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  Abstract   Exploratory spatial data analysis (ESDA) is a useful approach for 
 detecting patterns of criminal activity. ESDA includes a number of quantitative 
techniques and statistical methods that are helpful for identifying signi fi cant  clusters 
of crime, commonly referred to as hot spots. Perhaps the most popular hot spot 
detection methods, both in research and practice, are based on tests of spatial auto-
correlation and kernel density. Non-hierarchical clustering methods, such as 
k-means, are less used in many contexts. There is a perception that these approaches 
are less de fi nitive. This chapter reviews non-hierarchical cluster analysis for crime 
hot spot detection. We detail alternative non-hierarchical approaches for spatial 
clustering that can incorporate both event attributes and neighborhood characteris-
tics (i.e., spatial lag) as a modeling parameter. Analysis of violent crime in the city 
of Lima, Ohio is presented to illustrate this for hot spot detection. We conclude with 
a discussion of practical considerations in identifying hot spots.  
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    5.1   Introduction 

 Cluster detection and hot spot mapping in criminology, geography and related 
socio-economic planning sciences has evolved signi fi cantly over the past decade (Eck 
et al.  2005 ; Chainey et al.  2008  ) . While many of the most basic approaches remain 
popular, such as spatial autocorrelation, spatial ellipses, kernel density estimation and 
spatial scan statistics (Wang  2005 ; Eck et al.  2005 ; Kent and Leitner  2007 ;    Chainey 
et al.  2008 ; Rogerson and Yamada  2009 ; Anselin et al.  2009  ) , advanced approaches 
now include fuzzy clustering (Grubesic  2006  ) , spatio-temporal modeling of crime 
(Ratcliffe  2002 ; Grubesic and Mack  2008 ; Leitner et al.  2011  ) , geospatial visual ana-
lytics (Anselin and Kochinsky  2010  ) , and agent-based simulation (   Eck and Liu  2008 ). 
Further, the emergence of proactive policing, predictive hot spotting and crime forecasting 
strategies suggests a growing need for objective spatial pattern detection methods to 
establish a better understanding of the distributions and morphologies crime (Cohen 
et al.  2004 ; Gorr et al.  2003 ; Johnson and Bowers  2004 ; Wu and Grubesic  2010 ). 

 Broadly de fi ned, a crime hot spot represents a grouping of incidents that are 
spatially and/or temporally clustered (Harries  1999 ; Eck et al.  2005 ; Grubesic  2006  ) . 
The genesis of crime hot spots is often linked to environmental factors (Brantingham 
and Brantingham  1981 ), social disorganization (Shaw and McKay  1942 ; Sampson 
and Groves  1989 ; Morenoff et al.  2001  )  and opportunity (Cohen and Felson  1979  ) . 
Regardless of the underlying factors that fuel the emergence of hot spots, law 
enforcement agencies recognize the importance (and bene fi ts) of detection and 
intervention in these problematic areas (Harries  1999 ; Braga  2001 ; Ratcliffe  2004  ) . 
However, the ability to identify hot spots is highly dependent on the capability to 
detect patterns, and this requires the selection of appropriate techniques for carrying 
out hot spot analyses. Such pattern detection is typically viewed as exploratory 
spatial data analysis (ESDA) (Murray and Estivill-Castro  1998 ; Anselin  1998 ; Wu 
and Grubesic  2010 ), but can be con fi rmatory in some contexts. 

 At the intersection of ESDA, GIS, and crime analysis is the use of ESDA for 
identifying signi fi cant patterns of criminal activity (Harries  1999 ; Anselin et al.  2000 ; 
Murray et al.  2001  ) . Again, while local indicators of spatial association (Messner et al. 
 1999 ; Anselin et al.  2000,   2009  )  and kernel density mapping (McLafferty et al.  2000 ) 
are popular approaches for identifying hot spots, alternative techniques such as cluster 
analysis are less utilized in practice. Grubesic  (  2006  )  notes that there are three major 
problems associated with applying cluster analysis for crime hot spot detection:

    1.    The choice between non-hierarchical and hierarchical methods can be confusing 1 ;  
    2.    There are problems regarding the manner in which some techniques treat 

geographic space (e.g., spatial bias);  
    3.    There is relatively little guidance for determining the appropriate number of 

clusters in a study area.     

   1   A discussion of hierarchical and non-hierarchical methods can be found in Hartigan  (  1975  ) , 
Everitt  (  1993  )  and Kaufman and Rousseuw  (  2005  ) , among others. Non-hierarchical, or partitioning, 
approaches identify a pre-speci fi ed number of clusters,  k , such that each object is a member of 
exactly one cluster, where membership similarity is optimized. In contrast, hierarchical methods 
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 While these challenges can be daunting, non-hierarchical cluster analysis is 
potentially useful for  fi nding crime hot spots, re fl ected by its inclusion in the National 
Institute of Justice sponsored and supported crime analysis tool, CrimeStat (Levine 
 2010  ) . 

 The non-hierarchical technique implemented in CrimeStat (version 3.3) is the 
 k -means approach proposed by Fisher  (  1958  ) . The  k -means technique is based upon 
multivariate analysis of variance in the evaluation of homogeneity among entities 
(Estivill-Castro and Murray  2000  ) . Speci fi cally, the scatter matrix of similarity 
between entities may be evaluated by its trace (Aldenderfer and Blash fi eld  1984  ) , 
and homogeneity is then measured for a grouping of events using the sum of squares 
loss function (Rousseeuw and Leroy  1987  ) . The bene fi ts of using  k -means lie in its 
ability to handle extremely large numbers of observations and still generate clusters 
relatively quickly, although this is contingent on the number of iterations selected 
for the routine. 

 Other non-hierarchical clustering approaches have been developed and  utilized. 
Some are detailed in Kaufman and Rousseuw  (  2005  )  In the context of geographic 
applications, a review of approaches is given in Murray and Estivill-Castro  (  1998  ) , 
Murray  (  2000a   ,   b  )  and Grubesic  (  2006  ) . Clearly, if one is intent on identifying crime 
hot spots that are strongly related in some prede fi ned sense (e.g. crime type), then 
multiple non-hierarchical clustering techniques may be useful. This is a subtle but 
important point. If an analyst is able to choose from a suite of alternative clustering 
approaches, a clearer picture of the spatial morphology of crime may emerge. 
However, it is also possible that the selection of an inappropriate technique may 
skew the identi fi cation and interpretation of crime hot spots, minimizing the useful-
ness of the approach. This is particularly true where non-hierarchical approaches 
are concerned because many analysts may not be aware of the biases and inaccuracies 
associated with a particular approach. Simply put, all clustering methods are not 
equivalent. Unfortunately, the overall body of research focusing on the subtle differ-
ences in the use and application of non-hierarchical techniques for geographic 
applications is rather limited (Murray  1999,   2000a ; Murray and Grubesic  2002 ; 
Grubesic  2006  ) . Empirical results suggest that substantial variation exists in the 
structure and quality of clusters, depending on the approach. 

 The purpose of this chapter is to review clustering approaches for identifying 
spatial patterns of crime, focusing on the basic tenets of crime mapping and analysis 
from a geographic perspective. This is followed by an examination of the  statistical 
foundations of non-hierarchical cluster analysis, highlighting the strengths and 
weaknesses of the most widely utilized approaches. Section  5.4  introduces alter-
native approaches for non-hierarchical cluster analysis that incorporate additional 
geographic context through the use of spatial lags. Application results examine 
violent crime in Lima, Ohio. We conclude with a brief discussion and  fi nal remarks.  

build clusters based on agglomeration (e.g., begin with  n  clusters and merge the two most similar 
groups to get  n -1 clusters) or division (e.g., begin with one cluster and divide it into two most similar 
clusters), creating a decomposition hierarchy of clusters ranging from  n  to 1.  
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    5.2   Spatial Patterns of Crime 

 Identifying signi fi cant geographic relationships in the occurrence of criminal 
 activity is, perhaps, the most fundamental component of crime mapping and analy-
sis. Of course, the process is complicated by a vast array of techniques and  methods 
available to analysts. In many instances, the  fi rst step in developing a better under-
standing of crime distributions and their contributing factors is to generate a map. 
This might involve plotting incident locations, differentiating them by crime type 
and adding topographic information for additional spatial context. For example, 
Fig.  5.1  illustrates 848 violent crimes (homicide, rape, robbery and assault) in 
the city of Lima, Ohio. 2  Alternatively, if the crime information is only recorded at 
a more aggregate level, such as census block groups, then a choropleth map of total 
crime or crime rates for a geographic area can be created. At this level of geo-
graphic detail, broader patterns of neighborhood distress and spatial inequity may 
become apparent. For instance, Fig.  5.2  depicts violent crime rates in Lima using a 
choropleth display of block group crime rates per 1,000 people. Ignoring the over-
laid ellipses for the moment, this display emphasizes differences in the attribute of 
interest using seven unique classes. As with any choropleth display, the goal is to 

   2   Lima, Ohio is a city of approximately 38,000 people and is located about 70 miles north of 
Dayton on the Interstate 75 corridor.  

  Fig. 5.1    Violent Crime in Lima, Ohio       
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effectively show spatial variation in the variable’s distribution. Creation of a 
 traditional choropleth map involves deciding where to establish the class break/
cutoff values (Dent  1999 ; Murray and Shyy  2000  ) . In Fig.  5.2 , class breaks of 2.4, 
8.1, 17.4, 33.1, 44.7 and 66.6 (shown in the legend) are used, derived using the 
natural breaks options in ArcGIS. This classi fi cation helps communicate how vio-
lent crime rates vary spatially in Lima, but does so in a much different way than the 
point map displayed in Fig.  5.1 .   

 Perhaps the most intriguing aspect of crime mapping and analysis is the subtle 
methodological overlap of choropleth mapping approaches, non-hierarchical clus-
ter analysis and hot spot detection techniques. Choropleth mapping is an area of 
cartography and GIS that has received considerable interest over the past 50 years 
(Murray and Shyy  2000 ; Armstrong et al.  2003 ; Xiao and Armstrong  2005 ; Cromley 
and Cromley  2009  ) . Numerous choropleth mapping approaches have been devel-
oped, most of which are accessible and readily available in commercial GIS and 
cartography software. As noted, the display shown in Fig.  5.2  was generated using 
the natural breaks option in ArcGIS (version 10.3), an approach that is also avail-
able in TransCad, MapInfo, Maptitude and many other GIS packages. Natural breaks 
is widely considered the standard/default choropleth mapping method. In brief, the 
natural breaks approach attempts to minimize the sum of variance in created classes 
(Dent  1999  ) . This is identical to the goal of non-hierarchical clustering, such as 
k-means, a sum of squares approach. 

 By analyzing either Fig.  5.1  or Fig.  5.2 , analysts could make inferences about the 
spatial distribution, and perhaps the potential impact, of violent crime in Lima. Clearly, 

  Fig. 5.2    Crime rates by block group in Lima       
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the intent of crime analysis is that such displays are helpful for understanding crime 
trends and patterns so that appropriate law enforcement action can be prescribed. 

 The next step would typically involve assessment of spatial autocorrelation, at 
least for aggregate crime rates such as the block groups in Fig.  5.2 , as this would 
help con fi rm whether clustering is occurring. Packages like as CrimeStat, GeoDa 
(Anselin et al.  2006  )  and ArcGIS allow analysts to derive such measures. In this 
instance, we  fi nd that Moran’s I is 0.710 with a standard normal z-value of 11.43 
( p  = 0), indicating spatial clustering of violent crime in Lima. Unfortunately, global 
metrics do not pinpoint where this clustering is taking place. As a result, if an analyst 
is interested in determining where hot spots exist, additional analysis is necessary. 
In many cases, local spatial statistics and non-hierarchical clustering approaches 
are advocated for identifying and assessing potential hot spots (Anselin  1995 ; 
Harries  1999 ; Messner et al.  1999 ; Levine  2006 ; Ratcliffe  2005  ) . These approaches 
are typically coupled with standard deviation ellipses in an effort to represent the 
co-variation within a cluster group about the major and minor axes. 

 The ellipses associated with the  k -means generated clusters using CrimeStat 
(version 3.3) are also shown in Fig.  5.2 . Fundamentally, this shows the integra-
tion of non-spatial  and  spatial grouping processes. The ellipses represent the 
spatial grouping of the associated areas, whereas the choropleth classes re fl ect 
attribute (violent crime rate) variation. Furthermore, it is worth reiterating that 
the ellipses were generated in CrimeStat from spatial clusters identi fi ed using a 
 k -means heuristic, although alternative options for summarizing distributions are 
also available. As noted previously, this is all the more interesting because the 
natural breaks choropleth classes shown in Fig.  5.2  are also identi fi ed using 
equivalent criteria. 

 There are a number of questions arising from this brief review on spatial aspects 
of crime hot spot detection. Is the sum of squares clustering approach and its most 
popular solution technique ( k -means) viable for spatial data? If not, why? Are there 
feasible alternatives to these approaches that can either complement or improve 
upon the results generated through traditional solution techniques? In an effort to 
address these questions, the next section outlines the fundamental nature of non-
hierarchical clustering, with a focus on the sum of squares approach.  

    5.3   Statistical Clustering 

 As noted previously, cluster analysis is a popular approach for developing 
classi fi cation systems and taxonomies. A simple search on the Social Sciences 
Citation Index reveals that nearly 130,098 entries have referenced “cluster analy-
sis” since 1980, equating to approximately 6,195 per year (1980–2011). In crime 
analysis, as in other problem domains, the sum of squares variance minimization 
approach continues to be the dominant non-hierarchical partitioning technique 
(Levine  2010  ) . In fact, most commercial statistical packages, including SPSS, 
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S-Plus, SAS, Stata and NCSS, provide capabilities for carrying out cluster analysis 
using the sum of squares approach (Murray and Grubesic  2002 ; Grubesic  2006  ) . 
Consider the following notation:

     

 index of entities;

 index of clusters;

 total number of clusters;

 attribute measure;

 measure of proximity between entity  and cluster ;

1 if entity  is in cluster 

0 otherwise.

i

ik

ik

i
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=
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⎧
= ⎨
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 Where crime analysis is concerned, entities correspond to the location of a crime(s). 
The variable     if    indicates the number of crimes occurring at a particular location  i . 
If there is a need to attribute a measure of importance to particular crime types 
(e.g. severity), it is possible to extend the speci fi cation of     if    to re fl ect such differ-
entiation. 3  The sum of squares approach is as follows: 

  Sum of Squares Clustering Model (SSCM) 
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   (5.1)   

  Subject to: 
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   (5.2)  

     (0,1) ,ikz i k= ∀    (5.3)   

 The objective ( 5.1 ) of the SSCM is to minimize the total weighted squared differ-
ence in cluster group membership. This is equivalent to minimizing the within group 
sum of squares (Hartigan  1975 ; Kaufman and Rousseeuw  2005  ) . Constraint ( 5.2 ) 
ensures that each entity is assigned to a group and Constraint ( 5.3 ) imposes integer 
restrictions on the decision variables. 

 The formulation of the sum of squares clustering model illustrates that this is an 
optimization problem. The overall goal of the SSCM is to identify the best, or 
optimal, partition of entities. One approach for solving the SSCM is the  k -means 
heuristic developed by Fisher  (  1958  )  and MacQueen  (  1967 ), when Euclidean 

   3   Details on multivariate integration for such purposes may be found in Kaufman and Rousseeuw 

( 2005 ) as well as other clustering texts.  
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distance is considered. In vector quantization, this heuristic is also known as the 
generalized Lloyd algorithm (Estivill-Castro and Murray  2000  ) . This optimization 
problem is recognized as being inherently dif fi cult to solve optimally, so the appli-
cation of heuristic techniques such as the  k -means approach are considered a good 
option for obtaining a solution. The  k -means heuristic has four main steps (Murray 
and Grubesic  2002  ) :

    1.    generate  p  initial clusters  
    2.    compute the center of each cluster  
    3.    assign each entity to its closest cluster  
    4.    if groupings have changed in step 3, return to step 2. If not, a local optima has 

been found.     

 A notable feature of the SSCM is that the center of each grouping is a centroid, 
re fl ecting the squared Euclidean proximity measure in the objective ( 5.1 ). In addition, 
the  k -means heuristic is a popular approach for solving the SSCM for a number of 
reasons. First, it is statistically grounded and widely available in most commercial 
statistical software packages (Murray and Grubesic  2002  ) . Second, it has the ability 
to handle relatively large data sets (Huang  1998 ). Third, it converges quickly to  fi nd 
a local optima (Murray and Grubsic  2002 ). 

 While these advantages are certainly appealing and have contributed to its wide-
spread application, including the NIJ supported CrimeStat software package, there 
are questions pertaining to the appropriateness of the SSCM when applied to geo-
graphic data (Murray and Grubesic  2002 ; Grubesic  2006  ) . Although many of the 
biases inherent in the SSCM are widely noted (see Murray and Estivill-Castro  1998 ; 
Kaufman and Rousseeuw  2005 ; among others), the SSCM continues to be relied 
upon in geographic and non-geographic inquiry. 

 What is wrong with the sum of squares approach, particularly with respect to 
the spatial analysis of urban crime? One major issue is the sub-optimality associ-
ated with the use of the  k -means heuristic in solving the SSCM. Often, implemen-
tation of this heuristic provides analysts a solution based on one instance. In order 
for the  k -means heuristic to be effective for solving the SSCM, it must be re-started 
hundreds or thousands of times (depending on problem size), using a different 
initial clustering in step 1 for each instance. 4  Standard practice, however, has been 
to use only one initial starting con fi guration. The result is that the identi fi ed cluster 
solutions are likely sub-optimal, which means that they may be of limited use for 
inferential analysis and policy making. The extent to which sub-optimality was an 
issues was examined in Murray and Grubesic  (  2002  ) , who found that non-optimal 
solutions were generally identi fi ed using major statistical packages such as SPSS, 
S-Plus and SAS. In some instances, SSCM solutions were found to deviate more 
than 30% from the optimal solution, which means that subsequent analysis is being 

   4   It is well known that any single application of the k-means heuristic is susceptible to becoming 
trapped in a local optima (Estivill-Castro and Murray  2000 ; Murray and Grubesic  2002  ) , which 
prohibits the approach from identifying an optimal solution.  
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conducted on clusters that are not most similar. Further, limited testing of CrimeStat 
found instances where the identi fi ed solutions deviated more than 72% from the 
optimal solution. 5  

 A second and more signi fi cant problem with the SSCM is that spatial clusters are 
biased by outliers. Although this bias is discussed by Kaufman and Rousseeuw  (  2005  )  
and others, Murray and Grubesic  (  2002  )  demonstrated the in fl uence of this bias 
using spatial information rather than non-spatial data. The SSCM is biased because 
of the use of the squared Euclidean distance measure in objective ( 5.1 ). The result 
in application is that outliers, or more distant events from others, have greater 
in fl uence on the structure of the identi fi ed clusters, effectively distorting potential 
hot spots. One option is to identify and remove outliers using the approaches detailed 
in Messner et al.  (  1999  )  and Grubesic  (  2006  ) . Alternatively, it may be preferable to 
utilize a modeling approach that does  not  spatially bias clusters. 

 Though not an issue with the SSCM generally, Murray and Grubesic  (  2002  )  note 
that most software packages do not provide the capability to include a     if   value in 
objective ( 5.1 ), rather this is assumed to equal 1. 6  Given this, it makes sense that 
statistical packages like CrimeStat would attempt to summarize  k -means generated 
clustering results using standard deviation ellipses, because the clusters are identi fi ed 
on the basis of space alone. 

 Finally, the SSCM does not explicitly address attribute similarity, but rather 
focuses on spatial proximity. Integration of the choropleth display with the ellipses 
in Fig.  5.2  is an interesting approach for examining spatial and non-spatial pattern-
ing in this regard, but lacks direct examination of both issues. Murray and Shyy 
 (  2000  )  present a clustering based approach for choropleth mapping that considers 
attribute and spatial similarity simultaneously. Murray  (  2000b  )  details a spatial lag 
approach to integrate attribute and spatial proximity.  

    5.4   Spatial Lag in Cluster Analysis 

 Geographic analysis using spatial statistical techniques has been signi fi cantly 
enhanced when more is known about what is taking place near a particular entity of 
interest. The reason this has been the case is that the assumption of independence 

   5   Analysis was carried out using 114 crime events in a neighborhood located in Akron, Ohio. The 
number of clusters obtained ranged from 4 to 11 ( p  = 4–11). A separation value of 4 was utilized in 
the application of the  k -means solution technique in CrimeStat for each value of  p  and the identi fi ed 
solution compared with the “optimal” solution using the approach reported in Murray and Grubesic 
 (  2002  ) . For this range of clusters, the average sub-optimality of CrimeStat solutions was 38.28% 
(min = 12.01%; max = 72.19%). It should be noted that one can alter the separation distance in 
CrimeStat, in essence representing a pseudo-restart of the heuristic. Unfortunately, it is not possi-
ble to compare or assess cluster solution quality.  
   6   An assumed value of     1=if   implies the occurrence of a single event, rather than re fl ecting the 
aggregate summary of areas like police beats, census blocks or alternative areal units.  
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between entities in statistical testing is known to be problematic for spatial data as 
the existence of spatial autocorrelation can alter signi fi cance levels and reduce inter-
pretative capabilities (Grif fi th and Amrhein  1997  ) . One approach for dealing with 
spatial autocorrelation involves the use of a spatial lag. A spatial lag represents an 
averaging process of an entity’s neighbors. In most cases, neighbors represent other 
entities or areas next to a particularly entity. As a point of reference, consider the 
following notation:

    i  (and  j ) = index of entities;  
   l  
 i 
  = spatial lag for entity  i ;  

  Ω 
 i 
  = spatial neighbors of entity  i     

 Neighbors are often de fi ned as those entities sharing a common border or point 
and do not include the entity itself. 7  Using this notation, the spatial lag for entity  i  
may be de fi ned as follows:

     
∈Ω=
Ω

∑
i

j
j

i
i

f

I
   (5.4)   

 Spatial lag enables one to summarize what is taking place in a neighborhood 
around a particular area. For example, one can compute the average number of 
crime events occurring in neighborhoods that are adjacent to a neighborhood of 
interest. This is an indirect spatial proximity metric. The integration of both space 
and attribute values is relatively straightforward:

     
= − + −2 2( ) ( )δ ik i k i kf f l l

   (5.5)  

where     kf   represents the average attribute value for cluster  k  and     kl   indicates the aver-
age lag value for cluster  k . With this, ( 5.5 ) represents an integration of attribute 
similarity with an indirect spatial proximity metric. Murray  (  2000b  )  introduced an 
alternative clustering model based on this: 

  Spatial Lag Cluster Model – Center 1 (SLCM-C1) 

     
=

∑∑
1

δ
p

ik ik
i k

Minimize z    (5.6)   

  Subject to : 
 ( 5.2 )–( 5.3 ) 
 Although the constraints for this model are the same as those in the SSCM, the 

objective of SLCM-C1 is much different. Objective ( 5.6 ) minimizes the total 

   7   It is also common to view neighbors as being within a speci fi ed distance of a given location.  
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dissimilarity in selected clusters. This differs in three ways from objective ( 5.1 ) for 
the SSCM. First, there is no attribute     ( )if   weighting. Second, there is no explicit 
representation of distance in ( 5.6 ) as there is in ( 5.1 ). Finally, the similarity measure, 
    δ ik  , is not squared in ( 5.6 ), whereas it is in ( 5.1 ). The implication of this is that the 
cluster centers in SLCM-C1 are  not  centroids, in contrast to the SSCM. This general 
representational distinction is a subtle but exceptionally important point. Simply 
put, by avoiding the use of a centroid in ( 5.6 ), the biasing in fl uence of outliers in the 
SLCM-C1 is minimized. That said, there are tradeoffs with this type of formulation; 
namely, solving the SLCM-C1 remains challenging due to its implied non-linear 
form. As a result, the alternating heuristic has generally been relied upon for solving 
the SLCM-C1 (Murray  2000b  ) . 

 Clearly, one drawback of the SLCM-C1 is the inability to alter the importance 
of either attribute or spatial lag in fl uence in the identi fi cation of clusters. The 
SLCM-C1 treats attribute and lag with equal importance. However, this may not 
necessarily be appropriate for exploratory analysis. For example, one might want 
to investigate the clusters associated with maximizing attribute similarity only 
(somewhat equivalent to classes created in choropleth maps using the natural 
breaks approach). Alternatively, one might wish to view the clusters where lag 
similarity is optimized. Given these two extremes, it is also possible that one 
might want to examine the clusters associated with slightly more importance on 
attribute similarity than lag – or something else in between. Unfortunately, it is 
not possible to structure the relative importance of variables using the SLCM-C1. 
In an effort to provide more  fl exibility, Murray  (  2000b  )  presented a modi fi ed 
interpretation of similarity:

     
= −ik i ka f f

   (5.7)  

     
= −ik i ks l l

   (5.8)   

 Essentially, these measures track the similarity structured in ( 5.5 ), but do so sep-
arately. With this modi fi ed representation, it is now possible to alter how much 
signi fi cance the individual components have in structuring clusters. Incorporating 
them independently into a non-hierarchical clustering model may be accomplished 
by assigning weights to both attributes and lag:

    w  
 a 
  = weight for attribute similarity  

   w  
 s 
  = weight for spatial lag similarity    

 Murray  (  2000b  )  derived a variant of the SLCM as follows: 

  Spatial Lag Clustering Model – Center 2 (SLCM-C2) 

     
1 1= =

+∑∑ ∑∑
p p

a ik ik s ik ik
i k i k

Minimize w a z w s z    (5.9)   
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  Subject to : 
 ( 5.2 )-( 5.3 ) 
 Objective ( 5.9 ) of the SLCM-C2 maximizes the total weighted attribute similarity 

and maximizes the total weighted spatial lag similarity in selected clusters. In this 
revised form, ( 5.9 ) is now a multi-objective optimization problem that may be used 
to identify a range of non-dominated clustering solutions (Cohon  1978  ) , each poten-
tially valuable in identifying crime hot spots. Unfortunately, the SLCM-C2 remains 
a dif fi cult optimization problem to solve optimally, so a heuristic is necessary 
(Murray  2000b  ) . 

 Finally, it is also possible to view the above lag models from the more traditional 
median perspective. Murray  (  2000b  )  proposed a multi-objective median based clus-
tering model incorporating spatial lag. Using a median based approach, similarity 
may be de fi ned as follows:

     
= −ˆ

ik i ka f f
   (5.10)  

     
= −ˆ

ik i ks l l
   (5.11)  

where  j  is the index of potential medians (same as the index  i ). This approach enables 
similarity to be de fi ned a priori between entities, rather than being a function of 
identi fi ed clusters. In order to present the median clustering model, additional deci-
sion variables must  fi rst be de fi ned:

     

1 if median  is selected to facilitate cluster creation

0 otherwisej

j
x

⎧
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1 if entity  is in cluster 

0 otherwise.ij

i j
y

⎧
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⎩     

 With the above notation, it is possible to structure a median-based non-hierarchical 
clustering model with objectives for maximizing both attribute and spatial lag 
homogeneity. 

  Spatial Lag Clustering Model – Median (SLCM-M) 

     
ˆ ˆ+∑∑ ∑∑a ij ij s ij ij

i j i j

Minimize w a y w s y
   (5.12)   

  Subject to :

     
= ∀∑ 1ij

j

y i
   (5.13)  
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=∑ j

j

x p
   (5.14)  

     
,≤ ∀ij jy x i j

   (5.15)  

     ( )= ∀0,1 ,ijy i j
   (5.16)  

     ( )= ∀0,1jx j
    

 Objective ( 5.12 ) of the SLCM-M minimizes the total weighted attribute dissimilarity 
and minimizes the total weighted spatial lag dissimilarity in selected clusters. This 
is equivalent to what is structured in objective ( 5.9 ) in the SLCM-C2. Constraint 
( 5.13 ) ensures that each entity is included in a cluster. Constraints ( 5.14 ) and ( 5.15 ) 
require that only  p  clusters be generated. Constraints ( 5.16 ) impose integer restric-
tions on decision variables. 

 One of the most appealing features of the SLCM-M is that it is an integer 
programming problem that can be solved optimally for small and medium sized 
applications using commercial software and/or specialized techniques. This is a 
major departure from previously discussed models that rely on heuristic solution 
techniques and have the potential for getting “stuck” in a local optima. In addi-
tion, the multi-objective nature of this clustering model enables a number of 
things to be addressed. One important feature is that it simultaneously integrates 
both attribute similarity, as is done in choropleth mapping, and spatial proximity, 
as is done using standard deviational ellipses (along with the use of a  k -means 
clustering heuristic). As with the other spatial lag models (SLCM-C1 and 
SLCM-C2), the SLCM-M avoids spatial bias inherent in the SSCM, but remains 
a within group variance minimization approach. One  fi nal feature is that the 
SLCM-M allows for non-dominated clustering solutions to be identi fi ed, an 
essential characteristic for ESDA and critically important for comparing alterna-
tive hot spot solutions.  

    5.5   Cluster Model Application for Hot Spot Detection 

 In an effort to illustrate the power and  fl exibility of the SLCM-M for exploratory 
analysis, the 62 block groups and violent crime rates for Lima, Ohio displayed 
in Fig.  5.2  will be used for analysis. Reported SLCM-M results are optimal to within 
0.1% and the time required to solve associated problems was less than 1 s on an 
Intel Xeon quad core computer (2.27 GHz) with 8 gigabytes of RAM. 

 The  fi rst step in this exploratory analysis is deciding what number of clusters will 
be evaluated. Next, the associated non-inferior tradeoff curve must be generated 
using trial-and-error or techniques detailed in Cohon  (  1978  ) . Considering that pre-
vious analyses in this chapter examined seven classes in Fig.  5.2 , seven clusters will 
be evaluated using the SLCM-M. Figure  5.3  displays one non-dominated clustering 
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solution using weights of     aw   =1 and     sw   =0.01. 8  In addition, Fig.  5.3  also shows the 
non-inferior tradeoff curve for the range of possible solutions that may be identi fi ed 
by varying the weights of importance for attribute similarity and lag similarity. 
Thus, plotted in this tradeoff curve is the total dissimilarity of violent crime against 
the total dissimilarity of spatial lag for the range of identi fi ed clustering solutions. 
The highlighted tradeoff point (*) corresponds to the displayed clustering solution. 
As a result, each point on the non-inferior tradeoff curve has an associated unique 
spatial clustering that may be analyzed and evaluated. For example, Fig.  5.4  depicts 
another tradeoff solution for weights of     aw   = 1 and     sw   = 0.7, which not only represents 
another point on the tradeoff curve but also has a unique corresponding spatial clus-
tering pattern. Other tradeoff solutions could be shown as well. Comparing Figs.  5.3  
and  5.4  (as well as 2), one can see subtle cluster changes as the in fl uence of spatial 
lag is increased. The signi fi cance of this is that different spatial patterns emerge, 
patterns which may be more suggestive of underlying social and environmental 
characteristics or conditions for a region.   

  Fig. 5.3    Structured clusters using the SLCM-M ( w  
 a 
  = 1,  w  

 s 
  = 0.01)       

   8   The legend in this case does not have the same interval interpretation as that shown in Figure  5.2 . 
Rather than depicting interval ranges, only the median group value is shown. Once spatial lag 
importance is increased, it is unlikely that groups will have non-overlapping values characteristic 
of choropleth maps. This point is discussed in Murray and Shyy  (  2000  ) .  
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 All of the  fi gures suggest that there is a relative concentration of violent crime in 
the downtown area (center) of Lima. The highest crime rate areas in Fig.  5.3  corre-
spond to lower income neighborhoods in the city. Further, these areas also have high 
minority concentrations, high unemployment, and a high percentage of households 
headed by single women. Thus, the choropleth displays (Figs.  5.2 ,  5.3 , and  5.4 ) do 
a particularly good job highlighting higher violent crime rate areas and track well 
with the socio-economic factors likely to be in fl uencing violent crime in Lima. 
Interestingly, as the weight for spatial lag is increased, the depicted geographic 
variation is less signi fi cant.  

    5.6   Discussion and Conclusion 

 The above analysis is insightful in many ways. There is a clear indication that 
downtown Lima represents one or more clusters in Figs.  5.1 ,  5.2 ,  5.3 , and  5.4 . 
However, point based displays (Fig.  5.1 ) are dif fi cult to assess in a relative manner, 
ignoring background rates and activity. Ellipses (Fig.  5.2 ) are misleading, failing to 
adequately identify or delineate hot spot cluster. Figure  5.4 , on the other hand, 
shows that there are actually spatial spillover effects that constitute a corridor area 
that is a hot spot (darkest units). This provides de fi nitive instruction on where to 
allocate resources and personnel in order to combat violent crime in Lima. 

  Fig. 5.4    SLCM-M clusters increasing spatial lag importance ( w  
 a 
  = 1,  w  

 s 
  = 0.7)       
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 There are a number of important issues associated with the detailed methods, and 
non-hierarchical clustering in particular. One important application issue remains 
identifying the appropriate number of clusters. There is actually little theoretical 
guidance for selecting the number of clusters to generate. In choropleth mapping, 
Dent  (  1999  )  suggests that 4–6 classes (clusters) should be selected (see also Harries 
 1999  as well with respect to crime analysis). Cromley  (  1995  ) , also in the context of 
choropleth display, discusses the “elbow” in the curve approach. This is consistent 
with the rule of thumb well established in cluster analysis (Everitt  1993  )  as well as 
the economic interpretation found in location modeling (ReVelle  1987  ) . However, 
this is less than de fi nitive and certainly subjective, not unlike the criticisms of simple 
choropleth mapping and visual inspection (Messner et al.  1999  ) . In the statistical 
literature additional methods for detecting the appropriate number of clusters have 
been proposed (Gordon  1996 ; Lozano et al.  1996 ; Podani  1996 ; Milligan and 
Cooper  1985  ) . It is not clear, however, whether these alternatives might be useful in 
the analysis of crime. As a result, an important area for continued future research is 
exploring the applicability of these techniques for guiding users in the speci fi cation 
of the number of clusters to  fi nd. 

 Although there is signi fi cant  fl exibility and exploratory capabilities offered in the 
multi-objective structure and weighting in the SLCM, it does present a potential 
dif fi culty when carrying out analysis. Speci fi cally, there is currently no theoretical 
basis for opting for a particular set of weights responsible for producing an associated 
non-dominated solution. In multi-objective modeling, the entire set of non-dominated 
solutions is considered potentially valuable (Cohon  1978  ) . So, an analyst faces the 
question of addressing which ones are signi fi cant. This depends on external inter-
pretation of the set of identi fi ed non-dominated solutions. It is unclear whether 
technical or theoretical approaches will be able to establish practical guidelines for 
analysts in the evaluation of alternative weightings. 

 One of the distinguishing features of non-hierarchical clustering is that of mutual 
exclusivity. In other words, entities are partitioned so that all of them are members 
of a cluster, but no two clusters share a common entity. As a result, the implication 
is that all of the identi fi ed clusters are signi fi cant. However, this is not well suited 
for hot spot detection in crime analysis. Rather, in hot spot detection it is recognized 
that crime events do and will happen, but it is when they localize and/or concentrate 
in some manner that a sub-area becomes a signi fi cant concern. This alternative 
interpretation of produced partitions leaves analysts to infer cluster signi fi cance using 
their own judgment. Given that hot spots represent areas in need of attention, this is 
obviously problematic. Potential approaches for addressing this issue may be found 
in the work of Arnold  (  1979  )  and Milligan and Mahajan  (  1980  ) , which suggests 
Monte Carlo tests for examining partition validity and signi fi cance. 

 Aside from the detection of crime hot spots, the delineation of activity clusters 
does have a broader use. Clusters and their associated center locations may be 
important for  fi nding criminals. In particular, the center of a cluster may correspond 
to where a perpetrator of certain crimes lives/works or where the next crime event 
may occur (LeBeau  1987 ; Rossmo  2000  ) . Thus, the nature of the cluster (grouping 
of entities) and its subsequent interpretation (location of centers) is very spatial. 
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This suggests similarities with location modeling approaches, such as those discussed 
in ReVelle  (  1987  )  and Murray and Estivill-Castro  (  1998  ) . More research is needed 
to establish the signi fi cance of cluster centers for this purpose as well as what inter-
pretation of the “center” is most appropriate (e.g. mean, median). 

 A  fi nal point in the application of clustering models is the in fl uence of scale 
variation. As an example, do clustering approaches produce equivalent results when 
using point based information as opposed to the use of area based aggregations of 
point information? In spatial analysis this line of inquiry is referred to as the modi fi able 
areal unit problem (MAUP). Openshaw and Taylor  (  1981  )  note the possibility that 
analytical results may be altered by varying scale or modifying the boundaries of 
the reporting units. Criminology research has long been aware of scale and aggrega-
tion issues, and their implications in analysis (Parker  1985  ) . Often times crime event 
locations are not made accessible for detailed analysis, making this concern a non-
issue. However, when individual locations do exist, it is reasonable that clustering 
using these events be carried out. Another aspect of this issue is that a hot spot may 
exist in different ways and at different levels of spatial scale, as noted in Harries 
 (  1999  )  and Eck et al.  (  2005  ) . At the individual crime incident level, hot spots may 
run along a particular street segment or route, rather than being circular (centered on 
a point) or elliptical. In such cases utilizing clustering models as currently speci fi ed 
may be problematic. Recent research has begun to deal with these spatial patterning 
issues (Yamada and Thill  2007 ; Shiode and Shiode  2009  ) . Research examining 
scale and unit de fi nition differences as well as patterning in clustering analysis is 
much needed. 

 This chapter has examined the statistical orientation of non-hierarchical clustering 
for assessing patterns of crime. Extensions and new approaches for this assessment 
were also reviewed and introduced. The use of spatial lag was shown to be an inter-
esting way to incorporate geographic relationships and likely represents a promising 
avenue for relating non-hierarchical clustering to local spatial statistics. There are 
clearly unique and challenging aspects to the use of non-hierarchical clustering 
for identifying patterns of crime. Research examining these issues is necessary if 
clustering is to be effective tool in the exploratory analysis of crime activity.     
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