and 5th order, respectively

input variability (σ = 0.8). Increasing the effect of interaction, the accuracy of this
method greatly decays, in particular for higher values of input variability.

Similar behaviors are shown in Fig. 6.2(B)–(D); the output function is approxi-
mated with the Polynomial Chaos Expansion, truncated at different orders. Also in
this case, for higher values of k and for a higher input uncertainty, the mean value
is poorly approximated. When using the PCE, however, the reduced accuracy is not
due to the interaction effects, but it is caused by the non-linearity of the output func-
tion: for example, if k = 2 we have a 4th order function, while if k = 3 we have a
6th order function. Hence, it is clear that a Polynomial Chaos Expansion truncated
at the 5th order better describes the problem than an expansion truncated at the 2nd

order, but, for k = 5, it does not guarantee adequate accuracy. Increasing the order
of the expansion, the error in the prediction gradually vanishes.

Therefore, there is a substantial difference between the UDR and the PCE. In the
UDR the lack of accuracy is inherent to its mathematical formulation and cannot
be reduced. On the other hand, the accuracy of the PCE results can be improved
increasing the order of the expansion.

In Fig. 6.2(E) the errors are shown on the output function mean value when
computed using the FOSM algorithm. In this case the approximation is based on
the hypothesis that the output function has a linear behavior in the studied domain;
the errors are quite high also for small input variability levels.

The decay of UDR accuracy in the prediction of the statistical moments (due
mainly to the first order effects) is more evident in the evaluation of the variance,
Fig. 6.3(A) and of the higher order moments: Skewness Fig. 6.4(A) and Kurtosis
Fig. 6.5(A). As already observed in the evaluation of mean value, for quite small
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Fig. 6.4 Error in the estimation of the output skewness: (A) Error due to the UDR method (B)–(D)
Error due to the PCE of 2nd, 3rd and 5th order, respectively

Fig. 6.5 Error in the estimation of the output kurtosis: (A) Error due to the UDR method (B)–(D)
Error due to the PCE of 2nd, 3rd and 5th order, respectively

interaction effects (k = 2), the UDR approximation does not affect the accuracy of
the results. This is not true for the higher order moments.

Results regarding higher order statistical moments (Figs. 6.3(B)–(D), 6.5(B)–
(D), 6.6(B)–(D)) confirm that the interaction between the variables does not affect
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Table 6.3 Number of
observations for each method FOSM UDR PCE 2nd PCE 3rd PCE 5th

49 16 31 61 168

the accuracy of the Polynomial Chaos Expansion; anyhow, a higher order expansion
is required in order to have a good estimation of the variance, skewness and kurtosis.

In Table 6.3 the number of observation points needed to perform each analysis
are listed. The UDR method needs only 16 observed data (it requires only 5n+ 1,
where n are the stochastic input variables).

The UDR method is the cheapest one and, as seen in the present example, if there
is a negligible interaction between the input variables, it yields a good estimation
of the statistical moments. The computational cost of the PCE grows considerably
increasing the order of expansion and the problem dimension. The number of un-
known coefficients of PCE is P + 1, as given by Eq. (6.12); these coefficients are
evaluated using a least-squares based method, Eq. (6.13). The number of training
points must be at least equal to P +1, but for and adequate accuracy of the solution,
a higher number of points is usually adopted; this number (Table 6.3) is evaluated
by a convergence study on the β values.

The second function here considered (see Table 6.1) is the Ishigami func-
tion, commonly used to test the uncertainty propagation algorithms and the sen-
sitivity in order to understand their behavior with non-linear and non-monotonic
functions. The three variables follow a Gaussian distribution, centered in X =
[π/4,π/4,π/4]; the standard deviation ranges from 0.05 to 0.5. The accuracy of
each method is assessed comparing the predicted values of the statistical moments
with those evaluated using a MonteCarlo Simulation, based on 106 observations.

In Table 6.4 the percentage errors on the estimation of the mean value and vari-
ance are listed for different values of the input standard deviation. All methods yield
a good estimation of the mean value (the error is always less than 1%). The differ-
ences between the methods are more evident when considering the variance evalua-
tion. The FOSM method yields a very poor estimation in particular for high values of
input variability: for example, the error with an input standard deviation of σ = 0.2
is around 12.3%, while with σ = 0.5 is around 56%. The UDR method leads to a
good estimation of the variance (error around 2%); there is no evident correlation
between the input variability and the estimation error. The PCE is very accurate, if
the order of the expansion is sufficient to describe the problem; we can observe that
a 5th order expansion is very accurate in the prediction of variance, and that the 7th

order expansion yields the exact solution.
In a robust design framework it is important the accurate evaluation of the first

two statistical moments (mean and variance), but for the evaluation of the reliabil-
ity degree this information is not enough. Hence, the knowledge of the probability
distribution function is needed. One of the main problems of the UDR approach
is that it does not yield directly the probability distribution, but only the statistical
moments. Anyway, it is possible to obtain the PDF, knowing the first four statistical
moments, by means of the Pearson System. In Fig. 6.6 and Fig. 6.7 the probability
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Fig. 6.6 Probability density function (all input variables have a standard deviation of 0.2)

Fig. 6.7 Probability density function (all input variables have a standard deviation of 0.5)

distribution function, evaluated with the UDR and the Pearson System, is compared
with the PDF obtained using the PCE with different expansion orders and the one
obtained by means of MCS (106 training points). The curves plotted in Fig. 6.6 and
in Fig. 6.7 are referred, respectively, to the case of an input standard deviation of
σ = 0.2 and of σ = 0.5. In the first case (Fig. 6.5) a good agreement among all
plotted curves can be observed. The UDR method coupled with the Pearson System
yields a very good approximation of the probability density function. There is only
a small discrepancy in the description of the tails: the tails of PDFs, obtained with
the UDR method and the 2nd order PCE, end with an asymptotic behavior, while in
the one obtained with MCS the tails are limited. On the contrary there is a perfect
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correspondence between the probability function obtained with a 3rd order PCE and
the one obtained with the MonteCarlo Simulation.

In the second case (σ = 0.5) it is possible to appreciate a bigger discrepancy
among the methods (Fig. 6.6(A)). Although the UDR method is able to predict with
a good accuracy the mean and the variance of the output, it fails in the estimation of
the PDF. This is mainly due to the fact that the higher order moments are predicted
with low-accuracy and, as well known, the Pearson System is based on the relation
between skewness and kurtosis. Also the 3rd order PCE gives not an accurate prob-
ability distribution. Only by means of a 5th order PCE a good PDF approximation
can be obtained.

In this example we have seen that, although the UDR approach is adequately
accurate to be used in a robust design problem, it cannot be used in a reliability
based problem.

3.2 Composite Plate Mechanical Behavior

In this example the performances of UDR and PCE are tested on the static and dy-
namic response analysis of a symmetric composite plate (0◦/90◦/90◦/0◦) with all
edges clamped. The material properties, the fiber orientation, and the plies thick-
ness are considered affected by uncertainty and are described by means of Gaussian
distributions. In Table 6.5 all plate properties are reported in terms of mean value
and standard deviation. The stochastic moments of the maximum deflection (w), the
first natural frequency (f ), the maximum Von Misses stress (σVM ), the maximum
transverse shear stresses, τxz and τyz, are evaluated by means of the UDR and of
the PCE. The static and dynamic responses of the plate have been obtained using
the Refined Zigzag Theory (RZT) for plates [15–19]; a Rayleigh–Ritz solution pro-
cedure has been adopted to find maximum deflection, first natural frequency and
stresses distribution. The first four statistical moments, evaluated using the UDR
and PCE, are compared with those obtained by a MonteCarlo Simulation based on
105 observations (Table 6.6). In Table 6.6 one can observe that approximately all
approaches give the same results, the main difference between the UDR and the 2nd

order PCE is in the computational cost needed to perform the analysis, indeed are
needed 71 observations and 360 training points, respectively.

3.3 Structural Shape Sensing

The inverse Finite Element Method (iFEM), developed by Tessler for plate and shell
structures [19] and specialized by Gherlone for beams and frames [2], is aimed at the
reconstruction of the displacement field of a structure starting from in situ measure-
ments of surface strains [2]; this represents an inverse problem [3]. A description of
the iFEM approach is not within the scopes of the present paper, refer to [2, 3, 19]
for further details.
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Table 6.5 Plate properties: θ1 is the fiber orientation of the first ply, t1 is its thickness

Mean PDF SD

Mechanical properties E11 [Mpa] 1.58E+05 Gaussian 7.895

E22 [Mpa] 9.58E+03 Gaussian 0.4792

E33 [Mpa] 9.58E+03 Gaussian 0.4792

G12 [Mpa] 5.93E+03 Gaussian 0.2965

G13 [Mpa] 5.93E+03 Gaussian 0.2965

G23 [Mpa] 3.23E+03 Gaussian 0.1613

v12 0.32 Deterministic -

v13 0.32 Deterministic -

v23 0.49 Deterministic -

ρ [T/mm3] 1.90E-09 Deterministic -

Fiber orientation θ1 0 Gaussian 3

θ2 90 Gaussian 3

θ3 90 Gaussian 3

θ4 0 Gaussian 3

Thickness t1 [mm] 1 Gaussian 0.05

t2 [mm] 1 Gaussian 0.05

t3 [mm] 1 Gaussian 0.05

t4 [mm] 1 Gaussian 0.05

In the present work a cantilevered aluminum beam (length L= 200 mm) with a
circular thin-walled cross-section (radius r= 1 cm) and subjected to different load
conditions has been studied. In lieu of the experimental measures of surface strains,
high-fidelity direct FE analyses (MSC/NASTRAN) have been carried out for the ex-
ample problem (Table 6.7). These results have also been used to verify the accuracy
of the nodal displacements and rotations obtained by iFEM.

The position of a strain gauge, used to measure a surface strain, is defined by
three coordinates: the first one, x, indicates the position along the longitudinal beam
axis, the second one, θ , is an angle representing the circumferential position on the
beam and the coordinate β indicates the strain gauge orientation (i.e., it represents
the rotation of the strain gauge with respect to the beam axis (Fig. 6.8). For the
current application, six strain gauges are used; their nominal positions are reported
in Table 6.8 and their location is also represented in Fig. 6.9.

In this example three different load conditions are considered (Fig. 6.10(A)):
(1) a shear force applied along y-axis, (2) a torque moment and (3) a bending mo-
ment around the z-axis. The free end displacements and rotations (Fig. 6.10(B)) are
computed by means of the iFEM and are compared with the ones obtained using the
direct MSC/NASTRAN FEM solution. Hence, the iFEM accuracy is evaluated by
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Table 6.6 Stochastic moments: SD is the standard deviation, SKW is the skewness, KURT is the
Kurtosis, w is the maximum deflection, f is the fundamental frequency, σVM is the maximum Von
Mises stress, τxz and τyz are the maximum transverse shear stresses

w f σVM τyz τxz

MCS Mean 21.37 434.24 2194.65 28.76 14.01

Variance 3.36 200.36 13570.68 0.70 0.45

SD 1.84 14.15 116.49 0.84 0.67

SKW 0.01 0.04 0.23 0.15 0.16

KURT 3.05 3.03 3.06 3.01 3.03

UDR Mean 21.36 434.24 2194.50 28.76 14.01

Variance 3.35 201.67 13570.68 0.78 0.45

SD 1.83 14.20 116.49 0.88 0.67

SKW 0.00 0.00 0.23 0.15 0.16

KURT 3.03 3.03 3.00 3.02 3.03

2nd PCE Mean 21.37 434.24 2194.64 28.76 14.01

Variance 3.34 205.67 13570.68 0.72 0.45

SD 1.83 14.34 116.49 0.85 0.67

SKW 0.01 0.00 0.23 0.15 0.16

KURT 3.03 3.03 3.00 3.02 3.03

Table 6.7 High-fidelity FE discretization of the thin-walled beam problem

Element type
(name)

N◦ of elements along
the external
circumference

N◦ of elements
along the beam
length

Total N◦ of
elements

Total N◦ of
nodes

Shell element
(QUAD4)

114 360 41.040 41.156

means of the following error:

E ≡ Value(FEM)− Value(FEM)

Value(FEM)
(6.29)

The aim of the present application is to verify the robustness of the iFEM in
evaluating the displacement field when the sensor positions are considered affected
by uncertainty. For this purpose, a probabilistic approach is compared with a non-
probabilistic method based on the evidence theory. The main issue is the definition
of the uncertainty that affects the coordinate values describing the sensors position.
In order to obtain this kind of information, three technicians have been interviewed
They have given three different estimations of the error in the strain gauge location;
all these experts are equally trusted. The second expert (see Table 6.9) defined the
errors using disjoint sets.
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Fig. 6.8 Location of a strain
gauge on the beam external
surface [20]

Table 6.8 Strain gauge
nominal positions Strain gauges x θ β

1 10 −120 0

2 10 −120 45

3 10 0 0

4 10 0 45

5 10 120 0

6 10 120 45

Fig. 6.9 Sensors position
[20]

In order to use a probabilistic approach to propagate the uncertainty from in-
put to output, there is the need to transform the input epistemic uncertainty into
probabilistic information. Several hypotheses are then needed about the shape of
the probability distribution and its standard deviation. In the present example we
have assumed that the uncertainty in the sensor position is described by means of a
Gaussian distribution, having the standard deviations listed in Table 6.10.

The information obtained by the sensitivity analysis [20] are used to select which
input variables should be considered and which could be neglected during the uncer-
tainty propagation process, performed both using the evidence theory and a prob-
abilistic approach (the UDR method, having verified that there are not significant
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Fig. 6.10 (A) Applied load, (B) Studied degrees of freedom

Table 6.9 Sensor coordinates defined by means of interval sets

Expert x [mm] θ [◦] β [◦]
LOWER UPPER LOWER UPPER LOWER UPPER

1 −5 5 −5 5 −4 4

2 −5 −1 −5 5 −4 −1.5

1 5 −5 5 1.5 4

3 −1 1 −5 5 −1.5 1.5

Table 6.10 Probabilistic
assumptions about sensor
position

Input variables PDF Standard Deviation

x Gaussian 0.0233

θ Gaussian 1.1666

β Gaussian 1.3333

interactions between variables). Then, once the first four statistical moments are
known, the corresponding probability distribution function is evaluated by means of
the Pearson System.

The probability that the iFEM error w.r.t. the FEM reference displacements and
rotations is greater than a given threshold value, is finally evaluated.

The evidence theory does not furnish a unique measure of the probability, but
it gives two different probability curves: the plausibility, that describes the curve
of the maximum reliability of the system, and the belief, that describes the mini-
mum reliability of the system (Figs. 6.11, 6.12, and 6.13). According to what was
said previously, the true reliability curve is included between the plausibility and the
belief. Actually, the area included between the maximum reliability curve and the
minimum one represents a region of uncertainty; this means that, without further
information, no prediction about the actual behavior of the model can be made (we
only know that the true error is included between the two probability curves). For
this reason, the belief curve, that represents a conservative estimation of the model
behavior, is used during the design phase. In this study we have compared the results
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Fig. 6.11 Shear load (Fy): Probability that the error E about uy (A) and θz (B) is bigger than a
given threshold value. Three curves are plotted: the first one represents the maximum model re-
liability (labeled with MAX R), the second one represents the minimum reliability of the model
(labeled with min R), the red one represents the curve obtained using the assumption of the Gaus-
sian distribution

Fig. 6.12 Torque Moment: Probability that the error E about θx (B) is bigger than a given threshold
value. Three curves are plotted: the first one represents the maximum model reliability (labeled
with MAX R), the second one represents the minimum reliability of the model (labeled with min
R), the red one represents the curve obtained using the assumption of the Gaussian distribution

obtained assuming that the position error is described by means of Gaussian distri-
butions with those obtained assuming that each sensor is located inside an interval.
In this last case no hypothesis has been made about the probability that a sensor is
in a given point (inside the region). As shown in Figs. 6.11, 6.12, and 6.13, the max-
imum reliability curves give almost null prediction errors, whereas the minimum
reliability curves indicate bigger probability to have large errors; in particular, the
evaluation of the y-displacement and z-rotation is quite sensible to the sensor posi-
tion uncertainty, Fig. 6.11 and Fig. 6.13. In most cases the reliability curves, based
on the Gaussian distribution hypothesis, underestimate considerably the prediction
errors. In particular the Gaussian hypothesis furnishes probability values close to
those given by the maximum reliability curves.



6 A Comparative Study of Uncertainty Propagation Methods 109

Fig. 6.13 Bending Moment around z: Probability that the error E about uy (A) and θz (B) is
bigger than a given threshold value. Three curves are plotted: the first one represents the maximum
model reliability (labeled with MAX R), the second one represents the minimum reliability of the
model (labeled with min R), the red one represents the curve obtained using the assumption of the
Gaussian distribution

4 Conclusion

In the present work a comparative study of some uncertainty propagation algorithms
is performed and discussed.

Methods for both aleatory and epistemic uncertainty are considered; in particu-
lar, a brief review of Univariate Dimension Reduction method (UDR), Polynomial
Chaos Expansion (PCE), and First Order Second Moments algorithm (FOSM)—
for aleatory uncertainty—and of Evidence Theory—for epistemic uncertainty—is
presented.

Then, selected example problems are considered to assess and compare the avail-
able methods; some test functions are used as preliminary test cases, then structural
applications are studied, ranging from the mechanical behavior of a composite plate
to the shape sensing of a beam starting from measured surface strains. As for the lat-
ter application, an epistemic uncertainty propagation approach (Evidence Theory)
has been compared with a probabilistic uncertainty propagation algorithm (UDR);
the considered problem is a classical example of epistemic uncertainty, therefore
probabilistic approaches may be applied after introducing some prior assumptions
whose correctness may not be guaranteed.

Although this study is limited to some particular examples, interesting general
conclusions can be drawn.

If there is no significant interaction between variables, the UDR is the most ef-
ficient method for statistical moments estimation. Its accuracy decreases when the
interactions cannot be neglected; in particular, the evaluation of the 3rd and 4th sta-
tistical moments is more sensitive to the interaction effects and, therefore, also the
evaluation of the corresponding Probability Distribution Function (PDF), by means
of the Pearson System, can be compromised. The accuracy and the computational
cost of the PCE depend on the truncation order of the expansion. However, the
PCE is a useful approach when the knowledge of the PDF is desired. Moreover, the
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UDR method leads to the best compromise between accuracy and computational
cost when performing a probabilistic study of the mechanical behavior of a com-
posite plate.

The transformation of the epistemic knowledge into a probabilistic knowledge
could often cause a loss of information and consequently the underestimation of the
uncertainty effects. The evidence theory, in the particular case of the shape sensing
problem, seems to be a more robust and conservative approach. The use of a proba-
bilistic approach is not wrong but it requires too strong prior assumptions. In other
words, the correct use of the probabilistic approach would require the experimental
probabilistic characterization of the sensors position.
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Chapter 7
Fuzzy and Fuzzy Stochastic Methods
for the Numerical Analysis of Reinforced
Concrete Structures Under Dynamical Loading

Frank Steinigen, Jan-Uwe Sickert, Wolfgang Graf, and Michael Kaliske

Abstract This paper is mainly devoted to enhanced computational algorithms to
simulate the load-bearing behavior of reinforced concrete structures under dynami-
cal loading. In order to take into account uncertain data of reinforced concrete, fuzzy
and fuzzy stochastic analyses are presented. The capability of the fuzzy dynamical
analysis is demonstrated by an example in which a steel bracing system and viscous
damping connectors are designed to enhance the structural resistance of a reinforced
concrete structure under seismic loading.

1 Introduction

The numerical analysis of reinforced concrete (RC) structures under dynamical
loads requires realistic nonlinear structural models and computational algorithms.
Furthermore, the engineer/designer has to deal with uncertainty which results from
variations in material parameters as well as incomplete knowledge about further
excitations and the quality of the numerical model itself. The variations in mate-
rial parameters may be assessed by the uncertainty measure probability. However,
the stochastic model cannot be determined precisely because of rare information in
most cases. Therefore, an imprecise probability approach is suggested in this contri-
bution which is based on the uncertainty measure fuzzy probability resulting in a set
of probability models assessed by membership values. Using this approach, input
variables may be also modeled as fuzzy quantities and considered as a special case,
if only subjective or linguistic assessments are available.
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Fig. 7.1 Models of
uncertainty

The incorporation of uncertain input variables within a dynamic structural anal-
ysis leads to uncertain structural responses representing the uncertain structural per-
formance close to reality. The uncertain structural responses are determined using
fuzzy stochastic dynamic analyses. Thereby, fuzzy stochastic processes result due
to the specific dynamic actions. The fuzzy stochastic structural analysis of practi-
cal problems requires high performance computational tools in order to deal with
a large number of uncertain input variables as well as complex nonlinear structural
models. An efficient approach is introduced which is based on α-level optimization
and Monte-Carlo simulation using meta-models which partly replace the dynamic
structural analyses.

2 Uncertainty in Structural Dynamics

2.1 Data Models

The input variables—for geometry, material, load etc.—of the numerical simula-
tions of structural behavior are generally uncertain. In order to describe this uncer-
tainty, traditional stochastic and non-stochastic models are available [8]. In Fig. 7.1,
the models randomness, fuzziness and fuzzy randomness are displayed. The choice
of the model depends on the available data. If sufficient statistical data exist for a
parameter and the reproduction conditions are constant, the parameter may be de-
scribed stochastically. Thereby, the choice of type of probability distribution func-
tion affects the result considerably.

Overcoming the traditional probabilistic uncertainty model enables the suitable
consideration of imprecision (epistemic uncertainty). Thereby, epistemic uncer-
tainty is associated with human cognition, which is not limited to a binary measure.
Advanced uncertainty concepts allow a gradual assessment of intervals. This exten-
sion can be realized with the uncertainty characteristic fuzziness. The combination
of fuzziness and probabilistic leads to the generalized model fuzzy randomness.

2.1.1 Fuzzy Variables

Often, the uncertainty description for parameters is based on pure expert judgment
or samples which are not validated statistically. Then, the description by the uncer-
tainty model fuzziness is recommended. The model comprehends both objective and
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subjective information. The uncertain parameters are characterized with the aid of a
membership function μ(x) (see Fig. 7.1b and Eq. (7.1)). The membership function
μx(x) assesses the gradual membership of elements to a set. Fuzzy variables

x̃ = {(
x;μx(x)

) | x ∈X}; μx(x)≥ 0 ∀x ∈X (7.1)

may be utilized to describe the imprecision of structural parameters directly as well
as to specify the parameters of fuzzy random variables.

2.1.2 Fuzzy Random Variables

If, e.g. reproduction conditions vary during the period of observation or if expert
knowledge completes the statistical description of data, an adequate uncertainty
quantification succeeds with fuzzy random variables. The theory of fuzzy random
variables is based on the uncertain data model fuzzy randomness representing a
generalized model due to the combination of stochastic and non-stochastic charac-
teristics. A fuzzy random variable X̃ is defined as the fuzzy set of their originals,
whereby each original is a real-valued random variable X.

The representation of fuzzy random variables presented in this paper is based
on [13]. The space of the random elementary events Ω is introduced. Here, e.g.
the measurement of a structural parameter may be an elementary event ω. Each
elementary event ω ∈Ω generates not only a crisp realization but a fuzzy realization
x̃(ω)= x̃, in which x̃ is an element of the set F(R) of all fuzzy variables on R. Each
fuzzy variable is defined as a convex, normalized fuzzy set, whose membership
function μx(x) is at least segmentally continuous. Accordingly, a fuzzy random
variable X̃ is a fuzzy result of the mapping given by

X̃ :Ω �→ F(R). (7.2)

Based on this formal definition, a fuzzy random variable is described by its fuzzy
cumulative distribution function (fuzzy cdf) F̃ (x). The function F̃ (x) is defined as
the set of real-valued cumulative distribution functions F(x) which are gradually
assessed by the membership μF (F (x)). F(x) is the cdf of the original X and is
referred to as trajectory of F̃ (x). As result, a fuzzy functional value F̃ (xi) belongs
to each value xi (see Fig. 7.2). Thus, F̃ (x) represents a fuzzy function as defined in
Sect. 2.2.1. A fuzzy probability density function

f̃ (x)= {(
f (x);μf

(
f (x)

)) | f ∈ f
}; μf

(
f (x)

)≥ 0 ∀f ∈ f (7.3)

is defined accordingly. In that, f represents the set of all probability density functions
defined on X.

2.2 Uncertain Functions and Processes

2.2.1 Fuzzy Function

In case that fuzzy parameters depend on crisp or uncertain conditions, they are mod-
eled as fuzzy functions x̃(t̃ )= x̃(θ̃ , τ̃ , ϕ̃) or in the special case of pure time depen-



116 F. Steinigen et al.

Fig. 7.2 Fuzzy probability density and cumulative distribution function

Fig. 7.3 Fuzzy process x̃(τ )

dency as fuzzy processes x̃(τ̃ ). Arguments may be the time τ̃ , the spatial coordi-
nates θ̃ and further parameters ϕ̃, e.g. temperature. A fuzzy function x̃(t̃ ) enables
the formal description of at least piecewise continuous uncertain structural param-
eters in R. In the following, a definition of fuzzy functions is introduced. Given
are

• the fundamental sets T⊆R and X⊆R,
• the set F(T) of all fuzzy variables t̃ on the fundamental set T,
• the set F(X) of all fuzzy variables x̃ on the fundamental set X.

Then, the uncertain mapping of F(T) into F(X) that assigns exactly one x̃ ∈ F(X)
to each t̃ ∈ F(T) is referred to as a fuzzy function denoted by

x̃(t̃ ) : F(T) ˜�→F(X), (7.4)

x̃(t̃ )= {
x̃t = x̃(t̃ ) ∀t̃ | t̃ ∈ F(T)

}
. (7.5)

In Fig. 7.3, a fuzzy process x̃(τ ) is presented, which assigns a fuzzy quantity x̃(τi)
to each time τi . For the numerical simulation, a bunch parameter representation of
a fuzzy function

x(s̃, t)= x̃(t̃ ) (7.6)

is applied. Therewith, the fuzziness of both x̃ and t̃ is concentrated in the bunch
parameter vector s̃.

For each crisp bunch parameter vector s ∈ s̃ with the assigned membership value
μ(s), a crisp function x(t) = x(s, t) ∈ x̃(t) with μ(x(t)) = μ(s) is obtained. The
fuzzy function

x̃(t)= x̃(s̃, t)= {(
x(s, t),μ

(
x(s, t)

)) | μ(x(s, t))= μ(s) ∀s | s ∈ s̃} (7.7)
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Fig. 7.4 Fuzzy random
process X̃(θj , τ )

may thus be represented by the fuzzy set of all real valued functions x(s, t) which
may be generated from all possible real vectors s ∈ s̃. For every t ∈ T, each of the
crisp functions x(s, t) yields values xt which are contained in the associated fuzzy
functional values x̃t . The real functions x(s, t) of x̃(t) are referred to as trajectories.
Numerical processing of fuzzy functions x̃(t)= x(s̃, t) demands the discretization
of their arguments t in space and time.

2.2.2 Fuzzy Random Function

According to Eqs. (7.2) and (7.4), as well as Fig. 7.4, a fuzzy random function is the
result of an uncertain mapping

X̃(t) : F(T)×Ω→ F(R). (7.8)

Thereby, F(X) and F(T) denote the sets of all fuzzy variables in X and T respec-
tively [15, 16]. At a specific point t , the mapping of Eq. (7.8) leads to the fuzzy
random variable X̃t = X̃(t). Therefore, fuzzy random functions are defined as a
family of fuzzy random variables

X̃(t)= {
X̃t = X̃(t) ∀ t | t ∈ T

}
. (7.9)

For the numerical simulation, again the bunch parameter representation of a
fuzzy random function is applied. For each crisp bunch parameter vector s ∈ s̃ with
the assigned membership value μ(s), a real random function X(t)=X(s, t) ∈ X̃(t)
with μ(X(t))= μ(s) is obtained. The fuzzy random function X̃(t) may thus be
represented by the fuzzy set of all real random functions X(t) ∈ X̃(t)
X(s̃, t)= {(

X(t),μ
(
X(t)

)) |X(t)=X(s, t);μ(X(t))= μ(s) ∀ s | s ∈ s̃} (7.10)

which may be generated from all possible real vectors s ∈ s̃. The real random
function X(t) ∈ X̃(t) is defined for all t ∈ T and referred to as original function.
A numerical processing of a fuzzy random function X̃(t)=X(s̃, t) requires the dis-
cretization of their arguments t in space and time.

3 Fuzzy Stochastic Analysis

Fuzzy stochastic analysis is an appropriate computational approach for processing
uncertain data using the uncertainty model fuzzy randomness. Basic terms and def-
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Fig. 7.5 Fuzzy stochastic
analysis (FSA)

initions related to fuzzy randomness have been introduced, inter alia, by [13]. The
formal description of fuzzy randomness chosen by [13] is however not suitable to
formulating uncertainty encountered in engineering tasks. A suitable form of repre-
sentation with the scope of numerical engineering tasks is given with the so-called
α-discretization by [7] and [8].

The numerical simulation under consideration of fuzzy variables and fuzzy func-
tions (fuzzy analysis) may formally be described by the mapping

FFA(d) : x̃(t) �→ z̃(t). (7.11)

According to Eq. (7.11), the fuzzy variables x̃ and the fuzzy functions x̃(t) are
mapped onto the fuzzy results z̃(t) with aid of the crisp analysis algorithm d . Every
arbitrary deterministic fundamental solution may be used as algorithm d . On the
basis of space and time discretization, fuzzy functional values x(s̃, θj , τi, ϕk) of the
function x(s̃, θ, τ, ϕ) are determined at points in space θj , time τi , and a realization
of ϕ

k
.

The numerical simulation is carried out with the aid of the α-level optimiza-
tion [7]. For fuzzy variables x̃ and fuzzy bunch parameter s̃ of the fuzzy functions
x(s̃, θ, τ, ϕ), an input subspace Eα is formed and assigned to the level α. By multi-
ple application of the deterministic analysis, the extreme values zα,l(θj , τi, ϕk) and
zα,r (θj , τi, ϕk

) of the fuzzy result variable z̃(θj , τi, ϕk) are computed. These points
are interval bounds of the α-level sets and enable the numerical description of the
convex membership function of the fuzzy result variable z̃(θj , τi, ϕk). For the com-
putation of z̃(θj , τi+1, ϕk

) at the time point τi+1, the procedure must be restarted at
τ = 0 due to the interaction within the mapping model.

Fuzzy stochastic analysis allows the mapping of fuzzy random input variables
onto fuzzy random result variables. The fuzzy stochastic analysis can be applied for
static and dynamic structural analysis and for assessment of structural safety, dura-
bility as well as robustness. Two different approaches for computation of the fuzzy
random result variables have been developed. The first variant (Fig. 7.5) bases on
the bunch parameter representation of fuzzy random variables by [16]. The second
variant utilizes the lαrα-representation of fuzzy random variables. The variant to
be preferred depends on the engineering task, the available uncertain data and the
aspired results [10].

The fuzzy stochastic analysis is called fuzzy stochastic finite element method
(FSFEM), if the deterministic dynamical analysis is based on a finite element (FE)
model.
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4 Deterministic Dynamical Analysis of RC Structures

4.1 1D-Beams

Plane and spatial beam structures are called 1D-structures. For the physical non-
linear analysis, the cross-sections of the beams are subdivided into layers (plane
structures) or fibers (spatial structures). In contrast to the widespread finite element
formulations, solutions based on the differential equations for the straight or imper-
fectly straight beam also exist. A respective approach for plane beam structures is
presented here.

The geometrical and physical nonlinear analysis of plane reinforced concrete,
prestressed concrete, and steel beam structures is chosen as fundamental model
[14]. The beams are subdivided into integration sections, the cross-sections are sub-
divided into layers. On this basis, an incrementally formulated system of second
order differential equations for the straight or imperfectly straight beam is solved

[
dΔz(θ1)

dθ1

][k]
(n)

=A(θ1, z)(n−1) ·Δz(θ1)[k](n) +Δb(θ1)[k−1]
(n)

+ d(θ1)(n−1) ·Δż(θ1)[k](n) +m(θ1)(n−1) ·Δz̈(θ1)[k](n) (7.12)

where [k]—counter of iteration steps; (n)—counter of increments; θ1—bar coordi-
nate; Δ—increment; z = {z1, z2} = {uvφ;NQM}—vector of structural responses;
A—matrix of coefficients (constant within the increment); b—“right hand side”
of the system of differential equations with loads and varying parts resulting from
geometrical and physical nonlinearities as well as with forces from unbonded pre-
stressing; d—damping matrix; and m—mass matrix.

The implicit nonlinear system of differential equations for the differential beam
sections is linearized by increments. All geometrically and physically nonlinear
components in the Δb-vector are recalculated after every iteration step, and the A-,
d-, and m-matrix are recalculated after the completion of the iteration within the
increment.

The solution of the system of differential equations by a Runge–Kutta integration
results in the system of differential equations

KT (n−1) ·Δv[k](n) +DT (n−1) ·Δv̇[k](n) +MT (n−1) ·Δv̈[k](n)
=ΔP (n) −Δ

o

F
[k]
(n) +ΔΔF(n−1) (7.13)

of the unknown incremental displacementsΔv, velocitiesΔv̇, and accelerationsΔv̈
of the nodes.

4.2 2D-Folded Plate RC Structures

Shells, folded plates, shear panels and plates are called 2D-structures. Here, we fo-
cus on folded plates which represent the general case for plane 2D structures. They
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Fig. 7.6 MRM discretization and kinematics

can further be applied to approximate the shape of slightly curved structures. The in-
ternal forces are related to the reference plane, which is not stringently the midplane.
The cross-section is subdivided into layers to describe the physical nonlinear behav-
ior of reinforced concrete. Over the past years, a new strengthening technology for
damaged RC structures has been developed. The thin strengthening layers consist of
fine-grained concrete reinforced with textiles made of AR-glass or carbon, see e.g.
[1] and [18]. The classical layered model with one reference plane for folded plate
structures is enhanced to take into account the later applied strengthening layers.

An extended layer model with specific kinematics, the so-called multi-reference-
plane model (MRM), is used to describe the load-bearing behavior of RC construc-
tions with textile strengthening. The MRM consists of concrete layers and steel re-
inforcement layers of the old construction, the strengthening layers comprised of the
inhomogeneous material textile concrete (TRC), and the interface layers (Fig. 7.6).
This multilayer continuum has the following kinematic peculiarities. Due to the
fact that the modification of the concrete layer thickness is very small and can
be neglected, we have ε33 = 0. Furthermore, the transverse shear stresses in the
concrete layers have no significant influence on the deformation, which means that
ε13 = 0 and ε23 = 0 can be set to zero. The deformation state of the concrete layers
may be described by Kirchhoff kinematics. The independent degrees of freedom are
assigned to a reference plane which can be selected arbitrarily.

The very thin strengthening layers are subject to the same kinematic assumptions.
Kirchhoff kinematic with a reference plane is also assigned to each strengthening
layer. The independent degrees of freedom of the strengthening layer lie in the ref-
erence plane. The bond between the layers of reinforced concrete and an arbitrary
strengthening layer is modeled by an interface. The interface is an immaterial layer
of zero thickness. The bonding state is assessed with the help of the relative displace-
ments Δv1,Δv2,Δv3 between the contact surfaces. In conjunction with a bonding
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matrix, the relative displacements enable assumptions regarding delamination and
shear failure.

The FE discretization of the MRM is based on the functional of the complemen-

tary energy extended by the static transition conditions Δp̃−
+
p̃= 0 to Orp and the

equilibrium conditions G̃ · σeel+
+
pe −ρe · v̈e = 0 in V e

Πmh =
∫ τ2

τ1

n∑
e=1

{∫
V e

[
wc

(
σ eel

)+ (
G̃ · σ eel+

+
pe −ρe · v̈e)T · ve]dV

+
∫
V e

(
σ eel

)T · εe0 dV −
∫
O
r,e
p

(
pr,e−

+
p̃ r,e

)T · vr,e dO

−
∫
O
r,e
v

(
pr,e

)T · +ṽ r,e dO
}
dτ (7.14)

withwc(σ eel)—internal complementary energy; G̃—matrix of differential operators;
+
p̃—external forces in V e; ρe—density in; v̈e—internal acceleration in V e; ρe; εe0—

initial strain; pr,e—internal forces in the boundary surface Or,ep ;
+
p̃ r,e—external

forces along the boundary surface Or,ep ; vr,e—displacements of the boundary sur-

face Or,ep ;
+
ṽ r,e—prescribed displacements of the boundary surface Or,ev ; τ—time.

After some transformations, the quasi-static part of the equilibrium conditions

(G̃ · σ eel+
+
pe) and the kinetic energy become visible in the mixed hybrid func-

tional

Πmh =
∫ τ2

τ1

n∑
e=1

{∫
V e

[
wc

(
σ eel

)+ (
G̃ · σ eel+

+
pe

)T · ve + 1

2
ρe · (v̇e)T · v̇e

]
dV

+
∫
V e

(
σeel

)T · εe0 dV −
∫
O
r,e
p

(
pr,e−

+
p̃ r,e

)T · vr,e dO

−
∫
O
r,e
v

(
pr,e

)T · +ṽ r,e dO
}
dτ. (7.15)

In extension to the static case [9, 18], this functional may be applied to a layered
continuum with dynamic loads. Following the procedure described in [9, 18], the
steady-state condition of the mixed hybrid functional

δΠmh,NC = 1

2
δ
(
d2Πmh

)

=
k∑
i=0

δ
(
d2((Ri)Πmh,NC))+

k∑
j=1

δ
(
d2((Ij )Πmh,NC))= 0 (7.16)

with
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(Ri)Πmh,NC =
∫ τ2

τ1

{
n∑
ei=1

(
1

2

si−1∑
m=0

[∫
V ei ,m

(
dσ
ei ,m
el

)T · dεei ,mel dV

+ 2
∫
V ei ,m

(
G̃ · dσ ei ,mel + d

+
p̃ ei ,m

)T · dvei ,m dV

+
∫
V ei ,m

ρei ,m · (dv̇ei ,m)T · dv̇ei ,m dV

+ 2
∫
V ei ,m

(
dσ
ei ,m
el

)T · dεei ,m0 dV

]

−
∫
(Ri )O

r,ei
p

(
dpr,ei − d

+
p̃ r,ei

)T · dvr,ei dO

−
∫
(Ri )O

r,ei
v

(
dpr,ei

)T · d +
ṽ r,ei dO

)}
dτ (7.17)

(Ij )Πmh,NC =
∫ τ2

τ1

{
n∑

ej=1

∫
(Ij )O

ej
p

(
dIσ ej

)T

· ((j |j)dvr,ej − (j−1|j)dvr,ej−1
)
dO

}
dτ (7.18)

for a layered continuum with k layers is obtained from Eq. (7.15). Equation (7.17)
describes the functional for the sub-element Ri whereas Eq. (7.18) depicts the func-
tional for the interface Ij . Compared to [9, 18] Eqs. (7.16), (7.17) and (7.18) are
extended by inertial forces. In order to account for physical nonlinearities of the
layered continuum, the layer i with the reference plane Ri is subdivided into si
sub-layers in Eq. (7.17).

On the basis of Eq. (7.16), the differential equation of motion can be derived.
Thereby, the same stress shape functions, the same boundary displacement shape
functions and the same element displacement shape function are chosen within all
layers of the continuum. The stress shape functions are chosen in such a way, that
they fulfill strongly the quasi-static part of the equilibrium conditions

G̃ · dσei ,mel + d
+
p̃ ei ,m = 0. (7.19)

The evaluation of the steady-state condition, Eq. (7.16) yields the MRM element
and leads to the differential equation of motion

K̃T · dq̃ + M̃ · d ˜̈q − dR̃− dRK = 0 (7.20)

with K̃T—tangential system stiffness matrix, M̃—system mass matrix, dR̃, dRK—
differential load contributions, and q̃—nodal displacement degrees of freedom. The

matrix K̃T and the vectors dR̃, and dRK are identical to the corresponding values
of the hybrid procedure in [9]. The system mass matrix M̃ is specified in [19].
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Fig. 7.7 Eight-node solid
element with embedded
reinforcements

4.3 3D-Compact RC Structures

Hybrid eight-node hexagonal solid elements for the physical linear static analysis
are described in [12]. For the physically nonlinear analysis of reinforced concrete
and textile reinforced concrete (TRC), respectively, two kinds of reinforcement are
introduced—single fibers and fiber layers (see Fig. 7.7). The formulation of the
hybrid eight-node hexagonal solid element with embedded (textile) reinforcement
is outlined in the following.

Starting point is the functional of Hellinger–Reissner

ΠHR =
∫
V

(
σT · (G · v)− 1

2
σT · ε− +

p TV · v
)
dV −

∫
Op

+
p T · v dO (7.21)

with σ, ε, v—stresses, strains and displacements in the volume V ,
+
p TV—external

forces in V and
+
p T—external forces along the boundary surfaceOp , and the matrix

of differential operators G.
Based on it, the Hamilton functional is build

H = δ
∫ τ2

τ1

(K −ΠHR)dτ = δ
∫ τ2

τ1

(
1

2

∫
V

ρ · (v̇)T · v̇ dV −ΠHR
)
dτ (7.22)

with the kinetic energy K .
The physical nonlinear analysis of reinforced concrete is a non-conservative

problem arising e.g. from crack formation, nonlinear material behavior, bonding and
damage. In order to solve this non-conservative problem, a differential load change
is considered. Under such load change, the existence of a potential is assumed. The
differential load change leads to a transition of the structure from the basic condition
to a differentially adjacent neighboring condition (NC). The steady-state condition
of the neighboring condition is therefore

δHNC = 1

2
δ
(
d2H

)= 0 (7.23)

with
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HNC =
∫ τ2

τ1

(
1

2

∫
V

ρ · (dv̇)T · dv̇ dV

−
∫
V

(
dσT · (G · dv)− 1

2
dσT · dε− d+p TV · dv

)
dV

+
∫
Op

d
+
p T · dv dO

)
dτ. (7.24)

The continuum is subdivided into n finite 3D elements. The volume V e of one
finite 3D element e consists of the matrix volume V em and the reinforcement vol-
ume V eb . Single fibers (sf) and fiber layers (fl) are taken into account. The volume
of the reinforcement V eb consists then of nsf single fibers and nf l fiber layers. For a
function F (e.g. stresses, strains, displacements) holds∫

V e
F dV =

∫
V em

Fm dV +
∫
V eb

Fb dV =
∫
V e
Fm dV +

∫
V eb

Fb dV −
∫
V eb

Fm dV

=
∫
V e
Fm dV +

nsf∑
i=1

∫
V
e,i
sf

F
e,i
sf dV +

nf l∑
j=1

∫
V
e,j
f l

F
e,j
f l dV

−
nsf∑
i=1

∫
V
e,i
sf

F e,im dV −
nf l∑
j=1

∫
V
e,j
f l

F
e,j
m dV . (7.25)

With Eq. (7.25), the reinforcement is taken into account in Eq. (7.24).

5 Model Reduction

The computational cost of a fuzzy stochastic structural analysis of RC structures
under dynamic loads is almost completely caused by the nonlinear FE analysis.
Thus, the most effective measure to increase the numerical efficiency is to replace
the costly deterministic computational model (innermost loop in Fig. 7.5) by a fast
approximation solution based on a reasonable amount of initial deterministic com-
putational results. The fuzzy stochastic analysis can then be performed with that
surrogate model, which enables the utilization of an appropriate sample size for the
simulation. The surrogate model is designed to describe a functional dependency
between the structural parameters x and the structural responses z in the form of a
response surface approximation

z= fRS(x). (7.26)

For response surface approximation, a variety of options exist (see [11, 17]). The
suitability of the particular developments primarily depends on the properties of
the computational model. Due to the very general properties of the FE analysis
in structural analysis of textile strengthened RC structures, which can hardly be
limited to convenient cases, a high degree of generality and flexibility of the ap-
proximation is demanded. In this context, an artificial neural network provides a
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Fig. 7.8 3D pictorial view of
the upgraded structure with
scheme of the bracing system
configuration

powerful basis for response surface approximation. This approach can extract in-
formation from initial deterministic computational results and can subsequently re-
produce the structural response based on the extracted information only. Accord-
ing to the universal function approximation theorem, artificial neural networks are
capable of uniformly approximating any kind of nonlinear functions over a com-
pact domain of definition to any degree of accuracy. There is virtually no restric-
tion for a response surface approximation with the aid of artificial neural net-
works.

In the case, that the global structural behavior is dominated from few eigen
modes, the number of degrees of freedom can be reduced. In the following example,
a simplified 2-DOF model is used as equivalent system for the whole structure.

6 Example

6.1 Investigated Structure

The investigated building (Fig. 7.8) has a rectangular plan whose dimensions are
10.80 × 20.40 m2. The elevation of the first floor is 7.40 m, whereas the second
one is at 11.10 m. It is characterized by a RC structure framed in the longitudinal
direction only and is designed against vertical loads without account for seismic
action. Columns and beams have rectangular 40× 50 cm2 and 40× 70 cm2 cross-
sections, respectively. The T-shaped hollow tile RC floors have a 6 cm thick concrete
slab, so that the total depth of the first floor is 36 cm, whereas the second, at the roof
level, is 30 cm.

In [5], the results of the vulnerability evaluation have been published. Thereby,
a three-dimensional FEM model with beam elements of the structure has been cre-
ated considering floors like rigid diaphragms in the horizontal plane. Two nonlinear
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Fig. 7.9 Deformed shapes of
the fundamental vibration
modes for one principal
direction

static analyses and a set of linear and nonlinear time history analyses have allowed
to evaluate the vulnerability of the structure in the as-built condition and the ef-
fectiveness of the upgrading interventions. First of all, a calculation of the natural
frequencies of the system has been carried out. Relevant values are 2.075 s−1 in
Θ1 direction (longitudinal, see Fig. 7.9) and 0.796 s−1 in Θ2 direction (transverse).
The mass participation factors are higher than 95% for such modes, so that the
structure can be assumed as a matter of fact as made of two mutually independent
SDOF systems in both Θ1 and Θ2 direction. This consideration assumes relevance
in the determination of the optimal value of the damping devices. In fact, a de-
sign procedure for viscous devices based on simplified 2-DOF system can be used
when the structural dynamic behavior can be interpreted through two SDOF systems
[2, 6].

A peak ground acceleration (PGA) of 0.25 g has been assumed in the analysis,
considering the combination of site effect and the importance of the structure with
regard to collapse.

The time history analysis has shown an excessive deformability of the origi-
nal structure, not compatible with the structural safety and immediate occupancy
requirement after seismic events [3, 4]. The assumed upgrading interventions are
aimed at reducing the lateral floor displacements of the structure by means of steel
braces fitted with additional energy dissipation devices. Such devices connect the
original structure at the first floor level with rigid steel braces and act due to the
relative displacements occurring between the original structure and the steel braces.
The study, presented in this paper, has been carried out considering the connec-
tion with purely viscous devices. As shown in [5], the reduction of horizontal floor
displacements obtained thanks to the addition of this kind of devices is greater
than the one obtained with a rigid connection of the original structure to the steel
braces.
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Fig. 7.10 Fuzzy
load-displacement
dependency of the existing
RC frame structure

6.2 Uncertain Input Parameters

No technical documentation regarding the history of the structure is available, apart
from the period of erection, which can be dated at the end of the 60’s of XX century,
on the basis of oral testimony.

Because of the lack of technical data and in order to find information about, the
quality of structural materials, some characterization tests have been carried out on
concrete core bored specimens and steel bars taken out of the structure. In result of
the tests, the mechanical resistance of concrete is evaluated by means of fuzzy quan-
tities. The concrete compressive and tensile strength are modeled as fuzzy triangular
numbers f̃ck = 〈14,16.5,20〉 N/mm2 and f̃t = 〈1.5,2.0,2.5〉 N/mm2, respectively.
A magneto-metric survey has been also carried out in order to locate the position
and the diameter of steel bars in beams and columns. For the numerical study, twelve
steel bars with a fuzzy cross-sectional area Ã= 〈2.69,3.14,3.21〉 cm2 are consid-
ered. In order to assess the seismic vulnerability of the existing structure, nonlinear
static analyses have been carried out under consideration of fuzzy resistance vari-
ables. The response of the as-built structure along both principal directions has then
been evaluated in terms of fuzzy capacity curves F-d (Fig. 7.10). These curves have
been represented in an approximate way by means of equivalent SDOF nonlinear
relationships. Thereby, the kernel curve with μ(d(F ))= 1 is scaled according to

d̃(F )= 1.0d(F )+ ã · F (7.27)

with ã = 〈−3.3,0.0,6.0〉10−3. The steel braces are also modeled as SDOF sys-
tem with fuzzy stiffness K̃ and fuzzy mass M̃. Two variants are investigated espe-
cially: Variant 1 K̃1 = 〈39,40.8,43〉 MN/m with M̃1 = 〈1.1,1.3,1.5〉 t and Vari-
ant 2 K̃1 = 〈50,52.5,55〉 MN/m with M̃1 = 〈1.2,1.55,1.8〉 t. The uncertainty of
the viscosity cx of the connecting devices is with a fuzzy scaling factor according to
c̃= b̃ · cx with b̃= 〈0.9,1.0,1.1〉.
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Fig. 7.11 Acceleration of the
Taiwan earthquake scaled to
PGA value of 0.25 g

Fig. 7.12 Realization of the
fuzzy displacement-time
dependency due to the
Taiwan earthquake

Fig. 7.13 Fuzzy top
displacement in dependency
of the viscosity

6.3 Fuzzy Structural Analysis

Nonlinear time-history analyses of the simplified 2-DOF system have then been per-
formed considering the seismic input of Taiwan (1999) earthquake, scaled to PGA
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value of 0.25 g. Figure 7.11 displays the time-history of the ground acceleration
of the Taiwan earthquake. The fuzzy maximum displacement ṽT D at the top of the
structure has been calculated on the basis of the fuzzy displacement-time depen-
dency, as shown for one realization in Fig. 7.12. The parameter study with variation
of the viscosity of damping devices yields a fuzzy function ṽT D(cx) as presented in
Fig. 7.13 for the Taiwan earthquake.
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Chapter 8
Application of Interval Fields for Uncertainty
Modeling in a Geohydrological Case

Wim Verhaeghe, Wim Desmet, Dirk Vandepitte, Ingeborg Joris,
Piet Seuntjens, and David Moens

Abstract In situ soil remediation requires a good knowledge about the processes
that occur in the subsurface. Groundwater transport models are needed to predict the
flow of contaminants. Such a model must contain information on the material lay-
ers. This information is obtained from in situ point measurements which are costly
and thus limited in number. The overall model is thus characterised by uncertainty.
This uncertainty has a spatial character, i.e. the value of an uncertain parameter can
vary based on the location in the model itself. In other words the uncertain parame-
ter is non-uniform throughout the model. On the other hand the uncertain parameter
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does have some spatial dependency, i.e. the particular value of the uncertainty in one
location is not totally independent of its value in a location adjacent to it. To deal
with such uncertainties the authors have developed the concept of interval fields.
The main advantage of the interval field is its ability to represent a field uncertainty
in two separate entities: one to represent the uncertainty and one to represent the
spatial dependency. The main focus of the paper is on the application of interval
fields to a geohydrological problem. The uncertainty taken into account is the ma-
terial layers’ hydraulic conductivity. The results presented are the uncertainties on
the contaminant’s concentration near a river. The second objective of the paper is
to define an input uncertainty elasticity of the output. In other words, identify the
locations in the model, whose uncertainties influence the uncertainty on the output
the most. Such a quantity will indicate where to perform additional in situ point
measurements to reduce the uncertainty on the output the most.

1 Introduction

In recent years, the study of uncertainties in numerical modeling has gained a lot of
attention. Probabilistic and non-probabilistic methods were developed for dealing
with scalar parameter uncertainties. However, scalar parameter uncertainties are not
the only kind of uncertainties influencing numerical models. Often scalar parameter
uncertainties represent uncertainties that have uncertainty on a smaller scale spatial
dimension too. The spatial influence of such uncertainties is often neglected, as it is
assumed captured by assumptions of uniformity and homogeneity. This neglect is
not without reasons, for a thorough discretisation of an uncertain property over the
spatial domain would result in an explosion of independent uncertainties and thus a
drastic increase in the computation time for the uncertainty analysis. However, a go-
between approach is possible when certain patterns describing the spatial behaviour
of an uncertainty are available. Taking into account the patterns reduces the explo-
sion of uncertainties in going from one spatially uniform uncertainty to a thorough
discretisation of the spatial domain. The authors have developed an interval field
approach [6] to formalize these notions.

The paper first presents the general problem of interval finite element analysis
and the interval field approach to it. Secondly, a section details the choice of cer-
tain spatial patterns in the interval field approach, based on random field analogies.
Next, the concept of input uncertainty elasticity of the output is introduced in the
context op spatial uncertainties. In the next section the geohydrological problem is
introduced and the obtained results are presented. The paper concludes with some
suggestions for further research.

2 Interval Finite Element and Interval Field Analysis

This section first describes the general concept of Interval Finite Element (IFE) anal-
ysis and the method used to deal with it. Next the interval field concept is introduced
to deal with dependent uncertain quantities.
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2.1 Interval Finite Element Analysis

Generally an IFE problem can be represented by [5]:

ys = {
y | (x ∈ xI

)(
y= f (x))} (8.1)

with xI the interval vector representing the bounds on the input uncertainties and
f (x) the function representing the input-output relationship. The solution is ex-
pressed as a set ys , rather than an interval vector yI to stress that certain value
combinations of components within a hypercubic approximation of the uncertain
vector result y are not necessarily physically coherent. However in most cases the
individual ranges of only some components of y are really of interest. Several im-
plementation strategies for interval numerical analysis have been proposed. Because
global optimisation based strategies yield physically correct results, they are more
and more acknowledged as the standard approach for non-intrusive IFE analysis.
The core of this analysis (the f (x)) is a black-box FE calculation which can roughly
be any analysis (for example a static or dynamic structural analysis, but also a heat-
conductivity problem, hydrogeological problem or vibro-accoustic problem), lim-
ited only by the capabilities of the FE solver. The global optimisation based solu-
tion strategies actively search in the non-deterministic input interval space for the
combination that results in the minimum or maximum value of an output quantity.
In theory, the global optimisation approach results in the exact interval vector.

However, despite the smooth behaviour of typical objective functions, the com-
putational cost of the global optimisation based approach remains high. Hence, most
research on this method focuses on fast approximate optimisation techniques. The
approximating technique used in this paper starts by building a Kriging response
surface based on a number of initial sample points. From this preliminary response
surface the optimal additional samples are determined by focusing on the location of
the possible extremes of the approximated output quantity in the uncertainty space
[2]. The response surface is thus improved by additionally sampling the core FE-
model till a pre-specified maximum number of samples are taken. Subsequently,
global optimisation and anti-optimisation is performed on this response surface
model to yield the bounds on the considered output quantity. For a thorough dis-
cussion of this adaptive response surface optimisation method, the interested reader
is referred to [1].

For completeness the extension of an interval number to a fuzzy set is presented.
A fuzzy set [12] is a set in which every member has a degree of membership, rep-
resented by the membership function μx(x), associated with it. If μx(x) = 1, x is
definitely a member of the fuzzy set. If μx(x) = 0, x is definitely not a member
of the fuzzy set. Analysis using fuzzy sets is very often done by using so-called
α-cuts. An α-cut contains all the x for which μx(x) > α is true. These α-cuts are
essentially classical intervals, which means that the interval analysis is the basis of
a fuzzy analysis.
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2.2 Interval Fields

The interval field framework as developed in [6] has an explicit and an implicit
implementation. For the application presented here the explicit implementation is
needed.

For a spatially dependent uncertainty, the interval vector xI containing an inde-
pendent interval component for every spatial location is not a realistic description.
Furthermore, it would result in an unfeasibly high dimensional optimisation prob-
lem. To describe spatially dependent variation, numerical modelling approaches of-
ten use some type of shape functions (e.g. the modes used to represent the dynamic
behaviour of a structure using the modal superposition technique). The actual solu-
tion is a linear combination of these shape functions.

Accordingly, the explicit interval field xF is defined as a superposition of nb base
vectors ψ i using interval factors αIi :

xF =
nb∑
i=1

αIx,iψx,i (8.2)

The base vectors represent a limited set of reference patterns over the spatial domain,
each of which is scaled by an interval factor. The components of the interval fields
themselves (the local value of the uncertainty) are coupled through the reference
patterns. Once the reference patterns are chosen, the definition of the interval field
requires the specification of the interval factors that define the field on x, which can
be assembled in a classical (hypercubic) interval vector αIx . In matrix notation, the
interval field is denoted as:

xF = [ψx]αIx (8.3)

The application of an explicit interval field on the input side of an analysis is rather
straightforward. Since expert knowledge about the modelled system dominates the
definition of the uncertainties, the freedom in choosing the base vectors is ideal
to reflect this knowledge (for example: the sinusoidal (= base vector) deviation of
the thickness of a rolled plate with uncertain amplitude (= interval factor)). The
main limitation of the explicit interval field is that its definition only allows a linear
relation between the base vectors and the interval factors.

The application of an explicit interval field on the output side of an analysis is less
straightforward. The base vectors and interval factors are determined by the anal-
ysis itself. Furthermore, in order to obtain an explicit interval field that introduces
no conservatism in its derived response variables (i.e. derivatives of the primary re-
sponse variables), the output interval factors should be completely independent. An
analysis of the application of the interval field approach to the output of static FE
analysis is presented in [10].

Once the spatially dependent uncertainty on the input side of an analysis is de-
fined by means of an explicit interval field, the dimensions of the uncertainty space
are drastically reduced. This allows for the use of the adaptive response surface
technique as described in the above subsection.
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3 The Choice of Base Vectors

The use of the explicit interval field on the input side of an analysis requires the
selection of appropriate base vectors and interval factors. This section first presents
the factors influencing the selection of these base vectors and interval factors. The
choice for base vectors and interval factors based on random field expansions is
explained in the next subsection.

3.1 Factors Influencing the Choice of Base Vectors

• The bounds on the uncertainty on a model parameter x are specified by two func-
tions of the spatial coordinate r, one function for the upper bound x(r) and one
for the lower bound x(r) of the uncertainty. The linear combination of the base
vectors with the interval factors that makes up an interval field must remain within
these bounds for any value of the interval factors.

• The base vectors must represent the expert’s knowledge of the spatial dependency
of the model parameter. Most often knowledge about this dependency is limited
and the set of base vectors preferably allows for a range of small and large scale
dependency.

• The number of base vectors and corresponding interval factors to represent the
input uncertainty will influence the calculation time to get the output uncertainty.

3.2 Base Vectors Derived from Random Field Expansion

In an attempt to construct a base vector set that takes into account the above de-
scribed factors, the expansion of a random field is studied.

The objective of a random field is to represent a spatial variation of a specific
model property by a stochastic variable defined over the region on which the vari-
ation occurs [9]. A random field can thus be denoted as H(r, θ) with r the spatial
coordinate and θ the outcome of a random phenomenon. A random field is a random
variable for a given r0 and is a realization of the field for a given θ0. The specification
of a random field generally comes down to the specification of the spatial evolution
of the first two statistical moments of the field variable and a corresponding covari-
ance function, expressing the spatial dependency of the field variable. In most cases
the random field is considered to be weakly stationary, resulting in a constant for
the first few statistical moments throughout the spatial domain (i.e. zero mean and
unit variance). Furthermore the covariance function for weakly stationary random
fields depends only on the distance between observation points, not on their actual
location.

The application of the concept of random fields in a numerical modelling frame-
work requires some sort of discretisation of the spatially varying stochastic field
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over the defined geometry. A good overview of methods can be found in the report
by Sudret and Der Kiureghian [8]. The technique studied here is the Karhunen-
Loève expansion [3] that has gained particular attention in literature. This approach
is based on the spectral decomposition of the autocovariance function CHH (r1, r2).
The set of deterministic functions over which any realization of the field H(r, θ0) is
expanded is defined by the eigenvalue problem:∫

ω

CHH (r1, r2)ϕi(r1) dωr2 = λiϕi(r) (8.4)

with ω the spatial domain and i = 1, . . . . Once the eigenfunctions are found, the
zero-mean random field can be expressed as:

H(r, θ)=
∞∑
i=1

√
λiξi(θ)ϕi(r) (8.5)

with {ξi} a set of orthonormal random variables. In stochastic analysis, this expan-
sion is truncated after N terms to reduce the computational costs.

Several features of the random field expansion can be used in the interval field
implementation after some adaptations. To begin, an off-set function fmid(r) to de-
scribe the mid value of the model parameter throughout the spatial domain is calcu-
lated

xmid(r)= x(r)+ x(r)
2

(8.6)

The eigenfunctions ϕi(r) of the covariance function are then used as base vectors
ψ i (r) for the interval field with

ψ i (r)= λiϕi(r)
∣∣ϕi(r)∣∣ (8.7)

and replacing the orthonormal random variables {ξi} by interval factors αIi ∈�−1 1�. These adaptations make sure that for N →∞ the interval field will as-
sign a value from the interval �−1 1� to the model parameter throughout the spatial
domain. This unit interval is then scaled by the difference function

xdif (r)= x(r)− x(r) (8.8)

describing the actual range of uncertainty on the model parameter for every location
in the model. The description of the model parameter by the interval field is thus

xF = xmid(r)+
N∑
i=1

(
λiϕi(r)

∣∣ϕi(r)∣∣αIi )(xdif (r)) (8.9)

With this equation the considerations from the first and last item in the list of in-
fluencing factors is accounted for. Next is the issue of uncertainty about the spatial
dependency.

The base vectors taken from the expansion of a random field with a given auto-
covariance function only take into account the given correlation length L. In [11]
a method is described to take into account interval correlation lengths with interval
fields. Essentially the method relies on building an interval field description for the
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base vectors themselves in the correlation length space using a limited number of
autocovariance functions. In this way the base vectors are depending on the corre-
lation length and can be calculated by a simple matrix vector product. The resulting
interval field for the model parameter can thus be summarised by

xF = xmid(r)+
N∑
i=1

(
λi(L)ϕi(r,L)

∣∣ϕi(r,L)∣∣αIi )(xdif (r)) L ∈ �Lmin Lmax�

(8.10)

This approach only introduces one additional interval to represent the uncertainty
about the amount of spatial dependency. The solution strategy to find the uncertainty
on the output remains the same, for example a response surface based optimisation
and anti-optimisation, with only one additional dimension in the uncertainty space.

4 Input Uncertainty Elasticity of the Output

To assess the relative importance of an input uncertainty on an output uncertainty,
the concept of input uncertainty elasticity of the output is introduced in general
terms and then applied to the case of spatial uncertainty.

4.1 General Concept

As in economics, an elasticity R is defined as the ratio of the relative change (more
precisely, the derivative with respect to some quantity) in one parameter Y to the
relative change in an other parameter X

RYX =
ΔY

ΔX

X

Y
(8.11)

Let Y be the range of the uncertain output and X be the range of the uncertain input.
The reduction (i.e. the Δ) on the range of the interval for the input X, will affect
the range of the interval for the output Y to a greater or lesser extent. The relative
magnitude of this influence is described by the input uncertainty elasticity of the
output RYX .

4.2 Spatial Uncertainty Context

In the context of spatial uncertainty, the influence of an input uncertainty on an
output uncertainty has a spatial component. The influence of an uncertain input pa-
rameter will depend on the spatial distribution of its uncertainty. Figure 8.1 shows
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Fig. 8.1 Concept to determine RYX in a spatial context

in a generic way the influence of the spatial uncertainty distribution. For an inves-
tigated spatial location the amount of uncertainty xdif (r) is reduced and some sort
of coherent distribution of the uncertainty is assumed over the spatial domain (as il-
lustrated at the top left in the figure). The uncertainty analysis is carried out for this
spatial uncertainty distribution and a resulting uncertainty (an interval) for the out-
put is found (bottom left). By repeating this for other investigated spatial locations,
one finds the combined result which is shown at the right of the figure. It presents
the different output uncertainties for several investigated spatial locations. This data
is then used to calculate the input uncertainty elasticity of the output over the spatial
domain. In this context the RYX is in particular useful to identify the spatial location
where an input uncertainty influences the output uncertainty the most. In allocating
resources to reduce the uncertainty, the spatial location with the highest RYX should
get priority.

An appropriate selection of the x(r) and x(r) is needed to make a study over the
spatial domain to give a scalar field of input uncertainty elasticities of the output.
Important choices to be made in the selection of x(r) and x(r) to investigate a
particular spatial location’s uncertainty influence are listed below. Figure 8.2 shows
x(r) and x(r) for three cases. The first case, at the left on the figure, is the reference
case. The two other cases illustrate particular choices for x(r) and x(r) explained in
the list below.

Important choices to be made in the selection of x(r) and x(r):

• the magnitude of the reduction of xdif (r) for the investigated spatial location.
The second case in Fig. 8.2 shows a reduction of 50% for xdif (0.2), the third
case shows a reduction of 90% for xdif (0.7).

• the magnitude of the reduction of xdif (r) in the local influence zone of the investi-
gated spatial location. By reducing the amount of uncertainty for the investigated
spatial location, the amount of uncertainty for the region around the investigated
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Fig. 8.2 Choices in the selection of x(r) and x(r)

spatial location is also affected. In this so called local influence zone, a transition
from the reduced amount of uncertainty to the reference amount of uncertainty is
needed. In this paper a quadratic transition is suggested.

• the magnitude of the local influence zone of the investigated spatial location. The
second case in Fig. 8.2 shows a zone of influence from −0.1 to +0.1 around the
investigated spatial location 0.2. The third case shows a zone of influence from
−0.3 to +0.3 around the investigated spatial location 0.7.

• the change in xmid(r). If x(r) and x(r) are not changed symmetrically with re-
spect to xmid(r) in the reference case, then xmid(r) is affected as well. For sim-
plicity this influence is not presented here.

These notions are explained further in the case study.

5 Geohydrological Case Study

A geohydrological case study was chosen to apply the above presented techniques.
The case study deals with a groundwater pollution problem where benzene was
spilled and is now being transported in groundwater to a river. To characterize the
flow and transport of the benzene spill, a groundwater flow and transport model was
built in HYDRUS3D. First, the problem together with its uncertainty is described
and the results of a fuzzy analysis without taking into account the spatial dependency
are presented. Next, the spatial dependency is introduced and an investigation of the
input uncertainty elasticity of the output is performed.
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Fig. 8.3 FE-model for solute and ground water flow showing the five different material layers

Table 8.1 Intervals for the
hydraulic conductivity K
[m/day], ordered from top to
bottom

Material Layer Minimum K Maximum K

1 1.4 2.1

2 8 12

3 3.6 5.4

4 2.6 3.9

5 4 6

5.1 Problem Description

The governing equation for solute transport in groundwater is a convection-diffusion
equation based on conservation of mass. Convection is determined by groundwater
flow which is based on the constitutive equation for variably saturated flow in porous
media, called the Darcy Buckingham equation. For the solute (the contaminant:
Benzene) and ground water flow problem at hand the following input was given:

• FE-model (14661 nodes) for the HYDRUS3D [7] solver (see Fig. 8.3). The di-
mensions of the problem are 1100 m in the length direction and between 32 and
36.5 m in the depth direction. In the time domain a period of 11000 days (approxi-
mately 30 years) is calculated. A deterministic run of this model takes 10 minutes.

• Intervals for the material properties, i.e. the saturated hydraulic conductivity K
(see Table 8.1) of the five different material layers.

A river is situated at the left side of the domain (see the red ellipse on Fig. 8.3)
and the two sources of the contaminant are in the middle of the domain (see the red
arrows on Fig. 8.3). The requested output is the concentration of the contaminant
over time at the river given the uncertainties on the material properties.

5.2 Fuzzy Analysis Without Spatial Uncertainty

In the first fuzzy analysis, the uncertainty on the material properties is represented by
fuzzy numbers. The hydraulic conductivity of each layer is considered independent
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Fig. 8.4 The spatial fuzzy number in black solid line and a sample of it in dashed grey for the
hydraulic conductivity of material layer 1, assuming homogeneity

and modelled as a triangular fuzzy number with the given intervals (see Table 8.1)
as base and the mid value as the top of the triangle. In each material layer the hy-
draulic conductivity is considered homogeneous through space. Figure 8.4 shows
for example the spatial fuzzy number in black and a possible sample of the fuzzy
number in dashed grey for the hydraulic conductivity of material layer 1. Two types
of fuzzy analyses were performed:

• Reduced Transformation Method (TM) [4] with 5 alpha-cuts, resulting in 161
samples.

• An optimisation on a Kriging response surface (ARSM) [1] that was built using
32 initial latinhypercube samples and 32 additional samples.

Additionally, a reference Monte Carlo Simulation using 200 samples was performed
at each alpha-level, based on a uniform distribution within the interval at each alpha-
level Fig. 8.5 shows the fuzzy concentration through time for location 11 (at the
river, 3 m below the surface). In black solid line is the result of the reduced transfor-
mation method (5 ∗ 32+ 1 samples); in dotted grey line is the result of the optimi-
sation on a Kriging response surface (32 initial + 32 additional samples); in dashed
grey line is the result of the Monte Carlo Simulation (5 ∗ 200 samples). From these
results it is clear that the TM and ARSM results are close to each other. The MCS re-
sult, despite being the computationally most expensive, does not yield good results
for the maxima: the value given by the TM is an actual solution of the problem (i.e. a
genuine sample) and results in higher maxima. The ARSM has problems identifying
the proper minima since it tends to give negative (non-physical) results.
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Fig. 8.5 The fuzzy concentration at the river, 3 m below the surface

5.3 Fuzzy Analysis with Spatial Uncertainty

In this fuzzy analysis, only the uncertainty on the hydraulic conductivity in material
layer 1 is taken into account. The other hydraulic conductivities are set at their
minimal value. To model the spatial uncertainty for the hydraulic conductivity of
material layer 1, the following assumptions are made:

• The upper bound x(r) and lower bound x(r) are given by a constant, namely the
maximum and minimum of the interval given in Table 8.1.

• The base vectors are derived from an exponential autocovariance function

CHH(x1, x2)= e−|x1−x2|/L (8.12)

as described in Sect. 3.2. The first four eigenfunctions are used. Since a limited
number of base vectors is used, the upper and lower bound on the uncertainty
are not exactly satisfied throughout the domain. A scaling factor to adjust the
maximal possible value of the interval field in the spatial domain to the requested
bounds is applied. For a correlation length L= 500 m, the resulting base vectors
are shown in Fig. 8.6.

To check the influence of taking into account the spatial uncertainty, two analyses
(TM and ARSM) with the non-spatial uncertainty (i.e. uncertain, but homogeneous
hydraulic conductivity of material layer 1) are performed as well. In total, the fol-
lowing types of analyses were performed:

• non-spatial uncertainty, Reduced Transformation Method (TM) with 5 alpha-cuts,
resulting in 11 samples.
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Fig. 8.6 The spatial fuzzy number in black and the four base vectors for membership level 0 in
grey for the hydraulic conductivity of material layer 1, including spatial uncertainty

• non-spatial uncertainty, optimisation on a Kriging response surface (ARSM) that
was built using 6 initial latinhypercube samples and 12 additional samples.

• spatial uncertainty, with correlation length between 500 and 2000 m, optimisation
on a Kriging response surface (ARSM) that was built using 20 initial latinhyper-
cube samples and 30 additional samples.

Figure 8.7 shows the fuzzy concentration through time for location 11 (at the river,
3 m below the surface). The influence of taking into account the spatial uncertainty
results in slightly narrower fuzzy numbers. This suggests that assuming homogene-
ity for the hydraulic conductivity of material layer 1 gives conservative bounds on
the contaminant’s concentration for the studied case.

5.4 Input Uncertainty Elasticity of the Output

By performing an additional point measurement to determine the hydraulic conduc-
tivity in one location, the uncertainty on the contaminant’s concentration will be
reduced. To determine the optimal measurement location an input uncertainty elas-
ticity of the output is calculated. The following assumptions, referring to Sect. 4.2
and Fig. 8.8, are made:

• The magnitude of the reduction of the uncertainty for the considered measure-
ment location is a design parameter. By selecting a more accurate measurement
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Fig. 8.7 The fuzzy concentration at the river, 3 m below the surface

Fig. 8.8 The influence of a measurement in the middle of the domain on the bounds of the uncer-
tainty (in black) and the base vectors (in grey), with a zone of influence of 330 m to both sides of
the measurement location

device, the uncertainty remaining after measurement is a choice of the expert. In
Fig. 8.8 the influence of an increasing measurement accuracy on the bounds and
the base vectors is shown.
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Table 8.2 Parameters in the input uncertainty elasticity of the output analysis

Design Parameter Sampled values

Measurement location 110, 330 and 550 m from river

Measurement accuracy 50% reduction and 100% reduction of uncertainty

Uncertain Parameter Range

Extent of influence value chosen is 330 m

Correlation length �500 2000� m

• The magnitude of the reduction of the uncertainty in the local influence zone is an
uncertainty. fdif (r) increases from the value at the measurement location to the
reference value at the end of the local influence zone. In the presented analysis a
quadratic function of the distance to the measurement location is chosen.

• The magnitude of the local zone of influence is an uncertainty. What is the extent
of the influence of a measurement in one location on the rest of the spatial do-
main? Since a comparison between the input uncertainty elasticities of the output
for different locations is of interest, the magnitude of this local zone of influ-
ence is chosen to be a fixed value. In Fig. 8.8 the bounds and base vectors for an
influence up to 330 m to both sides is shown, as it is used in the analysis.

• The actual outcome of the measurement gives a value for fmid(r) in the mea-
surement location. Until the measurement is done, this is also an uncertainty that
influences the actual bounds on the output uncertainty. In the presented analysis
the value of fmid(r) is considered a constant and unchanged by a measurement.

To summarize: the measurement location and the accuracy of the measurement
are design parameters, whereas the influence of the measurement and the spatial
correlation length are uncertainties. For the influence of the measurement a fixed
magnitude is assumed and the correlation length is modelled as an interval. The
values used in the analysis are presented in Table 8.2. For a choice of the design
parameters, the uncertainty analysis was carried out using the ARSM method with
20 initial samples and 30 additional samples. The results are presented in Fig. 8.9.
The bounds on the contaminant’s concentration are presented for location 11 (at the
river, 3 m below the surface) at the end time of the simulation (approx. 30 years) as
a function of the measurement location and the accuracy of the measurement. Based
on this information the input uncertainty elasticity of the output is calculated using
Eq. (8.11) with X and Y respectively the range on the hydraulic conductivity and the
range on the contaminant’s concentration. The results are presented in Table 8.3, the
reference is the range on the uncertainty before measurement. From this Table 8.3
it becomes clear that performing an input uncertainty reduction (i.e. a measurement
of the hydraulic conductivity in material layer 1) at 110 m from the river provides
the greatest reduction in uncertainty on the output (i.e. the concentration of the con-
taminant at the considered location and time). Furthermore, for this measurement
location increasing the uncertainty reduction from 50% to 100% will not decrease
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Fig. 8.9 The results of the uncertainty analysis to determine the input uncertainty elasticity of the
output

Table 8.3 The input
uncertainty elasticity of the
output

Measurement
accuracy [-]

Measurement location [m]

110 330 550

0.5 0.33 0.10 0.20

1.0 0.21 0.15 0.13

the uncertainty on the output with the same amount. In other words, a measurement
with an uncertainty reduction of 50% will have a 0.33

0.21 =̃1.5 times higher relative un-
certainty reduction on the output than a measurement with an uncertainty reduction
of 100%. For a measurement at 330 m from the river the inverse is true: the extra
effort of reducing the input uncertainty from 50% to 100% gives a 1.5 times higher
relative uncertainty reduction on the output. Based on this information and knowl-
edge of the actual costs of a measurement campaign an informed decision can be
made concerning where and how accurate to measure.

6 Conclusion

From a methodological point of view, the paper introduces interval fields as an easy
conceptual tool to deal with spatial uncertainty. The implementation of the interval
field based on correlation length is made possible by deriving certain base vectors
from the random field expansion technique. This allows for taking into account un-
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certainty on the correlation length. Furthermore, the concept of input uncertainty
elasticity of the output is introduced in a spatial uncertainty context.

From an applied point of view, the paper shows the applicability of the interval
field to a geohydrological problem of realistic complexity. The adaptive response
surface technique proves to be very useful in practice. Certainty on the value of the
correlation length often is a problem. The feasibility of dealing with the correlation
length as an interval is shown. The concept of input uncertainty elasticity of the
output in a spatial uncertainty context is proven to be useful to determine the optimal
location of a measurement (i.e. an uncertainty reduction) to reduce uncertainty on
the output.
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Chapter 9
Enhanced Monte Carlo for Reliability-Based
Design and Calibration

Arvid Naess, Marc Maes, and Markus R. Dann

Abstract This paper extends the recently developed enhanced Monte Carlo ap-
proach to the problem of reliability-based design. The objective is to optimize a
design parameter(s) so that the system, represented by a set of failure modes or
limit states, achieves a target reliability. In a large majority of design and/or calibra-
tion contexts, the design parameter α itself can be used to parameterize the system
safety margin M(α). The lower tail of this random variable behaves in a regular
way and is therefore amenable to straightforward parametric analysis. In contrast
to the original Naess et al. method (Naess et al. in Struct. Saf. 31:349–355, 2009),
the intention is to estimate the value αT that corresponds to a (very) small target
system failure probability pfT . Monte Carlo sampling occurs at a range of values
for α that result in larger failure probabilities, and so the design problem essentially
amounts to a statistical estimation of a high quantile. Bounds for αT can easily be
constructed. Several examples of the approach are given in the paper.

1 Introduction

A new Monte Carlo (MC) based method for estimating system reliability was re-
cently developed in [1]. The aim of this method is to reduce computational cost
while maintaining the advantages of crude MC simulation, specifically, its ease in
dealing with complex systems. The key idea is to exploit the regularity of tail prob-
abilities to enable an approximate prediction of far tail failure probabilities based on
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small Monte-Carlo sample results obtained for much more moderate levels of reli-
ability. The motivation behind this approach is that systems with multiple and com-
plex failure modes or limit states are often exceedingly difficult to analyze using tra-
ditional methods of structural reliability. While direct MC does not suffer from this
problem, it is computationally burdensome for small probabilities. Hence originates
the idea of sampling in a different less reliable range and performing a statistical
extrapolation unto the tail. A similar but somewhat different idea is presented in [2].

The fundamentals of the method proposed in [1] are as follows. A safety mar-
gin M = G(X1, . . . ,Xn) expressed in terms of n basic variables, is extended to a
parameterized class of safety margins using a scaling parameter λ (0≤ λ≤ 1):

M(λ)=M − (1− λ)μM. (9.1)

The failure probability is then assumed to behave as follows:

pf (λ)= Prob
(
M(λ)≤ 0

) ≈
λ→1

q(λ) exp
{−a(λ− b)c}, (9.2)

where the function q(λ) is slowly varying compared with the exponential function
exp{−a(λ− b)c}. It may be pointed out that the assumed behaviour of the failure
probability applies to any safety margin for which FORM or SORM approximations
can be used, but actually its range of applicability is much wider than that.

Clearly, the target failure probability pf = pf (1) can be obtained from values
of pf (λ) for λ < 1. It is now far easier to estimate the (larger) failure probabilities
pf (λ) for λ < 1 accurately than the target value itself, since they are larger and
hence require less simulations. Fitting the parametric function given by Eq. (9.2)
for pf (λ) to the estimated values would then allow us to provide an estimate of the
target value by extrapolation. The viability of this approach is demonstrated by both
analytical and numerical examples in [1] and [3].

In the next sections, the Naess et al. [1] approach is extended to reliability-based
design and calibration.

2 Using Enhanced Monte Carlo to Optimize a Design Parameter

First consider a typical component design, the reliability of which is governed by
the safety margin:

M(α)=G(X1, . . . ,Xn;α) (9.3)

with

pf (α)= Prob
(
M(α)≤ 0

)
, (9.4)

where α acts as a design factor which “controls” the reliability of the component.
The objective is now to determine the (assumed to be unique) value of α = αT that
corresponds to a specified (target) component failure probability pfT , i.e.:

αT : Prob
(
M(αT )≤ 0

)= pfT , (9.5)

This assumes that the function pf (α) is a monotonic function, that is, that the
safety of the system either strictly increases or strictly decreases as the design factor
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α increases and approaches αT . In practical design situations, α may represent a
safety factor, a partial load or resistance factor, or some exceedance level and, the
condition of monotonicity is generally speaking satisfied, unless the problem relates
to a poor or an unfeasible design.

A more general situation, typical in the context of calibration of design specifi-
cations, consists of having the safety margin controlled by a design check function
c(α) = c(x1c, . . . , xnc;α) involving characteristic values xic of each basic variable
Xi . Admissible designs are such that c(α) ≤ 0. Minimal acceptable designs are
marked by c(α) = 0, an assumption which is made throughout this paper. Often
the design check function c(α) is selected to be the same mathematical function
as G but this is not required—all that matters is that the resulting safety margin
M(α)=G(X1, . . . ,Xn|c(x1c, . . . , xnc;α)= 0) is monotonic with respect to α in its
approach to the target αT . Hence the objective is to determine αT as follows:

αT : Prob
(
G
(
X1, . . . ,Xn|c(x1c, . . . , xnc;αT )= 0

)≤ 0
)= pfT . (9.6)

Typically, pfT is a very small target probability and hence the behavior of pf as
a function of α is similar to a deep tail estimation problem so that it is reasonable to
assume that:

pf (α) ≈
α→1

q(α) exp
{−a(α − b)c}, (9.7)

where q(α) is slowly varying compared to the exponential expression.
To illustrate this premise, consider a basic load and resistance safety margin

M(α) = R(α) − S controlled by a design check function c(α) = (rc(α)/α) − sc ,
where rc and sc are characteristic values of a resistance R and a load S, and α acts
as a partial resistance factor (α > 1). Assume the load S is Weibull distributed with
exponent d and scale parameter s0, then the characteristic load sc at its (1−θ) quan-
tile, is equal to sc = (− ln θ)1/ds0 = ks0 where k is a known positive constant > 1.
First consider the limiting case where the variance of R is zero, σ 2

R = 0, hence
rc(α)= αsc such that pf (α)= Prob(M(α)≤ 0)= exp(−(αk)d) which is fully con-
sistent with Eq. (9.7) above. If the variance of R(α) now increases, then the mean
resistance will shift even further down the tail since rc(α) is a small quantile of R.
But, the function pf (α)will only be slightly “contaminated” by a much slower vary-
ing function of α; however, and this is certainly valid in the tail area as α→ αT , the
general form in Eq. (9.7) will persist and it is amenable to be fitted to data pairs
(pf (α),α) obtained for (much) higher failure probabilities.

Once a satisfactory fit is achieved, the target value αT corresponding to pfT
needs to be estimated, a problem which is similar to a high quantile estimation.

3 Extension to System Reliability

Using Monte Carlo methods for system reliability analysis has several attractive
features, the most important being that the failure criterion is relatively easy to check
almost irrespective of the complexity of the system. In order to limit the amount of
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computational effort that may be involved, it is useful to extend the above approach
to systems.

Let Mj(α) =Gj(X1, . . . ,Xn,α), j = 1, . . . ,m be a set of m given safety mar-
gins expressed in terms of n basic variables and a single design parameter α. The
series system reliability expressed in terms of the failure probability can then be
written as,

pf (α)= Prob

(
m⋃
j=1

{
Mj(α)≤ 0

})
, (9.8)

while for the parallel system,

pf (α)= Prob

(
m⋂
j=1

{
Mj(α)≤ 0

})
. (9.9)

In general, any system can be written as a series system of parallel subsystems.
The failure probability would then be given as,

pf (α)= Prob

(
l⋃
j=1

⋂
i∈Cj

{
Mi(α)≤ 0

})
, (9.10)

Here each Cj is a subset of 1, . . . ,m, for j = 1, . . . , l. The Cj s denote the index sets
defining the parallel subsystems.

We then make the assumption that pf (α) can also be represented as in Eq. (9.7)
for the system reliability problems. Again, the objective is to determine the value
αT that achieves a stated overall system reliability.

4 Implementation

The method to be described in this section is based on the assumption expressed by
Eq. (9.7). For practical applications it is implemented in the following form:

pf (α)≈ q(α) exp
{−a(α − b)c}, for α0 ≤ α ≤ αT , (9.11)

for a suitable value of α0. An important part of the method is therefore to identify
a suitable range for α so that the right hand side of Eq. (9.7) represents a good
approximation of pf (α) for α ∈ [α0, αT ].

For a sample of sizeN of the vector of basic random variables X= (X1, . . . ,Xn),
letNf (α) denote the number of outcomes of the random vector in the failure domain
ofM(α). The estimate of the failure probability is then

p̂f (α)= Nf (α)
N

. (9.12)

The coefficient of variation Cv of this estimator is

Cv
(
p̂f (α)

)=
√

1− p̂f (α)
p̂f (α)N

. (9.13)
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A fair approximation of the 95% confidence interval for the value p̂f (α) can be
obtained as CI0.95 = (C−(α),C+(α)), where

C±(α)= p̂f (α)
[
1± 1.96Cv

(
p̂f (α)

)]
. (9.14)

Assuming now that we have obtained empirical Monte Carlo estimates of the
failure probability, the problem then becomes one of optimal use of the information
available. By plotting log | log p̂f (α)/q(α)| versus log(α− b), it is expected that an
almost perfectly linear tail behavior will be obtained according to Eq. (9.11). Re-
calling that the function q(α) was assumed to be slowly varying compared with the
exponential function exp{−a(α − b)c} for values of α close to αT , it is now tenta-
tively proposed to replace q(α) by a suitable constant value, q say, for tail values
of α, say α > α1 (≥ α0). Hence, we will investigate the viability of the following
simpler version of Eq. (9.11):

pf (α)≈ q exp
{−a(α− b)c}, for α1 ≤ α ≤ αT , (9.15)

for a suitable choice of α1.
The problem of finding the optimal values of the parameters a, b, c, q is carried

out by optimizing the fit on the log level by minimizing the following mean square
error function with respect to all four arguments [4],

F(a, b, c, q)=
M∑
j=1

wj
(
log p̂f (αj )− logq + a(αj − b)c

)2
, (9.16)

where α1 < · · · < αM denotes the set of α values where the failure probability is
empirically estimated. The wj denote weight factors that put more emphasis on the
more reliable data points, alleviating the heteroscedasticity of the estimation prob-
lem at hand. The choice of weight factor is to some extent arbitrary. In this paper,
we use wj = (logC+(αj )− logC−(αj ))−θ with the values θ = 1 and 2, combined
with a Levenberg–Marquardt least squares optimization method [5]. Note that the
form of wj puts some restriction on the use of the data. Usually, there is a level αj
beyond which wj is no longer defined. Hence, the summation in Eq. (9.16) has to
stop before that happens. Also, the data should be preconditioned by establishing
the tail marker α1 in a sensible way.

Although the Levenberg–Marquardt method as described above generally works
well, it may be simplified by exploiting the structure of F . It is realized by scru-
tinizing Eq. (9.16) that if b and c are fixed, the optimization problem reduces to a
standard weighted linear regression problem. That is, with both b and c fixed, the
optimal values of a and logq are found using closed form weighted linear regression
formulas in terms of wj , yj = log p̂f (αj ) and xj = (αj − b)c .

It is obtained that the optimal values of a and q are given by the relations,

a∗(b, c)=−
∑M
j=1wj(xj − x)(yj − y)∑M

j=1wj(xj − x)2
, (9.17)

and

logq∗(b, c)= y + a∗(b, c)x, (9.18)
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Fig. 9.1 Ten-bar truss
structure

where x =∑M
j=1wjxj /

∑M
j=1wj , with a similar definition of y.

The Levenberg–Marquardt method may now be used on the function F̃ (b, c)=
F(a∗(b, c), b, c, q∗(b, c)) to find the optimal values b∗ and c∗, and then the corre-
sponding a∗ and q∗ can be calculated from Eqs. (9.17) and (9.18).

For estimation of the confidence interval for the predicted target quantile αT
provided by the optimal curve, the empirical confidence band is reanchored to the
optimal curve. The range of fitted curves that stay within the reanchored confidence
band will determine an optimized confidence interval of the predicted value.

5 Numerical Examples

The examples in the following two sections all have simple explicit limit state func-
tions in terms of the basic random variables. The computational issue is therefore
minor and no effort has been made to investigate the possibility of implementing
more effective sampling strategies. If the proposed method were to be used in com-
bination with computationally demanding procedures involving e.g. a FE method
for calculating the sample, it would be necessary in general to use more effective
sampling strategies than the brute force procedure used here.

5.1 Component Load Factor Calibration

In this first example, the 10-bar truss structure shown in Fig. 9.1 is studied. An
enhanced Monte-Carlo reliability analysis of this truss is given in [1]. Here a load
factor for a transversal load P is calibrated in order to achieve a target reliability
of (10−6) with respect to the horizontal sway of the truss. The ten truss members
are cut from three different aluminum rods with cross-sectional areas A1, A2 and
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Table 9.1 Basic variables

Mean value Coef. of var. Prob. distr. Char. value in (20)

A1 10−2 m2 0.05 Normal 1% quantile

A2 1.5 · 10−3 m2 0.05 Normal 1% quantile

A3 6.0 · 10−3 m2 0.05 Normal 1% quantile

B 1.0 0.10 Normal mean

E 6.9 · 104 MPa 0.05 Lognormal 1% quantile

P based on Eq. (9.21) 0.10 Gumbel 95% quantile

d0 0.1 m - - -

L 9.0 m - - -

A3, as shown in Fig. 9.1. The structure is subjected to external loads P as shown in
Fig. 9.1. The horizontal displacement D at the upper right hand corner of the truss
structure can be written as [6]:

D = BPL

A1A3E

{
4
√

2A3
1(24A2

2 +A2
3)+A3

3(7A
2
1 + 26A2

2)

DT

+ 4A1A2A3
20A2

1 + 76A1A2 + 10A2
3

DT

+ 4
√

2A1A2A
2
3

25A1 + 29A2

DT

}
(9.19)

where DT = 4A2
2(8A

2
1 +A2

3)+ 4
√

2A1A2A3(3A1 + 4A2)+A1A
2
3(A1 + 6A2) and

E is Young’s modulus. The random variable B accounts for model uncertainties. It
is assumed that A1, A2, A3, B , P , E are independent basic random variables. Their
properties are summarized in Table 9.1. Also shown are the characteristic values
used in the design check Eq. (9.21).

The safety margin

M(α)= d0 −D
(
A1,A2,A3,B,E,P (α)

)
, (9.20)

and the design check constraint is

c(α)= d0 −D
(
A1c,A2c,A3c,Bc,Ec,αPc(α)

)
, (9.21)

where α represents the transversal load factor.
Figures 9.2 and 9.3 show the optimized fitted parametric curve to the empiri-

cal data in a log plot for sample size 105 and for weighted regression coefficients
θ = 2 and θ = 1, respectively. The difference between the two tail extrapolations
is minimal. Applying the proposed procedure with a sample of size 105 gives
the estimated value for αT with the 95% confidence interval shown in Table 9.2
for both θ = 2 and 1. Note that a crude Monte Carlo simulation verification of
(αT = 1.46,pf T = 10−6) using 3 · 109 samples to within 2.5% at 95% confidence
requires a computation time of about 24 h on a laptop computer. The CPU time for
the results shown in Table 9.2 was only about 40 seconds on a standard laptop.
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Fig. 9.2 Ten-bar truss structure. Sample size 105—weighted regression θ = 2

Fig. 9.3 Ten-bar truss structure. Sample size 105—weighted regression θ = 1

Table 9.2 Optimal load
factor αT corresponding to
pfT = 10−6 using sample
size 105

θ = 2 θ = 1

higher 95% CI 1.48 1.48

αT 1.47 1.47

lower 95% CI 1.46 1.46

5.2 Design Resistance Safety Factor in a Series System

This example concerns the maximum internal forces in the members of a statically
determinate 13-member truss structure subjected to external loading. The structure
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Fig. 9.4 Truss bridge
example

is shown in Fig. 9.4, which also displays the numbering of the truss elements from
1 to 13.

The external loads P1, P2, P3 which are acting on the structure as shown in
Fig. 9.4, are modelled as independent Gaussian variables. The capacity for axial
stress of truss element number j is expressed as Rj = σyjAj where σyj = the yield
stress (MPa) and Aj = the cross-sectional area of this element (cm2), and α is a
resistance safety factor >1 used as a division factor in the design check equation
below. It is assumed that A1 = A7 = 18.7, A2 = A8 = 13.1, A3 = A9 = A12 =
A13 = 11.7, A4 =A10 = 11.3, A5 =A11 = 3.3, A6 = 8.0. The 13 yield stresses are
assumed to be independent Gaussian variables. The 16 basic random variables in
this problem are listed in Table 9.3.

M1 =R1 − 0.9186P1 − 0.6124P2 − 0.3062P3

M2 =R2 − 0.3029P1 − 0.6058P2 − 0.3029P3

M3 =R3 − 0.5303P1 − 0.3535P2 − 0.1768P3

M4 =R4 − P1

M5 =R5 + 0.4186P1 − 0.3876P2 − 0.1938P3

M6 =R6 − 0.1835P1 − 0.3670P2 − 0.1835P3

M7 =R7 − 0.3062P1 − 0.6124P2 − 0.9186P3

M8 =R8 − 0.3029P1 − 0.6058P2 − 0.3029P3

M9 =R9 − 0.1768P1 − 0.3535P2 − 0.5303P3

M10 =R10 − P1

M11 =R11 − 0.1938P1 − 0.3876P2 + 0.4186P3 (9.22)

Table 9.3 The 16 basic variables

Mean Value Coef. of Var. Prob. distr. Char. value in Eq. (9.22)

Pj , j = 1,2,3 89 kN 0.15 Normal 99% quantile

σyj , j = 1, . . . ,13 based on Eq. (9.23) 0.15 Normal 5% quantile

L 2.54 m - - -
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Fig. 9.5 Truss bridge. Sample size 104—weighted regression with θ = 1

M12 =R12 − 0.5303P1 − 0.3536P2 − 0.1768P3

M13 =R13 − 0.1768P1 − 0.3536P2 − 0.5303P3

The 13 design check equations have the same mathematical set of 13 equations
except that the deterministic characteristic values of Table 9.3 are used and a resis-
tance safety factor is involved. The most severe constraint is the compressive stress
in members 1 and 7 which therefore governs the design of the system as a whole:

σyc(α)A1

α
− 1.8372Pc = 0, (9.23)

The objective is to find the value αT such that the series system failure probability
given by Eq. (9.8) is equal to a target pfT = 10−5. The log plot of pf (α) versus
α is shown in Figs. 9.5 and 9.6 for θ = 1 and for samples of size 104 and 105,
respectively. The estimated αT corresponding to pf = 10−5 together with their CIs
are shown in Table 9.4. A Winbugs script runs the entire analysis in under 1 min
for 105 samples. As a contrast, crude Monte Carlo simulation with 5 · 109 samples
confirms (αT = 1.89,pf = 10−5) for the series system accurate to within about
0.5% with 95% confidence, but requires a computation time of about 24 h on a
laptop computer.

6 Conclusions

In this paper, we have described a Monte Carlo based method for a reliability-based
calibration of design parameters such as load/resistance factors, safety factors or
specification levels of structural systems. It has been shown that the method may
provide good estimates of design factors for structural systems with a moderate
computational effort. It has been pointed out that the use of Monte Carlo methods
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Fig. 9.6 Truss bridge. Sample size 105—weighted regression with θ = 1

Table 9.4 Optimal resistance
safety factor αT
corresponding to a system
pfT = 10−5 using sample
size 104 and 105 with θ = 1

N = 104 N = 105

higher 95% CI 1.95 1.92

αT 1.85 1.88

lower 95% CI 1.69 1.80

for system reliability analysis has several very attractive features, the most important
being that the failure criterion is usually relatively easy to check almost irrespective
of the complexity of the system and the number of basic random variables.
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Chapter 10
Optimal Design of Base-Isolated Systems Under
Stochastic Earthquake Excitation

Hector A. Jensen, Marcos A. Valdebenito, and Juan G. Sepulveda

Abstract The development of a general framework for reliability-based design of
base-isolated structural systems under uncertain conditions is presented. The uncer-
tainties about the structural parameters as well as the variability of future excitations
are characterized in a probabilistic manner. Nonlinear elements composed by hys-
teretic devices are used for the isolation system. The optimal design problem is
formulated as a constrained minimization problem which is solved by a sequential
approximate optimization scheme. First excursion probabilities that account for the
uncertainties in the system parameters as well as in the excitation are used to charac-
terize the system reliability. The approach explicitly takes into account all non-linear
characteristics of the combined structural system (superstructure-isolation system)
during the design process. Numerical results highlight the beneficial effects of iso-
lation systems in reducing the superstructure response.

1 Introduction

There has been a growing interest during the last years in the application of base
isolation techniques in order to improve the earthquake resistant performance of
civil structures such as buildings, bridges, nuclear reactors, etc. [8, 10, 23, 30, 33].
In fact, the potential advantages of seismic isolation and the recent advancements in
isolation-system products have lead to the design and construction of an increasing
number of seismically isolated structural systems. Also, seismic isolation is exten-
sively used for seismic retrofitting of existing structures [11, 26]. One of the diffi-
culties in the design of base-isolated structural systems is the explicit consideration
of the nonlinear behavior of the isolators during the design process. Similarly, the
consideration of uncertainty about the structural model and the potential variability
of future ground motions is a major challenge in the analysis and design of these
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systems. The goal of this work is the development of a general framework for relia-
bility based design of base-isolated systems under uncertain conditions. In particu-
lar, base-isolated building structures subject to earthquake excitation are considered
in this study. A probabilistic approach is adopted for addressing the uncertainties
about the structural model as well as the variability of future excitations. The un-
certain earthquake excitation is modeled as a non-stationary stochastic process with
uncertain model parameters. Specifically, a point-source model characterized by the
moment magnitude and epicentral distance is adopted in this formulation [6]. Isola-
tion elements composed by hysteretic devices are used for the isolation system. The
hysteretic behavior of the devices is characterized by a Bouc–Wen type model [5].
The model provides general parametric hysteresis rules that gives a smooth transi-
tion of the change of stiffness as the deformation of the nonlinear elements changes.
The reliability-based optimization problem is formulated as the minimization of
an objective function subject to multiple design requirements including reliability
constraints. First excursion probabilities are used as measures of system reliability.
Such probabilities are estimated by an adaptive Markov Chain Monte Carlo proce-
dure [4]. A sequential optimization approach based on global conservative, convex
and separable approximations is implemented for solving the optimization problem
[14, 18, 21]. The approach explicitly takes into account all non-linear characteristics
of the structural response and it allows for a complex characterization of structural
systems and excitation models. The solution of the equation of motion of the com-
bined system (superstructure-isolation system) required during the simulation pro-
cess is computed by a modified Runge–Kutta scheme of fourth-order. A numerical
example is presented in order to illustrate the applicability and effectiveness of the
proposed framework for reliability-based design of base-isolated buildings.

2 Reliability-Based Design Problem

The optimal design problem is defined as the identification of a vector {φ} of design
variables that minimizes an objective function, that is

Minimize f
({φ}) (10.1)

subject to design constraints

hj
({φ})≤ 0, j = 1, . . . , nc (10.2)

and side constraints

φli ≤ φi ≤ φui , i = 1, . . . , nd (10.3)

The objective function is defined in terms of quantities such as initial, construc-
tion, repair, or downtime costs. On the other hand, the design constraints are given
in terms of reliability constraints and/or constrains related to deterministic design
requirements. In a stochastic setting the reliability constraints are usually defined in
terms of failure probabilities. These probabilities provide a measure of the plausibil-
ity of the occurrence of unacceptable behavior (failure) of the system, based on the
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available information. The probability of failure PFj ({φ}) corresponding to a failure
event Fj evaluated at the design {φ} can be expressed in terms of the multidimen-
sional probability integral [13, 15]

PFj
({φ})=

∫
Θ

IFj
({φ}, {θ})q({θ})d{θ} (10.4)

where IFj ({φ}, {θ}) is the indicator function for failure, which is equal to one if
the system fails and zero otherwise, and {θ}, θi , i = 1, . . . , nu is the vector that
represents the uncertain system parameters involved in the problem (structural pa-
rameters and excitation). The uncertain system parameters {θ} are modeled using a
prescribed probability density function q({θ}) which incorporates available knowl-
edge about the system. Note, that the failure probability function PFj ({φ}) accounts
for the uncertainty in the system parameters as well as the uncertainties in the exci-
tation. A model prediction error, that is, the error between the response of the actual
system and the response of the model, can also be considered in the formulation
[12, 31]. In this case the prediction error may be modeled probabilistically by aug-
menting the vector {θ} to form an uncertain parameter vector composed of both the
structural and excitation model parameters as well as the model prediction-error.
The failure domain ΩFj ({φ}) corresponding to the failure event Fj evaluated at the
design {φ} is typically described in terms of a performance function gj as

ΩFj
({φ})= {{θ} | gj ({φ}, {θ})≥ 0

}
(10.5)

Then, the probability of failure can also be expressed as the integral of the probabil-
ity density function q({θ}) over the failure domain in the form

PFj
({φ})=

∫
ΩFj ({φ})

q
({θ})d{θ} (10.6)

With the previous notation, a reliability constraint can be written as hj ({φ}) =
PFj ({φ})− P ∗Fj ≤ 0, where P ∗Fj is the target failure probability. The last inequality
expresses the requirement that the probability of system failure must be smaller than
an appropriate tolerance. It is noted that in the context of stochastic design a system
that corresponds to a feasible design can not be certified with complete certainty,
but with a tolerance P ∗Fj . In other words, the system will operate safely within the
pre-specified probability of failure tolerance.

3 Structural Model

In general, base-isolated buildings are designed such that the superstructure remains
elastic. Hence, the structure is modeled as a linear elastic system in the present for-
mulation. The base and the floors are assumed to be infinitely rigid in plane. The
superstructure and the base are modeled using three degrees of freedom per floor
at the center of mass. Each nonlinear isolation element is modeled explicitly using
the Bouc–Wen model. Let {xs(t)} be the n-th dimensional vector of displacements
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Fig. 10.1 Schematic
representation of the
base-isolated structural model

for the superstructure with respect to the base, and [Ms], [Cs], and [Ks] be the cor-
responding mass, damping and stiffness matrices. Also, let {xb(t)} be the vector
of base displacements with respect to the ground and [Gs] be the matrix of earth-
quake influence coefficients of dimension n× 3, that is, the matrix that couples the
excitation components of the vector {ẍg(t)} to the degrees of freedom of the su-
perstructure. The schematic representation of the base-isolated structural system as
well as the displacement coordinates are shown in Fig. 10.1. The equation of motion
of the elastic superstructure is then expressed in the form

[Ms]
{
ẍs(t)

}+ [Cs]{ẋs(t)}+ [Ks]{xs(t)}
=−[Ms][Gs]

({
ẍb(t)

}+ {
ẍg(t)

})
(10.7)

where {ẍb(t)} is the vector of base accelerations relative to the ground. On the other
hand, the equation of motion of the base can be written as([Gs]T [Ms][Gs] + [Mb])({ẍb(t)}+ {

ẍg(t)
})

+ [Gs]T [Ms]
{
ẍs(t)

}+ {fis} = {0} (10.8)

where [Mb] is the diagonal mass matrix of the rigid base, and {fis} is the vector
containing the linear and nonlinear isolation elements forces (three components).
The characterization of such forces is treated in a subsequent Section. Rewriting the
previous equations, the combined equation of motion of the base-isolated structure
system can be formulated in the form[ [Ms] [Ms][Gs]

[Gs]T [Ms] [Mb] + [Gs]T [Ms][Gs]
]{{ẍs(t)}
{ẍb(t)}

}
+

[[Cs] [0]
[0]T [0]

]{{ẋs(t)}
{ẋb(t)}

}

+
[[Ks] [0]
[0]T [0]

]{{xs(t)}
{xb(t)}

}

=−
{ [Ms][Gs]
[Mb] + [Gs]T [Ms][Gs]

}{
ẍg(t)

}−
{ {0}
{fis(t)}

}
(10.9)
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It is noted that elastic and viscous isolation elements can also be incorporated in
the isolation model. Also, the above formulation can be directly extended to more
complex cases, for example, to nonlinear models for the superstructure.

4 Earthquake Excitation Model

The ground acceleration is modeled as a non-stationary stochastic process. In par-
ticular, a point-source model characterized by the moment magnitude M and epi-
central distance r is considered here [3, 6]. The model is a simple, yet powerful
means for simulating ground motions and it has been successfully applied in the
context of earthquake engineering. The time-history of the ground acceleration for
a given magnitude M and epicentral distance r is obtained by modulating a white
noise sequence by an envelope function and subsequently by a ground motion spec-
trum through the following steps: (1) generate a discrete-time Gaussian white noise
sequence ω(tj ) = √I/Δtθj , j = 1, . . . , nT , where θj , j = 1, . . . , nT , are inde-
pendent, identically distributed standard Gaussian random variables, I is the white
noise intensity, Δt is the sampling interval, and nT is the number of time instants
equal to the duration of the excitation T divided by the sampling interval; (2) the
white noise sequence is modulated by an envelope function h(t,M, r) at the dis-
crete time instants; (3) the modulated white noise sequence is transformed to the
frequency domain; (4) the resulting spectrum is normalized by the square root of
the average square amplitude spectrum; (5) the normalized spectrum is multiplied
by a ground motion spectrum (or radiation spectrum) S(f,M, r) at discrete fre-
quencies fl = l/T , l = 1, . . . , nT /2; (6) the modified spectrum is transformed back
to the time domain to yield the desired ground acceleration time history. Details of
the characterization of the envelope function h(t,M, r) and the ground accelera-
tion spectrum S(f,M, r) are provided in the subsequent sections. The probabilistic
model for the seismic hazard at the emplacement is complemented by considering
that the moment magnitudeM and epicentral distance r are also uncertain. The un-
certainty in moment magnitude is modeled by the Gutenberg–Richter relationship
truncated on the interval [6.0,8.0], which leads to the probability density function
[24]

p(M)= be−bM

e−6.0b − e−8.0b
, 6.0≤M ≤ 8.0 (10.10)

where b is a regional seismicity factor. For the uncertainty in the epicentral dis-
tance r , a lognormal distribution with mean value r̄ (km) and standard deviation
σr (km) is used. The point source stochastic model previously described is well
suited for generating the high-frequency components of the ground motion (greater
than 0.1 Hz). Low-frequency components can also be introduced in the analy-
sis by combining the above methodology with near-fault ground motion models
[25].
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Fig. 10.2 Envelope function for epicentral distance r = 20 km and moment magnitudes M = 5
andM = 7

4.1 Envelope Function

The envelope function for the ground acceleration is represented by [6, 28]

h(t,M, r)= a1

(
t

tn

)a2

e−a3(t/tn) (10.11)

where

a2 = −0.2 ln(0.05)

1+ 0.2(ln(0.2)− 1)
, a3 = a2

0.2
, a1 =

(
e1

0.2

)a2

(10.12)

The envelope function has a peak equal to unity when t = 0.2tn, and h(t,M, r)=
0.05 when t = tn, with tn = 2.0Tgm, where Tgm is the duration of ground motion,
expressed as a sum of a path dependent and source dependent component Tgm =
0.05

√
r2 + h2 + 0.5/fa , where r is the epicentral distance, and the parameters h

and fa (corner frequency) are moment dependent given by log(h)= 0.15M − 0.05
and log(fa) = 2.181 − 0.496M [3]. As an example Fig. 10.2 shows the envelope
function for r = 20 km, and M = 5 and M = 7. Note that increasing the moment
magnitude increases the duration of the envelope function, as expected.
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4.2 Ground Motion Spectrum

The total spectrum of the motion at a site S(f,M, r) is expressed as the product of
the contribution from the earthquake source E(f,M), path P(f, r), site G(f ) and
type of motion I (f ), i.e.

S(f,M, r)=E(f,M)P (f, r)G(f )I (f ) (10.13)

The source component is given by

E(f,M)= CM0(M)Sa(f,M) (10.14)

where C is a constant,M0(M)= 101.5M+10.7 is the seismic moment, and the factor
Sa is the displacement source spectrum given by [3]

Sa(f,M)= 1− ε
1+ (f/fa)2 +

ε

1+ (f/fb)2 (10.15)

where the corner frequencies fa and fb, and the weighting parameter ε are defined,
respectively, as log(fa)= 2.181−0.496M , log(fb)= 2.41−0.408M , and log(ε)=
0.605− 0.255M . The constant C is given by C =URΦVF/4πρsβ3

s R0, where U is
a unit dependent factor,RΦ is the radiation pattern, V represents the partition of total
shear-wave energy into horizontal components, F is the effect of the free surface
amplification, ρs and βs are the density and shear-wave velocity in the vicinity of
the source, and R0 is a reference distance.

Next, the path effect P(f, r) which is another component of the process that
affects the spectrum of motion at a particular site it is represented by functions that
account for geometrical spreading and attenuation

P(f, r)= Z(R(r))e−πfR(r)/Q(f )βs (10.16)

where R(r) is the radial distance from the hypocenter to the site given by R(r) =√
r2 + h2. The attenuation quantity Q(f ) is taken as Q(f )= 180f 0.45 and the ge-

ometrical spreading function is selected as Z(R(r)) = 1/R(r) if R(r) < 70.0 km
and Z(R(r)) = 1/70.0 otherwise [3]. The modification of seismic waves by local
conditions, site effectG(f ), is expressed by the multiplication of a diminution func-
tion D(f ) and an amplification function A(f ). The diminution function accounts
for the path-independent loss of high frequency in the ground motions and can be
accounted for a simple filter of the form D(f ) = e−0.03πf [2]. The amplification
function A(f ) is based on empirical curves given in [7] for generic rock sites. An
average constant value equal to 2.0 is considered. Finally, the filter that controls the
type of ground motion I (f ) is chosen as I (f ) = (2πf )2 for ground acceleration.
The particular values of the different parameters of the stochastic ground acceler-
ation model are given in Table 10.1 (see Application Problem Section). For illus-
tration purposes Fig. 10.3 shows the ground acceleration spectrum for a nominal
distance r = 20 km, moment magnitudesM = 5 andM = 7, and model parameters
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Fig. 10.3 Ground acceleration spectrum for epicentral distance r = 20 km and moment magni-
tudesM = 5 andM = 7

given in Table 10.1. As the moment magnitude increases, the spectral amplitude in-
creases at all frequencies, with a shift of dominant frequency content towards the
lower frequency regime, as anticipated.

5 Isolation Model

Several isolation elements can be used to model isolation systems. They include
elastic, viscous, nonlinear fluid dampers, hysteretic (uniaxial or biaxial) elements
for bilinear elastomeric bearings, hysteretic (uniaxial or biaxial) elements for sliding
bearings, etc. Uniaxial elastomeric bearings with hysteretic behavior, such as lead
rubber bearings, are considered in the present implementation. They are modeled
using the Bouc–Wen model as [5]

Uyż(t)=
{
ẋb(t)[α − zn(t)(γ sgn(ẋb(t)z(t))+ β)] if n is even

ẋb(t)[α − zn(t)(γ sgn(ẋb(t))+ β sgn(z(t)))] if n is odd
(10.17)

where z(t) is a dimensionless hysteretic variable, α, β , and γ are dimensionless
quantities, Uy is the yield displacement, xb(t) and ẋb(t) represent the base displace-
ment and velocity, respectively, and sgn(·) is the sign function. The forces activated
in the elastomeric isolation bearing are modeled by an elastic-viscoplastic model
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with strain hardening

fis(t)= kpxb(t)+ cvẋb(t)+ (ke − kp)Uyz(t) (10.18)

where ke is the pre-yield stiffness, kp is the post-yield stiffness, cv is the viscous
damping coefficient of the elastomeric bearing, and Uy is the yield displacement. If
the post-yield stiffness is written as kp = αLke, where αL is a factor which defines
the extent to which the force is linear, the isolator forces can be expressed as

fis(t)= αLkexb(t)+ cvẋb(t)+ (1− αL)keUyz(t) (10.19)

6 Sequential Approximate Optimization

The solution of the reliability-based optimization problem given by Eqs. (10.1)–
(10.3) is obtained by transforming it into a sequence of sub-optimization problems
having a simple explicit algebraic structure. Thus, the strategy is to construct suc-
cessive approximate analytical sub-problems. To this end, the objective and the con-
straint functions are represented by using approximate functions dependent on the
design variables. In particular, a hybrid form of linear, reciprocal and quadratic ap-
proximations is considered in the present formulation [14, 20, 27]. The approximate
discrete sub-optimization problems take the form (k = 1,2, . . .)

Minimize f̃k
({φ}) (10.20)

subject to

h̃jk
({φ})≤ 0, j = 1, . . . , nc (10.21)

with side constraints

φli ≤ φi ≤ φui , i = 1, . . . , nd (10.22)

where f̃k and h̃jk , j = 1, . . . , nc represent the approximate objective and constraint
functions at the current point {φk} in the design space, respectively. The approximate
objective function is obtained as

f̃k
({φ})= f1k

({φ})+ f2k
({φ})+ f3k

({φ}) (10.23)

where f1k({φ}) is a linear function in terms of the design variables, f2k({φ}) is a
linear function with respect to the reciprocal of the design variables, and f3k({φ}) is
a quadratic function of the design variables. They are given by

f1k
({φ}) =∑

(i+)

∂f ({φk})
∂φi

φi, f2k
({φ})=−∑

(i−)

∂f ({φk})
∂φi

(φki )
2

φi
(10.24)

f3k
({φ}) = −2χf

∑
(i−)

∂f ({φk})
∂φi

φi

(
φi

φki

− 2

)
(10.25)
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where (i+) is the group that contains the variables for which the partial deriva-
tive of the objective function is positive at the expansion point {φk}, (i−) is the
group that includes the remaining variables, and χf is a user-defined positive scalar
that control the conservatism of the approximation [17, 18]. On the other hand, the
constraint functions involving reliability measures (reliability constraints) are first
transformed as htj ({φ}) = ln[PFj ({φ})]. Then the transformed constraint functions
are approximated in the form

h̃tjk
({φ})= htj1k

({φ})+ htj2k

({φ})+ htj3k

({φ})+ h̄tjk({φk}) (10.26)

where

htj1k

({φ}) =∑
(i+j )

∂htj ({φk})
∂φi

φi, htj2k

({φ})=−∑
(i−j )

∂htj ({φk})
∂φi

(φki )
2

φi
(10.27)

htj3k

({φ}) = −2χh
t
j

∑
(i−j )

∂htj ({φk})
∂φi

φi

(
φi

φki

− 2

)
(10.28)

h̄tjk
({
φk

}) = htj ({φk})−
∑
(i+j )

∂htj ({φk})
∂φi

φki

− (
2χh

t
j − 1

)∑
(i−j )

∂htj ({φk})
∂φi

φki (10.29)

where
∑
(i+j )

and
∑
(i−j )

mean summation over the variables belonging to group

(i+j ) and (i−j ), respectively, and χh
t
j is as before a user-defined positive scalar that

control the conservatism of the approximations. Group (i+j ) contains the variables

for which ∂htj ({φk})/∂φi is positive, and group (i−j ) includes the remaining vari-
ables. The same type of approximations can be applied to the deterministic con-
straint functions. The explicit discrete sub-optimization problems (10.20)–(10.22)
are solved by standard methods that treat the problem directly in the primal design
variable space such as evolution-based optimization techniques [16]. The level of
effectiveness of the above sequential optimization scheme depends on the degree of
convexity of the functions involved in the optimization problem. For example, if the
curvatures are not too large and relatively uniform throughout the design space the
proposed algorithm converges within few iterations [9, 21, 29]. For more general
cases methods based on trust regions and line search methodologies may be more
appropriate [1, 19, 22].
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7 Reliability and Sensitivity Assessment

The characterization of the sub-optimization problems (10.20)–(10.22) requires the
estimation of first excursion probabilities and their sensitivities. In order to esti-
mate the excursion probabilities at a given design high-dimensional integrals need
to be evaluated. This difficulty favors the application of Monte Carlo Simulation as
fundamental approach to cope with the probability integrals. However, in most en-
gineering applications the probability that a particular system fails is expected to be
small, e.g. between 10−4–10−6. Direct Monte Carlo is robust to the type and dimen-
sion of the problem, but it is not suitable for finding small probabilities. Therefore,
advanced Monte Carlo strategies are needed to reduce the computational efforts. In
particular a generally applicable method, called subset simulation, is implemented
in this work [4]. On the other hand, the sensitivity of the failure probability functions
with respect to the design variables is estimated by an approach recently introduced
in [32]. The approach is based on the approximate local representation of two dif-
ferent quantities. The first approximation involves the performance functions that
define the failure domains while the second includes the probability of failure in
terms of the maximum response levels for safe system operation. For a detailed
discussion of the approach the reader is referred to [22, 32].

8 Application Problem

8.1 Description

A four-story building with a base-isolation system under earthquake motion is con-
sidered as an application problem. The plan view, as well as the dimensions for each
floor are shown in Fig. 10.4. The elevation of one resistant element (A-axis) is il-
lustrated in Fig. 10.5. Each of the four floors is supported by 80 columns of square
cross section. The first floor has a height equal to 3.5 m while the other floors have
a constant height equal to 3.0 m, leading to a total height of 12.5 m.

As previously pointed out (see Structural Model Section) each floor is repre-
sented by three degrees of freedom, i.e. two translational displacements in the di-
rection of the x axis and y axis, and a rotational displacement. The associated active
masses in the x and y direction are taken constant for the first three floors and equal
to 2.50× 106 kg and 1.50× 106 kg for the last floor. The corresponding mass mo-
ments of inertia are taken as 2.10× 109 kg·m2 and 1.20× 109 kg·m2, respectively.
On the other hand, the mass of the base is equal to 6.0×106 kg, and its mass moment
of inertia 5.00×109 kg·m2. The Young’s modulus and the modal damping ratios are
treated as uncertain system parameters. The Young’s modulus is modeled by a trun-
cated normal random variable with most probable value Ē = 2.50× 1010 N/m2 and
coefficient of variation of 20%. Moreover, the damping ratios are modeled by inde-
pendent Log-normal random variables with mean value ζ̄ = 0.03 and coefficient of
variation of 40%. The base isolation system is composed of 80 uniaxial lead rubber
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Fig. 10.4 Plan view of the structural model

Fig. 10.5 Elevation view of
axis A

bearings with hysteretic behavior. The nonlinear behavior of these devices is mod-
eled using the equations described in Sect. 5 with model parameters n= 1, α = 1.0,
β = −0.65, γ = 0.5, Uy = 0.5 cm, αL = 0.1, ke = 3 × 106 N/m, and cv = 0.0.
Figures 10.6 and 10.7 show a schematic representation of a lead rubber bearing and
a typical displacement-restoring force curve of the isolation element, respectively.
The structural system is excited horizontally by a ground acceleration applied in
the y direction. The induced ground acceleration is characterized as in Sect. 4, with
model parameters listed in Table 10.1.

8.2 Optimal Design Problem

The objective function f is defined as the volume of the column elements of the
structural system. The design variables {φ} are chosen as the dimensions of the
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Fig. 10.6 Lead rubber
bearing

Fig. 10.7 Typical
displacement-restoring force
curve of the isolation element
(lead rubber bearing)

columns throughout the height, grouped in four design variables, i.e. the dimensions
of the columns of each floor constitute each of the design groups. The failure event is
formulated as a first passage problem during the duration of the ground acceleration.
The structural responses to be controlled are the 4 interstorey drift displacements.
The threshold value is chosen equal to 0.2% of the floor height for the interstorey
drift displacements. Thus, the failure domains evaluated at the design {φ} are given

Table 10.1 Parameters for the stochastic ground acceleration model

Parameter Numerical Value Parameter Numerical Value

r̄ (km) 20.0 σr (km) 9.0

b 1.8 U 10−20

ρs (gm/cc) 2.8 βs (km/s) 3.5

V 1/
√

2 RΦ 0.55

F 2.0 R0 (km) 1.0

T (s) 20.0 Δt (s) 0.01
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Table 10.2 Initial and final designs

Design variable Initial design Final design

Problem 1 Problem 2

φ1 (m) 0.90 0.68 0.85

φ2 (m) 0.80 0.59 0.75

φ3 (m) 0.75 0.57 0.72

φ4 (m) 0.70 0.51 0.64

Normalized objective function 1.00 0.56 0.88

by

ΩFj
({φ})= {

{θ} | max
tk,k=1,...,2001

∣∣δj (tk, {φ}, {θ})∣∣− δ∗ ≥ 0
}
, j = 1, . . . ,4

(10.30)

where δj (tk, {φ}, {θ}) is the relative displacement between the (j − 1, j)-th floor
evaluated at the design {φ}, tk are the discrete time instants, δ∗ is the critical thresh-
old level, and {θ} is the vector that represents the uncertain system parameters
(structural parameters and excitation). Note that more than two thousand random
variables are involved in the characterization of the uncertain model parameters.
The reliability-based optimization problem is defined as

Min f
({φ})

subject to

PFj
({φ})≤ P ∗F , j = 1,2,3,4

0.30≤ φi ≤ 1.10, i = 1, . . . ,4
(10.31)

Two target failure probabilities are considered: P ∗F = 10−2 and P ∗F = 10−4. The
first case can be interpreted as a design problem with a moderate level of reliability
while the second case corresponds to a high level of reliability. In what follows the
first case will be referred as Problem 1 while the second case as Problem 2.

8.3 Results

The initial and final designs of Problems 1 and 2 are given in Table 10.2. The results
of the optimization process are presented in Figs. 10.8, 10.9 and 10.10 in terms of
the evolution of the objective function and failure probabilities, respectively.

The objective function is normalized by its value at the initial design. It is ob-
served that only a few optimization cycles are required for obtaining convergence.
Moreover, most of the improvement of the objective function takes place in the first
3 iterations. It is also seen that the method generates a series of steadily improved
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Fig. 10.8 Iteration history in
terms of the objective
function. Problem 1:
moderate level of reliability.
Problem 2: high level of
reliability

Fig. 10.9 Iteration history in
terms of the reliability
constraints. Problem 1

Fig. 10.10 Iteration history
in terms of the reliability
constraints. Problem 2

feasible designs that move toward the optimum. The results indicate that the value
of the objective function at the final design of Problem 2 is greater than the cor-
responding value of Problem 1. This is turn implies that the structural components
(columns) at the final design of Problem 2 are bigger than the corresponding compo-
nents of Problem 1, as expected. The beneficial effects of the base isolation system
are shown in Table 10.3. This table shows the value of the objective function at the
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Table 10.3 Objective function value of models with and without the base isolation system

Model Normalized objective function
at the final design

Problem 1 Problem 2

With base isolation system 0.56 0.88

Without base isolation system 0.78 1.21

Difference 39% 38%

Table 10.4 Constraint
violations Problem 2

PF 1/P
∗
F 103

PF 2/P
∗
F 55

PF 3/P
∗
F 20

PF 4/P
∗
F 2

P ∗F = 10−4

final designs of Problems 1 and 2 for models with and without the isolation system.
The effect of the isolation system is clear from these results. The difference between
the values of the objective functions is almost 40% in both Problems.

Finally, the effect of the base isolation system can also be observed from a con-
straint violation viewpoint. Table 10.4 shows the probability of occurrence of the
failure events associated with the final design of Problem 2 (see Table 10.2) for the
case where no base isolation is considered. The probability is normalized by the
target failure probability P ∗F = 10−4. It is seen for example that the probability of
occurrence of failure event F1 is more than 100 times greater than the target fail-
ure probability. Once again, the effect of the isolation system is evident from these
results.

9 Conclusions

A general framework for reliability-based design of base-isolated buildings under
uncertain conditions has been presented. The reliability-based design problem is
formulated as an optimization problem with a single objective function subject to
multiple reliability constraints. First excursion probabilities that account for the un-
certainties in the system parameters as well as in the excitation are used to character-
ize the system reliability. The high computational cost associated with the solution
of the optimization problem is addressed by the use of approximate reliability anal-
yses during portions of the optimization process. The proposed approach takes into
account all nonlinear characteristics of the structural response in the design process
and it allows for a complex characterization of structural systems and excitation
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models. At the same time, uncertainties in structural and excitation model parame-
ters are considered explicitly during the design process. The numerical results and
additional validation calculations highlight the beneficial effects of base-isolation
systems in reducing the superstructure response. This in turn implies more robust
and safer designs.
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acknowledged by the authors.
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Chapter 11
Systematic Formulation of Model Uncertainties
and Robust Control in Smart Structures Using
H∞ and μ-Analysis

Amalia Moutsopoulou, Georgios E. Stavroulakis, and Anastasios Pouliezos

Abstract The influence of structural uncertainties on actively controlled smart
beams is investigated in this paper. The dynamical problem of a model smart com-
posite beam is based on a simplified modelling of the actuators and sensors, both
being realized by means of piezoelectric layers. In particular, a practical robust con-
troller design methodology is developed, which is based on recent theoretical re-
sults on H∞ control theory and μ-analysis. Numerical examples demonstrate the
vibration-suppression property of the proposed smart beams.

Keywords Uncertainty · Smart beam · Robust performance · Robust analysis ·
Robust synthesis

1 Introduction

The use of active control techniques in smart structures is a modern research area
[1, 5, 6, 9, 11, 15, 16, 21]. Vibration control of beams may serve as a model prob-
lem, since the beam is a fundamental structural element [6, 11, 15, 21]. A number of
different control schemes have been proposed, where the main class of controllers is
based on linear feedback laws. In real life applications there are always differences
between the physical plant that is controlled and the model on which the controller
design is based (for instance, neglected higher frequency dynamics). Therefore, ro-
bustness must be an important goal for any applicable feedback controller design
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Fig. 11.1 Schematic picture
with data used in the example

[5, 8, 10, 14, 16, 21]. The performance specifications, which the control system
must fulfill and the class of uncertainties for which the control system must be ro-
bust against, determine the robust controller design methodology for any particular
vibration control problem. In this study a vibration control problem in flexible struc-
ture (smart beam) is considered and the performance specification is stated in terms
of a disturbance attenuation requirement for particular class of external disturbances
acting on the structure. The paper illustratesH∞ robust controller design techniques
by considering the problem of active vibration control in a flexible cantilever beam
using piezoelectric patches as sensors and actuators. This work demonstrates that
the proposed robust control design schemes are suited to broadband vibration dis-
turbances, which can be modelled as Gaussian white noise (e.g., in earthquake mod-
elling), wind-like pressure, as well as structured uncertainties. Uncertainty denotes
the difference between the model and the reality. By adopting the mechanical model
described previously, we consider uncertainties in the parameters of the model. The
H∞ approach begins with an uncertain system model for the plant to be controlled
[1, 5, 8, 9, 11]. In this section we will consider an uncertain system model whose
primary purpose is to account for the uncertainty introduced by varying the nominal
plant parameters.

First, for a simplified model, the governing equations of a beam with bonded
piezoelectric sensors and actuators are formulated. After the finite element dis-
cretization, H∞ robust control and m-analysis of the beam vibration is investigated.
Numerical results obtained by using MATLAB routines demonstrate that these two
robust control laws can effectively suppress the vibration of lower modes of the
beam as well as avoid spillover from the higher frequency modes.

2 Mathematical Modelling

A cantilever slender beam with rectangular cross-section is considered. Four pairs
of piezoelectric patches are embedded symmetrically at the top and the bottom sur-
faces of the beam, as shown in Fig. 11.1. The beam is made from graphite-epoxy
T300–976 and the piezoelectric patches are PZTG1195N . The top patches act like
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Table 11.1 Parameters of the composite beam

Parameters Values

Beam length, L 0.3 m

Beam width,W 0.04 m

Beam thickness, h 0.0096 m

Beam density, ρ 1600 kg/m3

Young’s modulus of the beam, E 1.5× 1011 N/m2

Piezoelectric constant, d31 254× 10−12 m/V

Electric constant, ξ33 11.5× 10−3 Vm/N

Young’s modulus of the piezoelectric element 1.5× 1011 N/m2

Width of the piezoelectric element bS = ba = 0.04 m

Thickness of the piezoelectric element hS = ha = 0.0002 m

sensors and the bottom like actuators. The resulting composite beam is modelled by
means of the classical laminated technical theory of bending. Furthermore, we as-
sume that the mechanical properties of both the piezoelectric material and the host
beam are independent in time. The thermal effects are considered to be negligible
as well [16].

The beam has length L, width b and thickness h. The sensors and the actuators
have width bS and bA and thickness hS and hA, respectively. The electromechanical
parameters of the beam used for the application of the method in this paper are given
in Table 11.1.

2.1 Piezoelectric Equations

In order to derive the basic equations for piezoelectric sensors and actuators (S/As),
we assume that:

• The piezoelectric S/A are bonded perfectly on the host beam;
• The piezoelectric layers are much thinner then the host beam;
• The piezoelectric material is homogeneous, transversely isotropic and linearly

elastic;
• The piezoelectric S/A are transversely polarized (in the z-direction) [16].

Under these assumptions the three-dimensional linear constitutive equations are
given by [5],

{
σxx
σxz

}
=

[
Q11 0

0 Q55

]({
εxx
εxz

}
−

[
d31
0

]
Ez

)
(11.1)

Dz =Q11d31εxx + ξxxEz (11.2)
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where σxx , σxz denote the axial and shear stress components,Dz, denotes the trans-
verse electrical displacement; εxx and εxz are axial and shear strain components;
Q11, and Q55, denote elastic constants; d31, and ξ33, denote piezoelectric and di-
electric constants, respectively. Equation (11.1) describes the inverse piezoelectric
effect and equation (11.2) describes the direct piezoelectric effect. Ez, is the trans-
verse component of the electric field that is assumed to be constant for the piezo-
electric layers and its components in the xy-plain are supposed to vanish. If no
electric field is applied in the sensor layer, the direct piezoelectric equation (11.2) is
simplified to

Dz =Q11d31εxx (11.3)

and it is used to calculate the output charge created by the strains in the beam [8].

2.2 Equations of Motion

We assume that:

• The beam centroidal and elastic axis coincides with the x-coordinate axis so that
no bending-torsion coupling is considered;

• The axial vibration of the host beam is considered negligible;
• The displacement field {u} = (u1, u2, u3) is obtained based on the usual Timo-

shenko assumptions [11],

u1(x, y, z)≈ zφ(x, t)
u2(x, y, z)≈ 0

u3(x, y, x)≈w(x, t)
(11.4)

where φ is the rotation of the beam’s cross-section about the positive y-axis and
w is the transverse displacement of a point of the centroidal axis (y = z= 0).

The strain displacement relations can be applied to equation (11.4) to give,

εxx = zϑφ
ϑx

εxz = φ + ϑw
ϑx

(11.5)

We suppose that the transverse shear deformation εxx is equal to zero [6].
In order to derive the equations of the motion of the beam we use Hamilton’s

principle [17],

∫ t1

t2

(δT − δU + δW)dt = 0, (11.6)

where T is the total kinetic energy of the system, U is the potential (strain) energy
and W is the virtual work done by the external mechanical and electrical loads and
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moments. The first variation of the kinetic energy is given by,

δT = 1

2

∫
V

ρ

{
ϑu

ϑt

}r{
ϑu

ϑt

}
dV

= b
2

∫ L

0

∫ h/2+hs

−h/2−ha
ρ

(
z
ϑφ

ϑt
δ
ϑφ

ϑt
+ ϑw
ϑt
δ
ϑw

ϑt

)
dzdx (11.7)

The first variation of the kinetic energy is given by,

δU = 1

2

∫
V

δ{ε}T {σ }dV

= b
2

∫ L

0

∫ h/2+hs

−h/2−ha

[
Q11

(
z
ϑw

ϑx
δ

)(
z
ϑw

ϑx

)]
dzdx (11.8)

If the load consists only of moments induced by piezoelectric actuators and since
the structure has no bending twisting couple then the first variation of the work has
the form [17],

δW = b
∫ L

0
Maδ

(
ϑφ

ϑx

)
dx (11.9)

where Ma is the moment per unit length induced by the actuator layer and is given
by,

Ma =
∫ −h/2

−h/2−ha
zσ axx dz=

∫ −h/2

−h/2−ha
zQ11d31E

a
z dz

(
Eaz =

Va

ha

) (11.10)

2.3 Finite Element Formulation

We consider a beam element of length Le, which has two mechanical degrees of
freedom at each node: one translational ω1 (respectively ω2) in direction y and one
rotational ψ1 (respectively ψ2), as it is shown in Fig. 11.2. The vector of nodal
displacements and rotations qe is defined as [5],

qe = [ω1,ψ1,ω2,ψ2] (11.11)

The transverse deflection ω(x, t) and rotation ψ(x, t) along the beam are continu-
ous and they are interpolated by Hermitian linear shape functions Hωi and Hψi as
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Fig. 11.2 Beam finite
element

follows [10],

ω(x, t)=
4∑
i=1

Hωi (x)qi(t)

ψ(x, t)=
4∑
i=1

H
ψ
i (x)qi(t)

(11.12)

This classical finite element procedure leads to the approximate (discretized) prob-
lem. For a finite element the discrete differential equations are obtained by substitut-
ing the discretized expressions (11.12) into equations (11.7) and (11.8) to evaluate
the kinetic and strain energies. Integrating over spatial domains and using the Hamil-
ton’s principle (11.6) the equation of motion for a beam element are expressed in
terms of nodal variable q as follows [5, 6, 14],

Mq̈(t)+Dq̇(t)+Kq(t)= fm(t)+ fe(t) (11.13)

where M is the mass matrix, D is the viscous damping matrix, K is the stiffness
matrix, fm is the external loading vector and fe is the generalized control force
vector produced by electromechanical coupling effects. The independent variable
vector q(t) is composed of transversal deflections ωi and rotations ψi , i.e. [21],

q(t)=

⎡
⎢⎢⎢⎢⎢⎣

ω1
ψ1
...

ωn
ψn

⎤
⎥⎥⎥⎥⎥⎦

(11.14)

where n is the number of nodes used in the analysis. Vectors w and fm are positive
upwards. For the state-space control transformation,we are presented with,

ẋ(t)=
[
q(t)

q̇(t)

]
(11.15)

Furthermore to express fe(t) in the form of Bu(t) we write it as the product f ∗e u,
where f ∗e is the piezoelectric force for a unit applied on the corresponding actuator,
and u represents the voltages on the actuators. Finally, d(t) = fm(t) is the distur-
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bance vector [15]. Then,

ẋ(t) =
[

02n×2n I2n×2n

−M−1K −M−1D

]
x(t)

+
[

02n×n
M−1f ∗e

]
u(t)+

[
02n×2n

M−1

]
(11.16)

= Ax(t)+Bu(t)+Gd(t)=Ax(t)+ [
B G

][ u(t)
d(t)

]

= Ax(t)+ B̃ũ(t) (11.17)

The previous description of the dynamical system will be augmented with the output
equation, under the assumption that only displacements are measured [10]

y(t)= [
x1(t) x3(t) · · · xn−1(t)

]T = Cx(t) (11.18)

In this formulation u is n× 1 (at most, but can be smaller), while d is 2n× 1.
The units used are compatible for instance m, rad, s and N [5, 14].

3 Design Objectives and System Specifications

The structured singular value of the transfer function is defined as,

μ(M)=
{

1
minkm {det(I−kmMΔ)=0,σ̄ (Δ)≤1}
0, Δdet(I −MΔ)= 0

(11.19)

This quantity defines the smallest structured μ(M) (measured in terms of σ̄ (Δ))
which makes det(I −MΔ) = 0: then μ(M) = 1

σ̄ (Δ)
. It follows that values of μ

smaller than 1 are desired [2, 4].
The design objectives fall into two categories:

1. Stability of closed loop system (plant+controller).
a. Disturbance attenuation with satisfactory transient characteristics (overshoot,

settling time).
b. Small control effort.

2. Robust performance

Stability of closed loop system (plant+controller) should be satisfied in the face
of modelling errors [3].

In order to obtain the required system specifications with respect to the above
objectives we need to represent our system in the so-called—Δ structure. Let us
start with the simple typical diagram of Fig. 11.3 [7, 12].
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Fig. 11.3 Classical control
block diagram (P : plant
dynamical system, C:
controller)

Fig. 11.4 Detailed two-port
diagram (with a linear
feedback control K)

Fig. 11.5 Two-port diagram

In this diagram there are two inputs, d and n, and two outputs, u and x. In what
follows it is assumed that,

∥∥∥∥dn
∥∥∥∥

2
≤ 1,

∥∥∥∥xu
∥∥∥∥

2
≤ 1 (11.20)

If this is not the case, appropriate frequency-dependent weights can transform
original signals so that the transformed signals have this property. The details of the
system are given in Fig. 11.4 or in less details Fig. 11.5:

In this description,

z=
[
u

x

]
, w =

[
d

n

]
(11.21)

where z are the output variables to be controlled, and w the exogenous inputs.
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Fig. 11.6 Two port diagram
with uncertainty

Given that P has two inputs and two outputs it is, as usual, naturally partitioned
as,

[
z(s)

y(s)

]
=

[
Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

][
w(s)

u(s)

]
= P(s)

[
w(s)

u(s)

]
(11.22)

In addition the controller is written,

u(s)=K(s)y(s) (11.23)

Substituting (11.22) in (11.23) gives the closed loop transfer function Nzw(s),

Nzw(s)= Pzw(s)+ Pzu(s)K(s)
(
I − Pyu(s)K(s)

)−1
Pyw(s) (11.24)

To deduce robustness specifications one more diagram is needed, namely that of
Fig. 11.6: where N is defined by (11.24) and the uncertainty modelled inΔ satisfies
‖Δ‖∞ ≤ 1 (details are given later on in this paper). Here,

z=Fu(N,Δ)w =
[
N22 +N21Δ(I −N11Δ)

−1N12
]
w = Fw (11.25)

Given this structure we can state the following definitions:

Nominal stability (NS) ⇔ N internally stable

Nominal performance (NP) ⇔ ‖N22(jω)‖∞ ≤ 1∀ω and NS

Robust stability (RS) ⇔ F =Fu(N,Δ) stable ∀Δ,‖Δ‖∞ < 1 and NS

Robust performance (RP) ⇔ ‖F‖∞ < 1,∀Δ,‖Δ‖∞ < 1 and S

(11.26)

It has been proved that the following conditions hold in the case of block-
diagonal real or complex perturbations Δ:

1. The system is nominally stable ifM is internally stable.
2. The system exhibits nominal performance if σ̄ (N22(jω)) < 1
3. The system (M,Δ) is robustly stable if and only if,

sup
ω∈R

μΔ
(
N11(jω)

)
< 1 (11.27)
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where μΔ is the structured singular value of N given the structured uncertainty
set Δ. This condition is known as the generalized small gain theorem.

4. The system (N,Δ) exhibits robust performance if and only if,

sup
ω∈R

μΔa
(
N(jω)

)
< 1 (11.28)

where,

Δa =
[
Δp 0
0 Δ

]
(11.29)

andΔp is full complex, has the same structure as Δ and dimensions correspond-
ing to w, z [12].

Unfortunately, only bounds on μ can be estimated.

3.1 Controller Synthesis

All the above results support the analysis problem and provide tools to judge the
performance of any controller or to compare different controllers. However it is
possible to approximately synthesize a controller that achieves given performance
in terms of the structured singular value μ.

In this procedure, which is called (D,G − K) iteration [20] the problem of
finding an μ-optimal controller K such that μ(Fu(F (jω)),K(jω)) ≤ β , ∀ω is
transformed into the problem of finding transfer function matrices D(ω) ∈ D and
G(ω) ∈ G, such that,

sup
ω
σ̄

[(
D(ω)Fu(F (jω),K(jω))D−1(ω)

γ
− jG(ω)

)

× (
I +G2(ω)

)−1/2
]
≤ 1, ∀ω (11.30)

Unfortunately this method does not guarantee even finding local maxima. However
for complex perturbations a method known as D − K iteration is available (im-
plemented in MATLAB) [20]. It combines H∞ synthesis and μ-analysis and often
yields good results. The starting point is an upper bound on μ in terms of the scaled
singular value,

μ(N)≤ min
D∈D

σ̄
(
DND−1) (11.31)

The idea is to find the controller that minimizes the peak over the frequency range
namely,

min
K

(
min
D∈D

∥∥DN(K)D−1
∥∥∞

)
(11.32)
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by alternating between minimizing ‖DN(K)D−1‖∞ with respect to either K or D
(while holding the other fixed).

1. K-step. Synthesize an H∞ controller for the scaled problem minK ‖DN(K)×
D−1‖∞ with fixed D(s).

2. D-step. Find D(jω) to minimize at each frequency σ̄ (DND−1(jω)) with
fixed N .

3. Fit the magnitude of each element of D(jω) to a stable and minimum phase
transfer function D(s) and got to Step 1 [20].

3.2 System Uncertainty

Let us assume uncertainty in the massM and K matrices of the form,

K =K0(I + kpI2n×2nδK)

M =M0(I +mpI2n×2nδM)
(11.33)

Alternatively, since in general the Rayleigh damping assumption is,

D = aK + βM (11.34)

D could be expressed similarly to K ,M , as,

D =D0(I + dpI2n×2nδD) (11.35)

In this way we introduce uncertainty in the form of percentage variation in the rel-
evant matrices. More detailed correlation of uncertainty with certain properties of
the structures (e.g., material constants, flexibility of joints, cracks or delaminations)
is possible and will be investigated in the future.

Here it will be assumed,

‖Δ‖∞ def=
∥∥∥∥
[
In×nδK 0n×n

0n×n In×nδM

]∥∥∥∥∞ < 1 (11.36)

hence mp , kp are used to scale the percentage value and the zero subscript denotes
nominal values (it is reminded here that the norm for a matrix An×n is calculated
through ‖A‖∞ =max1≤j≤m

∑n
j=1 |aij |).

With these definitions Eq. (11.13) becomes,

M0(I +mpI2n×2nδM)ẅ(t)+K0(I + kpI2n×2nδK)w(t)

+ [
D0 + 0.0005[K0kpI2n×2nδK +M0mpI2n×2nδM ]

]
ẇ(t)

= fm(t)+ fe(t)
⇒ M0ẅ(t)+D0q̇(t)+K0w(t)
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=−[
M0mpI2n×2nδMẅ(t)+ 0.0005[K0kpI2n×2nδK +M0mpI2n×2nδM ]ẇ(t)

+K0kpI2n×2nδKw(t)
]

= fm(t)+ fe(t)
⇒ M0ẅ(t)+D0ẇ(t)+K0w(t)= D̃qu(t)+ fm(t)+ fe(t) (11.37)

where,

qu(t) =
⎡
⎣ẅ(t)ẇ(t)

w(t)

⎤
⎦ (11.38)

D̃ = − [
M0mp K0kp

][ I2n×2nδM 02n×2n

02n×2n I2n×2nδK

]

×
[
I2n×2n 0.0005I2n×2n 02n×2n
02n×2n 0.0005I2n×2n I2n×2n

]

=G1 ·Δ ·G2 (11.39)

Writing (11.37) in state space form, gives,

ẋ(t) =
[

02n×2n I2n×2n

−M−1K −M−1D

]
x(t)+

[
02n×2n

M−1f ∗e

]
u(t)

+
[

02n×2n

M−1

]
d(t)+

[
02n×6n

M−1F1 ·Δ ·G2

]
qu(t)

= Ax(t)+Bu(t)+Gd(t)+GuG2qu(t) (11.40)

In this way we treat uncertainty in the original matrices as an extra uncertainty
term. To express our system in the form of Fig. 11.6, consider Fig. 11.7.

The matrices E1, E2 are used to extract,

qu(t)
def=

⎡
⎣ẅ(t)ẇ(t)

w(t)

⎤
⎦ (11.41)

Since,

γ =
[
ẇ(t)

ẅ(t)

]
β =

∫ [
ẇ(t)

ẅ(t)

]
dt =

[
w(t)

ẇ(t)

]
(11.42)
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Fig. 11.7 Uncertainty block diagram

appropriate choices for E1, E2 are,

E1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02n×2n
... I2n×2n

· · · ... · · ·
I2n×2n

... 02n×2n

· · · ... · · ·
02n×2n

... 02n×2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02n×2n
... 02n×2n

· · · ... · · ·
02n×2n

... 02n×2n

· · · ... · · ·
I2n×2n

... 02n×2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.43)

The idea is to find an N such that,

⎡
⎢⎢⎣
qu
· · ·
ew
uw

⎤
⎥⎥⎦=N

⎡
⎢⎢⎣
pu
· · ·
dw
nw

⎤
⎥⎥⎦ ,

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

Npuqu
... Ndwqu Nnwqu

· · · ... · · · · · ·
Npuew

... Ndwew Nnwew

Npuuw
... Ndwuw Nnwuw

⎤
⎥⎥⎥⎥⎥⎥⎦
=

[
N11 N12
N21 N22

]
(11.44)
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or in the notation of Fig. 11.6

[
qu
w

]
=N

[
pu
z

]
(11.45)

Now Ndwew , Nnwew , Nnwuw are known. For the rest we will use a methodology
known as “pulling out the Δ’s”. To this end, break the loop at points pu, qu (which
will be used as additional inputs/outputs respectively) and use the auxiliary signals
a, β , γ . To get the transfer function Ndwqu (from dw to qu):

qu = G2(E2β +E1γ )=G2

(
E2

1

s
+E1

)
γ (11.46)

γ = GWddw +Bu+A1

s
γ =GWddw +BKC 1

s
γ +A1

s
γ (11.47)

⇒ γ =
(
I −BKC 1

s
−A1

s

)−1

GWddw (11.48)

Hence,

Ndwqu =G2

(
E2

1

s
+E1

)(
I −BKC 1

s
−A1

s

)−1

GWd (11.49)

Now, Npuqu , Npuew , Npuuw , are similar to Ndwqu , Ndwew , Ndwuw , with GWd re-
placed by Gu, i.e.,

Npuqu =G2

(
E2

1

s
+E1

)(
I −BKC 1

s
−A1

s

)−1

Gu

Npuew =WyJH
[
I +B[K(I −CHBK)−1CH

]]
Gu

Mpuuw =WuK(I −CHBK)−1CHGu

(11.50)

Finally to find Nnwqu ,

qu =G2(E2β +E1γ )=G2

(
E2

1

s
+E1

)
γ (11.51)

γ = Bu+A1

s
γ = BK(Wnnw + y)+A1

s
γ

= BKWnnw +BKC 1

s
γ +A1

s
γ (11.52)

⇒ γ =
(
I −BKC 1

s
−A1

s

)−1

BKWnnw (11.53)
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Hence,

Nnwqu =G2

(
E2

1

+E1

)(
I −BKC 1

s
−A1

s

)−1

BKWn (11.54)

Collecting all the above yields N :

N =
⎡
⎣N11 N12 N13
N21 N22 N23
N31 N32 N33

⎤
⎦ (11.55)

where

N11 =G2

(
E2

1

s
+E1

)(
I −BKC 1

s
−A1

s

)−1

Gu,

N12 =G2

(
E2

1

s
+E1

)(
I −BKC 1

s
−A1

s

)−1

GWd,

N13 =G2

(
E2

1

s
+E1

)(
I −BKC 1

s
−A1

s

)−1

BKWu,

N21 =WeJH
[
I +BK(I −CHBK)−1CF

]
Gu,

N22 =WeJ(I −HBKC)−1HGWd,

N23 =WeJ(I −HBKC)−1HBKWu,

N31 =WuK(I −CHBK)−1CFGu,

N32 =Wu(I −KCHB)−1KCHGWd,

N33 =Wu(I −KCHB)−1KW

Having obtained N for the beam problem, all proposed controllers K(s) can be
compared using the structured singular value relations [1, 18, 19].

4 Robustness Issues

The superiority of H∞ control lies in its ability to take explicitly into account the
worst effect of unknown disturbances and noise in the system. Furthermore, at least
in theory, it is possible to synthesize an H∞ controller that is robust to a prescribed
amount of modeling errors. Unfortunately, this last possibility is not implementable
in some cases, as it will be subsequently illustrated [9, 13].

In what follows, the robustness to modeling errors of the designedH∞ controller
will be analyzed. Furthermore an attempt to synthesize a μ-controller will be pre-
sented, and comparisons between the two will be made.

In all simulations, routines from Matlab’s Robust Control Toolbox will be used.
In particular:
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Fig. 11.8 Simulink diagram of uncertain plant

1. For uncertain elements,
2. To calculate bounds on the structured singular value,
3. To calculate a μ-controller,

Numerical models used in all simulations, are implemented in three ways:

1. Through Eq. (11.56)

K =K0(I + kpI2n×2nδK)

M =M0(I +mpI2n×2nδM)

D =D0 + 0,0005[K0kpI2n×2nδK +M0mpI2n×2nδM ]
(11.56)

and subsequent evaluation of matrix N for specific values of kp , mp .
2. By use of Matlab’s “uncertain element object”. As explained, this form is needed

in the D-K robust synthesis algorithm.
3. By Simulink implementation of Fig. 11.8.

4.1 Inputs-Loading

Loading corresponds to the wind excitation. The function y(t) has been obtained
from the wind velocity record, through the relation

fm(t)= y(t), where y(t)= 0.5pv2(t)CvE (11.57)

Where p = 1.125 kg/m3 is the air density, Cv is a coefficient that depends on
beam cross section, for rectangular cross section Cv = 1.5, v(t) is wind velocity
and E represents the beam surface area that is exposed to wind (Fig. 11.9).

Moreover, in all simulations random noise has been introduced within a proba-
bility interval of ±1% to measurements at the system output locations. Due to small
displacements of system nodal points noise amplitude is taken to be small of the
order of 5 · 10−5 (Fig. 11.10).
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Fig. 11.9 Wind force

Fig. 11.10 Simulink diagram of noise

4.2 Robust Analysis—Results

Robust analysis is carried out through the relations:

sup
ω∈R

μΔ
(
N11(jω)

)
< 1 (11.58)

for robust stability, and,

sup
ω∈R

μΔa
(
N(jω)

)
< 1 (11.59)

for robust performance.



196 A. Moutsopoulou et al.

Fig. 11.11 Displacement response with and without H∞ control for the four rodes of the beam

Fig. 11.12 μ-bounds of the
H∞ controller for mp = 0,
kp = 0.9

For the H∞ found, robust analysis was performed for the following values of
mp , kp .

1. mp = 0, kp = 0.9. This corresponds to a±90% variation from the nominal value
of the stiffness matrix K .

In Fig. 11.11 the displacement responses for this controller for the mechanical
input are shown. In Fig. 11.12 are shown the bounds on the μ values. As seen the
system remains stable and exhibits robust performance, since the upper bounds of
both values remain below 1 for all frequencies of interest. This result is validated
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Fig. 11.13 Displacement and control at free end for the H∞ controller with mp = 0, kp = 0.9
(extreme values)

Fig. 11.14 μ-bounds of the
H∞ controller for mp = 0.9,
kp = 0

in Fig. 11.13, where the displacement of the free end and the voltage applied are
shown at the extreme uncertainty. Comparison with the open loop response for
the same plant shows the good performance of the nominal controller.

2. mp = 0.9, kp = 0. This corresponds to a±90% variation from the nominal value
of the mass matrixM .

In Fig. 11.14 are shown the bounds on the μ values. As seen the system re-
mains stable and exhibits robust performance, since the upper bounds of both
values remain below 1 for all frequencies of interest. This result is validated in
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Fig. 11.15 Displacement and control at free end for the H∞ controller with mp = 0.9, kp = 0
(extreme values)

Fig. 11.16 Displacement and
control at free end for the H∞
controller with mp = 0.9,
kp = 0 (extreme values)

Fig. 11.15, where the displacement of the free end and the voltage applied are
shown. Comparison with the open loop response for the same plant shows the
good performance of the nominal controller.

3. mp = 0.9, kp = 0.9. This corresponds to a ±90% variation from the nominal
values of both the mass and stiffness matricesM,K .

In Fig. 11.16 are shown the bounds on the μ values. As seen the system re-
mains stable and exhibits robust performance, since the upper bounds of both
values remain below 1 for all frequencies of interest. This result is validated in
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Fig. 11.17 Displacement and
control at free end for the H∞
controller with mp = 0.9,
kp = 0 (extreme values)

Fig. 11.17, where the displacement of the free end and the voltage applied are
shown. Comparison with the open loop response for the same plant shows the
good performance of the nominal controller.

4.3 Robust Synthesis: μ-Controller—Results

A μ-controller can be synthesized via the procedure of D-K iteration As explained,
this is an approximate procedure, providing bounds on the μ-value. To facilitate
comparison with the H∞ controller, similar bounds for the uncertainty will be used.
In all the simulations that follow the disturbance is 10 N at the free end of the beam.

1. mp = 0, kp = 0.9. This corresponds to a±90% variation from the nominal value
of the stiffness matrix K. In Fig. 11.18 -values of the calculated controller are
shown. As seen the controller is robust in most frequencies. In Fig. 11.19 perfor-
mance of the μ and H∞ controllers is compared at the free end (this is indicative
of overall performance). As seen the H∞ controller performs better at the ex-
pense of increased control effort. Figure 11.20 (the top two panels) verifies this
result, where it is seen that the H∞ controller fares better at the extreme value.
This could be due to numerical difficulties in the calculation of the μ-controller
arising from the bad condition number of the plant. It could also be due to the
high order of the μ-controller. In any case, further investigation is needed.
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Fig. 11.18 μ-bounds of the
μ-controller for mp = 0,
kp = 0.9

Fig. 11.19 Comparison of
H∞ and μ-controller

5 Conclusions

A finite element based model for a representative smart structure, namely a smart
beam, including uncertainties has been presented. Based on this model H∞ and
μ-controller has been designed which effectively suppress the vibrations of the
smart beam under stochastic load. The advantage of the H∞ criterion is its abil-
ity to take into account the worst influence of uncertain disturbances or noise in
the system. It is possible to synthesize a H∞ controller which will be robust with
respect to a prespecified number of errors in the model. The vibration suppres-
sion is achieved by the application of H∞ controller. The system remains stable
and exhibits robust performance, for all frequencies of interest. In addition a ro-
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Fig. 11.20 Displacement and
control at free end for
μ-controller with mp = 0,
kp = 0.9 (extreme values)

bust μ-controller was analyzed and synthesized, using the D-K Iterative method.
The results are compared and commented. The results are very good: the oscil-
lations were suppressed, with the voltages of the piezoelectric components’ lying
within their endurance limits. The above findings indicate that modern robust con-
trol techniques combined with classical finite element modelling provide us a pow-
erful tool for applicable structural control design. Further work in this direction, in-
cluding specialization for given damage-related uncertainties, investigation of dif-
ferent excitations as well as experimental verification, seems to be very promis-
ing.
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Chapter 12
Robust Structural Health Monitoring Using
a Polynomial Chaos Based Sequential Data
Assimilation Technique

George A. Saad and Roger G. Ghanem

Abstract With the recent technological advances and the evolution of advanced
smart systems for damage detection and signal processing, Structural Health Moni-
toring (SHM) emerged as a multidisciplinary field with wide applicability through-
out the various branches of engineering, mathematics and physical sciences. How-
ever, significant challenges associated with modeling the physical complexity of
systems comprising these structures remain. This is mainly due to the fact that nu-
merous uncertainties associated with modeling, parametric and measurement er-
rors could be introduced. In cases where these uncertainties are significant, standard
identification and damage detection techniques are either unsuitable or inefficient.
This study presents a robust data assimilation approach based on a stochastic varia-
tion of the Kalman Filter where polynomial functions of random variables are used
to represent the inherent process uncertainties. The presented methodology is com-
bined with a non-parametric modeling technique to tackle structural health monitor-
ing of a four-story shear building. The structure is subject to a base motion specified
by a time series consistent with the El-Centro earthquake and undergoes a preset
damage in the first floor. The purpose of the problem is localizing the damage in
both space and time, and tracking the state of the system throughout and subsequent
to the damage time. The application of the introduced data assimilation technique to
SHM enhances the latter’s applicability to a wider range of structural problems with
strongly nonlinear dynamical behavior and with uncertain and complex governing
laws.
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1 Introduction

With the recent technological advances and the evolution of advanced smart systems
for damage detection and signal processing, Structural Health Monitoring (SHM)
emerged as a multidisciplinary field with wide applicability throughout the various
branches of engineering, mathematics and physical sciences. Typically, the SHM
problem can be addressed as a statistical pattern recognition paradigm with three
main components:

1. A numerical model that accurately represents the governing system dynamics
2. Real-time data acquisition and management system
3. A sequential data assimilation technique that relies on a set of observational data

to calibrate and update the underlying dynamic principles governing the system
under observation.

In such context, numerous uncertainties associated with modeling, parametric and
measurement errors could be introduced. In cases where these uncertainties are sig-
nificant, standard identification and damage detection techniques are either unsuit-
able or inefficient. Therefore, the need rises for robust system identification algo-
rithms that can tackle the aforementioned challenges. This has been a very active
research area over the past decade [3–5, 8, 9, 11, 12].

Sequential data assimilation has been widely used for structural health moni-
toring and system identification problems. Many extensions of the Kalman Filter
were developed as adaptations to important classes of these problems. While the
Extended Kalman Filter may fail in the presence of high non-linearities, Monte
Carlo based Kalman Filters usually give satisfactory results. The Ensemble Kalman
Filter (EnKF) [1, 2] was recently used for damage detection in strongly nonlin-
ear systems [4], where it is combined with non-parametric modeling techniques
to tackle structural health monitoring for non-linear systems. The EnKF uses a
Monte Carlo Simulation scheme for characterizing the noise in the system, and
therefore allows representing non-Gaussian perturbations. Although this combina-
tion gives good results, it requires a relatively accurate representation of the non-
linear system dynamics. It also requires a large ensemble size to quantify the non-
Gaussian uncertainties in such systems and consequently imposes a high computa-
tional cost.

This study presents a system identification approach based on coupling robust
non-parametric non-linear models with the Polynomial Chaos methodology in the
context of the Kalman Filtering techniques [10]. The proposed approach uses a Poly-
nomial Chaos expansion [6, 7] of the nonparametric representation of the system’s
non-linearity to statistically characterize the system’s behavior. A filtering technique
that allows the propagation of a stochastic representation of the unknown variables
using Polynomial Chaos is used to identify the chaos coefficients of the unknown
parameters in the model. The introduced filter is a modification of the EnKF that
uses the Polynomial Chaos methodology to represent uncertainties in the system.
This allows the representation of non-Gaussian uncertainties in a simpler, less tax-
ing way without the necessity of managing a large ensemble. It also allows obtain-
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ing the probability density function of the model state or parameters at any instant
in time by simply simulating the Polynomial Chaos basis.

2 The Polynomial Chaos Kalman Filter (PCKF)

The Kalman Filter is an optimal sequential data assimilation method for linear dy-
namics and measurement processes with Gaussian error statistics. The PCKF builds
on the mathematics of the original Kalman Filter to allow the propagation of a
stochastic representation of the unknown variables using Polynomial Chaos. In the
PCKF, the model state is given by,

x =
P∑
i=0

xiψi(ξ), (12.1)

where, P +1 is the number of terms in the Polynomial expansion of the state vector,
{ψi} is set of Hermite polynomials function of the Gaussian random variable, ξ .
Consequently, the covariance matrix of the model state is defined around the mean,
the zero order term, of the stochastic representation,

P≈
〈(

P∑
i=0

xiψi − x0

)(
P∑
i=0

xiψi − x0

)T 〉

≈
〈(

P∑
i=1

xiψi

)(
P∑
i=1

xiψi

)T 〉

≈
P∑
i=1

xix
T
i

〈
ψ2
i

〉
, (12.2)

where, P is the covariance matrix, and 〈〉 denotes the mathematical expectation. The
Polynomial Chaos representation depicts all the information available through the
complete probability density function, and therefore allows the propagation of all
the statistical moments of the unknown parameters and variables.

The observations are also treated as random variables represented via a Polyno-
mial Chaos expansion with a mean equal to the first-guess observations. Since the
model and measurement errors are assumed to be independent, the latter is repre-
sented as a Markov process.

2.1 Analysis Scheme

For computational efficiency, the dimensionality and order of the Polynomial Chaos
expansion are homogenized through out the solution. These parameters are initially
defined based on the uncertainty within the problem at hand and are assumed to



206 G.A. Saad and R.G. Ghanem

be constant thereafter. Since the model state and measurement vectors are assumed
independent, the Polynomial Chaos representation of these variables has a sparse
structure.

Let A be the matrix holding the chaos coefficients of the state vector x,

A= (x0, x1, . . . , xP ) ∈Rn×(P+1), (12.3)

where P + 1 is the total number of terms in the Polynomial Chaos representation
of x and n is the size of the model state vector. The mean of x is stored in the
first column of A and is denoted by x0. The state perturbations are given by the
higher order terms stored in the remaining columns. Consequently, the state error
covariance matrix P is defined as:

P=
P∑
i=1

xix
T
i

〈
ψ2
i

〉 ∈Rn×n (12.4)

Given a vector of measurements d ∈ Rm, with m being the number of measure-
ments at each occurrence, a Polynomial chaos representation of the measurements
is defined as

d =
P∑
j=0

djψj (ξ), (12.5)

where the mean d0 is given by the actual measurement vector, and the higher order
terms represent the measurement uncertainties. The representation d can be stored
in matrix form as:

B= (d0, d1, . . . , dP ) ∈Rm×(P+1). (12.6)

Based on Eq. (12.5), the measurement error covariance matrix, R, is defined as:

R=
P∑
i=1

did
T
i

〈
ψ2
i

〉 ∈Rm×m (12.7)

The Kalman Filter forecast step is carried out by employing a stochastic Galerkin
scheme, and the assimilation step consists of the traditional Kalman Filter correction
step applied on the Polynomial Chaos expansion of the model state vector,

P∑
i=0

xai ψi =
P∑
i=0

x
f
i ψi + PHT

(
HPHT +R

)−1

(
P∑
i=0

diψi −H
P∑
i=0

x
f
i ψi

)
(12.8)

where, H is the observation matrix, and the superscripts f and a represent the fore-
cast and analysis states respectively. Projecting the above equation on an approxi-
mating space spanned by the Polynomial Chaos {ψi}Pi=0 yields,

xai = xfi + PHT
(
HPHT +R

)−1(
di −Hxfi

) ∀i = 0,1, . . . ,P . (12.9)

In matrix form, the assimilation step is expressed as:

Aa =Af + PHT
(
HPHT +R

)−1(B−HAf
)

(12.10)
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Fig. 12.1 Shear building
under analysis

Table 12.1 Bouc–Wen
model coefficients Model Coefficient Pre-Change Post-Change

α 0.15 0.15

β 0.1 10

n 1 1

Υ 0.1 10

A 1 1

3 Numerical Example

The efficiency of the presented method is assessed by applying it to the structural
health monitoring of the four-story shear building shown in Fig. 12.1. This model
has a constant stiffness on each floor and a 5% damping ratio in all modes. All
structural elements of this frame are assumed to involve hysteretic behavior, and it
is supposed that a change in the hysteretic loop of the first floor element occurs at
some point. It is of utmost importance to localize that point in time and track the
state of the system throughout and subsequent to that point.

A synthetically generated dataset representing measurements of the displace-
ments and velocities at each floor is obtained by representing the hysteretic restoring
force by the Bouc–Wen model, which is therefore considered as the exact hysteretic
behavior of the system. Thus, the equation of motion of the system is given by,

Mü(t)+Cu̇(t)+ αKelu(t)+ (1− α)Kinz(x, t)=−Mτ üg(t) (12.11)

where, M, C, Kel, and Kin are the mass, damping, elastic and inelastic stiffness ma-
trices respectively; α is the ratio of the post yielding stiffness to the elastic stiffness,
τ is the influence vector, u is the displacement vector, x is the inter-story drift vec-
tor, and z is an n-dimensional evolutionary hysteretic vector whose ith component
is give by the Bouc–Wen model as,

żi =Aiẋi − β|ẋi ||zi |ni−1 − γi ẋi |zi |ni , i = 1, . . . , n (12.12)

A, β , and Υ are the Bouc–Wen model parameters. The adopted values for these
parameters are shown in Table 12.1.

The structure is subject to a base motion specified by a time series consistent
with the 1940 El-Centro earthquake shown in Fig. 12.2, and a change of the first
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Fig. 12.2 The 1940 ElCentro excitation applied to the structure

floor hysteretic behavior is assumed to take place five seconds after the excitation.
A monitoring scenario where it is assumed that measurements are available every 5
time steps is adopted. A nonparametric representation of the system nonlinearity is
adopted, and the filtering technique is used to characterize the latter representation
in order to capture any ambiguous behavior of the structure examined.

4 Non-parametric Representation of the Non-linearity

The proposed filtering methodology is combined with a non-parametric model-
ing technique to tackle structural health monitoring of non-linear systems but in-
stead of adopting a deterministic nonparametric representation of the non-linearity,
a stochastic representation via Polynomial Chaos is used. The basic idea behind the
non-parametric identification technique used is to determine an approximating ana-
lytical function F̂ that approximates the actual system non-linearities, with the form
of F̂ including suitable basis functions that are adapted to the problem at hand [8].
For general non-linear systems, a suitable choice of basis would be the list of terms
in the power series expansion in the doubly indexed series,

S =
imax∑
i=0

jmax∑
j=0

uiu̇j (12.13)

where u and u̇ are used to represent the system’s displacement and velocity respec-
tively. Therefore, if imax = 3 and jmax = 3, the basis functions become:

basis= {
1, u̇, u̇2, u̇3, u,uu̇, uu̇2, uu̇3, u2, u2u̇, u2u̇2, u2u̇3,

u3, u3u̇, u3u̇2, u3u̇3} (12.14)

In the proposed method the displacements and velocities are stochastic processes
represented by their Polynomial Chaos expansion. Thus, the approximating function
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is also expressed as a stochastic process via a Polynomial Chaos representation. The
model adopted within the Kalman Filter is hence given by

Mü(t)+ F(u, u̇)=−Mτüg(t) (12.15)

where, F is the non-parametric representation of the non-linearity whose ith floor
component is given by

F i ≈
∑
j
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(12.16)

In the above equation, {aj }, {bj }, {cj }, and {dj } represent the chaos coefficients of
the unknown parameters to be identified. The fourth order Runge–Kutta method is
used for the time stepping and a stochastic Galerkin approach is employed to solve
the system at each time step.

5 Results

In the numerical example, it is assumed that observations of displacements and ve-
locities from all floors are available. The noise signals perturbing both the model
and measurements are modeled as first order, one dimensional, independent, Poly-
nomial Chaos expansions having zero-mean and an RMS of 0.05 and 0.001 respec-
tively. The parametric uncertainties on the other hand, are modeled as second order,
one dimensional, Polynomial Chaos expansions whose coefficients are to be deter-
mined in accordance with the available observations. This is done to incorporate
the possibility that the unknown parameters may deviate from Gaussianity. Further-
more, it is assumed that the first floor undergoes a change in its hysteretic behavior
5 seconds after the ground excitation. The purpose of the application is to detect this
behavioral change.
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Fig. 12.3 Estimate of the first floor parameters, (a) displacement, (b) velocity

Fig. 12.4 Estimate of the fourth floor parameters, (a) displacement, (b) velocity

Fig. 12.3 and Fig. 12.4 describe the tracking of the displacement and velocity
for the first and fourth floor respectively. Excellent match between the results es-
timated using the Polynomial Chaos based Kalman Filter and the true state is ob-
served.

Fig. 12.5 presents the evolution of the mean of the unknown parameters identi-
fied by the proposed filtering technique. Error bars representing the scatter in the
estimated parameters are also present in Fig. 12.5. The different jumps within the
parameters are associated with the perks in the corresponding excitation.

Further investigation of the parameters indicates that the main changes take place
in the first floor following the 5 s time interval. Note that the parameters a and c in
floors 1 and 2 undergo the greatest jumps since they are associated with inter-story
drift and velocity, respectively. One of the main advantages of using the Polynomial
Chaos Kalman filter is that it provides a scatter around the estimated parameters.
This is represented by the probability density functions corresponding to each of
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Fig. 12.5 Estimate of the mean floor parameters

the estimated parameters. Fig. 12.6 presents the probability density functions of the
estimated floor 1 parameters.

6 Conclusions

The combination of Polynomial Chaos with the Ensemble Kalman Filter renders
an efficient data assimilation methodology that competes with other Kalman Filter-
ing techniques while maintaining a relatively low computational cost. Although the
proposed method employs traditional Kalman Filter updating schemes, it preserves
all the error statistics, and hence allows the computation of the probability density
function of the uncertain parameters and variables at all time steps. This is achieved
by simply simulating the Polynomial Chaos representation of these parameters. To-
gether with the non-parametric representation of the nonlinearities, the approach
constitutes an effective system identification technique that accurately detects any
changes in the systems behavior. The Polynomial Chaos representation of the non-
parametric model for the nonlinearities is a robust innovative approach that per-
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Fig. 12.6 Probability density functions of the estimated floor 1 parameters

mits damage identification and tracking the dynamical state beyond that point. Us-
ing Polynomial Chaos, the uncertainty associated with the assumed non-parametric
model is inherently present and thus represents the actual nonlinearity in a more
accurate way.
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Chapter 13
Efficient Model Updating of the GOCE Satellite
Based on Experimental Modal Data

B. Goller, M. Broggi, A. Calvi, and G.I. Schuëller

Abstract The accurate prediction of the structural response of spacecraft systems
during launch and ascent phase is a crucial aspect in design and verification stages
which requires accurate numerical models. The enhancement of numerical models
based on experimental data is denoted model updating and focuses on the improve-
ment of the correlation between finite element (FE) model and test structure. In
aerospace industry the examination of the agreement between model and real struc-
ture involves the comparison of the modal properties of the structure. Model updat-
ing techniques have to handle several difficulties, like incomplete experimental data,
measurement errors, non-unique solutions and modeling uncertainties. To cope with
the computational challenges associated with the large-scale FE-models involving
up to over one million degrees of freedom (DOFs), enhanced strategies are required.
A large-scale numerical example, namely a satellite model, will be used for demon-
strating the applicability of the employed updating procedure to complex aerospace
structures.

1 Introduction

The dynamic loads acting on a spacecraft during the launch and ascent phase are
modeled by the spacecraft-launcher coupled dynamic analysis. The accuracy of the

G.I. Schuëller is deceased.

B. Goller (�)
Institute of Engineering Mechanics, University of Innsbruck, Technikerstr. 13, 6020 Innsbruck,
Austria
e-mail: barbara.goller@uibk.ac.at

M. Broggi
Institute for Risk and Uncertainty, University of Liverpool, Warrington, WA4 4AD, UK
e-mail: matteo.broggi@liverpool.ac.uk

A. Calvi
Structures Section TEC-MSS, European Space Agency/ESTEC, P.O. Box 299, 2200 AG
Noordwijk, The Netherlands
e-mail: adriano.calvi@esa.int

M. Papadrakakis et al. (eds.), Computational Methods in Stochastic Dynamics,
Computational Methods in Applied Sciences 26,
DOI 10.1007/978-94-007-5134-7_13, © Springer Science+Business Media Dordrecht 2013

215

mailto:barbara.goller@uibk.ac.at
mailto:matteo.broggi@liverpool.ac.uk
mailto:adriano.calvi@esa.int
http://dx.doi.org/10.1007/978-94-007-5134-7_13


216 B. Goller et al.

structural response in this low-frequency mechanical environment depends on the
quality of the underlying mechanical model of the spacecraft. Therefore, it is manda-
tory to ensure that the FE-model represents the real structure accurately enough.
This level of accuracy to be reached for aerospace structures is defined in [1] and is
based on the agreement of experimentally and computationally determined modal
properties, respectively. Possible sources for discrepancies between test data and re-
spective computed values are e.g. uncertainties in the modeling process arising from
inadequate theory for some system behaviors, simplifying assumptions made in or-
der to reduce the complexity of the model and uncertainties about model parameter
values. Hence, the need for improving the mechanical model based on experimental
data arises which is referred to as model updating and the consecutive corroboration
of the model by means of modal properties is denoted by validation [2–4].

The use of deterministic updating procedures does not allow for a quantifica-
tion of the involved uncertainties in the design and verification processes which will
subsequently affect the accuracy of the predictive structural response. Probabilis-
tic methods for model updating provide a means for tackling these problems and
for avoiding a wrong conclusion about the fit of the experimental data and ana-
lytical results [5]. A significant obstacle in the consideration of uncertainties when
performing model updating of complex structures is posed by the associated compu-
tational efforts. Therefore, the most frequently used approaches for model updating
performed by industry are deterministic approaches (see e.g. [6–9]). While stochas-
tic methods have been developing successfully in this research field, applications
in industry are relatively limited (see e.g. [10]). Hence, in this work it is aimed at
a computationally efficient application of a stochastic model updating procedure to
complex aerospace models.

The thereby adopted updating process is the Bayesian approach which is based
on updating the initial engineering knowledge about the ranges of the adjustable pa-
rameters using experimental data [11–13]. In this way, a revised information about
the parameters is obtained, which is expressed by posterior probability density func-
tions. Probability is therefore not interpreted in the usual frequentist sense, where it
refers to the relative frequency of occurrence in case of many events, but it is based
on the idea of reasonable expectation, i.e. probability is interpreted as a measure of
plausibility of the hypothesis. This interpretation makes it possible to extend the ap-
plication of probability theory to fields where the frequentist interpretation may not
be directly intuitive, as it is the case for one-of-a-kind structures, where no ensem-
ble exists, and also in the case of limited data, where classical statistics is of limited
applicability. Therefore, Bayesian statistics makes it possible to deal with the usual
situation in aerospace industry, where a large amount of experimental data is infea-
sible due to the enormous costs associated with test campaigns, and it provides a
means for making decisions based on limited, incomplete information.

The computational tools for the Bayesian updating procedure are sampling-based
algorithms, where a multi-level Markov chain Monte Carlo algorithm is adopted in
this approach [14]. As a remedy for the large computational efforts associated with
the Bayesian updating procedure, the application of a surrogate model (a so-called
“meta-model”) is proposed. This meta-model is formulated with respect to the re-
peated analysis tasks, which are the eigensolutions in case of model updating based
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on modal data. Hence, a simple relation between the input data and output quantity
of interest has to be established in order to replace the computationally intensive
evaluation of a full finite element analysis by a function evaluation at low compu-
tational costs. Several techniques, e.g. linear or polynomial regression, kriging and
the radial basis functions have been developed in this context (see e.g. [15]), where
in this work neural networks [16, 17] will be adopted in order to approximate the
modal properties of the structure.

This manuscript will demonstrate the feasibility of the application of Bayesian
model updating procedures on spacecraft structures using eigenfrequencies and
mode shape vectors. Section 2 is devoted to the presentation of the basic steps of
Bayesian model updating, and in Sect. 3 the algorithm for the generation of samples
in the solution space is summarized. Computational aspects will be addressed in the
following (Sect. 4), where the basic concepts of neural networks are discussed. In
order to apply these outlined concepts to an FE-model of a spacecraft structure, the
use of a surrogate model within the updating process is adopted for the FE-model
of the GOCE satellite (Sect. 5).

2 Bayesian Model Updating

2.1 Introduction

The fundamental rule that governs the Bayesian updating procedure is Bayes’ The-
orem, which is formulated in general terms as [18]

P(H |D, I )= P(D |H,I)P (H |I )
P (D |I ) , (13.1)

where H is any hypothesis to be tested, D denotes the data and I is the avail-
able background information. Bayes’ Theorem provides a means to update the prior
probability density function (PDF) ofH , P(H |I ), by using the data in the likelihood
function P(D |H,I) in order to obtain the posterior distribution of H , P(H |D, I ).
The denominator P(D |I ) is a normalizing constant and does not affect the shape of
the posterior PDF. All probabilities in Eq. (13.1) are conditional on I , which means
that the outcome of the updating procedure depends on the available information.

2.2 Bayesian Updating Using Modal Data

If applying Bayes’ Theorem for structural model updating [11, 12], the hypothesis
H is interpreted as the vector of unknown (i.e. adjustable) parameters, which will
be referred to as θ in the following, and D denotes the experimental data, which
consist of the measured modal properties of the investigated structure. The available
information I is interpreted as the experience and knowledge of the engineer which
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is reflected by the established model itself and is therefore denoted as M . This leads
to the following form of Eq. (13.1):

p(θ |D,M )= p(D |θ,M )p(θ |M )

p(D |M )
. (13.2)

The prior distribution p(θ |M ) expresses the initial knowledge about the adjustable
parameters. The choice of the distribution can be based on the principle of maxi-
mum entropy [19]. In this case, the PDF used for describing the initial uncertainty
maximizes the uncertainty subject to the prescribed constraints, which can be given
by e.g. imposing moment constraints. The likelihood function p(D |θ,M ) gives a
measure of the agreement between the system data and the corresponding structural
model output. This measure of the data fit of each model defined by the parameters
vector θ , is given by the probability model established for the system output. The
derivation of the likelihood function for modal data will be summarized in Sect. 2.3.
The posterior distribution p(θ |D,M ) expresses the revised knowledge about the
parameters θ conditional on the initial knowledge and the experimental data.

2.3 Formulation of the Likelihood Function for Modal Data

In general terms, the connection between the model output q(θ) and the correspond-
ing system output y is given by the prediction error e in the form of

y = q(θ)+ e. (13.3)

The choice for the probability model of the prediction error e, which is the differ-
ence between the model output for a certain value of θ and the corresponding sys-
tem output, is based on the maximum entropy principle [19] which yields a multi-
dimensional Gaussian distribution with zero mean and covariance matrix Σ . The
Gaussian PDF arises because it gives the largest amount of uncertainty among all
probability distributions for a real variable whose first two moments are specified.
Hence, the predictive PDF for the system output conditional on the parameter vector
θ is given by

p(y|θ,M )= 1

(2π)N/2|Σ |1/2 exp

[
−1

2

(
y − q(θ))T Σ−1(y − q(θ))

]
, (13.4)

where N denotes the length of the vector y, i.e. the number of observed points. If
a set of measured output D = {yj : j = 1, . . . ,Ns} is available, then the likelihood

function can be constructed as p(D |θ,M ) =∏Ns
j=1 p(yj |θ,M ) if the prediction

errors are modeled as statistically independent.
The formulation of the likelihood function using modal data is derived in [20] and

is summarized in the following. The experimental data D from the structure is as-
sumed to consist of Ns sets of modal data, D = {ω̂1,j · · · ω̂Nm,j , Ψ̂1,j · · · Ψ̂Nm,j }Nsj=1
comprised of Nm modal frequencies ω̂r and Nm incomplete mode shape vectors
Ψ̂r ∈ R

N0 , where N0 is the number of observed DOFs. The model output q(θ) is
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the set of corresponding modal properties of the structural model, i.e. eigenfrequen-
cies ωr(θ) and partial eigenvectors ψr(θ), r = 1, . . . ,Nm, defined by the parameter
vector θ ∈Θ ∈R

Np .
The probability model conditional on the parameter vector θ is chosen to have

statistical independence between the mode shape vectors and modal frequencies,
between the different modes, and between one data set to another. Therefore, the
likelihood function can be written as the product of the probability density functions
for the modal frequencies and mode shape components:

p(D |θ,M )=
Ns∏
j=1

Nm∏
r=1

p
(
ω̂2
r,j |θ,M

)
p(ψ̂r,j |θ,M ), (13.5)

where p(ω̂2
r,j |θ,M ) and p(ψ̂r,j |θ,M ), r = 1, . . . ,Nm and j = 1, . . . ,Ns , are, re-

spectively, the PDFs for the squared modal frequency and the mode shape vector of
the r th mode in the j th data set.

In the first step, the likelihood function for the mode shape vectors is formulated
by rewriting Eq. (13.3) as

ψ̂r,j = arψr(θ)+ eψr , (13.6)

where ar is an optimal scaling factor to relate the scaling of the model mode shape
vector ψr(θ) to that of the experimental mode shape vector ψ̂r,j , which is assumed
to be normalized so that its Euclidean norm ‖ψ̂r,j‖ = 1. Since the latter is usually
constituted by an incomplete set of observed DOFs N0, the corresponding model
mode shape vector is given by ψr = Γ φr , where the matrix Γ picks the observed
degrees of freedom from the complete model eigenvector φr . Using a Gaussian
distribution for the probabilistic characterization of the prediction error for the mode
shape vector, the likelihood function for the mode shape vector, after some algebraic
manipulation, may be written as:

p(ψ̂r,j |θ,M )= c1 exp

(
ψTr (I − ψ̂r,j ψ̂Tr,j )ψr

2δ2
r ‖ψr‖2

)
(13.7)

= c1 exp

(
1

2δ2
r

[
1− |ψ

T
r ψ̂r,j |2
(ψTr ψr)

2

])
(13.8)

where I is the identity matrix of dimensionNm and δ2
r I denotes the mode shape pre-

diction error covariance matrix for the r th mode. The equality in Eq. (13.7) shows
that the probability density function for ψ̂r,j involves the MAC (Modal Assurance
Criterion) between ψ̂r,j and ψr(θ), the experimental and model partial mode shapes
of the r th mode, respectively.

Secondly, Eq. (13.3) is formulated for the squared modal frequencies, which
yields

ω̂2
r,j = ω2

r (θ)+ eω2
r
. (13.9)
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Using again a Gaussian probability model for the prediction error of the modal
frequencies, the likelihood function for the modal frequencies is given by

p
(
ω̂2
r,j |θ,M

)= c2 exp

[
−1

2

(1− ω̂2
r,j /ω

2
r

εr

)2]
, (13.10)

where ε2
r denotes the variance of the prediction error of the squared r-th eigenfre-

quency, i.e. of eω2
r
. Using the probability distributions for the mode shape vectors

and modal frequencies given in Eqs. (13.7) and (13.10), the likelihood function in
Eq. (13.5) can be written as

p(D |θ,M )= c3 exp

(
−1

2

Nm∑
r=1

Jr(θ)

)
, (13.11)

where the modal measure of fit Jr(θ) is defined by

Jr(θ)=
Ns∑
j=1

[(1− ω̂2
r,j /ω

2
r

εr

)2

+
(

1− |ψ
T
r ψ̂r,j |2
(ψTr ψr)

2

)/
δ2
r

]
(13.12)

3 Transitional Markov Chain Monte Carlo Algorithm

The evaluation of Eq. (13.2) requires the computation of high-dimensional integrals
for the determination of the normalizing constant of the posterior PDF, which can-
not be tackled analytically or numerically. Recently, efficient stochastic simulation
algorithms have been proposed which generate samples of the posterior distribution
and which hence identify the parameter regions with the highest posterior prob-
ability mass. In this work, the so-called Transitional Markov Chain Monte Carlo
(TMCMC) algorithm [14] is applied whose basic steps are discussed in the follow-
ing.

The main idea of this algorithm is to iteratively proceed from the prior to the
posterior distribution. It starts with the generation of samples from the prior PDF in
order to populate the space in which also the most probable regions of the posterior
distribution lie. Then, some intermediate PDFs are defined, where the shape does not
change remarkably from the intermediate PDF p[j ] to the next p[j + 1]. The small
change of the shape makes it possible to efficiently sample according to p[j + 1] if
samples according to p[j ] have been generated. The intermediate distributions are
defined by

p[j + 1] ∝ p(D |θ,M )βj p(θ |M ), (13.13)

with j = 0, . . . ,m as the step index and 0 = β0 < β1 < · · · < βm = 1. Hence, the
exponent βj can be interpreted as the percentage of the total information provided
by the experimental data which is incorporated in the j th iteration of the updating
procedure: β0 = 0 corresponds to the prior distribution and for βm = 1 the samples
are generated from the posterior distribution.
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Samples of the subsequent intermediate distribution p[j + 1] are obtained by
generating Markov chains where the lead samples are selected from the distribution
p[j ] by computing their probability weights with respect to p[j + 1], which are
given by

w
(
θ
(l)
j

)= p(D |θ,M )βj+1p(θ |M )

p(D |θ,M )βj p(θ |M )
= p(D |θ,M )βj+1−βj , (13.14)

where the upper index l = 1, . . . ,Nj denotes the sample number in the j th iteration
step. Each sample of the current step is generated using the Metropolis–Hastings al-
gorithm [21, 22]: the starting point of a Markov chain is a sample from the previous
step that is selected according to the probability equal to its normalized weight

w
(
θ
(l)
j

)= w(θ
(l)
j )∑Nj

l=1w(θ
(l)
j )

(13.15)

and the proposal density for the Metropolis–Hastings algorithm is a Gaussian dis-
tribution centered at the preceding sample of the chain and with a covariance matrix
Σ0 which is equal to the scaled version of the estimated covariance matrix of the
current intermediate PDF:

Σ0 = c2
Nj∑
l=1

w
(
θ
(l)
j

)(
θ
(l)
j − θj

)T (
θ
(l)
j − θj

)
, (13.16)

where

θj =
Nj∑
l=1

w
(
θ
(l)
j

)
θ
(l)
j . (13.17)

The parameter c is a scaling parameter that is used to control the rejection rate of the
Metropolis–Hastings algorithm at each step. These steps are repeated until βj = 1
is reached, i.e. until the samples are generated from the posterior distribution.

4 Computational Aspects

4.1 General Remarks

Due to the repeated execution of the normal mode analysis of the FE-model, the
computational effort of the Bayesian updating method might become infeasible for
large FE-models. Hence, in order to reduce the wall clock time, i.e. the time be-
tween submitting the updating analysis and its completion, a strategy based on the
reduction of the computational efforts associated with the normal mode analysis of
the full FE-model is applied in this manuscript. This strategy is based on the use of
neural networks for the modal parameters, which will be addressed in the following.
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Fig. 13.1 Schematic
representation of the concept
of neural networks

4.2 Neural Networks

An Artificial Neural Network (ANN) is a machine-learning algorithm that tries to
simulate the structure and functional aspects of biological networks of neurons in
order to approximate a relation f : θ → q by a simple mathematical model at low
computational efforts. It consists of an interconnected group of computational units,
called neurons or nodes, and processes information using consecutively connected
layers of neurons. In the following, the most widely used neural network, namely
the so-called feed-forward neural network, is discussed (see e.g. [23, 24]). It is com-
posed of a multi-layered structure, with a first layer of nodes, called input layer, one
or more intermediate layers, called hidden, and a final output layer. For simplicity,
but without loss of generality, the scheme is discussed when using one single hidden
layer.

Each layer is characterized by a different number of neurons, indicated by Ninp ,
Nhid and Nout for the input, hidden and output layers, respectively. Each node of

the hidden layer receives as input a linear combination
∑Ninp
i=1 wi,j θi of the input

values θi of all the nodes of the input layer, scaled by a so-called connection weight
wi,j , where j denotes the number of the hidden node. Then, the node proceeds this
function value through a non-linear function K , which is called activation function

and which is of the form gj =K(∑Ninp
i=1 wi,j θi). This collection of function values

(g1, . . . , gNhid ) is then sent to all the nodes of the subsequent, i.e. output, layer,
where the approximated model output q̂k(θ) = K(∑Nhid

j=1 wj,kyj ), k = 1, . . . ,Nout
is evaluated. A schematic representation of this algorithm is shown in Fig. 13.1.

Hence, the connection weights act as parameters of the meta-model which have
to be adapted through a calibration procedure of supervised learning, called also
training, by means of e.g. the error back-propagation algorithm. In this calibration
phase, the network, which is initialized with random weights, is fed with a set of
input/output values which is called calibration set and which is obtained from the
target physical model. The network processes the inputs and produces then an es-
timation of the outputs; such outputs are compared with the real outputs through a
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predefined error measurement (typically, a sum of the squared errors of each out-
put). The training consists thus of an optimization problem which aims to minimize
the error of the network in the output prediction. Such optimization is carried out by
computing the gradient of the error with respect to the connection weights, and it is
interrupted when a target error is reached or when a certain number of input/output
pairs have been processed.

An important indicator of the goodness of the network after training is the coef-
ficient of determination R2, defined as

R2 = 1−
∑Ndata
i=1 (qi − q̂i )2∑Ndata
i=1 (qi − qi)2

(13.18)

where qi are the real outputs of the physical model, qi = 1
Ndata

∑Ndata
i=1 qi and q̂i are

the output values predicted by the meta-model. The accuracy of the output predic-
tion of the neural network can be judged by the closeness of the value R2 to the
target value of 1.0, which expresses an exact match of the network prediction and
the output of the full model. This quantity is computed both using the calibration
set and a new set of input/output values, called validation or verification set. In the
latter case, a qualitative indication of the generalization capabilities of the network
is obtained.

The freely available Fast Artificial Neural Network (FANN) library [25], which
is an implementation of the here discussed Neural Network and learning algorithm,
has been used for the approximation of the modal properties in the following nu-
merical example.

5 Numerical Example: GOCE Satellite

5.1 Problem Statement

The use of a meta-model within the Bayesian updating procedure is illustrated us-
ing the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satel-
lite. The mission of the GOCE satellite is to determine the geoid and to measure
the gravitational field of Earth with a very high degree of accuracy in a low Earth
orbit. The particularities of the GOCE are its arrow-shape with winglets and its ion
propulsion engine, used to compensate the air-drag induced orbit-decay. The total
length of the satellite is 5.3 m, and the mass amounts to approximately 1,000 kg
including the fuel of the propulsion system.

Figure 13.2 shows the FE model of the satellite, provided by Thales Alenia Space
(Italy) for use within the commercial FE code MSC.Nastran [26]. Approximately
360,000 DOFs and 74,000 elements compose the FE model, with half of the ele-
ments used in the main satellite platform and half in the gravitational gradiometer.

In the main GOCE platform, quadrilateral (QUAD4) and triangular (TRIA3)
shell elements are used to model the body panels, the wings and the winglets, the
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Fig. 13.2 FE model of the GOCE satellite (courtesy of Thales Alenia Space Italy)

internal floors and the solar panels. Beam elements (BAR, ROD and BEAM) con-
stitute the connections of the wings to the main structure and of the instrumentation
to the floors. Solid elements (HEXA and PENTA) are used in the Launch Vehicle
Adapter (LVA) ring, and scalar spring elements (CELAS2) represent the connection
between the solar panels and the structure, as well as the fixing of the wing to the
main octagonal body.

A total number of 18 groups combining 3047 structural parameters are defined
according to the type and location of the respective materials or geometric specifica-
tions (see Table 13.1). This grouping is carried out with the purpose of remarkably
reducing the number of parameters to be used within the Bayesian updating pro-
cedure since an independent processing of all involved parameters might become
infeasible. Hence, the updating procedure is carried out with the goal of identifying
as to which changes have to be performed to the single parameter groups in order to
obtain a better agreement of the numerical model with the real satellite structure.

5.2 Experimental Modal Data

The experimental data used for model updating consists of Ns = 1 set of 7 modal
frequencies and partial mode shapes vectors (83 components) which have been de-
termined from the vibration responses during the GOCE structural model qualifica-
tion test. The dynamic qualification test was performed on the multi-axis vibration
test facility of ESA/ESTEC in Noordwijk (The Netherlands). The correlation of the
experimental and computed eigenvectors of the initial model is shown by means of
the MAC matrix in Fig. 13.3 and the initial comparison of the eigenfrequencies can
be found in Table 13.2. The large discrepancies, especially for the first two modes,
arise the need for model updating which will be discussed in the following.
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Table 13.1 Definition of the groups of parameters of the GOCE satellite

Group no. Parameters

1 Young’s modulus of isotropic materials

2 Poisson’s ratio of isotropic materials

3 Young’s modulus in the principal direction of orthotropic materials

4 Young’s modulus in the secondary direction of orthotropic materials

5 Poisson’s ratio of orthotropic materials

6 In-plane shear modulus of orthotropic materials

7 First out-of-plane shear modulus of orthotropic materials

8 Second out-of-plane shear modulus of orthotropic materials

9 Densities of the materials

10 Thicknesses of the shells

11 Linear elastic connections of panels to the main satellite structure

12 Linear elastic connections of panels to the satellite wings

13–18 Linear elastic connections of the wings to the main satellite structure

Fig. 13.3 Initial MAC values
obtained with the nominal
model and the experimental
data ψ̂

5.3 Accuracy Analysis of the Neural Network

A set of Ndata = 2,000 finite element simulations have been performed using Gaus-
sian distributions with the mean values equal to the nominal values and coefficients
of variation of 10%. Out of these samples, 1,900 have been dedicated to calibrate
the neural networks, and 100 have been kept to verify the generalization capabili-
ties of the networks after training. Each of the 14 neural networks, constituted by
Ninp = 18 inputs and Nout = 1 output, predicts either one of the eigenfrequencies
or one of the diagonal terms of the MAC matrix.
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Table 13.2 Comparison of
the analytical
eigenfrequencies fa and the
experimental data fe

Mode no. fa [Hz] fe [Hz] Δ [%]

1 18.43 15.98 13.29

2 18.37 16.40 10.69

3 28.84 29.59 −2.60

4 34.96 33.33 4.66

5 46.90 48.91 −4.28

6 49.13 51.61 −5.04

7 65.81 61.35 6.77

An automated training procedure has been implemented such that various net-
work topologies are tested and the best networks, characterized by the highest R2

value (see Eq. (13.18)) obtained with the verification data, are kept. As an indica-
tion of the accuracy of the network, Fig. 13.4 shows the regression plots for the
neural network of the first eigenfrequency, using the calibration and verification
data, respectively. Moreover, the values of R2 of all the networks obtained with the
verification data are listed in Table 13.3.

5.4 Bayesian Model Updating

The prior distributions assigned to the 18 groups of parameters to be updated are all
Gaussian with the moments as specified for the calibration of the neural networks.
For these ranges, the neural networks of the considered modal properties show high
accuracy as discussed in the previous section and are therefore applied for substitut-
ing the full FE-analysis when evaluating the likelihood function within the updating
process.

The results of the updating procedure are shown exemplary for three parameter
groups, namely the thickness, the Young’s moduli of the orthotropic materials and
the group of stiffnesses of joints between the wings and the main structure (groups
no. 10, 3 and 14 in Table 13.1). The prior and posterior histograms of these parame-
ters, which are all transformed in standard normal space, are depicted in Figs. 13.5,
13.6 and 13.7. This representation in standard normal space is advantageous due to
the fact that these figures do not show one single parameter each but a parameter
group, where the members of each group may have different initial values. Hence,
in order to obtain the posterior values in physical space, a back-transformation has
to be performed for each parameter of a group, which is achieved by

θi = θ∗i σi + θi,nom, (13.19)

where θi denotes the i-th parameter in the physical space, θ∗i the value in the stan-
dard normal space, σi the prior standard deviation and θi,nom the prior (nominal)
mean of this parameter.
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Fig. 13.4 Regression plot of
the output of the neural
network of the first
eigenfrequency for
(a) calibration data and
(b) verification data

In Fig. 13.5, the prior and posterior histograms of the thickness of shell elements
are depicted. This figure leads to the conclusion that the information contained in the
experimental data suggests a decrease of these values. A reduction of approximately
10% of the mean value of the prior distribution leads to a better fit with the experi-
mental modal properties. Also for the Young’s modulus of the orthotropic material
in the longitudinal direction (material card MAT8 in the MCS.Nastran input file),
the updating process suggests a decrease of the mean values (see Fig. 13.6). As op-
posed to these two parameter groups, all other 16 out of 18 parameter groups used
in the updating process show small changes if compared to the prior distribution.
As an example, the stiffness values of the joints of the main structure to the wings
(used for the specification of the CELAS2 elements in the MCS.Nastran input file)
is shown in Fig. 13.7. Due to the information extracted from the experimental val-
ues, the prior uncertainty about these parameters could be reduced which is visible
through the smaller variation of the posterior distribution.
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Table 13.3 R2 values of the
14 neural networks

Neural network output R2 of verification data

Frequency 1 0.99960

Frequency 2 0.99966

Frequency 3 0.99968

Frequency 4 0.99957

Frequency 5 0.88299

Frequency 6 0.97804

Frequency 7 0.95822

MAC1,1 0.99886

MAC2,2 0.99782

MAC3,3 0.99577

MAC4,4 0.99861

MAC5,5 0.94947

MAC6,6 0.97623

MAC7,7 0.82779

Fig. 13.5 Histograms of the
prior and posterior samples of
the group of thicknesses
(group no. 10 in Table 13.1)

The effect of the choice of the prior on the posterior distribution has not been in-
vestigated in this example, however a few remarks will be added in this context: in
general, the influence of the prior distribution on the results decreases with increas-
ing amount of experimental data. This is due to the fact that the likelihood function
becomes the dominant term in comparison to the prior distribution in Eq. (13.2). In
this case, also values in the tails of the prior distribution can be identified and only
values with zero probability (e.g. values out of the interval of uniform distributions)
cannot be reached since they are excluded from the possible solution space due to
the prior knowledge. In case of limited data the selection of the prior distribution
clearly has an influence on the results. The prior distribution can therefore be seen
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Fig. 13.6 Histograms of the
prior and posterior samples of
the group of Young’s moduli
of the orthotropic materials
(group no. 3 in Table 13.1)

Fig. 13.7 Histograms of the
prior and posterior samples of
the group of stiffnesses of the
joints between wings and
main structure (group no. 14
in Table 13.1)

as a means to incorporate initial knowledge about parameter ranges into the identifi-
cation process and it is subjective in the sense that people with different experience
may use different priors leading to broader ranges of the solution in case smaller
amount of prior information is available. The selection can therefore be seen as part
of the modeling process since also the model itself is affected by a certain amount
of subjectivity of the designer. However, the probability content of the prior PDF
is updated by the data and if one felt uncomfortable with the choice of the prior
distribution the effect of different prior PDFs on the posterior PDF can be studied.
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Fig. 13.8 Prior
(dashed-dotted line) and
posterior (shaded bars)
histograms of the 1st
eigenfrequency with
experimental value (solid
line) and nominal value
(dashed line)

Fig. 13.9 Prior
(dashed-dotted line) and
posterior (shaded bars)
histograms of the 2nd
eigenfrequency with
experimental value (solid
line) and nominal value
(dashed line)

5.5 Effect on the Correlation of Modal Data

The effect of the updating procedure on the correlation of the experimental and com-
puted modal properties is shown exemplary for the two lowest and highest consid-
ered modes. Figures 13.8, 13.9, 13.10 and 13.11 are devoted to the eigenfrequencies
and Fig. 13.12 to the corresponding diagonal MAC-values. The figures show that a
successful shift of the PDFs towards the experimental values could be achieved, as
it can be seen for modes 1, 2 and 7, where it shall be annotated that the correlation
of the eigenvector no. 7 with respect to the corresponding experimental data reveals
to be high already for the initial model (initial MAC7,7 = 0.92).

However, for the 6th eigenfrequency and eigenvector no improvement could be
achieved. The reasons might lie in the fact that there is no parameter combination
possible which affects an improvement of the fit with respect to all 14 target values
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Fig. 13.10 Prior
(dashed-dotted line) and
posterior (shaded bars)
histograms of the 6th
eigenfrequency with
experimental value (solid
line) and nominal value
(dashed line)

Fig. 13.11 Prior
(dashed-dotted line) and
posterior (shaded bars)
histograms of the 7th
eigenfrequency with
experimental value (solid
line) and nominal value
(dashed line)

defined by the first 7 modal frequencies and mode shape vectors. Only a revision
of the model itself might lead to the situation where the prior distributions span
the full solution space, meaning that posterior samples provoke a high correlation
with all targets. This example uses real experimental data in the Bayesian updating
procedure, thus a fit with respect to all targets might not be possible without revising
the FE-model itself.

5.6 Computational Aspects

In this example, the eigensolution of the full FE-model is replaced by an approx-
imate relation at low computational costs which is given by a neural network for
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Fig. 13.12 Prior
(dashed-dotted line) and
posterior (shaded bars)
histograms of the diagonal
terms of the MAC matrix
corresponding to modes no.
1, 2, 6 and 7 and nominal
values (dashed lines)

each modal property. If considering that on the above described dual quad-core
Xeon server (i) the replacement of the nominal parameter values θnom by the cur-
rent value θ in the FE-input file, the normal mode analysis of the full model per-
formed with MSC.Nastran and the import of the modal quantities into Matlab [27]
requires 220 s (please see the Appendix for details on the interaction of Matlab
with MSC.Nastran), (ii) the updating process of the present model involves approx-
imately 32 iterations × 2,000 eigensolutions and (iii) the remaining part of the up-
dating process lasts for about 96 min, then the total time amounts up to a theoretical
value of

tfull = 64,000 · 220 s+ 96 · 60 s≈ 160 days.

The computational time of 220 s of a normal mode analysis of the full FE-model
is replaced by the evaluation of the neural networks which takes 0.0014 s. Hence, in
this way the analysis time can be remarkably reduced to

tNN = 64,000 · 0.0014 s+ 96 · 60 s≈ 100 min.

However, it shall be noted that in addition 2,000 calibration samples have been gen-
erated (see Sect. 5.3), which require evaluations of the full FE-model lasting for
a total time of approximately 5 days if performed sequentially (please refer to the
Appendix for the interaction with 3rd party software).

6 Conclusions

In this manuscript, the basic steps of model updating within the Bayesian frame-
work using modal data have been summarized and strategies for reducing the
analysis time are proposed. The numerical example shows the applicability of the
Bayesian updating procedure on complex aerospace structures. It demonstrates that
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Fig. 13.13 Excerpt of a master input file with identifiers

Fig. 13.14 Excerpt of a stochastic analysis input file with sampled values

ill-conditioned inverse problems in the high-dimensional parameter space can be
tackled and that the limited, incomplete data can be used for reducing the initial un-
certainty about the adjustable parameters. As a remedy for the large computational
efforts of model updating the establishment of a surrogate model has been proposed
which approximates the modal properties at a low computational cost. In this way,
model updating of a finite element model of a full satellite structure of a size of
approximately 360,000 DOFs becomes feasible as shown in the numerical example.
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Appendix: Interaction with 3rd Party Software

FE models are defined uniquely by one or more ASCII input files. These files con-
tain the definition of the nodes and elements constituting the model, as well as the
structural parameters and boundary and loading conditions in form of fixed numeri-
cal values. However, in a stochastic analysis some of these values change, since they
are samples from a given probability distribution function. Thus, it is envisioned to
automatically manipulate the input files such that in each simulation the respective
sample values are inserted into the FE-input file. For this purpose, XML-like tags,
called identifiers, are inserted into the master input files in order to define the pa-
rameters which have to be changed in each simulation, as shown in Fig. 13.13. An
identifier defines the name of the random variable used within the stochastic anal-
ysis, the format in which the number is written into the file as well as the original
value of the parameter.
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The code used to drive the simulation is COSSAN-X, a software for computa-
tional stochastic structural analysis [28]. This code parses the master input files in
order to identify the positions and the insertion formats of all variables. In each
analysis, these identifiers are replaced by sampled numerical values, obtaining a
valid input file which is then used for the finite element analysis (see Fig. 13.14).
It shall be noted that this software is not restricted to a particular FE-code, but it is
applicable to any FE-solver which uses ASCII input files.
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Chapter 14
Identification of Properties of Stochastic
Elastoplastic Systems

Bojana V. Rosić and Hermann G. Matthies

Abstract This paper presents the parameter identification in a Bayesian setting for
the elastoplastic problem, mathematically speaking the variational inequality of a
second kind. The inverse problem is formulated in a probabilistic manner in which
unknown quantities are embedded in a form of the probability distributions reflect-
ing their uncertainty. With the help of the stochastic functional analysis the update
procedure is introduced as a direct, purely algebraic way of computing the posterior,
which is comparatively inexpensive to evaluate. Such formulation involves the pro-
cess of solving the convex minimisation problem in a stochastic setting for which
the extension of classical optimization algorithm in predictor-corrector form as the
solution procedure is proposed. A validation study of identification procedure is
done through a series of virtual experiments taking into account the influence of the
measurement error and the order of approximation on the posterior estimate.

Keywords Linear Bayesian update · Stochastic Galerkin method · Stochastic
elastoplasticity · Stochastic convex minimisation

1 Introduction

In recent years several mathematical models have been proposed to predict the yield-
ing and elastoplastic behavior of heterogeneous materials. Even though these mod-
els carry some confidence as to own fidelity, they can not be taken as realistic as the
most of quantities entering the model are only incompletely known, i.e. uncertain.
In order to give the more reliable description we try to identify these quantities from
the given experimental data (system response). However such identification is often
regarded as ill-posed due to limited size of the measurement data. In order to resolve
this problem various approaches have been proposed, from which the most often uti-
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lized is the Bayesian regularisation technique described in [23] together with its all
possible variants.

In this work we use the so-called Bayesian type of regularisation, a probabilis-
tic approach employing an additional—prior—information on the material property
q next to the measurement data. The prior information is usually posed in a form
of a distribution function obtained from the maximum entropy principle [26] un-
der given constraints—known properties of q (e.g. positive definiteness, boundness
etc.). In this manner the unknown parameter q is modelled as a random variable
whose probabilistic description is further altered with the help of the measurement
data to the so-called posterior model.

In order to extract the information from the posterior most estimates take the form
of expectations (integrals) w.r.t. the posterior. Higdon et al. [6], Gamerman et al. [3]
and Tarantola et al. [27] estimate these integrals with the help of the Markov chain
Monte Carlo (MCMC) method. By letting the Markov chain to run sufficiently long
time the posterior distribution is approached in an asymptotic manner. Regarding
this the asymptotic approach is relatively simple and straightforward, though the ob-
tained samples are not any more independent. As opposite to simplicity the MCMC
computational efficiency is not so satisfactory due to slow convergence rates; and
hence for an efficient run the method requires fewer simulations of the prior model.
This can be achieved by a polynomial chaos (PC) [5, 28] or a Karhunen–Loève (KL)
approximation [4, 7, 13] of the prior distribution and corresponding observations as
presented in [10, 12].

The approaches mentioned above require a large number of samples in order to
obtain satisfactory results. In contrast to this the main idea here is to do the Bayesian
update directly on the polynomial chaos expansion (PCE) without any sampling
[15, 17, 22, 23]. This idea has appeared independently in [1] in a simpler context,
whereas in [24] it appears as a variant of the Kalman filter (e.g. [8]). A PCE for a
push-forward of the posterior measure is constructed in [16].

The paper is organized as follows: in Sect. 2 we briefly describe the Bayesian for-
mulation of the inverse problem, which is then reduced to a linear update formula
in Sect. 3 with the help of the theory of conditional expectations and minimum vari-
ance estimation. Such update procedure is based on the polynomial chaos approxi-
mation of the system response obtained via stochastic Galerkin method as presented
in Sect. 4. Finally in Sect. 5 we test the update procedure on two numerical examples
in plain strain conditions.

2 Bayesian Updating

The elastoplastic system is modelled by an evolution equation for its state:

∂

∂t
u(t)+A(p;u(t))= f (p; t), (14.1)
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where u(t) ∈ U describes the state of the system at time t ∈ [0, T ] lying in a
Hilbert space U (for the sake of simplicity), A is the nonlinear operator mod-
elling the physics of the system, and f ∈ U∗ is some external influence (ac-
tion/excitation/loading). The model depends on a set of parameters p ∈P with cor-
responding subset q ⊂ p representing the material properties such as yield stress
σy , bulk K and shear G modulus.

The process of identifying q by observing a function of the state Y(u(q), q) ∈ Y
(e.g. the stress, strain etc.) is called the inverse problem. As one can only observe a
finite number of quantities the space Y is finite dimensional and hence the mapping
q �→ Y(q) is usually not invertible. However, in practice that is not the case as the
parameter set q is only incompletely known (uncertain). Regarding this we may
model it as a mapping q(ω) :Ω→Q (i.e. random variable) on a probability space
(Ω,A,P) with Ω being the set of all events, A a σ -algebra of subsets of Ω and
P a probability measure. This a priori information originates from the maximum
entropy principle [26] based on the available information we have on properties of
q (i.e. K ,G and σy ). In addition to this, the measurement data y in real experiments
are “polluted” by some kind of noise ε, often assumed to be of additive type, i.e.
y = z+ ε, where z := Y(q).

Only with the previous assumptions in mind the inverse problem becomes well-
posed and reduces to a comparison of the forecast obtained from the forward
problem (the system response on prior q) with the actual information—so-called
Bayesian inference. Its practical realisation generally classifies into two groups: the
one performing by changing the probability measure P and leaving the mapping
q(ω) as it is, whereas the other set of methods leaves the probability measure un-
changed and updates the function q(ω). See [23] for synopsis.

3 Linear Bayesian Update

The probability of an event is the same as the expected value of the indicator variable
for that event, which may help us to reformulate the full Bayesian update

P(Iq |My)= P(My |Iq)
P(My)

P(Iq), (14.2)

in terms of conditional expectations. According to [9] the conditional probabil-
ity P(Iq |My) is equal to conditional expectation E(χq |y) where My is the infor-
mation provided by a measurement and χq is the characteristic function of some
subset of possible q’s. Defining the conditional expectation E(q|σ(Y )) measurable
w.r.t. σ(Y ) for the sub-σ -algebra S = σ(Y ) generated by Y , we may state that
E(q|σ(Y )) = H(Y) for some measurable H ∈ L(Y;Q) ⊂ L0(Y;Q) according to
Doob–Dynkin lemma [2]. Here we limit ourselves to the vector space L(Y;Q) of
linear measurable maps from Y to Q. The more general case is considered in [23].

Following previous statements the linear approximation of the full Bayesian up-
date derived in [17, 22, 23] can be written as the orthogonal projection PQl of q onto



240 B.V. Rosić and H.G. Matthies

the subspace Ql = span{H(Y(q)) ∈Q|H ∈L(Y;Q)} ⊂Q :=Q⊗L2(Ω), i.e.:

K = E
(
q|σ(Y ))= PQl (q)

= arg min
q̃∈Ql

‖q − q̃‖2
Q

= arg min
H∈L(Y,Q)

∥∥q −H (
Y(q)

)∥∥2
Q
. (14.3)

The optimal K is not hard to find by taking the derivative in Eq. (14.3) w.r.t. the
linear map H (see e.g. [8, 11]) and requiring the derivative to vanish. This further
leads to the formula (see e.g. [18, 22]):

qa = qf +K(y − zf ) (14.4)

representing the so-called linear Bayesian update. Note that Eq. (14.4) in the mean
reduces to the familiar Kalman filter formula [8, 18].

Finally, the update in Eq. (14.4) employs the measurement data y and assimilates
it with both, the prior (forecast) information qf and the measurement forecast zf ,
to the posterior value qa through the Kalman gain K . The gain1 is computed as

K = Cq,z(Cz +Cε)† (14.5)

where the corresponding covariances are given as

Cq,z = E
((
q −E(q)

)⊗ (
Y(q,u)−E

(
Y(q,u)

)))
Cz = E

((
Y(q,u)−E

(
Y(q,u)

))⊗ (
Y(q,u)−E

(
Y(q,u)

))) (14.6)

together with Cε being the covariance of the measurement noise ε. The last one is
often assumed to be of Gaussian type i.e. Cε = σ 2

ε I .

3.1 Sampling Free Update

In order to numerically compute the linear formula in Eq. (14.4) one has to discretise
the space Q :=Q⊗ S , S := L2(Ω). This is performed by taking the finite element
discretisation QM of Q and a finite subset SJ = span{Hα : α ∈ J } of S , where J
is the finite set of multi-indices with cardinality J = |J | and Hα the multivariate
Hermite polynomial in Gaussian random variables θ . The orthogonal projection PJ
onto SJ is then simply

PJ :QM ⊗ S $
∑
α∈N

qαHα �→
∑
α∈J

qαHα ∈QM ⊗ SJ , (14.7)

1The Moore–Penrose pseudo-inverse † is used as a general inverse in case Cz+Cε is not invertible
or close to singularity.
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where
∑

α∈N qαHα denotes the polynomial chaos expansion (PCE) of a random
variable q . Elements of the discretised space QM,J =QM ⊗ SJ ⊂Q thus may be
written as

∑M
m=1

∑
α∈J qα,mρmHα and the tensor representation of parameter set

as q := (qα,m)=∑
α∈J qα⊗ eα , where eα are the unit vectors in R

J . With the pre-
vious notation the update Eq. (14.4) is simply computed in the PCE representation
without any sampling as:

qa = qf +K(y− zf ), (14.8)

where K=K ⊗ I . The gain K follows from the formula given in Eq. (14.5), where
the covariance Cq,z is evaluated via PCE in the following manner

Cq,z =
∑

α∈N ,α �=0

(α!)qα ⊗ zα ≈
∑

α∈J ,α �=0

(α!)qα ⊗ zα, (14.9)

and similarly Cz and Cε .

4 Elastoplastic Problem

Let be given the state variable w = (u, εp, ν) ⊂ Z :=U × P × C describing the
infinitesimal quasi-static von Mises elasto-plastic behaviour with mixed hardening.
Here u denotes the displacement vector, εp the plastic deformation and ν the ap-
propriate internal hardening variable. Their spaces of definition are U := U ⊗ S =
H 1

0 (G)⊗ L2(#), P ⊂ E = L2(G)⊗ S and C ⊂ E respectively. In this notation the
variational form of a quasi-static problem in Eq. (14.1) is described by a Z-elliptic
and bounded bilinear form

a(w,v)= 〈〈
A : (ε(u)− εp), ε(u1)− εp

〉〉+ 〈〈H : η,μ〉〉, (14.10)

where 〈〈·, ·〉〉 denotes the duality pairing

〈〈H : η,μ〉〉 =
∫
Ω

∫
G

H : η : μdxP(dω), (14.11)

ε the total deformation, A the elastic and H the hardening positive-definite con-
stitutive tensor. In a similar manner after multiplication of Eq. (14.1) with the test
functions and integration its right hand side transforms to the following functional
of a linear type:

� :Z→R : �(v)= 〈〈f, v〉〉. (14.12)

The definitions Eq. (14.11) and Eq. (14.12) correspond to the conservation law of the
momentum balance. However, additionally to this law the system has to satisfy the
second law of thermodynamics describing the energy of a system. In a Clausius–
Duhelm form the energy law introduces the dissipation functional j (v) also sup-
posed to be the support functional of a closed, non-empty, convex set K ⊂Z [20].
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Thus, following the definition of its sub-differential:

∂j (ẇ) := {
w∗ ∈Z∗ : j (v)≥ j(w(t))+ 〈〈

w∗(t), v −w(t)〉〉,∀v ∈Z
}

(14.13)

after few mathematical steps one may arrive to the mixed variational formulation of
the elastoplastic problem (see [20]):

Proposition 1 Find unique functions w ∈ H 1(T ,Z∗) and w∗ ∈ H 1(T ,Z∗) with
w(0)= 0 and w∗(0)= 0 such that the equilibrium equation

a
(
w(t), v

)+ 〈〈
w∗(t), v

〉〉= 〈〈
f (t), v

〉〉
(14.14)

and the flow rule

∀v∗ ∈K : 〈〈
ẇ(t), v∗ −w∗(t)〉〉≤ 0 (14.15)

are satisfied almost surely on Ω and for all t ∈ T .

Proof The proof of existence, uniqueness and stability of the solution, as well as
complete derivation can be found in Rosić et al. [20]. �

Here w∗ ∈ H 1(T ,Z∗) denotes the dual variable (g, σ,χ) ∈U∗ ×R × C with
g being the force-like variable, σ the Cauchy stress and χ := (ς, ζ ) the hardening
stress with the back-stress ς (kinematic hardening) and the isotropic stress ζ as
components.

4.1 Minimisation

The variational inequality Eq. (14.14) may be equivalently formulated as a stan-
dard minimisation problem of a convex objective function Φ . In particular we
look at a continuous (or bounded a(v1, v2)≤ c‖v1‖‖v2‖), symmetric and Z-elliptic
(a(v, v)≥ c‖v‖2) bilinear form a :Z×Z→R and an element & ∈Z∗ such that the
solution w∗ in K is the closest point to & in the a∗ metric (closest point projection)
[20]:

w∗ = arg min
v∗∈K

Φ = arg min
v∗∈K

1

2
a∗

(
&− v∗, &− v∗) (14.16)

and that there exists some w ∈Z satisfying

∀v ∈Z : a(w,v)= 〈〈
&−w∗, v〉〉. (14.17)

As a and & are continuous and Gâteaux-differentiable, and as a is Z-elliptic, Φ
has all desired properties. To handle the dissipation, we have to allow for a second
convex functional j on Z, which may not be Gâteaux differentiable everywhere.
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4.2 Discretisation

As the elastoplastic problem is time dependent the implicit Euler procedure is used
for its discretisation by taking the time step h := tn − tn−1 to be constant over time.
Regarding to this the total deformation ε, the Cauchy stress σ , the hardening stress
χ and the plastic deformation εp are assumed to be known at time tn−1. The goal is
to find those variables at time tn by initially assuming that the increment of the total
strain Δεn is purely elastic. Note that in such situation the equilibrium Eq. (14.14)
depends only on the increment of displacement Δun as unknown variable. More-
over, one may rewrite it to the corresponding residual of a nonlinear type:

r := 〈〈
A[qn;Δun], v

〉〉− �n(f, v)= 0, ∀v ∈U (14.18)

where the nonlinear operator A depends on the parameter set q and the displace-
ment u. Finally, following the residual one may define the measurement operator
as

zf = Y(un, qn)= Y(qn). (14.19)

For notational simplicity the index n is dropped from the further text.
Before solving Eq. (14.18) one may notice that the spaces U and Z are infinite

dimensional, as is the space S = L2(Ω). Thus, for further analysis their finite ap-
proximation has to be introduced. In an analogous fashion to Sect. 3.1, let us choose
an N -dimensional subspace UN = span{υj : j = 1, . . . ,N} ⊂ U with the piece-
wise linear basis {υj }Nj=1. Then an element of UN can be represented by the vector

u= (u1, . . . , ujN)T ∈ R
N such that

∑N
j=1 u

jυj ∈ UN . Similarly, the spaces P and
C are discretised by piecewise constant functions such that ZN = UN ×PN × CN is
appropriate subspace of Z . By inserting those ansatzes into Eq. (14.18) the residual
becomes:

r(u) := 〈〈
A[q;Δu],v〉〉− �(f ,v)= 0, ∀v ∈UN := UN ⊗ S (14.20)

and the measurement operator:

zf = Y (u,q)= Y (q). (14.21)

However, Eq. (14.20), and subsequently Eq. (14.21), are only semi-discretised
due to the dependence on the uncertain parameter ω. For MCMC or any other
Monte Carlo method [10, 12], Eq. (14.20) has to be solved for each sample point
ωz to obtain u(ωz). This then can be used to predict the measurement zf (ωz) =
Y (u(ωz),q(ωz)), which may be computationally quite costly. Thus we take another
approach by assuming the PCE ansatz for the solution in a form:

u(ω)=
∑
α∈J

u(α)Hα
(
θ(ω)

)
(14.22)



244 B.V. Rosić and H.G. Matthies

and projecting the residual in a Galerkin manner onto the finite dimensional sub-
space SJ according to:

r(u)=
[
. . . ,E

(
Hα(·)r(·)

[∑
α

uβHβ

])
, . . .

]
= 0, (14.23)

where the block-version of the residual is denoted as r(u)= (. . . , r(α)(u)T , . . .)T . In
this manner the process of solving the residual Eq. (14.20) reduces to the evaluation
of a possibly high-dimensional integral.

The integration of E(Hα(·)r(·)[∑α uβHβ ]) can be done directly via PCE al-
gebra as presented in [21] (Galerkin method) or numerically via high-dimensional
integration (pseudo-Galerkin method). Whether we use the first or second approach
the computational time of integration drastically reduces in comparison to the direct
integration techniques. As the direct algebraic approach is already considered in [21]
in this work we choose the pseudo-Galerkin (collocation) approach and compute:

∫
Ω

Hαr(ω)

[∑
β

u(β)Hβ

]
dP(ω)≈

L∑
z=1

wzHα(θz)r(θ z)

[∑
β

u(β)Hβ(θz)

]
,

(14.24)
via the set of integration pointsΘ = {θz,1≤ z≤ L}, θ = {θ1, . . . , θM} with the cor-
responding weights w := {wz}Lz=1. Note that the evaluation of the integral requires
L evaluations of the residual, r(θz), z= 1, . . . ,L, each corresponding to the numer-
ical integration over the spatial domain G ⊂ R

d done in a classical FEM way. This
could be seen as an advantage compared to the intrusive Galerkin method [21], as
the FEM code is used in a black-box fashion. On other side, the number of calls of
the deterministic software increases drastically with the stochastic dimension which
may lead to the expensive or almost impractical procedures.

Once the solution of Eq. (14.20) is found the following procedure collapses to the
(iterative) solution of a convex mathematical programming problem, which has for
a goal to find the closest distance in the energy norm of a trial state to a convex set
K , known as a closest point projection. In other words, one search for the solution
of:

Σ(ω)= arg min
Σ(ω)∈K

Φ(ω) (14.25)

where

Φ := arg min
Σ(ω)∈K

[
1

2

〈〈
Σtrial −Σ,A−1 : (Σtrial −Σ)〉〉]

(14.26)

and

K := {
Σ := (

σ(ω),χ(ω)
) ∈R×C | ϕ(Σ)≤ 0 a.s. in Ω

}
. (14.27)

HereΣ := (σ (ω),χ(ω)) denotes the so-called generalised stress andΣtrial =Σn+
A : Δε its corresponding trial stress in time n. Note that the minimisation is done
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over the convex set K described by a von Mises yield function ϕ which must be non-
positive almost surely. However, in order to perform the numerical computation one
has first to spatially discretise the problem via WN :=RN × CN and then to relax
the almost sure condition by introduction of the discretised substitute of K :

K* = {
Σ ∈WN ⊗ SJ | ϕ

(
Σ(θz)

)≤ 0,∀θz ∈Θ
}
. (14.28)

Here the set K* is taken as a set of “deterministic” constraints on a finite number
of the integration pointsΘ . Such construction allows the decoupling of the problem
in Eq. (14.25) into L smaller problems, which may be solved independently. Note
that each of them corresponds to the normal deterministic optimization problem as
presented in [25], for which the closest point projection consists of two steps called
the predictor and the corrector step respectively.

Predictor Step The predictor step evaluates the displacement un(θz) by solving
the equilibrium equation Eq. (14.20) [14, 19] and the strain increment Δεn(θz) =
∇sΔun(θz) via linear symmetric mapping ∇s . Once the increment of strain is com-
puted one may define the trial stress Σ trial

n (θz) assuming Δεn(θz) to be purely
elastic. By checking if the stress Σ trial

n (θz) lies outside of the admissible region
K∗(θ z) we proceed with the corrector step. Otherwise, Σn(θz)=Σ trial

n (θ z) is our
solution and we may proceed to the next step.

Corrector Step The purpose of the corrector step is to project the stress outside
of admissible region back onto a point in K∗(θz). To do this, we define the corre-
sponding Lagrangian to a minimisation problem Eq. (14.25):

L(θz)=Φn(θ z)+ λn(θ z)ϕn(Σ)(θz), (14.29)

with ϕn(Σ)(θ z) being the yield function describing the convex set. The solution
λn(θz) is then simply found by taking the derivative

0 ∈ ∂ΣL= ∂ΣΦn(θz)+ λn(θz)∂Σϕ(θz) (14.30)

and solving the corresponding system of equations. Once λn(θz) is known one may
compute the update of the stress- and strain-like variables.

5 Numerical Results

The method considered in this paper is numerically tested on the example of a flat
plate containing a circular hole. The plate is constrained on the left edge, and sub-
jected to uniform tension f on the right edge as shown in Fig. 14.1. The material
properties describing the elastoplastic behaviour are taken in two different scenar-
ios: homogeneous and heterogeneous case. The homogeneous random quantities q
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Fig. 14.1 Experimental set
up. Here b= 20, L= 56 and
d = 10

are modelled as a random variables of lognormal type, more precisely a modified
lognormal random variable:

κ = κ0 + κ1 exp(μ+ σθ), (14.31)

where κ0 and κ1 are constants and θ the standard Gaussian random variable. On
other side the heterogeneous case is specified by properties modelled as a lognormal
random field (positive-definite):

κ(x,ω)= exp
(
μ(x)+ σ(x)γ (x,ω)) (14.32)

where γ (x,ω) represents the standard Gaussian random field with zero mean and
unit variance. In case that one chooses μ(x) and σ(x) as appropriate constants the
random field becomes homogeneous in a mean sense, but locally in each realisation
heterogeneous.

Due to the lack of the measurement data, the reality is simulated via computer
by assuming the true values for q and running the corresponding finite element
analysis. For simplicity reasons the truth is taken to be deterministic even though
one realisation of some positive definite random field would be more appropriate.
Additionally the obtained response is polluted by a Gaussian noise with zero mean
and the standard deviation σε .

5.1 Random Variable Update

In this particular example the prior elastoplastic behaviour is described by the ran-
dom yield stress σy and bulk modulus K . Due to their positive definiteness, the
mentioned properties are modelled according to Eq. (14.31) by taking for σyf :
κ0 = 0.1, κ1 = 0.25, μ = 0 and σ = 0.3 and for Kf : κ0 = 10, κ1 = 15, μ = 1
and σ = 0.3. For such chosen probability distributions the corresponding forward
response is computed with the help of the pseudo-Galerkin method (and Gauss–
Hermite sparse grid) with the polynomial chaos expansion of the maximum order
equal to four. More than that is not necessary to take as the input can be already
accurately described by polynomial order 3. On other side, the first order polyno-
mial expansion (i.e. Gaussian distribution) is not considered due to the violence of
positive-definite requirements on Kf and σyf .
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Table 14.1 The relative mean error εm [%] and relative variance εv [%] as a function of the PCE
order and the number of the measurement points. The measurement is the first stress component

Bulk modulus Yield stress

p 2 3 4 5 6 7 p 2 3 4 5 6 7

εm 2 6.70 6.70 4.81 4.02 2.50 2.50 2 30.62 30.76 20.54 16.32 0.50 0.27

3 6.70 6.70 4.79 3.92 2.47 2.43 3 30.73 30.79 20.60 16.42 0.78 0.11

4 6.69 6.69 4.78 3.92 2.46 2.41 4 30.73 30.54 20.62 16.36 0.76 0.10

εv 2 14.68 14.31 11.92 9.65 7.35 7.38 2 99.42 97.66 87.65 82.37 48.32 44.06

3 14.81 14.63 12.23 9.95 7.10 7.14 3 99.37 97.37 87.16 82.12 48.24 44.10

4 14.80 14.72 12.25 9.96 7.09 7.07 4 99.37 99.37 87.12 82.08 48.12 44.03

In order to simulate the virtual measurement the true values σy = 0.5 andK = 80
are adopted together with the uniform tension f = 10 · t in three equal time steps
h= 1. Further, the finite element analysis is performed by discretising the do-
main with the different number of elements than the one corresponding to the for-
ward problem in order to escape the violation of the inverse law. The obtained
response is then polluted by a Gaussian noise with σε taking the values in a set
{0.1,0.01,0.001}. As any kind of response (stress, strain, etc.) can be declared as the
measurement quantity, in this work we choose the stress components (as a more ab-
stract than real experiment) or the displacement (corresponding to the experiments
performed in reality). In each of these cases the response is measured in 2 up to 7
measurement points mostly concentrated around the hole (where the measurements
in reality are expected to be performed).

With respect to the previous description the results after the update are plotted
in Table 14.1 for the measurement of the first stress component and noise σε =
0.01. As the error estimates we adopt the relative mean error of posterior compared
to the truth εm = 100 · |E(κa) − E(κt )|/|E(κt )) and the reduction of the variance
compared to the prior εv = 100(varκa/varκf ). In Table 14.1 clearly is visible that
the bulk modulus K approaches the truth in circa 6% of the mean error already with
only two measurement points. This continues to drop to 2% with the number of the
measurement points. Similar is valid for the reduction of variance εv . In addition
to this, the slight decrease of εm and εv can be observed in the direction of the
polynomial order increase. However, this improvement is not very drastic as the
second order approximation already accurately describes the prior. Similar results
are characterizing the update of the stress variable σy , though the errors drop much
faster than in a case ofK . The reason for this are the placements of the measurement
points. Namely, the more points are lying in the plastic area the more informative
data for σy enter the update process. It is interesting to notice that the mean error
becomes smaller than 1%, while the variance more slowly reduces. For this one
need more measurement points or possibly nonlinear approximation of Bayesian
estimate. Namely, due to the nonlinear relationship between the parameter and data,
the linear update as presented in Sect. 3 is not optimal for σy .
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Table 14.2 The relative mean error εm [%] with respect to the number of the measurements in
different experiments

Bulk modulus Yield stress

z 2 3 4 5 6 7 z 2 3 4 5 6 7

σxx 6.79 6.73 4.88 4.01 2.57 2.51 σxx 30.62 30.76 20.54 16.32 0.50 0.27

σyy 8.70 8.71 5.02 3.73 3.69 2.91 σyy 31.74 32.10 16.26 8.49 9.19 3.02

σxy 7.88 7.75 4.68 3.81 3.18 2.80 σxy 31.21 30.81 15.18 11.29 6.81 2.84

u 39.94 7.59 8.48 7.93 7.85 7.83 u 5.27 2.43 1.98 2.12 2.13 2.13

Fig. 14.2 (a) The posterior
probability density function
of bulk modulus in different
experiments. (b) The
posterior density function of
yield stress in different
experiments. The truth is
denoted with red X

Following previous discussion in Table 14.2 are studied the results obtained by
measuring different quantities such as σxx , σyy and σxy stress components as well
as the displacement u (see Fig. 14.2). Here it is interesting to note that the stress
measurement brings smaller errors in posterior for K than for yield stress, in both
εm and εv (the later one gathered in Table 14.3). In contrast to this the displace-
ment is more suitable measurement for the value of σy . More importantly the higher
reduction in the variance is observed (see Table 14.3).



14 Identification of Properties of Stochastic Elastoplastic Systems 249

Table 14.3 The relative variance εv [%] with respect to the number of the measurements in dif-
ferent experiments

Bulk modulus Yield stress

z 2 3 4 5 6 7 z 2 3 4 5 6 7

σxx 14.68 14.31 11.92 9.65 7.35 7.38 σxx 99.42 97.66 87.65 82.37 48.32 44.06

σyy 14.64 18.41 13.47 10.11 9.94 8.79 σyy 98.80 95.87 80.19 60.23 59.77 45.46

σxy 17.06 16.67 12.33 9.68 8.14 7.86 σxy 99.10 98.66 78.22 70.9 63.20 52.42

u 96.92 43.54 33.34 29.35 29.34 18.10 u 28.31 18.55 12.32 11.28 11.27 11.27

Table 14.4 The relative mean εm [%] and variance εv [%] with respect to the measurement noise

Mean Variance

σε 2 3 4 5 6 7 σε 2 3 4 5 6 7

1e-1 9.98 9.95 6.74 5.8 5.65 5.54 1e-1 36.99 36.89 21.74 16.34 16.23 15.91

1e-2 6.79 6.73 4.88 4.01 2.57 2.51 1e-2 14.68 14.31 11.92 9.65 7.35 7.38

1e-3 6.75 6.79 0.95 1.14 1.98 1.31 1e-3 14.23 11.72 6.94 6.65 6.94 6.61

Besides the influence of the polynomial order on the update procedure, one may
investigate the influence of the corresponding measurement error. As shown in Ta-
ble 14.4 the mean error εm and the variance reduction εv for the bulk modulus are
decreasing with smaller values of σε as expected. The smaller measurement error is,
the more we are certain about the experimental data (and hence the truth) and thus
the better is update.

5.2 Random Field Update

The previous example was rather simple as the number of random variables repre-
senting the problem is relatively small. In order to properly investigate the update of
material properties in this example we consider the identification of shear modulus
G priory modelled as a lognormal random field with μ= 3.50 · 104 and σ = 0.1μ
according to Eq. (14.32). The field has exponential correlation function with the
correlation lengths equal to lc = 10. The same geometrical problem (see Fig. 14.1)
as before is considered with slightly different loading conditions, i.e. f = 25. In
addition both, the purely elastic and nonlinear response are studied due to the com-
parison purposes. Due to the lack of the measurement data, the reality is simulated
by modelling the shear modulus Gt = 2.8 · 104 as a point-wise constant function,
and measuring the values of the shear stress σxy in 30% of nodal points (including
boundary conditions). The collected data are then disturbed by a central Gaussian
noise with the diagonal covariance σ 2

ε I , where σε is approximately equal to 1% of
the measured value.
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Fig. 14.3 The relative error
εa [%] of updated shear
modulus G via (a) linear
model (elasticity)
(b) nonlinear model
(elasto-plasticity). For PCE is
used order p = 3 inM = 10
random variables

Fig. 14.4 Posterior
probability distribution
compared to the prior for the
nonlinear model. The update
is obtained by linear Bayesian
method with third order PCE
andM = 10 random variables

As the plots of the relative root mean square error

εa = 100 · ‖Ga −Gt‖L2(Ω)

‖Gf −Gt‖L2(Ω)

(14.33)

in Fig. 14.3 show the direct linear update performs better in a case of linear than the
nonlinear model as expected. The 2% error region Er in linear case spreads from
the central part to the boundary resulting in much wider region than in nonlinear
case. In contrast to this, the nonlinear model produces reduced Er region strictly in
the central plastifying zone. For the point in this domain the update performs well,
i.e. the variance reduces, the mean moves in the direction of the truth and the truth
is almost coinciding with the mode, see Fig. 14.4. However, in other nodes outside
of Er this may not be the case. This behaviour is expected as the linear Bayesian
approximation is not optimal for the nonlinear models.
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Fig. 14.5 Shear modulus G
via elasto-plastic response,
the relative error εa [%]:
(a) EnKF result (b) direct
PCE result. For PCE is used
p = 3 andM = 10 random
variables, while for EnKF
100 ensemble members

Besides the direct PCE update procedure the identification of the shear modulus
for the nonlinear model is also done with the help of ensemble Kalman filter (EnKF)
method (see [17, 18]) with 100 ensemble members. The comparison of results in
Fig. 14.5 shows that the direct update produces much smaller value of the relative
error εa . This can be explained by relatively small number of ensemble members.
On other side the EnKF identifies G in a more unified way, i.e. the region of the
minimal error is covering almost the whole computational area in contrast to PCE
where it is placed around the hole edge.

In previous experiments the update results are influenced by the values of the
different quantities such as the order of PCE, number of terms in truncated KLEs,
etc. However, until now we did not consider the influence of the measured quantity
on the update process. We assumed that the shear stress σxy is the most appropriate
measurement. In order to investigate this, we substituted σxy in previous experiment
by a stress σyy . This change significantly influences the update results by increasing
the relative root mean square error three times as shown in Fig. 14.6 for nonlinear
model.

6 Conclusion

In this paper is studied the problem of identifying parameters or quantities in elasto-
plastic computational model by comparison with virtual reality models (e.g. more
refined models). The introduced Bayesian approach starts from the idea that the
choice of parameters should be such as to minimise a certain error functional. In
other words, the update setting embeds the unknown quantity in a probability distri-
bution, where the spread of the probability distribution should reflect the uncertainty
about that quantity. Reformulating the classical Bayesian approach via conditional
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Fig. 14.6 The relative error
εa [%] of updated shear
modulus G (nonlinear model)
with the help of (a) σyy
measurement (b) σxy
measurement. For PCE is
used p = 3 andM = 10

expectation and the minimisation of variance as its background the Bayesian update
reduces to the simple linear formula, containing the well-known Kalman filter as a
special case.

The identification problem here considered is a very difficult one, an elasto-
plastic system, or mathematically speaking a variational inequality of a second kind.
The non-smoothness inherent in such problems makes the update procedure more
complex and difficult to perform. However, as presented in numerical results the
PCE based methods still succeed to preform well. Regarding this the PCE methods
show great promise for the future parameter identification in nonlinear problems.
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20. Rosić, B.V., Matthies, H.G.: Stochastic plasticity—a variational inequality formulation and
functional approximation approach I: the linear case. Technical Report 2012-02, Institut für
Wissenschaftliches Rechnen (2012)
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Chapter 15
SH Surface Waves in a Half Space with Random
Heterogeneities

Chaoliang Du and Xianyue Su

Abstract Horizontally polarized shear waves (SH waves) do not exist in a homo-
geneous half space according to the traditional elastic wave theory. However, in this
study, we proved both theoretically and numerically that there will be surface waves
in a half space which has small, random density, but the mean value of the density
is homogeneous. Historically, this type of half space is often treated as a homoge-
neous one with deterministic methods. In this investigation, a closed-form disper-
sion equation was derived stochastically, and the frequency spectrum, dispersion
equation, phase/group velocity were plotted numerically to study how the random
inhomogeneities will affect the dispersion properties of the half space with ran-
dom density. This research may find its application in seismology, non-destructive
test/evaluation, etc.

1 Introduction

In this study, the dispersion and attenuation properties of waves propagating in a
half space (see Fig. 15.1) with random heterogeneities are investigated.

Shear horizontal surface waves (SHSW) are the most destructive waves in an
earth quake and they can propagate through a very long distance without much loss
of its energy. But, scientists have proved long ago that there is no SHSW in a homo-
geneous isotropic linearly elastic half-space [1]. However, in 1911, love predicted
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Fig. 15.1 Coordinate system
of the half space

mathematically that SHSW could exist if the half-space is covered by a layer of a
different material.

Since then, SHSW in a half space was mostly explained theoretically by Love’s
theory or its variant theories. But we know that the earth’s surface is very complex. It
is a mixture of many kinds of rocks, sands, soil, water, etc., and more complicatedly,
these materials do not often distribute in deterministic ways, but distribute randomly.
So do SHSW exist in such a complex, random half space?

Similar problems have been explored by some scientists. B. Collet et al. [2] stud-
ied SHSW in a Functionally Graded Material of which some material constants
share the same depth-dependent function , and derived some of the depth-dependent
functions which could be solved exactly. Using their solutions, they studied the in-
fluence of different inhomogeneity functions on the properties of SHSW. J. Achen-
bach et al. [3] studied SHSW in a purely elastic half-space whose shear modulus
and mass density depend arbitrarily on the depth and gave a general solution that
is quite exact for high frequencies. T.C.T. Ting [4] recently investigated SHSW in
a half space of which C44 and ρ have the same function form, and C55, C45 are
correlated. Here, Cαβ is the elastic stiffness in the contracted notation. Ting also
got an asymptotic solution of general graded materials for large wave number k.
Anti-plane shear waves for anisotropic graded materials have been considered for
periodic half-spaces by A. Shuvalov et al. [5] and for a single plate by A. Shuvalov
et al. [6]. Shear horizontal waves in functionally graded piezoelectric materials are
also greatly studied by Tianjian Lu et al. [7–9].

But these researches haven’t given an explicit solution of dispersion and attenu-
ation of SHSW in a half space with random density in the depth direction by strict
stochastic methods. In this study, we get the explicit dispersion equation by the first
order smoothing approximation (FOSA) method. And we then analyze the disper-
sion and attenuation properties using the dispersion equation.

In this study we proved mathematically and numerically that SHSW could exist
in a stochastically homogeneous half space. Some interesting properties of disper-
sion and attenuation found in this study could promote our understanding of waves
propagating in a half space with random heterogeneities, e.g. earth’s upper crust,
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alloys or composites. It will also help us to do the inverse problems, for example, to
use seismic waves to detect the earth’s crust structure, and to use ultrasonic waves
to evaluate a structure with randomly distributed micro-cracks or heterogeneities.

2 Modeling and Mathematical Analysis

The fundamental dynamic equation system for statistically homogeneous, isotropic,
linearly elastic solid is

τij,j + ρfi = ρüi (15.1)

τij = λεkkδij + 2μεij (15.2)

εij = 1

2
(ui,j + uj,i) (15.3)

To account for the random heterogeneities, the constants ρ, μ, λ in the equation
system are changed to random processes of space.

Consider SH waves propagating in x direction in a half space (see Fig. 15.1).
It is known that for anti-plane waves that ux = uy = 0 and ∂/∂z= 0. And if we

assume that there is no body force, the equation system reduces to

τzj,j = ρüz (15.4)

τzj = μuz,j (15.5)

in which, j = x, y.
So the dynamic equation for SH waves in a random half space is

(μuz,j ),j = ρüz (15.6)

And the boundary condition is

τzy |y=0 = 0 i.e. (15.7)

μuz,y |y=0 = 0 (15.8)

Assume here that there is randomness only in the y direction. Consider an har-
monic wave motion of the form

uz = f (y) exp
[
i(k1x −ωt)

]
(15.9)

in which, f (y) is a random process. To study the surface shear wave, we assume the
averaged f (y) to be 〈

f (y)
〉=Ae−by, (15.10)

in which b > 0. Thus the mean wave motion 〈uz〉 could be written as

〈uz〉 =Ae−byei(k1x−ωt) (15.11)
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If there is no random heterogeneities in the solid, a solution of Eq. (15.6) would
be of the form [1]

uz =Ae−byei(k1x−ωt) (15.12)

Substituting Eq. (15.12) into Eq. (15.6), we find

ω2

C2
s

− k2
1 + b2 = 0 (15.13)

In which, Cs is the shear velocity of the homogeneous material without random
heterogeneities,

Cs =
√
μ0

ρ0
(15.14)

For a free surface, the boundary condition at y = 0 is

duz
dy

= 0 (15.15)

The boundary condition Eq. (15.15) can be satisfied only if either A= 0 or b = 0.
Therefore, there is no surface SH wave in an homogeneous, isotropic, linearly elastic
half space.

Firstly, we consider that random heterogeneities are only on the surface (as a
practical example, the roughness of the earth surface could be viewed as a half
space but with random heterogeneities on the surface). Under this circumstance, the
boundary condition will be

μ
∂uz

∂y

∣∣∣∣
y=0

= 0 ⇒ (μ0 + εμ1)
∂(〈uz〉 + εuz1)

∂y

∣∣∣∣
y=0

= 0 (15.16)

in which, εμ1 and εuz1 represent the surface roughness. Averaging both sides of
Eq. (15.16), we get

{
μ0

d〈uz〉
dy

+ ε2
〈
μ1
∂uz1

∂y

〉}∣∣∣∣
y=0

= 0 (15.17)

ε is an averaging measure of how the properties of random heterogeneities de-
viate from the averaged properties, and we assume it to be small and take it as
the small parameter. The randomness of the surface takes effect through the term
ε2〈μ1

∂uz1
∂y
〉. We assume here that

ε2
〈
μ1
∂uz1

∂y

〉∣∣∣∣
y=0

= μ0Aβe
i(k1x−ωt) (15.18)

in which, β is the surface parameter. Substituting Eqs. (15.18) and (15.11) into
Eq. (15.17), we get

b= β (15.19)
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Considering Eq. (15.13), the dispersion equation for SH waves in a half space
with random heterogeneities only on the surface is

ω2

C2
s

− k2
1 + β2 = 0 (15.20)

Next, we will investigate the problem of the half space with random hetero-
geneities in the whole depth direction. Substituting Eq. (15.9) in Eq. (15.6) gives

(
ρω2 −μk2

1

)
f + (μf,y),y = 0 (15.21)

Assuming that ρ, μ differ slightly from the mean value of them, ρ, μ can be written
as

ρ(y)= ρ0 + ερ1(y) μ(y)= μ0 + εμ1(y) (15.22)

where, ε is a small parameter, and

〈ρ1〉 = 〈μ1〉 = 0 (15.23)

Substituting Eq. (15.22) in Eq. (15.21), we have

(
ρ0ω

2 −μ0k
2
1

)
f +μ0f,yy + ε

((
ρ1ω

2 −μ1k
2
1

)
f + (μ1f,y),y

)= 0 (15.24)

According to FOSA theory, the deterministic operator of Eq. (15.21) is

L0(y)= μ0

(
k2

0 +
∂2

∂y2

)
(15.25)

in which,

k2
0 =

ω2

C2
s

− k2
1 (15.26)

And the first order random operator of Eq. (15.21) is

L1(y)= P(y)+μ1(y),y
∂

∂y
+μ1(y)

∂2

∂y2
(15.27)

in which,

P(y)= ρ1(y)ω
2 −μ1(y)k

2
1 (15.28)

Considering Eq. (15.23), we can see that 〈L1〉 = 0.
For steady waves, the Green function G0 of the deterministic operator L0 is

G0(y1, y2)=− 1

2k0μ0
sin

(
k0|y1 − y2|

)
(15.29)

According to stochastic theory, the FOSA equation is
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L0
〈
f (y1)

〉− ε2
〈
L1(y1)

∫
G0(y1, y2)L1(y2)

〈
f (y2)

〉
dy2

〉
= 0 (15.30)

To solve Eq. (15.30), let’s calculate L1(y1)G0(y1, y2) first,

L1(y1)G0(y1, y2)=−
(
P(y1)+μ1(y1),y1

∂

∂y1
+μ1(y1)

∂2

∂y2
1

)

× 1

2k0μ0
sin

(
k0|y1 − y2|

)
(15.31)

When y2 < y1

L1(y1)G0(y1, y2)=Q1 sin
(
k0(y1 − y2)

)+Q2 cos
(
k0(y1 − y2)

)
=M(y1, y2) (15.32)

in which,

Q1 =
(
μ1(y1)k0

2μ0
− P(y1)

2k0μ0

)
(15.33)

Q2 =−μ1(y1), y1

2μ0
(15.34)

and, when y2 > y1

L1(y1)G0(y1, y2)=−M(y1, y2) (15.35)

Then, using Eq. (15.10), L1(y2)〈f (y2)〉 can be expressed as

L1(y2)
〈
f (y2)

〉=
(
P(y2)+μ1(y2),y2

∂

∂y2
+μ1(y2)

∂2

∂y2
2

)
Ae−by2

=A(P(y2)−μ1(y2),y2b+μ1(y2)b
2)e−by2 =N(y2) (15.36)

If we assume that μ1 = 0, we could study the influence of the randomness of the
density on the dispersion properties of the half space.

The random process ρ1(y1;γ ) is taken as Uhlenbeck–Ornstein process [10]. Al-
though its correlation function is not mean-square differentiable, this process has
been used in a number of investigations because it fits experimental data the best
[11]. This process is a centered and stationary random process [10] and its correla-
tion function is

Rρ1(y1;γ )ρ1(y2;γ ) =
∫
ρ1(y1;γ )ρ1(y2;γ )dγ

= ζ 2e−|y1−y2|/Rc =R(y1 − y2) (15.37)

In which, ζ =√〈ρ1
2〉 and it is the standard deviation of the random density func-

tion; γ is a random variable. And Rc is the integral radius (the correlation length)
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of the correlation function, which physically means the scale of heterogeneity [12],
and it should be positive.

From Eq. (15.10), we have

L0
〈
f (y1)

〉= μ0

(
k2

0 +
∂2

∂y2

)
Ae−by1 = μ0

(
k2

0 + b2)Ae−by1 (15.38)

Substituting Eqs. (15.31), (15.36) and (15.38) into Eq. (15.30), we get the dis-
persion equation,

k2
0 + b2 − ω

4ζ 2ε2b

2k0μ
2
0

(
1

(b+ 1/Rc)2 + b2
+ 1

(b− 1/Rc)2 + b2

)
= 0 (15.39)

It could be seen from the dispersion equation Eq. (15.39) that if there is no ran-
dom fluctuation, i.e. ε = 0 or ζ = 0 then k2

0 + b2 = 0—the equation becomes the
dispersion equation without random heterogeneities;

Considering the surface condition Eq. (15.19), the dispersion equation could be
written as,

k2
0 + β2 − ω

4ζ 2ε2β

2k0μ
2
0

(
1

(β + 1/Rc)2 + β2
+ 1

(β − 1/Rc)2 + β2

)
= 0 (15.40)

If β is zero, then ε will be zero too according to Eq. (15.18), that is, there will
be no heterogeneities in the half space. So if β is zero, the half space will be ho-
mogeneous, and there will be no SH surface waves according to Eq. (15.40). In the
future, we may consider another model that, if β is zero, ε will not be zero, to study
the interesting case which has randomness only below the surface.

To conveniently evaluate numerically the effect of random heterogeneities, the
dispersion equation Eq. (15.40) is transformed into a dimensionless equation in the
following. h is a symbol for the characteristic length and it could be the correlation
length of the random heterogeneities. Introduce new dimensionless variables as,

ω= 2hω

πCs
k = 2hk1

π

Rc = πRc
2h

ζ = εζ
ρ0

μ0 = μ0

ρ0C2
s

= 1 β = 2hβ

π

(15.41)

From Eqs. (15.26) and (15.41), we get

k2
0 =

ω2

C2
s

− k2
1 =

(
π

2h

)2(
ω2 − k2)

(15.42)

so the dimensionless k0 is defined as,

k0
2 = ω2 − k2

(15.43)
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Using Eqs. (15.41), we could get the dimensionless dispersion equation from
Eq. (15.20),

ω2 − k1
2 + β2 = 0 (15.44)

Using Eqs. (15.41) and (15.43), the dimensionless dispersion equation of
Eq. (15.40) is,

k0
2 + β2 −Λ= 0 (15.45)

Λ denote the random term,

Λ= ω
4ζ

2
β

2k0

(
1

(β + 1/Rc)2 + β2
+ 1

(β − 1/Rc)2 + β2

)
(15.46)

3 Numerical Results and Analysis

The SH surface waves propagating in a half space with random densities is further
studied numerically. The dimensionless dispersion equation Eq. (15.45) is used to
compute the curves. The numerical results are explained and discussed in the fol-
lowing.

3.1 Random Heterogeneities Only on the Surface

The geomorphy of the earth’s surface is always very complex. The reason for this
complexness can come from both natural and man-made actions. In this study, we
model the complex geomorphy by giving a surface parameter β . So in this section,
we will study the dispersion properties for half spaces with random heterogeneities
only on the surface. The dispersion curves are plotted according to Eq. (15.20).

From Fig. 15.2, it can be seen that the phase velocity will grow to 1 slowly, but
for k < 2, the phase velocity will be 0, i.e. the waves become standing waves in this
circumstance.

From Fig. 15.3, it can be seen that, given a wave number, the phase velocity will
decrease to 0 as the surface parameter β grows, i.e. the waves propagate more and
more slowly when the surface becomes more and more rough, and all the waves will
be blocked when β is large enough.

3.2 Frequency Spectrum Analysis

In the following, we will study the dispersion properties for half spaces with random
heterogeneities not only on the surface but also in the whole half space. The related
parameters are set to ε = 0.1, ζ = 2, Rc = 0.4, β = 2 respectively.
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Fig. 15.2 Normalized phase
velocity—normalized wave
number. β = 2

Fig. 15.3 Normalized phase
velocity—normalized surface
parameter. k = 10
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Fig. 15.4 Normalized
circular frequency—
normalized wave number

Fig. 15.5 Normalized phase
velocity—normalized wave
number

From Figs. 15.4, 15.5 and 15.6, we can see that

1. As the wave number grows, the velocity will grow to a value—approximately
0.93 in this case. The reason that it can not reach to 1 could be that the waves are
reflected and scattered by the random heterogeneities.

2. The wave number does not start from 0, but 2. We can call this value the cut-off
wave number. 2 is also the value of β . From Eq. (15.45), we can see that the
cut-off wave number equals the surface parameter.

Also, from Fig. 15.5, it can be seen that the phase velocity will decrease to 0 when
the wave number decreases. This phenomenon agrees with the common knowledge
that when the wave number decreases (the wave length increases), the effect of the
random heterogeneities will be averaged out gradually, that is, the stochastically
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Fig. 15.6 Normalized phase
velocity—normalized circular
frequency

Fig. 15.7 Normalized
imaginary wave
number—normalized circular
frequency

homogeneous half space will be more and more like a homogeneous half space, and
we know that SHSW could not exist in a homogeneous half space, therefore, the
phase velocity will decrease gradually to 0.

The imaginary wave number represents the attenuation rate. Therefore, we know
from Fig. 15.7 that the bigger the circular frequency is, the faster the wave atten-
uates. This phenomenon should be caused by reflection and scattering. And from
Fig. 15.4 we see that the wave length will decrease as the circular frequency grows.
It is known that the smaller the wave length is, the easier the waves can be reflected
or scattered by the random heterogeneities. Thus the wave should attenuates more
fast as the frequency grows.
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4 Conclusion

In this study, we proved that SHSW could exist in a stochastically homogeneous half
space. The dispersion properties of SHSW in an half space with random density in
the depth direction or only near the surface have been investigated both theoreti-
cally and numerically. The first order smoothing approximation method is used to
solve the random differential equation. The dimensionless dispersion equation is
obtained. And the dispersion properties is further studied numerically. The phase
velocity is found increasing to an asymptotic value when the wave number is big-
ger than a critical value—the cut-off wave number, below which the phase velocity
is 0. The interesting properties of dispersion and attenuation found here will help us
understanding properties of waves in a half space with random heterogeneities, e.g.
the earth’s crust. It will also help us to do the inverse problems, for example, to use
seismic waves to detect the earth’s upper crust structure, and to extract information
more exactly from the acoustic testing results.
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Chapter 16
Structural Seismic Fragility Analysis of RC
Frame with a New Family of Rayleigh Damping
Models

Pierre Jehel, Pierre Léger, and Adnan Ibrahimbegovic

Abstract Structural seismic vulnerability assessment is one of the key steps in a
seismic risk management process. Structural vulnerability can be assessed using the
concept of fragility. Structural fragility is the probability for a structure to sustain
a given damage level for a given input ground motion intensity, which is repre-
sented by so-called fragility curves or surfaces. In this work, we consider a moment-
resisting reinforced concrete frame structure in the area of the Cascadia subduction
zone, that is in the South-West of Canada and the North-West of the USA. Ac-
cording to shaking table tests, we first validate the capability of an inelastic fiber
beam/column element, using a recently developed concrete constitutive law, for rep-
resenting the seismic behavior of the tested frame coupled to either a commonly
used Rayleigh damping model or a proposed new model. Then, for each of these
two damping models, we proceed to a structural fragility analysis and investigate
the amount of uncertainty to be induced by damping models.
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1 Introduction

Decision makers are interested in seismic risk analyses for predicting the post-
earthquake situation in a given geographical region, so as to anticipate the human,
social and economical impact of a major earthquake. For building structures, seis-
mic risk assessment requires three main steps. (i) A seismic hazard analysis has first
to be performed. It can be either deterministic or probabilistic. In the latter case, the
seismic hazard is often expressed as an intensity measure—often the peak ground
acceleration (PGA)—with a certain probability of being exceeded in a certain num-
ber of years. (ii) Then, the seismic fragility of the building considered has to be es-
timated: it corresponds to the conditional probability Pij = P [DI ≥DIi |IM = IMj ]
of the building to sustain a given damage index DIi for a unique—or a set of—given
input ground motion intensity measures IMj . The probability to attain a damage in-
dex DIi can then be computed as

Pi =
∑
j

P [DI ≥DIi |IM = IMj ] · P [IM = IMj ]. (16.1)

These damage indices have to be related to building performance requirements.
(iii) Finally, the exposure of the buildings and populations has to be determined.

Structural seismic fragility analysis thus is a key step in the overall earthquake
risk management process. This task is commonly achieved by constructing fragility
curves from inelastic time-history analyses that take into account the variability in
the seismic input motion alone or in both the input motion and the structural model.
The main ingredients for fragility analyses are: (i) A set of seismic time-history
records representative of the seismic hazard in the geographical region of inter-
est for the project; (ii) An inelastic structural model along with a damping model;
(iii) A mapping between damage indices and structural performance levels; and (iv)
Statistical tools to analyze fragility curves.

In [1], Hwang and Huo present a methodology for constructing fragility curves
accounting for uncertainties in the seismic, site, and structural parameters. On
the one hand, 8 scenario earthquakes corresponding to different PGA, annual ex-
ceedance probabilities, magnitudes, and source-to-site distances are considered; for
each scenario, 50 samples of ground motion time histories are generated using a
seismological model that takes into account uncertainties in seismic and soils pa-
rameters. On the other hand, 50 samples of each of 6 random structural parameters
are generated and then combined using the Latin Hypercube sampling technique
to eventually generate 50 samples of the inelastic structural model. Then, for each
earthquake scenario, the 50 ground motion samples are combined with the 50 struc-
tural samples to establish 50 earthquake-site-structure samples. Finally, for each
earthquake scenario, 50 values of the damage index are computed from inelastic
analyses and fragility curves are constructed.

The preceding approach defines a fully probabilistic approach in the sense that
it takes into account uncertainty sources in both the seismic input motions and the
inelastic structural behavior. It can however also be worth considering only uncer-
tainties in ground motions. To that purpose, there exists, following Jalayer and Beck
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[2], an alternative to the IM-based approach considered in this work: the probabilis-
tic ground motion time history approach. This latter method is based on a stochastic
ground motion model pertaining to seismic source parameters, which has to circum-
vent the most difficult drawback to be tackled in the IM-based approach, namely
whether the selected set of IM thoroughly represent the input signal characteristics.
On another hand, the recent work of Rosić et al. [3] considers the uncertain struc-
tural response of inelastic media and deterministic loading to provide maps of the
probability for a component of the stress tensor to reach a given value at a given
point.

The concept of fragility curve reduces the vulnerability analysis to the consider-
ation of a unique intensity measure. This limitation has been pointed out in research
work where the concept of fragility surfaces emerged. In a study dedicated to the an-
alyze of the limitations of commonly used intensity measures for fragility analysis
of single-degree-of-freedom linear and nonlinear systems [4], Kafali and Grigoriu
propose to construct fragility surfaces instead of curves for assessing the seismic
performance of nonlinear systems. For a given state of damage in the structure, the
proposed fragility surface is the graphical representation of the relationship between
the failure probability and the set of intensity parameters (m, r) constituted of the
moment magnitude m and source-to-site distance r . This concept of fragility sur-
face is also used in [5] by Seyedi et al. who extend it to other intensity measures.
Indeed, they construct fragility surfaces that provide the probability for an inelastic
reinforced concrete structure to sustain a given inter-story drift ratio, according to
the spectral displacement at both eigenperiod T1 and T2. They finally conclude that
when dealing with uncertainties propagation, fragility surfaces allow for estimating
the variability of structural fragility due to a second IM, which should lead to more
accurate seismic risk analyses.

Fragility curves have been used as a baseline to deal with a wide range of is-
sues pertaining to earthquake engineering. In [6], Sáez et al. study the effect of
considering inelastic dynamic soil-structure interaction on the seismic vulnerability
analysis. They construct fragility curves from a very large number of artificially gen-
erated input earthquakes. They also introduce the so-called Fisher information con-
cept which allows for measuring the amount of information contained in the seismic
ground motions and thus provide a tool for the statistical analysis of fragility curves.
In [7], Saxena et al. address the issue of assuming identical support ground mo-
tion in the analysis of the seismic response of long, multi-span, reinforced concrete
bridges. Analyzing fragility curves, they show that considering spatial variation of
earthquake ground motions is of first importance. In [8], Popescu et al. construct
fragility curves to present the results of deterministic and both 2D and 3D stochastic
analyses of the seismic liquefaction potential of saturated soil deposits. In the con-
text of design rules assessments, Lagaros [9] computes fragility curves to analyze
the seismic performance of multi-story RC buildings designed according to Greek
and European building codes. The fragility curves are plotted from 10,000 simula-
tions based on Monte Carlo techniques to take into account both uncertainty in the
seismic signal and in key structural parameters for assessing structural stability.

There is a likely source of uncertainty in inelastic seismic time history analy-
ses which is only rarely considered in fragility analyses, namely damping added to
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the inelastic structural model so as to introduce in the simulations an amount of en-
ergy dissipation coming from inelastic mechanisms that are not explicitly accounted
for in the structural model. In [1], the critical viscous damping ratio added for the
seismic analyses of a reinforced concrete frame building is described by the uni-
form distribution restricted to the range 2%–4%. In [10], the structural damping is
described by a lognormal distribution with a mean of 2% and a coefficient of vari-
ation of 0.62 for the purpose of steel frame fragility analysis. In both these works,
Rayleigh damping is added and the uncertainty pertaining to additional damping
thus stems from the critical damping ratio, not from the damping model type—
Rayleigh in this case. Because it has been shown that it can be difficult to control
the amount of damping generated by common Rayleigh damping models through-
out inelastic time history analyses [11–13], the main purpose of the work presented
in this chapter is to investigate the likely amount of uncertainty introduced by the
damping model, in the context of fragility analysis.

To that aim, we proceed as follows. In the next section, we first present a re-
inforced concrete moment-resisting frame structure—simply referred to as “RC
frame” throughout this chapter—which was tested on a shaking table. We use the
corresponding experimental data as a reference to validate the developments that we
present all along this chapter. Then, we detail in Sect. 3 the numerical model that we
use to perform inelastic seismic time-history analyses of the RC frame. The issue
of modeling damping is discussed and a new family of Rayleigh damping models
is proposed. Results from simulations performed with both a “classical” Rayleigh
damping model and the proposed new damping model are compared to the shak-
ing table test results so as to validate the capability of the proposed combination
of hysteretic with additional damping models for representing the behavior of the
RC frame. The proposed new family of Rayleigh damping models can rely on a
physical background which often lacks to commonly used Rayleigh damping mod-
els. In Sect. 4, we proceed to the selection of a set of real seismic ground motion
records compatible with the seismic hazard in the Cascadia subduction zone. A seis-
mic fragility analysis of the RC frame in this geographical region is then carried out
in Sect. 5: fragility curves, along with their statistical analysis, as detailed in [6], are
constructed for every damping models considered so as to investigate the amount of
uncertainty these latter could bring in structural fragility analyses.

2 RC Frame Tested on a Shaking Table

The test structure considered throughout this chapter is represented in Fig. 16.1. It
was designed at a reduced scale of 1/2 according to the provisions of the National
Building Code of Canada [14] and of the Canadian concrete standard [15]. The
structure was assumed to have a nominal ductility, which corresponds to a force
reduction factor R = 2 to compute the design base shear. The various assumptions
and parameters used in the design of the this structure can be found in [16]. Four
inverted U-shape concrete blocks attached in each span of the beams were used to
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Fig. 16.1 RC frame structure
tested on the shaking table at
École Polytechnique in
Montreal. Dimensions are in
[mm]

simulate concentrated gravity loads from framing joints. The centers of gravity of
the added masses were computed such that they coincide with the center of gravity
of the beams. Service cracks were induced by these added masses. The total weight
of the frame was 95 kN. The fundamental period T1 of the structure with added
masses was measured at 0.36 s in a free-vibration test. Mode 1 excites 91% of the
total mass of the structure and when mode 2 is also considered approximately all
the mass is excited.

The structure was assumed to be located in a seismic zone 4 in Canada, as de-
picted in the 1985 seismic zoning map of the National Building Code of Canada.
The seismic hazard in this zone is such that peak horizontal ground acceleration
between 0.16 g and 0.23 g is likely to be observed with 10% probability of ex-
ceedance in 50 years. Such seismic zones can be found in Western, Eastern and
Northern Canada. The ground motion record that was selected for the test program
corresponds to the N04W component of the accelerogram recorded in Olympia,
Washington on April 13, 1949. Figure 16.2 presents the feedback record measured
during the test initially scaled to a peak ground acceleration PGA= 0.21 g as well
as the corresponding elastic response spectrum with 5% viscous damping ratio.
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Fig. 16.2 Acceleration time history recorded on the shaking table during the test and correspond-
ing elastic response spectrum with a critical viscous damping ratio of 5%

3 Seismic Inelastic Time History Analysis of the RC Frame

The set of equations of motion for the discretized structure is written as:

Md̈(t)+C(t)ḋ(t)+ FR(t)=−MΔüg(t) (16.2)

where d(t) is the vector containing the nodal displacements, M is the mass matrix,
C(t) is the damping matrix, FR(t) is the inelastic resisting forces vector, Δüg(t)

is the vector of the rigid body acceleration induced by the ground displacement
ug(t). In this section, we first present the inelastic structural model used to compute
FR(t), then we define two damping models: a “classical” Rayleigh model C1(t) and
a new model C2(t), and we finally validate the capability of the two models for
representing the behavior of the RC frame presented in the previous section.

3.1 Fiber Beam/Column Element

The inelastic structural model is based on a fiber frame element suitably imple-
mented in the framework of a displacement-based formulation so that it can inte-
grate the uniaxial concrete behavior law recently developed by the authors [17] and
briefly presented in this section. This constitutive model is capable of representing
the main energy dissipative phenomena likely to occur in concrete: appearance of
permanent deformation, strain hardening and softening, stiffness degradation, local
hysteresis loops, appearance of cracks. Its theoretical development and numerical
implementation are based on thermodynamics with internal variables [18, 19] and
on the finite element method with embedded strong discontinuities [20–22]. FEAP
[23] is the finite element program used for the numerical implementation of the
developments presented in this section.

Enhanced Kinematics The first ingredient of this model is the definition of an
enhanced kinematics that takes strong discontinuities into account. This is done,
as depicted in Fig. 16.3 by writing the displacement field u(x, t) as the sum of
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Fig. 16.3 Construction of an
enhanced displacement field
u(x, t) as the sum of a
continuous displacement
ū(x, t) and of a displacement
jump ¯̄ui(t)HΓi (x) pertaining
to discontinuity Γi

a continuous displacement ū(x, t)—that is the displacement as it would be in the
absence of strong discontinuity—and of displacement jumps ¯̄ui(t) in sections Γi of
the solid domain Ω :

u(x, t)= ū(x, t)+
ndis∑
i=1

¯̄ui(t)HΓi (x) (16.3)

where HΓi (x) is the Heaviside’s function which, for a left-to-right oriented domain,
is null on the left side of the discontinuity Γi and unity on its right side.

With the hypothesis of small transformation, we have the following expression
for the normal strain field:

εxx(ū, ¯̄ui, t)= ∂ū(x, t)
∂x

+
ndis∑
i=1

¯̄ui(t)δΓi (x) (16.4)

where δΓi (x) is the Dirac’s function.

Stored Energy Function When the Lagrange’s variational principle is for in-
stance chosen to derive the governing equations of the system (see Eq. (16.2) for the
corresponding discretized form), the internal potential energy Uint as to be written:

Uint (ū,α, t)=
∫
Ω

ψ(ū,α, t) dΩ

=
ncf ib∑
f=1

∫
Ωcf

ψc
(
ū,αc, t

)
dΩcf +

nsf ib∑
f=1

∫
Ωsf

ψs
(
ū,αs , t

)
dΩsf (16.5)

where nc,sf ib is the total number of concrete or steel fibers, Ωc,sf is the volume of
the fiber, ψc,s is the stored energy function for concrete or steel which depends on
the continuous displacement field ū(x, t) and on the set of internal variables αc,s .
Normal stresses are computed from these functions as

σxx = ∂ψ

∂εxx
. (16.6)

Set of Internal Variables The set of internal variables α is defined to charac-
terize the evolution of the main energy dissipative—inelastic—mechanisms which
develop in the system. These internal variables are the memory of the system. The
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α Phenomenological analogy

ε̄p plastic deformation
ξ̄ p plastic isotropic strain hardening
λ̄p plastic kinematic strain hardening
D̄ damaged elastic compliance
ξ̄ d damage isotropic strain hardening
¯̄up localized plastic displacement
¯̄ξp strain softening due to displacement localization

Fig. 16.4 Internal variables for compression and their phenomenological interpretation. [top, left]
Elastic response until yield stress σy is reached. [top, centre] In the plastic domain, plastic defor-

mation (ε̄p) and strain hardening (ξ̄ p) develop. [top, right] Once the limit stress σf is reached,
damage mechanisms are activated too, leading to a degradation of stiffness (D̄) and a change in the
strain hardening evolution (ξ̄ d ). [bottom, left] Once the ultimate stress σu is reached, deformation

localizes ( ¯̄up) and strain-softening is observed ( ¯̄ξp). [bottom, center] Local hysteresis loops are
represented with kinematic hardening in the plastic domain (λ̄p). Note that each parameter of this
model has a clear interpretation regarding the constitutive law to be identified

physical interpretation of each of them is provided in Fig. 16.4. Note that the consti-
tutive law used here can handle different behavior in compression and tension, and
can also reproduce a visco-elastic response (see [17] for a full description). Viscos-
ity is not considered in this work and, for the sake of conciseness, we only focus
on the compressive part of the behavior law in Fig. 16.4. The local admissible state
of the system is expressed according to criteria functions in the stress-like domain
of the set of variables dual to α. When irreversible mechanisms are activated in the
structure, internal variables have to be updated and their evolution is governed by
the principle of maximum dissipation. From the computational point of view, be-
cause we only consider linear hardening and softening laws, there is no need for
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Fig. 16.5 Finite element mesh (dimensions in [mm]) and material constitutive laws for the in-
elastic structural modeling. [bottom left] Confined and unconfined concrete behavior laws. [bottom
right] Steel constitutive law

local iteration when internal variables are updated, except for transitions between
hardening and softening regimes, which leads to an efficient resolution procedure.

3.2 Inelastic Structural Model

The finite element mesh and the uniaxial constitutive laws for steel and both con-
fined and unconfined concrete fibers used for the inelastic structural model of the
RC frame are shown in Fig. 16.5. Material behavior laws have been identified to fit
experimental monotonic (σxx − εxx ) curves. The structure is assumed fixed at its
base. Rigid end zones are defined to model the beam-to-column connections and
rebar slip in surrounding concrete is not represented. These later hypotheses are
questionable because the connections exhibit inelastic behavior during the test. This
obvious limitations of the structural model has to be reminded when damping model
is added in the simulation.

The loading time history consists in two successive phases: (i) Static dead load is
first applied step by step and then kept constant; (ii) The seismic loading is applied.
A first validation check of the inelastic structural model is carried out by simulating
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a free vibration test. Before dead load is applied, the elastic fundamental period of
the structure is computed as T ela1 = 0.28 s; then, due to the inelastic behavior of
the structure, the elongated period is evaluated as T ini1 = 0.36 s when dead load is
completely applied. Both T ela1 and T ini1 coincide with the experimental values.

3.3 Proposition of a New Family of Rayleigh Damping Models

Basic Definitions In the context of inelastic time history numerical analysis, the
definition of damping might differ according to the reference cited. On the one hand,
in [24], damping consists in both (i) inherent damping resulting from the dissipa-
tion of energy by inelastic structural elements, and (ii) additional viscous damping
added in the simulation to take into account inherent energy dissipation sources not
otherwise explicitly considered in the inelastic structural model. On the other hand,
in [25], damping is defined as “the portion of energy dissipation that is not captured
in the hysteretic response of components that have been included in the model”,
and it is then suggested in [25] to use “un-modeled energy dissipation” as a more
appropriate terminology for damping.

Because, in experimental investigations, measured damping results from all the
energy dissipative phenomena, we herein decide to define damping as the combi-
nation of both hysteretic damping due to the energy dissipated by all the inelastic
phenomena explicitly accounted for in the structural model and additional viscous
damping that should be consistent with the inelastic structural model namely, that
does not introduce energy dissipation already accounted for in the inelastic struc-
tural model.

Problems Encountered with Rayleigh Damping Controlling the amount of ad-
ditional viscous damping energy dissipated in inelastic time history analyses is
a very challenging task [11–13]. This is especially the case for commonly used
Rayleigh proportional damping models, that is when the damping matrix is com-
puted, in its most general form, as

C(t)= α(t)M+ β(t)K(t), (16.7)

where K(t) is the tangent stiffness matrix. Several researchers have provided in-
sight in the comprehension of Rayleigh damping regarding the inelastic structural
model it is coupled to, have highlighted limitations, and have eventually provided
recommendations to cope with them [11–13]. Nevertheless, adding damping and
controlling its consistency with the inelastic structural model still remains an issue
to be addressed.

Three Common Phases in Seismic Response We now discuss in a qualitative
way the notion of consistency for additional viscous damping. To that purpose, we
start by stating that seismic structural response is composed by three main consec-
utive phases, as illustrated in Fig. 16.6. Both inelastic structural model and addi-
tional damping model must then be capable of representing the salient phenomena
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Fig. 16.6 Three common phases in the seismic response and the concept of “key window”.
[top left] Structural relative displacement time-history. [top right] Total relative seismic energy
time-history in the structure. [bottom] Arias intensity of the seismic signal: AI(t)= π

2g

∫ t
0 ü

2
g(τ ) dτ

corresponding to each of these three phases. Foremost has to be properly modeled
what we call here the “key window”, namely the time interval within which the
major inelastic modifications for structural performance assessment develop. For
instance, key mechanisms that control near-collapse structural behavior are listed
in [26]: degradation of strength and stiffness, and structure P-delta effects. From
experimental results, we know that strain rate is another major issue.

A consistent additional damping model should be adapted to each of these three
phases as follows:

• Phase 1: None or only few incursions in the inelastic domain occur. Energy dis-
sipation in phase 1 thus comes from the friction in the cracks that appeared when
applying dead load and from many other mechanisms always present in mechan-
ical systems. When used, visco-elasticity and constitutive laws with local hys-
teresis [17, 27] in the structural model could account for these energy dissipation
sources but a small amount of additional damping usually has to be added. For
the RC frame considered in this work, a free-vibration test was carried out after
dead load had been applied and a first modal damping ratio of 3.3% was measured
[16].

• Phase 2: As the ground motion becomes stronger (at around 8 s in Fig. 16.6),
an important amount of seismic energy is imparted to the structure and some
parts of the structure then exhibit inelastic behavior. Inelastic structural models
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are designed to explicitly model part of the numerous inherent nonlinear energy
dissipative mechanisms involved in the structural response. The energy dissipa-
tion due to the mechanisms not explicitly accounted for in the inelastic structural
model has to be introduced with the additional damping model.

• Phase 3: The structure has suffered irreversible degradations that modified its dy-
namic properties. Thus, even if the seismic demand is again as low as in phase 1,
the energy dissipative mechanisms are different because of frictions in the cracks
that appeared within phase 2 or at degraded bound between steel and concrete.
Here again, visco-elasticity and behavior laws with local hysteresis [17, 27] in the
structural model could account for these damping sources, but it generally has to
be completed by additional damping.

Proposition of a New Family of Rayleigh Damping Models In the following,
two damping models will be used:

• A commonly used Rayleigh model based on tangent stiffness matrix and with two
constant coefficients

C1(t)= αM+ βK(t); (16.8)

• We propose a new family of models that is directly dependent on both the two key
notions in the definition of the three phases introduced above: the capacity of the
inelastic structural model to absorb energy and the seismic demand. The model
is based on Rayleigh damping with tangent stiffness matrix and with coefficients
adapted to each of the three phases:

C2(t)= α(t)M+ β(t)K(t) (16.9)

The idea of adapting Rayleigh damping to the capabilities of the inelastic structural
model for dissipating energy is present in the use of the tangent stiffness rather than
the initial one: it is expected that the choice of tangent stiffness dependent damp-
ing will have the main advantage of providing the significant additional source of
damping only in the domains/modes that are not accounted for by inelastic model.
Such a choice allows to provide the physically based damping phenomena interpre-
tation, which leads to damping coefficients that are easier to identify. The same idea
has been further exploited in [28] where 1% viscous damping is added to an inelas-
tic dam model before cracking and 10% after cracking to represent localized high
dissipation by friction between crack lips. Another instance is the work presented
in [29] where viscous damping is added only in the shear wall zones which remain
elastic, while no damping is added in the inelastic zones where the structural model
is let alone to dissipate the seismic energy.

In spite of its stronger physical background, implementing damping model C2(t)

is not as straightforward as damping model C1(t). First, three sets of Rayleigh coef-
ficients (αp,βp)p=1,2,3 corresponding to each of the three phases p have to be iden-
tified to define the appropriate damping ratios ξ . Second, the instants which delimit
the three phases have to be determined, which can be automatically accomplished
by the computer program that is capable of detecting the activation of significant
inelastic behavior.
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Fig. 16.7 Experimental and simulated top-displacement; simulated hysteretic plus elastic energies
(EH ), simulated additional damping energy (ED), and both experimental and simulated total inter-
nal work. [top] With common added damping model C1(t); [bottom] With the proposed new fam-
ily of Rayleigh damping models C2(t). The structural responses shown here for damping models
C1(t) and C2(t) looks very similar because both models have been calibrated to experimental data;
however, model C2(t) has more capability for representing transient evolution of added damping

3.4 Calibration and Validation of the Models

Seismic inelastic time history analyses of the RC frame have been carried out with
the inelastic structural model presented above coupled to either additional damp-
ing model C1(t) or C2(t). The implicit Newmark integration scheme with param-
eters β = 0.25 and γ = 0.5 is used with a time step of 0.005 s. Figure 16.7 shows
a comparison between the simulated top-displacement and energies time histories
and the respective experimental results reproduced from [30]. Good agreement be-
tween simulated and experimental data can be observed. Moreover, there is very
good agreement between the hysteretic plus elastic (EH ) and damping (ED) energy
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quantities computed with the models proposed here and an analogous Perform3D
[31] simulation we carried out for comparison purpose, namely EH ≈ 550 N.m
and ED ≈ 2250 N.m, corresponding to approximately 20% and 80% of the total
work done by the structure during seismic motions. Last, the fundamental period
of the RC frame in post-earthquake conditions is estimated by a free-vibration test
performed at the end of the seismic signal and it is observed that simulated value
is T sim1 = 0.45 s whereas the experimental measure comes to T exp1 = 0.55 s. This
shows, as expected by regarding the limitations of the structural model used (elastic
beam to column connections and no rebar slip), that not all structural stiffness degra-
dation mechanisms are always well represented by the inelastic structural model. In
particular, the joints and supports often need special attention and more elaborate
models.

For damping model C1(t), the good results shown in Fig. 16.7 have been ob-
tained with α and β computed so that ξ1 = ξ2 = 3.3%. For damping model C2(t),
curves plotted in Fig. 16.7 have been obtained with the following parameters iden-
tified so as to obtain good match between experimental and simulated responses:

• Phase 1: from 0 ≤ t ≤ t1, ξ1 = ξ2 = 1.0%. t1 is defined such that two condi-
tions are satisfied. First, the hysteretic energy which is dissipated by the inelastic
response of the structural model has to reach—for the frame considered in this
work—150 N.m. Then, the seismic demand must be such that the increase in
Arias intensity AI [32] within the time range [t1; t1 + 10 × T ini1 ] is larger than
0.0025 g.s; T ini1 is the fundamental period of the structure after dead load has
been applied and before the earthquake (T ini1 = 0.36 s for the structure consid-
ered here).

• Phase 2: from t1 ≤ t ≤ t2, ξ1 = ξ2 = 4.0%. t2 is defined as t2 = t1 + 10× T ini1 .
• Phase 3: from t2 ≤ t ≤ T̄ , ξ1 = ξ2 = 2.5%, where T̄ is the duration of the seismic

signal.

It might happen that one of these two criteria is never satisfied within the earthquake
duration. In such a case, only phase 1 is effectively active throughout the analysis.

In the rest of this chapter, we focus only on the new model with changing coef-
ficients, for it is very likely to deliver better prediction from the standard Rayleigh
damping models given its more sound physical basis. The damping parameters de-
fined above are expected to be suitable to model the response of the frame structure
for every seismic signal that will be used in the next sections, as we usually proceed
with damping model C1(t). In the next sections, we then investigate likely conse-
quences of using damping model C2(t) instead of C1(t) when it comes to structural
fragility analysis.

4 Selection of a Set of Real Ground Motions

Following [33], there are three basic options available for obtaining accelerograms
for inelastic time-history analysis: (i) to use spectrum-compatible synthetic ac-
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celerograms with realistic energy, duration and frequency content; (ii) to use syn-
thetic accelerograms generated from seismological source model and accounting
for path and site effects; and (iii) to use real accelerograms recorded during earth-
quakes. We chose this latter option and present in the following how we proceed to
select ground motion time histories in the PEER ground motion database [34].

4.1 Likely Earthquake Scenarios in the Cascadia Subduction Zone

Ground motion time history recorded from the Olympia, Washington 1949 earth-
quake has been used for the shaking table test at École Polytechnique of Montreal
[16]. It is then assumed that the frame structure considered in this investigation is lo-
cated in the Cascadia subduction zone. The Western margin of the North American
plate—from the North of California state up to Vancouver island, British Columbia,
Canada—is characterized by the so-called Cascadia subduction zone, where it is
subducted by the Juan de Fuca plate beneath the Pacific ocean.

The seismic activity in the Cascadia subduction zone has been investigated for
several decades [35–38]. Three types of earthquakes are produced in this zone:

• Shallow crustal earthquakes are associated to surface faults in the American con-
tinental plate with magnitude Mw larger than 7.0 and hypocenter depth less than
30 km;

• Thrust interplate or interface earthquakes are due to differential motion in the
interface between the Juan de Fuca and the North American plates. They hap-
pen offshore with surface hypocenter, generally with depth less than 30 km.
The Cascadia subduction zone has the potential to produce a large event of
Mw = 8.3± 0.5;

• Intraplate or intraslab earthquakes occur deep within the Cascadia subduction
zone (depth > 40 km) beneath the Puget Sound of Western Washington state.
These types of earthquakes have occurred frequently including in 1949 Olympia
(Mw = 6.8), 1965 Seattle–Tacoma (Mw = 6.8), 1999 Satsop (Mw = 5.9) and
2001 Nisqually (Mw = 6.8);

• No seismicity has been observed for depth larger than 100 km.

4.2 Search for a Real Ground Motions Dataset

To that purpose, we use the PEER ground motion database with its Web appli-
cation [34]. Currently, this database is limited to recorded time series from shal-
low crustal earthquakes only. A basic criterion used by the Web application to se-
lect a representative acceleration time history is that its elastic response spectrum
provides a good match to a user target spectrum over a range of periods of inter-
est. We define the target spectrum as the elastic response spectrum corresponding
to the feedback accelerogram recorded on the shaking table during the test (see
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Fig. 16.8 Cross section of the Cascadia subduction zone (adapted from [36])

Table 16.1 Geologic profile for the Olympic Highway Test Lab strong-motion recording site in
Washington [36]. vs is the shear wave velocity and ρ the density

Depth [m] Geology Description vs [m/s] ρ [kg/m3]

0–3 Fill Loose sand 165 1500

3–12 Deposits Medium dense fine to medium sand 220 1500

12–20 Deposits Interbedded very stiff to hard sandy
silt and very dense silty fine to
medium sand

270 1500

20–41 Deposits (same as layer just above) 330 1500

Fig. 16.2). The Web application allows for assigning different weights to different
period ranges so that the matching process is guided by the period ranges with the
higher weights. In our case, the response of the structure is governed by its first
eigenmode and the fundamental period was experimentally measured to vary within
the range 0.36 s≤ T1 ≤ 0.55 s corresponding to the pre- and post-seismic states. We
consequently favor the target and actual spectra to match within this period range.

Then, several parameters—or acceptance criteria—can be input into the Web
application to characterize the likely earthquake scenarios of interest for the study.
According to (i) what was stated in the previous Sect. 4.1, (ii) the cross section of
the Cascadia subduction zone depicted in Fig. 16.8, and (iii) the geological profile of
the Puget Sound region described in Table 16.1, we define suitable ranges for these
parameters as summarized in Table 16.2. Practically, due to the above-mentioned
current limitation of the PEER database, we only look for ground motion records
corresponding to shallow crustal earthquakes.

Because a first search with these criteria led to a selection of around 20 earth-
quakes only, we proceeded to a second search with the range of allowed moment
magnitudes extended to 6.0 ≤Mw ≤ 9.0. Then, we only retained 48 earthquakes
which had the best fitting coefficients with the target response spectrum and finally
multiply each of them by a scale factor of 5.0. Note that PEER ground motion
database provides the fault normal (FN) and fault parallel (FP) components of the
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Table 16.2 Acceptance criteria for initial ground motions search with the PEER database Web
application [34]. Mw is the moment magnitude, RJB is the Joyner–Boore distance, Rrup is the
closest distance to rupture plane and vs30 is the average shear wave velocity in the top 30 meters
of the site. All fault types are considered

Earthquake: crustal interface intraslab

Mw [7.0, 9.0] [7.8, 8.8] [5.5, 7.0]

RJB [km] [0, 150] [30, 200] [30, 200]

Rrup [km] [0, 150] [30, 100] [30, 100]

vs30 [m/s] [0, 200] [0, 200] [0, 200]

seismic signal and that the 48 records we selected either corresponds to the FN or
FP component pertaining to 48 different earthquakes.

5 Seismic Fragility Analysis

In this section, we focus on the vulnerability analysis of the test RC frame struc-
ture presented in Sect. 2. Uncertainty is only considered in the seismic loading: the
selected time-history ground motions that are likely to occur in the Cascadia sub-
duction zone are used as inputs of inelastic time-history deterministic simulations to
compute fragility curves. The damping model—either C1(t) or C2(t)—is the only
variable considered in the RC frame model.

5.1 Theoretical Background

Structural vulnerability analysis is evaluated here by computing fragility curves
which provide the conditional probability for a structure to sustain a given dam-
age level for a given earthquake intensity. Following [39], it is assumed that the
fragility curve can be expressed in the form of a two-parameter lognormal distri-
bution function. The estimation of these two parameters is then performed with the
maximum likelihood method.

Let consider a sample of n independent observations xj that can be classified
in two classes as “success” (xj = 1) and “failure” (xj = 0). Let also consider that
each realization xj has a relative frequency of success equal to F(IMj , θ), that is
a function that depends on the intensity measure IMj associated to each realization
xj and of a set of parameters θ . Then, the probability of observing a set of real-
izations x = (x1, . . . , xn) composed of p successes x1, . . . , xp and n − p failures
xp+1, . . . , xn, whatever the order, is ([40], p. 77):1

1Henri Poincaré (1854–1912) is a French mathematician, physician and philosopher. This year is
the hundredth anniversary of his death.
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f (x|θ)= n!
p!(n− p)!

(
F(IMj , θ)

)p · (1− F(IMj , θ)
)n−p (16.10)

The problem one has to solve can be expressed as: Given the observed data x,
find the set of parameters θ that is most likely to have produced these observed data.
To solve this inverse problem, we define the likelihood function as a function of θ
given x:

L(θ |x)= f (x|θ). (16.11)

The principle of maximum likelihood estimation states that: given the data x
actually observed, the set of parameters θ looked for is the one that makes x the
most likely data to be observed. θ can thus be identified by maximizing the like-
lihood function L. For computational convenience, the log-likelihood lnL(θ |x) is
introduced and maximized, which provides the same estimators because lnx is a
monotonic function. The problem one has to solve thus reads:

θe = arg max
θ

lnL(θ |x) (16.12)

Under the lognormal assumption, the fragility curve for a particular damage in-
dex DIi—defining what is “success” and “failure”—is defined as:

F(IMj , θe)= φ
(

1

ζe
ln

IMj

ce

)
= P [DI ≥DIi |IMj ] (16.13)

where θe = {ζe, ce} is the set of estimated parameters and φ(·) is the standardized
normal distribution function.

Constructing fragility curves in such a framework raises issues concerning their
statistical significance. In [39], Shinozuka et al. provide tools to test the goodness
of fit between the inferred fragility curve and the realization of the random variable
Xj following Bernoulli distribution: Xj = 1 when the damage index is reached and
Xj = 0 otherwise. They also present a Monte Carlo technique they use to demon-
strate the extent of the statistical variations in the estimators θ . Another very im-
portant contribution for the statistical analysis of fragility curves is the work of
Sáez et al. [6]. They show how to compute the amount of Fisher information about
the set of parameters θ—the terms of the Fisher information matrix being by def-
inition Fij (θ) = cov( ∂ lnL

∂θi
; ∂ lnL
∂θj
), where cov(·) denotes the covariance—which is

provided by the ground motions used to construct fragility curves, and then how to
compute a lower bound for the standard deviation of the elements of θe. This method
thus provides a way to somehow measure the ability of the data to estimate θ .

5.2 Intensity Measures and Structural Damage Indices

To characterize the seismic ground motion time-histories used for structural vul-
nerability analysis, they are assigned intensity measures (IM). 18 of them are re-
viewed in [41] in the context of the issue of selecting earthquakes for incremental
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dynamic analysis of inelastic steel frame structures. 44 IM are reviewed or proposed
for masonry structures in [42]. Among the most common IM, one finds: the peak
ground acceleration (PGA); the acceleration at the fundamental period SA(T1,5%);
the Arias intensity (AI) which is effectively a measure of the total energy in the
ground motion and computed as

AI(t)= π

2g

∫ t

0
ü2
g(τ ) dτ ; (16.14)

the significant duration D5−95, which the time needed to build up between 5% and
95% of the total Arias intensity. Other measures are: the root mean square of accel-
eration (RMSA) computed as [41]:

RMSA=
√

1

τd

2g

π
AI, (16.15)

where τd is an effective duration of the record, taken here as D5−95; spectrum in-
tensities such as [42]:

SIV =
∫ Tb

Ta

SV (T , ξ) dT , (16.16)

where SV is the spectral velocity at period T and with damping ξ . Here, we take
TA = 0.36 s and TB = 0.55 s which are the fundamental periods in pre- and post-
earthquake conditions. For fragility surfaces, Seyedi et al. [5] chose the spectral
displacement SD(T1) and SD(T2) where T1 and T2 are the two main eigenperiods in
the direction along which the ground motions are applied.

Then, to characterize the structural response, damage indices (DI) are used. One
can distinguish between three categories: (i) DI computed from energy quantities
such as the Park–Ang–Wen damage accumulation model [43] or the normalized
hysteretic energy used in [44] or [41]; (ii) Other DI based on quantities directly
related to the structural inelastic response such as the ductility demand [41], the
cumulative ductility index as defined in [44] or the maximum strength degradation
ratio [42]; (iii) Other quantities not necessarily pertaining to—but affected by—
the inelastic structural behavior such as the maximum relative roof displacement
(MRD) or the maximum inter-story drift ratio (MISDR). To these two latter indices,
because particular attention is paid in this work on the energy dissipated by both
the damping and the inelastic structural models, we also compute the amount of
hysteretic energy (EH ) dissipated by the inelastic mechanisms explicitly accounted
for in the structural model and the amount of damping energy (ED), as well as their
respective ratio EH,DR =EH,D/(EH +ED).

5.3 Fragility Curves

We first investigate in Table 16.3 the correlation between the intensity measures and
damage indices considered in this work, when a linear model is used to predict a
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Table 16.3 Square of the coefficient of correlation R2 (in %) between actual DI and DI obtained
from a linear model between IM and DI, for added damping models C1(t)/C2(t)

MRD MISDR ED/HR ED EH

PGA 73/71 71/69 3.5/0.6 51/52 36/37

AI 68/68 68/68 9.1/5.9 86/83 61/62

D5−95 8/7 8/7 1.3/1.0 1/1 2/2

RMSA 75/73 74/73 8.2/4.5 57/55 43/45

SA,V,D(T1,5%) 85/82 84/82 5.7/2.6 68/68 53/55

SIA,V,D(5%) 77/74 77/75 8.5/4.6 57/57 48/51

Fig. 16.9 Linear model between SA(T1,5%) and MRD for both damping models C1(t) and C2(t)

DI from an IM. Correlation is the lowest for intensity measure D5−95 because there
is no explicit influence of the earthquake duration in the various DI considered.
The correlation for the energy ratios is poor for all the IM considered, which is
not the case for the dissipated energy quantities where, in particular, correlation is
good with the energy contained in the seismic signal (AI). The very good correlated
maximum roof displacement and spectral displacement at fundamental period T1

with 5% viscous damping—as depicted in Fig. 16.9—will be used in the following
to construct fragility curves.

In Fig. 16.9, one can see an obvious tendency to obtain larger maximum roof
displacement with damping model C2(t). Constructing fragility curves for a given
MRD level along with a proper statistical analysis provides another way to infer
some likely consequences of using a damping model instead of another. To that pur-
pose, Fig. 16.10 shows the fragility curves (solid lines) pertaining to DI MRD≥ 40
mm obtained with both damping models C1(t) and C2(t). Dashed lines approx-
imately represent the smallest area the fragility curves would describe when its
parameters θ = {ζ, c} varies around θe = {ζe, ce} plus or minus their standard de-
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Fig. 16.10 Structural fragility curves (solid lines) for both damping models C1(t) and C2(t).
Dashed lines are plotted according to the method presented in [6] and show that, for the DI level
considered here, the fragility curves are constructed from a number of ground motions which is
sufficient for drawing pertinent conclusions from this comparative study. Circles represent the
realizations of the Bernoulli random variable Xi = 1 when RMDi ≥ 40 mm and Xi = 0 otherwise,
i ∈ [1;48]

viation. Dashed lines are constructed as in [6], relying on the inverse of the Fisher
information matrix provided by the selected ground motion about θ .

From Fig. 16.10, one can infer that the additional damping model entails very
significant uncertainty in structural fragility analysis of inelastic RC frame struc-
tures. Figure 16.11 is shown to provide better insight into the discrepancies one
can expect to observe in the structural response when either damping model C1(t)

or C2(t) is used. Both seismic signals considered have the same intensity measure
SA(T1,5%)= 0.51 g. For the analysis in concern on the left part of Fig. 16.11, either
the maximum capacity of the structure to store hysteretic energy EH = 150 N.m or
the minimum seismic demand 0.0025/(t2 − t1) is not reached, so that, for damping
model C2(t), only the phase 1 with ξ1 = ξ2 = 1% is effectively active throughout
the analysis; this makes both damping models analogous but with critical damping
ratios in sharp contrast—3.3% against 1%—leading to very different structural re-
sponses. For the analysis in concern on the right part of Fig. 16.11, phase 2 begins at
t1 = 15.4 s until t2 = 19 s. Both models predict almost identical MRD but oscillation
amplitude is more rapidly attenuated for model C1(t).

6 Conclusions and Perspectives

The inelastic structural response in seismic loading results from the combination
of an inelastic structural model with an added damping model. The damping model
has to be consistent with the inelastic structural model, which implies that it has, and
only has, to model the energy dissipation sources not otherwise explicitly accounted
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Fig. 16.11 [left] Analysis where only phase 1 is activated for damping model C2(t). [right] Anal-
ysis where three phases are accounted for in damping model C2(t). [top] Ground motion time-his-
tory. [bottom] Top relative displacement time-history; Model C1(t) with ξ1 = ξ2 = 3.3% all along
the simulation; [bottom left] Model C2(t) with ξ1 = ξ2 = 1% all along the simulation; [bottom
right] Model C2(t) with ξ1 = ξ2 = 1% for 0≤ t ≤ 15.4 s, ξ1 = ξ2 = 4% for 15.4 s≤ t ≤ 19 s and
ξ1 = ξ2 = 2.5% for 19 s≤ t ≤ 60 s

for in the inelastic structural model, nothing more or less. Rayleigh damping models
are the most commonly used for earthquake engineering applications, although it
is well established that controlling the amount of energy dissipation these models
introduce throughout inelastic time history simulations is difficult to achieve.

On another hand, inelastic time history analyses are widely used for structural
fragility assessment in seismic loading. Uncertainties arising from the seismic signal
likely to excite a building in a given geographical region as well as from the lack of
knowledge on the structural parameters which characterize the inelastic structural
model have both been considered in structural fragility analyses. On the opposite,
the damping model is scarcely considered as a source of uncertainty; moreover,
when it is the case, the damping ratio is assigned a probabilistic distribution but
whether commonly used added damping models are suitable or not is an issue that
is not regarded. This is the issue addressed in the work presented above.

In this chapter, we propose a new family of Rayleigh damping models that relies
both on the capacity of the inelastic structural model to absorb energy and on the
seismic demand and compare it to a commonly used Rayleigh model in the context
of the fragility analysis of a RC moment-resisting frame. Its inelastic response is
modeled by fiber elements using a constitutive law recently developed by the au-
thors [17]. The structure is supposed to be built in the Cascadia subduction zone,
a seismically active zone in the South-West of Canada and the North-West of the
USA. From this comparative analysis, it can be inferred that the added damping
model entails very significant uncertainty in structural fragility analysis of inelastic
RC frame structures.
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As a further development, we seek the proposed new family of Rayleigh damping
models to be confronted to other experimental evidence, criticized and improved.
Albeit constructed on a stronger physical basis than commonly used damping mod-
els, there is yet no clear guarantee that this model remains consistent with the in-
elastic structural model it is coupled to, throughout inelastic time history analysis.
Finally, such a proposition for a damping model should not eclipse the need for fur-
ther improvement of the inelastic structural model, which would, for the case treated
in this work, at least involve explicitly accounting for the inelastic response of the
beam to column connections.
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Chapter 17
Incremental Dynamic Analysis and Pushover
Analysis of Buildings. A Probabilistic
Comparison

Yeudy F. Vargas, Luis G. Pujades, Alex H. Barbat, and Jorge E. Hurtado

Abstract Capacity-spectrum-based-methods are also used for assessing the vulner-
ability and risk of existing buildings. Capacity curves are usually obtained by means
of nonlinear static analysis. Incremental Dynamic Analysis is another powerful tool
based on nonlinear dynamic analysis. This method is similar to the pushover analy-
sis as the input is increasingly enlarged but it is different as it is based on dynamic
analysis. Moreover, it is well known that the randomness associated to the structural
response can be significant, because of the uncertainties involved in the mechani-
cal properties of the materials, among other uncertainty sources, and because the
expected seismic actions are also highly stochastic. Selected mechanical proper-
ties are considered as random variables and the seismic hazard is considered in a
probabilistic way. A number of accelerograms of actual European seismic events
have been selected in such a way that their response spectra fit well the response
spectra provided by the seismic codes for the zone where the target building is con-
structed. In this work a fully probabilistic approach is tackled by means of Monte
Carlo simulation. The method is applied to a detailed study of the seismic response
of a reinforced concrete building. The building is representative for office buildings
in Spain but the procedures used and the results obtained can be extended to other
types of buildings. The main purposes of this work are (1) to analyze the differences
when static and dynamic techniques are used and (2) to obtain a measure of the un-
certainties involved in the assessment of the vulnerability of structures. The results
show that static based procedures are somehow conservative and that uncertainties
increase with the severity of the seismic actions and with the damage. Low dam-
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age state fragility curves have little uncertainty while high damage grades fragility
curves show great scattering.

1 Introduction

To prevent the seismic risk, it is necessary to assess the vulnerability of existing
structures. To do that, several methods have been proposed, starting from different
approaches. One is the vulnerability index method in which the action is defined
by EMS-98 macroseismic intensities and structural behaviour through a vulnera-
bility index [1, 2]. Another highly used method is based on the capacity spectrum.
In this, the seismic action is defined by means of the 5% damped elastic response
spectra and the vulnerability or fragility of the building by using the capacity curve.
Capacity curves are calculated from an incremental nonlinear static analysis, com-
monly known as “Pushover Analysis” (PA) [3–5]. Another tool used to evaluate
the performance of structures against seismic actions is the Incremental Dynamic
Analysis (IDA) proposed by Vamvatsikos & Cornell [6]. The purpose of IDA is
to obtain a measure of damage in the structure by increasing the intensity of the
action record, in this case the peak ground acceleration. Vamvatsikos & Cornell
makes an interesting analogy between PA and IDA, as both procedures are based
on incremental increases of the loads on the structure and on the measure of its re-
sponse in terms of a control variable which usually is the maximum displacement
at the roof or the maximum inter storey drift, among others. Furthermore IDA al-
lows obtaining the dynamic response of a structure for increasing seismic actions.
On the other hand, most of the parameters involved in the structural response are
random variables. In this work only the randomness due to the mechanical proper-
ties of the materials and the seismic action is considered. The randomness expected
in the vulnerability and fragility of the building is analysed by means of Monte
Carlo techniques. Therefore, a probabilistic comparison between the PA and the
IDA is performed when calculating the fragility and expected damage of an exist-
ing reinforced concrete building. The main result of this work is the quantitative
assessment of the expected randomness of the structural response, defined by its
capacity curve, as well as of the fragility curves and the expected damage, which
can be given in terms of mean values and standard errors. The damage assessment
through nonlinear static procedures is tested against the results of fully nonlinear
dynamic analyses. One of the main conclusions of this work is the importance of
measuring the vulnerability of structures taking into account that the variables in-
volved are random. Furthermore, this approach incorporates detailed information
about the building and uses powerful tools to analyze the structure such as the PA
and the IDA, providing valuable key information that can hardly be obtained with
other simplified methods in which the building and the seismic actions are defined
by only one parameter.
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Fig. 17.1 Picture of the
block of buildings omega
located in the Technical
University of Catalonia
(BarnaTech) (above) and
sketch of the 2D structural
model (below)

2 Building Description

This paper analyzes a reinforced concrete structure, consisting of columns and waf-
fle slabs, which is part of the North Campus of the Technical University of Cat-
alonia in Barcelona, Spain. It has 7 stories and 4 spans, the height is 24.35 m and
the width is 22.05 m. Figure 17.1 shows a block of four buildings as the analyzed
one. In the first building 5 levels can be clearly seen; the other two stories are un-
der the ground. The fundamental period of the building is 0.97 seconds. This value
is higher when compared to that of conventional reinforced concrete buildings, be-
cause in the numerical model, the waffle slabs are approximated with beams of
equivalent inertia and, therefore, are structural elements wide and flat leading to
a reduction of the lateral stiffness of the structure. In the calculation model, the
structural elements (equivalent beams and columns) follow an elasto-plastic consti-
tutive law, which does not take into account either hardening or softening. Yield-
ing surfaces are defined by the bending moment-axial load interaction diagram in
columns and by the bending moment-angular deformation interaction diagram in
beams.
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Table 17.1 Parameters defining the Gaussian random variables considered in this work

Mean Value (kPa) Standard deviation (kPa) Coefficient of variation

fc 25000 2500 0.1

fy 500000 50000 0.1

3 Damage Index Based on Pushover Analysis

Pushover analysis is the tool more often used to evaluate the behaviour of the struc-
tures against seismic loads. This numerical tool consists in applying horizontal loads
to the structure, according to a certain pattern of forces and increasing its value until
the structural collapse is reached. The result is a relationship between the displace-
ment at the roof of the building and the base shear, called capacity curve. In this
article, due to the probabilistic approach, the PA is performed repeatedly, therefore,
it is appropriate to apply a procedure for obtaining automatically the horizontal load
limit. To do that, Satyarno [7] proposes the adaptive incremental nonlinear analysis
that establishes the horizontal load limit as a function of the tangent fundamental
frequency, i.e. the frequency associated with the first mode of vibration, which is
being calculated for each load increment. Therefore, the first mode of vibration to
determine the shape of the load in height is calculated in each step. A detailed de-
scription of this procedure is found in the manuals of the program Ruaumoko [8]
used here for calculating the static and dynamic nonlinear structural response. As
mentioned above, the mechanical properties of the materials are considered as ran-
dom variables. The impact of epistemic uncertainties in the structural response has
been treated by Crowley et al. in [9] by considering the variation of the ground floor
storey height, column depth and beam length, among others. The aim of that article
is to generalize the results for a structural typology. In the present study, the aim is to
obtain a measure of the uncertainties in the structural response for one building and,
for this reason, we consider only the epistemic uncertainties associated to the com-
pressive strength of concrete and the yield strength of steel. Thus, the values used in
the structural design for concrete compressive strength fc, and the tensile strength
associated with steel yielding strength fy, are considered as random variables as-
suming they follow a Gaussian probability function whose parameters are shown
in Table 17.1. For the Monte Carlo analysis 1000 random samples are generated by
means of the inversion method of the cumulative probability distribution curve. This
method warranties the homogeneous distribution of the samples. Figure 17.2 shows
the capacity curves obtained by means of the PA analysis.

The capacity curves shown in Fig. 17.2 are transformed into capacity spectra,
which relate the spectral displacement to spectral acceleration by means of the fol-
lowing equations [10]:

sdi = δi

PF1
; sai = Vi/W

αi
(17.1)

The subscript i in Eq. (17.1) refers to the applied load increments on the structure
during the PA; sdi is the spectral displacement; δi is the displacement at the roof of
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Fig. 17.2 Capacity curves
obtained from the PA, taking
into account the uncertainty
in the mechanical properties
of materials

Fig. 17.3 Capacity spectrum
and the bilinear
representation

the building; PFi is the modal participation factor of the first mode of vibration; sai
is the spectral acceleration; Vi is the base shear;W is the weight of the building and
αi is the modal mass coefficient of the first mode of vibration.

On the other hand, the capacity spectrum can be represented in a bilinear form,
which is defined completely by the yielding (Dy,Ay) and ultimate (Du,Au) capac-
ity points. As we will see later on, this simplified form is useful for defining damage
state thresholds in a straightforward manner; see also [5]. Assumptions to build the
bilinear capacity spectrum are: (1) the area under the bilinear curve must be equal to
the area of the original curve; (2) the coordinates of the point of maximum displace-
ment must be the same in both curves; (3) the slope of the initial branch should be
equal in both curves. Figure 17.3 shows an example of the bilinear representation of
the capacity spectrum. Different studies have been proposed to calculate the damage
of the structure from the definition of damage states (ds), which are a description of
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Fig. 17.4 Damage states as
random variables

the damage in the structure for a given spectral displacement. For example, FEMA
[11] and Risk UE [12], define 4 ds, namely slight, moderate, extensive and complete.
Description of the damage states depends on the type of structure. For instance, ac-
cording to FEMA [11], in the case of reinforced concrete structures, the ds slight
is described as: “beginning of cracking due to bending moment or shear in beams
and columns”. Collapse state considers that the structure reaches an imminent risk
of collapse. Risk UE defines the damage states in simplified form, starting from the
capacity spectrum in its bilinear representation.

Based on the values (Dy,Ay) and (Du,Au), the spectral displacements for the
four damage states threshold dsi are obtained according to the following equations:

ds1 = 0.7 ∗Dy
ds2 =Dy
ds3 =Dy + 0.25 ∗ (Du−Dy)
ds4 =Du

(17.2)

Therefore, after calculating the capacity spectrum in bilinear representation and ap-
plying Eq. (17.2), it is possible to obtain the damage states thresholds as random
variables, as is shown in Fig. 17.4. The mean, standard deviation and coefficient of
variation of the damage states are shown in Table 17.2. It is worth noting how the co-

Table 17.2 Mean value, standard deviation and coefficient of variation of the damage states

ds1 (cm) ds2 (cm) ds3 (cm) ds4 (cm)

μds 8.6 12.3 15.2 21.9

σds 0.27 0.38 1.00 3.25

c.o.v. 0.03 0.03 0.06 0.15
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Fig. 17.5 Fragility curves as
random variables

efficient of variation of the damage state 4 is greater than those of the input variables.
This effect is due to the fact that this type of systems is not robust, mainly because
of the nonlinearity of the problem. In addition, these results show the importance of
the probabilistic approach in this type of analysis as the expected uncertainties in the
output can be greater than those of the input variables. After obtaining the damage
states as random variables it is also possible to calculate the fragility curves which,
for each damage state, represent the probability of reaching or exceeding the corre-
sponding damage state. Fragility curves are represented as a function of a parameter
representing the seismic action, for instance spectral displacement, PGA, etc.

The following simplified assumptions to construct fragility curves from damage
states thresholds are considered: (1) the probability that the spectral displacements
in each damage state threshold, dsi , equals or exceeds the damage state is 50%;
(2) for each damage state dsi , the corresponding fragility curve, follows a lognormal
cumulative probability function described by the following equation:

P [dsi/sd] = φ
[

1

βdsi
Ln

(
sd

dsi

)]
(17.3)

where sd is the spectral displacement and βdsi is the standard deviation of natural
logarithm of the damage state dsi ; (3) the expected seismic damage in buildings
follows a binomial probability distribution. Figure 17.5 shows all fragility curves
calculated after applying the described procedure.

Since the probabilities of occurrence of each damage state are easily obtained
from the fragility curves, one can calculate the expected damage index, DI, which
is the normalized mean damage state. DI can be interpreted as a measure of the
overall expected damage in the structure.

DI = 1

n

n∑
i=0

iP (dsi ) (17.4)
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Fig. 17.6 Damage index
curves obtained starting from
the PA, considering the
mechanical properties of the
materials as random variables

where n is the number of damage states considered, in this case 5 (four non-null) and
P(dsi ) is the probability of occurrence of dsi . Figure 17.6 shows the DI calculated
from the fragility curves of Fig. 17.5. The curves of Fig. 17.6 must be interpreted
as random vulnerability curves. These curves are an important result of this work as
they allow linking PA and IDA procedures by comparing the obtained results.

4 Damage Index Based on the Incremental Dynamic Analysis

Dynamic analysis allows obtaining the time history of the response of a structure
to an earthquake action. In IDA, the earthquake is scaled to various PGA, allowing
obtaining the maximum response as a function, for instance, of PGA. As mentioned
above, the main purpose of this article is to compare the results obtained with PA
and IDA. An important element of the uncertainty related to the seismic response
of structures is the random variability in the ground-motion prediction, whose influ-
ence has been studied in [13]. According to the probabilistic approach it is necessary
to obtain the seismic action as a random variable. To do that, 20 earthquakes have
been selected from two databases, one from Spain and the other from Europe [14],
whose elastic response spectra are compatible with elastic response spectrum taken
from EuroCode 8 (EC8) [15]. In this case, the elastic spectrum type 1 and soil D is
selected. This spectrum corresponding to great earthquakes and soft soils has been
chosen in order to submit the structure to strong enough seismic actions to obtain
significant damage. Figure 17.7 shows the spectra of the selected earthquakes, their
median value, and the spectrum type 1 soil D, taken from EC8. After selecting the
accelerograms, the dynamic response of the structure is calculated for different PGA
increasing at intervals of 0.04 g, until the value that causes the collapse. This value
is 0.8 g. In each run of the nonlinear dynamic analysis, the damage index proposed
by Park & Ang [16] and the maximum displacement at the roof of the building
are calculated, allowing comparing these results with those of the PA analysis. Fig-
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Fig. 17.7 Selected spectra of
the accelerograms that are
compatible with spectrum
type 1 soil D of Eurocode 8

Fig. 17.8 Damage index
obtained with static and
dynamic procedures

ure 17.8 shows the results obtained. It is important to note the large scatter in both
cases, showing the importance of assessing the vulnerability of structures from a
probabilistic perspective, whichever procedure is used.

Figure 17.8 shows that the damage index obtained with the procedure based on
the PA is conservative. However, for extreme cases when the damage index is close
to 0 and 1, which correspond to the null and collapse damage states, similar values
are obtained with both procedures. On the other hand, it can be seen that the curves
obtained with the PA procedure are somehow conservative, as the structural damage
begins for a smaller spectral displacement. PA based curves are shifted with respect
to the IDA based curves. This behavior can be attributed to the fact that the damage
state thresholds ds1 and ds3 in Eq. (17.2) are based on expert opinion. A little change
in these values would avoid this shift. The use of constant coefficients, namely of 0.7
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Fig. 17.9 Derivative of a
capacity spectrum and new
damage states

Fig. 17.10 Capacity
spectrum and new damage
states

and 0.25, in these equations are useful for massive large scale assessments. In this
type of studies [5] a great amount of buildings is evaluated based on the use of
simplified structural typologies owing to the difficulty to obtain specific capacity
curves and coefficients for each building. This approach leads to reasonably good
results in average sense. A new method for estimating the damage state thresholds is
proposed here. This method is based on an accurate analysis of the variation of the
slope of the capacity curve, namely of its derivative. It is worth noting too that, as
we will see below, the new procedure of assessing the ds1 and ds3 thresholds avoids
the shifting between PA and IDA based damage curves of Fig. 17.8.

Figure 17.9 shows an example of the derivative function of the capacity spectrum
plotted in Fig. 17.10. In both figures the new damage states thresholds are shown.

In fact, the derivative function is related to the degradation of the stiffness as it
gives the actual stiffness of the structure as a function of the spectral displacement
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Fig. 17.11 Derivative
functions of all capacity
spectra

caused by lateral load increases in the pushover analysis. Then, ds1 is defined by the
spectral displacement where the lateral stiffness start to decrease; in other words,
the point where the damage starts to increase. At this stage of the method, ds2 has
been defined as the spectral displacement corresponding to a reduction of 50% of
the initial stiffness. ds3 is defined by the spectral displacement where the derivative
tends to be constant, indicating the end of the degradation of the stiffness which re-
mains almost constant till the displacement of collapse. Finally, ds4 is maintained as
the spectral displacement corresponding to the ultimate point. It is worth noting that
the shapes, but not the values, of the derivative functions are very similar for all the
1000 capacity spectra analyzed. See Fig. 17.11. Therefore, the new damage states
based on the stiffness degradation and the damage states calculated via Risk UE ap-
proach, which will be called dsi-S and dsi-R respectively, are compared. In order to
characterize the statistical properties of the distribution of the old (see Fig. 17.4) and
new defined damage states, the Kolmogorov–Smirnov test [17] has shown that the
damage states calculated with both approaches follow a Gaussian distribution. Fig-
ure 17.12 shows the comparison between both probability density functions. For the
damage states different to extensive and collapse, the mean values and the standard
deviations of the dsi-S are higher than those of dsi-R . Then, the procedure described
above for obtaining the fragility curves and damage indices was applied again by
using the new damage states. Figure 17.13 shows the obtained results. For compar-
ison purposes, the damage indices obtained by means of the dynamic analyses are
also plotted in this figure. This figure allows comparing new and old damage index
functions as well as each of these functions with the results of the dynamic analyses.

Concerning PA results, blue and black colour curves, a clear shift towards in-
creasing spectral displacements of the new damage functions can be seen, indicating
that the Risk UE choice is somehow conservative. Furthermore, new black curves
fit better the IDA results (red points).

In order to quantitatively improve this comparison, Fig. 17.14 and Fig. 17.15
compare respectively the first and second moments of these distributions. These sta-
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Fig. 17.12 Comparison
between damage states based
on Risk UE and stiffness
degradation approach

Fig. 17.13 Comparison
between damage indices
obtained with all
methodologies

tistical properties, namely the mean values and standard deviations are computed
for each spectral displacement by using the corresponding random ordinates. It can
be clearly seen in Fig. 17.14 how the mean of the random variable obtained with the
derivative approach fits quite well the mean of the damage index obtained via non-
linear dynamic analysis. Figure 17.15 shows that, for spectral displacements in the
range 0.1 to 0.3 m, the standard deviation corresponding to PA results is lower than
one corresponding to IDA results. This effect is attributed to the fact that PA results
do not consider the seismic actions leading to lower uncertainties. To consider the
uncertainties of the seismic action, we use a simplified method allowing obtaining
the expected displacement as a function of PGA for a given seismic input, repre-
sented by the 5% damped elastic response spectrum. Obviously, the building in this
analysis is defined by its capacity spectrum. In this procedure, the elastic response
spectrum is reduced based on the ductility of the building which is calculated from
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Fig. 17.14 Mean of the
damage indices

Fig. 17.15 Standard
deviations of the damage
indices

the capacity spectrum as the ratio between the spectral displacements of the ultimate
capacity point (Du) and that of the yielding point (Dy) (see Fig. 17.3). An extended
explanation of this technique can be found in [9] and has been also used in [18], it
has been initially proposed by [19] and its development has been reviewed in [20].
In this way, increasing the PGA at intervals of 0.04 g between 0.04 and 0.8 g, as in
the IDA, a relation between the PGA and the spectral displacement, sd , is obtained
for each spectrum corresponding to each of the 20 accelerograms used and for each
of the 1000 capacity spectra. Therefore, a total of 20000 relations between sd and
PGA are obtained.

Figure 17.16 and Fig. 17.17 show the mean and the standard deviation curves of
the damage indices as a function of PGA for PA, by using the new defined damage
states, and IDA results.
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Fig. 17.16 Mean of the
damage indices as a function
of the PGA

Fig. 17.17 Standard
deviation of the damage
indices as a function of the
PGA

It can be seen how, in the range between 0 and 0.4 g, the mean values and the
standard deviations show a good agreement. Note that now the uncertainties in the
seismic actions are included in both curves. For greater values, standard deviations
in the new PA approach are larger than for the IDA approach but both decrease
because damage indices greater than one were not allowed. The fact of the bet-
ter agreement between the PA and IDA results, when using the new damage states
thresholds, indicates that this proposal based on the stiffness degradation, obtained
from the derivatives of the capacity curves, should be preferred to the expert-opinion
based one as proposed in the Risk UE approach. Furthermore, the damage index cal-
culated in this way is able to represent, not only the expected damage obtained via
nonlinear dynamic analysis, but also the uncertainties associated to the mechanical
properties of the materials and the seismic action. Finally, it is important to note that
in the case study building analysed here the Risk UE approach is a little conservative
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as the damage appears before the new approach. This is so because the new damage
states thresholds are greater. Obviously the spectral displacements of the damage
states thresholds can coincide but if the new defined grades are smaller, the Risk UE
approach may underestimate the expected damage. In any case, the new approach
to determine damage state thresholds capture better the degradation of the buildings
strength as indicated by the agreement with the IDA results.

5 Conclusions

In this work, the vulnerability of a real reinforced concrete structure, with columns
and waffle slabs has been assessed, taking into account that the input variables are
random. Only the randomness of the concrete compressive and the steel yielding
strengths has been taking into account but the seismic action has been also consid-
ered in a stochastic way. Two approaches to evaluate the expected damage of the
building have been used. The first one is based on the pushover analysis and the
second one is based on the incremental dynamic analysis. An important conclusion
is that, despite working with advanced structural analysis, these procedures show
significant uncertainties when taking into account the randomness of the variables
associated with the problem. It should be emphasized that in this work relatively
small coefficients of variation for input variables have been considered taking into
account the uncertainties that may exist in older structures that did not have quality
control and have not been designed according to the earthquake-resistant criteria.
The results obtained give support to the idea that static procedures are conservative
when compared with the dynamic analysis. Furthermore, for expected damage anal-
ysis, a new procedure has been proposed to define the damage states thresholds. The
technique is based on the degradation of the stiffness which can be observed in the
derivative function of the capacity curve. The results using this new approach show
a better agreement with the dynamic analysis than the obtained ones when using
damage states thresholds based on expert-opinion.

Probably one of the most relevant conclusions of this work is that whichever
procedure is used to evaluate the expected seismic damage of a structure, the input
parameters of the structural problem to be treated, must be considered as random
variables. We have seen how the probabilistic consideration of a few of these pa-
rameters produces significant uncertainties in the seismic response. Simplified de-
terministic procedures based on characteristic values usually lead to conservative
results but some abridged assumptions on the definition of the seismic actions and
on the estimation of the seismic damage states and thresholds can lead also to un-
derestimate the real damage that can occur in a structure.
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Chapter 18
Stochastic Analysis of the Risk of Seismic
Pounding Between Adjacent Buildings

Enrico Tubaldi and Michele Barbato

Abstract Seismic pounding can induce severe damage and losses in buildings. The
corresponding risk is particularly relevant in densely inhabited metropolitan areas,
due to the inadequate clearance between buildings. In order to mitigate the seis-
mic pounding risk, building codes provide simplified procedures for determining
the minimum separation distance between adjacent buildings. The level of safety
corresponding to the use of these procedures is not known a priori and needs to be
investigated. The present study proposes a reliability-based procedure for assessing
the level of safety corresponding to a given value of the separation distance be-
tween adjacent buildings exhibiting linear elastic behaviour. The seismic input is
modelled as a nonstationary random process, and the first-passage reliability prob-
lem corresponding to the pounding event is solved employing analytical techniques
involving the determination of specific statistics of the response processes. The pro-
posed procedure is applied to estimate the probability of pounding between linear
single-degree-of-freedom systems and to evaluate the reliability of simplified de-
sign code formulae used to determine building separation distances. Furthermore,
the capability of the proposed method to deal with complex systems is demonstrated
by assessing the effectiveness of the use of viscous dampers, according to different
retrofit schemes, in reducing the probability of pounding between adjacent buildings
modelled as multi-degree-of-freedom systems.

1 Introduction

Earthquake ground motion excitation can induce pounding in adjacent buildings
with inadequate separation distance. The corresponding risk is particularly relevant
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in densely inhabited metropolitan areas, due to the need of maximizing the land use
and the consequent limited separation distance between adjacent buildings.

The problem of seismic pounding has been investigated by several researchers
in the last two decades. A significant number of early studies focused on the defini-
tion of simplified rules, such as the Double Difference Combination (DDC) rule, for
determining the peak relative displacement response of adjacent buildings at the po-
tential pounding locations [1–3]. A critical separation distance (CSD) was defined
and set equal to the mean peak relative displacement between adjacent buildings,
by neglecting the associated probability of pounding. In the same context, consid-
erable research effort was devoted to the assessment of the accuracy of code rules
(e.g., the absolute sum (ABS) and square-root-of-the-sums-squared (SRSS) rules
[4, 5]) in determining the mean peak relative displacement response (i.e., the CSD)
of adjacent buildings.

More recent studies have proposed a probabilistic approach for the assessment
of the seismic pounding risk. In Lin [6], a method was developed to estimate the
first two statistical moments of the random variables describing the peak relative
displacement response between linear elastic structures subjected to stationary base
excitation. In Lin and Weng [7], a numerical simulation approach was suggested to
evaluate the pounding probability, over a 50-year design lifetime, of adjacent build-
ings separated by the code-specified CSD. The latter study considered both the un-
certainty affecting the seismic input intensity (by using a proper hazard model) and
the record-to-record variability (by using artificially generated spectrum-compatible
ground acceleration time histories as input loading). The buildings were modelled as
multi-degree of freedom systems with inelastic behaviour and deterministic proper-
ties. In Hong et al. [8], a procedure was developed to assess the fractiles of the CSD
between linear elastic systems with deterministic and uncertain structural properties
subjected to stationary base excitation. The previous study was later extended by
Wang and Hong [9] to include non-stationary seismic input.

Despite the numerous studies available in the literature on seismic pounding, to
the best of the authors’ knowledge, a reliability-based methodology for the evalua-
tion of the safety levels associated with specified CSDs is still needed. In addition,
the gradual progress of seismic design codes from a prescriptive to a performance-
based design philosophy generates a significant need for new advanced, accurate,
and computationally efficient reliability-based methodologies for the assessment
and mitigation of seismic pounding risk.

This paper presents a fully probabilistic methodology for assessing the seismic
pounding risk between adjacent buildings with linear behaviour. This methodology
is consistent with and can be easily incorporated into a performance-based earth-
quake engineering (PBEE) paradigm such as the Pacific Earthquake Engineering
Research centre (PEER) framework [10, 11]. The presented methodology consid-
ers the uncertainty affecting both the seismic input (i.e., site hazard and record-
to-record variability) and the parameters used to describe the structural systems of
interest (i.e., material properties, geometry, and damping properties). The seismic
input is modelled as a nonstationary random process. The seismic pounding risk
is computed from the solution of a first-passage reliability problem. While the ap-
proach proposed is general, the methodology presented here is specialized to linear
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elastic systems subjected to Gaussian loading. Under these assumptions, approxi-
mate analytical solutions and efficient simulation techniques can be used to solve
the relevant first-passage reliability problem. Thus, this methodology is appropri-
ate for structural systems that remain in their linear elastic behaviour range before
pounding (which is a very common condition for low values of the CSDs and, thus,
high seismic pounding risk), although it can be extended to account for nonlinear
behaviour of the considered structural systems.

2 PBEE Framework for Seismic Pounding Risk Assessment

The PEER PBEE framework is a general probabilistic methodology, based on the
total probability theorem, for risk assessment and design of structures subjected to
seismic hazard [10, 11]. The PEER PBEE methodology involves four probabilistic
analysis components: (1) probabilistic seismic hazard analysis (PSHA), (2) prob-
abilistic seismic demand analysis (PSDA), (3) probabilistic seismic capacity anal-
ysis (PSCA), and (4) probabilistic seismic loss analysis (PSLA). PSHA provides
the probabilistic description of an appropriate ground motion intensity measure
(IM), usually expressed as mean annual frequency (MAF), νIM(im), of exceedance
of a specific value im. PSDA provides the statistical description of structural re-
sponse parameters of interest, usually referred to as engineering demand parame-
ters (EDPs), conditional to the value of the seismic intensity IM. PSCA consists
in computing the probability of exceeding a specified physical limit-state, defined
by structure-specific damage measures (DMs), and conditional to the values of the
EDPs. Finally, PSLA provides the probabilistic description of a decision variable
(DV), which is a measurable attribute of a specific structural performance and can
be defined in terms of cost/benefit for the users and/or the society.

The reliability-based procedure developed in this paper consists in computing the
MAF of pounding, νp , between two adjacent buildings. This procedure is a special-
ization for the seismic pounding problem of the first three steps of the general PEER
PBEE framework (i.e., PSLA is beyond the scope of this paper). It is noteworthy
that the proposed approach is conceptually very different from the computation of
the CSD, which does not explicitly provide the probability of pounding associated
with a given separation distance. The computation of the MAF of pounding can be
expressed as

νp =
∫

edp

∫
im
GDM|EDP(dm|edp) · ∣∣dGEDP|IM(edp|im)∣∣ · ∣∣dνIM(im)

∣∣ (18.1)

in which, GDM|EDP(dm|edp)= complementary cumulative distribution function of
variable DM conditional to EDP = edp, and GEDP|IM(edp|im) = complementary
cumulative distribution function of variable EDP conditional to IM = im, where up-
per case symbols indicate random variables and lower case symbols denote specific
values assumed by the corresponding random variable. The IM must be selected so
that it can be readily related to the stochastic description of an appropriate random
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process model for the input ground motion. This selection must also account for
sufficiency and efficiency of the IM in describing the effects of the ground motion
excitation on the structural response [12]. However, an exhaustive selection of ap-
propriate IMs for different types of structures and structural performances is beyond
the scope of this paper.

The maximum value Urel,max of the relative distance Urel(t) between the adja-
cent buildings observed during the seismic event (i.e., for t ∈ [0, tmax], with t =
time and tmax = duration of the seismic event) is assumed here as EDP. The proba-
bilistic distribution of Urel,max reflects the record-to-record variability of the ground
motions expected to occur at the site for a given intensity, as well as the effects
of the uncertainty in the parameters used to describe the structural model. Finally,
the pounding event is assumed as the controlling limit-state in PSCA, by using the
following limit-state function, g:

g =Ξ −Urel,max (18.2)

in which Ξ = random variable describing the building separation distance, and
the pounding event corresponds to g ≤ 0. Thus, GEDP|IM(epd|im) = P [Urel,max ≥
u|IM = im] and GDM|EDP(dm|edp) = P [g < 0|Urel,max = u]. An important inter-
mediate result of the procedure is the convolution of PSCA and PSDA, also called
fragility analysis, which yields a fragility curve. Fragility curves describe the prob-
ability Pp|IM of pounding conditional on the seismic intensity, i.e.,

Pp|IM =
∫

edp
GDM|EDP(dm|edp) · ∣∣dGEDP|IM(edp|im)∣∣ (18.3)

The MAF of pounding, νp , can be used to compute the MAF of exceeding a
specified value of DV, e.g., the MAF of repair cost due to pounding damage. The
computation of the latter quantity requires the definition of a realistic loss model,
based on appropriate structural response models (e.g., dynamic impact between ad-
jacent systems) and damage models (e.g., damage produced by floor-to-floor and
floor-to-column pounding). Structural response and damage models involve the def-
inition of other EDPs and DMs, respectively, in addition to those already employed
in this paper for assessing the pounding risk. Several structural response and dam-
age models available in the literature could be employed to define an appropriate
loss model [13–16].

In addition, νp can be directly used to determine the pounding risk, Pp(tL), for a
given structure over its design life, tL (e.g., 50 years). Assuming that the occurrence
of a pounding event can be described by a Poisson process and that the buildings are
immediately restored to their original condition after pounding occurs, Pp(tL) can
be easily computed as

Pp(tL)= 1− e−νp ·tL (18.4)

3 Seismic Pounding Risk Assessment Methodology

Fragility analysis is the most computationally challenging component of the prob-
abilistic PBEE framework. A simple and general approach for fragility analysis in
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seismic pounding assessment is provided by Monte Carlo simulation (MCS) [5, 7].
For any given value of IM, MCS-based fragility analysis requires (1) the defini-
tion of a set of ground motions that are selected from an appropriate database of
real records or generated from an appropriate random process, (2) the sampling of
the structural parameters that define the structural systems and of their separation
distances, (3) the numerical simulation of the structural response for each ground
motion time history and each set of structural parameters and separation distances,
and (4) the evaluation of Pp|IM as the ratio between the number of failures and the
number of samples. However, the computational cost associated with MCS can be
very high and even prohibitive when small failure probabilities need to be estimated
by numerically simulating the time history response of complex multi-degree-of-
freedom (MDOF) systems.

In this paper, an efficient combination of analytical and simulation techniques
is proposed for the calculation of Pp|IM under the assumptions of linear elastic be-
haviour for the buildings and of Gaussian input ground motion. The methodology is
described first for linear elastic systems with deterministic structural properties and
separation distance, and then generalized to stochastic linear systems.

It is noteworthy that, for low values of the building separation distance, ξ , the
buildings are expected to behave elastically before pounding occurs, while the as-
sumption of linear behaviour of the buildings before pounding becomes less realistic
for larger values of ξ . If the buildings are expected to enter their nonlinear behaviour
before pounding, the methodology described in the remainder of this paper needs to
be extended to nonlinear systems, e.g., by using statistical linearization techniques
[17] or subset simulation [18]. This extension is beyond the scope of this paper.

3.1 Linear Systems with Deterministic Structural Properties

The computation of the conditional failure probability Pp|IM can be expressed in the
form of a single-barrier first-passage reliability problem as [5, 9]

Pp|IM = P
{

max
0≤t≤tmax

[
Urel(t)

]≥ ξ |IM = im
}

(18.5)

in which Urel(t) = UA(t) − UB(t), UA(t) and UB(t) = displacement response of
the adjacent buildings A and B at the (most likely) pounding location, and ξ =
deterministic value of the building separation distance (Fig. 18.1).

Under the hypotheses of deterministic linear elastic systems subjected to
Gaussian loading processes and deterministic threshold, several analytical ap-
proximations of Pp|IM exist in the literature [19–22]. These analytical approx-
imations require computing the following statistics of the relative displacement
process Urel(t) for a given IM = im: σ 2

Urel
(t) = variance of Urel(t), σ 2

U̇rel
(t) =

variance of the relative velocity process U̇rel(t), ρUrelU̇rel
(t) = correlation coeffi-

cient between Urel(t) and U̇rel(t), and qUrel(t) = bandwidth parameter of Urel(t).
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Fig. 18.1 Geometric
description of the pounding
problem between adjacent
buildings

These statistics can be obtained from the spectral characteristics of order zero to
two of process Urel(t) [23–25].

Following the methodology described in Barbato and Conte [24], a state-space
formulation of the equations of motion for the two buildings is employed to com-
pute exactly and in closed-form the required spectral characteristics. The seismic
input is modelled as a time-modulated Gaussian colored noise process. For this
specific input ground motion process, the spectral characteristics of the displace-
ment processes (and of any response process obtained as a linear combination of
the displacement processes) are available in exact closed-form for single-degree-of-
freedom (SDOF) systems and both classically and non-classically damped MDOF
systems [25].

The equations of motion for the linear system constituted by two non-connected
adjacent buildings can be expressed as follows:

m · Ü(t)+ c · U̇(t)+ k ·U(t)= p · F(t) (18.6)

in which m= (mA 0
0 mB

)
, c= ( cA 0

0 cB

)
, k= ( kA 0

0 kB

)
, U= (UA

UB

)
, mi , ki , ci and Ui =

mass matrix, damping matrix, stiffness matrix, and vector of nodal displacements of
building i, respectively (i =A,B), p= load distribution vector, F(t)= scalar func-
tion describing the time-history of the external loading (input random process), and
a superposed dot denotes differentiation with respect to time. It is noteworthy that
connections between the two buildings (e.g., damping devices interposed between
the building to mitigate seismic pounding risk) can be easily modelled by introduc-
ing the appropriate terms in matrix c. The response process of interest Urel(t) can
be related to the displacement response vector U(t) by means of a linear operator b
as Urel(t)= b ·U(t).

The probability of pounding conditional on IM = im is given by

Pp|IM = 1− P [
Urel(t = 0) < ξ |IM = im

]

× exp

{
−

∫ tmax

0
hUrel|IM(ξ, τ ) · dτ

}
(18.7)

in which P [Urel(t = 0) < ξ |IM = im] = probability that the random process Urel(t)

is below the threshold ξ at time t = 0, and hUrel|IM(ξ, t)= time-variant hazard func-
tion (i.e., up-crossing rate of threshold ξ conditioned on zero up-crossings be-
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fore time t) conditional on IM = im. For systems with at rest initial conditions,
P [Urel(t = 0) < ξ |IM = im] = 1.

To date, no exact closed-form expressions exist for the time-variant hazard
function hUrel|IM(ξ, t). However, several approximate solutions are available in the

literature, e.g., Poisson’s (P), h(P)Urel|IM(ξ, t) = νUrel|IM(ξ, t), classical Vanmarcke’s

(cVM), h(cVM)
Urel|IM(ξ, t), and modified Vanmarcke’s (mVM), h(mVM)

Urel|IM(ξ, t), approxi-
mations [22, 26]. These analytical approximations can be readily computed based
on the closed-form expressions of the spectral characteristics of process Urel(t), as
shown in Barbato and Vasta [25]. In addition, for linear elastic systems subjected
to Gaussian loading, Pp|IM can be efficiently and accurately estimated by using the
Importance Sampling using Elementary Events (ISEE) method [27].

3.2 Linear Systems with Uncertain Structural Properties and
Separation Distance

In addition to the uncertainty in the seismic input, significant uncertainty can be
found in geometrical, mechanical, and material properties characterizing the struc-
tural systems and their models. Hereinafter, the uncertainty in geometrical, mechan-
ical, and material properties of the structural models, as well as in their separation
distance, Ξ , is referred to as model parameter uncertainty (MPU). MPU can sig-
nificantly modify the structural performance and, thus, must be considered in the
assessment of seismic pounding risk.

In order to include the effects of MPU, the total probability theorem is employed
to compute the conditional probability of pounding as follows:

Pp|IM =
∫

X
Pp|IM,X(x) · f (x) · dx=EX[Pp|IM,X] (18.8)

in which X= vector of uncertain model parameters (including the uncertain separa-
tion distance Ξ ) with joint probability density function fX(x), Pp|IM,X(x)= prob-
ability of pounding conditional on X and IM, and EX[. . .] = expectation operator
with respect to vector X.

MCS, or any variance reduction technique such as stratified sampling, can be
employed to evaluate Pp|IM in Eq. (18.8). For example, Latin hypercube sampling
(LHS) can be employed for its computational efficiency [28]. The samples of vector
X generated by using LHS can be used to define a set of deterministic linear elastic
models with deterministic separation distance, for which the conditional probability
of pounding can be computed as in Eq. (18.7).

4 Application Examples

In this section, the proposed methodology is applied to: (1) compute the pounding
risk for SDOF systems with deterministic model parameters, (2) evaluate the re-
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Fig. 18.2 Input ground motion: (a) PSD function of the embedded stationary process, and (b) site
hazard curve

liability of simplified design code formulae used to determine building separation
distance, and (3) to evaluate the effectiveness of different retrofit solutions using
viscous dampers in reducing the pounding risk for deterministic MDOF models of
multi-storey buildings. In all the application examples considered here, the input
ground acceleration is modelled by a time-modulated Gaussian process. The time-
modulating function, I (t), is represented by the Shinozuka–Sato’s function [29],
i.e.,

I (t)= c · (e−b1·t − e−b2·t) ·H(t) (18.9)

in which b1 = 0.045π s−1, b2 = 0.050π s−1, c = 25.812, and H(t) = unit step
function. A duration tmax = 30 s is considered for the seismic excitation.

The power spectral density (PSD) of the embedded stationary process is de-
scribed by the widely-used Kanai–Tajimi model, as modified by Clough and Penzien
[30], i.e.,

SCP(ω)= S0
ω4
g + 4ξ2

gω
2ω2
g

[ω2
g −ω2]2 + 4ξ2

gω
2ω2
g

· ω4

[ω2
f −ω2]2 + 4ξ2

f ω
2ω2
f

(18.10)

in which S0 = spectral amplitude of the bedrock excitation (considered to be a
white noise process), ωg and ξg = fundamental circular frequency and damping
factor of the soil, respectively, and ωf and ξf = parameters describing the Clough–
Penzien filter. The values of the parameters employed for all the applications are
ωg = 12.5 rad/s, ξg = 0.6, ωf = 2 rad/s, and ξf = 0.7. The PSD function in
Eq. (18.10) is shown in Fig. 18.2(a) for S0 = 1.

The peak ground acceleration, PGA, is assumed as IM. In order to derive the
fragility curves in terms of the selected IM, the relationship between the param-
eter S0 of the Kanai–Tajimi spectrum and the PGA at the site is assessed empir-
ically. A set of 500 synthetic stationary ground motion records are generated us-
ing the spectral representation method [31] based on the PSD function given in
Eq. (18.10) with S0 = 1. Each ground motion realization is then modulated in time
using the function defined in Eq. (18.9). The peak ground acceleration correspond-
ing to S0 = 1, PGAS0=1, is estimated as the mean of the PGAs of the sampled ground
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Fig. 18.3 Fragility curves for ξ = 0.1 m: (a) tA = 1.0 s and tB = 0.5 s, and (b) tA = 1.0 s and
tB = 0.9 s

motion time histories. The values of S0 corresponding to different values of PGA are
obtained as follows:

S0 =
(

PGA

PGAS0=1

)2

(18.11)

In this study, the site hazard curve is expressed in the approximate form used in
Cornell et al. [32], i.e.,

νIM(im)= P [IM ≥ im|1yr] = k0 · im−k1 (18.12)

in which k0 and k1 = parameters obtained by fitting a straight line through two
known points of the site hazard curve in logarithmic scale. The site hazard curve is
taken from Eurocode 8-Part 2 [33], assuming that, for the site of interest, PGA =
0.3 g corresponds to a return period of 475 years. Using k1 = 2.857 [34], the site
hazard curve becomes (see Fig. 18.2(b)).

νPGA(pga)= 6.734 · 10−5 · pga−2.857 (18.13)

4.1 Pounding Risk for Linear SDOF Systems with Deterministic
Model Parameters

The first application example consists in the assessment of the pounding risk be-
tween two adjacent buildings modelled as deterministic linear elastic SDOF sys-
tems with periods tA and tB , and damping ratios ζA = ζB = 5%. The conditional
probability of pounding Pp|IM is calculated using the approximate analytical hazard

functions h(P)Urel|IM(ξ, t), h
(cVM)
Urel|IM(ξ, t), and h(mVM)

Urel|IM(ξ, t), for a deterministic distance
between the buildings ξ = 0.1 m and for two different combinations of natural pe-
riods of the two systems, i.e., (1) tA = 1.0 s and tB = 0.5 s, referred to as well
separated natural periods (Fig. 18.3(a)), and (2) tA = 1.0 s and tB = 0.9 s, referred
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Fig. 18.4 MAF of pounding for varying separation distance: (a) tA = 1.0 s and tB = 0.5 s, and
(b) tA = 1.0 s and tB = 0.9 s

to as close natural periods (Fig. 18.3(b)). The obtained conditional probabilities are
presented in Fig. 18.3 as fragility curves and compared with the corresponding re-
sults obtained using ISEE method [27], which are assumed as reference solution.

In the case of well separated natural periods for the structures (Fig. 18.3(a)), the
fragility curves estimated using the P, cVM, and mVM approximations are very
similar and close to the fragility curves obtained using the ISEE method. In the
case of close natural periods (Fig. 18.3(b)), the fragility curves estimated with the
approximate analytical methods show significant differences, and only the cVM ap-
proximation provides results that are close to the fragility curves estimated using
the ISEE method. The observed result can be explained by recognizing that the
relative displacement process Urel(t) can be interpreted as a response process of a
two-degree-of-freedom system. This multi-modal characteristic of Urel(t) can sig-
nificantly affect the accuracy of the different approximations of the time-variant
hazard function hUrel|IM(ξ, t) [35]. In the case of well separated natural periods, the
contribution of the higher period vibration mode to Urel(t) is significantly larger
than the contribution of the lower period vibration mode. By contrast, in the case of
close natural periods, both vibration modes provide a significant contribution to the
response process.

Figure 18.4 shows the MAF of pounding, νp , as a function of the building sepa-
ration distance ξ (in semi-logarithmic scale) for the cases of well separated natural
periods (Fig. 18.4(a)) and of close natural periods (Fig. 18.4(b)), respectively. The
estimates of the MAF of pounding obtained using the analytical approximations (P,
cVM, and mVM) of the hazard function are compared to the corresponding estimate
obtained using the ISEE method. Figure 18.5 plots (in semi-logarithmic scale) the
pounding risk for a design lifetime of 50 years, evaluated according to Eq. (18.4),
for the same two cases of well separated and close natural periods. Considerations
similar to the ones made for the fragility curves can be made also for the MAF of
pounding and the 50-year pounding risk, i.e., the analytical approximations provide
very accurate results for the case of well separated natural periods and less accu-
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Fig. 18.5 50-year pounding risk for varying separation distance: (a) tA = 1.0 s and tB = 0.5 s, and
(b) tA = 1.0 s and tB = 0.9 s

rate results for the case of close natural periods, with the exception of the cVM
approximation, which is accurate in both cases.

It is observed that the P approximation of the time-variant hazard function al-
ways yields conservative results, while the mVM approximation underestimates the
risk computed using the ISEE method for the case of close natural periods. Similar
results have been documented for the first-passage reliability problem of SDOF and
MDOF systems subjected to time-modulated white and colored noise excitations
[26].

4.2 Reliability of Formulae Used in Seismic Design Codes

The proposed methodology is applied here to evaluate the pounding risk correspond-
ing to the separation distance prescribed by anti-seismic design codes. In order to
avoid pounding between new adjacent buildings, current seismic design codes (e.g.,
[4, 33]) prescribe a minimum clearance to be provided between the structures. This
minimum clearance between two adjacent buildings is assumed equal to the ex-
pected value of the peak relative displacement, for a given site-specific earthquake
action and a value of the seismic intensity (hazard level) corresponding to a given
probability of exceedance. Given the seismic input, the peak relative displacement
is obtained by combining (using simplified combination rules) the values of the
peak displacements of the two adjacent structural systems, which are computed
using (deterministic) structural analysis. The most commonly employed rules are
the ABS method or the slightly more accurate SRSS method. The major limit of
these approximate rules is that they neglect the response phase differences between
the adjacent structures. In order to overcome this drawback, the use of the Dou-
ble Difference Combination rule for determining the CSD has been proposed and
investigated by several researchers [1–3].

In the application presented here, the values of the CSD according to the ABS,
SRSS, and DDC rules are calculated following the procedure described in [5]. This
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Table 18.1 Critical separation distance and corresponding 50-year pounding risk using different
combination rules

tA = 1.0 s and tB = 0.5 s tA = 1.0 s and tB = 0.9 s

ABS SRSS DDC ABS SRSS DDC

ξ [m] 0.1379 0.1049 0.1042 ξ [m] 0.1832 0.1298 0.0946

Pp 0.0620 0.1351 0.1376 Pp 0.0106 0.0334 0.0857

procedure involves (1) generating a set of 500 samples of input ground motion time
histories for the reference value of the peak ground acceleration (i.e., PGA= 0.3 g,
corresponding to a probability of exceedance of 10% in 50 years), (2) computing the
corresponding 500 peak displacement responses of systems A and B (UA,max and
UB,max), (3) computing the sample means ŪA,max and ŪB,max ofUA,max andUB,max,
respectively, and (4) combining ŪA,max and ŪB,max using the ABS, the SRSS, and
the DDC rule to derive estimate of the peak relative displacement U rel,max.

Table 18.1 shows the values of the separation distance computed according to
different combination rules and the corresponding 50-year probability of failure,
computed based on the cVM approximation of the time-variant hazard function. It
is observed that the CSDs obtained using simplified combination rules yield incon-
sistent values of the failure probability, which are also strongly dependent on the
natural periods of the two adjacent buildings. Thus, it is concluded that a methodol-
ogy is still needed to determine the CSD between adjacent buildings corresponding
to consistent safety levels for different combinations of the buildings’ natural peri-
ods and location’s seismic hazard.

4.3 MDOF Models of Multi-storey Buildings Retrofitted by Means
of Viscous Dampers

As a third application, the proposed methodology is employed to assess the risk of
pounding between two adjacent multi-storey buildings modelled as linear MDOF
systems, before and after retrofit with viscous dampers (Fig. 18.6(a)). Differ-
ent retrofit solutions are considered and their effectiveness in reducing the seis-
mic pounding risk is compared (Fig. 18.6(b)). The considered buildings are steel
moment-resisting frames with shear-type behaviour. The properties of the build-
ings are taken from Lin [36]. Building A is a six-story building with story stiff-
ness kA = 548,183 kN/m (equal for every story) and floor mass mA = 454.545 tons
(equal for each floor). Building B is a four-story building with story stiffness
kB = 470,840 kN/m and floor mass mB = 454.545 tons. A Rayleigh-type damping
matrix cR is used to model the inherent buildings’ damping and is built by consider-
ing a damping ratio ζR = 2% for the first two vibration modes of each system. MPU
is not considered in this application. The fundamental vibration periods of building
A and B are tA = 0.751 s and tB = 0.562 s, respectively.
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Fig. 18.6 Pounding between adjacent multi-storey buildings: (a) building A and B before retrofit,
and (b) different retrofit schemes considered in this study

Fig. 18.7 Pounding risk between multi-storey buildings A and B: (a) comparison of different
analytical solution and ISEE results, and (b) comparison of different retrofit schemes

The following six different retrofit solutions, based on the use of braces with
purely viscous behaviour [37], are considered: (1) braces located at each story of
both buildings (retrofit scheme 1), (2) braces located at all stories of the tall building
only (retrofit scheme 2), (3) braces located at all stories of the short building only
(retrofit scheme 3), (4) braces located at the lower four stories of the tall building
only (retrofit scheme 4), (5) braces located at the lower four stories of both buildings,
and (6) a single brace located at the first story of the tall building only. The two
buildings before retrofit are shown in Fig. 18.6(a), while the six retrofit schemes are
shown in Fig. 18.6(b). The viscous braces provide an additional source of damping,
modelled by means of a damping matrix cv. The total damping matrix for the two
buildings’ systems becomes c= cR+ cv. The damping coefficient corresponding to
the dampers at each floor of buildings A and B is cd = 10,000 kN·s/m. The systems
corresponding to retrofit schemes 4, 5, and 6 are non-classically damped and their
analysis requires the use of the complex modal analysis technique [25].

Figure 18.7(a) shows three different analytical estimates (P, cVM, and mVM ap-
proximations) of the 50-year probability of pounding between the two un-retrofitted
buildings, for different values of the separation distance. Figure 18.7 also reports the
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50-year probability of pounding obtained using the ISEE method, which is consid-
ered as reference solution. The analytical estimates provide a very good approxima-
tion of the pounding risk for a wide range of separation distances. In this particular
case, the results obtained using the cVM hazard function give the best approxima-
tion of the ISEE results.

Figure 18.7(b) compares the 50-year probability of pounding of the un-retrofitted
buildings and of the buildings retrofitted following the six different retrofit solutions
considered in this application example. The results presented in Fig. 18.7(b) are
obtained using the cVM approximation of the hazard function.

It is observed that the use of viscous dampers can be very effective in reducing
the risk of pounding between the two buildings. Furthermore, the introduction of
viscous braces according to scheme 3, scheme 5, and scheme 6 (corresponding to
the dotted lines in Fig. 18.7(b)) is a very efficient retrofit solution, since it obtains a
significant reduction of the pounding risk at a significantly lower retrofit cost when
compared with other retrofit schemes. In particular, retrofit scheme 3 appears to
achieve a very good compromise between retrofit cost and reduction of pounding
risk.

5 Possible Applications and Future Work

The innovative performance-based approach proposed in this paper for estimat-
ing the risk of pounding between adjacent buildings under earthquake excitation
presents several practical applications. A first application is the evaluation of the
safety levels corresponding to current seismic code provisions for building sepa-
ration distance under different design conditions. The current code provisions are
affected by several limitations: (1) they do not provide an explicit control on the
performance of the structures [38]; (2) they do not account for uncertainties in the
model properties of the structures; (3) they consider only a single value of the seis-
mic event intensity instead of a continuous representation of the site seismic hazard
[39]; and (4) they are based on simplified rules for combining the peak responses
of the buildings [5], the accuracy of which is limited. Although these limitations
have already been pointed out in many studies (including the present paper), an ex-
tensive parametric study involving a wide range of building properties and seismic
input models is required to assess their effects on the performance and reliability of
adjacent buildings subjected to seismic pounding hazard.

As an additional application, the proposed assessment methodology can be
used as a first step toward improved code provisions and/or a performance-
based design methodology for the separation distances between adjacent build-
ings. A performance-based design methodology should aim to obtain a target (suffi-
ciently small and consistent for different design conditions) probability of pounding
between two adjacent systems. The computation of the separation distance corre-
sponding to the target pounding probability can be regarded as an inverse reliability
problem, i.e., a problem in which one is seeking to determine the values to assign
to design parameters such that target reliability levels are attained for the limit state
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considered. Possible design parameters that can be varied in the design are the sep-
aration distance between the two buildings, for newly design buildings, or the prop-
erties of viscous or viscoelastic dampers in the buildings or between the buildings
in the case of existing buildings with a given insufficient separation distance.

An efficient solution to this design problem can be sought by recasting the inverse
reliability problem as a zero-finding problem:

y∗ = Zero
[
Pp(y, tL)− P̄p

]
(18.14)

where y = vector collecting the design parameters, the functional expression
Zero[. . .] = zero of the function in the parentheses, and Pp(x, tL) = probability of
pounding in the design life-time tL. This zero-finding problem can be solved effi-
ciently using classical iterative constrained optimization algorithms.

6 Conclusions

This paper presents a fully probabilistic performance-based methodology for assess-
ment of the seismic pounding risk between adjacent buildings. This methodology,
which is consistent with the PEER PBEE framework, is able to account for all per-
tinent sources of uncertainty that can affect the pounding risk, e.g., uncertainty in
the seismic input (i.e., site hazard and record-to-record variability) and in the pa-
rameters used to describe the structural systems of interest (i.e., material properties,
geometry, damping properties, separation distance).

An efficient combination of analytical and simulation techniques is proposed
for the calculation of the pounding risk under the assumptions of linear elastic be-
haviour for the buildings and of non-stationary Gaussian input ground motion. The
pounding problem is recast as a first-passage reliability problem, which is solved
analytically by using the spectral characteristics (up to the second order) of the
non-stationary stochastic process representing the relative displacement between
the buildings. Three different analytical approximations of the time-variant hazard
function are used: (1) the Poisson’s approximation, (2) the classical Vanmarcke’s ap-
proximation, and (3) the modified Vanmarcke’s approximation. Results obtained by
employing the importance sampling using elementary events method are assumed
as reference solutions to evaluate the absolute and relative accuracy of the three
analytical approximations considered here. The effects of uncertainty in the model
parameters are efficiently included by means of the total probability theorem and
the Latin hypercube sampling technique.

The proposed methodology is applied in this paper to investigate the risk of
pounding between SDOF systems with deterministic properties. With reference to
this specific application example, the following observations are made:

(1) The proposed combination of analytical and simulation techniques provides suf-
ficiently accurate estimates of the pounding risk when the classical Vanmarcke’s
approximation is used to estimate the time-variant hazard function.
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(2) The accuracy of the analytical approximations of the time-variant hazard func-
tion depends on the ratio between the natural periods of the adjacent buildings.
Higher accuracy is reached when the natural periods of the two buildings are
well separated.

(3) The Poisson’s approximation of the time-variant hazard function yields always
conservative estimates of the risk.

(4) The simplified combination rules suggested in modern seismic design codes
for calculating the critical separation distance yield inconsistent values of the
pounding probability, which are also strongly dependent on the natural periods
of the adjacent buildings.

In addition, the capabilities of the proposed method are demonstrated in a second
application example by assessing the effectiveness of the use of viscous dampers,
according to different retrofit schemes, in reducing the pounding probability of two
adjacent multi-story buildings modelled as linear elastic multi-degree-of-freedom
systems. Based on the results presented, the following considerations are made:

(1) The analytical approximations provide very accurate estimates of the pounding
risk, due to the fact that the fundamental periods of the two buildings are well
separated.

(2) The use of viscous dampers can dramatically reduce the risk of pounding be-
tween the two systems for any given separation distance.

(3) The use of viscous braces in the lower levels of the taller building is a very
efficient and cost-effective technique for minimizing the pounding risk.
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Chapter 19
Intensity Parameters as Damage Potential
Descriptors of Earthquakes

Anaxagoras Elenas

Abstract This paper provides a methodology to quantify the interrelationship be-
tween the seismic intensity parameters and the structural damage. First, a computer-
supported elaboration of the accelerograms provides several peak, spectral and en-
ergy seismic parameters. After that, nonlinear dynamic analyses are carried out to
provide the structural response for a set of seismic excitations. Among the sev-
eral response characteristics, the overall structure damage indices after Park/Ang
and the maximum inter-storey drift ratio are selected to represent the structural re-
sponse. Correlation coefficients are evaluated to express the grade of interrelation
between seismic acceleration parameters and the structural damage. The presented
methodology is applied to a six-story reinforced concrete frame building, designed
according to the rules of the recent Eurocodes. As seismic input for the nonlinear
dynamic analysis, a set of spectrum-compatible synthetic accelerograms has been
used. As the numerical results have shown, the spectral and energy parameters pro-
vide strong correlation to the damage indices. Due to this reason, spectral and en-
ergy related parameters are better qualified to be used for the characterization of the
seismic damage potential.

1 Introduction

It is well-known that seismic accelerograms are ground acceleration time-histories
that cannot be described analytically. Several seismic parameters have been pre-
sented in the literature during the last decades. These can be used to express the
intensity of the seismic excitations and to simplify its description. Post-seismic field
observations and numerical investigations have indicated the interdependency be-
tween the seismic parameters and the damage status of buildings after earthquakes
[1, 2]. The latter can be expressed by proper damage indices, while the interdepen-
dency between the considered quantities can be quantified numerically by appropri-
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ate correlation coefficients. Their values deliver the correlation grade (low, medium
or high) between the examined quantities.

This paper provides a method for quantifying the interrelationship between the
seismic parameters and global damage indices. First, a computer analysis of the
accelerograms provided several peak ground motion, spectral and energy seismic
parameters. After that, nonlinear dynamic analyses were carried out to provide the
structural response for a set of seismic excitations and a given reinforced concrete
frame structure. Keeping in mind that most of the seismic loading parameters are
characterized by a single numerical value, single-value damage indicators have also
been selected to represent the structural response. Thus, the overall structural dam-
age index (OSDI) after Park/Ang (DIG,PA) and the maximum inter-storey drift ratio
(MISDR) are selected to represent the structural response. Finally, correlation co-
efficients are evaluated to express the grade of interdependency between seismic
acceleration parameters and the used damage indices. The presented methodology
is applied to a six-story reinforced concrete frame building subjected to several ar-
tificial accelerograms.

2 Seismic Intensity Parameters

In general, the intensity parameters can be classified with peak, spectral and en-
ergy parameters. In this work the following parameters have been selected to rep-
resent the seismic intensity: peak ground acceleration PGA, peak ground veloc-
ity PGV, the term PGA/PGV, spectral acceleration (SA), spectral velocity (SV),
spectral displacement (SD), central period (CP), absolute seismic input energy
(Einp), Arias intensity (IA), strong motion duration after Trifunac/Brady (SMDTB),
seismic power (P0.90), root mean square acceleration (RMSa), intensity after Faj-
far/Vidic/Fischinger (IFVF), spectral intensities after Housner (SIH), after Kappos
(SIK) and after Martinez-Rueda (SIMR). They have been chosen from all three of the
seismic parameter categories. Table 19.1 provides an overview of the used parame-
ters and their literature references, respectively. The definition of each parameter is
presented in the mentioned literature.

3 Seismic Acceleration Time Histories

The seismic excitations used for the dynamic analyses in this study are based on ar-
tificial accelerograms created to be compatible with the design spectra of the current
Greek antiseismic code (2004). The reason for choosing this approach rather than
relying on natural accelerograms was dictated by the need to have a sufficiently large
database for statistical reasons. For the creation of the aforementioned artificial ac-
celerograms the program SIMQKE [14] has been utilized. As artificial accelerogram
creation parameters the PGA, the total duration (TD) and the design spectra for all
three Greek seismic regions (nominal PGA equal to 0.16 g, 0.24 g and 0.36 g) have
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Table 19.1 Seismic parameters

No Seismic parameters Reference No Seismic parameters Reference

1 PGA [3] 9 IA [7]

2 PGV [3] 10 SMDTB [8]

3 PGA/PGV [3] 11 P0.90 [9]

4 SA [4] 12 RMSa [3]

5 SV [4] 13 IFVF [10]

6 SD [4] 14 SIH [11]

7 CP [5] 15 SIK [12]

8 Einp [6] 16 SIMR [13]

been used. All created for subsoil category B, as described in Eurocode 8 (EC8)
[15] and the Greek Antiseismic Code [16]. This subsoil category belongs to deep
deposits of medium dense sand or over-consolidated clay at least 70 m thick. In or-
der to cover most types of Greek region seismic activity, an artificial accelerogram
creation procedure has been devised comprising the creation of 5 random artificial
accelerograms for each of the 15 preselected PGA values that were assigned for the
three different Greek seismic regions. Thus, 75 different synthetic accelerograms
have been compiled, which ensures that the overall structural damages of the exam-
ined structure will cover all the possible damage grades, from low to severe, in order
to cover statistical demands as well.

4 Global Damage Indices

As explained previously, attention is focused on damage indicators that consolidate
all member damage into one single value that can be easily and accurately be used
for the statistical exploration of the interrelation with the also single-value seismic
parameters in question. Thus, in the OSDI model after Park/Ang [17] the global
damage is obtained as a weighted average of the local damage at the ends of each
element. The local damage index is a linear combination of the damage caused by
excessive deformation and that contributed by the repeated cyclic loading effect
that occurs during seismic excitation. Thus, the local DI is given by the following
relation:

DIL,PA = θm − θr
θu − θr +

β

Myθu
ET (19.1)

where, DIL,PA is the local damage index, θm the maximum rotation attained during
the load history, θu the ultimate rotation capacity of the section, θr the recoverable
rotation at unloading, β a strength degrading parameter, My the yield moment of
the section and ET the dissipated hysteretic energy. The Park/Ang damage index is
a linear combination of the maximum ductility and the hysteretic energy dissipation
demand imposed by the earthquake on the structure.
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Fig. 19.1 Reinforced
concrete frame structure

The global damage index after Park/Ang [17] takes into account the local dam-
ages of all elements of the examined structure (e.g. beams and columns of a frame).
Thus, it depends both, the distribution and the severity of the localized damage and
is given by the following relation:

DIG,PA =
∑n

i=1 DIL,PAEi∑n
i=1 Ei

(19.2)

where, DIG,PA is the global damage index, DIL,PA the local damage index after
Park/Ang, Ei the energy dissipated at location i and n the number of locations at
which the local damage is computed.

The MISDR [18, 19] is a simple overall structural damage index that describes
satisfactorily various forms of damages after an earthquake. The post-seismic dam-
age degree can be classified according to this index. Equation (19.3) defines the
maximum inter-storey drift ratio (MISDR) as the ratio of the maximum absolute
inter-storey drift |u|max to the inter-storey height h:

MISDR= |u|max

h
100 [%] (19.3)

5 Application

The six-storey reinforced concrete frame structure shown in Fig. 19.1 has been de-
tailed in agreement with the rules of the recent Eurocodes for structural concrete
and antiseismic structures, Eurocode 2 (EC2) and Eurocode 8 (EC8) [15, 20], re-
spectively. According to the EC8 Eurocode, the structure shown in Fig. 19.1, has
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been considered as an “importance class II, ductility class M”-structure with a sub-
soil category B (deep deposits of medium dense sand or over-consolidated clay at
least 70 m thick). The building belongs on a seismic zone with nominal seismic
design acceleration equal to 0.16 g. The cross-sections of the beams are considered
as T-beams with 30 cm width, 20 cm slab thickness, 60 cm total beam height and
1.45 m effective slab width. The distances between each frame of the structure is
equal to 6 m while the ground floor has a 4 m height and all subsequent floors 3 m.
The eigenperiod of the frame was 1.0 s. In addition to the seismic load, live, snow
and wind loads have also been taken into account as well as the eccentricity of struc-
tural element from verticality. The numerical values of loads, safety factors as well
as load combinations have been chosen in accordance with the current design codes
(Eurocodes).

After the design procedure of the reinforced concrete frame structure, a nonlin-
ear dynamic analysis evaluates the structural seismic response, using the computer
program IDARC [21]. A three-parameter Park model specifies the hysteretic be-
havior of beams and columns at both ends of each member. This hysteretic model
incorporates stiffness degradation, strength deterioration, slip-lock and a tri-linear
monotonic envelope. Experimental results of cyclic force-deformation characteris-
tics of typical components of the studied structure, specifies the parameter values of
the above degrading parameters. This study uses the nominal parameter for stiffness
degradation. Among the several response parameters, the focus is on the overall
structural damage indices (OSDI) described in the previous section.

6 Results

The first step was the creation of the aforementioned set of 75 synthetic accelero-
grams using the SIMQKE program. This program generates baseline corrected
acceleration-time histories. The next step was a computer supported evaluation of
16 seismic parameters as presented in Table 19.1. Nonlinear dynamic analyses has
been performed for the reinforced concrete frame building under question, includ-
ing all artificial acceleration-time histories, in order to obtain the structural damage
indices after Park/Ang and the MISDR. Statistical procedures provide the correla-
tion coefficients after Pearson and Spearman [22], between all the evaluated seismic
parameters and damage indices. The Pearson correlation shows how well the data fit
a linear relationship, while the Spearman correlation shows how close the examined
data are to monotone ranking. The latter coefficient is more important in the present
study. Table 19.2 summarizes the results of the correlation study.

It is supposed that correlation coefficients up to 0.5 means low correlation, coef-
ficients between 0.5 and 0.8 means medium correlations, while coefficients greater
than 0.8 means strong correlation between the two variables. Table 19.2 presents
the correlation coefficients after Pearson and the rank correlation coefficients after
Spearman among all the examined seismic parameters presented and the examined
the damage indices. Thus, the results show low Pearson and Spearman correlation
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Table 19.2 Correlation coefficients between the seismic parameters and the OSDIs

Seismic
parameters

Pearson correlation Spearman rank correlation

DIG,PA MISDR DIG,PA MISDR

PGA 0.568 0.523 0.635 0.631

PGV 0.657 0.659 0.788 0.795

PGA/PGV −0.355 −0.367 −0.393 −0.394

SA 0.711 0.678 0.803 0.806

SV 0.724 0.696 0.804 0.804

SD 0.738 0.706 0.849 0.845

CP −0.342 −0.326 −0.351 −0.332

Einp 0.668 0.667 0.812 0.821

IA 0.682 0.659 0.824 0.821

SMDTB 0.103 0.086 0.155 0.145

P0.90 0.685 0.662 0.823 0.820

RMSa 0.713 0.677 0.824 0.821

IFVF 0.655 0.656 0.789 0.796

SIH 0.703 0.664 0.796 0.795

SIK 0.702 0.670 0.802 0.806

SIMR 0.614 0.558 0.725 0.725

between the term PGA/PGV, CP, SMDTB and the examined damage indices. All the
remaining seismic parameters provided medium Pearson correlation with the exam-
ined damage indices. On the other hand, high rank correlation is observed between
SA, SV, SD, Einp, IA, P0.90, RMSa, SIK and the used damage indices. In addition,
medium rank correlation is observed between PGA, PGV, IFVF, SIH, SIMR and the
damage indices.

Thus, spectral (SA, SV, SD, SIK) and energy (Einp, IA, P0.90, RMSa) seismic in-
tensity parameters provided high correlation with the examined overall structural
damage indices. These parameters are appropriate descriptors of the damage poten-
tial of a seismic excitation. Finally, the seismic parameters show the same correla-
tion grade with the global damage index of Park/Ang (DIG,PA) and with the max-
imum inter-storey drift ratio (MISDR) in all the cases. All the seismic parameters
show the same correlation grade for both, Pearson and Spearman correlation, with
exception the cases with high rank correlation. There, the Pearson correlation grade
is medium.

7 Conclusions

In this paper a methodology for the value estimation of the interdependence between
seismic acceleration intensity parameters and damage indices has been presented.
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Peak, spectral and energy parameters have been considered. The global damage in-
dex after Park/Ang and the MISDR represented the post-seismic structural damage
status. The degree of the interrelationship between seismic parameters and damage
indices has been expressed by the Pearson correlation coefficient and by the Spear-
man rank correlation coefficient.

The results show low Pearson and Spearman correlation between the term
PGA/PGV, CP, SMDTB and the examined damage indices. Medium correlation is
observed between PGA, PGV, IFVF, SIH, SIMR and the damage indices, in all the
cases. High rank correlation is observed between SA, SV, SD, Einp, IA, P0.90, RMSa,
SIK and the damage indices. In all these cases, the corresponding Pearson correla-
tion grade was medium. The seismic parameters show the same correlation grade
with DIG,PA with MISDR in all the cases.

All these results lead to conclude that the spectral and energy seismic parameters
are reliable descriptors of the seismic damage potential and to recommend them as
appropriate descriptors of the seismic damage potential.
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Chapter 20
Classification of Seismic Damages in Buildings
Using Fuzzy Logic Procedures

Anaxagoras Elenas, Eleni Vrochidou, Petros Alvanitopoulos,
and Ioannis Andreadis

Abstract It is well-known that damage observations on buildings after severe earth-
quakes exhibit interdependence with the seismic intensity parameters. Numerical
elaboration of structural systems quantified the interrelation degree by correlation
coefficients. Further, the seismic response of buildings is directly depended on the
ground excitation. Consequently, the seismic response of buildings is directly de-
pended on the used accelerogram and its intensity parameters. Among the several
response quantities, the focus is on the overall damage. Thus, the Maximum Inter-
Storey Drift Ratio and the damage index of Park/Ang are used. Intervals for the
values of the damage indices are defined to classify the damage degree in low,
medium, large and total. This paper presents an Adaptive Neuro-Fuzzy Inference
System for the damage classification. The seismic excitations are simulated by ar-
tificial accelerograms. Their intensity is described by seismic parameters. The pro-
posed system was trained and tested on a reinforced concrete structure. The results
have shown that the proposed fuzzy technique contributes to the development of
an efficient blind prediction of seismic damages. The recognition scheme achieves
correct classification rates over 90%.

A. Elenas (�)
Institute of Structural Mechanics and Earthquake Engineering, Democritus University of Thrace,
67100 Xanthi, Greece
e-mail: elenas@civil.duth.gr

E. Vrochidou · P. Alvanitopoulos · I. Andreadis
Laboratory of Electronics, Department of Electrical and Computer Engineering, Democritus
University of Thrace, 67100 Xanthi, Greece

E. Vrochidou
e-mail: evrochid@ee.duth.gr

P. Alvanitopoulos
e-mail: palvanit@ee.duth.gr

I. Andreadis
e-mail: iandread@ee.duth.gr

M. Papadrakakis et al. (eds.), Computational Methods in Stochastic Dynamics,
Computational Methods in Applied Sciences 26,
DOI 10.1007/978-94-007-5134-7_20, © Springer Science+Business Media Dordrecht 2013

335

mailto:elenas@civil.duth.gr
mailto:evrochid@ee.duth.gr
mailto:palvanit@ee.duth.gr
mailto:iandread@ee.duth.gr
http://dx.doi.org/10.1007/978-94-007-5134-7_20


336 A. Elenas et al.

1 Introduction

Seismic accelerograms are records of ground acceleration versus time during earth-
quakes that cannot be described analytically. However, several seismic parameters
have been presented in the literature during the last decades that can be used to
express the intensity of a seismic excitation and to simplify its description. Post-
seismic field observations and numerical investigations have indicated the interde-
pendency between the seismic parameters and the damage status of buildings after
earthquakes [1, 2]. The latter can be expressed by proper damage indices (DIs). The
Maximum Inter-Storey Drift Ratio (MISDR) and the global damage index as defined
by Park/Ang (DIG,PA) characterize effectively the structural damage caused to build-
ings during earthquakes and thus, are used as metrics to classify the damage degree
into 4 categories, low, medium, large and total. In this context, the damage degrees
denote undamaged or minor damage-repairable damage-irreparable damage-partial
or total collapse of the building, respectively.

This paper suggests a technique based on an Adaptive Neuro-Fuzzy Inference
System (ANFIS) for seismic structural damage classification. A total set of 200
artificial accelerograms has been used and were correctively assigned to one of
the above four categories with performances up to 90% and 87% of accuracy, for
MISDR and DIG,PA, respectively. High classification rates indicate that the proposed
methodology is suitable for adaptive predictive control of the behavior of the con-
crete construction used, for any unknown seismic signal. The proposed method is
applied to an eight-story reinforced concrete frame building, designed after the rules
of the recent Eurocodes.

2 Damage Indices

MISDR is an overall structural damage index (OSDI) that can define the level of
post-seismic corruption in a building [3, 4] and can be evaluated by Eq. (20.1):

MISDR= |u|max

h
100[%] (20.1)

where |u|max is the absolute maximum inter-storey drift and h the inter-storey height.
Additionally, the OSDI after Park/Ang (DIL,PA) is used to describe the structural

damage [5]. First, the local damage index according to Park/Ang is calculated. The
local damage index is a linear combination of the damage caused by excessive de-
formation and that contributed by the repeated cyclic loading effect that happens
during an earthquake. The local DI is given by the relation:

DIL,PA = θm − θr
θu − θr +

β

Myθu
ET (20.2)

where θm is the maximum rotation during the load history, θu is the ultimate rotation
capacity of the section, θr is the recoverable rotation at unloading, β is a strength
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Table 20.1 Structural damage classification according to MISDR and DIG,PA

Structural Damage Indices Structural Damage Degree

Low Medium Large Total

MISDR ≤ 0.5 0.5<MISDR≤ 1.5 1.5<MISDR≤ 2.5 > 2.5

DIG,PA ≤ 0.3 0.3<DIG,PA ≤ 0.6 0.6<DIG,PA ≤ 0.8 > 0.8

degrading parameter (0.1–0.15), My is the yield moment of the section and ET is
the dissipated hysteretic energy.

The global damage index after Park/Ang is a combination of the maximum duc-
tility and the hysteretic energy dissipation demand forced by the earthquake on the
structure. Thus, the global damage index after Park/Ang (DIG,PA) is given by:

DIG,PA =
∑n

i=0DILEi∑n
i=0Ei

(20.3)

where Ei is the energy dissipated at location i and n is the number of locations at
which the local damage is calculated.

The two used DIs are utilized extensively in earthquake engineering, as they are
experimentally proved to express the behavior of structures [5–12]. In Table 20.1,
intervals for the values of the DIs are defined to classify the damage degree in low,
medium, large and total [11]. These categories refer to minor, reparable damage,
irreparable damage and severe damage or collapse of buildings, respectively.

3 Seismic Intensity Parameters

It is well-known that seismic intensity parameters are simple descriptors of the com-
plex seismic accelerogram and they exhibit interdependency with observed post-
seismic damages. Correlation studies manifested the interrelation degree between
seismic intensity parameters and the damage indicators [1, 2]. Therefore, the fol-
lowing parameters are evaluated: peak ground acceleration PGA, peak ground ve-
locity PGV, the term PGA/PGV, spectral acceleration (SA), spectral velocity (SV),
spectral displacement (SD), central period (CP), absolute seismic input energy
(Einp), Arias intensity (IA), strong motion duration after Trifunac/Brady (SMDTB),
seismic power (P0.90), root mean square acceleration (RMSa), intensity after Faj-
far/Vidic/Fischinger (IFVF), spectral intensities after Housner (SIH), after Kappos
(SIK) and after Martinez-Rueda (SIMR), effective peak acceleration (EPA), maxi-
mum EPA (EPAmax), cumulative absolute velocity (CAV) and destructiveness po-
tential after Araya/Saragoni (DPAS). Table 20.2 presents the examined intensity pa-
rameters and their literature references, respectively.
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Table 20.2 Seismic intensity parameters

No Seismic Intensity Parameter References

1 Peak Ground Acceleration (PGA) [13, 14]

2 Peak Ground Velocity (PGV) [13, 14]

3 PGA to PGV ratio (PGA/PGV) [13, 14]

4 Spectral Velocity (SV) [13, 14]

5 Spectral Acceleration (SA) [13, 14]

6 Spectral Displacement (SD) [13, 14]

7 Central Period (CP) [15]

8 Seismic Energy Input (Einp) [16]

9 Arias Intensity (IA) [17]

10 Strong Motion Duration after Trifunac/Brady (SMDTB) [18]

11 Power (P0.90) [19]

12 Root Mean Square Acceleration (RMSa) [13]

13 Seismic Intensity after Fajfar/Vidic/Fischinger (IFVF) [20]

14 Spectrum Intensity after Housner (SIH) [21]

15 Spectrum Intensity after Kappos (SIK) [22]

16 Spectrum Intensity after Martinez-Rueda (SIMR) [23]

17 Effective Peak Acceleration (EPA) [24, 25]

18 Cumulative Absolute Velocity (CAV) [26]

19 Maximum EPA (EPAmax) [24, 25]

20 Destructiveness Potential after Araya/Saragoni (DPAS) [27]

4 Structural Model

Figure 20.1 presents the examined reinforced concrete structure. The eigenfre-
quency of the frame is 0.85 Hz. The design of the 8-storey building is based on
the recent Eurocode rules EC2 and EC8 [28, 29]. The cross-sections of the beams
are T-beams with 40 cm width, 20 cm slab thickness, 60 cm total beam height and
1.45 m effective slab width. The distance between the frames of the structure is
6 m. The structure has been characterized as an “importance class II-ductility class
medium” structure according to the EC8 Eurocode. The subsoil is of type C and the
region seismicity of category 2 after the EC8 Eurocode (design around acceleration
value equal to 0.24 g). External loads are taken under consideration and are incorpo-
rated into load combinations due to the rules of EC2 and EC8. With the help of the
IDARC software, the characteristics of the building are inserted into the program
and a dynamic analysis is taking place, so as to estimate the structural behaviour of
the building [7].
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Fig. 20.1 Reinforced
concrete frame structure

5 ANFIS Algorithm

ANFIS was introduced in 1993. ANFIS is able to extract a set of fuzzy “if-then”
rules and define the membership functions in order to establish the association be-
tween inputs and outputs. Its structure is shown in Fig. 20.2. Basically, ANFIS sug-
gests a method that, through the training procedure, can estimate the membership
function parameters that serve the fuzzy inference system (FIS) to consequently
specify the desired output for a certain given input [30].

ANFIS creates a fuzzy inference system in order to relate a certain input to the
appropriate output. FIS interprets inputs into a set of fuzzy membership values and
similarly the output membership functions to outputs. During the learning process,
all parameters which define the membership functions will change. In order to op-
timize the model, these parameters are evaluated. Usually a gradient vector is used
and an optimization routine could be applied in order to tune the parameters, so as
to lead the model to a better generalization performance.

In this work, 20 seismic parameters are used as input data to describe the damage
caused by one seismic event, and a total of 200 seismic events are used to train the
system. All 20 seismic features have been normalized to belong in the interval [0,1].
The 200 seismic events are distributed equally to all four damage categories in order
to create a uniform data set.

First, inputs are related to membership functions (MFs) (Fig. 20.3 shows the
initial MF for one of the seismic parameters), to rules to outputs MFs, by using
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Fig. 20.2 ANFIS structure

Fig. 20.3 Initial membership
function on input 1

Fuzzy C-Means (FCM) technique [31, 32], which is analyzed later in this section.
Next, the input/output data, which is a uniform set of 100 accelerograms, is used
for training the model. The membership function parameters are tuned through the
training process.

After the training, a model validation procedure is performed. During this proce-
dure, an unknown input data set is presented to the trained fuzzy model for simu-
lation. Thus, it can be evaluated the efficiency of the model. When a checking data
set is presented to ANFIS, the fuzzy model selects the appropriate parameters asso-
ciated with the minimum checking data model error. One crucial point with model
validation, is selecting a suitable data set. This set must be representative of the
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Table 20.3 Classification results based on the structural damage indices MISDR and DIG,PA

Structural Damage Index MISDR DIG,PA

Correct Classification Percentage (%) 90% 87%

data that the model is trying to simulate, and at the same time distinguishable from
the training data. If a large amount of samples is collected, then all possible cases
are contained and thus, the training set is more representative. In our case, a total
number of 200 seismic excitations are considered as the data set.

FCM is a wildly used data clustering technique. Each data point is assigned to a
cluster with a membership grade that is specified by a membership grade. It provides
a method that shows how to group data points that populate some multidimensional
space into a specific number of different clusters. The purpose of data clustering is
to discover similarities between input patterns from a large data set, in order to de-
sign an effective classification system. At first; the FCM algorithm selects randomly
the cluster centers. This initial choice for these centers is not always the appropri-
ate. Furthermore, the variation of the cluster centers leads to different membership
grades for each one of the clusters. Through the iteration process of the FCM al-
gorithm, the cluster centers are gradually moved towards to their proper location.
This is achieved by minimizing the weighted distance between any data point and
the cluster centre. Finally, FCM function defines the cluster centers and the mem-
bership grades for every data point.

6 Results

The results are summarized in Table 20.3. The structural damage is presented by
means of the two used DIs, MISDR and DIG,PA, and the algorithm was tested for
both DIs. The results indicate that the MISDR leads to higher performance, up to
90%, compared with the results when using DIG,PA which rates up to 87%.

In Figs. 20.4 and 20.5, blue circles represent the seismic signals that have been
misclassified with ANFIS algorithm using MISDR and DIG,PA respectively.

7 Conclusions

This paper presents an efficient algorithm based on ANFIS techniques for seismic
signal classification. A number of 20 seismic parameters and a set of 200 artificial
accelerograms with known damage effects were used. For each seismic excitation
the induced structural damage of the examined building is estimated and quanti-
fied according to two widely used damage indices, MISDR and DIG,PA. The struc-
tural damage is expressed in the form of 4 damage categories. The 4 damage cat-
egories (classes) are defined through threshold values of the used damage indices.
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Fig. 20.4 Classification of
200 seismic signals into 4
damage classes with MISDR
as metric. Correct
classification percentage:
90%

Fig. 20.5 Classification of
200 seismic signals into 4
damage classes with DIG,PA
as metric. Correct
classification percentage:
87%

An ANFIS model is trained and tested. The classification results reveal the effective-
ness of the proposed system to estimate the earthquake’s impact (damage category)
on the examined structure. Classification rates up to 90% in the case of MISDR and
87% in the case of DIG,PA are achieved. The high percentage of correct classification
in both cases, prove the efficiency of the method and show that the fuzzy technique
that is implemented, contributes to the development of a competent blind prediction
of the seismic damage potential that an accelerogram possesses.
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Chapter 21
Damage Identification of Masonry Structures
Under Seismic Excitation

G. De Matteis, F. Campitiello, M.G. Masciotta, and M. Vasta

Abstract In the present paper, a spectral based damage identification technique is
addressed on historical masonry structures. The seismic behavior of a physical 1:5.5
scaled model of the church of the Fossanova Abbey (Italy) is investigated by means
of numerical and experimental analyses. Aiming at defining the seismic vulnera-
bility of such a structural typology a wide experimental campaign was carried out.
The achieved experimental results lead to the definition of a refined FE model re-
producing the dynamic behavior of the whole structural complex. Then, the central
transversal three-central bays of the church, as it mostly influences the seismic vul-
nerability of the Abbey, was investigated in a more detail by means of a shaking
table test on a 1:5.5 scaled physical model in the Laboratory of the Institute for
Earthquake Engineering and Engineering Seismology in Skopje. In the present pa-
per a brief review of the numerical activity related to the prediction of the shaking
table test response of the model is first proposed. Then, the identification of fre-
quency decay during collapse is performed through decomposition of the measured
power spectral density matrix. Finally, the localization and evolution of damage in
the structure is analyzed. The obtained results shown that a very good agreement is
achieved between the experimental data and the predictive/interpretative numerical
analyses.

Keywords Masonry structures · Earthquake engineering · Shaking table tests ·
Power spectral matrix decomposition · Dynamic damage identification

1 Introduction

Gothic architecture spread as from the 12th Century and broke out during the Mid-
dle Ages in the cultural and religious area of the Christianity of Western Europe,
with some trespasses in the Middle East and in the Slavic–Byzantine Europe. Many
important abbeys were built in those areas, providing a key impulse to the regional
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economy and contributing to a general social, economic and cultural development.
The most interested areas sprawl from the northern Countries (England) to those fac-
ing the Mediterranean Basin (Italy), but also spread out from the Western (Portugal)
to the Eastern Countries, as Poland and Hungary. Monastic orders and in particu-
lar the Cistercian one, with its monasteries, had an important role for broaden the
new architectonic message, adapting to the local traditions the technical and formal
heritage received by the Gothic style [1, 2] and [3].

Gothic cathedrals may result particularly sensitive to earthquake loading. There-
fore, within the European research project “Earthquake Protection of Historical
Buildings by Reversible Mixed Technologies” (PROHITECH), this structural ty-
pology has been investigated by means of shaking table tests on large scale models
[4]. Based on a preliminary study devoted to define typological schemes and geom-
etry which could be assumed as representative of many cases largely present in the
seismic prone Mediterranean Countries, the Fossanova cathedral, which belongs to
the Cistercian abbatial complex built in a small village in the central part of Italy,
close to the city of Priverno (LT), has been selected as an interesting and reference
example of pre-Gothic style church [5]. In order to assess the vulnerability of the
church against seismic actions a wide numerical and experimental activity was de-
veloped. Firstly, the identification of the geometry of the main constructional parts
as well as of the mechanical features of the constituting materials of the cathedral
was carried out. Then, Ambient Vibration Tests were performed in order to char-
acterize the dynamic behavior of the church and to calibrate refined FE models
developed using the ABAQUS code [5]. To this purpose elastic FEM analyses were
performed to predict the behavior of the three-central bays of the church, which
were detected as the key-part of the structural complex [6, 7]. The recognized re-
sistant unit about transversal direction was designed in length scale 1:5.5 according
to “true replica” modeling principles and tested on the shaking table in the IZIIS
Laboratory in Skopje [8]. The physical model was tested and the as-built model was
loaded until heavy damage occurred. The structural response of the tested physical
model has been deeply investigated by means of non-linear numerical analyses that
has shown good agreements with experimental measurements [8].

In this paper, the identification of frequency decay during collapse is performed
through decomposition of the measured power spectral density matrix. Finally, the
localization and evolution of damage in the structure is analyzed. The obtained re-
sults has shown that a very good agreement is achieved between the experimental
data and the predictive/interpretative numerical analyses.

2 The Fossanova Abbey: Model and Experimental Test

The Fossanova Abbey (Fig. 21.1) was built in the XII century and opened in
1208. The architectural complex presents three rectangular aisles with seven bays,
a transept and a rectangular apse. Between the main bay and the transept raises the
skylight turret with a bell tower. The main dimensions are 69.85 m (length), 20.05 m
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Fig. 21.1 The Fossanova
church

Fig. 21.2 The vaulted system
of the Fossanova church

(height), and 23.20 m (width). The nave, the aisles, the transept and the apse are cov-
ered by ogival cross vaults. Detailed information on the main dimensions of the bays
are provided in De Matteis et al. [6].

The previously mentioned vaulted system does not present ribs, but only ogival
arches transversally oriented with respect to the span and ogival arches placed on
the confining walls (Fig. 21.2). The ridge-poles of the covering wood structure is
supported by masonry columns placed on the boss of the transversal arches of the
nave and apse. The crossing between the main bay and the transept is covered by a
wide ogival cross vault with diagonal ribs sustained by four cross shaped columns
delimiting a span with the dimensions of 9.15× 8.85 m.

The main structural elements constituting the central nave and the aisles are four
longitudinal walls (West–East direction). The walls delimiting the nave are sustained
by seven couples of cross-shaped piers (with dimensions of 1.80 × 1.80 m) with
small columns laying on them and linked to the arches. The bays are delimited
inside the church by columns with adjacent elements having a capital at the top. The
columns-capital system supports the transversal arches of the nave. The external of
the clearstory walls are delimited by the presence of buttresses with a hat on the top
that reaches the height of 17.90 m. The walls of the clearstory present large splayed
windows and oval openings that give access to the garret of the aisles. Also the walls
that close the aisles present seven coupled column-buttresses systems reaching the
height of 6.87 m and further splayed windows.
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Fig. 21.3 Endoscope tests

During the centuries, the complex suffered some aesthetic modifications: the
main prospect was modified since the narthex was eliminated installing an elab-
orate portal with a large rose-window; a part of the roof and of the lantern were
rebuilt, introducing a Baroque style skylight turret; additional modifications on the
roofing of the church were applied, with the reduction of the slope of pitches and
with the restoration of the same slope as in the original form.

In order to determine the actual geometry and the mechanical features of the main
constructional elements, an accurate experimental activity has been developed. In
particular, both in situ inspection and laboratory tests have been carried out [5, 6].

It has been determined that the basic material constituting the constructional ele-
ments of the church is a very compact sedimentary limestone. In particular, columns
and buttresses are made of plain stones with fine mortar joints (thickness less than
1 cm). The lateral walls (total thickness 120 cm) consist of two outer skins of good
coursed ashlar (the skins being 30 cm thick) with an internal cavity with random
rubble and mortar mixture fill.

In order to inspect the hidden parts of the constituting structural elements, en-
doscope tests have been executed on the right and left columns of the first bay,
on the third buttress of the right aisle, on the wall of the main prospect and at the
end on the filling of the vault covering the fourth bay of the nave. The test on the
columns (Fig. 21.3a) allowed the exploration of the internal nucleus of the pier, re-
lieving a total lack of internal vacuum, with the predominant presence of limestone
connected with continuum joints of mortar (Fig. 21.3b). The test on the buttress
was performed at the level of 143 cm, reaching the centre of the internal wall. The
presence of regular stone blocks having different dimensions and connected to each
other with mortar joints without any significant vacuum was detected. The tests on
the wall put into evidence the presence of a two skins and rubble fill. The test made
on the extrados of the vault, with a drilling depth of 100 cm, allowed a first layer of
7 cm made of light concrete and then a filling layer of irregular stones and mortar
with the average thickness of 10 cm to be identified.

In order to define the mechanical features of the material, original blocks of stone
were taken from the cathedral and submitted to compression tests (Fig. 21.4a). In to-
tal, 10 different specimens having different sizes have been tested, giving rise to an
average ultimate strength of about 140 MPa and an average density γ = 1700 kg/m3.
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Fig. 21.4 Compression tests
on limestone (a) and
microscope analysis on
mortar (b)

Besides, based on the results obtained for three different specimens, a Young’s mod-
ulus equal to 42.600 MPa has been assessed, while a Poisson’s ratio equal to 0.35
has been estimated.

Also, mortar specimens were extracted from the first column placed on the left of
the first bay, from the wall of the aisle on the right and from the wall on the northern
side of the transept. The specimens were catalogued as belonging to either the exter-
nal joints (external mortar) or to the filling material (internal mortar). Compression
tests have been carried out according to the Italian provisions (UNI EN 1926:2001),
relieving a noticeable reduction of the average compressive strength for the speci-
mens belonging to the external mortar (3.33 MPa) with respect to the internal ones
(10.30 MPa). Besides, the Young’s modulus has been determined on three different
mortar specimens, according to the UNI EN 1015-11:2001 provisions, providing
values ranging from 8.33 MPa to 12.16 MPa.

Chemical and petrography analyses have been also performed on the mortar
specimens. In particular, chemical tests were made by X rays diffractometer analy-
sis, according to the UNI 11088:2003 provisions. The prevalence of three material,
namely, quartz crystal SiO2, crystallized calcium carbonate CaCO3 and some traces
of felspate, was noticed. Also, a petrography study on thin sections of mortar spec-
imens have been done by using two electronic microscopes, according to the UNI
EN 932-3:1998 provisions (Fig. 21.4b). The analysis relieved the presence of quartz
crystal sand end felspate, without any significant presence of crystallized calcium
carbonate. The binding was quantified with a percentage of 60% of the total volume.

A FE model of the entire Abbey was calibrated on the basis of the in-situ ex-
perimental activity. The seismic analyses on such a model revealed that the more
important structural part of the structural complex was to be recognized in the three-
central bays of the main nave shown in Fig. 21.5 [7]. For the above reason a physical
model of the key-structural part was designed and constructed in the IZIIS Labora-
tory in Skopje (Fig. 21.6). The model was executed in a 1:5.5 scale ratio (length)
which was the maximum value compatible with the capacity of the shaking table.

The Buckingham’s theorem was followed to define all the physical parameters
needed to the construction of the model, according to the “true replica” modeling
principles. All the involved quantities was scaled on the base of the three main
parameters Length (Lr = 1/5.5), Mass Density (ρr = 1) and Acceleration (ar = 1)
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Fig. 21.5 Recognized
seismic resistant unit in
transversal direction

Fig. 21.6 Fossanova physical
model (UPM) in scale 1:5.5
tested on shaking table

so that for the stresses a scaling ratio σr = 0.18 is obtained. The dimensions of the
model were 3.97× 4.44 m at the base, 3.67 m was the maximum height.

Some simplifications were adopted in the construction of the prototype: free
edges was left in longitudinal direction, in fact no boundary restrains was applied
on the fronts, neglecting the longitudinal continuity as it is in the reality. Then, the
wooden roof structure wasn’t realized because it wasn’t considered as an active el-
ement in the evaluation of the seismic vulnerability [7].

The input signal of the test was assumed to be the scaled natural Calitri record
(North–South direction) of Irpinia (Italy) 1980 earthquake record. The main feature
of the selected earthquake are a maximum acceleration of 0.155 g (compatible with
seismic hazard of the site), a quite long duration time (80 s), a high input energy
for the relevant frequency (0.5 Hz–10 Hz) and typical two peak accelerations (or
two strong motions). The record and the derived elastic spectra (with damping ratio
ζ = 5%) are shown in Fig. 21.7a, b. The shaking table test was performed by con-
sidering three phases: phase 1, phase 2A and phase 2B. In the first phase the as-built
unreinforced physical model (UPM) was tested and heavy damaged at the end. In
the second phase (2A) the model was repaired and reinforced with carbon fiber ties.
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Fig. 21.7 The accelerometric
record (Irpinia, 1980)

Fig. 21.8 Equivalent
capacity curve of the tested
model

Finally, in the phase 2B, the reinforcing system was modified and the model was
loaded until failure. Even though the examination of the reinforced systems is not
the object of the present paper, in the following the level of input intensity which
provoked serious damage to the model for every phase is listed:

− 0.14 g for the original model (phase 1);
− 0.28 g for the strengthened model (phase 2A);
− 0.40 g for the strengthened model (phase 2B);

In particular, the maximum acceleration measured at the base of the shaking
table, by means of the accelerometer “CH1” [9], versus the maximum absolute dis-
placement measured at the top of the buttresses at each step of the phase 1 (unre-
inforced physical model) is shown in Fig. 21.8. The curve can be assumed as an
equivalent capacity curve for the tested UPM [8].
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3 Dynamic Damage Identification

Assuming in first instance linearity under earthquake condition, the following equa-
tions of motion holds for the structure

MẌ+CẊ+KX = ag(t)V (21.1)

where X(t) is the nodal structural response process, M , C and K are n× n mass,
damping and stiffness matrices respectively, V a n× 1 vector while ag(t) represent
the ground acceleration.

A more suitable representation of the structural response may be achieved by
means of the decomposition in fully coherent independent vectors. Despite the non
Gaussianity of the structural response vector X(t)= [Xi(t)] (i = 1, . . . , n), collect-
ing the nodal response processes, its main characteristics can be represented by the
knowledge of the second order spectral properties. Let us consider the power spec-
tral density (PSD) matrix of X(t)

SX(ω)=

⎡
⎢⎢⎣
SX1(ω) SX1X2(ω) · · · SX1Xn(ω)

SX2X1(ω) SX2(ω) · · · SX2Xn(ω)
...

. . .
...

SX1Xn(ω) · · · · · · SXn(ω)

⎤
⎥⎥⎦ (21.2)

The elements of SX(ω) are the direct and cross power spectral densities, defined
as the Fourier transform of the correlation components

SX1Xj (ω)=
1

2π

∫ +∞

−∞
RX1Xj (τ )e

−jωτ dτ (21.3)

For finite length measurements of the process X(t) the elements of the spectral
matrix becomes

SX1Xj (ω,T )=
E[Xi(ω,T )X∗j (ω,T )]

2πT
(21.4)

where Xi(ω,T ) denotes the Fourier transform of Xi(t) over the observation time T

Xi(ω,T )=
∫ T

0
Xi(t)e

−jωt dt (21.5)

The input–output spectral relationship can be written as

SX(ω,T )= Sa(ω,T )
[
H ∗T (ω)V TV H (ω)

]
(21.6)

where Sa(ω,T ) represent the input ground acceleration PSD while H (ω) is the
transfer matrix

H (ω)= [
K + iωC −ω2M

]−1 (21.7)

Dividing both members of Eq. (21.6) by Sa(ω,T )

S(ω)= SX(ω,T )

Sa(ω,T )
=H ∗T (ω)V TV H (ω) (21.8)
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Fig. 21.9 Response spectral eigenvalues γi(ω) increasing peak ground acceleration: (a) ag =
0.14 g; (b) ag = 0.28 g; (c) ag = 0.4 g; (d): Comparison between experimental and identified
frequency decay curves for different values of ground peak acceleration

we observe that the matrix S(ω) does not depend on the observation time T and, as
well as the response PDF matrix SX(ω,T ), is Hermitian and non-negative definite,
thus its eigenvalues Γ (ω)= diag(γ1(ω)γ2(ω) · · ·γn(ω)) are real and non-negative,
with orthonormal complex eigenvectors Ψ (ω)= [ψ1(ω)ψ2(ω) · · ·ψn(ω)]

Ψ (ω)∗TΨ (ω)= I , Ψ (ω)∗T S(ω)Ψ (ω)= Γ (ω) (21.9)

S(ω)Ψ (ω)= Ψ (ω)Γ (ω) (21.10)

The eigenvalues γi(ω) (i = 1, . . . , n) may be sorted in decreasing order, and their
importance in principal component analysis is usually limited to a reduced numbers.

Figures 21.9a–c show the response spectral eigenvalues for different intensities
of ground peak acceleration ag = 0.14 g, ag = 0.28 g and ag = 0.4 g. In the fre-
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Fig. 21.10 Progressive
damage of the model with
increasing PGA

quency axis, the abscissa of the peak of the maximum eigenvalue γ1(ω) allows for
the identification of the frequency decay curve by varying ag , as shown in Fig. 21.9d
in comparison with experimental results.

Damage localization has been performed using the Parameter Method (PM) pro-
posed by Dong et al. [10, 11] using a combination of frequency and mode shapes.
The expression for the PM method is

Δϕ =
n∑
j=1

[
φdj

(
ωuj

ωdj

)
− φuj

]
(21.11)

where φ is the structural mode, n the mode number while upper script u, d stands
for undamaged and damage state respectively.

In Fig. 21.10 the progressive development of the cracks with increasing PGA is
shown. Firstly, tensile stress is attained in both the arches for quite the same value
of the PGA (0.046 g ÷ 0.062 g). Then, stress peaks were observed in the lateral
buttresses for a PGA value equal to 0.066 g. Finally, the collapse mechanism was
identified for a PGA of 0.151 g, when also the base sections of the internal piers
exceed the adopted conventional limit state.

The experimental evidence of the collapse mode and crack evolution as shown in
Fig. 21.10 can be identified by the PM method considering a simplified 2D model
of the structure. In Fig. 21.11a the 2D finite element model is shown allowing the
evaluation of the modes of the damaged and undamaged structure [12]. Once the
evolutionary modes are known, damage location was performed by the PM method
as shown in Fig. 21.11b–d were damage evolutionary localization is identified in the
nodes of the 2D model.

4 Conclusions

The seismic behavior of a physical 1:5.5 scaled model of the church of the Fos-
sanova Abbey has been investigated by means of numerical and experimental anal-
yses. The achieved experimental results lead to the definition of a refined FE model
reproducing the dynamic behavior of the whole structural complex. Then, the cen-
tral transversal three-central bays of the church, as it mostly influences the seismic
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Fig. 21.11 (a) 2D finite element model, arrows symbol for measured displacement, (b) Progres-
sive damage of the model with increasing PGA—PM method identification

vulnerability of the Abbey, was investigated in a more detail by means of a shak-
ing table test on a 1:5.5 scaled physical model in the Laboratory of the Institute for
Earthquake Engineering and Engineering Seismology in Skopje. In the present pa-
per a brief review of the numerical activity related to the prediction of the shaking
table test response of the model is first proposed. Then, the identification of fre-
quency decay during collapse is performed through decomposition of the measured
power spectral density matrix. Finally, the localization and evolution of damage in
the structure is analyzed using a simplified 2D FEM model of the structure. The
obtained results shown that a very good agreement is achieved between the experi-
mental data and the predictive/interpretative numerical analyses.
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