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What is Early Algebra?

Early algebra refers to a program of research,

instructional approaches, and teacher education

that highlights the importance of algebraic rea-

soning throughout K-12 mathematics education.

The program stresses that elementary arithmetic

rests on ideas and principles of algebra that merit

a place in the early curriculum. Early algebra

focuses on principles and representations of

algebra that can be and presumably need to be

mastered by young students as the foundations

for later learning.

In some countries, preparation for algebra is

implicitly integrated into the early mathematics

curriculum. This can be assessed by analysis of

curricula implemented in different countries,

a task that goes beyond the scope of this account

of research on early algebra. For now, it suffices

to state that the goal of introducing algebra in

elementary school is far from being universally

embraced, despite promising results of classroom

intervention studies of early algebra.

As early algebra developed as an area of

research, different proposals for introducing

algebra into the existing K-12 curriculum

emerged (see Carraher and Schliemann 2007).
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Intervention studies based on these perspectives

have consistently shown that, well before

adolescence, students’ demonstrate algebraic rea-

soning, use conventional algebraic forms for

expressing such reasoning, and make mathemat-

ical generalizations that have an algebraic

character.
What Is Algebraic Reasoning?

Algebraic reasoning is generally understood as

some combination of (a) operating on unknowns;

(b) thinking in terms of variables and their

relations (where variables have a domain and

co-domain containing many, possibly an infinite

number of, elements); and (c) acknowledging

algebraic structure. Students may be engaged in

algebraic reasoning, regardless of whether they

are using algebraic notation.

Operating on Unknowns

A variable is a symbol or placeholder (typically

a letter but sometimes a simple figure or other

token) that stands for an element of a set of

possible values. The set typically contains num-

bers or measures (i.e., numbers along with units

of measure), but it may be defined over any sorts

of objects, mathematical or not.

Althoughmathematics tends not to distinguish

an unknown from a variable, in mathematics

education, an unknown is often taken to refer to

a fixed number. As a result, the term unknown

leaves open the issue of whether the variable is
OI 10.1007/978-94-007-4978-8,



E 194 Early Algebra Teaching and Learning
employed in the former or latter sense. Given this

ambiguity, variability (the idea that a variable can

take on multiple values) is generally treated as

a distinct feature of algebraic reasoning.

Operating on unknowns entails being able to

express the relationship among quantities

(variable or not) in a novel way. The statement,

“Michael had some marbles, then won 8 marbles,

finishing with 14 marbles,” is a natural language

representation of what might be expressed

through algebraic notation as “x + 8 ¼ 14.”

A student who realizes that the answer can be

found by subtracting 8 from 14 has reconfigured

the description of the relationship among known

and unknown values such that the answer can

be directly calculated from the givens without

having to resort to trial and error. This rudimen-

tary form of algebraic reasoning through

inverting or “undoing” is significantly different

from solving a problem through recall of number

facts or adding counting numbers to 8 in order to

obtain the sum of 14. Algebraic reasoning

is entailed whenever one validly expresses the

relationship among givens and unknowns in an

alternative form.

Early algebra research (see Kaput et al. 2008;

Schliemann et al. 2007) shows that children as

young as 8 and 9 years of age can learn to use

letters to represent unknown values, to operate on

those representations, and to draw new infer-

ences. They can do so without assigning specific

values to variables. This brings us to the second

characteristic of algebraic reasoning.

Thinking About Variables

Algebraic reasoning can take place in the

absence of algebraic notation. Variables can be

represented through expressions such as amount

of money, elapsed time, number of children,
distance (from school to home), etc. Young

students may use simplified drawings to represent

variables (e.g., a wallet to represent the amount of

money in a wallet). It is important to distinguish

such cases from literal drawings depicting one

single value or unknown.

Students are engaged in algebraic reasoning

whenever they are thinking about variables and

relations among variables.
Acknowledging Algebraic Structure

Algebraic structure is primarily captured in

the Rules of Arithmetic (the field axioms) and in

the principles for transforming equations (the

original techniques which gave rise to the subject

known as algebra).

In the early grades, students can focus on

the algebraic structure of simple equations to

the extent that they treat the letters as generalized

numbers (e.g., when 2n + 2 ¼ 2 � (n + 1), for all
n in the domain) and, thereby, treat the operations

as having validity over a particular set of

numbers.
Approaches to Early Algebra Instruction

Early algebra proponents have adopted three gen-

eral complementary approaches, each showing

some success in developing students’ algebraic

reasoning. They focus on students’ reasoning

about (a) physical quantities and measures,

(b) the properties of the number system, and/or

(c) functions.

Reasoning About Physical Quantities and

Measures

In this approach, students are encouraged from

early on to use letter notation for comparing

unknown magnitudes (e.g., a displayed distance

or a distance expressed as a magnitude of a unit of

measure). For example, they learn to express the

length of a line segment, A, as greater than

the length of another line segment, B, by the

inequality A>B (or B<A) or through equations

such as A¼ B + C, B¼A – C. Furthermore, they

use multiple forms of representation (diagrams of

line segments, tables of values, and algebraic

notation) to express relations among givens and

unknown magnitudes.

For example, research by Davydov’s (1991)

group, in the former Soviet Union, shows

that quantitative reasoning in concert with

multiple forms of representation can support the

emergence of algebraic reasoning among second

to fourth graders who solve problems like:

“In the kindergarten, there were 17 more hard

chairs than soft ones. When 43 more hard chairs
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were added, there were five times more hard

chairs than soft ones. How many hard and soft

chairs were there?”

The Properties of Number Systems:

Generalized Arithmetic

A generalized arithmetic approach emphasizes

algebraic structure early on. For example, the

equation 8 + 7 ¼ 9 + ❐ sets the stage for

a discussion about the equal sign as meaning

something different from the idea of “makes”

or “yields”; rewriting the number sentence as

8 + 7 ¼ 8 + (1+ ❐) may evoke the insight that

1 + ❐ equals 7, making use of the associative

property of addition.

Authors whose work falls under this general

approach (e.g., Bastable and Schifter 2007;

Carpenter et al. 2003) find that elementary school

children come to display implicit algebraic

reasoning and generalizations supported by

intuitive arguments, discuss the truth or falsity

of number sentences, and think about the struc-

tural relations among the numbers, considering

them as placeholders or as variables.

Functions Approaches to Early Algebra

Functions approaches subordinate many

arithmetic topics to more abstract ideas and con-

cepts. Multiplication by 3 is viewed as a subset of

the integer function, 3n, that maps a set of input

values to unique output values, thus preparing the

ground for the continuous function, f(x) ¼ 3x,

over the real numbers and its representation in the

Cartesian plane. Functions approaches often rely

on multiple representations of mathematical

functions: descriptions in natural language, func-

tion tables, number lines, Cartesian graphs, and

algebraic notation. Students are encouraged to

treat what might initially appear to be a single

value (e.g., “John and Mary each have a box

containing the same number of candies. Mary

has three additional candies. What can you say

about how many candies they each have?”), as

a set of possible values.

Results of classroom studies using a functions

approach to early algebra are consistently

positive. Moss and Beatty (2006) show that,

after working with patterns where the position
or step is explicitly treated as an independent

variable, while the count of some property (e.g.,

points in a triangular figure) is treated as

a dependent variable, students in grades 2–4 can

learn to formulate rules that are consistent with

a closed form representation of the function such

as 3x + 7. Blanton and Kaput (2005) found that

children come to represent additive and multipli-

cative relations, transitioning from iconic and

natural language registers at grades PreK-1 to

use of t-charts and algebraic notational systems

by grade 3. Students from grades 3 to 5 who

participated in a longitudinal study of early alge-

bra, focused on variables, functions, and their

multiple representations (Carraher et al. 2008)

have been found to perform better than their

control peers in the project’s written assessment

problems related to algebraic notation, graphs,

and equations, as well as in algebra problems

included in state mandated tests. The benefits of

the intervention persisted 2–3 years later, when

treatment students were, again, compared to

a control group (Schliemann et al. 2012).
In Summary

Early algebra highlights the algebraic character

of time-honored topics of early mathematics. The

successful adoption of early algebra depends

upon the fluidity with which teachers are able to

move back and forth between algebraic represen-

tations and those expressed through natural lan-

guage, diagrams, tables of values, and Cartesian

graphs. There are robust examples of how this

can be done in the research literature. The next

step is to prepare teachers to interweave these

activities into their regular curriculum.
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What Is Meant by Early Childhood
Mathematics Education?

Early childhood mathematics education includes

providing activities or creating learning environ-

ments by professionals such as teachers and care

takers in order to offer young children experi-

ences aimed at stimulating the development of

mathematical skills and concepts. In general,

early childhood mathematics education involves

children who are 3–6 years old. Depending on the

age of the children and the educational system of

their country, early childhood education takes

place in preschool care centers or in kindergarten

classes. Children’s mathematical development

can also be stimulated by encounters and events

that take place outside an educational setting, that

is, in the children’s home environment, in which,

among other things, children can develop some

basic notions about number by playing games

with their siblings. These family-based activities

are highly esteemed as the foundation on which

mathematics education in the early years

can build.
History

Teaching mathematics to young children has

already a long history. Saracho and Spodek

(2009a, b) gave in two articles an overview of it.

According to them we can consider the beginning

of early mathematics education in 1631 when

Comenius, who was at that time a teacher in

Poland, published his book School of Infancy. In

this book, Comenius described the education of

children in their first 6 years. By emphasizing the

observation and manipulation of objects as the

main source for children’s learning, Comenius

stimulated the creation of mathematics programs

for young children which heavily rely on the use of

concrete materials. Two centuries later, in the

nineteenth century, Comenius’ approach was

reflected in the educational method of Pestalozzi

in Switzerland which also focused on observing

and manipulating physical objects.

A further landmark in the development of

mathematics education for young children was
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the foundation of the Infant School by Owen in

Scotland in 1816. The method of this school for

teaching arithmetic was aimed at developing

understanding of different arithmetic operations

for which, like by Pestalozzi, concrete materials

were used. Similarly, in the United States,

Goodrich introduced in 1818 in his book The

Children’s Arithmetic the idea that young

children can discover arithmetic rules when they

manipulate concrete objects such as counters and

bead frames. This innovative approach rejected

the view that arithmetic is learned through

memorization. Later, in the United States,

Colburn used Goodrich’s and Pestalozzi’s work

to develop a method which he called “mental

arithmetic.” The book First Lessons, which

he published in 1821, was meant for 4- and

5-year-old children and started with simple levels

of numerical reasoning elicited by word problems

and naturally progressed to more complex

levels. Colburn attached much value to children

having pleasure in their solutions because this

contributes to their learning and the integration

of concepts. Moreover, he emphasized the

inductive approach, which has many similarities

to the constructivist view on learning.

In the second half of the nineteenth century,

early childhood mathematics education was

influenced by Fröbel who in 1837 established

the first kindergarten in Germany and developed

an educational program for young children.

A central component in this program were the

so-called gifts, small manipulative materials

by which children could be made aware of

numerical and geometric relationships and

which could provide them experiences with

respect to, for example, patterns, symmetry,

counting, measurement, addition, division,

fractions, and properties of shapes. One of the

gifts consisted of a series of cubes made out of

wood, divided into smaller parts, and followed by

square and triangular tablets. The gifts were

offered to the children in a prescribed sequence,

and the children were expected to build precise

forms with them. Although children in the

Fröbelian kindergarten might have acquired

a substantial amount of mathematical knowledge,

attained incidentally and instinctively through
play, the ultimate goal of Fröbel was not

to teach children mathematics, but help 3-

to 6-year-olds to understand the relationship

between nature, God, and humanity.

At the turn of the twentieth century, many

from the kindergarten community began to ques-

tion the appropriateness of Fröbel’s curriculum

and his methods. For example, Dewey considered

the Fröbelian activities as mindless copying and

manipulation of artificial objects. These concerns

led to the so-called “child-centered approach,”

which originated from the eighteenth century

philosopher Rousseau. In this approach there

was no specific program for mathematics instruc-

tion, but children were engaged in activities

based on their interests, which would incidentally

help children prepare for the later learning of

formal mathematics. This approach also applied

to the nursery school which was established

firstly in England in the beginning of the

twentieth century. The educational program was

predominantly focused on children’s play and

ignored academic subjects which would be taught

later when the children are older.

A different approach was reflected by

Montessori, who at the beginning of the twentieth

century introduced a method for teaching young

children that was deeply mathematical. Most of

the activities she suggested were requiring, for

example, working with patterns and exploring the

properties of geometric shapes, numbers and

operations. Her approach included working with

sensory materials and was based on the idea that

children use their senses to acquire information

about the world. For example, children felt the

shape of numerals made of sandpaper before

writing these numerals.

Halfway the twentieth century, the ideas of

Piaget influenced the teaching of mathematics to

young children. He related the construction

of number concepts to the development of

children’s logical thinking and focused on

understanding common properties of quantities

like conservation, seriation, and class inclusion

rather than on counting. Piaget emphasized that

there is a relationship between the basic struc-

tures of modern mathematics and the mental

structures developed in children. Although these
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and other ideas of Piaget were questioned, Piaget,

together with other pioneers since Comenius, has

contributed to the present awareness of the

importance of mathematics education for young

children.
Recent Interest in Early Childhood
Mathematics Education

Currently, early childhood education has risen

to the top of the national policy agenda with

recognition that ensuring educational success

and attainment must begin in the earliest years

of schooling (National Research Council 2009).

An important reason for this is that research

has shown that the amount of mathematical

knowledge children bring with them when they

start in grade 1 has large, long-term consequences

for their further learning of mathematics

(Duncan et al. 2007).

For example, in the United States, the recent

awareness of mathematics as a key aspect of early

childhood education was boosted in 2000 when

the National Council of Teachers of Mathematics

published their revised 1989 standards for

elementary and secondary school mathematics

and included prekindergarten for the first time

in their description of standards. A further

step was a joint position statement titled Early

Childhood Mathematics: Promoting Good

Beginnings by the National Association for the

Education of Young Children and the National

Council of Teachers of Mathematics (NAEYC

and NCTM 2002) that was aimed at achieving

high-quality mathematics education in child care

and other early education settings. The book

resulting from the Conference on Standards

for Early Childhood Mathematics Education

(Clements et al. 2004) and the Curriculum

Focal Points for Prekindergarten through

Grade 8 Mathematics (NCTM 2006) were other

breakthroughs for early childhood mathematics

education. Similar documents for teaching

mathematics in the early years of schooling

were also released in other countries, for

example, in the United Kingdom (Department

for Children, Schools and Families 2008), France
(Ministère de l’Education Nationale 2002),

Australia (Australian Association of Mathematics

Teachers and Early Childhood Australia 2006),

and the Netherlands (Van den Heuvel-Panhuizen

and Buys 2008).

Another indication for the new prominent

position of early childhood mathematics

education is reflected by the establishment, in

2009, of the working group on Early Years

Mathematics in the Congress of the European

Society for Research in Mathematics Education

(CERME), which focuses into research on

learning and teaching mathematics to children

aged 3–8. The work of this group in the last two

meetings of CERME has shown that investigat-

ing mathematics education during the early

years is a rather complex and multidimensional

endeavor. The specificities of early childhood

education in different countries and educational

systems, e.g., the differences in the conception of

schooling and early years mathematics and in the

transition ages from preprimary to primary school

and the differences in the education and develop-

ment of prospective preschool and kindergarten

teachers regarding the didactics of mathematics

as well as the constraints in the ability of young

children to articulate their mathematical thinking

and understanding, are only some of the factors

that contribute to this complexity.
Mathematics Taught in Early Childhood

Although in the past, early childhood mathemat-

ics education was often restricted to teaching

arithmetic, several early pioneers such as Fröbel

and Montessori as well as Piaget offered

a wider program to children. Presently, there is

expert consensus (see National Research Council

2009) that two content areas of mathematics

are particularly important for young children to

learn, namely, (1) numerical and quantitative

ideas and skills and (2) geometric and spatial

ideas and skills. Moreover, according to Clem-

ents and Sarama (2007), these ideas and skills are

permeated by mathematical activities such as

dealing with patterns, analyzing data, and sorting

and sequencing.
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Ways of Teaching Mathematics to
Young Children

There is also general agreement that “teaching”

mathematics to young children should have many

characteristics of the informal learning as it takes

place in the family setting where children come

along with mathematics in a natural way and

“mathematical ideas permeate children’s play”

(Ginsburg and Amit 2008, p. 275). Young

children develop mathematical ideas and skills

primarily in informal ways which make sense to

them. Thus a major part of early mathematics

education needs to be organized in informal

contexts which are meaningful for the young

children.

Play

Such learning opportunities can be provided in

kindergarten through play (Pramling-Samuelsson

and Fleer 2009). By offering playful activities

such as free play, sensorimotor play, making

constructions, and role playing, children can

know the world mathematically. They can

spontaneously deal, for example, with counting

up to large numbers, comparing the height of

their towers of blocks, creating and extending

patterns when jumping up and down, and

connecting movements to verbal expressions,

investigating shapes, and exploring symmetry

and spatial relations.
According to Vygotsky play in early childhood

becomes the leading activity of development. The

challenges the children encounter during play

and the help they receive from more knowledge-

able others, such as teachers, who assign math-

ematical meaning to their play actions, enable

the children to move a step forward in their

abilities. In this way they enter the zone of

proximal development.

Picture Books

Another way of offering children meaningful

contexts in which they can encounter mathemat-

ics-related problems, situations, and phenomena

that can support the learning of mathematics is by

reading them picture books (Van den Heuvel-

Panhuizen and Elia 2012). From a Vygotskian

and action-psychological approach to learning

(Van Oers 1996), picture books can contribute

to forming, exchanging, and negotiating all

kinds of personal meanings within everyday

practices and to acquiring mathematics as an

activity involving historically developed and

approved meanings. Furthermore, they can

offer cognitive hooks to explore mathematical

concepts and skills. An example concerns the

book Vijfde zijn [Being Fifth] (Jandl and Junge

2000), which is about a doctor’s waiting room in

which five broken toys are waiting for their turn

(see Fig. 1). Even though the book was not

written for the purpose of teaching mathematics,
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it implicitly touches on counting backwards

and spatial orientation as part of the narrative

and has the power to offer children a rich

environment for eliciting mathematical thinking

(Van den Heuvel-Panhuizen and Van den

Boogaard 2008).
Information and Communication
Technology

Although there is still debate about whether Infor-

mation and Communication Technology (ICT) is

appropriate for teaching young children, there is

ample evidence from research that computer use

can be meaningful, motivating, and beneficial for

children 3 years of age and above (e.g., Haugland

2000; Clements et al. 2004). The use of computers

in early years’ mathematics can support young

children’s mathematical thinking in various

ways. One of the most powerful affordances of

the use of computers in early childhoodmathemat-

ics education is that they embody the processes

children need to develop and mentally use.

Computers can also help children connect

concrete and symbolic representations of the

same mathematical concept, e.g., by providing

a dynamic link between base-ten blocks and

numerical symbols. Using mathematical computer

games enables children to explore mathematical

concepts, such as geometric figures, in ways that
they cannot with physical manipulatives. For

example, they can modify the size of geometric

shapes, without changing their critical attributes.

Furthermore, the use of computers can support

children in bringing mathematical processes and

ideas, such as shape transformations, in an explicit

level of awareness. The Building Blocks program

(Clements et al. 2004), for example, uses computer

software tools (see Fig. 2) to help preschoolers

acquire geometric and numerical ideas and skills.

In sum, the computers can provide valuable

opportunities for learning in early childhood math-

ematics education. However, realizing the full

potential of technology requires comprehensive,

meaningful, and well-planned instructional set-

tings. The development and organization of such

settings strongly depends on the curriculum and the

teacher (Clements 2002). Thus, effectively inte-

grating technology in the early childhood mathe-

matics curriculum and appropriate professional

development of kindergarten teachers should be

vitally important concerns in relation to computer

use in mathematics education in the early years.
Future Perspectives in Early Childhood
Mathematics Education

Presently there is broad diversity of theories of

learningmathematics ranging from cognitivist the-

ories including a Piagetian approach, situated
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cognition, and semiotic approaches to various con-

structivist theories and social-cultural theories.

A recent research direction in mathematics educa-

tion is the theory of embodied learning in mathe-

matics which claims on the basis of knowledge

from neuroscience that cognition and concepts

are strongly founded on bodily experiences.

Although this new approach to learning is closely

related to how young children explore and make

sense of their environment, not much research has

been carried out in how ideas from embodiment

theory can be used to acquire a better understand-

ing of young children’s mathematical develop-

ment and how early childhood education can

contribute to this development.
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Definition

Education of teacher educators refers to the prep-

aration, professional development, teaching, or

facilitating of teacher educators. It is understood

as a goal-directed intervention in order to pro-

mote teacher educators’ learning and further

development of beliefs, knowledge, and practice,

including formal as well as informal activities.

Nowadays, the term “teacher educators” com-

monly refers to both those who educate prospec-

tive teachers and those who educate practicing

teachers, that is, to those who initiate, guide, and

support teacher learning across the lifespan

(Even 2008; Krainer and Llinares 2010). Yet,

sometimes the term “teacher educators” refers

only to educators of prospective teachers, that
is, to those who teach future teachers and not to

those who provide professional development for

practicing teachers.

Theoretical Background

There is general recognition and agreement today

that the education and professional development

of teachers is key to improving students’ oppor-

tunities to learn (Even and Ball 2009; Krainer

2011). Accordingly, the focus and nature of the

education of prospective and practicing teachers

have received immense international attention

in recent years, and the past decades have

seen substantial increase in scholarship on

mathematics teacher education. A significant

issue identified recently as crucial for improving

the education and professional development of

mathematics teachers is the education and

development of teacher educators and related

research (Adler et al. 2005; Even and Ball 2009;

Jaworski and Wood 2008).

In different countries around the world,

various professionals are responsible for initiat-

ing, guiding, and supporting teachers’ learning:

university faculty with disciplinary expertise

and those who specialize in education; school

teachers, teacher mentors, and staff of curriculum

implementation projects; educators whose major

occupation is to work with teachers and those

who do it only as an add-on part-time temporary

activity; those who work with both prospective

and practicing teachers; and those whose role

is to educate solely prospective or practicing

teachers, but not both. Yet, this vast range of

teacher educators has little formal preparation

for their work. Most become teacher educators

through practice with little institutional and pro-

fessional support. With the expanding current

interest in the issue of professional education

and development of teacher educators in different

countries, pioneering formal programs to prepare

educators to educate teachers started to emerge.

These include, for example, the Pedagogy and

Subject-Didactics for Teachers (PFL) Program

in Austria, the MANOR Program in Israel for

educating educators of practicing mathematics

teachers, the School for Research and Develop-

ment of Education Programs for Teacher College

http://dx.doi.org/10.1007/978-94-007-4978-8_55
http://dx.doi.org/10.1007/978-94-007-4978-8_100002
http://dx.doi.org/10.1007/978-94-007-4978-8_100002
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Faculty (MOFET Institute) in Israel, a special

M.Ed. program in Pakistan, and the Leadership

Curriculum for Mathematics Professional Devel-

opment (LCMPD) Project in the USA.

Important Scientific Research and Open

Questions

The education of teacher educators has only

recently become of interest to the international

community. Thus, not much is known about

the development of teacher educators and

about effective ways to educate educators to

initiate, guide, and support teacher learning

(Even 2008).

Research studies that center on issues

pertaining to professional education and develop-

ment of teacher educators in a specific subject

area are rare. Mathematics is among the subjects

where efforts in investigating the education of

teacher educators have become visible recently

(Even 2005; Jaworski and Wood 2008; Nardi

2008; Oikkonen 2009). Most research on the

professional education and development of math-

ematics teacher educators includes reflections of

teacher educators on their own personal develop-

ment (e.g., Cochran-Smith 2003; Jaworski and

Wood 2008). This research suggests that reflec-

tive inquiry has a central role in learning to teach

teachers and in developing as teacher educators.

Yet, this line of research provides information

mainly on the professional development of uni-

versity-based teacher educators with research

interest in teacher education, but not on that of

the wide range of professionals responsible for

supporting prospective and practicing teachers’

learning.

Because formal preparation for mathematics

teacher educators scarcely exists, research

that examines formal programs and activities

intended to educate mathematics teacher educa-

tors is sparse. Pioneering work in this direction

addresses various aspects of curriculum (What

should teacher educators learn?) and pedagogy

(How should teacher educators be taught?). It

suggests several areas of professional knowledge

base for mathematics teacher educators (Jaworski

and Wood 2008); two relate to knowledge shared

by teacher educators and teachers: pedagogical
knowledge and disciplinary knowledge. A third

area of professional knowledge base for educat-

ing teacher educators relates to knowledge spe-

cific to the mathematics teacher educator:

knowledge of teaching teachers and of teachers’

learning. In addition to professional knowledge

base, research suggests the need to purposely

teach practices of educating teachers, giving

explicit attention to the nature of work in which

mathematics teacher educators engage. These

practices may be general, such as teaching

courses, supervising student teachers, and facili-

tating seminars (Cochran-Smith 2003), or subject

matter specific, such as planning, conducting, and

assessing activities, workshops, and courses for

mathematics teachers (Even 2005). This line of

research also suggests that inquiry is central to

learning to teach teachers and to developing as

mathematics teacher educators. Additionally, it

shows the importance of attending to the relation-

ships of knowledge and practice.

Thus far, it is not known whether, or in what

ways, formal education of mathematics teacher

educators needs to be responsive to the wide

range of professionals responsible for supporting

teachers’ learning or may be common to all, for

example, whether the professional education of

educators of practicing mathematics teachers

needs to be different from the education of

educators of prospective mathematics teachers,

as the education of prospective and that of prac-

ticing mathematics teachers are commonly of

different nature, often occurring in different

settings, and not necessarily conducted by the

same people.
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Definition

The Elkonin-Davydov mathematics curriculum

was an elementary mathematics curriculum

developed in Russia based on Russian activity

theory. In recent years, the original Russian

curriculum has been expanded to include grades

K–8 and has been refined into several different

curricula. In addition, research projects in

other countries (e.g., USA) have investigated

applications with local populations.
Characteristics and Origin

In 1959, Daniil Borissowitsch Elkonin

(1904–1984) and Vasily Vasil’evich Davydov

(1930–1998), Russian psychologists and students

of Lev Vygotsky, developed an elementary

mathematics curriculum. Their work was initially

situated in experimental school #91 in Moscow

where their team functioned as researchers

and teachers. The project was grounded in

Russian activity theory, which grew out of the

cultural-historical theory of Vygotsky.

Davydov was critical of the existing schooling

system and argued that traditional pedagogy

failed to develop a general concept of number

that could support the learning of numbers of all

types. Students were forced to learn a new

concept of number each time they focused on

a different number domain (e.g., integers, rational

numbers, irrational numbers, imaginary num-

bers). Elkonin and Davydov believed that devel-

opmental learning coupled with Vygotsky’s

description of the development of scientific

concepts (Vygotsky 1987) could overcome the

restrictions of a traditional approach.

The E-D approach is characterized by

two essential principles within developmental

learning. The first is dialectical logic, which can

be thought of as diametrically opposed to empir-

ical thinking in which learning is based on accu-

mulation of cases (Davydov 1990). To support

dialectical logic, the E-D approach aims at the

learning of more general ideas and then builds on

those general ideas to develop advanced concepts

that incorporate those ideas. Thus, in the E-D
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curriculum a general concept of number is

developed and then built on as different number

domains are explored.

Elkonin and Davydov believed that thinking

about conceptual and abstract ideas should lead

to a child’s ability to analyze, reflect, and plan.

Explicitly, analysis is the child’s ability to isolate

the critical and essential relation in a problem.

Reflection is the child’s understanding of the

bases of his/her own activity. Planning is the

child’s ability to construct ways to solve

a problem based on systems of activities.

The second principle of developmental

learning is learning through one’s own activity

(Leont’ev 1978). In the E-D approach, this is

characterized by students’ activities in which

they reconstruct mathematical ideas from their

origin. That is, the mathematics is presented so

that students see how ideas build, one on another.

There is a specific learning goal toward which the

instructional tasks are structured. In their work

on the tasks, students interact with specific tools

that help them see the mathematics in particular

ways during the learning process.

In order to foster a general understanding of

number that can support learning related to all

types of number, the E-D curriculum (Davydov

et. al 1999) starts with a prenumeric stage rather

than counting and builds on a foundation of mea-

surement concepts. In the prenumeric stage, chil-

dren first identify the attributes of objects that can be

compared and engage in direct comparison. For

example, two bottles can be compared in multiple

ways such as their height, the area of their bases, the

volume of water they can hold, and their masses.

These four attributes are considered to be general-

ized, nonspecific continuous quantities. Continuous

quantities, in contrast with discrete quantities, can

be subdivided a limitless number of times and each

part of the subdivisions is of the same type. The

quantities are generalized and nonspecific because

they have no number (as determined by measure or

count) associated with them.

By using the attributes of length, area, volume,

and mass, children explore equality and inequality

including creating an equal relationship from one

that is unequal (by adding or subtracting the dif-

ference). The fundamental properties of arithmetic
(such as commutativity and associativity) natu-

rally arise from these explorations – all without

numbers. Reasoning about generalized quantities

is supported by introducing letters to represent the

quantities and arrow diagrams and equations to

represent the relationship between quantities.

The prenumeric work, in which students

examine relationships among physical quantities,

forms the basis for the E-D curriculum. Number

is not a primitive idea as it is in curricula that

begin with counting. Number is the result of

measuring a quantity with a unit. The need for

measurement is introduced in order to compare

quantities that cannot be compared directly (e.g.,

two lengths that cannot be laid side by side). To

measure a quantity, one needs to determine a unit

that can measure the quantity. If a quantity and

a unit exist, then to find the count, the unit is

iterated until the quantity has been fully mea-

sured. The counting of the iterations drives the

introduction of number. Thus a number is defined
as the result of measuring a quantity with a unit.

Note that neither the quantity nor the unit has

numbers associated with them. Numbers are pro-

duced through measuring one with the other.

In each of the grades, however, the E-D cur-

riculum consistently begins a topic of study with

learning problems that lead to a system of activ-

ities. Learning problems are situations that sig-

nificantly change students’ thinking. The change

occurs within children’s activity and thus the

material chosen for the learning problem is

ultimately an important consideration. It must

support the acquisition of constructing a general

way to view the activity itself.

For example, initially in grade 1, students use

direct comparison to find the relationship

between two quantities. In a new learning prob-

lem, students are then given the challenge to

determine how two quantities compare when

they cannot be moved to perform a direct com-

parison. This motivates students to consider how

the direct comparison method can be changed so

that it will fit the new parameters of the problem.

In the above example, the inability to perform

a direct comparison requires children to consider

the use of a tool that mediates the situation. From

this task, the need for a portable representation of
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at least one of the quantities is created. Children

must now negotiate a tool and find a systematic

way to use it. Additionally, if they construct the

tool to be only some part of the whole quantity, it

becomes the introduction to counting as they mea-

sure the quantity through iterations. By changing

the task ever so slightly, children are beginning the

generalization of the process of measuring. Since

the task represented above can occur in any of the

four continuous quantities, children come to view

this as a generalized model for any measurement,

even those associated with discrete sets.

The outcome of this approach is that children

see “unit” as the basis of all number. The

relationship of the unit to a quantity and its mea-

sure is critical in determining how each compo-

nent relates one to another. The relationship is

expressed in multiple forms that reflect the action

used to determine the count and show the rela-

tionship across the unit (E), the quantity (Q), and
the count (n) (See Fig. 1).

From these representations, children general-

ize that as the unit (E) gets larger, the count (n)
gets smaller. Even though this is introduced in

grade 1, it is an important concept for the devel-

opment of rational number. Subsequent instruc-

tion builds on these initial concepts of quantities,

units, measurement, and number. Place value is

taught as relationship between different size units

in a system of units in which each larger unit is

n times larger than the prior unit. Multiplication is

taught as the use of an intermediate unit to find

the number of units in a quantity. For example,

a meter could be used as an intermediate unit to

find out how many centimeters are in a quantity.

Multiplication is the relationship between the

number of centimeters in a meter and the number

of meters in the quantity that gives the number of

centimeters in the quantity. Fractions are taught

by introducing partial units, initially by reversing

the process that created larger place values.
Implementation and Adaptation

The E-D elementary mathematics curriculum has

been implemented in about 10 % of elementary

schools throughout the Russian Federation since

the collapse of the Soviet educational system

in 1991. Evaluation studies consistently demon-

strate that students in E-D elementary classrooms

do better overall than students in other elemen-

tary classrooms (Nezhnov et al. 2009; Vysotskaia

and Pavlova 2007; Zuckerman 2005). In a

comparative study of E-D (Davydov et. al 1999)

and six other curricula in Russia, Vysotskaia and

Pavlova (2007) found that the E-D students were

better able to solve a variety of problems than

those in other curricula. Similarly, Zuckerman

(2005) compared the E-D curriculum to two

other curricula using selected problems from the

PISA international mathematics tests. She found

that 15-year-old students who had been taught

through the E-D curriculum demonstrated a

higher ability to use diagrams, graphs, and other

representations for solving problems.

There are at least two significant adaptations of

the E-D curriculum outside of Russia. One adap-

tation focused on grades 1–3 only in one school in

the USA. The results, however, are compelling in

that the findings from multiyear implementations

indicate the use of E-D curriculum supported com-

putational competency as well as the development

of algebraic concepts (Schmittau 2005).

On a larger scale, in 2001, the Curriculum

Research & Development Group, University of

Hawaii, entered into a collaborative arrangement

with the Elkonin-Davydov group to create an

adaptation of the E-D curriculum for grades

1–5. The adapted curriculum, Measure Up

(Dougherty 2008), closely followed the E-D

approach but revised the instructional approaches

to include significant language components (read-

ing, writing, speaking, and critical listening).

Additionally, some contents, such as fractions,

were introduced in a slightly different way even

though the focus on quantitative reasoning and

measurement was maintained. The resulting cur-

riculum (Dougherty et al. 2004) was implemented

and tested in two sites in Hawaii with significant

results. A study (Slovin and Venenciano 2008)
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used the Chelsea Diagnostic Mathematics Test:

Algebra (Hart et al. 1985) (originally designed

for 13–15-year-old students) to determine how

well 5th and 6th grade students who had engaged

in the Measure Up curriculum were prepared for

algebra. Measure Up students performed dispro-

portionately better than studentswho had not expe-

rienced Measure Up on a subset of items focused

on concept of variable.

Even though studies both in the USA and

Russia have indicated that students learn signifi-

cant mathematics, the issue of broader dissemina-

tion remains problematic for at least three reasons.

First, the approach tomathematics is unique in that

it does not follow the conventional approach we

have come to expect in elementary mathematics

where we begin with counting and number.

Second, content knowledge that is expected in

teacher preparation courses is not sufficient for

teaching the E-D orMeasure Up curricula. Finally,

high-stakes assessments are often based on

a conventional approach and sequence to elemen-

tary mathematics. Thus children are learning

concepts and skills in a different sequence.
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Definition

Embodied cognition is a subdomain of cognitive

psychology that focuses on the interaction

between an individual and the environment

(social, environmental, instructional). It moves

http://dx.doi.org/10.1007/978-94-007-4978-8_4
http://dx.doi.org/10.1007/978-94-007-4978-8_107
http://dx.doi.org/10.1007/978-94-007-4978-8_107
http://dx.doi.org/10.1007/978-94-007-4978-8_122


E 208 Embodied Cognition
beyond the traditional distinctions between mind

and body in the sense that actions or interactions

embody projections of the mind and vice versa.

Some Definitional Differences in

Mathematics Education

Many embodied ideas eventually are represented

symbolically in mathematics. Examples of these

are enumeration systems which are abstractions

of human gestures for counting, pointing, and

measuring. Freudenthal (1973) claimed that

geometry is based upon our experiences with

our bodies in the world. This suggests that the

only mathematics we are able to know is the

mathematics that our bodies and brains allow us

to know (Lakoff and Nunez 2000; Fyhn 2010).

Freudenthal (1973) also claimed that geometry is

about grasping space. Fyhn (2010) interprets

“Space” according to this definition as that

“in which the child lives, breathes and moves”

(p. 296). The idea of a “grounding metaphor” is

used to connect different mathematical ideas

such as arithmetic, the Cartesian coordinate sys-

tem, functions (Bazzini 2001), and even calculus

(Lakoff and Nunez 2000) to everyday activities.

One should note that there is a difference between

micro-embodied experiences such as gestures

and macro-embodied experiences such as throw-

ing an object, climbing stairs, or climbing a wall.
Embodied Cognition in Mathematics
Education

Nunez et al. (1999) claim that learning and using

mathematics are closely associated with the

social, cultural, historical, and contextual factors

(p. 45). These have also been labeled as

“situated” learning (Lave 1988). Mathematics is

conceived as a product of human activities in the

process of adapting to the external environment

and needs, and shared and made meaningful

through language and other means, but based

ultimately on biological and bodily experiences.

The creation of mathematics through “situated”

cognition and sensemaking is not arbitrary, rather

is bodily grounded (Lakoff and Nunez 2000).

From an embodied cognition perspective, the
learning of mathematical knowledge occurs in

naturally situated, often unconscious, everyday

thoughts. The implication of embodied cognition

in the pedagogy of mathematics education is that

rather than teaching students to learn “rigorous”

definitions/theorems of the pre-givenmathematical

ideas, one needs to focus on the understanding and

sensemaking that students need to develop. It is

daily experiences that provide the initial grounds

for the abstractions that constitute mathematics.

This view has been suggested earlier since the

early 1960s by Zoltan Paul Dienes (Sriraman and

Lesh 2007).
Cognitive Science of Embodied
Cognition

Lakoff and Nunez (2000) discussed the cognitive

science of mathematics based on the key concept

of embodied cognition. The basic assumption is

that mathematics is not mind-free. There are

claims such as newborn babies aged 3 or 4 days

old having the innate arithmetic abilities to

discriminate between collections of two and

three items (Antell and Keating 1983) which are

supported by other studies beyond the scope of

this entry. Basic arithmetic uses various capaci-

ties of our brain such as subitizing, perception of

simple arithmetic relationships, estimate and

approximation, and the ability to use symbols

(Dehaene 1997). Mathematical cognition often

occurs unconsciously (Lakoff and Nunez 2000).

This is because the general cognitive mechanisms

that use everyday nonmathematical thoughts can

create mathematical understanding and structure

mathematical ideas (p. 29). Again Lakoff and

Nunez (2000) claim that there are two types of

conceptual metaphors that play an important role

in the development of mathematical ideas, i.e.,

grounding metaphors and linking metaphors. The

interested reader should examine chapters from

Where Mathematics Comes From that focus on

these ideas. In a nutshell a grounding metaphor

refers to basic, direct mathematical ideas.

For example, multiplication as repeated addition

sets as containers and elements of a set as objects

in a container. Linking metaphor refers to
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abstraction, which produces sophisticated ideas.

For instance, geometric figures as algebraic

equations (Lakoff and Nunez 2000, p. 53).

Dienes’ Contributions to Embodied

Mathematics

Based on a survey of prior studies in mathematics

education, Sriraman and Lesh (2007) claimed

that Dienes not only studied a phenomenon that

later cognitive scientists have come to call

embodied knowledge and situated cognition but

he also emphasized the multiple embodiment
principle whereby students need to make predic-

tions from one structured situation to another.

And he also emphasized the fact that, when con-

ceptual systems are partly off-loaded from the

mind using a variety of interacting representa-

tional systems (including not only spoken lan-

guage written symbols, and diagrams but also

manipulatives and stories based on experience-

based metaphors), every such model is, at best,

a useful oversimplification of both the underlying

conceptual systems being expressed and the

external systems that are being described or

explained. Thus, Dienes’ notion of embodied

knowledge presaged other cognitive scientists

who eventually came to recognize the importance

of embodied knowledge and situated cognition –

where knowledge and abilities are organized

around experience as much as they are organized

around abstractions (as Piaget, e.g., would have

led us to believe) and where knowledge is dis-

tributed across a variety of tools and communities

of practice.
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Definition

Enactivist theories assert that cognition is

a process that occurs through feedback loops

within the interaction of complex dynamical

organisms/systems.
Characteristics

Closely related and often conflated with

enactivist theory is embodied cognition. The dis-

tinction taken here is made on the basis of the

roots of the two theories. Enactivism has biolog-

ical roots, for example, in the writing ofMaturana

and Varela (1992) and others, whereas embodied
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mathematics has linguistic roots (see Embodied

cognition).

Enactivist theory is a development of biolog-

ical and evolutionary science and complexity

theory and addresses, among other things, the

critique of Cartesian dualistic notions of object/

subject. In enactivist theory it is argued that

cognition is a process that occurs through the

interaction between the living organism and its

environment (autopoiesis).

We propose as a name the term enactive to

emphasize the growing conviction that cognition

is not the representation of a pregiven world by

a pregiven mind but is rather the enactment of

a world and a mind on the basis of a history of the

variety of actions that a being in the world

performs (Varela et al. 1991, p. 9).

From an enactivist perspective learning is seen as

a process of restructuring that is triggered by inter-

action that occurs within the complex dynamic

system of coupling (structural coupling) between
person and environment.

We speak of structural couplingwhenever there

is a history of recurrent interactions leading to the

structural congruence between two (or more)

systems (Maturana and Varela 1992, p. 75).

Restructuring within the person, however, is

determined by the (biological) structural proper-

ties of the person (structural determination), not

by the properties of the environment within

which the restructuring occurs. The interaction

also triggers changes in the environment, which

is also consequently determined by the structure

of the environment; this is referred to as coevo-

lution/coadaptation, or co-emergence. As can be

deduced from the above quotation from Varela

et al. enactivism also challenges theories that

require some form of mental knowledge repre-

sentation structures in which perception and

reflection are actions uponmental representations

of the world constructed independently by the

perceiving subject. Cognition and knowing are

explained within enactivist theory as active pro-

cesses that occur directly through the interaction

between the cognizing subject and the environ-

ment, rather than as a construction of representa-

tions of the environment by the cognizing

subject.
Knowing is effective action, that is, operating

effectively in the domain of existence of living

beings (Maturana and Varela 1992, p. 29).

Enactivist theories have roots in biological

sciences (Maturana and Varela 1992; Varela

et al. 1991) and Darwinian theory of evolution

and thus might be viewed as a development

of Piaget’s constructivism. However, Proulx

(2008a) draws attention to some ontological and

epistemological differences between enactivism

and constructivism. Philosophical antecedents of

enactivist theories are shared with closely related

“embodied” theory, and more generally situated

cognition, these theories refer to seminal philo-

sophical contributions by Edmund Husserl,

Maurice Merleau-Ponty, and Ludwig Wittgen-

stein (Reid 1996).

Autopoiesis: Complex dynamic systems can

be defined at many levels, from complex molec-

ular structures within a single cell to solar

systems within a galaxy. Autopoiesis is asserted

by Maturana and Varela to be the process that

distinguishes living beings.

Our proposition is that living beings are char-

acterized in that, literally, they are continually

self-producing. We indicate this process when

we call the organization that defines them an

autopoietic organization (Maturana and Varela

1992, p. 43).

Cognition and knowing is one part of

autopoietic organization.

Thus a learner within a mathematics

classroom constitutes a dynamic system; alterna-

tively one, or a group of, teacher(s) within

a professional development setting constitute

a system. The learner is a distinct unity (Maturana

and Varela 1992, p. 40) within the environment of

a mathematics class comprising other learners,

teacher, and resources. The learner is structurally
coupled with the classroom environment. Distur-

bances within the environment trigger changes

within the learner as she/he adapts herself/him-

self to the environment. However, the adaptation

of the learner is determined by the “structure”

(prior experiences and learning and affective

characteristics) of the learner, not by the interac-

tion with the environment. The interaction

merely “triggers” the change. Thus enactivist
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theory asserts that cognition is structurally
determined by the organization of the learner

(Maturana and Varela 1992, p. 96).

Enactivist theories began to emerge within the

research field of mathematics education in the

1980s, especially following the publication of

Maturana and Varela’s book Tree of Knowledge

(1992). A group of Canadian mathematics edu-

cation researchers established themselves as

a center of interest in enactivist theories forming

an “Enactivist Research Group” (Reid 1996).

However, research within enactivist theories as

a framework and methodology is now actively

pursued throughout the world, as can be seen

from the account below. The account indicates

how enactivist theories have entered into the

discourse of mathematics over three decades,

1982–2012, thematically, geographically, and

through publication in the major scientific

journals and conferences in the field.

Tom Kieren and Daiyo Sawada (Canada)

became interested in the work of Maturana and

Varela in 1982, and later Kieren and Sawada

introduced enactivist theory to the mathematics

education group at the University of Alberta,

Canada (Proulx et al. 2009). The first edition of

HumbertoMaturana and Francisco Varela’s book

The Tree of Knowledge was published in 1987

(Maturana and Varela 1992). Then around 1993

The Enactivist Research Group was established

in Canada (Reid 1996).

Maturana and Varela’s theory entered the

international discourse of mathematics education

through the annual conferences of the Interna-

tional Group for the Psychology of Mathematics

Education (PME) during the period 1994–1996.

In 1994 at the 18th PME conference held in

Lisbon, John Mason (UK) made reference to

Maturana and Varela’s work in his plenary lec-

ture “Researching from the inside in mathematics

education.” One year later at the 19th PME con-

ference in 1995 held in Recife, Rafael Núñez and

Laurie Edwards (USA) convened a discussion

group that focused on embodied cognition; the

participants included David Reid (Canada) and

Laurinda Brown (UK) who later became signifi-

cant contributors to the development and appli-

cation of enactivist theory within mathematics
education research and practice. At the same

PME conference Edwards and Núñez presented

a theoretical paper in which enactivism was iden-

tified as one of the several nonobjectivist theories

within the compass of new paradigms in cogni-

tive science. A year later David Reid presented

a research report at the 20th PME conference

held in Valencia in 1996; in this Reid set out

enactivism as a methodology. He described

research from an enactivist perspective in

terms of autopoietic relationships, between

researcher and data: between researchers as

they engage with each other and the co-

emergence of ideas between researchers and

the “coemergent autopoetic (sic) ideas which

live in the medium of our minds and of which

we are emergent phenomena (as the herd is of

the antelope)” (Reid 1996, p. 205). The report

included a brief review of enactivist theory

and its roots.

Also in 1995 Brent Davis (Canada) published

a paper in the journal For the Learning of

Mathematics that set out an enactivist rationale

for learning mathematics; the paper included

a brief account of the nature of mathematical

activity from an enactivist perspective. In this

paper Davis applies an enactivist argument to

emphasize the inseparability of process and

product in mathematical activity (Davis 1995).

In 1997 Davis suggested that enactivism

provides “a framework for interpreting the

phenomenon of mathematics teaching . . . that

might allow us to embrace the insights of

constructivism without losing the substance of

the social critics’ arguments,” in a report

published by Journal for Research in Mathemat-
ics Education (Davis 1997, p. 355).

During the following decade (1998–2007)

interest in enactivist theory developed interna-

tionally and in its application to various domains

of research within mathematics education.

In 1998 Markku Hannula (Finland) applied

enactivist theory to research into affect and learn-

ing mathematics. He later published more exten-

sively, for example, in the journals Educational
Studies in Mathematics and Research in Mathe-

matics Education (see Hannula 2012 for refer-

ences). A year later in 1999, Andy Begg
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(New Zealand) presented a paper introducing

enactivist theory at the annual conference of the

Mathematics Education Research Group of

Australasia (MERGA-22) (Begg 1999). In the

same year, Laurinda Brown and Alf Coles (UK)

explained how enactivism informs their research

at the November day conference of the British

Society for Research into the Learning of

Mathematics.

In 2000 the journalMathematics Thinking and

Learning published a paper by Edward Drodge

and David Reid (Canada) that considers emo-

tional orientation through the lens of embodied

cognition. Drodge and Reid take an enactivist

perspective to explore the role of decision mak-

ing in learning mathematics and use illustrations

from an episode in which a group of boys

engaged in a geometry problem solving task

(Drodge and Reid 2000). Later, David Reid, in

2002, adopted an enactivist perspective of

learning to describe “clearly one pattern of

reasoning observed in the mathematical activ-

ity of students in a Grade 5 class” and explore

and clarify the characteristics of mathematical

reasoning. Reports from this study are

published in Journal for Research in Mathe-

matics Education and Journal of Mathematical
Behavior (Reid 2002).

In 2003 Davis and Simmt (Canada) focused on

the application of complexity science and how

this might contribute “to discussions of mathe-

matics learning and teaching” (Davis and Simmt

2003, p. 138); complexity theory is deeply

embedded in the notion of autopoiesis.

In 2005 Elena Nardi, Barbara Jaworski, and

Stephen Hegedus (UK) published enactivist

framed research into teaching mathematics at

university level in Journal for Research in

Mathematics Education (Nardi et al. 2005).

The following year, 2006 Laurinda Brown and

David Reid (UK & Canada) applied enactivist

theory to explore learner’s “non-conscious”

decision making processes that occur prior to con-

scious awareness ofmaking choices and how emo-

tions subsequently structure events (Brown and

Reid 2006). The first, nonconscious decisions

might be explained as a feature of “structural

determinism,” and the latter, restructuring of
events, explained as “coemergence” as the envi-

ronment is shaped by the learner.

Maria Trigueros and Maria-Dolores Lozano

(Mexico) reported in 2007 on the use of an

enactivist approach in the design of resources

for teaching and learning mathematics with dig-

ital technologies in the journal For the Learning

of Mathematics (Trigueros and Lozano 2007).

A year later, 2008, Lozano reported an enactivist

analysis and interpretation of students algebra

learning from a longitudinal study of grade 6

(elementary school) through grades 7 and

8 (first years at secondary school) (Lozano

2008). In the same year Jérôme Proulx (Canada)

published his use of the enactivist notion of struc-

tural determinism to explain characteristics of

mathematics teachers’ learning (Proulx 2008b).

Proulx (2008a) also argues that there are ontolog-

ical and epistemological differences between

constructivist and enactivist theories of cogni-

tion, such that enactivism “should not be (mis)

interpreted as another form of constructivism”

(p. 24).

The period 2009–2012 reveals both consoli-

dation of international effort and maturation of

research conducted within enactivist theory.

In 2009 the 33rd annual conference of PME

held in Mexico included a Research Forum on

enactivist theory of cognition (Proulx et al. 2009).

The “forum” included brief papers by many

researchers and groups (from Canada, Emirates,

New Zealand, Mexico, the UK, the USA) that

were applying enactivist theory in their research.

The report offered a “state of the art” (in 2009)

account of enactivism in mathematics education

from an international perspective. Proulx

concludes the report by suggesting a number of

outstanding questions related to learning and

teaching mathematics that might focus further

research from an enactivist perspective. In 2010

Duncan Samson (South Africa) reported at

MERGA-33 the application of enactivism as

a theoretical framework and research methodol-

ogy to inquire into the sense students make of the

visual clues held within the figural patterns of

algebraic generalization tasks (Samson 2010).

Then in 2011 Brown and Coles (UK) reported

their application of enactivist theory to teacher
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learning in professional development settings,

and they draw links with the notion of co-learning

of teachers and researchers/developers in com-

munities of inquiry. In a paper published in ZDM,

they explain how an enactive approach is taken to

“reframe” teacher education at the University of

Bristol. Attention is given to the links between

perception and action emphasized with enactivist

theory and how this is worked out in terms of

experience as the basis of working approaches,

discussions, and focusing attention in teacher edu-

cation (Brown and Coles 2011). In 2012 Hannula

(Finland) reported in the journal Research in

Mathematics Education how enactivist theory

can be used to explain a dimension of a

“metatheoretical foundation for relating differ-

ent branches of research on mathematics-

related affect to each other” (Hannula 2012).

In the same year Brown and Coles (2012)

published research in the journal Educational

Studies in Mathematics that takes an enactivist

stance to analyze “how we do reflection”

(p. 222) in the processes of learning to teach

mathematics.

Enactivist theories have been used within

mathematics education including theoretical

reflections and studies about the nature of mathe-

matics and the rationale for learning mathematics

(Davis 1995), issues of learning topics within

mathematics (geometry, Drodge and Reid 2000;

reasoning, Reid 2002; algebra, Lozano 2008; and

algebraic generalization, Samson 2010), teacher

knowledge and teacher learning (Proulx 2008b),

teacher education (Brown and Coles 2011),

mathematics teaching at university level (Nardi

et al. 2005), affective issues in teaching and

learning mathematics (Brown and Reid 2006;

Hannula 2012), design research (Trigueros and

Lozano 2007), and as a research methodology

(Reid 1996).
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Epistemological Obstacles in
Mathematics Education

Maggy Schneider

Institut de Mathématique, Université de Liège,

Liège, Belgium
The concept of epistemological obstacle emerges

in philosophy of science in the works of

Bachelard (1938) who is the first to interpret the

genesis of scientific knowledge with the support

of this concept: “It is in terms of obstacles

that one must pose the problem of scientific

knowledge [. . .] it is in the very act of knowing

that we will show causes of stagnation and even

of regression, this is where we will distinguish

causes of inertia that we will call epistemological

obstacles.”

The examples given by Bachelard are typical

of the prescientific thinking and connect to what

he calls the obstacle of primary experience. In

this, the substantialist obstacle consists in refer-

ring to a substance equipped with quasi magic

properties in order to explain the observed

phenomena: as an example, the attraction of
dust by an electrically charged surface will be

explained by the existence of an electric fluid.

Bachelard rightly explains that the obstacle arises

from the fact that this is not a metaphor but indeed

an explanation of the situation created by what

our senses tell us: “We think as we see, we think

what we see: dust sticks to the electrically

charged surface, so electricity is an adhesive, is

a glue. One is then taking a wrong way where

false problems will generate worthless experi-

ments, the negative result of which will fail

in their role of warning, so blinding is the first

image [. . .].”

Brousseau (1976, 1983) is the first to transpose

the concept of epistemological obstacle to the

didactics of mathematics by highlighting the

change in status for the error, that this notion

generates: it is not a “result of ignorance [. . .] or
chance” but rather an “effect of prior knowledge

that was relevant and had its success, but which

now proves to be false, or simply inadequate”

(Brousseau 1983). Among the obstacles to learn-

ing, Brousseau distinguishes indeed the

ontogenic obstacles, related to the genetic devel-

opment of intelligence, the didactical obstacles,

that seem to only depend on the choice of

a didactic system, and the epistemological

obstacles from which there is no escape due to

the fact that they play a constitutive role in

the construction of knowledge. At one and the

same time, the concept of epistemological

obstacle extends to the didactics of experimental

science (Giordan et al. 1983).

The pioneering works in didactics deal with,

among others, obstacles related to extensions to

sets of numbers – relative numbers in Glaeser

(1981), rational and decimal numbers in

Brousseau (1983) – with obstacles related to the

absolute value in the research from Duroux

(1983), with those that tend to hide the concept

of limit, as studied by Cornu (1983) and

Sierpinska (1985), with obstacles related to

learning the laws of classical mechanics

according to Viennot (1979) and with those

arising from a sequential reasoning in solving

electrical circuits, of which Closset (1983)

shows the excessive strength. From these works

and others, Artigue (1991) conducts an analysis
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in which several questions arise, that are subject

to debate when trying to characterize the concept

of epistemological obstacle: can we talk about

epistemological obstacles when there is no

identification of errors and but simply of difficul-

ties? Should we look for their appearance and

their resistance in the history of mathematics?

Look for their unavoidable character in the

students’ learning process?What does their status

of knowledge consist of, having its domain of

validity? Can we talk, in certain cases, about

a reinforcement of epistemological obstacles

due to didactical obstacles?

Other studies also ask the question of the scale

at which it is appropriate to look at the epistemo-

logical obstacles, as well as that of their cultural

character. The works of Schneider (1988) raise

these two questions in an articulated manner by

showing that the same epistemological position,

namely, empirical positivism, can account for

multiple difficulties in the learning of calculus:

errors when calculating areas and volumes in

relation with misleading subdivisions of surfaces

into lines and of solid surfaces into surface slices,

a “geometric” conception of limits leading

students to think of segments as being “limits”

of rectangles, and of the tangent line as being

“limit” of secants without reference to any

topology whatsoever, and their reluctance to

accept that the concept of derivative will provide

the exact value for an instantaneous velocity.

This empirical positivism which, mutatis

mutandis, converges with the primary experience

from Bachelard in the sense of “experience

placed before and above criticism” goes well

beyond learning calculus (Schneider 2011). This

example illustrates indeed, on the one hand, an

obstacle considered at a large scale, with its

interpretive scope covering errors or multiple

difficulties and, on the other hand, its cultural

aspect which can be considered as a pure

product of Western modernity. It also shows

that, despite the opinion of Bachelard, the notion

of epistemological obstacle applies to mathemat-

ical thinking, at least on a first level.

The debate on the scope and cultural

character of epistemological obstacles, of which

the examples above illustrate the probable
dependence, is animated and most probably not

closed. Regarding the first aspect, Artigue insists

on the interest in considering what she

calls “obstacle-generating processes,” including

“undue formal regularization” that, as an exam-

ple, leads students to the misapplication of line-

arization processes such as “distributing” an

exponent on the terms of a sum, or “fixing on

a familiar contextualization or modeling,” such

as the excessive attachment to the additive model

of losses and gains when considering relative

numbers. About the second aspect, Sierpinska

(1989) puts back in a theory of culture some

sayings of Bachelard who thinks that, if empirical

knowledge of reality is an obstacle to scientific

knowledge, it is because the first acts as an

unquestioned “preconception” or as an “opinion”

based on the authority of the person who

professes it. Johsua (1996) continues to believe

that some spontaneous reasonings, like those

transgressing the laws of classical mechanics,

have a cross-cultural character, while Radford

(1997) argues that the so-called epistemological

obstacle refers more to local and cultural concep-

tions that one develops on mathematics and

science in general. And presumably, we cannot

settle this debate without specifying it, example

after example, as cautiously proposed by

Brousseau 20 years earlier: “The notion of obsta-

cle itself is beginning to diversify: it is not that

easy to propose relevant generalizations on this

topic, it is better to perform studies on a case by

case basis.” All this without yielding to the

temptation of qualifying as epistemological

obstacle whatever is related to recurring errors

for which we did not analyze the origins

(Schneider 2011).

The identification of epistemological obsta-

cles brings forward the question of their

didactical treatment: should we have students to

bypass them or, on the contrary, should we let

them clear the obstacle and what does that mean?

Let us first turn to “educator” Bachelard (as

described by Fabre 1995). It is the intellectual

distancing that Bachelard emphasizes as major

learning issue, when he writes that “an educator

will always think of detaching the observer from

his object, to defend the student against the mass
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of affectivity which focuses on certain phenom-

ena being too quickly symbolized [. . .]” (1949).

An echo hereof is the psychological shift of

perspective (“décentration”) of Piaget that,

among children, the interpretation of an experi-

ence assumes: as such, it “does not obviously

make sense” that sugar dissolved in water has

disappeared on the account that one cannot see

it anymore! One of the primary goals of educa-

tion would thus be to promote, among students,

the detachment from “false empirical objects”

born from the illusion that the facts and observa-

tions are given things, and not constructed, that is

to say to get them to pass fromworld 1 of physical

realities, in the sense of Popper (1973), to world 2

of states of consciousness and to world 3 of con-

cepts that contain “more than what we did put in

them.” It is presumably those connections that

lead Astolfi and Develay (1989) to place Piaget,

Bachelard, and Vygotski at the origin of the

constructivist movement in didactics of science,

the first explaining “how it works,”, the second

“why it resists,” and the third pointing out “how

far one can go.” Brousseau (1983), as for him,

provides clear-cut answers to the questions

above: “an epistemological obstacle is constitu-

tive of achieved knowledge in the sense that

its rejection must ultimately be mandatorily

justified.” There resides, according to him,

the interest of “adidactical situations” whose fun-

damental nature with respect to the target

knowledge will allow invalidating an old knowl-

edge that proves to be an obstacle to new

knowledge, by highlighting the limits of the

scope of operation of the former. Martinand

(1986) goes further by making obstacles – be

these from the works of Bachelard, Piaget, or

Wallon – a selection mode for objectives: the

concept of “objective-obstacle” appears then in

opposition to the usual idea of blocking point.

One can think today, together with Sierpinska

(1997), that an equivalent coupling may have

been too systematic or even normative at

a given time in didactics of mathematics, but it

is probably advisable that the teacher should

manage, at least by a vigorous heuristic dis-

course, the epistemological obstacles identified

on a large scale (Schneider 2011).
The notion of epistemological obstacle has

some kinship with that of conception or more

precisely that of misconception, but also with

that of cognitive or socio-cognitive conflict

as illustrated in the acts of an international

symposium on knowledge construction (Bednarz

and Garnier 1989). The concept of misconception

itself may be related to the mental object from

Freudenthal (1973) or to the image-concept in

Tall and Vinner (1981) who, despite some

differences, indicate that the mind of students

being taught is not in a virgin state but is

a host of intuitions keen to facilitate learning

but also to hinder it. In some examples,

misconceptions converge with epistemological

obstacles in an obvious manner. As such,

some of the probabilistic misconceptions iden-

tified by Lecoutre and Fischbein (1988) are

explained by causal and chronologist concep-

tions of the notion of conditional probability

which, according to Gras and Totohasina

(1995), are obstacles of epistemological

nature. As for the concepts of cognitive or

socio-cognitive conflicts that underpin the

Piagetian and Vygotskian theories, they also

rely on the assumption that learning is

motivated, on the one hand, by an imbalance

between the reality and the image that an

individual makes up of it and, on the other

hand, by confronting his opinion with that of

others or with a contradictory social represen-

tation. The transfer of the concept of

epistemological obstacle to the didactics of

mathematics is then bringing a new contribu-

tion to the theories mentioned above, in terms

of close dependency between the evolution of

conceptions among students and the didactical

situations they are confronted with: “[. . .] the

crossing of an obstacle barrier requires work

of the same nature as the setting up of knowl-

edge, that is to say, repeated interactions,

dialectics of the student with the object of

his knowledge. This remark is fundamental to

distinguish what a real problem is; it is

a situation that allows this dialectic and that

motivates it” (Brousseau 1983). And this is

indeed what makes the link between didactics

and epistemology to be so tight.
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Freudenthal H (1973) Mathematics as an educational task.

Reidel, Dordrecht

Giordan A, Astolfi J-P, Develay M et al (1983) L’élève et/
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Definition

Social class background – social class is best

understood through a Marxist orientation as

the groupings people fall into as a result of

explicit economic forces within society. These

groupings are a direct result of similarities

with and differences between people, particu-

larly through the resources to which they have

access, but also to their tastes and dispositions,

which ultimately position them within educa-

tional systems.
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Characteristics

Usually an encyclopedia entry will begin

with some definitions. With both “equity” and

“access,” that’s not possible. Each of these

terms is politically loaded and reflects political

and ideological dispositions both in the pedagog-

ical arena of the classroom and in the intellectual

arena of the academy. One problem of defining

equity is due to it being assumed to be a universal

good; surely everyone wants equity? Actually

that’s far from the case, and at least there will

be little agreement on how we define and more

importantly operationalize the terms. Equity is

not a key driving force for those who sit on the

political right. There, meritocracy and individual

endeavor are markers of a democratic society,

providing a way out of poverty for those who

work hard. For those on the political left, the

economic superstructure itself, and the education

system which serves that system, hides structural

inequality and merely perpetuates that structural

inequality based on accumulated wealth. For

the left, equity itself is a key feature of

a democratic society.

One cannot therefore assume a single perspec-

tive on equity and access but needs to look for the

relationship to political orientation (Gates and

Jorgensen 2009). A first, moderate or conserva-

tive, stance on equity focuses on individual

responsibility. Here there is a recognition of

unfairness but a rejection of the social structural

underpinnings of that unfairness. A second, more

liberal, stance does recognize structural inequal-

ities but locates itself largely within the class-

room looking at what classroom practices might

alleviate the disparities between pupils. Finally

there is a radical stance that recognizes structural

inequality but goes further and examines how

social inequality is built into existing classroom

practices. This stance sees groups of individuals

as subject to vastly different sets of experiences

and opportunities such that many choices are

restricted. But furthermore, these arbitrary bar-

riers become internalized through school and

subject cultures. Consequently pupils develop

identities which accept their location in the

hierarchy.
Mathematics therefore plays a significant, if

often hidden part in the politics of education as

the sociologist Pierre Bourdieu claims:

Often with a psychological brutality that nothing

can attenuate, the school institution lays down its

final judgements and its verdicts, from which there

is no appeal, ranking all students in a unique hier-

archy of all forms of excellence, nowadays domi-

nated by a single discipline, mathematics.

(Bourdieu 1998, p. 28)

Indeed if equity was not an important issue,

this encyclopedia entry would not have been

written. The philosopher of mathematics educa-

tion Paul Ernest takes this a step further by

suggesting mathematics as a social filter:

Mathematics has been remarked upon as playing

a special role in sorting out students and preparing

them for and directing them to different

social stations. . . .. Thus, the teaching and learning
of mathematics seems to occupy a special place

in the provision of social justice—or its

obstruction—within the education system. (Ernest

2007, p. 3)

Here is the argument that if mathematics

serves a purpose of filtering and directing people

into diverse levels in society, equity – how it does

this – ought to be a key concern for those charged

with teaching mathematics, the schools. The first

question then is can schools help foster equity or

can they only perpetuate existing inequality.

This is a central consideration and one which

differentiates academics.

In order to understand the place of equity in

mathematics education, one has to grasp the

divergence between individual accounts and

collective accounts; meritocracy and individual

endeavor contrasted with social influences and

restricted opportunities.

Of course it is not a coincidence, as evidence

from around the world indicates, that achieve-

ment and engagement in mathematics vary

according to the social class background of the

learners. One argument would suggest that social

class is the largest influence in pupil under-

achievement, whereas others would argue

schools can make a difference. Evidence for

these claims can be found in every school around

the world. Whereas it is well known that
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individual pupils can succeed against the odds,

the reality of many mathematics classrooms is

reflected in the following comment from

a teacher:

You know, a lot of my bottom group really struggle

with maths – and I’ve noticed they all come from

the same part of town, and they have got similar

family backgrounds. Surely that can’t be

a coincidence? (Cited in Gates 2006, p. 367)

There is now widespread focus in the

academic literature on the systematic traditional

failure to educate students from disenfranchised

groups (Secada 1989), and attempts to understand

the “systematic” nature of the patterns of

achievement have looked at the schools

themselves as playing a fundamental role in the

furtherance of structured inequality.

The vast majority of schooling for children . . . of

poor and working class, girls and boys of colour

and so many others is not neutral, not its means and

certainly not its outcomes . . . but who controls the

economic, social and educational conditions that

make it so? Whose vision of schooling, whose

vision of what counts as real knowledge organises

the lives in classrooms? (Apple 1995, p. 330)

Historically, a focus on equity in mathematics

education developed out of concerns over the

achievement of girls (Burton 1990). While early

thinking looked at biological differences, this

approach soon became discredited, with

a recognition that “girls and boys make choices

throughout their education and professional

careers, and there are systematic differences in

these choices” (Herman et al. 2010, p. 3). The

previous relative underachievement of girls in

mathematics is structurally similar to achievement

differences resulting from other social characteris-

tics. For example, both ethnicity and social class

have a substantial research literature testifying to

the unrepresentative levels of underachievement

of young people from disadvantaged and working

class backgrounds and from ethnic minority

groups, including young people from black, Carib-

bean, indigenous, and Latino communities.

One of the arguments for a systemic under-

achievement by certain groups of young people in

mathematics is that they do not share the advan-

tages of dominant, more affluent groups. Their
culture and histories can be different, their

languages and relationships are different, and

their economic conditions force a rather

different set of priorities to those experienced

by more comfortable middle-class communities

(see Zevenbergen 2000). As a result, choices are

forced on families because they do not have cred-

ible alternatives and as a result “the social world

of school operates by different rules or norms
than the social world these children live in”

(Pellino 2007). The literature on the effects of

poverty draws our attention to some of the

characteristics of children in poverty. They

experience high mobility, hunger, repeated fail-

ure, low expectations, undeveloped language,

clinical depression, poor health, emotional inse-

curity, low self-esteem, poor relationships, diffi-

cult home environment, and a focus on survival.

A strand of research, often termed critical math-

ematics education, has examined the conditions

of such pupils whose backgrounds are obscured

and ignored by both schools and the academic

research community. For example, the hungry,

the homeless, and those children in care all

have particular needs – yet because they do

not fit the ideal are placed outside the norms

(Skovsmose 2011).

To claim there are systematic differences in the

choices individuals can make is fairly controver-

sial on two counts. First it assumes that we are free

to make choices. Second, there is the assumption

that schools, through the energizing of these

choices, can make a difference to outcomes. The

first of these assumptions overlooks the structural

accumulated history that young people carry with

them: expectations, identity, self-efficacy, lan-

guage fluency, etc., all of which place learners at

different starting points. One strand in the litera-

ture here assumes that if choices are influenced and

limited by misinformation and low expectations,

then it is entirely possible for schools to overcome

these barriers by providing an environment

that redresses those limitations – the second

assumption.

Between 1980 and 2010, research in mathe-

matics education has seen a noticeable shift in

what some have seen as a sociocultural turn in

research agendas (Lerman 2000), placing an
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emphasis on an understanding through the explo-

ration of sociocultural factors – recognizing the

importance of the social context upon one’s

action and choices. But this has also recognized

that we need to look and think beyond the indi-

vidual level of cognition to see how different

responses to mathematics might be explained.

How do we explain, for example, that earlier

comment by a teacher, that achievement at math-

ematics is very highly correlated to the pupils’

home background? Do we believe it is because

some people are not as intelligent as others? Or

do we believe some children are held back in

order for some others to progress? Where one

stands on that will largely influence how you

personally think about equity.

One way in which children can be held back is

through restriction of the curriculum and a further

strand in equity and access to mathematics

education is the access afforded by the school

curriculum to mathematics itself – and to the

powerful ideas it allows us to use. In mathematics

education in some – but not all – countries, access

to the curriculum is organized around structured

grouping usually claimed to be on some measure

of ability. In some countries (UK, USA, Austra-

lia, etc.), it is an almost universal practice, and

teachers seem to be unable to conceive of how it

might be otherwise given a claimed hierarchical

nature of mathematics. However, in other

countries (Denmark, Finland, etc.) the practice

of ability discrimination is outlawed.

In the literature, group placement is a highly

controversial and contested practice, and much

research has indicated the effect it has upon

young people who do not fit an ideal model of

successful learner – usually pupils from working

class homes and some ethnic minorities. Such

pupils are systematically more likely to be placed

in lower groups than others even when perfor-

mance is taken into account (Zevenbergen 2003).

Various studies have shown “that placement in
ability groups increases the gap between

students at different group levels” (Cahan et al.

1996, p. 37). In other words, the very placement

of pupils in a group influences their outcomes.

A lack of equitable practices leads to restricted

access by schools and teachers through the
provision of a restricted curriculum to lower

achieving pupils. The pedagogical jump here

made by teachers is to assume that pupils who are

doing less well are not (cap)able of higher-order

thinking. In a series of studies, this has been

explored (Zohar 1999; Zohar et al. 2001; Zohar

and Dori 2003) with the conclusion that teachers

do not really believe weak pupils (invariably pupils

from poor backgrounds) can think in higher-order

ways.

Studies of pupils’ mathematical experiences

that take account of social backgrounds (Lubienski

2000a, b, 2007) have found very specific differ-

ences in two main areas – whole class discussion

and open-ended problem solving – and these can

throw some light onto the way in which equitable

practices are compromised and access to big ideas

is restricted. These are two well-researched peda-

gogical strategies and classroom practices which

at least in professional discourse are held in some

esteem. Discussion-based activities were per-

ceived differently by pupils from different social

backgrounds. Pupils from high socioeconomic sta-

tus (SES) backgrounds thought discussion activi-

ties were for them to analyze different ideas while

those pupils from lower social groups thought it

was about getting right answers. The two groups

had different levels of confidence in their own type

of contributions with the low SES pupils wanting

more teacher direction. Higher SES pupils felt

they could sort things out for themselves – as

their parents do in life presumably.

The second area was that of open-ended
problem solving – a mainstay of recent reform

agendas in mathematics. The high level of ambi-

guity in such problems caused frustration in low

SES pupils which in turn caused them to give up.

High-SES pupils just thought harder and engaged

more deeply. It is well known that middle-class

pupils come to school armed with a set of dispo-

sitions and forms of language which gives them

an advantage because these dispositions and

language use are exactly the behaviors that

schools and teachers are expecting and prioritize

(Zevenbergen 2000). High-SES pupils have

a level of self-confidence very common in

middle-class discourses, while working class

discourses tend to be located in more subservient
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dependency modes, accepting conformity and

obedience (Jorgensen et al. 2013).

Equity and access then are both key issues in

the provision of mathematics education but are

both controversial and deeply political.
E
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Introduction

In this entry, I will refer mainly to my views and
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a research area and the benefits acquired in under-

standing and interpreting the cultural, political,

material, and even economic forces recognized in

building up these strategies. A basic reference is

my 1985 basilar paper in For the Learning of

Mathematics, which has been republished since

then in various handbooks (D’Ambrosio 1985).

I will discuss mainly the theoretical basis of

Ethnomathematics and its values as part of a cul-

ture. I present Ethnomathematics as a research

program in the History and Philosophy of

Mathematics with societal and pedagogical

implications (D’Ambrosio 1992). The program

depends on theories that explain human

knowledge and behavior.

In considering Ethnomathematics a research

program, it is recognized as a broader focus than

simply the recognition of mathematical ideas

and practices of different cultural groups. Of

course, the Ethnomathematics of different cul-

tural groups is the main source for this research

program. But the major objective of the Program

Ethnomathematics is to propose a broader vision

of knowledge and of human behavior, by making

sense of how different communities, societies,

and civilizations faced their struggle for survival

and transcendence in their environmental,

cultural, economic, and social contexts.

The concern with other cultures and with other

forms of knowledge has been always present in

the History of Ideas and goes back in history to all

civilizations. Others may have a different

approach and base their reflection on other sce-

narios, thus showing another picture of the field.

Throughout this entry, there are traces of many

different approaches to the theme, but there are

few explicit references to them.

A basilar question is the reason to look

into non-Western cultures and civilizations for

a research into the History and Philosophy of

Science and Mathematics, which are Western

constructs. I paraphrase Brian Fay in the

introductory essay in the issue of History and

Theory devoted to Unconventional History,

and claim that learning about other cultures

and civilizations is, at the very same time,

learning about our civilization, its strengths, and

limitations (Fay 2002).
Definition

The word Ethnomathematics may be misleading.

It is easily confused with ethnic-mathematics.

Although ethnic groups are contemplated, I con-

sider Ethnomathematics a much broader concept,

focusing on cultural and environmental identi-

ties. The name also suggests Mathematics.

Again, I use it in a much broader concept than

Mathematics, which is a late Western concept.

Indeed, in the sense we use the word “mathemat-

ics” today, it goes back to about the fifteenth

century. Former uses of the word mathematics

have a different meaning. Today, historians opt

for using the word “mathematics” also when they

refer to some practices and theories of the Antiq-

uity and the Middle Ages, which bare some com-

mon objectives, concepts, and techniques with

Mathematics. This option is convenient for his-

torical narratives. But it is misleading. A similar,

also misleading convenience is adopted by eth-

nographers and cultural anthropologists, when

describing and analyzing other cultures.

There is a very natural question: “Why to use

the word Ethnomathematics for my research on

the strategies developed by different communities,

societies, and civilizations to face the struggle for

survival and transcendence in their environmental,

cultural, economic, social contexts?” I will try to

explain my choice, which is indeed an etymolog-

ical construction. The word Ethnomathematics is

obviously, not new, and it has been used mainly

with an ethnographical focus for decades.

The main concern that guides my research is

to identify the ways, modes, styles, arts, and

techniques, generated and organized by different

cultural groups for learning, explaining, under-

standing, doing, and coping with their natural,

social, cultural, and imaginary environment.

This is a long explanation, and I tried to synthe-

size it with the resource of an etymological exer-

cise. I looked for words with meanings that

convey this long explanation and I found Greek

roots that can do it. The root techne means,

roughly, the arts and techniques, the ways and

modes, the styles; mathema is a difficult root,

which generally means learning, explaining,

understanding, doing, and coping with some
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reality; and ethno means a natural, social, cul-

tural, and imaginary environment. Thus, I may

synthesize the long phrase “ways, modes, styles,

arts and techniques to learn, explain, understand,

doing and coping with distinct natural, social,

cultural, imaginary environment” as the technes
of mathema in distinct ethnos. Thus, using tics as

a simplified spelling for techne, the long phrase

became tics of mathema in distinct ethnos, or
making an obvious rearrangement, ethno �
mathema � tics or ethnomathematics. Thus,

I started to use the word Ethnomathematics
as a result of this etymological exercise

(D’Ambrosio 1998, 2006).

It is noticeable that Mathematics diverted

from the concept of the mathema. In the

words of Oswald Spengler “The present-day

sign-language of mathematics perverts its real

content” (Spengler 1962). Ethnomathematics is

particularly concerned with real contents. For

educational purpose, the restoration of this

concept is the major support of my proposal

for a modern trivium in education: literacy,

matheracy, and technoracy (D’Ambrosio 1999).

It should not be surprising at all thatMathemat-

ics, as we know it, is a special Ethnomathematics,

the same as are the theories and practices of

Pharmacology, of Cardio-Surgery, of Dance, of

Algebra, and, indeed, any form of knowledge.

All these disciplines are the concern of specific

professional groups [ethno] to develop ways,

modes, styles, arts, and techniques [tics] for

learning, explaining, understanding, doing,

and coping with [mathema] with specific and

related facts, phenomena, and problems. They

rely on their natural, social, cultural, and

imaginary environments.

It is not surprising that the word

Ethnomathematics suggests Mathematics. After

all, Mathematics is the dorsal spine of Modern

Civilization. Indeed, throughout history,

Mathematics has been well integrated into the

technological, industrial, military, economic,

and political systems and Mathematics has been

relying on these systems for the material bases of

its continuing progress. The same for Science and

Technology and Philosophy as well. Hence for

models of society.
The issues are essentially political. There

has been reluctance among mathematicians, to

a certain extent among scientists in general, to

recognize the symbiotic development of mathe-

matical ideas andmodels of society. Mathematics

has grown parallel to the elaboration of what we

call Modern Civilization. Historians amply

recognize this.

Modern World Civilization sprang out of

Europe as the result of 500 years of conquest

and colonization. Modern Civilization is a body

supported by a dorsal spine, recognized by

philosophers, historians, scientists, and just

about everyone, as Mathematics.

Mathematics as the dorsal spine of Modern

Civilization, is beautiful, rigorous, and perfect,

so respected by everyone, even feared, particu-

larly by children and students. But, paradoxi-

cally, Modern Civilization, is ugly, plagued with

inequity, arrogance, and bigotry.

What went wrong with Modern Civilization?

How is it possible that a perfect dorsal spine

supports such an ugly body?

To understand this paradoxical discord

has been a guiding quest in my research and in

proposing the Program Ethnomathematics.
Knowledge, Behavior, and Culture

How did everything begin? The myths of creation

are present in every civilization. The founding

myths and traditions of Western civilization

leads to the history of monotheistic religions

(Judaism, Christianity, Islamism) and the emer-

gence of techniques and the arts and links to

understanding how Mathematics permeates all

this. A great insight is gained in trying to identify

and to understand what happened in the founding

myths and traditions of non-Western civilizations.

The main difficulty I encounter, and this is true

for every one doing cultural studies, is the diffi-

culty of understanding and interpreting other cul-

tures with the categories and analytic instruments

other than those that are part of my cultural her-

itage. I have been trying to avoid, at least to

minimize, this difficulty. We rely on informants,

and there is a difficulty in building up trust.
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The goal is to develop a generic comprehensive

theory of knowledge and behavior. I base my

research on universal forms of knowledge (com-

munications, languages, religions, arts, techniques,

explanations, or sciences) and in a theoretical/

methodological model of knowledge and behavior

that I call the “cycle of knowledge.”

The aim of research in the Program

Ethnomathematics is the recognition of practices

and its relation to theories. Thus, I focus history

of science (and, of course, of mathematics) trying

to understand the role of technology as

a consequence of science, but also as an essential

element for furthering scientific ideas and

theories. I guide my investigation on three basic

questions:

1. How do ad hoc practices and solution of

problems develop into methods?

2. How do methods develop into theories?

3. How do theories develop into scientific

invention?
Current Work in Ethnomathematics

The Program Ethnomathematics was initially

inspired by recognizing ideas and ways of doing

that reminds us ofWestern mathematics. What we

call mathematics in the academia is a Western

construct. Although dealing with space, time, clas-

sifying, and comparing, which are proper to the

human species, the codes and techniques to

express and communicate the reflections on these

behaviors are undeniably contextual. Thus came

my approach to Cultural Anthropology (curiously,

my first book on Ethnomathematics was placed by

the publishers in a collection of Anthropology).

Much work is going on in many countries.

Many national, regional, and international meet-

ings are held. An overall account of the progress

of the field is seen in the site of the International

Study group on Ethnomathematics/ISGEm, with
links to the most relevant works in the area.

Access the links at http://isgem.rpi.edu/pl/

ethnomathematics-web.

Although a new field, there are important

publications revealing the strength of the area of

Ethnomathematics. It would be difficult to
produce a bibliography. There are innumerous

pioneers and active researchers in this field. In

attempting to give a full bibliography I would

surely leave important references. I mention

three basic works:

• Native American Mathematics, Michael Closs

editor, University of Texas Press, Austin, 1986.

• Ethnomathematics. Challenging Eurocen-

trism in Mathematics Education, Arthur

B. Powell and Marilyn Frankenstein, editors,

State University of New York Press, Albany,

1997.

• Mathematics Across Cultures. The History of

Non-Western Mathematics, Helaine Selin

editor, Kluwer Academic Publishing,

Dordrecht, 2000.

Besides many references, after having put

together the bibliographies of each chapter, we

have a comprehensive relevant bibliography for

the area.

The International Conferences on
Ethnomathematics/ICEm are well attended

events. The Fourth ICEm took place in Towson,

Maryland, in 2011. Most of the papers presented

in this conference are published in the Journal of

Mathematics and Culture volume 6 Number 1

Focus Issue ICEM4, a free access publication

linked to the site of the ISGEm indicated above.

It is appropriate to say that the Program

Ethnomathematics is a promising emerging

research field.
References

D’Ambrosio U (1985) Ethnomathematics and its place in

the History and Pedagogy of Mathematics. For Learn

Math 5(1):44–38

D’Ambrosio U (1992) Ethnomathematics: a research

program on the History and Pedagogy of Mathematics

with pedagogical implications. Not Am Math Soc

39(10):1183–1185

D’Ambrosio U (1998) Ethnomathematics. The art or tech-

nique of explaining and knowing, (trans: Scott PB).

ISGEm/NMSU, Las Cruces

D’Ambrosio U (1999) Literacy, matheracy, and

technoracy: a trivium for today. Math Think Learn

1(2):131–153

D’Ambrosio U (2006) Ethnomathematics. Link between

traditions and modernity. Sense, Rotterdam/Taipei.

ISBN 90-77874-76-3

http://isgem.rpi.edu/pl/ethnomathematics-web
http://isgem.rpi.edu/pl/ethnomathematics-web


External Assessment in Mathematics Education 225 E
Fay B (2002) Unconventional history. Hist Theory

41(4):1–6, Theme Issue 41

Spengler O (1962) The decline of theWest (abridged from

the revised edition of 1922 by Helmut Werner). The

Modern Library/Alfred A. Knopf, New York, p 56
E

External Assessment in Mathematics
Education

Guadalupe Carmona1 and Richard A. Lesh2

1The University of Texas at San Antonio,

San Antonio, TX, USA
2School of Education, Counseling and

Educational Psychology, Indiana University,

Bloomington, IN, USA
Keywords

Assessment; Assessment design; Assessment for

learning; Assessment in education; Assessment

of complex systems; Complex thinking; Design-

based assessment; Evaluation; Higher-order

thinking
Characteristics

Much of the discussion about measurement in

education in the past half century has revolved

around the need to move beyond the application

of psychometrics to a broader model of educa-

tional assessment that supports learning (Flana-

gan 1951; Ebel 1962; Glaser 1963). Historically,

significant attention has been given to the differ-

ences between norm-referenced and criterion-

referenced tests (Glaser 1963; Hambleton 1994),

focusing on relative versus absolute standards of

quality that are more or less appropriate to mea-

sure abilities or achievements. However, briefly,

we will describe why neither of these approaches

to assessment allows us to assess higher-order

understandings in mathematics that the field is

mostly interested in studying nor do they consider

latest advancements in what we now know

about how students learn mathematics, as they

interact with teachers, schools, and curricular
innovations. Furthermore, we propose a new

challenge and purpose for assessment: How

can assessments of complex mathematical
achievements be achieved in a way that provides

useful information for relevant decision

makers? After presenting an overview of the

dichotomy between norm-referenced and crite-

rion-referenced approaches to assessment, we

describe the characteristics of assessment designs

that are needed to assess the complexity in the

continually adaptive development of high-order

mathematical thinking that mostly interests the

field of mathematics education.

Norm-referenced tests grow from the

psychometric tradition, based on the measurement

of general intelligence (g) as an inheritable

characteristic of an individual that is fixed over

time. This psychometric tradition has its roots in

the mid-1800s with the work of Galton and

Pearson and Spearman’s contributions in the

beginning of the 1900s (Gipps 1999; Gardner

et al. 1996). Usually associated with the measure-

ment of aptitude (as opposed to achievement),

norm-referenced tests are constructed with the

purpose of comparing respondents on attributes

which presumably (although seldom in reality)

do not depend on instruction. Thus, each item is

assumed to have a difficulty level relative to other

items; again, this level of difficulty is assumed to

be independent of individual’s experiences. So,

items are selected “to discriminate among those

tested in order to spread scores along the normal

distribution” (Gipps 2012, p. 70), and items that

have a low discrimination index are discarded

from the test (e.g., items in which most students

score correctly and items in which most students

score incorrectly). However, items were selected

to be those that are not influenced by learning

experiences are not likely to provide important

information about what students learned or didn’t

learn. Consequently, their elimination from the test

leads to one of the most noted limitations of norm-

referenced tests, which is their insensitivity to

instruction (Popham 1987; Carmona et al. 2011).

Rather than focusing on relative measures,

leading psychometricians have argued that

criterion referenced should be used which are

dependent upon an “absolute standard of quality”
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(Glaser 1963, p. 519) in relation to specific objec-

tives (Popham 1987). Thus, criterion-referenced

tests are considered to be more appropriate to

measure achievement and determine current

levels of student performance. These tests

assume a continuum of knowledge acquisition

from no proficiency to perfect performance, and

the reference criteria are expected to include

a representative sample of important achieve-

ments in relevant domains, regardless of their

discrimination index. So, scores are determined

by calculating the proportion of these tasks

to determine mastery or nonmastery for an

individual.

Supported in behaviorism (e.g., Skinner

1968), and as a rational approach to evaluation

through determining individual’s learning gains

after instruction, Glaser (1963) associates

criterion-referenced tests with measuring student

attainment of explicit criteria as indicators of

behavioral objectives (Popham 1987; Gardner

et al. 1996). This learning perspective views the

mind as inaccessible and, therefore, studies learn-

ing as the way behaviors, which are observable,

are acquired. All behaviors are considered to be

a result of chained reactions to events in the

environments called stimuli, and mental activity

is defined in terms of observable and measurable

stimuli-response patterns. Learning of complex

ideas is formulated as a partitioning into smaller

behaviors, or pieces, that are organized along

a one-dimensional continuum of increasing

level of difficulty, assuming mastery of a

lower-level behavior as a prerequisite to achieve

higher-level understanding. Behavioral objec-

tives are generally stated in the form of state-

ments as follows: Given situation S, the student

will be able to do D, to level of proficiency P.

However, in recently developed curriculum stan-

dard documents, it is clear that in fields such as

mathematics education, many of the most impor-

tant goals of instruction cannot be reduced to lists

of declarative statements (i.e., facts) or condition-

action rules (i.e., skills). To address these short-

comings, Lesh and Clarke (2000) present another

type of instructional goal defined as cognitive

objectives, which are found more relevant in

mathematics and science education than their
counterparts, because cognitive objectives focus

on students’ interpretations of situations, rather

than on their actions in these situations.

Examples of relevant cognitive objectives in

mathematics and science education include

models, metaphors, and complex conceptual sys-

tems, to mention a few. In order to operationally

define what it means to “understand” such

cognitive objectives, it is important to include

(a) situations that optimize the probability that

the targeted construct will be elicited in an

observable form, (b) observation tools that

allow observers to identify the construct from

other irrelevant information that might also be

elicited, and (c) quality assessment criteria
that allow for meaningful comparisons to be

made among alternative possible solutions.

Lesh, Lamon, Lester, and Behr (1992) argue

the need for an entire paradigm shift to rethink

assessment issues in mathematics education.

Rather than focusing on behavioral (or other

types of) objectives, they identify conceptual

objectives as those we are mostly interested in

assessing and which cannot be examined neither

from a norm reference nor criterion reference

perspectives. Lesh and Lamon (1992) highlight

the need to provide well-articulated operational

definitions that focus less on value judgments

about students (good/bad) and instead focus

on providing useful documentation for the

decision makers to be able to make a better-

informed decision based on specific purposes

(Carmona 2012).

This paradigm shift evidences significant

changes on assessment-related topics such as

data collection, data interpretation, data analysis,

and the nature of reports. It involves “new deci-

sion makers, new decision-making issues, new

sources of assessment information and new

understandings about the nature of mathematics,

mathematics instruction, and mathematics learn-

ing and problem solving” (p. 380). In addition,

this new perspective requires a revision on

what it means for assessments to be valid, reli-

able, and generalizable (Pellegrino, Chudowsky,

and Glaser 2001), focusing assessment on an

increased authenticity of tests and an increase

on the credibility and fairness of the inferences
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made based on test results (Messick 1994).

Consistent with these views, Chudowsky and

Pellegrino (2003) emphasize the need to generate

new situations in a way in which assessments

are designed to support and measure learning

and elicit student thinking in its complexity

(Lesh et al. 2000). The following section provides

an overview outlining the main components of

this new perspective into assessment design we

call design-based assessment.

Design-Based Assessment

During the past 30 years, mathematics educators

have pioneered a new class of research method-

ologies, which have become known as design
research studies. These design research studies

have been proposed to encourage the relevance of

research to practice (Brown 1992) and to high-

light the importance of incorporating practi-

tioners’ wisdom to theory development (Collins

1992; Collins et al. 2004). But, most of all, in

mathematics education, where most researchers

are also practitioners (e.g., teachers, teacher edu-

cators, curriculum developers), the main reasons

why design research methodologies have been

useful are because (a) like engineers, mathemat-

ics education researchers tend to be trying to

design and develop the same “subjects” that

they are trying to understand and explain and

(b) like engineers, the kinds of complex and

continually adapting subjects that mathematics

educators are trying to understand usually cannot

be explained by drawing on only a single theory.

Instead, it should be expected that useful concep-

tual frameworks (or models) will need to

integrate ideas and procedures drawn from

a variety of relevant theories (and disciplines).

One reason why single-theory ways of thinking

seldom work is that solutions to realistically

complex problems usually involve competing

and partly conflicting factors and trade-offs –

such as those involving high quality and low costs.

When design research methodologies empha-

size the measurement of complex and continually

adapting subjects, they can be called design-
based assessment methodologies. And, assessing

curriculum innovations can be thought of as

being similar to the methodologies that are
needed to assess complex artifacts such as space

shuttles or transportation systems. Some relevant

assumptions include the following.

• For the kinds of complex and continually

adapting systems and situations that need to

be understood and explained, it generally must

be assumed that no two situations are ever

exactly alike – and that the exact same thing

never happens twice. Furthermore, for most

such systems, many of their most important

attributes can only be “observed” by

documenting their effects on other things,

and (like neutrinos or other subatomic

particles in physics) to measure them often

involves changing them.

• In general, complex systems and complex

achievements cannot be understood by break-

ing them into tiny pieces – and additively

combining measurements of the pieces. For

example, even if it is true that developing

some higher-order conceptual understanding
(C) implies that a list of lower-order behav-

ioral objectives (B1, B2, B3, . . . Bn) should have

been mastered, it does not follow that master-

ing each, B1, B2, B3, . . . Bn, implies that C has

been achieved. Yet, this fragmentation fallacy

is an assumption underlying psychometric

conceptions of knowledge development. One

of the many things that mathematics educators

can learn from engineers and other design

scientists is that as the complexity of designed

constructs (such as space shuttles) increases,

a far greater percentage of assessment

activities need to focus on relationships and

connections among parts and relatively less

time focuses on assessments of isolated pieces.

• Why is it impossible to assess most conceptual

understandings using tests that are based on

psychometric theory? As stated above, psy-

chometric theory was developed originally to

measure aptitude (i.e., general intelligence –

where performance is not influenced by teach-

ing and learning). Whereas, tests that are

designed to measure the results of learning

and instruction are called achievement tests.

In particular, in intelligence testing, items are

discarded as being “unreliable” if student

performance increases in the course of
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responding to them. That is, to be reliable,

a students’ performance should not change

for a sequence of tasks which are all designed

to test the same attribute.

Design-based assessment focuses on three

interacting and continually adapting “subjects”

of assessment studies – students, teachers, and

curriculum innovations (i.e., programs). Space

limitations preclude considering other important

“subjects” – such as administrators, home envi-

ronments, or classroom learning environments –

even though it is well known that these latter

factors often strongly influence the ways that

students and teachers interact and adapt in

response to curriculum innovations. For example,

the impact of a curriculum innovation may vary

significantly if the classroom norms that govern

student-teacher and student-student discussions

emphasize the practice of requiring students to

accept procedures and claims based on appeals to

authority – rather than requiring them to justify

and explain things based on students’ mathemat-

ical sense making. By focusing on students,

teachers, and programs, we hope that readers

will find it easy to generalize to other

relevant subjects.

Notice that, in our descriptions of assessment

practices, we also emphasize the importance of

documenting and assessing two-way interactions

among “subjects” – rather than restricting attention

to one-way/cause-and-effect relationships. For

example, teachers don’t just influence students’

thinking about the meanings of the mathematical

concepts and processes that they are expected to

develop, but, students also influence teachers’

thinking about what it means to “understand”

these concepts and processes. So, even in situa-

tions where a single teacher teaches two groups of

students with comparable abilities, the personae

that an excellent teacher adopts for one group of

students may need to be significantly different than

for another group of students. This is because

groups as a whole often develop significantly

different group personalities.

Next, notice that our descriptions of assess-

ment practices also emphasize developmental

perspectives about “subjects” who are assumed

to be complex and dynamically adaptive
systems – not at all like widgets being created

using machine-like processes. Consequently,

regardless whether attention focuses on the con-

tinually adapting conceptual systems that are

developed by students or teachers or whether

attention focuses on the systems of learning expe-

riences that are intended to promote student and

teacher development, we recognize that when

these systems are acted on, they react. Further-

more, based on results from research involving

very simple aptitude-treatment interaction stud-

ies, we know that, when such feedback loops

occur, second- and third-order effects are often

far more significant that first-order effects.

So, for realistically large and complex curriculum

innovations, entry-level teachers’ first-year

implementations generally should be expected

to be significantly different than second-, third-,

or fourth-year implementations (when increas-

ingly more experienced teachers are likely to be

available).

Finally, notice that our attention focuses

on assessment rather than simply evaluation.

Whereas evaluation only involves assigning

a value to various subjects, assessment involves

generating useful descriptions of where various

“subjects” are, and where they need to develop in

some landscape of possibilities. In general, both

assessment and evaluation are intended to

provide useful information for decision makers –

who may range from students, to teachers, to

administrators. So, to assess the quality of

a given assessment or evaluation, it is important

to consider the following questions: Who are the

intended decision makers? (because the informa-

tion that is useful to a teacher may be quite

different than the information that is useful to an

administrator or politician). What decisions are

priorities for these decision makers to make?
What kind of information is most useful for

these decision-making purposes?

For example, low-stakes-but-rapid-turn-

around assessments that are intended to help

teachers provide individualized attention to

students tend to be quite different than high-

stakes-and-slow-turn-around assessments that

are intended to screen students or limit future

opportunities. Sometimes, the former types of
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assessments are referred to as summative assess-

ments, and the latter are referred to as formative

assessments. But, these summative and formative

functions often get muddled when (a) summative

assessments are used explicitly to change the

nature of what is taught and how it is taught and

(b) modern statistical procedures often make it

possible to use patterns or trends to generate

highly reliable summaries of achievement based

on collections of documentation.

When analyses of assessment practices begin

by asking who the decision makers are and what
decisions are priorities for them to make, then it

tends to become clear that in modern technology-

based societies, most decision makers tend to

have ready access to computer-based tools

which are capable of easily generating interactive

graphics-based displays of information that are

both simple to understand and easy to customize

to fit the purposes and prejudices of individual

decision makers and decision-making issues.

For nearly any of the “subjects” that are impor-

tant in educational decision making, single num-

ber characterizations are virtually useless and

essentially remove decision makers from the

decision-making process – by proclaiming, for

example, that subject #1 is better than subject

#2 regardless of what decisions are being made

or what factors are important to consider.

Answers may be different for different

decision makers.

In educational research and assessment, there

is no such thing as a tool or methodology that is

“most scientific” (for all subjects, for all decision

makers, and for all decision-making issues).

Every assessment tool is based on assumptions

which may or may not be appropriate for the

subjects or purposes of a given study. And,

a “scientific methodology” or a “scientific tool”

is one whose assumptions are, insofar as possible,

consistent with those associated with the

subjects, decision makers, and decision-making

purposes of the study. For example, when

assessing the achievements of students, teachers,

or curriculum innovations, the following kinds of

questions are important to ask:

• Do the tools or methodologies emphasize

achievements that are well-aligned with the
goals of the project, teacher, or students?

For example, even the most recently

developed curriculum standards documents,

such as the USA’s Common Core State Stan-

dards, none of the higher-order achievements

are operationally defined in ways that are mea-

surable. Furthermore, when tests such as the

Educational Testing Services’ Scholastic

Achievement Test were originally designed

to be Scholastic Aptitude Tests, then the entire
psychometric theory, which was created to

provide development standards, can be

expected to emphasize student attributes

intended to be unchangeable due to instruc-

tion. Can tests which are explicitly being used

to change what is taught and how it is taught
be thought of as not being among the

most powerful parts of the educational

“treatments” being assessed?
• Do methodologies which claim to randomly

assign students to “treatment groups” and

“control groups” really succeed in creating
situations which factor out the influences of all

but a small number of variables? (Notice that

similar methods have failed even in the case of

very small and simple aptitude-treatment inter-

action studies.) Can the most important factors

really be thought of as being “controlled” when
the parallel development of students, teachers,

and program implementations interact in ways

that usually lead to second-order effects which
are as powerful as first-order effects – andwhen

influences due to factors such as administrators,

classroom learning environments, and students’
home environments tend to be ignored?

• Are mixed-methods methodologies adequate

to assess students’ and teachers’ knowledge
or content of curriculum innovations?

Quantitative research produces quantitative

statements or quantitative answers to ques-

tions, whereas qualitative research produces

qualitative statements or qualitative answers

to questions. But, design-based assessment

research is about knowledge development,

and very little of what we are studying consists

of declarative statements (i.e., facts) or

answered questions (i.e., rules). For example,

some of the most important kinds of
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knowledge that we develop consist of models

for describing, explaining, designing, or

developing complex systems. So, models

(often embedded in purposeful artifacts or

tools) are among the most important kinds of

knowledge that we need to develop and assess.

Consequently, the question we must ask is as

follows:How do we validate models?And, the

answer is that both qualitative and quantitative

methods are useful for validating models. But

the product isn’t simply a quantitative or qual-

itative claim. It’s a validated model – and

trends and patterns involving development.

• Is the unbiased objectivity of an assessment

really assured by using “outside” specialists
whose only familiarity with the relevant

subjects come from pre-fabricated off-the-

shelf tests, questionnaires, interviews, and
observation protocols which are not modified

to emphasize the distinctive characteristics

of the subjects and their interactions? And,

if these “outside measures” are used for

purposes of accountability, can they really

avoid having powerful influences on the
treatments themselves?

• Can comparability of treatments really be

guaranteed by taking strong steps aimed at
trying to ensure that all teachers and all

students do exactly the same things, in exactly
the same ways, and at exactly the same times?
Notice that, in the literature on the diffusion of

innovations, complex systems tend to evolve

best when measurable goals are clear to all

relevant subjects – and when strong steps are

taken to encourage diversity (of interactions),

selection (of successful interactions), commu-

nication (about successful interactions), and

accumulation (of successful interactions).

In mathematics education, many of the most

important and powerful types of conceptual

understandings occur in one of two closely related

forms. The first focuses on students’ abilities

to mathematize (e.g., quantify, dimensionalize,

coordinate) situations which do not occur in

pre-mathematized forms and the second focuses

on representational fluency – or abilities that are

needed to translate from one type of description

to another. For example, in the case of represen-

tational fluency, Kaput’s (1989) research on early

algebra and calculus concepts emphasized the

importance of translations within and among the

three types of representations which are desig-

nated in the three ovals shown at the top of

Fig. 1 (i.e., equations, tables, and graphs), and in

a series of research studies known collectively as

The Rational Number Project, Lesh, Post, and

Behr (1987) emphasized the importance of trans-

lations within and among the five types of repre-

sentations which are designated in the five ovals

shown at the bottom of Fig. 1 (i.e., written
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symbols, spoken language, pictures or

diagrams, concrete models, and experience-

based metaphors).

From the perspective of psychometric theory,

two of the main difficulties with test items that

involve representational fluency result from the

fact that when tasks involve description of

situations (a) there always exist a variety of dif-

ferent levels and types of descriptions and (b)

responding to one such task often leads to

improvements of similar tasks. So, according to

psychometric theory, where tasks are considered

to have a single-level of difficulty which is

unaffected by instruction and where the relative

difficulty of two tasks also is considered to be

unaffected by instruction, such tasks are

discarded as being unreliable. Similarly, when

tasks focus on students’ abilities to conceptualize

situations mathematically, there once again

exist a variety of different levels and types

of mathematical descriptions, explanations, or

interpretations that can be given. So, once again,

the same two difficulties occur as for representa-

tional fluency.

Especially when tests are used for accountabil-

ity purposes and teachers are pressured to teach to

these tests, it is important for such tests to include

tasks that involve actual work samples of desired

outcomes of learning – instead of restricting atten-

tion to indirect indicators of desired achieve-

ments. For example, if the development of

a given concept implies that a student should be

able to do skill-level tasks T1, T2, . . . Tn, then

tasks T1, T2, . . . Tn tend to be indicators similar

to wrist watches or thermometers – in the sense

that it is possible to change the readings on wrist

watches or thermometers without in any way

influencing the time or the weather. But, how

can assessments of complex achievements be
achieved inexpensively, during brief periods of

time, and in a timely fashion that provides useful

information for relevant decision makers? In

modern businesses where continuous adaption is

necessary, and especially in knowledge industries

or in academic institutions, decision makers sel-

dom use multiple-choice tests or questionnaires to

assess the quality of the kinds of complex work

that constitute the most important activities of
their employees. So, how do specialists (or

teams of specialists) get recognized and rewarded

for the quality of their work? For example, how do

professors validate their work? Or, how do doc-

toral students validate the work on their Ph.D.

dissertations? Answers to these questions should

provide guidelines for the assessment of develop-

ment related to students, teachers, curriculum

innovations, and other “subjects” in mathematics

education research. Space limitations do not allow

detailed answers to such questions to be given

here. But, when attention focuses on the systems

of knowledge being developed by students,

teachers, and curriculum innovations, (a) it’s

important to focus on the half-dozen-to-a-dozen

“big ideas” which the subjects are intended to

develop, (b) it’s often useful to recognize that

a large part of what it means to “understand”

these big ideas tends to involve the development

of models (or interpretation systems) for making

sense of relevant experiences, (c) these models

often are embodied and function within purpose-

ful tools and artifacts, and (d) these tools and

artifacts often can be assessed in ways that simul-

taneously allow the underlying models to be

assessed. Procedures for achieving these goals

have been described in a variety of recent publi-

cations about design research (e.g., Lesh and

Kelly 2000; Lesh et al. 2007; Kelly et al. 2008),

and it is straightforward to adapt most of these

procedures to apply to assessment purposes.
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