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Tracers for Biogenic Secondary Organic

Aerosol from a-Pinene and Related

Monoterpenes: An Overview

Magda Claeys, Rafal Szmigielski, Reinhilde Vermeylen, Wu Wang,

Mohammad Safi Shalamzari, and Willy Maenhaut

Abstract In this review, we first address the terpenoid composition of ambient fine

rural aerosol to give a report on the current state of knowledge in regard to the

molecular characterisation of biogenic secondary organic aerosol tracers. The

major known, recently elucidated, and still unknown tracers, which can be detected

at a significant relative abundance, are listed and briefly discussed. In a second part,

we provide a historic account on the discovery of 3-methyl-1,2,3-butanetri-

carboxylic acid, which involved a long search with several failures and a final

success, and propose a revised formation pathway. Finally, we present some brief

conclusions and perspectives.
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carboxylic acid • Molecular Characterisation • Secondary Organic Aerosol

• Terpenylic Acid

18.1 Introduction

Biogenic secondary organic aerosol (SOA) from the oxidation of monoterpenes

such as a-pinene is a dynamic and complex mixture [19, 22, 23]. As the SOA

evolves or ages due to oxidation reactions, which involve ozone and/or OH or NO3
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radical-initiated reactions, more oxygenated products are formed with increased

hydrophilic properties, enhancing the capability of the aerosol to act as cloud con-

densation nuclei (for a review, see Ref. [10]). On the other hand, oxidation reactions

of semi-volatile precursors in the gas phase may also result in fragmentation to

smaller molecules. In addition to gas-phase oxidation reactions, heterogeneous

reactions occurring in the particle phase have to be considered; these reactions

include esterification with sulfuric acid of hydroxyl- or epoxy-containing SOA

products [14, 15, 33–35], esterification of pinic acid with hydroxyl-containing

terpenoic acids [4, 28, 38], and OH-initiated oxidation reactions [5].

Despite the fact that biogenic SOA is rather complex, it contains single

components at a significant relative abundance that are suitable as molecular

markers or tracers for the characterisation of ambient fine aerosol and allow one

to gain insights into biogenic volatile organic compound (BVOC) precursors and

aerosol formation processes. Since the lifetime of ambient fine aerosol is variable

and may be from a few hours to a few days it is useful to have tracers which

reflect fresh (unaged) and aged biogenic SOA. Well-established tracers that

are known for a long time for fresh a-pinene SOA are pinonic and cis-pinic
acids (e.g., Refs. [1, 6, 11–13, 41]). However, during the past decade, significant

progress has been made with respect to the chemical characterisation of addi-

tional a-pinene SOA tracers, including tracers for fresh as well as aged SOA.

For example, a novel tracer for fresh a-pinene SOA is terpenylic acid [3], while

3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) is a tracer for aged a-pinene
SOA [36].

18.2 Monoterpene SOA Tracer Composition of Ambient Fine

Rural Aerosol

Figure 18.1 shows selected chromatographic data [base peak chromatogram (BPC)

and extracted ion chromatograms (EICs)] for a methanolic extract of K-puszta fine

aerosol (PM2.5; particulate matter with an aerodynamic diameter <2.5 mm), which

can be regarded as representative for a biogenic SOA-rich aerosol [20]. The extract

was obtained from a pooled aerosol sample comprising portions of 5-day- and

night-time samplings of the warm period of the 2006 summer campaign [27] and

contains fresh as well as aged SOA. The data were obtained using liquid chroma-

tography coupled to negative ion electrospray ionisation mass spectrometry [LC/(-)

ESI-MS], following a published procedure [39].

The major tracers that could be detected at a significant relative abundance were:

1. the known a-pinene SOA tracers, cis-pinonic acid (MW 184), cis-pinic acid

(MW 186), and 10-hydroxypinonic acid (MW 200), and related isomers from the

oxidation of D3-carene: at m/z 183, cis-pinonic acid [retention time (RT)

23.3 min], and caronic acid (RT 23.9 min); at m/z 185, cis-pinic acid (RT

22.3 min) and caric acid (RT 23.2 min); and at m/z 199, 10-hydroxypinonic

acid (RT 20.7 min) (e.g., Refs. [1, 6, 7, 11–13, 26, 40, 41]). With regard to the
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m/z 199 compounds, it can be seen that there are additional isomers eluting

close to 10-hydroxypinonic acid (RT 20.7 min); these isomers remain to be

elucidated.

2. lactone-containing terpenoic acids, terebic (MW 158) and terpenylic acid (MW

172), both a-pinene SOA tracers, and a homologue, homoterpenylic acid (MW

186) from the oxidation of b-pinene: at m/z 157, terebic acid (RT 17.5 min);

at m/z 171, terpenylic acid (RT 19.2 min); and at m/z 185, homoterpenylic acid

(RT 20.5 min) [3, 38].

3. a C8-tricarboxylic acid (MW 204), a tracer for aged a-pinene SOA: at m/z 185
and 203: MBTCA (RT 19.3 min) [36].

4. a still unknown a-pinene SOA tracer: at m/z 187, tentatively characterised as a

C8-hydroxydicarboxylic acid (RT 16.7 min) [39].

5. diaterpenylic acid acetate, a 1,8-cineole and a-pinene SOA tracer: at m/z 231
(RT 22.0 min) [3, 16].

6. pinanediol-related MW 295 nitrooxy organosulfates: at m/z 294 (RTs 26.4, 27.9,
and 28.4 min) [8, 15, 21, 34].

7. di-esters formed between pinic acid and a hydroxyl-containing terpenoic acid: at

m/z 357 (RT 24.9 min, hydroxyl-containing terpenoic acid ¼ diaterpenylic acid)

[4, 38]; and at m/z 367 (RT 26.0 min, hydroxyl-containing terpenoic acid ¼ 10-

hydroxypinonic acid) [28].

Fig. 18.1 Selected LC/(-)ESI-MS chromatographic data [base peak chromatogram (BPC) and

extracted ion chromatograms (EICs)] for a methanolic extract of K-puszta PM2.5 aerosol,

containing fresh and aged biogenic SOA. The peak denoted with an asterisk in the BPC was

also present in the field blank. Abbreviation: NL normalisation level (in arbitrary units)
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Additional information on the m/z 185 compounds with RTs 18.9 and 19.6 min,

identified as ketolimononic and limonic acids, respectively, and the m/z 187

compound with RT 24.6 min, identified as the C9-dicarboxylic acid azelaic acid,

can be found in Yasmeen et al. [39].

The chemical structures of the a-pinene SOA tracers that are mentioned

above and can be readily detected using LC/(�)ESI-MS is given in Fig. 18.2.

These a-pinene SOA tracers should not be regarded as complete; additional

minor tracers, for example, are the di-ester formed between cis-pinic acid and

diaterebic acid [38], and the organosulfates derived from 3-hydroxyglutaric acid

and 10-hydroxypinonic acid [34].

Compared to previous work that resorted to GC/MS with prior trimethylsi-

lylation (e.g., Ref. [20]), the number of biogenic SOA tracers that can be readily

detected using LC/(�)ESI-MS has increased; a possible reason for this increase is

that some of the tracers are not stable (e.g., esters) during the trimethylsilylation

procedure and are detected as the corresponding monomers. In addition, some of

the organic species such as the lactone-containing terpenoic acids have escaped

detected by GC/MS with prior trimethylsilylation.

The tracers listed above, except 10-hydroxypinonic acid and the di-esters, were

measured in PM2.5 aerosols that were collected during a 2007 summer campaign at

Brasschaat, Belgium, a forest site that is severely impacted by urban pollution [9].

This study showed that the highest atmospheric concentrations of MBTCA and the

lowest ones of cis-pinonic acid were found during the first five days of the campaign

that were characterised by maximum temperatures >22 �C. This is consistent with
MBTCA being a tracer for aged biogenic SOA and cis-pinonic acid serving as its

intermediate precursor. In addition, the unknown MW 188 (C8H12O5) terpenoic

acid revealed the same time series as MBTCA, suggesting that it is also a potential

tracer for aged biogenic SOA. Some of the tracers reflected day-time oxidation

Fig. 18.2 Chemical structures of a-pinene SOA tracers. The numbers between parentheses refer
to the numbers used in Fig. 18.4
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processes (e.g., cis-pinonic, terpenylic, and terebic acids, MBTCA, and

diaterpenylic acid acetate), while others pointed to night-time aerosol formation

processes (e.g., cis-pinic, caric, and limonic acids, and the pinanediol-related MW

295 nitrooxy organosulfates). Furthermore, it could be confirmed that MBTCA, in

contrast to cis-pinonic acid, shows a strong Arrhenius-type temperature relation-

ship, as first documented in a German field study by Zhang et al. [42].

In order to describe the processes of a-pinene SOA formation, which are very

complex and dynamic, a useful framework has recently been proposed by Kroll

et al. [23]. In this system, the aerosol is presented in terms of the average carbon

oxidation state [OSC � 2(O:C)–H:C], a quantity that increases with oxidation and

is readily measured by a technique such as high-resolution MS (e.g., Refs. [30–32]).

As the SOA evolves, it will functionalise, fragment, or oligomerise, with the first

two processes affecting the oxidation state. Figure 18.3 places the a-pinene SOA

tracers, mentioned above, as well as some additional ones that were reported in the

literature, in the average oxidation framework. The latter tracers include norpinonic

acid (e.g., Ref. [17]), norpinic acid (e.g., Ref. [6]), 3-hydroxyglutaric acid [2], and

3-hydroxy-2,2-dimethylglutaric acid [2].

Fig. 18.3 Location of known, recently elucidated, and still unknown a-pinene SOA tracers in

the average oxidation framework, developed by Kroll et al. [23]. The di-esters are denoted with

♦, the terpenoic acids with ●, and the pinanediol nitrooxy organosulfates with ■. Note that

3-hydroxy-2,2-dimethylglutaric acid (11), terebic acid (12), the unknown MW 188 compound

(13), MBTCA (14) and 3-hydroxyglutaric acid (15) are located in the upper right corner,
consistent with tracers for aged a-pinene SOA. 1 pinanediol (nitrooxy organosulfates), 2 pinonic
acid, 3 norpinonic acid, 4 hydroxypinonic acid, 5 pinic acid/hydroxypinonic acid, 6 pinic acid,

7 pinic acid/diaterpenylic acid, 8 pinic acid/diaterebic acid, 9 norpinic acid, 10 terpenylic acid,

11 diaterpenylic acid acetate, 12 3-hydroxy-2,2-dimethylglutaric acid, 13 terebic acid, 14
unknown MW 188, 15 MBTCA, 16 3-hydroxyglutaric acid
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18.3 Historic Account on the Discovery of MBTCA: A Search

with Failures

The structure elucidation of MBTCA presented an analytical challenge, mainly

because the dimethylcyclobutane ring of a-pinene was not retained during its

formation. Two approaches can be taken when dealing with the structural elucida-

tion of unknown compounds. A first approach is to isolate the unknown compound

in pure form and sufficient quantity, and to elucidate its structure using NMR

techniques. A second approach is to synthesise the proposed compound and to

compare the chromatographic and mass spectrometric behaviours of the unknown

compound with those of the synthesised one. As the first approach was not feasible

in the case of a very complex mixture such as a-pinene SOA, the second approach

was finally followed.

Our research dealing with MBTCA goes back to 1998, about 2 years before we

published an article on “Carbonaceous aerosol characterization in the Amazon

basin, Brazil: novel dicarboxylic acids and related compounds” [24]. In the latter

study, we focused on the structural characterisation of unknown organic acids

that were present in aerosols collected from the Amazon basin, Brazil, during

the wet season, and, therefore, were most likely from biogenic origin and not due

to biomass burning (taking place in the dry season). These organic acids were

found to be enriched in the fine size fraction, suggesting that they were biogenic

SOA products formed by gas-to-particle conversion. For the characterisation and

structure elucidation of the unknowns, we employed fractionation by solid-phase

extraction of the dichloromethane extracts, various types of derivatisations in

combination with gas chromatography/mass spectrometry (GC/MS), and detailed

interpretation of the electron ionisation (EI) mass spectra. Among the unknowns,

a C8-tricarboxylic acid was identified as 3-carboxyheptanedioic acid (MW 204).

However, this identification was tentative since an authentic compound was not

available and the identification was only based on the interpretation of mass

spectral data. It later turned out that the unknown MW 204 compound was a

branched isomer of 3-carboxyheptanedioic acid, i.e., MBTCA. The biogenic pre-

cursor of the novel identified compound could not be pinpointed at that time, but we

hypothesised that it was most likely a monoterpene or an unsaturated fatty acid.

Incidently, the BVOC precursor for the unknown C8-tricarboxylic acid was later

established as the monoterpene a-pinene [18]. A reference compound was still not

available, implying that the identification as 3-carboxyheptanedioic acid was still

tentative. In a subsequent study [2], the latter structure was questioned because the

linear structure of 3-carboxyheptanedioic acid could not be linked to a-pinene, an
alternative structure was proposed, i.e., 2-hydroxy-4-isopropyladipic acid, and

the proposed compound was synthesised. The EI mass spectral behaviour of its

ethyl ester trimethylsilyl ether derivative matched rather well but not completely

with that of the unknown MW 204 compound. Its chromatographic retention time
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deviated slightly from that of the unknown compound, leading to the conclusion

that the synthesised compound was likely a diastereoisomer, which, unfortunately,

still turned out not to be the right structure. Accurate mass measurements using

high-resolution (�)ESI-MS revealed an elemental composition of C8H11O6

for the deprotonated molecule of the MW 204 a-pinene SOA tracer, which finally

led us to revise the structure as MBTCA [36]. A synthetic effort was undertaken

by synthesising the proposed compounds, i.e., MBTCA and another positional

isomer (i.e., 2-methyl-4-carboxyadipic acid), which were analysed using GC/MS

with prior trimethylsilylation and with LC/(�)ESI-MS. The unknown MW 204

a-pinene SOA tracer was unambiguously elucidated as MBTCA because its chro-

matographic and mass spectral behaviours perfectly agreed with those of the

synthesised compound. In this study, cis-pinonic acid was proposed as a gas-

phase intermediate in the OH radical-initiated formation of MBTCA, a hypothesis

which was recently confirmed in an environmental chamber study [29].

18.4 Formation Pathway of MBTCA and Related a-Pinene
SOA Tracers

With regard to formation pathways, a route starting with hydrogen abstraction at the

C-10 position (relating to the pinane structure [25]) was proposed by Szmigielski

et al. [36], while several additional routes were formulated by Müller et al. [29]

taking into account that hydrogen abstraction by the OH radical preferentially

occurs at certain positions, i.e., the C-1 and C-7 positions [37]. It has to be kept

in mind that mechanisms are always to some extent speculative and hard to proof

experimentally, and that the initial site where the radical is created due to hydrogen

abstraction by the OH radical may migrate. In this regard, evidence has been

obtained for the migration of the initial radical site upon OH radical-initiated

oxidation of a-pinene in the presence of NO and highly acidic sulfuric acid-

containing seed particles; more specifically, upon formation of the MW 295

nitrooxy organosulfates the initial radical site on the cyclohexane ring migrates

to a ring position and the methyl group of the dimethylcyclobutane ring [34].

Figure 18.4 proposes a revised mechanistic route to MBTCA starting with hydro-

gen abstraction at the favoured C-4 position (C-2 position of cis-pinonic acid). As in
the case of the initial OH radical attack on cis-pinonic acid, the attack of an OH

radical on intermediate (d) may proceed through an initial attack at another carbon

atom. It can be noted that the formation of MBTCA starting from cis-pinonic acid
requires two molar OH radical equivalents.

The route proposed in Fig. 18.4 has the merit that it also allows one to explain the

formation of several other known and more recently elucidated a-pinene SOA

tracers, i.e., cis-pinic acid (e.g., Refs. [7, 41]), 10-hydroxypinonic acid [6, 40],

3-hydroxyglutaric acid [2], and 3-hydroxy-2,2-dimethylglutaric acid [2] (Fig. 18.5).
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Fig. 18.5 Proposed revised mechanistic pathway leading to known and recently elucidated

a-pinene SOA tracers, i.e., cis-pinic, 10-hydroxypinic, 3-hydroxyglutaric, and 3-hydroxy-2,

2-dimethylglutaric acids. For the route leading to intermediates (a–d), see Fig. 18.4

Fig. 18.4 Proposed revised mechanistic pathway leading to MBTCA
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18.5 Conclusions and Perspectives

Significant progress has been made during the last decade with the structural

characterisation of a-pinene and related monoterpene (i.e., b-pinene, d-limonene,

and D3-carene) SOA tracers. Hence, we have now reached the stage where the

major terpenoids in ambient fine forest aerosol that is enriched in biogenic SOA

have been identified. A major terpenoic acid from the photo-oxidation of a-pinene,
however, which shows a high relative abundance in ambient fine forest aerosol but

remains to be fully identified, is the C8H12O5 hydroxydicarboxylic acid. Since it is

a potential tracer for aged biogenic SOA, its structural elucidation would be

warranted. Another class of SOA tracers that have only been partially explored

and for which suitable analytical methods still have to be developed are the

organosulfates. These tracers have a mixed biogenic/anthropogenic origin since

their formation involves the participation of sulfuric acid which is of anthropogenic

origin. Furthermore, more detailed insights are required on the time evolution

of oxygenated and processed (e.g., esterified) products during laboratory irradiation

experiments under simulated atmospheric conditions to better constrain their suit-

ability as tracers for photochemical and other ageing processes.

Characterisation of a-pinene and related monoterpene SOA tracers at the mole-

cular level using a chromatographic technique (GC or LC) hyphenated to a mass

spectrometric technique and detailed interpretation of MS fragmentation data can

be analytically challenging, as was the case for MBTCA which had not retained

the dimethylcyclobutane ring of a-pinene. It was a search with several failures in

which we experienced that nature does not reveal its secrets all at once. However, it

was worth the efforts since it resulted in the structural elucidation of a major tracer

for aged biogenic SOA that is useful for ambient fine aerosol characterisation.

An emerging analytical technique for the detailed characterisation of biogenic

SOA, including minor components, is high-resolution MS such as Fourier Transform

Ion Cyclotron Resonance MS (FT-ICR MS). This technique enables the accurate

measurement of the numerous molecular masses present in a complex SOA mixture

and as such their O:C ratio (and their average carbon oxidation state) which increases

upon photochemical ageing. It allows for a detailed characterisation of biogenic

SOA that is complementary to that achieved with GC- or LC-based MS techniques

and interpretation of MS fragmentation data.

Acknowledgements Research at the Universities of Antwerp and Ghent was supported by the

Belgian Federal Science Policy Office, the Research Foundation – Flanders (FWO), and the

Special Research Funds of the Universities of Antwerp and Ghent. Rafal Szmigielski was

supported by a Marie Curie Intra-European fellowship. We also acknowledge the close collabora-

tion during the past several years with Tad Kleindienst, Ed Edney, and coworkers, at the US

Environmental Protection Agency (Research Triangle Park, NC, USA), Jason Surratt, John

Seinfeld, and coworkers, at the California Institute of Technology (Pasadena, CA, USA), and

Yoshi Iinuma, Hartmut Herrmann, and coworkers, at the Leibniz-Institute for Tropospheric

Research (Leipzig, Germany).

18 Tracers for Biogenic Secondary Organic Aerosol from a-Pinene. . . 235



References

1. Christoffersen TS, Hjorth J, Horie O, Jensen NR, Kotzias D, Molander L, Neeb P, Ruppert L,

Winterhalter R, Virkkula A, Wirtz K, Larsen BR (1998) cis-Pinic acid, a possible precursor for

organic aerosol formation from ozonolysis of a-pinene. Atmos Environ 32:1657–1661

2. Claeys M, Szmigielski R, Kourtchev I, Van der Veken P, Vermeylen R, Maenhaut W, Jaoui M,

Kleindienst TE, Lewandowski M, Offenberg JH, Edney EO (2007) Hydroxydicarboxylic

acids: novel markers for secondary organic aerosol from the photooxidation of a-pinene.
Environ Sci Technol 41:1628–1634

3. Claeys M, Iinuma Y, Szmigielski R, Surratt JD, Blockhuys F, Van Alsenoy C, Böge O, Sierau
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