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Abstract
Fluorescence lifetime imaging (FLIM) is a key fluorescence microscopy tech-
nique to map the environment and interaction of fluorescent probes. It can report
on photophysical events that are difficult or impossible to observe by fluorescence
intensity imaging, because FLIM is largely independent of the local fluorophore
concentration and excitation intensity. Many FLIM applications relevant for
biology concern the identification of Förster resonance energy transfer (FRET)
to study protein interactions and conformational changes. In addition, FLIM has
been used to image viscosity, temperature, pH, refractive index, and ion and
oxygen concentrations, all at the cellular level. The basic principles and recent
advances in the application of FLIM, FLIM instrumentation, molecular probe,
and FLIM detector development will be discussed.

Keywords
Time-correlated single-photon counting (TCSPC) • Fluorescence microscopy •
Fluorescence spectroscopy • Anisotropy • Förster resonance energy transfer
(FRET) • Fluorescence anisotropy imaging (FAIM) • Time-resolved fluorescence
anisotropy imaging (TR-FAIM) • Total internal reflection fluorescence (TIRF) •
Fluorescence enhancement • Plasmonics

Introduction

Much of our knowledge of biological processes at the cellular and subcellular level
comes from the microscope’s ability to directly visualize them: optical imaging is
compatible with living specimens, as light is nonionizing, nondestructive, and
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minimally invasive. Fluorescence microscopy in particular combines advantages of
single-molecule sensitivity, molecular specificity, subcellular resolution, and real-
time data collection from live cells with negligible cytotoxicity. This allows not only
the study of the structure of the sample but also the observation of dynamics and
function in real time.

Among the various fluorescence microscopy methods, fluorescence lifetime
imaging (FLIM) has emerged as a key technique to image the environment and
interaction of specific probes in living cells [1–3]. There are several technological
implementations of FLIM, but they all can report on photophysical events that are
difficult or impossible to observe by fluorescence intensity imaging, because FLIM
is generally independent of fluorophore concentration. The fluorescence lifetime
provides an absolute measurement which, compared to fluorescence intensity, is less
susceptible to artifacts arising from scatted light, photobleaching, nonuniform illu-
mination of the sample, light path length, or excitation intensity variations.

FLIM is often used to detect Förster resonance energy transfer (FRET) to identify
protein interactions or conformational changes of proteins in the life and biomedical
sciences [4–10]. However, applications in diverse areas such as forensic science
[11], combustion research [12, 13], luminescence lifetime mapping in diamond [14,
15], microfluidic systems [16–22], art conservation [23, 24], remote sensing
[25–27], lipid order problems in physical chemistry [28], and temperature sensing
[17, 21, 29, 30] have also been reported. FLIM has been carried out from the UV
[31] to the visible, and it is not surprising that fluorescence lifetime-based imaging is
widely used in the biomedical sciences and that this trend shows no signs of abating.

The observation of fluorescence and the use of microscopy stretches back many
hundreds of years, as illustrated in Fig. 1 [32, 33]. However, the understanding of
fluorescence-related phenomena and the creation of an appropriate theoretical frame-
work to quantitatively interpret and predict fluorescence and to design a fluorescence
microscope only occurred 100–150 years ago (The Nature milestone website con-
tains a wealth of information on the history of optical microscopy: http://www.
nature.com/milestones/milelight/index.html). Over the last 10 or 20 years, the field
has advanced rapidly and enormously [34], mainly due to the combination of lasers
and beam scanning [35], powerful computers, and also sensitive detectors and
cameras [36–40] and genetic engineering [41] – the latter effort being recognized
with the award of the Nobel Prize in Chemistry in 2008, for the discovery and
development of the green fluorescent protein, GFP. A year later, in 2009, half of the
Nobel Prize in Physics was given to the invention of the CCD sensor in 1969 [42] – a
device which has also played a significant role in advancing fluorescence micros-
copy. The sensitivity of fluorescence detection is at the single-molecule level, and
point-spread function engineering has allowed fluorescence imaging well below the
spatial resolution limit given by classical optical diffraction. These “super-resolution
techniques” include stimulated emission depletion (STED), structured illumination,
and photoactivation and blinking localization microscopy, as reviewed recently [43–45].

While the idea of nanosecond time-resolved fluorescence measurements of sam-
ples under a microscope dates back to the 1950s [46], the emergence of FLIM as a
technique for mapping fluorescence lifetimes only began in 1989. In this year, the
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first reports were published describing a fluorescence imaging technique where the
contrast in the image is provided by the fluorescence lifetime [47, 48].

Since then, the power of FLIM has increased dramatically with the extension to
spectrally resolved FLIM, polarization-resolved FLIM, and rapid acquisition with
single-photon sensitivity. FLIM has also been combined with other techniques, such
as fluorescence correlation spectroscopy (FCS) [49–51], scanning near-field optical
microscopy (SNOM) [52], atomic force microscopy (AFM) [53], fluorescence
recovery after photobleaching (FRAP) [54–56], total internal reflection fluorescence
(TIRF) microscopy [57, 58], STED [59, 60], coherent anti-Stokes Raman scattering
(CARS) [61], and tomography [62].

The increasing popularity is facilitated by commercial availability of key enabling
technology: FLIM add-on units to conventional microscopes, for wide-field, confo-
cal, and multiphoton excitation microscopy, including data analysis software, are
available from a number of specialist companies.

Fluorescence

Fluorescence as a phenomenon has been known for hundreds or even thousands of
years, but the understanding and explanation of it took a long time, especially its
distinction from incandescence, iridescence, or scattered light [63]. In 1852, Stokes,
building on the previous work by Boyle, Newton, Brewster, Herschel, and others,
explained that the emitted light was of a longer wavelength than the absorbed light [64]
– an effect now known as the Stokes shift. Above all, Stokes coined the term fluores-
cence [64, 65]. Despite this breakthrough, some confusion remained, but it eventually
faded away like fluorescence itself [66]. After some theoretical considerations regard-
ing fluorescence lifetimes [67], the first reports on measuring nanosecond fluorescence
lifetimes experimentally appeared in the mid-1920s [68].

Upon excitation into an excited state, a fluorescent molecule – a fluorophore – can
return to its ground state either radiatively by emitting a fluorescence photon,

A� ! Aþ hν (1)

or non-radiatively, for example, by dissipating the excited state energy as heat
[69–72]:

A� ! Aþ heat (2)

A* indicates a fluorophore in its excited state and A in its ground state and hν is a
photon. The depopulation of the excited state depends on the de-excitation pathways
available. Fluorescence is the radiative deactivation of the lowest vibrational energy
level of the first electronically excited singlet state S1 back to the electronic ground
state S0. The absorption and emission processes are illustrated by an energy level
diagram after Jablonski [73], as shown in Fig. 2a.
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The fluorescence lifetime τ is the average time a fluorophore remains in the
electronically excited state S1 after excitation. τ is defined as the inverse of the
sum of the rate parameters for all excited state depopulation processes:

τ ¼ 1

kr þ knr
(3)

where kr is the radiative rate constant and the non-radiative rate constant knr is the sum
of the rate constant for internal conversion, kic, and the rate constant for intersystem
crossing to the triplet state, kisc, so that knr = kic + kisc. The fluorescence emission
always occurs from the lowest vibrational level of S1, a rule known as Kasha’s rule
[74], indicating that the fluorophore has no memory of its excitation pathway.
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Fig. 2 (a) A schematic energy level diagram, after Jablonski, of a fluorescent molecule, depicting the
molecular singlet and triplet electronic energy levels, each with vibrational energy levels as well as
excitation and de-excitation pathways and (b) a schematic fluorescence decay, where the fluorescence
intensity decays over time according to an exponential decay law. Inset is a semilogarithmic plot of the
same fluorescence decay, which, convenient for easy visual inspection, appears as a straight line
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τ0 = kr
�1 is the natural or radiative lifetime which is related to the fluorescence

lifetime τ via the fluorescence quantum yield ϕ:

ϕ ¼ τ

τ0
¼ kr

kr þ knr
¼ 1

1þ knr
kr

(4)

The fluorescence quantum yield can be thought of as the ratio of the number of
fluorescence photons emitted to the number of photons absorbed (regardless of their
energy) and is less than one. And since ϕ τ0 = τ, τ0 can be thought of as the longest
lifetime the fluorophore can have, i.e., when knr = 0.

Both the fluorescence lifetime and the fluorescence quantum yield are key
spectroscopic parameters, the measurement of which allows the explicit calculation
of the radiative rate constant kr and the non-radiative rate constant knr.

The radiative rate constant kr = τ0
�1 is related to the absorption and fluorescence

spectra and is a function of the refractive index of the medium surrounding the
fluorophore:

kr ¼ 2:88� 10�9n2

ð
F ~vð Þd~v

ð
F ~vð Þ~v�3d~v

ð
e ~vð Þ
~v

d~v (5)

where n is the refractive index, F is the fluorescence emission, e is the extinction
coefficient, and ~v is the wavenumber. This equation is known as the Strickler–Berg
equation [75]. Essentially, the Strickler–Berg equation is a version of the Einstein
coefficients for absorption and spontaneous and stimulated emission [76, 77] but
adapted for molecules with broad absorption and emission spectra, rather than
atomic line spectra. A more detailed treatment taking into account the transition
dipole moment, an intrinsic property of the molecule, has been devised by Toptygin
et al. [78] who have also written a detailed review of the subject [79].

The time dependence of the depopulation of the excited state – the decay of the
excited state – can be explained as follows. After excitation, N fluorophores will
leave the excited state S1 (see Fig. 2b) according to the following rate equation:

dN ¼ kr þ knrð ÞN tð Þdt (6)

where t is the time, in an analogous fashion to radioactive decay. (Another analogy is
that emission events are independent of one another, and both radioactive decay and
photon emission are described by Poisson statistics – but there the analogy ends:
radioactive decay is a nuclear process emitting photons or particles many orders of
magnitude more energetic than the emission of light of energies in the range of 2–4
eV, originating from the fluorophore’s electronic orbitals). Integration, using Eq. 6,
and taking into account that the fluorescence intensity F(t) is proportional to the
excited state population N(t) yields

F tð Þ ¼ F0e
�t

τ= (7)
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where F0 represents the fluorescence intensity at t= 0 and τ is the fluorescence lifetime
as defined in Eq. 3. The decay of the fluorescence intensity thus follows an exponential
decay law [80], schematically shown in Fig. 2b. τ is the time it takes for the
fluorescence intensity to decay from its peak value to e�1 � 37% of its peak value.
This applies both to repeatedly excited single molecules – where the fluorescence
lifetime represents a measure of the emission probability after a certain time – and the
fluorescence decay of an ensemble of fluorophores after a single excitation. Note that
on a logarithmic fluorescence intensity scale, a mono-exponential decay conveniently
appears as a straight line, as shown in the inset of Fig. 2b. This way of plotting the data
thus aids simple visual inspection of the fluorescence decay behavior.

Fluorescence Probes

Some minerals fluoresce, and naturally occurring fluorescent dyes have been known for
a long time [69, 70]. The first synthetic dye was mauve, synthesized by Perkin in
Manchester in 1856 [81]. It had a lowfluorescence quantum yield, but shortly afterward,
in 1871, the much brighter dye fluorescein was first synthesized by von Baeyer. He was
awarded the Nobel Prize in Chemistry in 1905, “in recognition of his services in the
advancement of organic chemistry and the chemical industry, through his work on
organic dyes and hydroaromatic compounds.” This work was closely linked to color
chemistry, i.e., the research into dyes for staining fabrics and other materials [81]. Often,
these dyes were not fluorescent, but they did absorb light and were of major interest for
the textile industry – not only in theWest but also in China for staining silk, for example.

Today, fluorescence sensing and microscopy can be performed by labeling a
sample with fluorescent dyes, quantum dots [82], or other nanoparticles [83, 84],
including nanodiamonds [85–88] and nano-ruby [89], as reviewed recently [90]. In
addition to fluorescent dyes, quantum dots and other nanoparticles have also recently
found favor in cell imaging applications due to their high fluorescence quantum yield,
low photobleaching susceptibility, and narrow, size-dependent emission spectra which
can be excited with a single wavelength [82, 83, 91–93]. Frequently used probes in
biology are genetically encoded fluorescent proteins [94] and imaging of auto-
fluorescence, i.e., endogenous fluorescence from tryptophan, melanin, keratin, elastin,
lipofuscin, nicotinamide adenine dinucleotide (NADH), or flavin adenine dinucleotide
(FAD), or in the case of plants, chlorophyll is also increasingly used [95, 96].

FLIM Applications in the Life Sciences

Förster Resonance Energy Transfer (FRET) to Study Protein
Interactions or Conformational Changes

FRET is a bimolecular fluorescence quenching process where the excited state
energy of a donor fluorophore is non-radiatively transferred to a ground state
acceptor molecule, as schematically illustrated in Fig. 3. The phenomenon is based
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on a dipole–dipole coupling process and was quantitatively correctly described by
Förster in 1946 [98]. FRET only occurs if the donor and acceptor fluorophores are
within close proximity (typically <10 nm), and the emission spectrum of the donor
and the absorption spectrum of the acceptor overlap, as indicated in Fig. 3b. In
addition, the transition dipole moments of the donor and acceptor must not be
perpendicular – otherwise, the transfer efficiency is zero, irrespective of the
donor–acceptor distance or the spectral overlap. Finally, the multiplicity (effectively
the spin of the excited electron) must be preserved by the transitions, and
singlet–triplet transitions are forbidden as they require a spin flip [71]. (In this

Fig. 3 Förster resonance energy transfer (FRET). (a) FRET schematic illustrating the use of this
photophysical phenomenon to elucidate protein interaction between the big blue protein, labeled
with GFP, and the small orange fluorophore-labeled protein. (b) The spectral overlap between the
GFP donor emission spectrum (green) and the rhodamine acceptor absorption spectrum (orange) is
indicated in black (“resonance”). FLIM to identify FRET can be performed by measuring the
fluorescence decay of the donor in the spectral window indicated by the black vertical bars over the
donor emission spectrum. Close proximity of donor and acceptor and favorable orientation of their
transition dipole moments is also required for FRET to occur. The excited donor transfers its energy
to the acceptor, whereupon the donor returns to the ground state, and the acceptor finds itself in the
excited state. Note that no photons are emitted in FRET; it is a non-radiative transfer of excited state
energy from the donor to the acceptor. (c) FRET effect on donor fluorescence decay. FRET is a
quenching process, i.e., offers an additional non-radiative decay pathway in Eq. 3 and thus shortens
the donor fluorescence decay. (d) The distance dependence of FRET. The FRET efficiency varies in
proportion to r�6 where r is the distance between donor and acceptor, idealized as point dipoles
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context, note that the important singlet oxygen generation in photodynamic therapy
[99], or as one of the photobleaching processes, by energy transfer from the
fluorophore’s triplet state occurs via Dexter-type electron exchange which does not
need to conserve multiplicities.) The critical transfer distance R0, where FRET and
fluorescence emission are equally likely, can be calculated from the spectral overlap
[100, 101] (Free PhotochemCAD software to calculate the R0 for any
donor–acceptor pair can be downloaded from http://photochemcad.com [99, 100]).

The FRETefficiency, E, varies with the inverse 6th power of the distance between
donor and acceptor and is usually negligible beyond 10 nm, as shown in Fig. 3d.
FRET can therefore be used as a “spectroscopic ruler” to probe inter- and intramo-
lecular distances on the scale of the dimensions of the proteins themselves
[102–104]. This is a significant advantage over co-localization studies with two
fluorophores which is limited by the optical resolution of light microscopy (approx-
imately 200 nm laterally, 500 nm axially [44] – although for single-molecule
co-localization, this resolution limit is somewhat relaxed). Thus, if one type of
protein is labeled with a donor and another type of protein is labeled with an
acceptor, the detection of FRET yields proximity information well below the optical
resolution limit that can be achieved by co-localization imaging of the two
fluorophores and is interpreted as the interaction of the two proteins. In addition,
FRET is also frequently used to study conformational changes within a protein [105]
or cleavage of a protein or as a sensor, e.g., for Cu2+ ions [106] or for Ca2+ ions
[107]. The cameleon Ca2+ sensor, for example, consists of cyan fluorescent protein
(CFP) and yellow fluorescent protein (YFP), and FRET is induced by a conforma-
tional change upon binding of four Ca2+ ions, whereas in the green fluorescent
protein (GFP)-based Cu2+ sensor, the Cu2+ ion itself acts as the acceptor due to its
absorption in the red.

FRET, as a fluorescence quenching process, reduces the quantum yield and the
fluorescence lifetime of the donor according to Eqs. 3 and 4. If the acceptor is
fluorescent (which is not a necessary requirement for FRET to occur), FRETcan lead
to sensitized acceptor emission. To identify and quantify FRET in biological appli-
cations, the fluorescence decay of the donor can be measured in the absence and
presence of the acceptor. The advantage of time-resolved over intensity-based
measurements is the ability to directly distinguish between effects due to FRET or
probe concentration. For example, a low donor fluorescence intensity can be caused
by either a low donor concentration or efficient quenching by FRET – but only in the
latter case is the fluorescence decay shortened. Indeed, FLIM is the best method to
identify FRET [108, 109]. It only requires the measurement of the donor fluores-
cence and allows the separation of energy transfer efficiency and FRET population,
independent of local concentration and stoichiometry of donor and acceptor. If the
stoichiometry is not known, i.e., the sample contains both interacting and
non-interacting donors, then a bi-exponential donor fluorescence decay would result.
The non-interacting donors do not undergo FRET and thus emit fluorescence with
the lifetime of the unquenched donor. The donors undergoing FRET exhibit a
shortened fluorescence decay. The ratio of the pre-exponential factors (amplitudes)
of the bi-exponential decay represents the ratio of interacting donors undergoing
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FRET to those not interacting [110, 111]. In practice, however, note that the complex
photophysics of fluorescent proteins means they have multiexponential decays even
before undergoing FRET [105, 112–115]. Moreover, due to the longer excited state
lifetime, donors not undergoing FRET photobleach faster than those undergoing
FRET. This latter effect may not only have to be taken into account for quantitative
FRET analysis but can be also (and has been) exploited to study FRET as donor
photobleaching FRET [116]. An example of FRET between CFP and RFP-labeled
proteins is shown in Fig. 4 [97].

Accurate determinations of molecular separation are rarely quoted in the litera-
ture, due to uncertainty in the real value of R0. However, the principal goal is usually
the detection of FRET to infer proximity of donor and acceptor and thus interaction
of the proteins they are tagged to, or conformational changes, rather than obtaining
precise molecular separation.

While single-point FRET studies on cells were performed through a microscope
well before the development of FLIM [117], imaging FRET can map interactions
between proteins, lipids, enzymes, DNA, and RNA, as well as conformational

Basal

Lifetime imagea b Lifetime histogram

15minFGF9

1.9 2 2.1 2.2 2.3 2.4 2.5

1.9 2 2.1 2.2 2.3 2.4 2.5

Fig. 4 An example of FRET between CFP-labeled donor proteins and RFP acceptor-labeled
proteins from ref. [97]. (a) FLIM images. Upon 15 min stimulation with FGF9, protein interaction
is induced as indicated by the reduced average fluorescence lifetime of the CFP donor. (b) Average
fluorescence lifetime histogram of CFP donor
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changes or cleavage of a protein in a two-dimensional, position-sensitive manner, so
that the FRET signal provides the contrast in the image [7]. The high-resolution and
optical sectioning capabilities of confocal or two-photon excitation scanning FLIM
allow FRET to be mapped with great detail and protein interactions to be located
accurately within different cell organelles, such as the nucleus, the cytoplasm, or the
membrane.

Although most FLIM of FRET involves fluorescent proteins, this technique was
already performed before the availability of fluorescent proteins. For example,
intracellular fusion of endosomes or the dimerization of epidermal growth factor
(EGF) or the role of the protein kinase C (PKC) family of proteins in cellular signal
transduction was studied with FLIM of FRET, as reviewed previously [118]. Now-
adays, fluorescent proteins can be used for genetically encoding a fluorescent label
[94]. The excitation and emission spectra of the green fluorescent protein (GFP) and
its derivatives span the entire visible range [119], but the photophysics of the
fluorescent proteins is complex [120]. The widely used mutant enhanced GFP
(F64L, S65T), for example, has at least two emitting states [112–115]. Nonetheless,
FLIM of GFP and its spectral variants [119] with average fluorescence lifetimes in
the 2–3 ns region has proved extremely valuable to the fluorescence microscopy
community.

FLIM of Fluorescent Molecular Rotors to Map Viscosity

Fluorescent molecular rotors are fluorophores whose fluorescence quantum yield ϕ
and fluorescence lifetime τ are functions of the viscosity η of their environment
[121–125] where

ϕ ¼ zηx (8)

and

τ ¼ z, ηx (9)

according to a model proposed by Förster and Hoffmann, with x= 2/3 [126], or later
in a more general form (0< x� 1) by Loutfy [127]. z and z0 are constants, and ϕ<<
1. A key characteristic of a fluorescent molecular rotor is that, in the excited state, it
can rotate one segment of its structure around a single bond and thus form a twisted
state. It is this intramolecular rotation which depends strongly on the viscosity of the
environment, so that the radiative de-excitation pathway of fluorescent molecular
rotors competes with radiationless decay by intramolecular twisting around a single
bond in the excited state. This twisting motion is slowed in viscous media. Thus, the
fluorescence lifetime and fluorescence quantum yield of fluorescent molecular rotors
are high in viscous microenvironments and low in non-viscous microenvironments.
Fluorescent molecular rotors have been used to measure the microviscosity in poly-
mers [127], sol–gels [128, 129], micelles [130], ionic liquids [131–133], blood
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plasma [134], liposomes [135, 136], and biological structures such as tubulin [137]
and living cells [138–144]. The viscosity measurement can be accomplished either
by ratiometric spectral measurements with a rigid reference fluorophore whose
fluorescence quantum yield and lifetime are independent of viscosity [136, 140,
141, 145–148] or by fluorescence lifetime measurements [138–140, 144]. In com-
bination with fluorescence microscopy, the use of fluorescent molecular rotors
allows not only mapping the viscosity in living cells but also monitoring dynamic
cellular processes in real time.

Fluorescence lifetime imaging (FLIM) of fluorescent molecular rotors has been
employed to image viscosity in living cells [138–140], microbubbles [149], and
Bacillus spores [150]. A typical example of FLIM of Bodipy-C12 in lipid droplets is
shown in Fig. 5. The big advantage of time-resolved measurements of fluorescent
molecular rotors is that the fluorescence lifetime is independent of the fluorophore
concentration [136, 140, 141, 145–148]. Thus, FLIM intrinsically separates concen-
tration and viscosity effects. There is no need to conjugate the fluorescent molecular
rotors to other viscosity-independent fluorophores in order to account for variations
in dye concentrations as in ratiometric intensity imaging [122]. Moreover, fluores-
cence lifetime measurements can detect heterogeneous viscosity environments via
multiexponential fluorescence decays, potentially within a single pixel, and the
lifetime calibration does not depend on the spectral sensitivity of the detection
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Fig. 5 HeLa cells stained with fluorescent molecular rotor Bodipy-C12. (a) FLIM image, with
lifetime indicating viscosity, and (b) the fluorescence lifetime histogram
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system. Furthermore, FLIM of fluorescent molecular rotors frees the spectral region
occupied by the viscosity-independent reference fluorophore for simultaneous map-
ping of other parameters, e.g., polarity. Thus, FLIM of suitable fluorescent molecular
rotors represents a major advance in terms of straightforward calibration and rapid,
real-time, and ultrasensitive detection.

FLIM to Map the Temperature

One of the latest advances in the use of FLIM is to use it in combination with special
temperature-sensitive polymers to map the temperature in living cells. While FLIM
of rhodamine B in methanol was used to map the temperature in a glass microchip
from 10 �C to about 95 �C with a �3 �C accuracy [17], and FLIM of Kiton red, a
water-soluble rhodamine B derivative, was used to map thermal and solution
transport processes in a microfluidic T-mixer [151], these dyes have a limited
sensitivity to temperature. They may cover a large dynamic range from 10 �C to
100 �C, but they are not very sensitive to temperature variations around 37 �C.

Novel temperature-sensitive polymers, fluorescent polymeric thermometers, have
been designed that are not very sensitive to temperature over a wide dynamic range,
but rather display a large fluorescence lifetime variation near 37 �C [29]. At low
temperatures, a thermo-responsive polymer assumes an extended configuration,
where a water-sensitive unit can be quenched by water molecules in its vicinity. At
higher temperatures, hydration is weakened and the structure shrinks, releasing
water molecules and thus increasing its fluorescence quantum yield and lifetime.
These sensitive fluorescent polymeric thermometers have been used in combination
with TCSPC-based FLIM to map the temperature in living cells to a fraction of a
degree. The resulting temperature maps illustrated thermogenesis in the mitochon-
dria, showing that the temperature of the nucleus is about 1 �C higher than that of the
cytoplasm and that this depends on the cell cycle [29].

FLIM to Map the Refractive Index

The fluorescence decay of GFP is a function of the refractive index of its environ-
ment [112, 152, 153]. The reason for this is that the radiative rate constant, kr (see
Eq. 5), is a function of the refractive index, n [79]. This effect, expressed empirically
as an n2 dependence of the radiative rate constant in the Strickler–Berg formula, has
been predicted theoretically and demonstrated experimentally for fluorescent dyes,
lanthanides, quantum dots, and nanodiamonds over the years, varying the refractive
index by solvent composition or pressure, including supersonic jet spectroscopy in
vacuum [112]. In the particular case of GFP, the non-radiative rate constant seems to
be insensitive of the environment, as the GFP fluorophore is tightly bound inside its
barrel, protected from solvent effects, oxygen quenching, and other diffusion-
controlled collisional quenching effects – influences of fluorescent dyes in solution
are generally subjected to. The range over which the GFP decay senses the refractive
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index can be large, up to hundreds of nm, depending on the experimental details
[153]. It plays a role in TIRF FLIM, since GFP in close proximity to a glass–water
interface has a lower average decay time than far away from the interface [153] and
has been used to study GFP infiltration into the nanochannels of mesoporous silica
particles [154].

In combination with FLIM, this effect has been exploited to show that
GFP-tagged proteins have a faster decay in the cell membrane compared to the
cytoplasm, owing to the membrane’s higher refractive index [155]. In another study,
the fluorescence decays of cytoplasmic GFP and also of tdTomato, a red fluorescent
protein, were mapped during mitosis, showing that the average GFP and tdTomato
lifetimes remained constant during mitosis but rapidly shortened at the final stage of
cell division [156]. The interpretation of this observation put forward was that the
concentration of proteins – which have a high refractive index – in the cell changes
during the cell cycle. Reports that the average GFP fluorescence lifetime of
maltreated cells changes may be related to this effect too [157].

FLIM of Metal-Modified Fluorescence

While fluorescence lifetime changes due to the effect the refractive index has on the
radiative rate constant kr are modest [79], metal-induced fluorescence lifetime
modifications can be much stronger [158]. In the presence of a metal, the excited
state molecular dipole can couple with surface plasmons, i.e., collective electron
oscillations, in the metal creating additional radiative k*r and non-radiative decay
channels k*nr [158–160].

In such a case, Eq. 3 for the fluorescence lifetime has to be modified and the
metal-modified fluorescence lifetime is then given by

τ ¼ 1

k�r þ kr þ knr þ k�nr
(10)

with the corresponding modified Eq. 4 for the metal-modified quantum yield

ϕ ¼ knr þ k�nr
k�r þ kr þ knr þ k�nr

(11)

The additional deactivation pathways are strongly dependent on the separation
between the emitting fluorophore and the metal; hence, Eqs. 10 and 11 predict that
as k*r increases near a metal surface, the fluorescence quantum yield increases while
the fluorescence lifetime decreases. However, within 5–10 nm of the metal, the
additional non-radiative channel k*nr dominates, leading to a strong quenching of the
fluorescence, reducing the quantum yield as well.

This metal-enhanced fluorescence effect was exploited to study a multilayered
polyelectrolyte film incorporating aluminum tetrasulfonated phthalocyanine
(AlPcTS), a dye also used as a photosensitizer, and gold nanoparticles. The authors
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found that fluorescence enhancement can be tuned by the number of polyelectrolyte
layers separating AlPcTS and the gold nanoparticles [161].

Moreover, FLIM of metal-enhanced fluorescence can provide increased axial
specificity in fluorescence microscopy. After demonstration of the fluorescence
enhancement effect on fluorescently labeled beads on a gold film, a calibration
system that closely mimics a cell imaging geometry, Cade et al. studied mammary
adenocarcinoma cells expressing GFP-labeled membrane proteins grown on a 30 nm
gold film [162]. FLIM images show a significantly reduced GFP lifetime in the
membrane near the gold film, but the GFP lifetime was unmodified in parts of the
cell further above the gold film. Thus, the GFP fluorescence lifetime yields infor-
mation about the proximity of the GFP to the gold film within the confocal volume
without resorting to techniques such as TIRF, SNOM [163], or 4Pi microscopy
[43, 44]. This was then exploited to study receptor internalization, i.e., protein
redistribution, during receptor-mediated endocytosis [162], a technique which has
recently been improved by using a bespoke plasmonic nanostructure-coated glass
substrate [164]. A similar approach was used to obtain axial distances in tilted
microtubules up to 100 nm above a metal surface [165].

FLIM to Map Glucose

Among the reporters for fluorescence-based glucose sensing, the glucose/galactose
binding protein (GBP) undergoes a large conformational change upon glucose
binding [166]. This can either be detected with FRET or by labeling with an
environmentally sensitive fluorophore such as Badan near its glucose binding site.
The latter path was chosen, and it was found that glucose binding resulted in a large
increase of fluorescence quantum yield and lifetime [167]. Agarose beads with
bound GBP–Badan were imaged by FLIM, and the addition of glucose resulted in
a Badan lifetime shift from 2.2 ns at zero glucose to around 2.7 ns in a 100 mM
saturated glucose solution [168].

The authors point out that the fluorescence lifetime is a particularly useful
parameter to perform glucose sensing, since it is relatively independent of light
scattering in tissue, signal amplitude fluctuations, and fluorophore concentration.
The fluorescence lifetime is thus a good alternative to electrochemistry or glucose
oxidase methods, which have limited accuracy and impaired responses in vivo,
possibly due to interfering electroactive substances in the tissues, coating of the
sensor by protein and cells, and changes in blood flow that alter oxygen access [168].

FLIM to Map Ion Concentrations

Ions play a major role in living cells and organisms, and mapping and measuring ion
concentrations and dynamically observing changes and fluctuations are of
great interest to cell biologists and physiologists [169]. The most important ions
are Ca2+, Na+, K+, and Cl�, and a number of different strategies employing
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fluorescence-based ion sensing exist. Mapping ion concentrations via the fluores-
cence lifetime with FLIM in principle offers the advantage of being independent of
the fluorophore concentration. FLIM is also unaffected by variations of illumination
intensity or photobleaching – provided the probes do not aggregate and the photo-
products do not fluoresce. However, in practice, multiexponential decays and unde-
sirable photoproducts may hamper applications of some probes [170].

For example, instead of using intensity-based imaging of ratiometric probes, the
fluorescence lifetime of the Ca2+ sensor Quin-2 [170, 171] has been used to image
Ca2+ concentration in cells. Quin-2, excited at 340 nm, unfortunately forms a
photoproduct with a different Ca2+ affinity [170], but Calcium Crimson [172],
Calcium Green [173], and Fluo-3 [174] do not suffer from this problem,
although the lifetime change upon Ca2+ binding is not as large as in the case of
Quin-2.

The fluorescence lifetime of the Cl� sensing dye N-(ethoxycarbonylmethyl)-6-
methoxy-quinolinium bromide (MQAE) has been used to probe Cl� concentrations
in cockroach salivary acinar cells [175] and in mammalian olfactory sensory neurons
[176, 177]. The dye’s sensitivity to Cl� is due to collisional quenching which obeys
Stern–Volmer kinetics [67] and can be mapped with FLIM.

A Cu2+ sensor based on FRET between GFP as the donor and Cu2+ has been
reported [106] and employed for mapping Cu2+ ion uptake and release in plant cells
via FLIM [178]. K+ and Na+ probes are important for hypertension measurements in
blood, and lifetime measurements for this purpose have been reported [179], albeit
without imaging. A range of Mg2+ lifetime probes have also been tested, but again
without imaging [180].

FLIM to Map the pH

Other examples of FLIM are mapping the pH – or H+ ion concentration – in single
cells [181–183] and skin [184, 185]. Here the pH sensor 2,7-bis-(2-carboxyethyl)-5-
(and-6) carboxyfluorescein (BCECF) was used to image pH in the skin stratum
corneum. The authors used two-photon excitation FLIM to nondestructively obtain
pH maps at various depths, which is difficult to achieve by nonoptical methods.
Moreover, as the authors point out, intensity-based fluorescence imaging of the pH
probe could not have been used for their study as the observation of a variation in
fluorescence intensity could be ascribed to either a change in pH or a variation of the
local probe concentration.

FLIM of GFP excited at 405 nm where the extinction coefficient is very low and
the neutral fluorophore is predominantly excited has been reported to be pH
sensitive. The average lifetime increases as the pH increases, and this has
been applied to measure the pH between 4.5 and 7.5 in HeLa cells [186]. The
same team has repeated this feat without GFP, using autofluorescence of cells,
namely, the nicotinamide adenine dinucleotide (NADH) fluorescence lifetime,
upon excitation at 370 nm. The authors found that the NADH lifetime decreases
as pH increases [187].
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FLIM to Map Oxygen

Oxygen concentrations, or partial pressures, can be sensed using long-lived ruthe-
nium-based sensors [188–191]. TCSPC-based FLIM has been used to detect peri-
cellular oxygen concentrations around isolated viable chondrocytes seeded in three-
dimensional agarose gel, revealing a subpopulation of cells with spatial oxygen
gradients [190]. Furthermore, FLIM of a long-lived ruthenium-based oxygen sensor
with an unquenched decay time of 760 ns has been used to map oxygen concentra-
tions in macrophages [191]. Lifetime measurements are particularly advantageous,
since intensity-based fluorescence imaging of oxygen in cells would require a
calibration of the intensity of the probe unquenched by oxygen as well as knowing
its concentration in the cell. This is not practically possible. Temporal focusing for
two-photon wide-field excitation with a frequency-domain FLIM system has
recently been reported to image ruthenium lifetimes in cells [192]. This approach
allows rapid optical sectioning with wide-field excitation and camera detection.

FLIM of Autofluorescence of Tissue, Eyes, and Teeth

FLIM of autofluorescence is an area that has recently expanded rapidly [2, 193]. The
advantage of this approach is that no specific labeling is needed, as the fluorescence
signal is provided, for example, by endogenous fluorophores such as nicotinamide
adenine dinucleotide (NADH) or flavin adenine dinucleotide (FAD) [194]. The fluo-
rescence lifetimes provide a readout of the metabolic state of the samples under
investigation. Over 20 years ago, it was demonstrated that FLIM can map free and
protein-bound NADH [195] and has been known for even longer that the redox state
of the mitochondrion can be monitored by NADH fluorescence, as reviewed by the
discoverer of this effect, Britton Chance [196]. Breast cancer cells have been studied
by FLIM of NADH [197–201], and this approach has been extended to include FAD
[202, 203]. Autofluorescence of cardiac myocytes has been studied with FLIM
[204, 205], and it has been shown that FLIM of autofluorescence can distinguish
necrosis from apoptosis [206]. Employing phasor analysis of the FLIM data, bacteria
and cells have also recently been studied with this method in real time [207–209].

FLIM of autofluorescence has potential as a label-free clinical diagnostic tool for
in vivo optical biopsies, in particular for skin [210–215]. These three-dimensional
optical biopsies do not require any removal of tissue samples or any other mechan-
ical or chemical treatment. It provides information on morphology and metabolism
at a subcellular level, and it has been shown that FLIM of skin autofluorescence can
distinguish basal cell carcinoma from the surrounding skin [210] and benign
melanocytic nevi from malignant melanocytic lesions [216]. A combination of
FLIM of autofluorescence with coherent anti-Stokes Raman spectroscopy (CARS)
could add information about chemical vibrational fingerprint and also lipid and water
content to the optical biopsy [217]. Apart from early detection of skin diseases, these
approaches could also be used to monitor the progression of wound healing and the
effect of cosmetics on the skin [218].
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Another application with direct clinical relevance is autofluorescence FLIM of the
eye. The autofluorescence decay of the retina is multiexponential, and a scatter
plot of short versus long autofluorescence lifetimes appears to be different for
healthy retinas and retinas at the onset of age-related macular degeneration (AMD)
[219, 220]. This approach may offer the opportunity for early detection and diag-
nosis of this debilitating eye disease.

Moreover, the autofluorescence of teeth has also been studied with FLIM
[221–223], and efforts are underway to use FLIM, possibly combined with endos-
copy, for clinical diagnostics [224, 225] and brain tumor image-guided
surgery [226].

Plant autofluorescence, i.e., FLIM of chlorophyll in algae, has recently been used
to study cadmium toxicity. After careful calibration of the chlorophyll fluorescence
under different excitation conditions, it was found that cadmium exposures appear to
lengthen the average chlorophyll fluorescence decay, possibly due to disruption of
the electron transport system in photosynthesis [227]. The authors point out that the
characteristics of the chlorophyll fluorescence decay could serve as a noninvasive
indicator of cadmium toxicity in algae.

Finally, the supramolecular organization of DNA has been probed with FLIM
[228–231]; amyloid beta plaques, relevant for, e.g., Alzheimer’s disease, have been
investigated with FLIM [232–234]; and even hematoxylin and eosin staining, a
standard technique in histology, has been subjected to FLIM in a quest for more
information than from the hematoxylin and eosin intensity images alone [201, 235].

FLIM Implementations

The nanosecond time resolution required to measure fluorescence lifetimes can be
obtained either in the time domain by exciting the sample with a short optical pulse
and directly observing the decay of the fluorescence intensity or in the frequency
domain by modulating the excitation source and/or the detector gain [236].

Scanning FLIM: Confocal or multiphoton excitation scanning microscopes pro-
vide inherent optical sectioning, and here FLIM is essentially a series of single-
channel fluorescence lifetime measurements where the fluorescence decay is
acquired in each pixel of the image by time-correlated single-photon counting
(TCSPC) [47, 50, 152, 237], gated photon counting [238, 239], streak cameras
[240–242], or phase modulation [243–245]. TCSPC is the gold standard for fluo-
rescence lifetime measurements [246, 247]. TCSPC-based FLIM has the best signal-
to-noise ratio of any FLIM technique [248–250], single-photon sensitivity, clearly
defined Poisson statistics, and a wide dynamic range and offers an easy visualization
of fluorescence decays. A schematic TCSPC-based scanning FLIM setup is shown
in Fig. 6.

Using dedicated electronics, in TCSPC, the arrival time of single fluorescence
photons is recorded to picosecond accuracy after exciting the sample with a short
laser pulse: a constant fraction discriminator (CFD) for the shaping of the detector
pulse to enable precise timing, a time to amplitude converter (TAC) for the timing,
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and an analogue-to-digital converter (ADC) and multichannel analyzer (MCA) to
allocate the count to its time channel. By exciting the sample at MHz rates, i.e.,
millions of times per second, and recording the arrival time of many fluorescence
photons, a probability distribution histogram of fluorescence photon arrival times is
built up in the MCA. This is, in fact, the fluorescence decay curve [246, 247, 251].

As excitation sources, tunable dye lasers can be used, but their small tuning range
of �100 nm and cumbersome operation are a disadvantage. Tunable mode-locked
solid-state lasers such as Ti:sapphire lasers are much more user-friendly and provide
picosecond or femtosecond pulses over a wider tuning range (�680–1,080 nm).
They can have an average power up to several watts and a fixed repetition rate of
about 80 MHz which corresponds to 12.5 ns between pulses (round-trip time of a
pulse in the laser cavity) and are often used as excitation sources for TCSPC FLIM,
in particular for two-photon excitation FLIM but also frequency doubled for single-
photon FLIM (�340–540 nm). The repetition rate can be reduced by pulse pickers or
cavity dumpers, which employ acousto-optical devices to select only a specified
fraction of the pulses in the pulse train, or by long cavity lasers [252]. Small and
inexpensive low average power (~1 mW) picosecond diode lasers at fixed wave-
lengths with variable repetition rates have also been employed for TCSPC FLIM
[153], and their variable repetition rate is particularly suited to measuring long
fluorescence decays, e.g., those of quantum dots.

A relatively recent innovative development is the use of a photonic crystal fiber as
a tunable supercontinuum excitation source for FLIM [253]. Ti:sapphire laser pulses
at 790 nm were coupled into a 30 cm long, 2 μm diameter, microstructured photonic
crystal fiber to produce a continuum of pulses from 435 to 1,150 nm. Appropriate
spectral selection allowed the excitation of GFP and autofluorescence in confocal
TCSPC and wide-field time-gated FLIM. The ease and simplicity with which the
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Fig. 6 A schematic TCSPC-based scanning FLIM setup
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tunability is achieved over such a large range is a distinct advantage of this approach.
Supercontinuum sources are now commercially available and have been used for
FLIM [223, 234, 254].

Photomultipliers in the photon counting mode are the most frequently used
detectors. They are small, reliable, and relatively inexpensive but can be damaged
by excessive signals and have a transit time spread of�150 ps which is longer than a
typical optical excitation pulse. Microchannel plates (MCPs) have the best time
resolution, down to �20 ps, but they are expensive and can also be easily damaged
by too high a light level. An alternative detector is a single-photon avalanche diode
(SPAD, biased above the diode breakdown voltage) which is inexpensive, has a high
detection sensitivity (quantum efficiency), and is not damaged by high light levels,
but only has a small active area, a few tens or hundreds of μm2 [36, 39, 255]. Devices
with a transit time spread of only �40 ps have recently become available, but the
light has to be focused very well onto its 20 μm diameter active area (for comparison,
a typical photomultiplier or MCP cathode diameter is around 10 mm). The best
detectors currently available are hybrid detectors which consist of a photocathode in
front of an avalanche photodiode (APD, biased below the diode breakdown voltage).
The single photoelectrons liberated by photons at the photocathode are accelerated
across a high voltage (8 kV) into the APD. They have a GaAsP photocathode with a
high quantum efficiency of 50% around 500 nm and a large active area, are free of
afterpulsing, and cost less than a MCP. However, they can have a high dark count
rate of 1,000 counts/s [256, 257]. The timing characteristics of each type of these
detectors are illustrated in Fig. 7.

TCSPC is a mature and reliable digital technique based on whether a photon is
detected or not [258]. The ease of reproducibility of measurements is due to the
unique combination of advantages such as single-photon sensitivity, a high temporal
resolution (picoseconds), linear recording characteristics independent of excitation
intensity fluctuations, detector gain variations and photobleaching, well-defined
Poisson statistics, wide dynamic range (in practice up to 5 orders of magnitude),
and an excellent signal-to-noise ratio. It is based on timing at most one photon after
an excitation pulse, so the fluorescence count rate is usually one or two orders of
magnitude lower than the excitation rate. In practice, the fluorescence photon
triggers the detection electronics, rather than the high repetition rate laser. This
reverse mode operation minimizes the acquisition time [259].

A similar but rather faster approach is to bin all incoming photons within preset
time windows after excitation [238, 239]. This time-binning method is significantly
faster than TCSPC because it is not necessary to reduce the fluorescence signal to the
level of single-photon timing. However, it is less accurate than TCSPC, and its time
resolution is lower. The use of two-photon excitation streak-camera-based line-
scanning FLIM has also been reported [240]. This technique in principle allows
rapid data acquisition even for a large number of pixels, and streak cameras are the
fastest detectors available.

Frequency-domain fluorescence lifetime measurements have also been combined
with confocal/multiphoton laser scanning microscopy [243–245]. The advantage
here is that this approach is fast and can be inexpensive [243].
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Wide-Field FLIM: In the time domain, a fluorescence decay curve can be directly
acquired after excitation of the sample, usually using a sampling technique
[260–263]. After exciting the sample with an ultrashort laser pulse, time-gated
snapshots of the fluorescence emission are taken at various nanosecond delays
using high-speed gated image intensified cameras. These stroboscopic approaches
are fast, since all the pixels are acquired in parallel – a 100 Hz FLIM frame rate has
been reported using two time gates and an optical delay [264] – but they lack single-
photon sensitivity, precision, and accuracy and are of limited suitability for single-
molecule tracking, and their temporal resolution is limited to�80 ps [265]. However,
the development of a segmented gated image intensified camera allows the simul-
taneous acquisition of four time gates after one excitation pulse and minimizes
photon loss [266]. Directly gated CCD cameras have also been developed
[267, 268], but their time resolution is lower than gated image intensified cameras
and is more suited to imaging long lifetime probes.

Fig. 7 A comparison of the
instrumental response
function of photomultiplier,
SPAD, and hybrid detector to
illustrate their timing
characteristics. The secondary
pulse of the photomultiplier
and the charge carrier
diffusion tail in the SPAD are
evident, as is their absence in
the hybrid detector. The full
width at half maximum is very
similar for the SPAD and
hybrid detector, whereas for
the photomultiplier, it is larger
than either of them
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In frequency-domain wide-field FLIM, a sinusoidally modulated excitation beam
and detector may be used to measure the phase shift and demodulation of fluores-
cence signals with respect to their excitation signals using modulated intensified
cameras [269–273]. With this approach, a fluorescence lifetime may be calculated
from both the phase shift and demodulation (at several modulation frequencies if
necessary, e.g., for multiexponential fluorescence decays) [274]. For a simple mono-
exponential fluorescence decay, both calculations should yield the same value. For
more complex decays, e.g., in the case of cyan fluorescent protein, the phase shift
lifetime is shorter than the demodulation lifetime [270].

The big advantage of wide-field FLIM is that it does not require scanning and has
the potential for rapid refresh rates due to the parallel acquisition of all pixels. This is
important for real-time FLIM [275] for biomedical applications, e.g., endoscopy
[224, 225, 276, 277], and for observation of dynamic events in real time.

There is a lively debate as to the relative merits of time- or frequency-domain
approaches to FLIM, as recently reviewed [236]. In theory, the two approaches are
related by a Fourier transformation and, using a hybrid TCSPC and multifrequency
phase fluorometer, have experimentally been demonstrated to be equivalent
[278]. To nonspecialists, the easy visualization of fluorescence decays in the time
domain may be an advantage over the frequency domain, where the analysis of
complex fluorescence decay profiles, such as stretched exponential decay profiles, is
less tractable [279]. However, for some applications, the frequency-domain instru-
mentation is considered easier to implement since ultrashort pulsed laser sources are
not required, especially for longer lifetimes – although practitioners are increasingly
using mode-locked lasers for frequency-domain measurements, particularly in multi-
photon microscopes [184, 185]. Frequency-domain techniques are slightly more
photon efficient than time-gating techniques (but this does not necessarily translate
into more accurate fluorescence lifetimes) and require no temporal deconvolution of
the instrumental response and the fluorescence decay. The signal-to-noise ratio is
higher for TCSPC than for frequency-domain measurements, particularly at low
intensities, but TCSPC saturates at high fluorescence intensities [249, 250].

One potential pitfall of the time-domain approach is that there should be sufficient
time (�5τ) between excitation pulses for the sample fluorescence to completely
decay in order to obtain accurate fluorescence lifetime values. In practice, this
implies using mode-locked lasers with pulse pickers and cavity dumpers,
lower repetition rate pulsed diode lasers [153, 280–282], long cavity lasers [252],
or appropriate fitting procedures to take residual fluorescence into account [283].
This is not an issue for the frequency-domain approach. However, frequency-domain
FLIM can suffer from aliasing and photobleaching-induced artifacts [284, 285] and a
limited dynamic range [286].

FLIM techniques continue to be improved, particularly by the reduction of
acquisition times [239]. The relative merits of the various FLIM implementations
are summarized in refs [32, 118], and the choice of system depends on the samples to
be studied and the practitioner’s preference for fast data acquisition and high
temporal or spatial resolution. In addition, some microscopy techniques such as
TIRF, supercritical angle fluorescence, or selective plane illumination are difficult or
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impossible to implement with scanning, and image acquisition has to be performed
in wide-field mode with a camera. In combination with FLIM, this has until recently
meant that gated or frequency-domain camera-based FLIM had to be used, but wide-
field TCSPC methods have been improved to take advantage of the high signal-to-
noise ratio available by using this type of FLIM [36, 255].

Spectrally Resolved FLIM

Spectrally resolved FLIM allows the fluorescence lifetime and spectra of two or
more fluorophores to be observed simultaneously. This is advantageous in FRET
studies, where the donor fluorescence lifetime can be monitored in one spectral
channel and the acceptor fluorescence in another. A shortening of the average
fluorescence lifetime of the donor cyan fluorescent protein (CFP) due to FRET to
the acceptor yellow fluorescent protein (YFP), both linked by a short amino acid
chain, was accompanied by an initial rise of the YFP fluorescence lifetime in the
acceptor channel (acceptor ingrowth) due to sensitized emission [287]. Other spec-
trally resolved FLIM applications concern studies where the fluorescence lifetime of
fluorophores emitting in different spectral regions is monitored simultaneously
[244], including single-molecule studies [288]. The spectral resolution in these
cases is really a spectral separation, namely, between the two spectral regions of
fluorescence emission. However, true spectrally resolved FLIM with 10 nm band-
width over a wide spectral range has been reported, both in the frequency domain
[289] and the time domain (using a 16-anode photomultiplier) [290], allowing
sophisticated analysis of multiple fluorophores sensing multiple biophysical param-
eters, FRET, and possibly multiple donor–acceptor pairs.

Polarization-Resolved FLIM

In order to maximize the information available from a limited fluorescence photon
budget, it is advantageous to record multiple fluorescence parameters – such as
lifetime, spectrum, and polarization – in a single imaging experiment [291]. Fluores-
cence is polarized due to the existence of a transition dipole moment of the fluorophore
and thus the electric dipole characteristics of the emission. Polarization-resolved
fluorescence measurements have been performed since the 1920s [98], and the use
of fluorescence anisotropy in imaging and for single-molecule work has been reviewed
recently [291–297]. When using fluorescence as a probe, polarization-resolved mea-
surements can yield information on the properties of a sample that cannot be extracted
by intensity and lifetime methods alone [298, 299].

In a polarization-resolved fluorescence microscopy experiment, a fluorescently
labeled sample is excited using linearly polarized light, and the time-resolved
fluorescence intensity is measured at polarizations parallel and perpendicular to
that of the exciting light. The fluorescence decay parallel to the polarization of the
excitation, F||, is given by
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Fjj tð Þ ¼ 1

3
F0exp � t

τ

� �
	 1þ zr0exp � t

θ

� �h i
(12)

and the fluorescence decay perpendicular to the polarization of the excitation, F⊥, is

F⊥ tð Þ ¼ 1

3
F0exp � t

τ

� �
	 1� r0exp � t

θ

� �h i
(13)

where r0 is the initial anisotropy and θ the rotational correlation time [69, 70]. The
difference between the parallel and perpendicular fluorescence signals is due to
depolarization of the fluorescence. The fluorescence anisotropy r is then defined as

r tð Þ ¼ Fjj tð Þ � GF⊥ tð Þ
Fjj tð Þ þ zGF⊥ tð Þ (14)

where F||(t) and F ⊥ (t) are the fluorescence intensity decays parallel and perpen-
dicular to the polarization of the exciting light. The value of z depends on the NA of
the microscope objective, where 1� z� 2 (z� 1 for a high NA objective, z= 2 for a
collimated beam) [300–307]. Although a rigorous treatment of the effect of high NA
objectives to “see around” the fluorophore and therefore collect all three emission
components Fx, Fy, Fz leads to a slightly more complex description than Eq. 14
[301, 306, 308], this empirical approach is attractive due to its simplicity and
similarity with that of a collimated beam and has worked well in our laboratory
and others [246]. The empirical constant z is a function of the NA of the microscope
objective and is chosen such that (i) a time-resolved fluorescence anisotropy decay
starts at the correct initial anisotropy r0 (as determined by spectroscopic measure-
ments using collimated excitation light) and (ii) the total fluorescence intensity decay
F||(t) + z F ⊥ (t) is the same as a decay collected using collimated beams with magic
angle detection such that polarization contributions are removed [246]. The denom-
inator is proportional to the total fluorescence emission, and G accounts for differ-
ences in the transmission and detection efficiencies of the imaging system at parallel
and perpendicular polarization. If necessary, an appropriate background has to be
subtracted [309]. Due to the nature of the photoselection for absorption and emission
transition dipoles, multiphoton excitation provides a greater dynamic range for
anisotropy measurements than single-photon excitation [310].

The depolarization of the fluorescence, i.e., the decay of the anisotropy r as a
function of time, can either be due to the rotational diffusion of the fluorophore in its
excited state before emission of a fluorescence photon or due to energy migration or
homo-FRET:

(i) Rotational Diffusion

The rotational diffusion of the fluorophore in its excited state before emission of a
fluorescence photon depends on its volume and the viscosity and temperature of its
environment. For a spherical molecule, r(t) decays as a single exponential and is
related to the rotational correlation time θ according to
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r tð Þ ¼ r0 � r1ð Þe�t=θ þ r1 (15)

where r0 is the initial anisotropy (maximum value is 0.4 for single-photon excitation)
and r1 accounts for a restricted rotational mobility. r1 = 0 for freely rotating
fluorophores, e.g., in isotropic, homogeneous solution. For a spherical molecule in
an isotropic medium, θ is directly proportional to the viscosity η of the solvent and
the hydrodynamic volume V of the rotating molecule:

θ ¼ ηV

kT
(16)

where k is the Boltzmann constant and T the absolute temperature. Therefore, if the
volume of the fluorophore is known, the rotational correlation time can report on the
viscosity of the fluorophore’s immediate environment. Alternatively, as the rota-
tional diffusion can be slowed down by binding or sped up by cleavage, θ can yield
information about the size of the tumbling unit. In addition, evidence of a hindered
rotation of the fluorophore due to geometrical restrictions, e.g., in the cell membrane,
can be gleaned from r1.

If the anisotropy r in Eq. 14 is calculated from the fluorescence intensities, rather
than the decays, then the steady-state fluorescence anisotropy is obtained. This is
related to the molecular parameters r0, r1, τ and θ via the Perrin equation [69, 70]

r ¼ r0 � r1

1þ τ

θ

þ r1 (17)

where τ is the fluorescence lifetime, defined in Eq. 3 [311]. While the steady-state
anisotropy r is relatively easy to measure, and in particular to image [292], it may not
be unambiguous to interpret in the absence of time-resolved measurements.

Steady-state fluorescence anisotropy imaging has, for example, been used to study
viscosity, enzyme activity or binding in cells [312–319], and DNA digestion [320] or
to identify FRET between fluorescent proteins [321–325]. However, it is difficult to
obtain information about a hindered rotational mobility as indicated by a non-zero r1,
and time-resolved measurements are needed to determine this parameter.

Time-resolved fluorescence anisotropy has been used on cells for single-point
measurements [313, 326–328] and for mapping solvent interactions in microfluidic
devices [19], as well as the viscosity in the cell cytoplasm [309, 311, 329] and
membrane [330].

In the brain, the speed with which neurotransmitters diffuse in the interstitial
space contributes critically to the shaping of elementary signals transferred by neural
circuits. Indeed, experimental alterations of extracellular medium viscosity could
reveal a clear impact of the interstitial diffusion rate on neural signal formation, both
inside and outside the synaptic cleft [331–336]. Furthermore, it has been suggested
that medium microviscosity could influence rapid movements of protein domains
during ion channel opening: in the squid giant axon, a 30–40% increase in the local
viscosity slows down the gating time of sodium channels by more than twofold [337].
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Similarly, rapid intracellular diffusion of molecular messengers in the protein-crowded
microenvironment of small cellular compartments sets the rates of diffusion-limited
cellular signaling cascades throughout the central nervous system. Cytosolic mobility
and protein crowding have been demonstrated to play an important role in controlling
the intracellular spread of molecular signals generated by synaptic signal exchange
[338–341]. In the context of neural coding mechanisms, it would seem reasonable to
suggest that understanding the mobility of small signaling molecules in the micro-
environment of functional connections in the brain bears as much importance as
deciphering their rapid reaction kinetics per se.

Measurements of bulk extracellular diffusion in the brain have a long history. An
important advance came with the point-source iontophoresis technique [342], which
has been used extensively in various brain areas (reviewed in [343]). It was subse-
quently complemented by imaging methods which analyze profiles of fluorescence
indicators ejected from a point source [336, 344–347] also employing quantum dots
as a diffusing probe [348]. Recent developments in the spot imaging of extracellular
fluorescent probes using microfiber optics have improved spatial resolution of such
methods to just a few microns [349, 350]. However, these approaches deal with the
apparent diffusion speed which incorporates steric hindrance, or tissue tortuosity,
arising from geometric obstacles such as cell walls and membranes of cellular
organelles. Molecular mobility on the scale of local biochemical reactions, i.e.,
within the range of several nanometers, remains poorly understood.

Perhaps the most well-established experimental approach to gauge intra-cytosolic
diffusion has been fluorescence recovery after photobleaching or FRAP (reviewed in
[351]). Combining FRAP and real-time imaging of photoactivated molecular probes
has been highly instrumental in unveiling spatiotemporal aspects of molecular
reactions in small dendritic compartments of neurons in situ [338–341, 352]. Assum-
ing a sufficiently rapid image acquisition rate, the spatial resolution of this method
could be as good as the diffraction-limited resolution in the optical acquisition
system. Even at this resolution level, however, estimated diffusion will incorporate
the effect of macromolecular obstacles, intracellular organelles, and membrane
geometry features, potentially masking the speed at which small molecules shuttle
within nanoscopic cellular compartments. Time-resolved fluorescence anisotropy
imaging (TR-FAIM) [309, 329] is ideally suited to enable diffusion monitoring at the
molecular scale or in other words to gauge quasi-instantaneous molecular mobility.

In the absence of rotational diffusion, polarization-resolved measurements can be
used to elucidate the orientation of fluorophores, e.g., in the membrane [353, 354],
muscle fibers [355], or DNA [356]. In these cases, neither the depolarization due to
Brownian rotational motion nor homo-FRET is measured, but rather the angle
between the electric vector of the light exciting the sample and the transition dipole
moment of the static fluorophore, thus yielding its orientation.

(ii) Energy Migration or Homo-FRET

FRET can occur if the absorption spectrum of the acceptor overlaps with the
emission spectrum of the donor, the fluorophores are in close proximity, and their
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orientation is favorable (i.e., orientation factor κ2 6¼ 0 [104, 357, 358]), as exten-
sively discussed in reference [7]. These conditions can apply to fluorophores with a
small Stokes shift and hence lead to the donor and acceptor being the same type of
fluorophore. Thus, resonance energy transfer between the same types of fluorophore
can take place, known as energy migration or homo-FRET. This phenomenon
depolarizes the fluorescence emission [98] and has been exploited in single-point
measurements and imaging, e.g., to monitor the proximity of isoforms of the
glycosylphosphatidylinositol (GPI)-anchored folate receptor bound to a fluorescent
analogue of folic acid to study lipid rafts [359, 360], to monitor actin polymerization
[361], or to image the aggregation of protein α-synuclein, relevant for Parkinson’s
disease [362].

Time-resolved fluorescence anisotropymeasurements to identify homo-FRET have
be carried out to study conformational changes in G-protein-coupled receptors [363],
dimerization [364], and quantification of protein cluster sizes [365–368]. It has also
been used to show that a neuronal isoform of Venus-tagged calcium–calmodulin-
dependent protein kinase II alpha (CaMKIIa) holoenzyme forms catalytic domain
pairs and that glutamate receptor activation in neurons triggered an increase in
anisotropy consistent with a structural transition from a paired to unpaired confor-
mation [51, 369]. Moreover, time-resolved fluorescence anisotropy measurements
have been employed to study the homodimerization of amyloid precursor protein at
the plasma membrane, relevant for Alzheimer’s disease [57]. In these cases, it is
advantageous to have negligible rotational diffusion (the ratio τ/θ is small), so that
homo-FRET can be identified.

For homo-FRET involving two fluorophores, and in the absence of any rotational
diffusion, r(t) decays as a single exponential and is related to the FRET rate ω
according to [364–366, 368]

r tð Þ ¼ r0 � r1ð Þe�2ωt þ r1 (18)

where r0 is the initial anisotropy in the absence of rotation or energy transfer, as
defined above, and r1 is the anisotropy at a long time after the excitation. While
hetero-FRET between different donors and acceptors to identify protein interaction
can routinely be imaged with FLIM, mapping energy migration or homo-FRET to
identify protein dimerization requires polarization-resolved FLIM, i.e., TR-FAIM.
The only way to detect homo-FRET is by polarization measurements, because
homo-FRET does not affect spectra or fluorescence lifetime – as long as the
fluorescence lifetime of both fluorophores is the same – and thus cannot be identified
by intensity or lifetime methods [296]. If the fluorescence lifetimes of the two
fluorophores are different, however, then FRET can be identified by fluorescence
lifetime measurements [370, 371]. This has, for example, been done in the case of
tryptophan to tryptophan homo-FRET in barnase, where the tryptophans are located
in different environments yielding different fluorescent lifetimes [372].

Homo-FRET between fluorescent proteins can be extremely fast (a 2 ps transfer
time has been quoted for yellow fluorescent protein [373]) which is an indicator of
protein dimerization or oligomerization, and TR-FAIM is the only technique which
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can image it (Only in the specific case of the Cerulean fluorescent protein, the
fluorescence lifetime has been reported to change due to homo-FRET [374]).

Anisotropy imaging can be performed as steady-state or time-resolved measure-
ments in the time domain or frequency domain using scanning or wide-field methods
[32, 118, 291] and has been combined with spectral imaging [254]. Photon counting
approaches are particularly attractive because of their excellent signal-to-noise ratio
and single-photon sensitivity [108, 248–250].

The combination of TIRF with time-resolved fluorescence anisotropy measure-
ments allows excitation with s- and p-polarized evanescent waves and provides
spatial information on the fluorescence depolarization processes near an interface.
This has, for example, facilitated the observation of the rotation of membrane
dyes in and out of plane [375, 376]. TIRF has indeed been combined with TR-
FAIM [57, 58].

Phasor Analysis and Bayesian Analysis

Conventional FLIM data analysis in the time domain relies on Levenberg–Marquardt
fitting algorithms to fit the experimental data to a mathematical model, i.e., compare
data and theory [251]. This is a standard procedure that has been used in fluorescence
spectroscopy for many decades.

The recent development of phasor analysis for FLIM [377] allows the visualiza-
tion of the decay data without a specific mathematical model (but it does require a
calibration measurement with a known reference sample). Although originally
developed for data analysis in the frequency domain, it is equally well applicable
in the time domain and in particular for FLIM. Essentially, the fluorescence decay is
Fourier transformed, and the real part is plotted versus the imaginary part for each
pixel. The resulting data cloud (or clouds) is on the universal semicircle for single-
exponential decays, and various quenching processes result in trajectories within
(or even outside) this universal semicircle.

The recent development for Bayesian analysis is particularly relevant for
fluorescence decays with a low number of photons [378]. The Bayesian approach
allows a decay time estimation with a much narrower confidence limit than
Levenberg–Marquardt fitting if low photon numbers are involved – as is the case
more often than not in many FLIM experiments. If the photon numbers are high
enough, then Bayesian fitting does not offer any advantages over conventional
Levenberg–Marquardt fitting.

Detector developments

Apart from the development and improvement of various microscopy techniques, for
example, by super-resolution, selective plane illumination, or adaptive optics, and
apart from fluorescent probe and protein development, detector development is also
an important aspect to advance the field. While solid-state detector arrays have been
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used for frequency-domain FLIM [27], the recent development of single-photon
avalanche diode (SPAD) array detectors with picosecond timing capabilities holds
great promise for the advancement of time-resolved fluorescence microscopy –
especially in view of the limitations of the variety of current FLIM implementations.

Wide-Field TCSPC

Wide-field photon counting imaging is a well-established low light level optical
imaging technique in astronomy, both on the ground and in space. The Hubble Space
Telescope’s Faint Object Camera [379] and the European Space Agency’s X-ray
Multi-Mirror satellite (the most powerful X-ray telescope ever placed in orbit,
launched in 1999) were fitted with a photon counting imaging optical monitor
[380]. The technique has also been used in autoradiography [381], bioluminescence
[382], and fluorescence imaging [383–385]. Wide-field photon counting imaging
has some distinct advantages over direct CCD-based imaging, in particular the
ability to time the arrival of photons. However, while this technique has single-
photon sensitivity, its drawback is that it has only a limited time resolution given by
the frame rate of the camera (milliseconds for video rate cameras) [386]. Despite
recent efforts to reduce the time resolution to microseconds [384], this method is still
far too slow for application to nanosecond fluorescence decay measurements – and
yet microchannel plate (MCP) detectors routinely achieve picosecond timing reso-
lution when used for TCSPC [246]. The solution is to employ an electronic readout
rather than a phosphor, thus preserving picosecond timing capabilities. Different
readout architectures for photon counting imaging detectors exist, such as crossed-
delay line anodes, wedge and strip anodes, or quadrant anodes [36, 255]. Quadrant
anode detectors and crossed-delay line anode detectors for wide-field imaging with
picosecond timing resolution have been developed, thus enabling wide-field TCSPC
with picosecond time resolution [387]. Conventional photon pileup restrictions still
apply – they can only time a single photon per excitation cycle in the entire field of
view – but these devices combine single-photon sensitivity with wide-field detection
and picosecond timing resolution. They provide the high level of sensitivity required
for single-molecule analysis while also enabling TCSPC-based fluorescence lifetime
measurements and single quantum dot tracking without beam scanning [255, 388].

SPAD Arrays

CCD or CMOS cameras for the optical pulse round-trip delays for time-of-flight
ranging or three-dimensional imaging have been under development since the
mid-1990s. The strong similarities between these signals and the capture of fluores-
cence lifetime decays were identified by Esposito et al. in a proof-of-concept
demonstration [389].

The first commercial solid-state camera development for scientific FLIM was
reported recently, comprising 212� 212 pixels at 17 μm pitch and 44% fill factor [390].
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The pixel integrates both phases of the modulated fluorescence simultaneously by
directing accumulated photocharge via dual transfer gates from the photogate to storage
gates. The operating principle of this imager is very similar to that of various time-
of-flight image sensors which have been demonstrated in CMOS implementations
[391–393] and demonstrated to be suitable for FLIM [27].

These modulated detectors cannot rival the low-light performance and image
resolution of electron-multiplied or intensified CCD systems or the single-photon
sensitivity and timing resolution provided by photomultiplier tubes. The single-
photon avalanche diode (SPAD), which was first realized in CMOS technology
around 2003 [394], provides a solid-state detector combining high sensitivity and
high timing resolution with array formats and multichannel timing. A number of
gated SPAD pixel realizations for fluorescence lifetime have been reported [395,
396]. Line sensors allow a high fill factor by allowing pulse processing electronics to
be placed below the detectors. Advanced realizations of these line sensors are
beginning to emerge for time-resolved Raman spectroscopy [397].

The first time-resolved CMOS SPAD imagers placed the timing circuitry off-chip
or off-focal plane requiring different degrees of time multiplexing [398, 399]. This is
beneficial for fill factor but inefficient for low-light imaging due to the loss of
photons at unaddressed pixel sites. Pixels with on-focal plane time-to-digital con-
verter (TDC) were proposed in the MegaFrame EU project [400–402]. The pixels
provide fully parallel TCSPC at the expense of a large pitch of 50 μm and low fill
factor of 2%. The largest fully parallel SPAD array with 160� 120 TCSPC channels
was developed recently and has shown good TDC uniformity [403]. Recent work
has moved the parallel TDC array off the focal plane providing 64 � 64 TCSPC
channels operating at 100 frames per second [404]. Another sensor used 16 off-focal
plane TDC channels to achieve 10% fill factor extending the conventional pileup
limit to a photon rate of 10� the laser pulse rate [405]. This chip was the first to
embed fluorescence lifetime calculation on-chip offering prospects for high dynamic
range confocal scanning or fluorescence lifetime-activated cell sorting.

Two sensors composed of n-type metal oxide semiconductor logic-only, time-
gated SPAD pixels of 25 μm pitch with fill factors of 4.5% and 20.8%, respectively,
were reported recently in 0.35 μm high-voltage CMOS technology [401, 406].
More recently, Dutton et al. reported the first sub-10 μm pitch time-resolved
SPAD pixels [407]. Analogue pixel electronics can provide simultaneously low
pixel pitch and high fill factor and shows enormous promise for future time-resolved
image sensors with the required levels of sensitivity and image resolution for
microscopy.

The design of detectors and timing electronics on a single substrate inevitably
provides compactness and large numbers of channels but compromises fill factor and
SPAD performance (jitter, photon detection efficiency, afterpulsing, and dark count).
Recent work by Antonioli et al. [408] has resulted in a 32-channel TCSPC system
employing the hybrid integration of a custom 32 SPAD array with 32-channel active
quench and time-to-analogue converter array. The timing resolution and detector
characteristics are separately optimized providing the ultimate performance for
physics and biomedical research.
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The big advantage of these latest developments in SPAD array detector technol-
ogy is that it allows independent photon arrival timing in each pixel of a 32 �
32 pixel array simultaneously. This is due to a time-to-digital converter in each pixel,
with a 55 ps resolution. The new SPAD array technology thus combines the
advantages of TCSPC detection with parallel pixel acquisition as in wide-field
FLIM. This development can massively parallelize TCSPC detection and can over-
come the conventional implementation of scanning a single beam with a single
TCSPC detector. This new SPAD array technology offers a huge advantage over
existing fluorescence lifetime and anisotropy measurement tools and could present a
paradigm shift in our approach to dynamically monitoring protein interactions and
sensing the biophysical environment in cells in real time.

SPAD array detectors have a small fill factor (<10%), because the majority of the
area of each pixel is occupied by electronic circuits to perform the timing, with only a
small light-sensitive area dedicated to the detection of photons. To fully exploit the
parallel single-photon detection and timing capabilities of these detector arrays,
the entire fluorescence signal is therefore best focused onto the light-sensitive area.
The use of microlens arrays is a possible solution but may be impractical for this
task. However, preliminary multifocal multibeam approaches have been successfully
demonstrated to achieve this aim [409, 410].

Superconducting Detectors

In addition, detector technology based on devices exploiting superconductivity has
the ability to detect single photons. Superconducting tunnel junction (STJ) detectors,
transition edge sensors, and superconducting nanowire detectors go beyond the
principles employed in semiconductor and photoelectronic vacuum devices, i.e.,
electron–hole pair generation and the photoelectric effect. While transition edge
sensors are calorimeters that detect the energy of a photon deposited in the detector,
superconducting tunnel junction detectors have superconducting photocathodes and
rely on the photons separating the individual electrons in Cooper pairs which only
have a milli-electronvolt binding energy. The resulting electrons tunnel through a
thin layer beyond which they are picked up and amplified. The interesting feature of
such detectors is that they have an intrinsic wavelength resolution – the detector can
determine the wavelength of the detected photon without employing any filters,
gratings, or prisms to disperse the light. In the case of STJs, this is given by the pulse
height of the signal, i.e., the number of electrons generated. Moreover, they have a
high quantum efficiency over a very large wavelength range from X-rays to infrared
and low noise, but they need to be operated at liquid helium temperatures, i.e., below
�270 �C. These devices have already been demonstrated to be able to measure the
spectra of fluorescent dyes in solution [411] and as labels for DNA [412], but they
have not been used for microscopy. The disadvantage is that they have a very long
pulse rise time of micro- or milliseconds, so count rates in a single pixel are limited,
but pixelated devices have been manufactured and used on telescopes for optical
astronomy [413].
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Superconducting nanowires, on the other hand, have a very fast pulse rise time and
can count single photons at MHz count rates [414]. They also have very low noise but
limited quantum efficiencies (which can be overcome by cavity resonators [415]) and
no intrinsic wavelength resolution. They are based on meandering superconducting
wires just below the transition temperature, as reviewed recently [416]. A photon
deposits energy and heats up the wire so that the transition temperature is exceeded,
and a pulse results. They have an excellent signal-to-noise ratio in the infrared and have
recently been employed to detect singlet oxygen luminescence at 1270 nm, generated
by photosensitizer Rose Bengal, with unprecedented sensitivity [417]. Although these
devices have not yet been demonstrated for microscopy, they would be ideally suited as
a single-point detector in confocal or multiphoton excitation microscopy with picosec-
ond time resolution and high detection efficiency in the infrared.

Summary and Outlook

The power of fluorescence-based optical imaging to drive major discoveries in cell
biology is universally recognized. It offers two principal advantages: light microscopy
allows the observation of structures inside a living sample in real time, and cellular
components or compartments may be observed through specific fluorescence labeling.
The key point of FLIM lies in the ability to monitor the environment of a fluorophore
largely independent of its concentration – so in addition to the position of the
fluorophore, its biophysical environment can be sensed via the lifetime.

There are various implementations of FLIM, and, depending on the application,
each has its advantages and drawbacks. The ideal fluorescence microscope would
acquire the entire multidimensional fluorescence emission contour of intensity,
position, lifetime, wavelength, and polarization in a single measurement, with
single-photon sensitivity, maximum spatial resolution, and minimum acquisition
time (Fig. 1). Needless to say, there is presently no technology with this unique
combination of features, and to build one remains a challenge for instrumentation
developers. The recent development of SPAD array detectors with picosecond
timing capabilities holds great promise for the advancement of time-resolved fluo-
rescence microscopy – especially in view of the limitations of the variety of current
FLIM and TR-FAIM implementations. In the last few years, the potential power of
fluorescence lifetime-based optical imaging has increased dramatically, and the
development of 100% fill factor SPAD arrays should continue this trend.
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