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  Abstract   Super fi cially, evolutionary engineering is a paradoxical  fi eld that balances 
competing interests. In natural settings, evolution iteratively selects and enriches sub-
populations that are best adapted to a particular ecological niche using random processes 
such as genetic mutation. In engineering desired approaches utilize rational prospective 
design to address targeted problems. When considering details of evolutionary and engi-
neering processes, more commonality can be found. Engineering relies on detailed 
knowledge of the problem parameters and design properties in order to predict design 
outcomes that would be an optimized solution. When detailed knowledge of a system is 
lacking, engineers often employ algorithmic search strategies to identify empirical solu-
tions. Evolution epitomizes this iterative optimization by continuously diversifying 
design options from a parental design, and then selecting the progeny designs that repre-
sent satisfactory solutions. In this chapter, the technique of applying the natural princi-
ples of evolution to engineer microbes for industrial applications is discussed to highlight 
the challenges and principles of evolutionary engineering.  
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  Abbreviations  

  ADAM    array-based discovery of adaptive mutations   
  CO    cellular objectives   
  EMS    ethyl methane sulfonate   
  EO    engineering objectives   
  EvoEng    evolutionary engineering   
  MAGE    multiplex automated genome engineering   
  NTG    nitroso-methyl guanidine   
  Oligo(s)    oligonucleotide(s)   
  RNAseq    RNA sequencing   
  SELEX    selectable evolution of ligands by exponential enrichment   
  SS    solution space   
  StEP    staggered extension process   
  TRMR    trackable multiplex recombineering     

       3.1   Introduction 

 The interaction of humans and microorganisms has a long history including the 
domestication of microbes as early as the  fi fth century BC for a variety of fermentation 
processes such as baking and viticulture. With the progression of time and scienti fi c 
knowledge, microbiology has been applied to many industrial sectors including 
food, waste treatment, health and medicine, and more recently, energy. The microbes 
used in these processes have all been advantageous over other production method-
ologies due to the unique properties of life: a self-replicating system, capable of 
organizing highly complex, chaotic chemistry in response to constraints imposed by 
the surrounding state or environment. In this light, industrial microbiology utilizes 
the bene fi cial properties of microorganisms by programming cellular biochemistry 
to maximize production of a target chemical. 

 An additional interesting and potentially complicating aspect of microorganisms 
is that they evolve. Evolution, under natural conditions, is the process of change 
throughout a population over time: cycling between generation of diversity, and sub-
sequent selection for the most ‘ fi t’ subpopulations. Classically, biology generates 
diversity through genetic mutation while natural selection acts as an evaluator of 
competitive  fi tness. In its most basic form, evolution can be considered to be an opti-
mization function,  fi nding maxima through iterative trial-and-error. Nature changes 
the genotypic composition of the cell through various non-directed phenomena such as 
point mutations, genome rearrangements and recombination (as well as proposed non-
genetic mechanisms, i.e. epigenetics). These inherited changes are key determinants to 
the ultimately displayed phenotypic variations. However, the staggering complexity 
of even the smallest genomes makes it dif fi cult to draw conclusive cause-and-effect rela-
tionships between the genotype and phenotype. Such unpredictability occludes 
ambitions of rational design and engineering of complex phenotypes without 
signi fi cant a priori knowledge; an important goal for industrial microbiology. 
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 Historically, one of the most powerful methods to produce a desired phenotype has 
involved leveraging the innate optimization properties of evolution. Often industrial 
microbiology goals are at odds with normal cellular function, so aligning evolutionary 
and industrial goals can lead to productive results. By utilizing a diverse population 
and selecting subpopulations for incorporation in subsequent rounds of evolution, it is 
possible to employ evolution as a search function for optimal genotypes with respect 
to the desired phenotype. This practice is known as evolutionary engineering, and will 
be the focus of the following chapter. As alluded by the name, evolutionary engineering 
is conceptually characterized by parameters of both the evolutionary process and the 
engineering principles (Fig.  3.1 ). As such several speci fi c evolutionary engineering 
(EvoEng) methodologies and examples will be discussed with particular emphasis 
placed upon theory and applications to the design of industrially-relevant microbes. 
Additionally, EvoEng will be evaluated for its implications in systems biology and 
synthetic biology, as well as the implications of advancements in DNA sequencing 
and synthesis technologies on the future of EvoEng.   

    3.2   Optimization 

 In connecting evolutionary concepts to industrial microbiology design, an objective 
(e.g. production titer of biofuel) can be represented by a relative measure of  fi tness. 
This would allow for a visual and mathematical means of monitoring increases in a 

  Fig. 3.1    The work  fl ow for Evolutionary Engineering draws on two different, but related cycles – 
the evolutionary optimization cycle and the engineering cycle. First a wild-type strain or seed 
sequence is selected as a platform to begin the Evolutionary engineering work fl ow. The seed 
sequence proceeds one of two ways: it can proceed to the engineering cycle, where alterations will 
be made rationally, or the seed sequence can be optimized through the evolutionary cycle. Both 
cycles return to the screening/selection node at which the resulting characterization of  fi tness confers 
either a satisfactory production strain or a seed sequence for further iteration       
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desired objective. The preferred method for visualizing adaptation toward  fi tness is 
a   fi tness landscape  (Fig.  3.2 ), a three-dimensional  fi tness map where the X- and 
Y-axes are chosen to represent underlying contributing factors to  fi tness. The pos-
sible cellular functions that are depicted on a  fi tness landscape represent the  solu-
tion space  (SS) or the design space. With accurate  fi tness landscapes models can 
describe the topological landscape of the correlation between the X and Y projec-
tion to  fi tness (Kauffman and Levin  1987  ) . These models are then compiled and 
used to make predictions about the behavior of future designs. Thereby, it becomes 
impossible to achieve accuracy or precision in the  de novo  design of optimized sys-
tems without,  fi rst, accurate data regarding the behavior of parts within the system.  

 If a framework can be developed to describe the  fi tness landscape/SS, then it may also 
be possible to utilize mathematical or algorithmic approaches for interrogating the space 
for design purposes. There are a variety of different approaches that could be employed 
including expectation-maximization algorithms, simulated annealing algorithms, or cost-
bene fi t analysis modeling approaches (Dekel and Alon  2005 ; Gillespie  1984  ) . These 
types of approaches could not only help identify a global maximum in a  fi tness landscape, 
but also help direct the best methods to evolutionarily reach that maximum. 

    3.2.1   The Fitness Landscape 

 The  fi tness landscape is classically a three-dimensional plot, which has a “ fi tness” 
score displayed on the Z-axis as a dependence of the X and Y variables. First introduced 

  Fig. 3.2    Fitness landscapes. The three-dimensional  fi tness landscapes projected here represent the 
relationship between genotype and phenotype, with the two-dimensional Solution Space (SS) rep-
resenting the genotype and all of its possible variations. During the evolutionary optimization 
process, genotypes diversify from a starting or seed sequence ( Black dots ) to related genotypes 
surrounding the seed sequence in the SS, while selection pressures to improve  fi tness provide a 
directionality to the evolutionary paths ( Black arrows ). As the topology is traversed, the global 
landscape and seed sequence will directly impact the  fi nal convergence. In ( a ) the  fi tness landscape 
is very homogenous, with one central peak, so all starting points will converge upon this global 
maxima, however, in ( b ) the multitude of local maximas allows many different paths of conver-
gence even for the same seed sequence, although not every peak is accessible to the same seed 
sequence. In ( b ) this diversity of possible evolutionary paths is caused by the homogeneity of the 
rugged landscape; the slopes and peak heights are all identical, so trajectories have no bias in 
directionality and the different optima have no selectable  fi tness bias       
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by Wright  (  1988,   1931  ) , the  fi tness landscape in evolution uses the genome sequence 
as the X- and Y- axes, where the area of the two-dimensional plane formed by these 
two parameters represents the total SS for that particular genome. Within the total 
SS for an organism, each point represents one particular variant of the genome 
sequence. This projection of the  fi tness landscape can manifest as a monotonic 
(Fig.  3.2a ) or a rugged landscape (Fig.  3.2b ), which will greatly affect the move-
ments around the SS. Each immediately neighboring point then represents one indi-
vidual change in the genomic sequence. Given an  Escherichia coli  genome consists 
of ~4.6 million base pairs of DNA, which have four possible outcomes (or informa-
tional units), the possible SS would be 4 4,600,000 , as calculated by:

     
LN = λ     

 Where  N  is the number of possible sequences,   l   is the number of informational 
units, and  L  is the length of the genome. Obviously, this is a fantastically large num-
ber that is impossible to explore by empirical experimental characterization of each 
possible variants. 

    3.2.1.1   Parameters of Fitness Landscapes 

 Fitness landscapes are an extremely useful tool in evolutionary analysis when they 
are created using tightly controlled constants. These  fi tness landscapes are gener-
ated under the assumption that a phenotype is correlated only to changes in geno-
type, however this is clearly untrue. Abiotic environmental factors can drastically 
change cellular dynamics and thereby, phenotype. From an only slight increase in 
incubation temperature, the global phenotype of a microbe could radically switch to 
a heat-shock response – which will create a very different projection of cellular 
 fi tness. Indeed, many of these global changes of phenotypes will also change the 
evolutionary parameters of the microbe; in times of stress such as heat-shock or 
starvation microbial populations will increase the rate of mutation (through error-
prone DNA repair systems). These changes to the evolutionary parameters alters the 
topology of the  fi tness landscape, as well as the movement of subpopulations around 
the SS. Thus, the  fi tness landscape is fundamentally linked to genotype, but the 
detailed  fi tness landscape project can change based upon any number of factors that 
can in fl uence gene expression. 

 Similarly,  fi tness landscapes are susceptible to the in fl uences of coevolution. It is 
always important to remember that the process of evolution happens on a popula-
tion-scale: any measure of an individual’s  fi tness is a relative quanti fi cation based 
upon the competitiveness of that particular variant against the other populations 
present. However, relationships may emerge between two variants that cause the 
exhibited phenotype to depend upon the presence of both strains. To observe such 
an evolutionary event it becomes important to maintain a level of heterogeneity of 
the culture, but have distinct separation of variants during the screening process. 

 In short, the parameters of the  fi tness landscape encompass a variety of factors 
that can alter the phenotype ( fi tness). These parameters that uncouple phenotype 
from genotype, have become the subject Epigenetics, coined by Conrad Waddington 
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in the 1940s and conceptually illustrated using  fi tness landscapes (Siegal and 
Bergman  2002 ; Waddington  1942,   1959,   1960  )  Focusing on instances of non-coupled 
phenotypic and genotypic variation, epigenetics can alter an overall cellular  fi tness 
landscape, acting as a sort of underlying epigenetic landscape. After all, each cell in 
the human body contains identical genetic information, yet liver tissue is very dif-
ferent from gut mucosal tissue. For phenotypic optimization it is important to remain 
cognizant of these epigenetic parameters, which may be underlying the perceived 
genetic changes.  

    3.2.1.2   Traversing the Fitness Landscape Through Evolution 

 Optimization in a  fi tness landscape becomes the process of climbing peaks to  fi nd 
 fi tness maxima. This process is possible through the capability of evolution to 
(i) move about the SS, (ii) sense improvements in  fi tness and (iii) select for sub-
populations with an improved  fi tness. The movement around the SS is dependent 
upon the rate of diversi fi cation, the topology of the landscape, and the  seed sequences  
– the starting points in the SS. For a moment, imagine being a blind mountain 
climber with the goal of climbing to the highest peak in an uncharted mountain 
range. Without direction, the climber would attempt to achieve their goal by con-
tinually climbing upward. In this way we could climb upward in any direction until 
we reach a peak – however – much to our chagrin, we reach the top of what we 
thought was the highest peak, only to realize there was a taller peak hidden behind 
the peak we just climbed! Now we have no way of reaching the higher peak without 
descending into a valley. Without changing the process (always moving upward) 
one way to reach a different peak would be to have a different starting point. 

 This is a simple analogy, but it is easy to see what we have encountered is the 
problem of local maxima – we will not be able to reach the global maximum from 
our initial conditions. If we had, perhaps, started in a different position or not had 
the  fi rst mountain blocking the larger peak behind it, we could’ve climbed the tallest 
peak the  fi rst time. Another possible solution is to be able to move greater distances 
with each successive step – possibly allowing us to “jump” across valleys. These 
changes in simulation conditions re fl ect favorable selection of seed sequences or a 
tuning of the mutational rate. Either  a priori  knowledge of the system or utilizing 
many starting points can drastically improve identi fi cation of seed sequences; for 
many phenotypes this can be as general as selecting the proper organism (or  chassis ) 
for evolution. Changing the search movements around the SS by tuning mutational 
rates can be done through many  in vivo  (i.e. sexuality) and  in vitro  (i.e.  in vitro  
recombination) methodologies, which will be covered in Sect.  3.4 .   

    3.2.2   Length Scales 

 The shape and step-size for traversing a  fi tness landscape can change in relation to 
different types of mechanisms of generating genetic diversity. While the foundation 
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for building a  fi tness landscape is DNA, the conceptual framework discussed to this 
point has focused on variations that occur within the context of an organism’s wild-
type genome. All organisms have a basal genetic mutation rate for point mutations. 
Point mutations constitute the smallest length-scale of genetic change. Point muta-
tions will generally make small, if any, change to the shape of the  fi tness landscape 
and represents the smallest step size for traversing the  fi tness landscape. Different 
length-scales of genetic modi fi cations can be used to make larger changes to the 
shape of the  fi tness landscape and to more quickly traverse through the landscape. 
Whole gene deletions or additions represent a next level of genetic change followed 
by introduction/deletion of pathways. Recent approaches to industrial microbiology 
have explored the design and use of microbial consortia for directed production. 
This represents a broad scale approach where the  fi tness landscape would be de fi ned 
by the capabilities of two independent genomes. Looking ahead, the broadest scope 
would be to consider design and the  fi tness landscape from a metagenomic perspec-
tive where any genetic information is possible and synthetic biology can be used to 
experimentally implement completely novel gene combinations.   

    3.3   Design Parameters 

    3.3.1   Rationality vs. Randomness 

 Adaptation over a period of time to confer a favorable and stable functional state is at 
the core of biological evolution. As mentioned previously, natural biological evolution 
occurs by the generation of genetic diversity (via random mutations) and selection 
according to improvements in  fi tness associated with survival and replication. The 
genetic information of the organism not only codes for the information related to how 
the organism should function in the current environment but also the potential for 
evolving with changing environments. Genotypic alterations that are positively 
selected by the environmental factors/selection are at the core of Adaptive Evolution 
(AE) (Atwood et al.  1951  ) . Besides environment, engineering designs can be devel-
oped to implement evolution for real-world applications to attain desired characteris-
tic traits or engineering objectives in parallel to maintaining the basic cellular 
objectives. This approach is one form of EvoEng and is de fi ned as a rational approach 
toward the design and fabrication of cells to obtain a stable phenotype. These pheno-
typic objectives play a primary role in quanti fi cation of evolution for respective geno-
typic changes. In other words, there exists a one-way relationship between the 
genotypic and phenotypic components (i.e. the changes at the genetic level are trans-
lated into phenotype). EvoEng, attempts to simultaneously maximize engineering 
objectives and cellular objectives by incorporating rational design to select for the 
engineering objective and randomness of evolution to search across the SS. 

 Ultimately, the source of genetic variation is mutation. Mutations may occur 
spontaneously or be induced by external mutagens to achieve diversity to address 
desired cellular and or metabolic objective. Spontaneous mutations that occur natu-
rally in the form of point mutations, genome rearrangements or horizontal gene 
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transfers are considered to be relatively stable and occur at a low basal rate (Drake 
 1999  ) . Natural environmental adversities such as nutrient de fi ciency or metabolic 
stress modulate the rate of such mutations. On the other hand there are external muta-
gens that can cause considerable changes in the environment of the organism leading 
to the phenomenon of frame shifts, deletion or insertions of the nucleotides. 

 Past researchers have proven through environment-dependent mutagenesis that 
engineering with evolution is sensitive to two major drawbacks. First, the rate of 
adaptation may not directly correlate to the rate of mutation. While comparing sexu-
ally reproducing populations and asexually reproducing populations it is known that 
the rate of mutation is elevated in asexual populations, yet does not alone accelerate 
the speed of evolutionary adaptation, for then sexuality would be outcompeted as a 
phenotype. Second, isolation of a mutant strain with desirable traits is highly depen-
dent upon the selection and screening for the desired trait, which requires traits that 
are differential and quanti fi able. To deal with these concerns, it is necessary to 
incorporate rationality in the design of an ef fi cient and successful EvoEng investi-
gation. When introducing rationality to evolution, there is a trade-off as rationality 
can constrain the possible evolutionary trajectories. 

 Metabolic engineering and Synthetic biology approaches utilize available gene-
function information to take a fully rational approach to the design and construction 
of desired strains (Yokobayashi et al.  2002  ) . In particular, Synthetic biology strives 
to establish bioengineering as a classical engineering discipline by developing 
methods for standardization, modularity and abstraction of biological parts (Valente 
and Fong  2011  ) . This will enable biological design to occur in a high-throughput, 
rational fashion with all the bene fi ts of a forward-engineering discipline. 

 Ideally, a completely rational approach would be taken in improving and altering 
production strains. In a complete rational design approach every cellular function 
could be designed to attain the optimal balance of cellular objectives with engineer-
ing objectives. However, this level of complete rational design requires absolute 
knowledge of the biological system – given the limitations of biological knowledge, 
this is not currently possible. At its core, EvoEng blends rationale with randomness 
by attempting to direct function towards a goal (rationale) by using the native cel-
lular processes involved with evolution (randomness).  

    3.3.2   Establishing the Solution Space 

 The SS represents possible phenotypes based upon biological parameters. In 
Sect.  3.2 ,  fi tness landscapes were described as a method for visualizing and model-
ing local and global maxima of cell physiology, with the genotype considered as the 
underlying parameter that dictates the shape of the landscape. Establishing the shape 
of the  fi tness landscape is contingent upon a satisfactory knowledge of the underly-
ing parameters. In this case, comprehensive evaluations of  fi tness landscapes were 
dif fi cult prior to whole genome sequencing. However, a breadth of experiments 
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probing AE without full genome sequencing has contributed rough  fi tness projections. 
In the study by Lenski et al., where  Escherichia coli  was evolved in a laboratory 
setting for more than 10,000 generations by simple serial dilutions of batch culture. 
In these studies, the average  fi tness (growth) of the derived genotype was increased 
by approximately 50% relative to the ancestor (Lenski et al.  1998  ) . The shape of the 
 fi tness landscape is determined by the genomic sequence of  E. coli,  movement 
across the landscape is related to mutations arising in the population, which are 
selected and characterized to explain the nature of the improved phenotype (Fong 
et al.  2005a,   b  ) . This process of AE and strain improvement is predicated by the 
starting genotype – what we have considered the seed sequence. 

 The best seed sequence is the one that produces a phenotype closest to the desired 
phenotypic maxima. This way the prospects for achieving an improved outcome are 
greatly increased as the required time to achieve the desired outcome is decreased. 
One proven method to improve seed sequence is to choose a  fi tting  chassis . Chassis 
selection plays an important role in de fi ning the SS as well as the culture conditions, 
which will be developed to underlying the industrial conditions. This way a design 
is optimized for certain environments, for example: enzymes have been evolved for 
thermostability by heterologous expression and selection in a thermostable chassis 
(Steipe  1999  ) . As more AE experiments are conducted, results can be collectively 
analyzed to extrapolate genotype-phenotype relationships. In addition, collection of 
high-throughput “-omics” data provides detailed molecular-level gene expression 
data related to the global landscape. Improved knowledge of mechanisms leading to 
a desired trait can then be used to facilitate bottom-up speci fi cation of seed sequences 
for subsequent EvoEng or rational design approaches. 

 Besides favoring the improved starting point there is also a need to monitor the 
process of evolution with time to keep a track of each stage and collect data from 
each evolved generation. Keeping a record of the process allows us to monitor prog-
ress towards objectives as well as possibly collect information about major changes 
in trajectories. One particular 10,000 generation adaptation experiment illustrates a 
plot of competitive  fi tness generated through exemplary step measurement and 
monitoring (Lenski et al.  1998  ) . With the rapid development of DNA technologies, 
sequencing has become much more feasible even allowing full genome re-sequencing 
projects to identify genetic mutations that occur across the genome as a result of AE 
(Atsumi et al.  2010 ; Barrick et al.  2009 ; Conrad et al.  2009 ; Gresham et al.  2008 ; 
Gabriel et al.  2006 ; Herring et al.  2006  ) .  

    3.3.3   Competing Objectives 

 When considering the  fi tness landscape, the highest  fi tness is related to the phenotypic 
function with respect to a speci fi c objective. In terms of EvoEng, there are normally 
two different objectives that often are at odds with each other, a cellular objective 
(e.g. growth) and an engineering objective (e.g. production of a target chemical). 



52 N. Vanee et al.

    3.3.3.1   Cellular Objective 

 In natural evolution organisms strive to maximize their competitiveness for an 
ecological niche – for microbes, this is usually through growth. We will refer to 
growth here as the  cellular objective  (CO), which is to maximize representation 
through increased reproduction or ef fi ciency of biomass utilization. A cell must  fi rst 
incorporate nutrients to fuel cellular metabolic pathways, to  fi nally carry out repli-
cation functions. For an entire cell, using the CO acts a measure of global  fi tness, 
which as we will see, may not always be the most optimal production strain.  

    3.3.3.2   Engineering Objective 

 Designing for industry requires the de fi nition of an  engineering objective  (EO), 
which is the  fi tness score for industrial potential. Using either selection or screen-
ing (Sect.  3.4 ) the EO must be increased in each round. This objective can 
abstractly represent any phenotype, from resistance to a toxin to production of a 
useful intermediate, but the EO must overlap the CO if evolutionary selection 
toward the EO is to occur (Valente and Fong  2011  ) . Further, maximizing both the 
CO and EO maximizes the  fi tness of a strain, but can be dif fi cult to accomplish. 
When the target molecule for production is not a critical biomass component, the 
EO will not suf fi ciently overlap the CO and the cell will attempt to utilize its cel-
lular resources to maximize its CO. Many of the target products of industry are 
secondary metabolites, which, by de fi nition, fall into this latter category of targets. 
Hereby, in EvoEng the challenge is to design a selection system which can tie the 
EO to the CO. This may seem a dif fi cult task, but consider the potential advan-
tages of approaching engineering in a whole-cell optimization using the cells 
natural ability to grow and evolve.   

    3.3.4   Evolutionary Selection 

 Natural evolution processes achieve the diversity and complexity in the biosphere 
however the stability in this diversity is a function of natural selection. By having a 
continuous selection pressure, there is ongoing selection of bene fi cial characteris-
tics, so a genotype with a  fi tness advantage will be maintained. Explaining in terms 
of the most simple AE, an evolved species acclimates to an environment and thrives, 
eventually replacing less adapted subpopulations (Hardin  1960  ) . A major challenge 
faced by EvoEng is overlapping cellular COs that occur during evolution with EOs. 
By manipulating the growth environment and cellular interactions, natural selection 
is coupled to an engineering objective to perform selection in either in step-wise 
batch culture or continuous culture. 
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    3.3.4.1   Selection Considerations 

 Using step-wise batch culturing, the culture is susceptible to several phenomena 
such as “Müller’s ratchet”. “Müller’s ratchet” appears in asexual populations 
through the accumulation of deleterious mutations as a side effect of nonspeci fi c 
mutagenic targeting. This creates a strain over fi t to its selection; the strain may sat-
isfy the EO and be selected for, but becomes severely crippled from accumulation 
of deleterious mutations towards the cellular phenotype permitted to “hitchhike” 
along (Müller  1964  ) . Competition-based selection may also create mutational 
dynamics in which several subpopulations rise to existence, each possessing different 
bene fi cial alleles. In a process known as “clonal interference” (Müller  1964  )  one 
subpopulation may gain a slight advantage and overrun the other populations – 
preventing incorporation of possible other bene fi cial mutations. By dominating 
these other mutations, there may be a perceived reduction in the mutational rates, as 
noted by Luria and Delbruck  (  1943  ) . Step-wise batch culture is susceptible to the 
effects of genetic drift – as cultures are restarted in fresh media from a small portion 
of the original culture subpopulations may be lost, including adapted variants. 
Clonal interference and genetic drift can be minimized in chemostat-driven experi-
mentation when a higher number of mutants remain in the population (Muller  1932  ) . 
In contrast, serial dilution of batch cultures causes homogeneity as selective pres-
sures favor sweeps from clonal interference and drift, purging the diversity from 
culture (Conrad et al.  2011  ) . 

 While some phenomena (clonal interference and drift) can promote population 
homogeny, other phenomena such as cross-feeding, can lead to stable subpopula-
tion diversity. Cross-feeding features an evolved, stable commensalism between 
the metabolism of two or more subpopulations. For instance, it has been shown 
that  E. coli  mutants grown in glucose-limited media over 773 generations will 
yield a cross-feeding adaptation where a majority of the population represents a 
glucose-feeder/acetate-excreting phenotype, while a smaller slower-growing part 
of the population uptakes and metabolizes acetate (Rosenzweig et al.  1994 ; Helling 
et al.  1987  ) . This particular cross-feeding example has been replicated, and shown 
to sometimes evolve as a diauxic switch in the acetate-feeding strain. Here the 
acetate-feeder metabolizes glucose at a slower rate than the native glucose-scaven-
gers, but has an advantage of switching to an acetate-based metabolism more 
quickly than the wild-type glucose-respiring strain (Friesen et al.  2004  ) . In indus-
try, this form of co-metabolism is usually unfavorable as the culture phenotype will 
be a synthesis of two separate genomic sequences – meaning there is no individual 
variant with the desired phenotype. However there does exist circumstances for the 
design of microbial consortia. Cross-feeding adaptations that arise from random 
mutations are often undesired, but rationally-designed cross-feeding between pop-
ulations can be advantageous as part of system design. Examples include a study 
where a hydrogen-consuming  Methanococcus maripaludis  was evolved along the 
hydrogen-excreting, lactate-fermenter,  Desulfovibrio vulgaris . The consumption 



54 N. Vanee et al.

of hydrogen by  M. maripaludis  fueled the thermodynamic driving force for the 
growth of  D. vulgaris  through lactate-fermentation (Hillesland and Stahl  2010  ) .  

    3.3.4.2   Continuous-Culture Selection 

 Extended culture growth in chemostats has resulted in a variety of phenotypic adap-
tations (Helling et al.  1987 ; Sorgeloos et al.  1976 ; Atwood et al.  1951 ; Novick and 
Szilard  1950  ) . In  E. coli  and  S. cerevisiae  carbon-limited chemostats have been used 
to increase biomass yield, growth rate and resistance to adverse conditions (Parekh 
et al.  2000 ; Vinci and Byng  1999 ; Rowlands  1984  ) . The choice of limiting nutrient 
will dictate the evolutionary paths, and are therefore, central to selection. The results 
of limitation by nitrogen, phosphate, potassium, sulfur and other non-carbon source 
nutrients have been shown to be linked to the overproduction of various metabolic 
by-products (Dawson  1985  ) . A very good review of adaptive laboratory evolution 
and continuous culture by U. Sauer, details the various formats of continuous cul-
ture including chemostats and their variants, batch culture, and microcolonization 
(Sauer  2001  ) . 

 Since Environmental conditions can alter the evolutionary landscape so radically, 
the repeatability of EvoEng projects rely considerably on an experimenter’s ability to 
control and report culture conditions (selection pressure). Furthermore, in industrial-
scale fermentations repeatability can be the most essential quality of a robust produc-
tion strain. This starts by cultivating investigations as close to industrial conditions as 
possible. This includes, but is not limited to; aeration, carbon sources, nutrient 
sources, pH, osmolarity, temperature, light-exposure, or cell density. 

 Eventually, advances in synthetic biology may address some of the current chal-
lenges with screening and selection. There continues to be a challenge in EvoEng of 
having two different objectives (cellular and engineering) to consider. It may be 
possible to utilize different synthetic constructs (RNA apatmers, ribozymes, etc.), 
designed biosensors, or genetic circuits to detect multiple desired inputs and convey 
selective  fi tness advantages.    

    3.4   Methodology 

 Traditionally, EvoEng has been strongly associated with “Classical Strain 
Improvement”, through continuous culturing of a production-associated organism 
under selective conditions – usually paralleling industrial production conditions 
(Santos and Stephanopoulos  2008  ) . However, like any science or engineering  fi eld, 
EvoEng has enjoyed signi fi cant advancements correlated with increases in technol-
ogy. Recent improvements in sequencing, cloning, and high-throughput technolo-
gies have opened doors for researchers to investigate  fi tness landscapes and cellular 
optimization in unprecedented ways. This section will cover speci fi c methodologies 
that have “evolved” to expand the EvoEng toolbox. 
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    3.4.1   Generating Diversity 

    3.4.1.1   Point Mutations 

 Genetic diversity can occur by different mutagenic processes (SNPs, Insertions, and 
Deletions) that result in movement through the  fi tness landscape. If relying upon 
spontaneous mutagenesis as the main mechanism for phenotypic improvement, it is 
possible to conduct an evolutionary experiment with little foreknowledge of the 
system. A seminal piece of work, using only spontaneous improved penicillin titers 
4,000-fold through selection on solid-media plates (Rowlands  1984  ) . Naturally-
occurring mutations actually occur at a nominally low and stable rate in normal 
cellular physiology, with DNA replicating faithfully (Drake  1999  ) . This rate can be 
increased through the use of environmental in fl uences or genetically-modi fi ed 
‘mutator’ strains. Environmental factors can range from conditions which induce a 
stress-state in the cell (stationary-phase, glucose-limitation) to chemical mutagens: 
ethyl methane sulfonate (EMS) and nitroso-methyl guanidine (NTG) to ultraviolet 
irradiation (UV); all of which enhance various speci fi c mutations (Rowlands  1982  ) . 
For instance, it is known that NTG typically mutates close to the replication fork 
while UV irradiation is known to cause pyrimidine-dimers (Witkin  1976  )  – therefore 
mutagens are often varied in long-term experimentation. Utilizing these classic 
methods of spontaneous mutation has great utility as a  fi ne-adjustment to the geno-
typic sequences. A mutation can occur at any part of the genome, the changes are 
completely independent of each other, and the rates of mutation can be controlled. 

 The original method of directing evolution has been most successful through the 
application of polymerase chain reaction (PCR). Using either ‘leaky’ DNA poly-
merase or a substitution of catalyzing ions (manganese as opposed to magnesium) 
to cause error-prone DNA polymerization. By designing primers to target your gene 
of interest, a large diversity of the enzyme is created which may be screened for 
desired phenotypes. More than likely, a wild-type enzyme will not be optimized for 
commercial purposes, but by utilizing PCR mutagenesis properties have been engi-
neered into enzymes, such as thermostability, tolerance, novel catabolic activites, 
enantioselectivity, and substrate/product inhibition (Luetz et al.  2008  ) .  

    3.4.1.2   Gene Modi fi cations 

 Spontaneous mutagenesis can result in the silencing or overexpression of genes, but 
it is often dif fi cult or costly to identify these mutations after they have occurred. For 
the purpose of quickly and inexpensively tracking genetic changes, transposons are 
widely available for use (de Lorenzo et al.  1998  ) . These DNA elements are capable of 
self-catalyzing their insertion and movement across the genome or extra-chromosomal 
elements. Very often this will lead to inactivation of a gene on the chromosome, but 
some of these transposons feature highly expressive promoters, so it is also possible 
for transposon movement to result in gene overexpression if a transposon insertion is 
properly aligned next to a coding sequence (Schneider and Lenski  2004  ) . However, 
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their real faculty lies in the fact that these transposons represent unique sequence, 
which can be used to trace observed phenotype back to the cognate genotypic 
change. 

 Another way the genome can be randomly overexpressed is through a collection 
of an overexpression library. First, the genome is sheared into smaller pieces that are 
inserted into plasmid vectors. These vectors can then be reinserted into strains to 
select for variants advantaged by overexpression of the inserted genomic sequence. 
This is conceptually similar to the common genetics technique, complementation. 
Methods of utilizing knockouts or overexpressions are commonly used to establish 
the seed sequence for an evolutionary or metabolic engineering investigation. Some 
of the recent work that has demonstrated the utility of augmenting gene expression 
was conducted in  E. coli  for the production of lycopene (Jin and Stephanopoulos 
 2007  ) . In fact, it was shown that screening a library of plasmid-encoded genomic 
segments inside of a previously evolved knockout strain of  E. coli  increased produc-
tion of lycopene further over application of either method in isolation (Jin and 
Stephanopoulos  2007  ) . 

 Recombination is a powerful genetic tool for generating general genetic diversity 
or for speci fi cally targeting desirable traits. In EvoEng, the potential for recombina-
tion during sexual reproduction can be a useful tool to produce recombinant pheno-
types between parental strains bearing bene fi cial phenotypes. Eukaryotic organisms 
such as  S. cerevisiae , which can exists in diploid or haploid states, are capable of 
 in vivo  recombination by the fusion of two haploids to create a chimeric diploid. For 
example, attributes of a highly-specialized production strain might be combined 
with a fast-growing industrial strain. Indeed, industrial fungal production has uti-
lized the mating of yeast to reintroduce accelerated growth rates and more ef fi cient 
biomass conversion in previously crippled strains (Rowlands  1982  ) . More impor-
tantly, recombination can allow two mutually bene fi cial mutations to recombine – 
possibly resulting in a strain with compounded effects to the bene fi cial traits. 

 We have already seen that  in vivo  recombination can occur in clonal populations 
from the self-excising movements of transposons. However, the normal methods by 
which new DNA sequences arrive inside a prokaryote involves conjugation, trans-
formation, or transduction. Most  in vitro  expansion of diversity will utilize transfor-
mation to introduce desired genetic information on an overexpression plasmid, but 
other constructs can be used. Conjugative plasmids have been used in the dairy 
industry (Vinci and Byng  1999  )  and phage-based transduction has been utilized for 
allelic replacement (Esvelt et al.  2011  ) . 

  In vitro  recombination allows for generation of PCR products that are recombi-
nant versions of the parental template strains. In one of the more simple and widely 
used processes, staggered extension process (StEP), the templates are ampli fi ed by 
outer primers, but is staggered by abbreviated elongation cycles (Zhao et al.  1998  ) . 
These abbreviated cycles yield only partially extended templates that can bind to 
heterologous template strands with limited homology yielding  fi nal products that are 
chimeric versions of the original templates. In the original study using this method 
by Zhao et al. the authors were able to isolate a version of Subtilin E that showed 
thermostability 25–50 times that of the wild-type enzyme (Zhao et al.  1998  ) . 
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 One bene fi t of these methodologies lies in their ability to address the phenomena 
of epistasis – for instance, a scenario were two mildly deleterious mutations on their 
own can combine to render a bene fi cial phenotype (Conrad et al.  2011,   2009 ; 
Dykhuizen and Hartl  1980  ) . Also, allelic replacement can be used as a means of 
in fl uencing the outcome of movement through a  fi tness landscape by altering the 
starting point of a strain. While it would be dif fi cult to try and isolate these mutations 
together in a spontaneous manner, in allelic replacement these options are fully 
investigable. Epistatic interactions manifest as complexities in an organism’s net-
work topology and constrain the viable paths of evolution (Poelwijk et al.  2007  ) .  

    3.4.1.3   Large-Scale Modi fi cations 

 Genome shuf fl ing can be viewed as a form of forced, accelerated recombination, as 
the process is leveraged for its ability to generate chimeras from a set of parental 
strains. This process, known as recursive protoplast fusion, relies upon the removal 
of the cell wall by polyethylene glycol (PEG) – a process used to prepare Gram-
positive organisms for transformation of DNA. Protoplasts can also be fused, result-
ing in a diploid state in which the genomes exchange loci through homologous-crossing 
over. Since both genomes come from the same species the high level of homology 
will permit signi fi cant recombination, but by recursively fusing progeny of previous 
selections the SS searched grows considerably. When recursive protoplast fusion 
experiments were conducted in  Streptomyces fradiae  to investigate improved yield 
of the macrolide, tylosin, the authors we able to generate the same titers in two 
rounds of genome shuf fl ing as accomplished by 20 rounds of classical mutagenesis 
(Zhang et al.  2002  ) . In this way genome shuf fl ing offers a strategy to do  in vivo  
recombination in a variety of clonal populations to yield “progeny” with possible 
additive adaptive mutations (Petri and Schmidt-Dannert  2004  ) . 

      Global Transcriptional Machinery Engineering 

 In adaptive laboratory evolution experimentation, mutations in the global transcrip-
tional machinery can appear spontaneously (Conrad et al.  2010,   2009  ) . Cultures of 
MG1655  E. coli  grown in minimal glycerol M9 media showed mutations to  rpoC  of 
the  b ’ subunit of the RNA polymerase holoenzyme in ~80 % sequenced mutants 
(Conrad et al.  2010  ) . 

 While the core holoenzyme of RNA polymerase is the most conserved transcrip-
tional machinery, targeting the sigma factors or factors giving the RNA polymerase 
its DNA speci fi city provide a greater modularity of control over distinct pheno-
types. Using PCR mutagenesis, minor alterations in the DNA recognition motifs of 
these sigma factors (or their homologs) can greatly affect the RNA polymerase tran-
scriptional kinetics toward the genes under control of the sigma factor. Using this 
approach the sigma 70 subunit in  E. coli  (normally controls housekeeping genes) 
was mutated to generate strains with increased ethanol tolerance, simultaneous 
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sodium dodecyl sulfate and ethanol tolerance, and lycopene overproduction 
(Alper and Stephanopoulos  2007  ) . Similarly, in yeast the genes encoding the TATA-
binding protein,  SPT15 , and its associated factors,  TAF25 , were mutated to yield a 
strain of yeast with the industrially-relevant pro fi le of high-glucose/ethanol toler-
ance, with an 70 % improvement in volumetric ethanol production (Alper et al. 
 2006  ) . To emphasize the validity of targeting transcriptional hubs further, this pro-
cess was repeated in a strain of  Lactobacillus plantarum . Using growth/colony size 
as the phenotypic measurement, the approach of targeting transcriptional machinery 
was compared directly to mutagenesis by nitrosoguanidine chemical mutagenesis. 
In this study the investigators showed that targeting transcriptional machinery was 
able to create a greater diversity of phenotypic pro fi les than PCR mutagenesis alone. 
The greater degree of diversity generated by modifying aspects of transcriptional 
machinery made it possible to more rapidly isolate a strain of  L. plantarum  with an 
increased tolerance to malic acid.  

      Ribosomal Engineering 

 Just as the transcriptional machinery could be mutated to generate altered cellular 
phenotypic landscapes, the ribosomal machinery can be mutated to alter the global 
translational pro fi le. A long history of studying the ribosome utilizing inhibitory 
antibiotics targeting the ribosome has continued as the preferred method for gener-
ating ribosomal variants. Termed “ribosome engineering”, variants are isolated by 
plating resistant cultures on differing concentrations of ribosomal targeting antibiotics. 
This application has yielded strains of  Streptomyces  capable of increased antibiotics 
production, increased  a -amylase and protease production in  Bacillus subtilis , and 
increased tolerance to aromatic compounds in  Pseudomonas putida  (Ochi  2007 ; 
Ochi et al.  2004  ) . The varying phenotypes due to mutated ribosomes are postulated 
to correlate with an activation of the ‘stringent response’ when stress signals of 
stationary phase lead to increased protein production from select stationary-phase 
loci such as sporulation, alternative carbon source utilization, and production of 
secondary metabolites.  

      MAGE 

 Multiplex Automated Genome Engineering, or MAGE, has received considerable 
attention recently for the speed and scope of genetic changes that can be achieved. 
MAGE represents an extremely high-throughput methodology to perform major 
alterations across the entire genome. Mediated by homologous recombination, the 
process utilizes a fairly complex cultivation system featuring a series of growth 
chambers, an electrophoresis machine, a computer controller and a library of syn-
thetic oligos (Wang et al.  2009  ) . The synthetic oligo library contains the target 
mutations that are moved into the cell by electrotransformation, and incorporated 
through homologous recombination. This continuous culture system can run 
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inde fi nitely to eventually generate all possible variants represented in the oligo 
library. In its initial application, MAGE was used to create  E. coli  pools containing 
over 15 billion genetic variants, targeting 24 separate genes to increase lycopene 
production 500% over wild-type lycopene producing strains (Wang et al.  2009  ) . 
Ultimately, MAGE may be a powerful tool to modulate multiple genome targets 
simultaneously and with complete control. One of the current limiting factors of 
MAGE is the price of the technology, which currently still proves restrictive to aca-
demia, but may represent a viable opportunity for large-scale industrial projects.  

      TRMR 

 A variant of allelic replacement, TRMR (pronounced tremor) or trackable multiplex 
recombineering, has been used to construct libraries of up- and down-regulated 
variants of ~96 % of the entire  E. coli  genome in less than a single week and for less 
than $1 per target (Warner et al.  2010  ) . Yet this staggering diversity only represents 
half of the full potential of this approach. A speci fi c strength of this approach is that 
all of the generated mutations were completely trackable by the incorporation of 
DNA barcodes. By hybridizing the each of the generated mutant strains to a DNA 
microarray, the relative levels of each mutation can be quantitatively measured. 
TRMR is then capable of rapidly identifying gene interactions that could then be 
used to structure further optimization projects. It has been pointed out that combining 
TRMR as an initial coarse-grained investigation of optimization, with the MAGE 
approach as a  fi ne-grained adjustment could generate genome-wide, highly precise 
optimization (Tipton and Dueber  2010  ) .    

    3.4.2   Functional Characterization 

    3.4.2.1   Whole-Genome [Re] Sequencing 

 Ultimately, the assumptions of EvoEng boil down to the relationship between 
sequence information and the resultant phenotype. Accordingly, the most funda-
mental method of screening relies on investigating the sequence information of the 
resulting mutants. Many clever selection schemes exist to screen populations by 
automatically removing undesired populations, but eventually an isolated popula-
tion must be sequenced to identify genetic changes that may have arisen by natural 
random mutation. Again, directed evolution can help constrain the  fi nal sequencing 
requirements, but this means possible bene fi cial mutations inherited in the cellular 
background may be ignored. 

 As next-generation sequencing technologies have expanded the feasible limits 
on data collection and screening have expanded accordingly. Many recent EvoEng 
explorations have utilized next-gen sequencing to  fi nd changes on a genomic scale 
by comparing whole-genome sequencing of evolved strains to their ancestral strain. 



60 N. Vanee et al.

Evolutionary paths have been tracked by uncovering changes through single-nucleotide 
substitutions, insertions, deletions, and genomic rearrangements (Araya et al.  2010 ; 
Atsumi et al.  2010 ; Charusanti et al.  2010 ; Kishimoto et al.  2010 ; Lee and Palsson 
 2010 ; Lee et al.  2010 ; Barrick et al.  2009 ; Conrad et al.  2009 ; Gresham et al.  2008 ; 
Friedman et al.  2006 ; Herring et al.  2006 ; Velicer et al.  2006 ; Albert et al.  2005  ) . 
Information gained by whole genome re-sequencing can be a useful source of infor-
mation to feed into methods like MAGE or TRMR for a rational investigation into 
recombination adaptation. Further, whole genome sequencing preserves informa-
tion and data that may be useful to the elucidation of cellular physiology to pro-
vide a holisitic systems biology view of cellular function (Conrad et al.  2011 ; 
Fong  2009  ) . 

 Another approach to identifying genetic changes is a reapplication of DNA 
microarrays for array-based discovery of adaptive mutations (ADAM). In an EvoEng 
context, Goodzari et al. utilized a selectable marker, linked to a functional mutation 
(such as an insertion inactivation). Minimally, the ADAM approach requires a 
library of selectable markers transposed throughout the parental strain’s DNA, a 
mechanism for transferring markers from the parental strain to the evolved strain in 
such a way that the sequence surrounding the marker replaces the corresponding 
DNA in the evolved strain, and a method for measuring the frequency of markers 
throughout the evolved population (Goodarzi et al.  2009  ) . Basically, if the newly 
evolved strain replaced a bene fi cial mutation with the parental sequence – a reversion 
in effect – then this evolved/parental chimeric would show a decrease in  fi tness. By 
then hybridizing to separate microarrays the  fi tness of the evolved strains and the 
“revertants” could be compared, pinpointing advantageous mutations by a decrease 
in signal from the “revertant” populations.  

    3.4.2.2   Additional High-Throughput Data 

 As related to the EvoEng approach, high-throughput data can be useful as a means of 
characterizing the phenotypic state of a cell in detail. This provides a means of gain-
ing information to connect genotypic changes to whole-cell phenotypic changes. 

 Transcriptomics ushered in the advent of system-level quantitation of fundamen-
tal cellular components. While gene expression microarrays are the more estab-
lished method of measuring transcriptomics data, recent studies have shifted more 
towards using RNA sequencing (RNAseq), especially since RNASeq data has been 
shown to correlate with microarray hybridization techniques in reproducibility and 
relative quanti fi cation (Alexeyev and Shokolenko  1995  ) . Due to their lower cost, 
gene expression arrays are still advantageous for revealing the enrichment or deple-
tion of clones as a consequence of selection (Kao  1999  ) ; accessing genes which 
confer a selective advantage or disadvantage. 

 In addition to transcriptomic data, proteomic and metabolomics data would 
prove valuable for investigating and understanding cellular function. Both of these 
data types have improved as technological advances have increased the reliability 
and scope of measurable data. For instance, a proteome analysis of  Sacchromyces 
cerevisiae  response to carbon and nitrogen limitation was done using multidimensional 
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protein identi fi cation technology (MudPIT), combined with the labeling of proteins 
showed an up-regulation of protein in response to glucose limitation that was tran-
scriptionally controlled, while the up-regulation in the presence of nitrogen occurred 
from regulation of a post-transcriptional nature (Kolkman et al.  2006  ) . An example 
of a metabolomics study using a coupled detection of electrospray ionization in 
tandem with mass spectrometry (ESI-MS) was used to identify and measure of up 
to 84 % the metabolome of  S. cerevisiae  (Højer-Pedersen et al.  2008  ) . In fact, 
recently a group published a high-throughput metabolomics work fl ow for investi-
gating yeast in a multi-well format (Ewald et al.  2009  ) .   

    3.4.3   Synthetic Biology 

 As a  fi eld, synthetic biology allows for better-controlled modi fi cation of a biologi-
cal system. This started with the demonstration of synthetically generated genetic 
circuits (toggle switch and repressilator) that behaved in a designed fashion (Elowitz 
and Leibler  2000 ; Gardner et al.  2000  ) . One application of synthetic biology can be 
to utilize designed synthetic constructs to sense and modify cellular function by 
developing novel circuits. For EvoEng, it may become possible to more directly 
couple COs and EOs using synthetic circuits. 

    3.4.3.1   SELEX 

 RNA is an extremely unique molecule in that it has been found in nature to be func-
tional as an informational molecule, but also as a catalyst. Importantly, RNA poly-
mers have the ability to form complex tertiary structures capable of speci fi cally 
binding to small molecules and performing catalytic functions, such as self-cleavage. 
In 1990, the laboratories of G.E. Joyce  (  1989  ) , J.W. Szostak (Ellington and Szostak 
 1990  ) , and L. Gold (Tuerk and Gold  1990  )  independently developed a technique 
which allows the simultaneous screening of more than 10 15  individual nucleic acid 
molecules for different functionalities (1–3 below). The selectable evolution of 
ligands by exponential enrichment (SELEX) is an EvoEng process in itself. It works 
by expanding a DNA library of oligos by PCR mutagenesis then selecting for vari-
ants capable of binding a target molecule. These isolates can be ampli fi ed through 
PCR methods, and the process can be iteratively repeated. For more details the 
reader is directed to several good reviews on the process (Sinha et al.  2011 ; Klug 
and Famulok  1994  ) , or Aptamer base (Cruz-Toledo et al.  2012  )  (  www.aptamer.free-
base.com    ), a database of apatmer experimentation performed to date.  

    3.4.3.2   Designing Riboregulators 

 SELEX is an excellent tool to create RNA that binds a target molecule, altering a rela-
tively small amount of sequence to search through a complexity of tertiary structures. 

http://www.aptamer.freebase.com
http://www.aptamer.freebase.com
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However, as an  in vivo  biosensor the ability to bind target molecules alone does not 
convey a measurable signal. The  trans -acting aptamer, or riboregulator, still requires 
a mechanism to alter its expressional state (Roth and Breaker  2009 ; Henkin  2008  ) . 
In short, the RNA needs to have  trans -binding activity for the target molecule and 
 cis -regulatory properties. Much work has been done in the  fi eld to determine methods 
by which to integrate RNA aptamers with a regulatory motif in order to create pro-
grammable,  in vivo  biosensors (Lucks et al.  2011 ; Win and Smolke  2007 ; Isaacs 
et al.  2004  ) . Recently, Qi et al., reported a method by which to program non-coding 
RNAs to suppress the expression of a target mRNA when an upstream aptamer 
domain was bound to a target molecule – building a post-translational NOR gate 
(Qi et al.  2012  ) . All these design mechanisms will allow the construction of target 
speci fi c, tunable, and orthogonal  in vivo  biosensors or regulators.    

    3.5   Interpreting the Results 

 Having discussed the application and utility of the natural evolution process and 
EvoEng it is important to consider the process for utilizing results for two major 
reasons: (1) To monitor whether or not we are moving in the right direction and 
(2) to record the evolutionary paths through genotypic variations and their effect at 
each level of cellular organization. 

 Tracking results and traits during evolution is important as explained in Sect.  3.4  
to ensure that the system and selection pressure is leading to an outcome consistent 
with desired cellular and engineering objectives. The second consideration provides 
details of genetic changes and allows them to be correlated to phenotype i.e. collect-
ing the data for each stage of step-wise continuous process of evolution. (Lenski 
et al.  1998  )  Monitoring the history of adaptation and using this information to model 
a particular cellular system enables researchers to make hypotheses for subsequent 
experiments. 

    3.5.1   Systems Biology 

 Systems-level modeling, especially the constraint-based approach, has proven to be 
a robust method to account for biological complexity while integrating high-
throughput data. Using this tool in the cyclic process of evolutionary adaptation is 
discussed by many authors in past (Valente and Fong  2011 ; Fong  2009 ; Sauer  2001  ) . 
Metabolic modeling, in conjunction with experimental high-throughput data dis-
cussed in Sect.  3.2 , can be used to analyze potential targets for strain improvements 
to yield optimized productivity. Modeling simulations can reduce the cost and time 
needed for the EvoEng process(Fong et al.  2005a,   b  )  by employing algorithmic 
analyses including: OptKnock (Burgard et al.  2003  ) , objective tilting (Feist et al. 
 2010  ) , RobustKnock (Tepper and Shlomi  2010  )  and OptGene (Patil et al.  2005  ) . 
For example, metabolic  fl ux analysis was applied to help understand the carbon 
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metabolism of several  E.coli  strains under different growth conditions(Sauer et al. 
 1999  ) . As for industrial applications, Lewis et al. have discussed methods that have 
been developed to predict,  in silico , the growth-coupled desired phenotypes by per-
forming deletions or insertions in the metabolic networks (Lewis et al.  2010  ) . By 
encompassing data from previous iterations, it is possible to infer evolutionary tra-
jectories as pointers for subsequent targets of adaptation. 

 Currently, constraint-based modeling approaches have been limited to metabo-
lism and the biomass-assimilating pathways, ignoring portions of cellular physiol-
ogy. In order to add detail to these models, efforts have been put forth to incorporate 
transcriptional regulation. (Gianchandani et al.  2006 ; Chandrasekaran and Price 
 2010 ; Thiele et al.  2010  )  and other cellular processes (Molenaar et al.  2009 ; Covert 
et al.  2008  ) . This however, faces a major challenge of extrapolating the altered bind-
ing kinetics and motifs of the proteins because of the mutations performed in the 
regulatory proteins and ultimately affecting the topology of the regulatory network. 

 High-Throughput Biologically Optimized Search Engineering (HT-BOSE) intro-
duced by Valente and Fong (Valente and Fong  2011  ) , describes a method of leverag-
ing EvoEng in conjunction with Systems biology and Synthetic biology. 
Systems-level information can provide a foundation to plan and conduct three-part 
cyclic process of evolutionary engineering. This biologically optimized search 
engine starts from a “Registry of Seed Designs”, similar to the “Registry of 
Biological Parts” (partsregistry.org). This Seed Design Registry would include phy-
logenetic information on how designs were evolved, as well as on what subsequent 
designs originated from them. Fitness scores are assigned to these designing depend-
ing upon how far they are from the desired objectives, yet the selection of a seed 
sequence from the registry should retain evolutionary  fl exibility. High  fi tness assays 
quantifying seed sequences satisfying the EOs, may re fl ect local maximums. It is 
therefore, important to switch between the  fi tness assays and a “supporting assay”, 
where the later is inclined toward the identi fi cation of evolutionary  fl exibility. 
Finally, the search strategy should maximum biological information by exploring 
SS at multiple length-scales.   

    3.6   Patenting Evolutionary Engineering 

 Throughout collaboration between academia, research, and large-scale industrial sec-
tors there exists a movement away from publishing results in journals to prioritizing 
the invention protection by  fi ling a patent, particularly in engineering and “applied” 
sciences (Leimkühler and Meyers 2004,  2005  ) . While the timeline of the patent appli-
cation process (Fig.  3.3 ) is extensive, patentability requirements and regulation under 
European and U.S. patent laws prescribe the exclusivity of invention to provide pro-
tection for a span of 20 years (an additional 5 years for pharmaceutical drug mole-
cules). The validity of patent claims are predicated upon three features: (1) Novelty as 
de fi ned in European Patent Convention (EPC) Article 54 and US regulation 35 U.S.C. 
§ 102; (2) Inventiveness as de fi ned in EPC Article 56 and 35 U.S.C. § 103 (a); (3) 
Industrial application as de fi ned in EPC Article 57 and 35 U.S.C. § 101.  
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 The typical patent application consists of the claim itself, a precise description of 
speci fi cations, and the rationale for protection. In the speci fi c  fi eld of EvoEng patents 
 fi led to date have claimed produced molecules with known function and utility, state-
of-the-art production processes of molecules with known utility, or a selection process 
for useful traits in an already characterized strain. As explained in Fig.  3.1 , the process 
of EvoEng consists of 3 steps: ampli fi cation, diversi fi cation and selection. Protection 
claims may be directed towards the steps in the cycle, speci fi c conditions of the cycle, 
or improvements to previous patents (e.g. the speci fi c and de fi ned mutation conditions 
used to obtain variation and/or de fi nite selection with respect to  fi tness toward an EO). 
The penultimate example of EvoEng intellectual property is the SELEX technique 
(WO 91/19813), discussed in Sect.  3.3.1  and its follow-up patents regarding variations 
and improvements (Leimkühler and Meyers 2004,  2005  ) .  

    3.7   Conclusion 

 Recent supportive technological advancements have played an integral role in aiding 
the application of EvoEng to industrial targets. Rapid and inexpensive whole 
genome sequencing and other omics analyses have made it feasible to characterize 
the genotype of the strain with high  fi delity and to associate the genotype to the 
phenotype (Lee et al.  2011  ) . In the effort to reach a $1,000-genome (DeFraccesco 

  Fig. 3.3    Patent process timeline       
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 2012  ) , there has been exponential progress from Sanger sequencing to  fl uorophores 
(Braslavsky et al.  2003  ) , to Nanopore (Church et al.  1998 ; Kasianowicz et al.  1996  )  
and other next-generation sequencing technologies. This progress has been com-
pared to “Moore’s Law” and is predicted to continue in this manner into the imme-
diate future with promises of technologies allowing over  fi ve kilobase contiguous 
reads (Hayden  2012 ; Clarke et al.  2009  ) . Similarly, the technology for synthesizing 
DNA improves every day, with synthesis companies currently offering synthesis 
and delivery of 500 base pair double-stranded DNA oligos in 3–4 business days and 
for less than 100 US dollars (  www.idtdna.com    ). Concurrent advances in cloning 
have enable even the smallest laboratories to assemble synthesized oligos up to 
several kilobases in length in under an hour (Gibson et al.  2009  ) . Laboratory auto-
mation, micro fl uidics and other emergent screening technologies and have enabled 
the extreme increases in throughput and precision of rate-limiting steps in EvoEng 
such as serial dilution enrichment and chemostat selection (Grabar et al.  2006 ; Tyo 
et al.  2006 ; Zhou et al.  2006 ; Sonderegger and Sauer  2003  ) . These impressive tech-
nologies open possibilities for whole genome sequencing and editing, in conjuga-
tion with massive “-omics” data collection. However, the success of implementing 
these technologies will remain dependent on our ability to interpret our  fi ndings – it 
is nice to own a fast car, but it does you no good when there is a low speed limit. 

 Metabolic engineering and forward-engineering cannot be reliably pursued without 
concrete genotype-phenotype correlations which equivocate with a priori knowl-
edge of the system. Currently our level of knowledge of even the most elucidated 
model systems proves limiting. Selection for robust phenotypes by evolutionary 
engineering helps minimize instabilities such as those posed by genetic drift and clonal 
interference pictured in Fig.  3.4 . For example, in order to improve the production of 

  Fig. 3.4    Natural evolutionary process support the growth of square colonies over the period of 
evolution. Performing enrichment screening to obtain circled colonies might temporarily endows 
the culture with larger amount of those colonies however, because of squares’ evolutionary advan-
tage they will continually outcompete the circled colonies. In contrast to the enrichment screening 
approach, synthetic intervention or selection can be useful in isolating clones with optimized for 
both cellular and engineering objectives       
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aromatic compounds, the phosphotransferase system (PTS) of  E. coli  was deleted 
and spontaneous glucose-utilizing revertants with increased aromatic titers were 
selected (Flores et al.  1996  ) . Evolving the non-PTS system in E coli presumably 
preserved more phosphoenolpyruvate, a precursor of the aromatic targets. However, 
when a non-PTS heterologous system was rationally engineered into the PTS 
knockout, the improvement in target titers were not observed (Chen et al.  1997  ) . 
Even with the phenotype successfully capitulated by rational engineering, there is 
been no optimization for evolutionary stability – a trait absolutely necessary for 
industrial continuous-culture. To address this pitfall, a hybrid-approach known as 
“inverse metabolic engineering” has been proposed (Bailey et al.  2002  ) . Employing 
a rational-approach, targeted phenotypes can be isolated rapidly as seed sequences 
for a subsequent Evolutionary engineering approach for optimization. This rational 
“constraint” on SS to display the phenotype signi fi cantly reduces the time invested 
in optimization and identi fi cation of a seed sequence, particularly when transferring 
heterologous traits to a new chassis. Evolutionary engineering, inverse metabolic 
engineering nor any other bioengineering approach represents a full-proof approach 
to the design of industrial microbes. Many of the evolutionary engineering tech-
niques presented in this chapter could be conjugated into more powerful hybrid 
systems capable of improved search functionality. Ultimately however, the future 
lies in innovating upon current selection procedures, improving the knowledge base 
of genotype-phenotype correlations, and harnessing advances in technologies.       
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