
139X. Wang et al. (eds.), Reprogramming Microbial Metabolic Pathways, 
Subcellular Biochemistry 64, DOI 10.1007/978-94-007-5055-5_7, 
© Springer Science+Business Media Dordrecht 2012

  Abstract   Microbes live in multi-factorial environments and have evolved under a 
variety of concurrent stresses including resource scarcity. Their metabolic organization 
is a re fl ection of their evolutionary histories and, in spite of decades of research, there 
is still a need for improved theoretical tools to explain fundamental aspects of 
microbial physiology. Using ecological and economic concepts, this chapter explores 
a resource-ratio based theory to elucidate microbial strategies for extracting and 
channeling mass and energy. The theory assumes cellular  fi tness is maximized by 
allocating scarce resources in appropriate proportions to multiple stress responses. 
Presented case studies deconstruct metabolic networks into a complete set of minimal 
biochemical pathways known as elementary  fl ux modes. An economic analysis of 
the elementary  fl ux modes tabulates enzyme atomic synthesis requirements from amino 
acid sequences and pathway operating costs from catabolic ef fi ciencies, permitting 
characterization of inherent tradeoffs between resource investment and phenotype. 
A set of elementary  fl ux modes with competitive tradeoffs properties can be mathe-
matically projected onto experimental  fl uxomics datasets to decompose measured 
phenotypes into metabolic adaptations, interpreted as cellular responses proportional 
to the experienced culturing stresses. The resource-ratio based method describes the 
experimental phenotypes with greater accuracy than other contemporary approaches 
and further analysis suggests the results are both statistically and biologically 
signi fi cant. The insight into metabolic network design principles including tradeoffs 
associated with concurrent stress adaptation provides a foundation for interpreting 
physiology as well as for rational control and engineering of medically, environ-
mentally, and industrially relevant microbes.  
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  Abbreviations  

  13C    carbon 13   
  C 

fumarate
     concentration of fumarate   

  C 
inv

     carbon investment   
  Cmole    carbon mole   
  Cmol glc    Cmol glc, carbon moles of glucose   
  Cmol X    Cmol X, carbon moles of biomass   
  C 

op,X
      carbon operating cost for growth   

  C m  M     micromoles of carbon per liter of cytosol   
   E     matrix containing ecologically important elementary modes   
  [E]    enzyme concentration   
  EFM    elementary  fl ux mode   
  EFMA    elementary  fl ux mode analysis   
  FBA     fl ux balance analysis   
  k 

cat
     catalytic turnover number   

  K 
m
     half-saturation constant   

  MFA    metabolic  fl ux analysis   
  N 

inv
     nitrogen investment   

  N 
inv,X,1:1

     nitrogen investment for growth, minimalist  fl ux-to-enzyme approach   
  O 

2,op,X
     oxygen operating cost for growth   

    n       vector containing  fl uxes   
  v 

max
     maximum enzyme-catalyzed reaction rate   

   w     vector containing weighting factors         

    7.1   Introduction: Resources and Life 

 Life is driven by mass and free energy extracted from the environment. The immense 
diversity of life highlights the variety of these mass and energy forms as well as 
the array of successful strategies for exploiting them. Metabolic networks channel 
these resources under an array of environmental constraints and stresses using 
competitive sets of gene products (Elser et al.  2007  ) . The discipline of ecology has 
explicitly and implicitly studied mass and free energy  fl ows on a continuum of size 
scales for more than 100 years. Central themes of many ecological analyses include 
resource investment strategies, energetic ef fi ciencies of different physiologies and 
the tradeoffs between the two. These theories, developed and tested on macroscale 
systems, are useful for decoding the rapidly accumulating omics databases repre-
senting microbial-scale systems. 
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 Scarcity of resources over evolutionary time is thought to have in fl uenced the 
elemental make-up of microbes (Dekel and Alon  2005 ; Elser et al.  2011 ; Makino 
et al.  2003 ; Sterner and Elser  2002 ; Zinn et al.  2004  ) . For instance, elemental avail-
ability is believed to have in fl uenced the evolution of microbial DNA and amino acid 
sequences (Bragg and Hyder  2004 ; Bragg and Wagner  2009  ) . The chromosome 
sequence of  Pelagibacter  is biased toward low nitrogen containing codons, presum-
ably as a response to the extreme nitrogen scarcity in oceanic ecosystems (Giovannoni 
et al.  2005  ) . Proteins involved with carbon, nitrogen, and sulfur acquisition contain 
less of the respective element than average proteins in both prokaryotic and eukaryotic 
microorganisms (Baudouin-Cornu et al.  2001 ; Elser et al.  2011  ) . Highly expressed 
proteins are also thought to be in fl uenced by ‘elemental sparing’ where the relative 
material synthesis costs of limiting resources are reduced (Bragg et al.  2012  ) . Strategic 
use of limiting resources also extends to enzyme cofactors. Respiratory chains require 
large investments of iron; microbes native to low iron environments often shift from 
iron containing enzymes to non-iron requiring enzymes such as from ferredoxin to 
 fl avodoxin under conditions of iron scarcity (Erdner and Anderson  1999  ) . 

 It is hypothesized that not only are macromolecule sequences and cofactor 
requirements in fl uenced by resource scarcity, but also the structure and regulation 
of entire biochemical networks. Selective pressures have eliminated microbes that 
fail to allocate limiting resources to cellular functions providing the most competitive 
return on investment (Carlson  2007,   2009 ; Dhurjati et al.  1985 ; Molenaar et al. 
 2009 ; Wessely et al.  2011  ) . The return on investment can re fl ect a multitude of 
 fi tness properties including toxin production or resistance, attachment to surfaces or 
chemotaxis, osmolyte synthesis or salvage, and high-yielding or high-rate extraction 
of free energy. The role of high-yielding, metabolic ef fi ciency on cellular physiology 
has been established both theoretically and experimentally (Carlson and Srienc 
 2004b ; Varma and Palsson  1993 ; Westerhoff et al.  1983  ) . 

 This chapter details a theory for decoding the multiplicity of microbial strategies 
to extract and channel mass and energy  fl ows under simultaneous environmental 
stresses, with a focus on resource scarcity. Elucidating tradeoffs between resource 
availability and microbial physiology provides a theoretical basis for systemic analyses 
of omics data, and a rational basis for controlling microbes in medical, environmental 
and industrial applications.  

    7.2    In Silico  Analysis of Metabolic Systems 

 Notable advances have been made in understanding the basis for metabolic func-
tioning, but there is still need for guiding network design principles (Huang  2000 ; 
Papp et al.  2009  ) . These principles need to be investigated through computer-based 
analyses integrating the numerous metabolic components and their interactions 
into testable models. For instance, any broad search of the interconnected  fl uxes of 
atoms, electrons, and energy in large-scale reaction networks is simply beyond 
manual feasibility. 
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 Applications of biochemical kinetic models, typically systems of coupled ordinary 
differential equations describing the evolution of concentrations in time, have illumi-
nated microbial processes for decades (e.g. Kargi and Weissman  1987 ; Nielsen and 
Villadsen  1992 ; Smallbone et al.  2010 ; Steuer et al.  2006 ; Straight and Ramkrishna 
 1994 ; Varner  2000  ) . Unfortunately, these approaches when applied to metabolic net-
works are typically either simplistic in terms of the number of processes considered, 
or in terms of the mechanistic model, or require extensive sets of condition-speci fi c 
kinetic parameters. Published kinetic parameters, as compiled by databases like 
BRENDA (Chang et al.  2008 ; Schomburg et al.  2004  ) , can vary over several orders of 
magnitude for the same enzyme, requiring expert knowledge for appropriate incorpo-
ration into biological models and interpretation of results (Teusink et al.  2000  ) . 

 An alternative class of successful  in silico  methods, circumventing requirements 
for large condition-sensitive parameter sets, is known as stoichiometric modeling. 
Stoichiometric models extract systemic information from conservation relationships 
and molecular-level network structure, frequently deduced from omics datasets 
(Reed and Palsson  2003 ; Trinh et al.  2009  ) . There are three major stoichiometric 
modeling approaches: metabolic  fl ux analysis (MFA), linear programming methods 
(also known as  fl ux balance analysis or FBA), and metabolic pathway analysis 
(including elementary  fl ux mode analysis or EFMA). All three methods de fi ne a 
high-dimension solution space of physiologically permissible metabolic  fl ux distri-
butions based on a stoichiometric matrix specifying system conservation relationships. 
This solution space is often represented as a pointed convex cone, although the shape 
can vary depending on the reversibility properties of the reactions (Llaneras and 
Picó  2010 ; Wagner and Urbanczik  2005  ) . The three approaches differ in how meta-
bolic  fl ux distributions are selected from the solution space. Detailed descriptions 
and comparisons of these methods can be found elsewhere (Blank and Kuepfer 
 2010 ; Reed and Palsson  2003 ; Schilling et al.  1999 ; Trinh et al.  2009  ) . 

 The continuous solution space de fi ned by stoichiometric methods such as FBA 
or EFMA contains an effectively in fi nite number of mathematical possibilities. 
Identifying biologically and ecologically relevant  fl ux distributions in this continuum 
requires selection criteria. Maximization of biomass yield on substrate is a widely 
assumed basis for identifying a cellular physiology. The measure has an appealing 
simplicity, re fl ecting an ecologically reasonable structure-function relationship for 
metabolic networks. This criterion has been utilized successfully to predict and 
interpret microbial behaviors, including  Escherichia coli  grown in glucose-limited 
chemostats at modest dilution rates (Carlson and Srienc  2004b ; Fong et al.  2003 ; 
Fong and Palsson  2004 ; Varma et al.  1993 ; Varma and Palsson  1994  ) . However, 
biomass yield maximization does not always adequately describe metabolic behaviors 
such as batch growth, or chemostat growth under conditions of nitrogen limitation 
(Carlson  2007,   2009 ; Papp et al.  2009 ; Schuetz et al.  2007 ; Schuster et al.  2008,   2011  ) . 

 Because of its role in the current chapter, EFMA will be discussed brie fl y here. 
A more detailed description can be found in Chap. 2          of this book which is dedicated 
to EFMA. EFMA begins with the construction of a stoichiometric matrix representing 

http://dx.doi.org/10.1007/978-94-007-5055-5_1
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the set of biochemical reactions to be considered. These are frequently compiled 
based on enzymes annotated from a genomic or metagenomic dataset (Fig.  7.1 ). 
The mathematical representation of the model encompasses all thermodynamically 
relevant system  fl ux distributions. The complete set of enzymatically unique, minimal 
steady-state pathways spanning this permissible space is known as the elementary 
 fl ux modes (EFMs) (Gagneur and Klamt  2004 ; Klamt et al.  2005 ; Schuster and 
Hilgetag  1994 ; Schuster et al.  2000  ) . EFMs allow straightforward investigation of a 
network’s metabolic potential from the bottom up (Klamt and Stelling  2003 ; 
Llaneras and Picó  2010 ; Papin et al.  2004 ; Trinh et al.  2009  ) . These simplest pathways 
represent building blocks for steady-state metabolism, and their linear combinations 
allow system-level analyses of individual microbes, pure cultures, and consortia 
(e.g. Carlson et al.  2002,   2005 ; Carlson  2007,   2009 ; Klamt et al.  2008 ; Poolman 
et al.  2004 ; Taffs et al.  2009 ; Trinh et al.  2006,   2008 ; Wlaschin et al.  2006 ; Zhao and 
Kurata  2009  ) .   

  Fig. 7.1    Schematic representation of elementary  fl ux mode analysis (EFMA) model building and 
cost-bene fi t analysis. EFMA model building and cost-bene fi t analyses involve the following steps: 
(1) metabolic model construction using genomic information and literature resources; (2) model 
conversion into a mathematical basis, whereby the reaction stoichiometries and reversibilities 
constrain steady-state cellular phenotypes to  fl ux distributions within a space known as a  fl ux cone; 
(3) EFMA decomposition of a reaction network into its simplest steady-state pathways, called 
elementary  fl ux modes (EFMs); (4) cost-bene fi t analysis translates the EFMs into resource costs 
based on biochemical and genomic information; (5) minimizing combinations of these resource 
costs identi fi es competitive EFMs, collected as ecologically relevant pathway sets       
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    7.3   Analyzing Metabolic Networks with Molecular 
Level Resource-Ratio Theory 

 The shortcomings of the often used ‘biomass maximization on substrate’ criterion 
highlight the need for additional theoretical frameworks for explaining microbial 
behaviors. The ecological  fi elds are rich in theoretical approaches for analyzing 
 fi tness in various environments. In addition, decades of economic research have 
highlighted the importance of strategic resource allocation. These theoretical frame-
works are well-suited for describing and interpreting many levels of biological 
organization, from molecular-level metabolic systems to entire ecosystems (Carlson 
and Taffs  2010  ) . Resource-ratio theory, from the discipline of ecology, is a unifying 
approach for understanding shared resource competition and investment (Tilman 
 1980  ) . A recent meta-analysis found that experimental tests supported predictions 
based on resource-ratio theory 75% of the time, making it one of the most successful 
theories in ecology (de Mazancourt and Schwartz  2010 ; Miller et al.  2005  ) . 

 An approach similar to resource-ratio theory has been applied to  in silico  metabolic 
networks to quantify the  fi tness of the genome encoded metabolic potential subjected 
to pairs of scarce resources (Carlson  2007,   2009  ) . It is hypothesized that evolutionary 
selection has favored regulation schemes directing resource investment toward effec-
tive, stress-speci fi c metabolic pathways. The methodology examines tradeoffs between 
possible genome-encoded physiologies, represented as EFMs. Cells with regulation 
schemes permitting effective use of genomic potential would gain a  fi tness advantage 
under the relevant stress. To date, the approach has been applied to combinations of 
two limiting resources which can be either catabolic or anabolic in nature (Carlson 
and Srienc  2004b ; Carlson  2007,   2009  ) . This metabolism-focused application is a 
departure from traditional resource-ratio theory, which analyzes competition between 
different organisms for shared resources, rather than comparing potential phenotypes 
available to a single organism. The approach also shares conceptual similarities with 
the ef fi cient frontier curve traditionally utilized in economic risk-return analysis and 
recently applied to biological systems (Kitano  2010  ) . 

 Case studies in molecular level resource-ratio analysis decomposed  in silico  
stoichiometric models of  E. coli  into EFMs (Carlson and Srienc  2004b ; Carlson 
 2007,   2009  ) . As mentioned previously, EFMs are minimal biochemical pathways 
comprised of metabolite transport and chemical reactions; the enzyme-based steps 
require an investment of anabolic resources like nitrogen or iron. EFMs, in this 
context, represent theoretical proteomes for which investment requirements can be 
tabulated. Calculation of investment requirements necessitates an assumed relation-
ship between  fl uxes and enzyme concentrations. This relationship varies depending 
on speci fi c enzyme properties, as well as the chemical environment. Two sce-
narios are proposed as bounds on the pathway-level  fl ux-to-enzyme concentration 
relationships. The  fi rst approach is a minimalist relationship between pathway 
enzymes: the concentration ratio of every enzyme pair is set to one. This scenario 
would utilize varying metabolite pool size and activity modulation including allos-
teric regulation to achieve a speci fi ed  fl ux distribution (this  fl ux-to-enzyme model 
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was previously termed the  fi rst order method). The second  fl ux-to-enzyme approach 
assumes a  fl ux proportional relationship. Enzyme concentration ratios for any path-
way enzyme pair are proportional to  fl ux ratios through the corresponding reactions. 
The proportional scenario would use differences in enzyme concentration as the 
major controller of  fl ux (this model was previously termed the zeroth order method). 
A comparison of the minimal and proportional  fl ux-to-enzyme approaches to 
experimental  fl uxomic data suggests the minimalist approach is a better approxima-
tion for  E. coli , although many additional, potentially relevant, relationships are 
imaginable (Carlson  2009  ) . 

 The two  fl ux-to-enzyme approaches are compared in Fig.  7.2  using experimental 
data for the  E. coli  fumarase enzyme FumC. A  fl ux, representing a  fi tness objective, 
can be realized by a number of different proteomes, depending on the associated 

  Fig. 7.2    Forward  fl ux through the  E. coli  fumarase FumC (ordinate) as a function of fumarate 
concentration (abscissa), for three enzyme concentrations ( curved traces ). Each of the dashed 
 horizontal lines  represents a target  fl ux, i.e. a  fi tness objective. The intersections of these lines with 
the various traces represent alternative investment strategies equally capable of achieving the 
 fi tness objective. The carbon and nitrogen investments (N 

inv
  and C 

inv
 ) are quanti fi ed in the inset 

table; they represent a sum of both enzyme and metabolite pool investments. Michaelis-Menten 
kinetics were assumed, and the reverse reaction was neglected. Kinetic parameters for  E. coli  
FumC were taken from the literature (Estévez et al.  2002  ) , and the substrate concentration associ-
ated with half-saturation of FumC is indicated on the x-axis with an  arrow . The plotted range of 
fumarate concentrations is well within intracellular measurements of  E. coli  from the literature 
(Bennett et al.  2009  ) . The ‘low’, ‘average’, and ‘high’ enzyme concentrations were estimated 
based on intracellular copy numbers measured in  E. coli  (Taniguchi et al.  2010  ) , assuming a cylin-
drical cell 2  m m long with a 1  m m diameter       
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metabolome. Two central concepts are illustrated in Fig.  7.2  by the intersections of 
the  fi tness objective  fl uxes (dashed lines) and the enzyme kinetics traces. First, each 
target  fl ux can be driven by multiple combinations of enzyme and substrate concen-
trations. Second, low enzyme concentration may not support a high target  fl ux, no 
matter how high the substrate concentration. These ideas illuminate tradeoffs 
between alternative investment strategies for achieving the same phenotype.  

 A straightforward tradeoff exists between investment of substrate into enzymes 
and into metabolites. Steady state metabolite pools are an investment because 
stationary concentrations represent substrate that is unavailable for other pro-
cesses. The optimal strategy in terms of this tradeoff isn’t universal: it depends in 
complex fashion on kinetic parameters, enzyme and substrate stoichiometry, and 
the target  fl ux. Comparing the second and third lines of the inset table from 
Fig.  7.2  shows that it takes less carbon investment to drive very small  fl uxes 
through FumC with a large fumarate pool, but larger  fl uxes can be driven more 
economically with a large enzyme pool. This effect, which may seem counterin-
tuitive initially, is a result of extreme differences in investment per molecule of 
enzyme versus per molecule of substrate. 

 Tradeoffs are environment speci fi c and investment of an abundant resource into 
metabolite pools may not represent a  fi tness burden. The  fi rst line from the Fig.  7.2  
inset table illustrates this point: if nitrogen limitation is the only relevant stress, it 
may be competitive to express the smallest FumC concentration capable of supporting 
a given target  fl ux, even if that requires a heavy investment of carbon into metabolite 
pool. Additional environmentally-dependent tradeoffs are also noteworthy. In an 
environment that changes rapidly, the target  fl ux may increase faster than a microbe 
can reorganize its proteome. In those environments, it may be competitive to overbuild 
enzymes for the current condition. As an example, the second line of the inset table 
from Fig.  7.2  implies that, in a carbon-limited environment with a low  fl ux target, 
it is effective to drive that  fl ux via the metabolite pool (C

inv
 = 250 vs. 330 C m M). This 

conclusion, however, rests on the assumption that the  fl ux target won’t suddenly and 
drastically increase. If it did, the  fi nal line of the inset table from Fig.  7.2  demon-
strates that the new  fl ux target might exceed the capacity of the small enzyme pool, 
providing a competitive advantage to the ‘overbuilt’ phenotype.  

    7.4   Constructing Resource Pair Tradeoff Curves 

 EFM anabolic resource investment requirements can be analyzed in concert with a 
catabolic physiological  fi tness metric termed an operating cost. EFM operating 
costs are the amount of substrate, typically an electron donor or acceptor, required 
to synthesize a speci fi ed amount of cellular product, such as one Cmole of biomass 
or one mole of ATP: equivalent to inverted yields. The operating cost re fl ects the net 
conversion ef fi ciency of the pathway. The relationship of investment requirements 
against operating costs ranks EFMs ef fi ciently based on combined resource use 
minimization. 
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 Minimizing combined EFM resource costs for the same cellular product 
identi fi es a tradeoff curve, also known as a ‘cost minimization envelope’ (Carlson 
and Srienc  2004a,   b  ) . Figure  7.3  illustrates two tradeoff curves for the  E. coli  cen-
tral metabolism. Figure  7.3a  is an electron donor (glucose) vs. electron acceptor 
(oxygen) tradeoff curve while Fig.  7.3b  is an electron donor (glucose) vs. anabolic 
resource (nitrogen) investment cost tradeoff curve. The plots are graphical illustra-
tions of resource-ratio planes de fi ned by the genome encoded metabolic potential. 
Each circle represents one distinct EFM. The EFM coordinates are the costs in 
terms of the two plotted resources to synthesize one Cmole of biomass. Physiologies 
that minimize requirements for resources are hypothesized to represent ecologically 
and economically competitive strategies. The leftmost EFM along the electron 
donor axis (abscissa in Fig.  7.3a, b ) minimizes the cost of biomass synthesis on 
glucose; however, this reduction is offset by a higher requirement for the resource 
plotted on the ordinate. High tradeoff curve resource-ratios (paired resource/
electron donor) permit increasingly ef fi cient extraction of substrate free energy, 
up to a system constrained maximum. Moving right along a tradeoff curve maps 
competitive physiologies as the resource-ratio of either oxygen or nitrogen 
dec reases relative to glucose. Lowering the resource-ratio increases glucose operat-
ing costs (Fig.  7.3 ).  

 Tradeoff curves represent combinations of enzymatic steps that provide the highest 
possible free energy yield based on the interaction between network stoichiometry 
and resource availability ratios. When the ratio of oxygen or nitrogen to carbon is 
small, tradeoff analysis indicates it is competitive for  E. coli  to down regulate the citric 
acid cycle, extracting easily accessible free energy from glycolysis while secreting 
partially oxidized metabolic intermediates (e.g. acetic or lactic acid). Retaining the 
‘lost’ material and energy through further oxidation would represent a poor invest-
ment of the scarce resource. When the same resource ratios are high, the EFMs 
populating the left extreme of the tradeoff curve indicate it becomes ecologically 
competitive to completely oxidize glucose. The slopes of a tradeoff curve formalize 
the diminishing return of free energy extraction from substrate relative to 
ef fi cient use of the second resource. These speci fi c results are based on the physi-
ological potential of  E. coli , and general results depend on an organism’s genome-
encoded potential. 

 Physiological responses consistent with resource-ratio theory can have tradeoff 
properties that seem initially contradictory. For instance, the phenomena of microbial 
over fl ow metabolisms have been reported under a variety of conditions, including both 
nutrient excess and scarcity. The widespread occurrence of this metabolic strategy 
suggests there are fundamental adaptive principles guiding microbial responses 
(El-Mansi and Holms  1989 ; El-Mansi  2004 ; Majewski and Domach  1990 ; Neijssel 
et al.  1996 ; Straight and Ramkrishna  1994 ; Teixeira de Mattos and Neijssel  1997  ) . 
The presented resource-ratio approach provides a single theory to explain over fl ow 
metabolism for both conditions based on small resource availability ratios. Under 
conditions of unrestricted environmental resources, the cellular resource ratio is 
constrained by the ratio of the corresponding transporter capacities (V

max
). An imbal-

ance in transporter capacity can create nutrient limitation stress responses even when 
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  Fig. 7.3    Tradeoff curves for biomass synthesis in  E. coli  MG1655. Each  circle  represents an 
elementary  fl ux mode (EFM) producing one carbon mole of biomass;  dark  fi lled circles  and  line 
segments  represent  fl ux distributions minimizing the combined costs plotted on the respective axes. 
Both abscissae represent glucose operation costs (C 

op,x
 ): the amount of glucose required to 



1497 Microbial Adaptations to Simultaneous Stresses

the limiting resource is present at high levels, relative to enzyme half-saturation values. 
Under conditions of nutrient scarcity, however, availability depends on environmental 
supply and transporter af fi nity (K

m
). The resource-ratio-based analysis of metabolic 

potential predicts a physiology consistent with an over fl ow metabolism in both cases. 
 Additional  in silico  studies have investigated alternative enzyme investment proxies, 

including the minimization of total  fl ux or number of biochemical steps (de Figueiredo 
et al.  2009 ; Hoffmann et al.  2006 ; Holzhütter  2004 ; Poolman et al.  2004 ; Stelling 
et al.  2002  ) , a summation of enzyme set molecular weights or volume (Beg et al.  2007 ; 
Vazquez et al.  2008a,   b ; Wessely et al.  2011  ) , and a number of alternatives (Schuetz 
et al.  2007  ) . While the approaches don’t explicitly consider resource-ratio theory, 
they do consider allocation of resources, and sometimes arrive at similar predicted 
physiologies. An explicit consideration of resource investment has advantages when 
the resource is not uniformly distributed across proteins like the cofactor iron. Recent 
simulations and experiments in our laboratory demonstrated that the iron-limited 
physiological response is distinct from nitrogen limitation in  E. coli , and that these 
differences map well to a resource-ratio interpretation.  

    7.5   Decomposing Fluxomics Data into Simultaneous 
Stress Adaptations 

 Microbes live in complex environments and are exposed frequently to simultaneous 
demands (Elser et al.  2007  ) . Adaptations to maximize  fi tness require allocating limiting 
resources in optimal proportions between multiple cellular responses. These adapta-
tions are proposed to be predictable using economic, evolutionary, and ecological 
theory (Bloom et al.  1985 ; Carlson and Taffs  2010 ; Kitano  2010 ; Papp et al.  2009 ; 
Perrin and Sibly  1993  ) . In fact, dynamic modeling methods have been applied for 
decades to study simultaneous environmental pressures (Bader  1978 ; Kooijman 
 2000 ; Molenaar et al.  2009 ; Straight and Ramkrishna  1994  ) , but these models are 
not yet able to fully capitalize on the omics revolution. Continuing advances in 
stoichiometry-based network models, however, are enabling systems-wide modeling 
efforts to understand microbial resource allocation. 

 A recent study used the stoichiometric modeling approach EFMA to decode 
potential  E. coli  adaptations to multiple stresses (Carlson  2009  ) . EFMs from the 
 E. coli  model were translated into resource costs, and a set of ecologically relevant 
EFMs were assembled from cost minimizing tradeoff curves (Fig.  7.3 ). Each individual 

Fig. 7.3 (continued) build one Cmole of biomass using a pre-existing proteome. The ordinate in 
sub fi gure ( a ) represents oxygen operation cost (O 

2
 , 
op,x

 ): a similar metric for oxygen. The ordinate 
in sub fi gure ( b ) represents nitrogen investment cost (N 

inv,x
 ): the amount of nitrogen contained in the 

proteome supporting each EFM  fl ux distribution. The plotted investment costs were calculated 
using the minimalist  fl ux-to-enzyme method       
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EFM consists of a unique enzyme pattern, providing a basis for  fl ux  fi ngerprinting. 
The  fl ux distributions were projected onto experimental 13C  fl uxomics datasets 
(Schuetz et al.  2007  )  to decompose measured phenotypes into metabolic responses, 
interpreted as proportional to the experienced culturing stresses. 

 The mathematics behind this analysis used experimentally measured 13C-based 
 fl ux distributions (

�
v) and the set of ecologically competitive elementary modes 

( E ) identi fi ed through paired cost minimizations. The  fl uxomic data described the 
 E. coli  central carbon metabolism using ten degrees of freedom; the EFMs were 
projected into the same ten dimensional space to permit comparison. The propor-
tional contribution of each individual EFM to the overall phenotype is given by a 
weighting vector 

��
w  such that:

     
v Ew=
� ��

   (7.1)  

where E is a matrix containing the elementary modes as column vectors. The vector ��
w  was determined using nonnegative least squares analysis to solve the following 
problem:

     ;⏐⏐ − ⏐⏐ ∀ >���

�� �
Min : 0w iEw v i w    (7.2)  

Only positive elements were considered for 
��
w  to limit considerations to biologi-

cally meaningful solutions; biomass- and ATP-synthesizing EFMs are not reversible. 
The magnitude of each weighting element represents the proportional contribution 
of the corresponding EFM to the mathematical description of measured cellular 
physiology. 

 In the described study (Carlson  2009  ) , the  E. coli  metabolic network contained 
197,018 distinct EFMs; the set  E  consisted of 38 distinct pathways identi fi ed from 
tradeoff curve analysis. Only three or four of these pathways were needed to best 
describe each of the four experimentally measured metabolic phenotypes (

�
v ). 

These phenotypes comprised unrestricted batch growth, two carbon-limited chemo-
stats (dilution rates of 0.2 and 0.4 h −1 ), and a nitrogen-limited chemostat (dilution 
rate of 0.2 h −1 ). The best  fi t of 

�
v  for each of the four experimental distributions 

included EFMs from multiple tradeoff curves, suggesting that every culture investi-
gated was responding to simultaneous stresses. For instance, the batch growth  fl ux 
distribution was best described as a combination of metabolic strategies likely to be 
competitive for oxygen and nitrogen limitation, as well as an optimal biomass 
synthesis pathway. The description is attractive considering the often-reported 
over fl ow meta bolism associated with  E. coli  unrestricted batch growth (e.g. 
Meadows et al.  2010 ; Xu et al.  1999  ) . 

 In addition to its promising qualitative properties, the accuracy of the  in silico  
description was compared quantitatively to an extensive collection of FBA-based 
 fl ux distributions using the Euclidean distance metric. The set of ecologically 
selected EFMs described the experimental data with better accuracy than any of the 
tested FBA-based distributions. The best FBA descriptions required different objective 
functions for different culturing conditions. The most accurate reported FBA-based 
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description for the experimental batch growth data utilized the maximization of 
ATP yield per  fl ux unit objective function (Schuetz et al.  2007  ) . 

 The nonnegative least squares-based predictions were tested for statistical and 
biological signi fi cance by comparing the ability of 10,000 randomly selected EFM 
sets (of the same size) to describe the experimentally measured phenotypes. Not one 
random set described the four tested experimental datasets as accurately as the EFM 
set selected by minimization of combined costs. A perturbation analysis was per-
formed to characterize the sensitivity of the approach to experimental uncertainty in 
the measured  fl ux distributions. The predictions were remarkably stable, with the 
magnitude of the weighting factors falling into a tight distribution and no more than 
6% of 10,000 simulations selecting EFMs different than the initial batch growth 
analysis (Carlson  2009  ) .  

    7.6   Future Directions 

 An important consideration in stoichiometric modeling of metabolism is the robust-
ness of phenotype. For every metabolism our group has investigated, the resource-
ratio space very near the tradeoff surface includes many additional EFMs (Fig.  7.3 ). 
Laboratory chemostat experiments have shown that yield differences as small as 
0.5% are selectable (Dykhuizen and Hartl  1980  ) , but selection pressures vary in 
both magnitude and kind over evolutionary time, suggesting that even greater mar-
gins in ‘optimal’ metabolic behavior are likely  fi xed in nature. While perhaps not 
‘competitive’ in strictly-controlled, non-varying environments, versatility and resilience 
matter in the long game, and tradeoffs between robustness and optimal performance 
are well known in nature as well as engineering (Csete and Doyle  2002 ; Kitano  2010  ) . 
Our laboratory is experimenting with different margins of optimality and clustering 
approaches to  fi nd an appropriate balance between the concepts of metabolic robust-
ness, resource requirements and cellular performance for selecting important metabolic 
phenotypes. 

 Not all investments produce a bene fi t that is easy to compare objectively between 
EFMs. For example, extensive theoretical and experimental work supports the notion 
that rate-based strategies can outcompete yield-based strategies in certain environ-
ments (MacLean  2008 ; Schuster et al.  2008  ) . Unfortunately, quantifying the relative 
bene fi t of rate differences between pathways would obviate the main bene fi t of 
stoichiometric modeling: wide applicability without extensive parameterization. 
Similarly, some investments can be dif fi cult to tabulate; cofactor requirements for 
enzymes are frequently unknown and potentially  fl exible with likely  fi tness con-
sequences, causing dif fi culties in analysis of trace element scarcity. Differential 
investments in non-metabolic functions (e.g. chaperones, sensory proteins, or even 
ribosomal synthesis) can require special effort to be integrated into the tradeoff 
curve framework, although simple dynamic models are being developed for that 
purpose (Molenaar et al.  2009  ) . With eukaryotic systems, organelles and their 
associated biochemical pathways have additional investment requirements that 
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should be accounted for to adapt the presented methodology. Questions remain: for 
instance, what additional membrane investment cost should be considered for 
organelle enzymes, or is this investment negligible when compared to the outer 
cellular membrane synthesis costs? Detailed ecological models exist for cellular 
resource budgets, accounting for uptake and growth machinery, storage compounds, 
and baseline physiologic functions. These are important considerations: while the 
metabolic enzyme collection is  fl exible in microbial generalists, the resources 
invested into other processes are critical throughout microbiology and presumably 
non-uniform. In addition microbes often express enzymes that are not required for 
their current circumstances. In a form of ‘hedging metabolic bets’, microbes may 
divert a fraction of their resources to a backup plan if the environment suddenly 
changes. Economic models associated with hedge funds surely will be useful for 
interpreting what fraction of a resource pool should be invested into risk-management 
strategies. For these reasons, development of suitable proxies for various types of 
investments and bene fi ts will continue as an open area in the  fi eld of metabolic 
analysis. The best proxies will be calculable without extensive laboratory work, but 
effective in selecting a set of modes that is responsive to a speci fi c stress. 

 Finally, microbial communities can be highly regulated and stable structures based 
on extensive trading of resources (Miller et al.  2010 ; Pfeiffer and Bonhoeffer  2004 ; 
van der Meer et al.  2005 ; Wintermute and Silver  2010  ) . Stoichiometric analysis of 
community metabolism is a growing  fi eld (Dias et al.  2008 ; Stolyar et al.  2007 ; Taffs 
et al.  2009 ; Zhuang et al.  2011 ; Zomorrodi and Maranas  2012  ) , and aspects of the 
presented analysis have been extended to coevolved microbial consortia to examine 
whether members forgo individual optimality for community-related bene fi ts (Taffs 
et al.  2009  ) . Resource-ratio theory has also recently been expanded to interpret 
resource exchanges between species (de Mazancourt and Schwartz  2010  ) . Re fi ning 
this theory to allow stoichiometry-based modeling of exchanges between and relative 
abundance of interacting microbes will play an important role in deciphering geo-
chemical cycles. Highly ef fi cient natural systems will also provide design blueprints 
for robust arti fi cial consortia in bioprocess applications (Bernstein et al.  2012  ) .  

    7.7   Conclusion 

 Stoichiometric network models are important theoretical tools, facilitating systems-
wide modeling efforts for interpreting how microbes allocate resources in response 
to different environmental demands. This chapter explored microbial phenotypes 
that maximize  fi tness in multi-factorial environments through an economic analysis 
of metabolism. The economic analysis identi fi ed costs associated with every 
genome-encoded phenotype, which were used with ecological resource-ratio theory 
to characterize phenotypic tradeoff surfaces. These metabolic strategies support the 
notion of fundamental adaptive principles to the regulation of metabolism. For 
instance under the seemingly opposite scenarios of unrestricted and scarce resources, 
the resource-ratio based analysis predicts an over fl ow metabolism is ecologically 
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competitive. The presented schemata, developed primarily to understand metabolic 
network structure and function, provide a rational basis for investigations in 
environmental ecology, as well as for control of microbial processes in medical and 
industrial applications.      
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