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Definition

Over the past several decades, changes in

perspective as to what constitute statistics and

how statistics should be taught have occurred,

which resulted in new content, pedagogy and

technology, and extension of teaching to school

level. At the same time, statistics education has

emerged as a distinct discipline with its own

research base, professional publications, and con-

ferences. There seems to be a large measure of

agreement on what content to emphasize in statis-

tics education: exploring data (describing patterns

and departures from patterns), sampling and

experimentation (planning and conducting

a study), anticipating patterns (exploring random

phenomena using probability and simulation),

and statistical inference (estimating population
S. Lerman (ed.), Encyclopedia of Mathematics Education, D
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parameters and testing hypotheses) (Scheaffer

2001). Teaching and learning statistics can differ

widely across countries due to cultural, pedagog-

ical, and curricular differences and the availability

of skilled teachers, resources, and technology.
Changing Views on Teaching Statistics
Over the Years

By the 1960s statistics began to make its way

from being a subject taught for a narrow group

of future scientists into the broader tertiary and

school curriculum but still with a heavy reliance

on probability. In the 1970s, the reinterpretation

of statistics into separate practices comprising

exploratory data analysis (EDA) and confirma-

tory data analysis (CDA, inferential statistics)

(Tukey 1977) freed certain kinds of data

analysis from ties to probability-based models,

so that the analysis of data could begin to acquire

status as an independent intellectual activity. The

introduction of simple data tools, such as stem

and leaf plots and boxplots, paved the way for

students at all levels to analyze real data interac-

tively without having to spend hours on the

underlying theory, calculations, and complicated

procedures. Computers and new pedagogies

would later complete the “data revolution” in

statistics education.

In the 1990s, there was an increasingly

strong call for statistics education to focus more

on statistical literacy, reasoning, and thinking.

Wild and Pfannkuch (1999) provided an
OI 10.1007/978-94-007-4978-8,
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empirically based comprehensive description

of the processes involved in the statisticians’

practice of data-based inquiry from problem

formulation to conclusions. One of the main argu-

ments presented is that traditional approaches to

teaching statistics focus on skills, procedures, and

computations, which do not lead students to reason

or think statistically.

These changes are implicated in a process of

democratization that has broadened and diversified

the backgrounds and motivations of those who

learn statistics at many levels with very diverse

interests and goals. There is a growing recognition

that the teaching of statistics is an essential part of

sound education since the use of data is increas-

ingly common in science, society, media, everyday

life, and almost any profession.
A Focus on Statistical Literacy and
Reasoning

The goal of teaching statistics is to produce

statistically educated students who develop

statistical literacy and the ability to reason

statistically. Statistical literacy is the ability to

interpret, critically evaluate, and communicate

about statistical information and messages.

Statistically literate behavior is predicated on the

joint activation of five interrelated knowledge

bases – literacy, statistical, mathematical, context,

and critical – together with a cluster of supporting

dispositions and enabling beliefs (Gal 2002).

Statistical reasoning is the way people reason

with the “big statistical ideas” and make sense

of statistical information during a data-based

activity. Statistical reasoning may involve

connecting one concept to another (e.g., center

and spread) or may combine ideas about data and

chance. Statistical reasoning also means under-

standing and being able to explain statistical pro-

cesses and being able to interpret statistical results.

The “big ideas” of statistics that are most

important for students to understand and use are

data, statistical models, distribution, center, vari-

ability, comparing groups, sampling and sampling

distributions, statistical inference, and covaria-

tion. Additional important underlying concepts
are uncertainty, randomness, evidence strength,

significance, and data production (e.g., experi-

ment design). In the past few years, researchers

have been developing ideas of informal statistical

reasoning in students as a way to build their

conceptual understanding of the foundations of

more formal ideas of statistics (Garfield and

Ben-Zvi 2008).
What Does Research Tell Us About
Teaching and Learning Statistics?

Research on teaching and learning statistics has

been conducted by researchers from different

disciplines and focused on students at all levels.

Common faulty heuristics, biases, and misconcep-

tions were found in adults when they make

judgments and decisions under uncertainty, e.g.,

the representativeness heuristic, law of small num-

bers, and gambler’s fallacy (Kahneman et al.

1982). Recognizing these persistent errors,

researchers have explored ways to help people

correctly use statistical reasoning, sometimes

using specific methods to overcome or correct

these types of problems.

Another line of inquiry has focused on how to

develop good statistical reasoning and under-

standing, as part of instruction in elementary

and secondary mathematics classes. These stud-

ies revealed many difficulties students have

with concepts that were believed to be fairly

elementary such as data, distribution, center,

and variability. The focus of these studies was

to investigate how students begin to understand

these ideas and how their reasoning develops

when using carefully designed activities assisted

by technological tools (Shaughnessy 2007).

A newer line of research is the study of

preservice or practicing teachers’ knowledge of

statistics and probability and how that understand-

ing develops in different contexts. The research

related to teachers’ statistical pedagogical content

knowledge suggests that this knowledge is in

many cases weak. Many teachers do not consider

themselves well prepared to teach statistics nor

face their students’ difficulties (Batanero et al.

2011).
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The studies that focus on teaching and learn-

ing statistics at the college level continue to point

out the many difficulties tertiary students have in

learning, remembering, and using statistics and

point to some modest successes. These studies

also serve to illustrate the many practical

problems faced by college statistics instructors

such as how to incorporate active or collaborative

learning in a large class, whether or not to use an

online or “hybrid” course, or how to select one

type of software tool as more effective than

another. While teachers would like research

studies to convince them that a particular

teaching method or instructional tool leads to

significantly improved student outcomes, that

kind of evidence is not actually available in the

research literature. However, recent classroom

research studies suggest some practical implica-

tions for teachers. For example, developing

a deep understanding of statistics concepts

is quite challenging and should not be

underestimated; it takes time, a well thought-out

learning trajectory, and appropriate technological

tools, activities, and discussion questions.
Teaching and Learning

As more and more students study statistics,

teachers are faced with many challenges in help-

ing these students succeed in learning and appre-

ciating statistics. The main sources of students’

difficulties were identified as: facing statistical

ideas and rules that are complex, difficult, and/

or counterintuitive, difficulty with the underlying

mathematics, the context in many statistical prob-

lems may mislead the students, and being uncom-

fortable with the messiness of data, the different

possible interpretations based on different

assumptions, and the extensive use of writing

and communication skills (Ben-Zvi and Garfield

2004).

The study of statistics should provide students

with tools and ideas to use in order to react

intelligently to quantitative information in the

world around them. Reflecting this need to

improve students’ ability to reason statistically,

teachers of statistics are urged to emphasize
statistical reasoning by providing explicit atten-

tion to the basic ideas of statistics (such as the

need for data, the importance of data production,

the omnipresence of variability); focus more on

data and concepts, less on theory, and fewer

recipes; and foster active learning (Cobb 1992).

These recommendations require changes of

teaching statistics in content (more data analysis,

less probability), pedagogy (fewer lectures, more

active learning), and technology (for data analy-

sis and simulations) (Moore 1997).

Statistics at school is usually part of the

mathematics curriculum. New K–12 curricular

programs set ambitious goals for statistics educa-

tion, including promoting students’ statistical lit-

eracy, reasoning, and understanding (e.g., NCTM

2000). These reform curricula weave a strand of

data handling into the traditional school mathe-

matical strands (number and operations, geome-

try, algebra). Detailed guidelines for teaching

and assessing statistics at different age levels

complement these standards. However, school

mathematics teachers, which are often not versed

in statistics, find it challenging to teach data han-

dling in accordance with these recommendations.

In order to face this challenge and promote

statistical reasoning, good instructional practice

consists of implementing inquiry or project-

based learning environments that stimulate

students to construct meaningful knowledge.

Garfield and Ben-Zvi (2009) suggest several

design principles to develop students’ statistical

reasoning: focus on developing central statistical

ideas rather than on presenting set of tools and

procedures; use real and motivating data sets to

engage students in making and testing conjec-

tures; use classroom activities to support the

development of students’ reasoning; integrate

the use of appropriate technological tools that

allow students to test their conjectures, explore

and analyze data, and develop their statistical

reasoning; promote classroom discourse that

includes statistical arguments and sustained

exchanges that focus on significant statistical

ideas; and use assessment to learn what students

know and to monitor the development of

their statistical learning, as well as to evaluate

instructional plans and progress.
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Technology has changed the way statisticians

work and has therefore been changing what

and how statistics is taught. Interactive data

visualizations allow for the creation of novel

representations of data. It opens up innovative

possibilities for students to make sense of data

but also place new demands on teachers to assess

the validity of the arguments that students are

making with these representations and to facili-

tate conversations in productive ways. Several

types of technological tools are currently used

in statistics education to help students understand

and reason about important statistical ideas.

However, using technological tools and how to

avoid common pitfalls are challenging open

issues (Biehler et al. 2013).

These changes in the learning goals of

statistics have led to a corresponding rethinking

of how to assess students. It is becoming more

common to use alternative assessments such as

student projects, reports, and oral presentations

than in the past. Much attention has been paid to

assess student learning, examine outcomes of

courses, align assessment with learning goals,

and alternative methods of assessment.
For Further Research

Research in statistics education has made signif-

icant progress in understanding students’ difficul-

ties in learning statistics and in offering and

evaluating a variety of useful instructional

strategies, learning environments, and tools.

However, many challenges are still ahead of sta-

tistics education, mostly in transforming research

results to practice, evaluating new programs,

planning and disseminating high-quality assess-

ments, and providing attractive and effective pro-

fessional development to mathematics teachers

(Garfield and Ben-Zvi 2007). The ongoing efforts

to reform statistics instruction and content have

the potential to both make the learning of statis-

tics more engaging and prepare a generation of

future citizens that deeply understand the ratio-

nale, perspective, and key ideas of statistics.

These are skills and knowledge that are crucial

in the current information age of data.
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Characteristics

The aim of mathematics instruction in primary

school is to provide a basis for thinking mathe-

matically about the world. This is as basic

a skill as literacy in today’s world. Mathematical

knowledge is also a means to achieve better

employment and to enter higher education. For

all these reasons, it is of great importance that

deaf children have adequate access to mathemat-

ical thinking, but unfortunately most deaf

children show a severe delay in mathematics

learning. This delay has been persistent over

many years. The average score in mathematics

achievement tests for deaf children in the age

range 8–15 in a study carried out in 1965 showed

that they were one standard deviation below the

average for hearing children, a result replicated

about three decades later. This means that about

50 % of the deaf pupils perform similarly to

the weakest 15 % of the hearing pupils. Later

results continue to confirm this weak perfor-

mance. In the UK, deaf students aged 16–17

years, at the end of compulsory school, were

found to have a mathematical age between

10 and 12.5 years. In the USA, the mathemat-

ical ability of 80 % of the deaf 14-year-olds

was described as “below basic” in problem

solving and knowledge of mathematical pro-

cedures. A recent systematic review confirmed

these findings (Gottardis et al. 2011) and

analyzed individual differences among deaf

children.
This serious and persistent difficulty is not uni-

versal among children who are deaf; approxi-

mately 15 % perform at age appropriate levels.

The successful minority indicates that deafness is

not a direct cause of difficulty in mathematics

learning (see Nunes 2004, for a discussion). This

article considers what is involved in learning math-

ematics in primary school, why deaf children may

be at a disadvantage, and how schools can support

their learning of mathematics.

Learning Mathematics in Primary School

In order to think mathematically, people need to

learn to represent quantities, relations, and space

using culturally developed and transmitted think-

ing tools, such as oral and written number sys-

tems, graphs, and calculators.

Some researchers argue that numerical concepts

have a neurological basis that is independent

of language learning, without which learning

mathematics is extremely difficult. In view of the

pervasiveness of deaf children’s mathematical dif-

ficulties, it could be hypothesized that they have an

inadequate development of such concepts. Basic

numerical cognition has been studied in research

with young deaf children as well as adults, and the

hypothesis has been discarded. Deaf children and

adults performed at least as well as their hearing

counterparts in such tasks.

The possible consequences of delays in the

acquisition of other language-based numerical

concepts have also been explored. Two examples

are knowledge of counting and understanding of

arithmetic operations.

Counting

Deaf children lag behind hearing children in

learning to count, independently of whether they

are learning to count orally or in sign (Leybaert

and Van Cutsem 2002). Consequently, they

perform less well than hearing children on school-

entry numeracy tests, which typically include tasks

that require counting (e.g., “show me 5 blocks”;

“tell me which number is bigger”). This delay

could be related to the well-established finding

that deaf people perform less well than hearing

people on serial learning tasks, in which words or

gestures must be learned in an exact sequence, just
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as the number string. However, they perform better

if the tasks are presented differently and use spatial

cues to organize the information. These findings are

provocative rather than conclusive. First, they raise

the possibility that deaf children could learn to

count more easily if appropriate visual and spatial

methods were used for teaching rather than serial

learning instruction. Second, serial learning is not

an appropriate description of counting skills beyond

a certain number (about 20 or 30 in English but this

may differ depending on the counting system).

Research with hearing and deaf children shows

that counting is a structured activity: for example,

errors are more likely to occur at the boundaries

between decades (e.g., . . .38, 39, 50, 51, 52. . .) than
within decades. Therefore, in principle deaf

children’s initial disadvantage in counting could

be overcome with appropriate teaching methods

and with support for mastery of the structure of

the system. However, it is possible that their initial

struggle with learning to count lowers adults’

expectations about what they can learn in mathe-

matics, resulting in less stimulation on mathemati-

cal tasks, and that it also interferes with the

children’s own discoveries in the domain of math-

ematical reasoning.

Early Mathematical Reasoning and Arithmetic

Operations

The development of mathematical reasoning starts

before school, when children solve practical prob-

lems using actions, which they learn to combine

with counting. When most children start school (at

age 5 or 6), they can already solve simple addition

and subtraction problems by putting together or

separating objects and counting, and some can

also solve multiplication and division problems.

By counting, children use explicit numerical rep-

resentation both for thinking and communicating.

When numbers are small and the children can use

objects, deaf children do aswell as hearing children

in solving these problems, but if the numbers go

above 10 or 20, most deaf children fall behind.

When they are compared with hearing children of

the same counting ability, they are just as compe-

tent in solving numerical tasks (Leybaert and Van

Cutsem 2002), but their disadvantage in counting is

reflected in their problem-solving skills when they
are compared to same-age hearing peers. Thus, it is

possible that, not knowing number words well

enough to support their mathematical reasoning,

they do not discover how to use counting to solve

simple arithmetic problems or important ideas for

their later success, such as the inverse relation

between addition and subtraction. However,

Nunes and colleagues (2008a, b) have shown that

relatively small amounts of teaching can effec-

tively improve young deaf children’s performance

in the mathematical reasoning and arithmetic

tasks, with which they were struggling before the

teaching.

Conclusion

There is little doubt that many deaf children show

severe and persistent difficulties in learning math-

ematics. Evidence suggests that there is no direct

connection between deafness and problems with

basic number concepts that precede language.

However, deaf children lag behind hearing

children in learning to count, whether orally or in

sign, and at school entry they are behind their

hearing counterparts in mathematical knowledge.

It is possible that falling behind in counting places

deaf children at a disadvantage from the adults’

perspective and that they end up receiving less

stimulation to solve mathematical problems early

on. It is also possible that their own informal

mathematical knowledge is limited by their diffi-

culty in representing quantities explicitly with

number words. These findings and conclusions

suggest that, if parents and preschool teachers

could find visual and spatial ways to teach

counting to deaf children, one would see positive

changes in the average achievement of deaf

children in mathematics in the future.
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Proof schemes
Definition

This entry examines the different facets of deduc-

tive reasoning with respect to the learning and

teaching of mathematical proof. Deductive rea-

soning may be defined as a formal way of reason-

ing, usually top-down [from the general to the

particular] with adherence to logical consistency.

Characteristics of Deductive Reasoning

The examinations of the learning and teaching of

proof are multifaceted. They address a broad

range of factors: mathematical, historical-episte-

mological, cognitive, sociological, and instruc-

tional. Research questions involving these

factors include the following:
Mathematical and Historical-Epistemological

Factors

1. What is proof and what are its functions?

2. How are proofs constructed, verified, and

accepted in the mathematics community?

3. What are some of the critical phases in the

development of proof in the history of

mathematics?
Cognitive Factors

4. What are students’ current conceptions of

proof?

5. What are students’ difficulties with proof?

6. What accounts for these difficulties?

Instructional-Sociocultural Factors

7. Why teach proof?

8. How should proof be taught?

9. How are proofs constructed, verified, and

accepted in the classroom?

10. What are the critical phases in the develop-

ment of proof with the individual student and

within the classroom as a community of

learners?

11. What classroom environment is conducive

to the development of the concept of proof

with students?

12. What form of interactions among the students

and between the students and the teacher can

foster students’ conception of proof?

13. What mathematical activities – possibly

with the use of technology – can enhance

students’ conceptions of proof?

14. How is proof currently being taught?

15. What do teachers need to know in order to

teach proof effectively?
Theoretical Factors

16. What theoretical tools seem suitable for

investigating and advancing students’ con-

ceptions of proof?

One’s investigation of these questions is

greatly influenced by her or his philosophical

orientation to the processes of learning and teach-

ing and would reflect her or his conclusion to

questions such as the following: What bearing,

if any, does the epistemology of proof in the



D 144 Deductive Reasoning in Mathematics Education
history of mathematics have on the conceptual

development of proof with students? What bear-

ing, if any, does the way mathematicians con-

struct proofs have on instructional treatments of

proof? What bearing, if any, does everyday justi-

fication and argumentation have on students’

proving behaviors in mathematical contexts?

Historical-Epistemological Developments

Deductive reasoning is a mode of thought com-

monly characterized as a sequence of proposi-

tions where one must accept any of the

propositions to be true if he or she has accepted

the truth of those that preceded it in the sequence.

This mode of thought was conceived by the

Greeks more than twentieth centuries ago and is

still dominant in the mathematics of our days. So

remarkable is the Greeks’ achievement that their

mathematics became a historical mark to which

other kinds of mathematics are compared. The

nature of deductive reasoning varies throughout

history (Kleiner 1991). Of particular contrast is

Greek mathematics versus modern mathematics.

In Greek mathematics, the particular entities

under investigation are idealizations of experien-

tial spatial realities and so also are the proposi-

tions on the relationships among these entities.

Logical deduction came to be central in the rea-

soning process, and it alone necessitated and

cemented the geometric edifice they created. In

constructing their geometry, as is depicted in

Euclid’s Elements, the Greeks had only one

model in mind – that of imageries of idealized

physical reality. From the vantage point of mod-

ern mathematics, neither the primitive terms nor

the axioms in Greek mathematics were variables,

but constants referring to a single spatial model

(Klein 1968; Wilder 1967), as is expressed in the

ideal world of Plato’s philosophy. In modern

mathematics, on the other hand, primary terms

and axioms are open to different possible

realizations. An important manifestation of

this revolution is the distinction between

Euclid’s Elements and Hilbert’s Grundlagen.

The latter characterizes a structure that fits differ-

ent models, that is, in an abstraction of numerous

models, such as the Euclidean space, the surface

of a half-sphere and the ordered pairs and triples
of real numbers, including the interpretation that

the axioms, are meaningless formulas.

Considerations of historical-epistemological

developments led to new research questions

with direct bearing on the learning and teaching

of proofs. For example, to what extent and in

what ways is the nature of the content intertwined

with the nature of proving? In geometry, for

example, does students’ ability to construct an

image of a point as a dimensionless geometric

entity impact their ability to develop the Greek

conception of proof? What is the cognitive or

social mechanism by which deductive proving

can be necessitated for the students? The Greek’s

construction of their geometric edifice seems

to have been a result of their desire to

create a consistent system that was free from

paradoxes. Would paradoxes of the same nature

create a similar intellectual need with students?

Students encounter difficulties in moving

empirical reasoning to deductive reasoning,

particularly from the Greek’s conception of

proof to the modern conception of proof. Exactly

what are these difficulties? What role does the

emphasis on form rather than content in modern

mathematics (as opposed to Greek mathematics,

where content is more prominent) play in this

transition?

Classifications of Conceptualizations of Proof

Harel and Sowder (1998) call these conceptuali-

zations proof schemes, which they classify into

a system of subcategories. Their taxonomy is

organized around three main classes of catego-

ries: the external conviction proof schemes class,

the empirical proof schemes class, and the deduc-
tive proof schemes class. A partial description of

these classes follows.

External Conviction Proof Schemes

Proving within the external conviction proof

schemes class depends either (a) on an authority

such as a teacher or a book, (b) on strictly the

appearance of the argument (e.g., proofs in geom-

etry must have a two-column format), or (c) on

symbol manipulations, with the symbols or the

manipulations having no potential coherent sys-

tem of referents (e.g., quantitative and spatial) in
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the eyes of the student. Accordingly, the external
conviction proof schemes class consists of three

categories: the authoritarian proof scheme cate-

gory, the ritual proof scheme category, and the

non-referential symbolic proof scheme category.

Empirical Proof Schemes

Schemes in the empirical proof scheme class are

marked by their reliance on either (a) an evidence

from examples (sometimes just one example) of

direct measurements of quantities, substitutions

of specific numbers in algebraic expressions,

etc., or (b) perceptions. Accordingly, this class

consists of two categories: the inductive

proof scheme category and the perceptual proof
scheme category.

Deductive Proof Schemes

The deductive proof schemes class consists of

two subcategories, each consisting of various

proof schemes: the transformational proof
scheme category and the axiomatic proof scheme

category.

Classifications of Functions of Proof

In general, the empirical proof schemes and the

deductive proof schemes categories correspond

to what Bell (1976) calls empirical justification

and deductive justification and Balacheff (1988)

calls pragmatic justifications and conceptual jus-
tifications, respectively. Pragmatic justification

is further divided into three categories: naı̈ve

empiricism (justification by a few random exam-

ples), crucial experiment (justification by care-

fully selected examples), and generic example

(justification by an example representing salient

characteristics of a whole class of cases). Con-

ceptual justification is divided into two catego-

ries: thought experiment, where the justification

is disassociated from specific examples, and sym-

bolic calculation, where the justification is based

solely on transformation of symbols.

These taxonomies are not explicit enough

about many critical functions of proof within

mathematics. There is a need to point to these

functions due to their importance in mathematics

in general and to their instructional implications

in particular. The work by Hanna (1990),
Balacheff (1998), Bell (1976), Hersh (1993),

and de Villiers (1999) explicitly address these

functions. De Villiers, who built on the work of

the others scholars mentioned here, raises two

important questions about the role of proof: (a)

“What different functions does proof have within

mathematics itself?” and (b) “how can these

functions be effectively utilized in the classroom

to make proof a more meaningful activity?”

According to de Villiers, mathematical proof

has six not mutually exclusive roles: Verification

refers to the role of proof as a means to demon-

strate the truth of an assertion according to

a predetermined set of rules of logic and pre-

mises – the axiomatic proof scheme.Explanation
is different from verification in that for

a mathematician it is usually insufficient to

know only that a statement is true. He or she is

likely to seek insight into why the assertion is

true. “Mathematicians routinely distinguish

proofs that merely demonstrate from proofs

which explain” (Steiner 1978, p. 135). For

many, the role of mathematical proofs goes

beyond achieving certainty – to show that some-

thing is true; rather, “they’re there to show. . .

why [an assertion] is true,” as Gleason, one of

solvers of the solver of Hilbert’s Fifth Problem

(Yandell 2002, p. 150), points out. Two millennia

before him, Aristotle, in his Posterior Analytic,

asserted, “. . . We suppose ourselves to possess

unqualified scientific knowledge of a thing, as

opposed to knowing it in the accidental way in

which the sophist knows, when we think that we

know the cause on which the fact depends as the

cause of the fact and of no other” (p. 4).

Discovery refers to the situations where through

the process of proving, new results may be dis-

covered. For example, one might realize that

some of the statement conditions can be relaxed,

thereby generalizing the statement to a larger

class of cases. Or, conversely, through the prov-

ing process, one might discover counterexamples

to the assertion, which, in turn, would lead to

a refinement of the assertion by adding necessary

restrictions that would eliminate counterexam-

ples. Systematization refers to the presentation

of verifications in organized forms, where each

result is derived sequentially from previously
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established results, definitions, axioms, and pri-

mary terms. Communication refers to the social

interaction about the meaning, validity, and

importance of the mathematical knowledge

offered by the proof produced. Intellectual

Challenge refers to the mental state of

self-realization and fulfillment one can derive

from constructing a proof.

Students’ Proof Schemes

Status studies on students’ conceptualization of

proof show the absence of the deductive proof

scheme and the pervasiveness of the empirical

proof scheme among students. Students base

their responses on the appearances in drawings,

and mental pictures alone constitute the meaning

of geometric terms. They justify mathematical

statements by providing specific examples, not

able to distinguish between inductive and deduc-

tive arguments. Even more able students may not

understand that no further examples are needed,

once a proof has been given. Students’ preference

for proof is ritualistically and authoritatively

based. For example, when the stated purpose

was to get the best mark, they often felt that

more formal – e.g., algebraic – arguments might

be preferable to their first choices. These studies

also show a lack of understanding of the

functions of proof in mathematics, often even

among students who had taken geometry

and among students for whom the curriculum

pays special attention to conjecturing and

explaining or justifying conclusions in both alge-

bra and geometry. They believe proofs are used

only to verify facts that they already know and

have no sense of a purpose of proof or of its

meaning. Students have difficulty understanding

the role of counterexamples; many do not under-

stand that one counterexample is sufficient to

disprove a conjecture. Students do not see any

need to prove a mathematical proposition, espe-

cially those they considered to be intuitively

obvious. This is the case even in a country like

Japan where the official curriculum emphasizes

proof. They view proof as the method to examine

and verify a later particular case. Finally, the

studies show that students have difficulty writing

valid simple proofs and constructing, or even
starting, simple proofs. They have difficulty

with indirect proofs, and only a few can complete

an indirect proof that has been started.

Impact of Instruction

Students who receive more instructional time on

developing analytical reasoning by solving unique

problems fare noticeably better on overall test

scores. Likewise, students who have been expected

to write proofs and who have had classes that

emphasized proof were somewhat better than

other students. It also seems possible to establish

desirable sociomathematical norms relevant to

proof, through careful instruction, often featuring

the student role in proof-giving. There has been the

concern that the ease with which technology can

generate a large number of examples naturally

could undercut any student-felt need for deductive

proof schemes. Several studies have shown that

with careful, nontrivial planning and instruction

over a period of time, progress toward deductive

proof schemes is possible in technology environ-

ments, where such desiderata as making conjec-

tures and definitions occur.
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Characteristics

Chromosome 22q11.2 deletion syndrome (22q) is

the most common genetic deletion syndrome

with an estimated prevalence of between one in

3,000 and 6,000 births (e.g., Kobrynski and

Sullivan 2007). It has only been detectable with

100% accuracy since 1992 using techniques such

as the FISH test (fluorescence in situ hybridiza-

tion). Prior to identification of a single associated

deletion, the syndrome had been given a number

of different labels according to the primary med-

ical condition, for example, velocardiofacial syn-

drome, DiGeorge syndrome, Cayler syndrome,

Shprintzen syndrome, and Catch 22.

The majority of individuals with 22q

experience some degree of learning difficulty

and generally show a marked imbalance in

performance across different subtests within IQ

batteries. Verbal IQ scores are usually signifi-

cantly higher than performance IQ scores (e.g.,

Moss et al. 1999; Wang et al. 2007).
The majority of children will receive some

form of support at school although some

individuals experience no difficulties at all.

Indeed a very wide level of individual differ-

ences in attainment in individuals with 22q is

noted in all studies to date.

There is consistent evidence that mathemat-

ics skills are weaker than literacy skills in the

majority children with 22q. This profile is

unusual as children with mathematics difficul-

ties are often reported to have comorbid reading

difficulties. Typically, performance on stan-

dardized tests of reading and spelling is within

the normal range, but performance on mathe-

matical reasoning and arithmetic tasks is at least

one standard deviation below age norms in chil-

dren with 22q. Children with 22q specifically

selected to have full scale IQ of at least 70 also

demonstrate this profile, thereby suggesting that

it is associated with 22q per se rather than low

general ability.

There are very few studies examining number

skills in detail in childrenwith 22q. De Smedt et al.

(2006, 2007a, b) tested children, selected to have

an IQ of more than 70, on a series of computerized

tests assessing performance in number reading

and writing, number comparison, counting, and

single and multi-digit arithmetic. A mathematical

word-solving task was also included and reading

ability was measured. Children were individually

matched with typically developing children from

the same class at school for gender, age, and

parental education level. Consistent with their

hypotheses, De Smedt et al. (2007a, b) report

group differences on multi-digit operations

involving a carry, word-solving problems,

and speed in judging the relative value of

two digits. There was no difference in reading,

number reading and writing, single digit addi-

tion, or verbal and dot counting accuracy.

The difficulties with multi-digit operations

are unsurprising given the visuospatial require-

ments of operations such as borrowing and

carrying. Previous researches suggest that

multi-digit arithmetic is an area of particular

difficulty in children with visuospatial learning

disability as well as arithmetic difficulties

(Venneri et al. 2003). More research is needed
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to further uncover the nature of the mathemat-

ical difficulties experienced by children with

22q and to aim to uncover best practice

methods for teaching number skills in 22q as

so far, certainly in the UK, no consensus has

been reached.
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Definition

Design-based research is a formative approach to

research, in which a product or process (or “tool”)

is envisaged, designed, developed, and refined

through cycles of enactment, observation,

analysis, and redesign, with systematic feedback

from end users. In education, such tools

might, for example, include innovative teaching

methods, materials, professional development

programs, and/or assessment tasks. Educational

theory is used to inform the design and refinement

of the tools and is itself refined during the

research process. Its goals are to create innova-

tive tools for others to use, describe and explain

how these tools function, account for the range

of implementations that occur, and develop

principles and theories that may guide future

designs. Ultimately, the goal is transformative;

we seek to create new teaching and learning

possibilities and study their impact on teachers,

children, and other end users.
The Origins and Need for Design
Research

Educational research may broadly be categorized

into three groups: the humanities approach, schol-
arly study that generates fresh insights through

critical commentary, the scientific approach

that analyzes phenomena empirically to better
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understand how the world works, and the engineer-
ing approach that not only seeks to understand the

status quo but also attempts to use existing

knowledge to systematically develop “high-quality

solutions to practical problems” (Burkhardt and

Schoenfeld 2003). Design research falls into this

“engineering” category and, as such, seeks to pro-

vide the tools and processes that enable the end

users of mathematics education (teachers and

students, administrators and politicians) to tackle

practical problems in authentic settings.

Design research is an unsettled construct and

the field is in its youth. It is only at the beginning

of the last two decades that we see design

research as an emerging paradigm for the study

of learning through the systematic design of

teaching strategies and tools. The beginnings of

this movement, at least in the USA, are usually

attributed to Brown (1992) and Collins (1992),

though in a sense, it was an idea waiting to be

named (Schoenfeld 2004). In Europe there have

long been traditions of principled design-based

research under other guises, such as curriculum

development and didactical engineering (e.g.,

Bell 1993; Brousseau 1997; Wittmann 1995).

Prior to the 1990s, much educational and psy-

chological research had relied heavily on quasi-

experimental studies that had been developed

successfully in other fields such as agriculture.

These involved experimental and control treat-

ments to evaluate whether or not particular vari-

ables were associated with particular outcomes.

In mathematics education, for example, one

might design a novel approach to teaching

a particular area of content, assign students to

an experimental or control group, and assess

their performance on some defined measures,

using pre- and posttesting. Though sounding

straightforward, this practice proved highly prob-

lematic (Schoenfeld 2004): the goals of education

are more complex than the mastery of specific

skills; the control of variables in naturalistic set-

tings is often impossible, undesirable, and some-

times even unethical; and much of the theory is

“emergent,” only becoming apparent as one

engages in the research.

In the early 1990s, a number of researchers

began to question the limitations of traditional
experimental psychology as a paradigm for

educational research. Brown’s paper on “design

experiments” was seminal (Brown 1992). Brown

recounts how her own research moved away

from laboratory settings towards naturalistic

ones in which she attempted to transform class-

rooms from “worksites under the management

of teachers into communities of learning.”

She vividly recounts her own struggles in

reconceptualizing her focus and methodology,

deconstructing methodological criticisms against

it (such as the Hawthorne effect). Interestingly

Brown still saw the need for lab-based research,

both to precede and stimulate work in naturalistic

settings and also for the closer study of phenom-

ena that had arisen in those settings. At about the

same time, Collins (1992, pp. 290–293) began

to argue for a design science in education,

distinguishing analytic sciences (such as physics

or biology) as where research is conducted in

order to explain phenomena from design sciences
(such as aeronautics or acoustics) where the goal

is to determine how designed artifacts (such as

airplanes or concert halls) behave under different

conditions. He argued strongly for the need of the

latter in education. In mathematics education,

such designed artifacts might include, for exam-

ple, new teaching methods, materials, profes-

sional development programs, assessment tasks,

or any combination of these.

Since that time, “design research” has become

more widespread and respectable in education.

However it must be said that not all so-called

“design research” studies satisfy the definition

described above. Some, for example, do not sat-

isfy the requirement that the designs should be

theory-based and develop theory, while others do

not move beyond the early stages and test their

designs in the hands of others not involved in the

development process.
Characterizing Design-Based Research

There have been many attempts to characterize

design-based research (Barab and Squire 2004;

Bereiter 2002; Cobb et al. 2003; DBRC

2003, p. 5; Kelly 2003; Lesh and Sriraman 2010;
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Swan 2006, 2011; van den Akker et al. 2006).

While design research is still in its infancy and

its characterization is far from settled, most

researchers do seem to agree that design-based

research is:

Creative and Visionary

The researcher identifies a problem in a defined

context and, drawing on prior research, envisions

a tool that might help end users to tackle it.

A draft design is developed, possibly with the

assistance of end users. For example, the

researcher identifies a particular student learning

need and uses research to design a series of les-

sons. The ultimate aim is to produce an effective

design, an account of the theory and principles

underpinning the design, and an analysis of the

range of ways in which the design functions in the

hands of a typical sample of the target population

of teachers and students.

Ecologically Valid

The researcher studies and refines the design in

authentic settings, such as classrooms. This pre-

cludes the prior manipulation of variables in the

study. It is important, therefore, to distinguish

those aspects of the design that are being studied

from those that are extraneous.

Interventionist and Iterative

The role of the researcher evolves as the research

proceeds. During early iterations, the design is

usually sketchy and the researcher needs to inter-

vene to make it work. With teaching materials,

for example, this phase may be conducted with

small samples of students. Later, as the design

evolves, the researcher holds back, in order to see

how the design functions in the hands of end

users. Early iterations are often conducted in

a few favorable contexts. Early drafts of teaching

materials, for example, may be tested in carefully

chosen classrooms with confident teachers, in

order to gain insights into what is possible with

faithful implementation. Later iterations aim to

study how the design functions in a wider range

of authentic contexts, with teachers who have not

been involved in the design process. Under these

conditions, “design mutations” invariably occur.
Rather than viewing these as negative, interfering

factors, the designs and theories evolve to explain

these mutations. With each cycle of the process,

the sample size is increased and becomes more

typical of the target population. From time to

time, a particular issue may arise that the

researcher wants to study closely. In such

a case, it is possible to go back to the small-

scale study of that isolated issue.

Theory-Driven

The outputs of design research include develop-

ing theories about learning, interventions, and

tools. Rather than focusing on learning outcomes,

using pre- and posttests, the research seeks to

understand how designs function under different

conditions and in different classroom contexts.

The theories that evolve in this way are local
and humble in scope and should not be judged

by their claims to “truth” but rather their claims to

be useful (Cobb et al. 2003). Theory in design

research usually focuses on an explanation of

how and why a particular design feature works

in a particular way. It is both specific and gener-

ative in that it can be used to predict ways in

which future designs will function if they embody

this feature.
Some Issues and Challenges

Design research done well requires great

skill on the part of researchers. Indeed, the

combination of skills required is not usually

found in individuals but in teams. A design

research team will typically involve people

with knowledge of the literature (researchers),

an understanding of pedagogy (teachers), cre-

ative “care and flair” (designers), and facility

with “delivering” the design (publishers IT

technicians).

Secondly, design research often takes a great

deal longer than other forms of research. There is

often a significant “entry fee” in terms of time and

energy taken up with producing a prototype

before any study of it can begin. This is particu-

larly true if the design involves creating

new software. Then, each cycle of design,
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implementation, analysis, and redesign can each

occupy weeks, if not months.

Thirdly, design research is data rich. A

mixture of qualitative and quantitative methods

is used to develop a rich description of the way

the design works as well as the kinds of learning

outcomes that may be expected. This often results

in a proliferation of data. Brown, for example,

found that she “had no room to store all the data,

let alone time to score it” (Brown 1992, p. 152).

Data may include lesson observations, videos

of the designs in use, and questionnaires

and interviews with users. In early iterations,

observation plays a dominant role. Later, how-

ever, more indirect means are also needed as the

sample size grows. Reliability may be improved

through the use of triangulation from multiple

data sources and repetition of analyses across

cycles of implementation and through the use of

standardized measures.

Fourthly, design research requires discipline. It

is all too tempting to turn a “good idea” into a draft

design and then ask someone to try it out to “see

what happens.” Good design-based research is

more than formative evaluation, however; it is

theory-driven. In preparation for a design-based

research study, onemust try to articulate the theory

and draw clear lines of connection between this

and the design itself. This may be done by eliciting

“principles” to direct the design. The research

involves putting these principles in “harms way”

(Cobb et al. 2003). Then, the focus of the research

needs to be articulated. For early iterations this

may be on the potential impact of the faithful use

of the design, while on later iterations, we may be

more interested in refining the design by studying

end users’ interpretations and mutations.

Finally, writing up design research is

problematic. Most designs are too extensive to

be described and analyzed in traditional journal

articles that emphasize methods and results over

tools. Recently e-journals have begun to appear

that allow for a much clearer articulation of

design-based research. These, for example,

allow extensive extracts of teaching and profes-

sional development materials to be displayed,

along with videos of the designs in use (see for

example, http://www.educationaldesigner.org).
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Definition

Dialogic teaching and learning refers to certain

qualities in the interaction between teachers and

students and among students. The qualities concern

possibilities for the students’ involvement in the

educational process, for establishing enquiry pro-

cesses, and for developing critical competencies.
Characteristics

Sources of Inspiration

There are different sources of inspiration for bring-

ing dialogue into the mathematics classroom, and

let me just refer to two rather different.

The notion of dialogue plays a particular role

in the pedagogy of Paulo Freire. He sees dialogue

as crucial for developing literacy, which refers to
a capacity in reading and writing the world:

reading it, in the sense that one can interpret

sociopolitical phenomena, and writing it, in the

sense that one becomes able to make changes.

With explicit reference to mathematics, the

crucial role of dialogue can be argued with

allusion to Imre Lakatos’ presentation in Proof
and Refutations (Lakatos 1976). Here Lakatos

shows that a process of mathematical discovery

is of dialogic nature, characterized by proofs and

refutations.

Critical mathematics education and social

constructivism have developed dialogic teaching

and learning through a range of examples and

studies. It has been emphasized that dialogue is

principal for establishing critical perspectives on

mathematics and for a shared construction of

mathematical notions and ideas. In fact dialogic

teaching and dialogic learning represents two

aspects of the same process.

Marilyn Frankenstein (1983) has emphasized

the importance of Freire’s ideas for developing

critical mathematics education, and Paul Ernest

(1998) has opened the broader perspective of

social constructivism, also acknowledging the

importance of Lakatos work.

The Inquiry Cooperation Model

The notion of dialogue appears to be completely

open. As a consequence, it becomes important to

try to characterize what a dialogue could mean.

The Inquiry Cooperation Model as presented

in Alrø and Skovsmose (2002) provides such

a specification with particular references to

mathematics.

This model characterizes different dialogic

acts: Getting in contact refers to the act of tuning
in at each other. Locating and identifying refer to

forms of grasping perspectives, ideas, and argu-

ments of the other. Advocating means providing

arguments for a certain point of view – although

not necessary one’s own. Thinking aloud means

making public details of one’s thinking, for

instance, through gestures and diagrams.

Reformulating refers to particular attempts in

grasping other ideas by rethinking, rephrasing,

and reworking them. Challenging means

questioning certain ideas, which is an important

way of sharpening mathematical arguments.

Evaluating refers to reflexive questioning, like:

What insight might we have reached? What new

questions have we encountered?

Dialogic teaching and learning can be

characterized as a process rich of such dialogic

acts.
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New Qualities in Teaching and Learning

The idea of dialogic teaching and learning is to

promote an education with new qualities. Let me

refer to just a few having to do with the students’

interest, making investigations, and developing

a mathemacy.

Students’ Interest. It has been emphasized

that dialogic teaching and learning includes

a sensitivity to the students’ perspectives and

possible interests for learning. This sensitivity

has not only to do with the dialogic act of

“getting in contact” but with all the acts

represented by the Inquiry Cooperation

Model. A principal point of dialogic teaching

is to invite students into the learning process

as active learners.

Making Investigations. Dialogic teaching and

learning can be characterized in terms of investi-

gative approaches, where both teacher and stu-

dents participate in the same inquiry process.

Barbara Jaworski (2006) makes a particular

emphasis on establishing communities of inquiry,

and in any such communities, dialogue plays

a defining role. Landscapes of investigations

(Skovsmose 2011) might also provide

environments that facilitate dialogic teaching

and learning.

Similar to literacy, mathemacy refers not only
to a capacity in dealing with mathematical

notions and ideas but also to a capacity in

interpreting sociopolitical phenomena and acting

in a mathematized society. Thus, mathemacy

combines a capacity in reading and writing

mathematics with a capacity in reading and writ-

ing the world (see Gutstein 2006). Dialogue

teaching and learning is in hectic develop-

ment, both in theory and in practice. A range

of new studies and new classroom initiatives

are being developed. In particular, the very

notion of dialogue is in need of further

development; see, for instance, Alrø and

Johnsen-Høines (2012).
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Introduction

Teachers manage didactical situations that create

and exploit mathematical situations where

practices are exercised and students’ mathemati-

cal knowledge is developed. The study of the

didactical contract concerns the compatibility

on this precise subject of the aspirations and

requirements of the students, the teachers, the

parents, and the society.
Definition

A “didactical contract” is an interpretation of the

commitments, the expectations, the beliefs, the

means, the results, and the penalties envisaged by

one of the protagonists of a didactical situation

(student, teacher, parents, society) for him- or

herself and for each of the others, à propos of

the mathematical knowledge being taught

(Brousseau and Otte 1989; Brousseau 1997).
The objective of these interpretations is to

account for the actions and reactions of the part-

ners in a didactical situation.

The didactical contract can be broken down

into two parts: a contract of devolution – the

teacher organizes the mathematical activity (see

▶Didactic Situations in Mathematics Education)

of the student who in response commits him-

or herself to it – and a contract of institu-

tionalization – the students propose

their results and the teacher vouches for the

part of their results that conforms to refer-

ence knowledge.

Customary practices (Balacheff 1988),

whether explicit or tacit, leave the hope that

divergences are accidental and reducible and

that there exist real contracts, whether or not

they can be made explicit, that are compatible

and satisfactory. This is not so, owing to various

paradoxes that became apparent in the course of

teaching in a way that is based on mathematical

situations. This gave rise to many questions,

among them are as follows:

How could students commit themselves to the

subject of knowledge that they have not yet

learned?
What are the respective roles of what is inex-

pressible, of what is said, of what is not said

or cannot be said to the other in the teaching

relationship?

Does there exist knowledge that ought not to be

made explicit before being learned?

The study of these questions was the origin of

the theory of didactical situations.
Characteristics

Background: Illustrative Examples

These questions arose in the course of research at

theCOREM(Center forObservation andResearch

onMathematics Education, entity formed of a lab-

oratory and a school establishment by the IREMof

the University of Bordeaux (1973–1999)) on the

possibility of assigning tomathematical situations
the job ofmanagingwhat the teacher cannot say or

the student cannot yet understand from a text, and

in the clinical observation of students failing selec-

tively in mathematics:

(a) The Case of Gaël. Gaël (8 years old) always

responded in the manner of a very young

child. It was not a developmental delay, but

rather a posture. By replacing some lessons

with “games” in which he could take a chance

and see the effects of his decisions and by

getting him to make bets – without too much

risk – on whether his answers were right, the

experimenters saw his attitude changes radi-

cally and his difficulties disappear. A new

“didactical contract” with him had been

constructed (Brousseau and Warfield 1998).

(b) The Age of the Captain. Researchers at the

Institute for Research on the Teaching of

Mathematics (IREM of Grenoble) offered

students at age 8 the following problem:

“On a boat there are 26 sheep and 10 goats.

How old is the captain?” 76 of the 97 students

answered, “36 years old.”

This experiment produced a scandal. Some

accused the teachers of stupefying their students;

others reproached the researchers for “laying stu-

pid traps for the children.” In a letter to the exper-

imenters, G. Brousseau indicated to them that it

was a matter of an “effect of the contract” for

http://dx.doi.org/10.1007/978-94-007-4978-8_47
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which neither the students nor the teachers were

responsible. So the researchers asked the students:

“What do you think of this problem?” The stu-

dents responded: “It is stupid!” The researchers

ask: “Then why did you answer it?” The students

answered: “Because the teacher asked for it!” The

researchers ask: “And if the captain was 50 years

old?” The students made a response: “The teacher

didn’t give the right numbers.” A similar experi-

ment done with established teachers produced the

same behavior: for various reasons (such as the

hope of an explanation that the teacher wanted to

hear) the subjects produce the answer least incom-

patible with their knowledge, even when they see

very well that it is false: the obligation of answer-

ing is stronger than that of answering correctly.

Despite these explanations, for years the initial

observation elicited strong criticisms of the work

of the teachers (Sarrazy 1996).

Didactical and Ethical Responsibility

The teacher has the responsibility of

supporting the collective and individual activ-

ity of the students, of attesting in the end to

the truth of the mathematics that has been

done, of confirming it or giving proofs, of

organizing it in the standard way, of identify-

ing errors that have been or might be made

and passing judgment on them (without pass-

ing judgment on their authors), and of provid-

ing the students with a moderate amount of

individual help (as with the natural learning of

a language.) Occasional individual help con-

forms to the collective process of mathemati-

cal communities. If the teacher finds himself

acceding to an institutional function, he may

be subject to obligations of equity and of

means for which the responsibility is shared

with the institution. Decisions made about the

teacher and the students based on individual

and isolated results are a dangerous absurdity.

Experts, parents, and society share the respon-

sibility for the effects of such decisions.

Paradoxes of the Didactical Contract

The teacher wants to teach what she knows to

a student who does not know it. This has many

consequences, among them are as follows:
(a) Custom can determine pedagogical and psy-

chological relationships, but not those proper

to new knowledge, because new knowledge

is a specific unexpected adventure that con-

sists of a modification and an augmentation of

old knowledge and of its implications. Thus,

it cannot be known in advance by the student:

the teacher can only commit himself to gen-

eral procedures, and for her part the student

cannot commit herself to a project of which

she does not know the main part.

(b) Paradox of devolution: the knowledge and

will of the teacher need to become those of

the student, but what the student knows

or does by the will of the teacher is not

done or decided by his own judgment. The

didactical contract can only succeed by being

broken: the student takes the risk of taking on

a responsibility from which he already

releases the teacher (a paradox similar to

that of Husserl).

(c) Paradox of the said and unsaid (consequence

of the preceding): it is in what the teacher

does not say that the student finds what she

can say herself.

(d) Paradox of the actor: the teacher must pre-

tend to discover with his students knowledge

that is well known to him. The lesson is

a stage production.

(e) The paradox of uncertainty: knowledge man-

ifests itself and is learned by the reduction of

uncertainty that it brings to a given situation.

Without uncertainty or with too much uncer-

tainty, there is neither adaptation nor learn-

ing. The result is that the optimal progression

of normal individual or collective learning is

accompanied by a normal optimal rate of

errors. Artificially reducing it damages both

individual and collective learning. It is useful

to arrange things so that it is not always the

same students who are condemned to supply

the necessary errors.

(f) As in the case of learning, excessive or pre-

mature adaptation of complex knowledge to

conditions that are too particular leads it to be

replaced by a simplified and specific knowl-

edge. This can then constitute an epistemo-

logical or didactical obstacle to its later
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adaptation to new conditions. (For example,

division of natural numbers is associated

with a meaning, sharing, which becomes an

obstacle to understanding it in the case where

a decimal number needs to be divided by

a larger decimal number, e.g., 0.3/0.8.)

(g) The paradox of rhetoric and mathematics. To

construct the students’ mathematical knowl-

edge and its logical organization, the teacher

uses various rhetorical means, designed to cap-

ture their attention. The culture, pedagogical

procedures, and even mathematical discourse

(commentaries on mathematics) overflow with

metaphors, analogies,metonyms, substitutions,

word pictures, etc. The mathematical concepts

are often constructed against these procedures

(e.g., “correlation is not causation”). The

teacher should thus at the same time as an

educator teach the culture with its historical

mistakes and as a specialist cause the rejection

of the parts that science has disqualified.

These paradoxes can only be unraveled by spe-

cific situations and processes carefully planned out

in the light ofwell-shared knowledge of mathemat-

ical and scientific didactique (Brousseau and Otte

1989; Brousseau 2005).

Observations of Reactions of Teachers to

Difficulties

These observations and the experimental and the-

oretical studies of the didactical contract make it

possible to understand and predict the cumulative

effects of teachers’ decisions.

The contract manifests itself essentially in

its ruptures. These are revealed by the reac-

tions of the students or by the interventions of

the teachers, and they can be classified as

follows:

(a) Abandonment. The teacher does not react to

an error made by the students (e.g., because it

would be too complicated to explain it), or

she repeats the question identically or she

gives the complete solution.

(b) The progressive reduction or manipulation

of the students’ uncertainty, using a great

variety of means:
• Bringing in mathematical, technical, or

methodological information
• Decomposition of the problem into inter-

mediate questions (decomposition of the

objectives)

• Use of various extra-mathematical

rhetorical means: analogies, metaphors,

metonyms, or mnemonic minders (the

“Topaze effect”)
(c) Critical commentary on the errors, the ques-

tion, the knowledge, or the material

(d) A trial of the student and its consequences:

penalties, discrimination, and individualization

In case of failure, the contract obligates the

teacher to try again. The new attempt either

replaces the preceding one or criticizes and

corrects it, making of it a new teaching object

(a meta-process).

For each of these types of response,

there are conditions under which it is the

most appropriate response; thus there is no
universal response.

For example, Novotná and Hošpesová (2007)

identify and classify the behaviors whose system-

atic repetition generates Topaze effects:

1. Explicitly, the teacher

(a) Gives the steps of the solution and trans-

forms it into the execution of a sequence of

tasks

(b) Asks questions in a sequence that man-

dates the procedures of the solution

(c) Gives warnings about a possible error

(d) Enumerates previous experiences or

knowledge, pointing out analogies with

problems that have previously been

resolved or are obvious or well known

2. Implicitly, he

(a) Reformulates students’ propositions or his

own

(b) Uses “guide” words

(c) Pronounces the first syllable of words

(d) Poses new questions that orient the student

towards the solution

(e) Shows doubt about dubious initiatives

Their research confirms that the resulting

Topaze effects go unnoticed but have a high

cost. The students, apparently active, become

dependent on this aid and lose their confidence

in themselves. An error is understood to be a

transgression of the didactical contract and
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proof itself, badly supported, becomes something

to be learned rather than understood.

By using jointly the notions of milieu, of situa-
tion, and of the didactical contract, Perrin-Glorian

andHersant (2003) were able to show in numerous

examples on the one hand what the student and

the milieu are in charge of and thus the occasions

for learning that are their responsibility, and on

the other hand the help brought in by the teacher.

Predicting and Explaining Certain

Long-Term Effects

The uncontrolled recursive resumption of the

same type of response leads to drifting and inev-

itable failures. For example, for the students

studying the procedure for solving problems by

the same pedagogical methods, studying theo-

rems is just as costly, less sure, and less useful.

As another example, a sequence of meta-

slippages contributed to the failure of the reform

of “modern math”: the foundations of mathemat-

ics were interpreted by “naı̈ve” set theory, which

was itself formalized into algebra. This was met-

aphorically represented by “graphs,” which

were finally interpreted in vernacular language.

Each representation betrayed the preceding one

slightly and supported new conventions, and the

slippages were ultimately uncontrollable. In the

absence of didactical situations and proven epis-

temological processes, varying the types of

response seems to be the best strategy.

Enforcing requirements based on the results of

individuals leads to a mincing up of the objec-

tives, to the abandonment of high-level objec-

tives, and to addressing the objectives by painful

behaviorist methods. These slow the learning and

lead to an individualization that slows it yet fur-

ther. Each of these tends to destroy the role of

provisional knowledge and to augment mechani-

cally the time for teaching and learning without

positive impact on the results.

Specifying the means of teaching a subject

involves precise and specific protocols for per-

formances that are known and accepted by the

population. Specifying required results for the

teachers as for the students has absolutely no

scientific basis. Its disastrous effects, predicted

since 1978, have been observable for 40 years.
The mean rate of success is a “regulated” var-

iable of the system. Otherwise stated, the global

progress of all the students is less rapid if one

requires at every stage a 100 % rate of success.

The conception of mathematical activity as an

adventure and a collective practice makes it pos-

sible to mitigate the effects of difference in

rhythms of learning.

It seems that today the requirements of the

different partners of teaching towards one

another are less and less compatible with each

other, perhaps because of the variety of possibil-

ities, of offers, and of perspectives provided by

numerous ill-coordinated sciences.

The experiments on teaching rational and dec-

imal numbers (Brousseau 1997) or statistics and

probability (Brousseau et al. 2002) prove that it is

possible to organize efficient and communicable

processes with the help of didactical contracts

based on the nature of the knowledge to be

acquired.

Extensions

Sarrazy (1996, 1997) studied the pitfalls of these

meta-didactical slippages and more particularly

those that are consequences of a teaching that

aims at making the contractual expectations

explicit, frequently taking the form of the teach-

ing of metacognitive or heuristic procedures – or

even of algorithms for solving problems.

Complementing the work engaged in by

Schubauer-Léoni (1986) in a psychosocial

approach to the didactical contract, Sarrazy rad-

icalized the paradox of the consubstantial rule

(A rule does not contain in itself its conditions

for use) of the contract at the intersection of the

theory of situations and Wittgensteinian anthro-

pology (Wittgenstein 1953). Contrary to the psy-

chological or linguistic interpretations of the

contract (such as that of “the age of the cap-

tain”), he showed how these slippages lead to

a veritable demathematization of teaching by

a displacement of the goals of the contract.

These works also made it possible to establish

the primacy of the role of situations and that of

school cultures (Sarrazy 2002; Clanché and Sarrazy

2002; Novotná and Sarrazy 2011) and family

habits conceived as backgrounds (Searle 1979)
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of the didactical contract. These backgrounds

make it possible to explain the differences in

sensitivity to the didactical contract, that is, the
objective differences of the various positions of

the students with regard to the implicit elements

of the contract and thus of their spontaneous

(and not necessarily conscious or thought-out)

“representations” of the division of responsibil-

ities in the contract (e.g., some of the students

answer that the captain is 36 years old, others

refrain from giving an answer, still others finally

say that they do not know, and some of them

authorize themselves to declare that this prob-

lem is absurd). These results reaffirm the impor-

tance of the Theory of Situations and notably the

explicative power of the contract, but also

underline the interest of considering the peda-

gogical ideologies of the teachers and the

cultures of the students in the interpretation of

contractual phenomena. These works together

lead into a perspective of study baptized

“anthropo-didactique,” situating the phenomena

of the didactical contract in the double perspec-

tive mentioned above. This theoretical current

has made it possible to reinterpret in a fertile way

a certain number of phenomena of teaching (lato

sensu), as much on the micro-didactical level as

the macro-didactical, and of their interactions,

such as school inequities (Sarrazy 2002), school

difficulties (Clanché and Sarrazy 2002; Sarrazy

and Novotna´ 2005) heterogeneities, didactical

time and didactical visibility (Chopin 2011),

student teacher interactions, and the effects of

the genre. These themes have traditionally been

studied by connected disciplines (psychology,

sociology, anthropology, etc.) but independently

of the didactical dimensions which in fact

are necessarily involved in these phenomena.

This approach thus realized the study of

what Brousseau designated in 1991 “didactical

conversions”: “The causes of phenomena of

a non-didactical nature can only influence

didactical phenomena by the intermediary

of elements having their origin in didactical

theory.” This “reinterpretation” of a non-

didactical phenomenon in didactical terms

is a didactical conversion (Brousseau and

Centeno 1991, p. 186).
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ordinaires. Rech Didact Math 23(2):217–276

http://dx.doi.org/10.1007/978-94-007-4978-8_47


Didactic Engineering in Mathematics Education 159 D

D

Sarrazy B (1996) La sensibilité au contrat didactique: rôle
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Definition

In mathematics education, there exists a tradition

of research giving a central role to the design

of teaching sessions and their experimentation

in classrooms. Didactical engineering, which

emerged in the early 1980s and continuously

developed since that time, is an important form

taken by this tradition. In the educational
community, it mainly denotes today a research

methodology based on the controlled design

and experimentation of teaching sequences and

adopting an internal mode of validation based

on the comparison between the a priori and

a posteriori analyses of these. However, since its

emergence, the expression didactical engineering

has also been used for denoting development

activities, referring to the design of educational

resources based on research results or construc-

tions and to the work of didactical engineers.
History

From its emergence as an academic field of study,

mathematics education has been associated with

the design and experimentation of innovative

teaching practices, in terms of both mathematical

content and pedagogy. The importance to be

attached to design was early stressed by

researchers as Brousseau and Wittman, for

instance, who very early considered that mathe-

matics education was a genuine field of research

that should develop its own frameworks and prac-

tices and not just a field of application for other

sciences such as mathematics and psychology.

The idea of didactical engineering (DE),

which emerged in French didactics in the early

1980s, contributed to firmly establish the place of

design in mathematics education research. Foun-

dational texts regarding DE such as Chevallard

(1982) make clear that the ambition of didactic

research of understanding and improving the

functioning of didactic systems where the teach-

ing and learning of mathematics takes place

cannot be achieved without considering these

systems in their concrete functioning, paying the

necessary attention to the different constraints

and forces acting on them. Controlled realizations

in classrooms should thus be given a prominent

role in research methodologies for identifying,

producing, and reproducing didactic phenomena,

for testing didactic constructions. As a research

methodology, DE emerged with this ambition,

relying on the conceptual tools provided by the

Theory of Didactical Situations (TDS), and

conversely contributing to its consolidation and
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evolution (Brousseau 1997). It quickly became a

well-defined and privileged methodology in the

French didactic community, accompanying

the development of research from elementary

school up to university level as evidenced in the

synthesis proposed at the 1989 Summer School of

Didactics of Mathematics (Artigue 1990, 1992).

From the 1990s, DE migrated outside its

original habitat, being extended to the design of

teacher preparation and professional development

sessions, used by didacticians from other disci-

plines, for instance, physical sciences or sports,

and also by researchers in mathematics education

in different countries. Simultaneously, the pro-

gressive shift of research attention towards

teachers increased the use of methodologies

based on naturalistic observations of classrooms,

leading to theoretical developments and results

that, in turn, affected DE.Moreover, design-based

research perspectives emerged in other contexts,

independently of DE (Design-Based Research

Collaborative 2003). These evolutions and the

resulting challenges are analyzed in Margolinas

et al. (2011).
DE as a Research Methodology

As a research methodology, DE is classically

structured into four different phases: preliminary

analyses; design and a priori analysis; realization,

observation, and data collection; and a posteriori

analysis and validation (Artigue 1990, 2009).

Preliminary analyses usually include three

main dimensions: an epistemological analysis of

the mathematical content at stake, an analysis of

the conditions and constraints that the DE will

face, and an analysis of what educational research

has to offer for supporting the design.

In the second phase, design and a priori analy-

sis, research hypotheses are engaged in the pro-

cess. Design requires a number of choices, from

global to local. They determine didactic variables,

which condition the interactions between students

and knowledge, between students and between

students and teachers, thus the opportunities that

students have to learn. In line with TDS, in design,

particular importance is attached:
To the search for fundamental situations, i.e.,

mathematical situations encapsulating the

epistemological essence of the concepts

To the characteristics of themilieuwith which the

students will interact in order to maximize the

potential it offers for autonomous action and

productive feedback

To the organization of devolution and institution-

alization processes by which the teacher, on the

one hand, makes students accept the mathemat-

ical responsibility of solving the task and, on

the other hand, connects the knowledge they

produce to the scholarly knowledge aimed at

The a priori analysis makes clear these choices

and their relation to the research hypotheses.

Conjectures are made regarding the possible

dynamic of the situation, students’ interaction

with the milieu, students’ strategies, their evolu-

tion and their outcomes, about teacher’s neces-

sary input and role. Such conjectures regard not

individuals but a generic and epistemic student

entering the mathematical situation with some

supposed knowledge background and accepting

to enter the mathematical game proposed to her.

The actual realization will involve students with

their personal specificities and history, but the

goal of the a priori analysis is not to anticipate

all these personal behavior; it is to build

a reference with which classroom realizations

will be contrasted in the a posteriori analysis.

During the phase of realization, data are

collected for the analysis a posteriori. The nature

of these data depends on the precise goals of

the DE, the hypotheses tested, and the conjectures

made in the a priori analysis. The realization can

lead to some adaptation of the design in itinere,

especially when the DE is of substantial size.

These adaptations are documented and taken

into account in the a posteriori analysis.

A posteriori analysis is organized in terms of

contrast with the a priori analysis. Up to what

point the data collected during the realization

support the a priori analysis? What are the signif-

icant convergences and divergences and how to

interpret them? The hypotheses underlying the

design are put to the test in this contrast. There

are always differences between the reference pro-

vided by the a priori analysis and the contingence
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analyzed in the a posteriori analysis. The valida-

tion of the hypotheses underlying the design does

not, thus impose perfect match between the two

analyses. Moreover, the validation of the research

hypotheses may require the collection of comple-

mentary data to those collected during the class-

room, especially for appreciating the learning

outcomes of the process. Statistical tools can be

used, but what is essential is that validation is

internal, not in terms of external comparison

between control and experimental groups.

These are the characteristics of DE as research

methodology when associated with the concep-

tion of a sequence of classroom sessions having

a precise mathematical aim. However, as shown

in Margolinas et al. (2011), this methodology has

been extended to other contexts such as teacher

education, more open activities such as project

work or modeling activities, and even mathemat-

ical activities carried out in informal settings. In

these last cases, the content of preliminary ana-

lyses must be adapted; what the design ambitions

to control in terms of learning trajectories and the

reference provided by the a priori analysis cannot

exactly have the same nature.
Realizations

The first exemplars of DE research regarded ele-

mentary school. Paradigmatic examples are the

long-term designs produced by Brousseau, on the

one hand, and by Douady, in the other hand, for

extending the field of numbers from whole num-

bers to rational numbers and decimals (Brousseau

et al. 2014; Douady 1986). The two constructions

were different, but they proved both to be success-

ful in the experimental settings where they were

tested, and they significantly contributed to the

state of the art regarding the learning and teaching

of numbers. Beyond that, they had theoretical

implications. The development of the tool-object
dialectics and the identification of the learning

potential offered by the organization of games

between mathematical settings by Douady are

intrinsically linked to her DE for the extension of

the number field; the idea of obsolescence of

didactic situations emerged from the attempts
made at reproducing Brousseau’s DE year after

year. These are only two examples among the

many we could mention. DEs were progressively

developed at all levels of schooling, covering a

diversity of mathematical domains and addressing

a diversity of research issues. At university level,

for instance, paradigmatic examples remain the

construction developed by Artigue and Rogalski

for the study of differential equations, combining

qualitative, algebraic, and numerical approaches to

this topic (Artigue 1993) and that developed by

Legrand for the teaching of Riemann integral

within the theoretical framework of the scientific

debate (Legrand 2001). Both were experimented

with first year students and showed their resistance

to students’ diversity. Constraints met at more

advanced levels of schooling contributed to the

deepening of the reflection on an optimized orga-

nization of the sharing of mathematical responsi-

bilities between students and teacher in DE and to

the softening of the conditions and structures often

imposed to design at more elementary levels. DE

was also enriched by its use in other domains

than mathematics and by researchers trained in

other cultural traditions. A good example of it is

provided by its use in sports, already mentioned,

and by the elaboration of DE combining the

theoretical support of TDS and that of semiotic

approaches (cf. for instance, (Falcade et al. 2007;

Maschietto 2008) using such combination for

studying the educational potential of digital

technologies). More globally, ICT has always

been a privileged domain for DE, for exploring

and testing the potential of new technologies,

and for supporting technological development as

well as theoretical advances in that area.

Another interesting example is the use of DE

within the socio-epistemological framework in

mathematics education (Farfán 1997; Cantoral

and Farfán 2003).
Challenges and Perspectives

DE developed as a research methodology, but

DE from the beginning had also the ambition of

providing a model for productive interaction

between fundamental research and action
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on didactic systems. DEs produced by research

were natural candidates for supporting such

a productive interaction. Quite soon, researchers

however experienced the fact that the DEs they

had developed and successfully tested in experi-

mental setting did not resist to the usual dissemi-

nation processes. This problem partly motivated

the shift of interest towards teachers’ representa-

tions and practices. Addressing it requires to

clearly differentiate research DE (RDE) and devel-

opment DE (DDE), acknowledging that these can-

not obey the same levels of control. In Margolinas

(2011), this issue is especially addressed by

Perrin-Glorian through the idea of DE of sec-

ond generation, in which the progressive loss

of control that the elaboration of a DDE

requires is co-organized in collaboration with

teachers and illustrated by an example. Such a

strategy implies a renewed conception of dis-

semination of research results, in line with the

current evolution of vision of relationships

between researchers and teachers.

Another challenge is the issue of relationships

between the tradition of DE described above and

the different forms of designwhich are developing

in mathematics education under the umbrella of

design-based research, reflecting the increased

interest for design in the field, or the vision of

design introduced in the Anthropological Theory

of Didactics (ATD) in the last decade in terms of

Activities of Study and Research (ASR) and

Courses of Study andResearch (CSR) (Chevallard

2006). Despite de fact that ATD and TSD

emerged in the same culture, the visions of

design they propose today present substantial

differences. Establishing productive connec-

tions between the two approaches without

losing the coherence proper to each of them

is a problem not fully solved but also

addressed in Margolinas (2011).
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Didactical Situation

A didactical situation in mathematics is

a project organized so as to cause one or some

students to appropriate some piece of mathemat-

ical reference knowledge. (The organizer and the

student may be individuals, a population,

institutions, and so on.)

Components

Every didactical process is a sequence of situa-

tions, each pertaining to one of the following

three types:

A “situation of devolution” in which the teacher

sets the students up:

– to accept boldly and confidently the

challenge of an engaging and instructive

mathematical situation whose instruc-

tions he gives in advance: conditions,

rules, goal, and above all the criterion

for success

– and to do it without his help, on their own

responsibility (Brousseau1997, pp. 230–235)

A “mathematical situation” that supports the

students in autonomous mathematical activi-

ties, both individual and collective, that repre-

sent those in use by mathematicians. Rather
than looking to gain credit for themselves, the

students are engaged in:

– Producing “new” statements and discussing

their validity

– Making decisions, formulating hypotheses,

predicting and judging their consequences,

attempting to communicate information,

producing and organizing models, argu-

ments and proofs, etc., adequate for certain

precise projects

– and evaluating and correcting by them-

selves the consequences of their choices

It is thus not the students who are in question,

but some conjectures and some knowledge

(Brousseau 1997, pp. 230–235).

A “situation of institutionalization” in which

the teacher:

– Takes note of the progress of the mathe-

matical situation, of the questions and

answers that have been obtained or studied

from it, and of those that have emerged, and

places them within the perspective of the

curriculum

– Distinguishes among the pieces of knowl-

edge (connaissances) that have appeared

those that have revealed themselves to be

false and those that are correct, and among

the latter those that will serve as references,

presenting in that case the canonical way of

formulating them

– And draws conclusions for the organization

of further sequences (exercises, problems,

etc.) (Brousseau 1997, pp. 235–243).

Teaching methods

Teaching methods can be distinguished first by

the interpretation, the role, and the importance

assigned to each of the components. Here are

two very different examples of this:

Example 1: In certain methods, devolution con-

sists of a prerequisite teaching of new knowl-

edge (a lecture), followed by examples and

exercises, and followed by the presentation

of problems whose autonomous solution by

the students constitutes the mathematical situ-

ation. Institutionalization consists of correc-

tion, evaluation, and the conclusions that the

teacher draws from them. Sometimes the
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mathematical situation is considered only as

a means of verifying the individual learning

produced by the lecture.

Example 2: In other methods, devolution is

reduced to the organization, presentation, and

staging of an individual or collective mathe-

matical situation aimed at provoking activities

and processes like those of mathematicians:

a search for solutions or proofs but also

production of questions, hypotheses or conjec-

tures, reformulations, definitions and study

of objects, sorting, debates, challenges,

etc. Learning is the means and the product of

this activity. Institutionalization then consists

of identifying and organizing, among the cor-

rect pieces of knowledge produced by the stu-

dents, those consistent with common usage

and with accepted mathematical knowledge,

and among those the ones that are sufficiently

“acquired” by all of the students so that the

teacher and students can refer to them with

each other in future mathematical situations.

The “lecture” consists of a conclusion and

of putting things in order. Exercises are

a means of training available to the students

(Margolinas et al. 2005; Illustrative examples

in Warfield 2007).
Origin and Necessity of the Concept of
“Didactical Mathematical Situation”

The Reform of the Foundations (1907–1980)

The term “didactical situation” appeared in the

1960s with the meaning “mathematical situation

for teaching.”

The new mathematical concepts on which

teaching was to be rebuilt were communicated

by formalized texts in a symbolic language

unintelligible to students and/or by reformulations,

metaphorical representations, and ambiguous

commentaries. On the other hand, they referred

necessarily to examples taken from the classical

mathematics that they were reorganizing. The

“fundamental” concepts were thereby postponed

to the end of the studies.

The challenge was thus to imagine conditions,

situations, that could induce in the students the
geneses of fundamental mathematical concepts,

in a form and by processes comparable to those

put into operation by mathematicians before the

final presentation of their results, in the process

mathematical development. This idea found jus-

tification in the work of the period: the acquisi-

tion of language does not follow the classic

formulation of its grammar, and Piaget identified

certain mathematical structures in the genesis of

logical thought in children.

Conceiving of similar geneses, and especially

imagining conditions capable of inducing them,

could only arise from the competence of the

mathematical community. It did so through

a gigantic effort of its researchers and of its

teachers, realizing as it did so the aspirations of

pedagogues like Dewey, Montessori, or Freinet.

But diffusing these conceptions more widely,

against the traditional culture of teaching, posed

yet more redoubtable problems, which have not

at this point been surmounted.

Learning Mathematics by Doing It Reverses

the Classic Pedagogical Order

The teaching of mathematics is based on a text or

some texts that express it in a canonical way (i.e.,

in the order: definitions, properties and theorems,

and finally proofs). The classical conception

consists of teaching using the texts first, so that

a student could never argue that he or she is being

required to use a piece of knowledge that was not

first revealed and taught. Teaching pieces of

knowledge before needing to use them gives

the appearance of being a “rational” method,

but it introduces a disassociation (learn with

metamethods that have no relationship with the

object and its use), an inversion (learn terms

before understanding them and doing anything

with them), and finally teleological requirements:

the student is blamed in the course of learning

for not having first learned what is in fact

the goal of the teaching that is going on. This

epistemological error greatly limits the field of

application, the age of learning, and the degree of

success of the classical method.

Conversely, direct acculturation to specific

mathematical practices that can produce these

texts brings their learning closer to that
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of vernacular language or natural thought.

Everything then rests on the power of the

situations to induce in the children the “process

of mathematization.”

It would be absurd and detrimental to want to

exclude some method or to uniformly recom-

mend it over some other. The conditions to

which each is best adapted must be scientifically

studied and their advantages combined. For

example, situations of cooperative discovery

and collective adventures create homogeneity

and motivation and make it possible to acquire

the classical practices by use. Exercises can help

in doing well and rapidly what is worthwhile and

has been understood (Brousseau 1992).

The Project of a Mathematical Science:

Didactique

The organization of these mathematical situations

and their succession obey various reasons: mathe-

matical, epistemological, rational, empirical, ideo-

logical, etc. Their scientific study combines:

1. The (anthropological) observation and the

analysis (semiological) of the practices and

conceptions of the teachers and of the students

2. The conception, realization, and experimental

study of original mathematical situations appro-

priate to each of the pieces of mathematical

knowledge aimed for (▶Didactic engineering

in mathematics education)

3. The inventory of possible choices, their

modeling in the form of situations, the

experimental and theoretical study of their

conditions and of their properties, and the

creation of appropriate instruments of analysis

(theory of didactical situations)

The conception of these situations requires prior

and specific mathematical study of the knowledge

to be taught, along with that of its historical

genesis, of its epistemological properties, and

of its possible didactical geneses and their

properties. But the scientific confrontation of

these speculations with actual teaching is

fundamental.

The theory of situations, its concepts, and its

research methods is one of the most ambitious

among the numerous scientific approaches to the

phenomenon of didactique.
But well before being able to offer teachers, in

the name of mathematicians, an aid, or some

ready-to-implement solutions for teaching math-

ematics, didactique must describe, understand,

and explain in a scientific manner mathematical

activity and its possible didactical transpositions.
Didactique plays a role in the reorganization

and transformation of mathematical knowledge.

Its results are thus first addressed to the commu-

nity of mathematicians, to whom falls – for good

reasons – the responsibility towards society of the

reference in teaching materials to the established

knowledge of its specialty. Didactique of mathe-

matics requires specific concepts and methods of

study. It thus joins logic, computer science, epis-

temology, history of mathematics, and so on as

one of the mathematical sciences. It takes charge

of the knowledge of everything that is specific to

the discovery, the diffusion, or the appropriation

of each piece of mathematical knowledge, new or

not, that results from the adventures specific to it.

It extends, enriches, and puts to the test the gen-

eral contributions of classical social sciences,

which are indispensible but insufficient for

clarifying all the facets of this teaching.
Mathematical Situations

Definition

Every mathematical concept is the solution of at

least one specific system of mathematical condi-

tions, which itself can be interpreted by at least

one situation, for example, a game, whose solu-

tion (decision, message, argument) is one of the

typical manifestations of the concept. A situation

is composed of a milieu and a project. The

duration of the life of a mathematical situation

(the time of studying it) can vary from

a few seconds to several centuries for humanity

or several months for teaching.

Examples

Example 1: Children 4–5 years old. From a col-

lection of thirty or so familiar objects, 5 or 6 are

hidden in a box by a child in the morning. In the

afternoon, she is supposed to enumerate them to

another child, who confirms the presence or

http://dx.doi.org/10.1007/978-94-007-4978-8_44
http://dx.doi.org/10.1007/978-94-007-4978-8_44
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absence of the objects she names. The solution of

this game is the creation, enumeration, and use of

lists. Knowing neither how to read nor how to

write, the children represent the objects in their

own way (pictograms) to distinguish them, first

individually and then collectively. The lists of

symbols represent sets; belonging or not, conjunc-

tions and disjunctions of characters are used,

corrected, understood, and formulated in vernac-

ular language (Pérès 1984; Digneau 1980).

Example 2: Children 10–11 years old. To be

certain of the number ofwhitemarbles contained in

a firmly closed opaque bottle with a known number

of marbles, some white and some black, students

invent hypothesis testing and themeasure of events

(33 short sessions) (Brousseau et al. 2002).

A great many researchers have imagined

and studied various types of situations destined

for all sorts of notions, for all levels of school

and even university. See, for example,

Bessot (2000), Laborde and Perrin-Glorian

(2005), Bloch (2003).

Types of Mathematical Knowledge,

Reference Knowledge (Savoirs)

Classical methods forbid the teacher from tolerat-

ing without immediate correction, the manifesta-

tion of anything contrary to written established

mathematics. A genuine mathematical activity

necessarily gives rise to all sorts of knowledge.

Some is knowledge sought for – these are the

references, recognized as correct, true and

known: they are professed and expected. But

there also necessarily appear pieces of knowledge

that are ill made, ill formed, incomplete, doubtful,

false, or even inexpressible. They are “knowledge”

in the sense of “the trace of an encounter.” Their

presence, whether or not firmly nailed down, is

indispensible to thought. For example, a theorem

that the student knows verywell (savoir), but about

whose usefulness in a situation is unsure, functions

provisionally as a simple piece of nonestablished

knowledge (connaissance).

The teacher cannot intervene in this flow of

activities without blocking its functioning and

must therefore delegate the responsibility for

exercising a pragmatic penalty to the initiatives

of the students that result from their knowledge.
He entrusts it to amilieu that is clearly stripped of
teleological or pedagogical intentions [its reac-

tions depend neither on the intended goal nor on

the individuals].

The milieu of a situation is what the students

exercise their actions on and what gives them

objective responses. The teacher thus entrusts to

themilieu the job of showing the students’ errors by

their effects, without using an argument of author-

ity or revealing any intentions. The milieu may

comprise informative texts; material objects;

other students, cooperating or concurrent; and so

on. To this must be added the established knowl-

edge of the student as well as her memories of

relevant previous events, and objective conditions,

that may not be known to the student but that

intervene in her choices and in the effects of her

decisions. The cognitive variables of the situation
are those whose value has an influence on the issue

of the situation or on the knowledge developed.

These variables are didactical if their value can be

chosen by the teacher (the sex of the students may

influence the progress of a situation, but it is not a

didactical variable). The milieu can be interpreted

metaphorically by games that present some states

that are permissible and some that are excluded,

rules of action, and issues of which one would be

the goal sought (Warfield 2007).

Examples of Milieux

1. Cabri geometry permits the student to realize,

in the context of geometrical objects and

transformations, which of her projects are

constructible, that is, compatiblewith the axioms

(Laborde et al. 1995). The projects lead the

students to gain knowledge of, formulate, and

test what the milieu permits them to glimpse.

2. Analysis of a situation. The reader will find an

example of the analysis of a didactical situation

(the Race to 20), of its milieu, of the strategies

used by students, of the theorems in action that

support them, and of the didactical methods

that make it possible to lead them to a complete

proof and then to extend it so as to have

them reinvent an algorithm: the search for

the remainder of a Euclidean division, in

Brousseau (1997, pp. 3–18). This work also

includes numerous other examples.
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The project is an objective, a final state of the

milieu, the response to a question, or even a

pretext for exploration. It is what explains,

justifies, or condemns after the fact the choices

that have been chosen or ventured by the subject.

The resolution is the occasion to put to trial

not the student, but a way of knowing.

Remarks: The milieu of a situation is not

a natural milieu and does not turn mathematics

into a sort of experimental science. The project

is essential, and its goal is to establish the

consistency of certain statements.

Different branches of mathematics developed

in different milieux: geometry in the knowledge

of space, probability in the statistics of games,

algebra in arithmetic, arithmetic in the measure-

ment of amounts, etc.

In elementary teaching, knowledge of these

milieux is neither spontaneous nor contained in

their mathematical interpretation. For example,

the knowledge that is useful for finding one’s way

around a big city merits specific work that cannot

be reduced to some geometry.

Types of Mathematical Situations

Characteristic of Activities, of Pieces of

Knowledge, and of Pieces of Mathematical

Learning

The mathematical knowledge of a student mani-

fests itself in her interactions with a milieu, as

a means of attaining or maintaining a desired

state. These interactions are grouped in four

types of situations which are, in the order of

didactical necessity, inverse to the ordinary chro-

nological order:

1. Situation of reference: A person (student or

teacher) refers the person asking to a piece of

mathematical knowledge (a proof, a theorem,

a definition, etc.) that belongs to their common

repertoire (Perrin-Glorian 1993).

2. Situation of argumentation (of proof):

A proposer communicates to an opponent an

argument, an element of proof. He makes use

for that of their common repertoire which his

message tends to augment. The argumentmakes

reference to a milieu and a (mathematical)

project in common that gives it its meaning

and its value. The two speakers have the same
information, in particular, on the milieu, the

same rights of refutation, and the same interest

in arriving at a consistent agreement (for an

action on the milieu).

3. Situation of information (communication): The
transmitter and receiver cooperate on an action

on the milieu, in whose success they are inter-

ested and which depends on their joint action.

Neither of the two has at the same time all of

the information and all of the necessary means

of action. They exchange messages in order to

realize a common mathematical project.

4. Situation of action: A subject intervenes on the

milieu to modify it with a determined aim. She

observes the effect of her actions and attempts

to anticipate them by constructing pieces of

knowledge, conscious and explainable or not.

This situation encompasses all of the others,

but it extends beyond them by stimulating the

existence of inexpressible and possibly even

unconscious models of action.

Each of these types of situation creates distinct
typical motivations (modify a milieu, communi-

cate some information, debate the validity of a

declaration, establish a reference) that mobilize

and expand the corresponding repertoires

(implicit models of action, semiological or

linguistic repertoires, logical repertoires, mathe-

matics or metamathematics, established knowl-

edge and theory) which are themselves acquired

according to specific different modes of learning
or acculturation.

The actual situations are, every one of them,

specific to a precise piece of knowledge.

This is the level which must be appealed to in

order to judge the relevance of the contributions

of other scientific domains (pedagogy, psychol-

ogy, sociology, etc.).

The Processes

Different modes of composition and articulation

of these elementary situations make it possible

to create composite situations and sequences of

situations that form processes:

1. Process of mathematization: A sequence

of autonomous mathematical situations that

are introduced by didactical interventions

of the teacher and that work together towards
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the construction of the same complex knowl-

edge (e.g., rational and decimal numbers

(Brousseau et al. 2004, 2007, 2008, 2009)).

2. Genetic situation: It introduces and without

other external intervention generates the

sequence of situations that lead to the acquisi-

tion of a concept (e.g., how many white

marbles [article cited]).

The didactical work of the teacher then

consists of maintaining the intensity and the

relevance of the exchanges and implementing

their progress and their conclusion. Examples of

process: on areas, Perrin-GlorianM.J. (1992), and

on geometry, Salin M.H., Berthelot R. (1998).
Some of the Results of Research on
Didactical Situation

The notion of didactical situationwas used inmany

research projects. It gave rise to numerous reflec-

tions and, with modifications, was expanded in

more work than it is possible to summarize or

cite here:

1. One of its first results was to establish that adap-

tation to certain conditions tends to render it

more difficult to adapt to others and thus creates

the phenomenon of didactical obstacles, then to

show that the history of mathematics presents

phenomena similar to the epistemological obsta-

cles detected by G. Bachelard, and finally, to

take advantage of this phenomenon in teaching

by use of situations presenting “jumps in

informational complexity” (▶Epistemological

Obstacles in Mathematics Education)

2. Research on situations had the goal of furnish-

ing alternatives to the classical conceptions

that showed their limitations in the face of

the influx of knowledge to be taught and of

the fundamental reorganizations necessitated

by that influx. This research showed the

importance of the role of the unsayable in

mathematical situations and of the unsaid in

the didactical relationship.

Rather than imagining teaching and producing

learning of the texts that resulted from real

mathematical activity by universal, that is

nonspecific, nonmathematical teaching methods,
it appeared that it would be preferable to have the

students themselves produce this knowledge

and these texts, thanks to specific mathematical

activities that best stimulated the real activity of

mathematicians.

The many didactical situations realized showed

that this project was realizable. Experiments

proved it. Curricula were conceived, experimented

with, and reproduced for all the branches of math-

ematics and for all the basic levels of teaching

(3–12 years old) in an establishment conceived

for the purpose (the COREM).

Currently they cannot be developed because

of the complexity of knowledge necessary for the

teachers to conduct them and for the public to

accept them.

This research produced counterexamples to

most of the “universal principles,” explicit or

implicit, of classical didactics, for behaviorist

methods as well as radical constructivism. It

showed, for example, that in the classical concep-

tion, errors can have no status other than that of

being far from some norm. They are interpreted

as a failure of the student and/or the teacher that

involves their responsibility and ultimately their

guilt for a failure of their will. This absurd

process generates very bad working conditions

for the students and for the teachers.

Among many other results, The classical

conception led to seeking out individualization

of teaching, but this individualization did

not improve the results, because mathematical

knowledge is produced by the cooperation of

numerous individuals operating in the same com-

munity, and no isolated brain can produce the

exact form that history has given it. For a large

portion of the students, the real use of communi-

cation and mathematical debates is indispensible.

The concept of situation has been the object

and has been illustrated in a great deal of research

of different types:

1. Empirical, so as to identify the observables of

a given teaching episode and analyze them

a priori and a posteriori

2. Experimental, to conceive of either a precise

teaching project (engineering) or a teaching

design (of cognitive psychology, of sociology,

of didactique, etc.)

http://dx.doi.org/10.1007/978-94-007-4978-8_57
http://dx.doi.org/10.1007/978-94-007-4978-8_57
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3. Theoretical, to study their properties (eco-

nomic, ergonomic, etc.) on appropriatemodels,

possibly mathematics (automata, games, vari-

ous systems), or conceive of modes or specific

indices for these studies (implicative statistical

analysis for the study of dependencies)

(Artigue and Perrin-Glorian 1991)

The results of these studies were used in

many research projects more particularly centered

on students, teachers, or school knowledge and the

didactical transposition (Mercier et al. 2000).
Research Perspectives

1. The study of the optimal conditions for

articulation of mathematical situations and

of institutionalization is a necessity. Pieces

of “knowledge” proposed in mathematical

situations, whether erroneous or valid, must

evolve sufficiently rapidly to arrive at

established knowledge. Making these pieces of

provisional knowledge the object of classical

teaching, on the pretext that theywere produced

by the students themselves, is a major error. On

the contrary, the reorganization of spontaneous

knowledge around established knowledge with

a complement of information (a lecture)

is a mathematical necessity that offers an

indispensible time gain. Didactique is a science

of dynamic equilibrium of situations.

2. What are the relationships between the

teaching of mathematics (microdidactique)

and the explicit or latent mathematical or

didactical conceptions held by the various

social, economic, cultural, and scientific

components of a society (macrodidactique)?
3. What are the factors in the failure of the

reform of modern mathematics?
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Definition

The process of didactic transposition refers to the

transformations an object or a body of knowledge

undergoes from themoment it is produced, put into

use, selected, and designed to be taught until it is

actually taught in a given educational institution.

The notion was introduced in the field of didactics

of mathematics by Yves Chevallard (1985, 1992b).
It highlights the fact that what is taught at school is

originated in other institutions, constructed in con-

crete practices, and organized in particular sets of

objects. In the case of mathematics or any other

subject, the taught knowledge, the concrete prac-

tices and bodies of knowledge proposed to be

learned at school, originates from what is called

the scholarly knowledge, generally produced at

universities and other scholarly institutions, also

integrating elements taken from a variety of related

social practices. When one wishes to “transpose”

a body of knowledge from its original habitat to

school, specific work should be carried out to

rebuild an appropriate environment with activities

aimed at making this knowledge “teachable,”

meaningful, and useful.

Different actors participate in this

transpositive work (see Fig. 1): producers of

knowledge, teachers, curriculum designers,

etc. They belong to what is called the noosphere,

the sphere of those who “think” about teaching,

an intermediary between the teaching system and

society. Its main role is to negotiate and cope with

the demands made by society on the teaching sys-

tem while preserving the illusion of “authenticity”

of the knowledge taught at school, thus possibly

denying the existence of the process of didactic

transposition itself. It must appear that taught

knowledge is not an invention of school. Although

it cannot be a reproduction of scholarly knowledge,
it should look like preserving its main elements. For

instance, the body of knowledge taught at school

under the label of “geometry” (or “mechanics,”

“music,” etc.) has to appear as genuine. It is thus

important to understand the choices made in the

designation of the knowledge to be taught and the

construction of the taught knowledge to analyze

what is transposed and why and what mechanisms

explain its final organization and to understand

what aspects are omitted and will therefore not be

diffused.
Scope

Besides mathematics, research on didactic

transposition processes has been carried out in

many other educational fields, such as the natural

http://guy-brousseau.com/wp-content/uploads/2010/08/THESE-J-PERES.pdf
http://guy-brousseau.com/wp-content/uploads/2010/08/THESE-J-PERES.pdf
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sciences, philosophy,music, language, technology,

and physical education. These investigations have

spread faster in the French- and Spanish-speaking

communities (Arsac 1992;Arsac et al. 1994; Bosch

and Gascón 2006) than in the English-speaking

ones, although some prominent figures soon con-

tributed to develop the first transpositive analyses

(Kang and Kilpatrick 1992). The notion of didactic

transposition has been generalized to institutional

transposition (Chevallard 1989, 1992a; Artaud

1995) when knowledge is transposed from one

social institution to another. Because of social

needs, bodies of knowledge originated and devel-

oped in different “places” or institutions of society

need to “live” in other institutions where they

should be transposed. They have to be transformed,

deconstructed, and reconstructed in order to adapt

to their new institutional setting. For instance, the

mathematical objects used by economists, geogra-

phers, or musicians need to be integrated in other

practices commonly ignored by the mathemati-

cians who produced them. It is clear from the

history of science that institutional transpositions –

including didactic ones – do not necessarily pro-

duce degraded versions of the initial bodies of

knowledge. Sometimes the transpositive work

improves the organization of knowledge and

makes it more understandable, structured, and

accurate to the point that the knowledge originally

transposed is itself bettered. The organization of

knowledge in fields and disciplines as it exists

today is the fruit of complex and changing histor-

ical interactional processes of institutional and

didactic transpositions that are not well known yet.
An Emancipatory Tool

In a field of research, new notions are not only

introduced to describe reality but to provide new
ways of questioning and new possibilities to

modify it. The notion of didactic transposition

is conceived, first of all, as an analytical instru-

ment to avoid the “illusion of transparency”

concerning educational phenomena and, more

particularly, the nature of the knowledge

involved, that is, to emancipate research from

the viewpoint of the scholarly and the teaching

institutions about the knowledge involved in

educational processes.

Any taught field or discipline is the product of

an intricate process the singularity of which

should never be underrated. As a consequence,

one should not take for granted the current,

observable organization of a field or discipline

taught at school, as if it were the only possible

one. Instead one should see it against the (fuzzy)

set of organizations that could have existed,

some of which may someday turn into reality.

Considering the “scholarly knowledge” as part

of the object of study of research in didactics

is part of this emancipatory movement of

detachment. Although school teaching has to

be legitimized by external entities that guaran-

tee the pertinence and epistemological rele-

vance of the knowledge taught (in a complex

process of negotiations which includes crises

and disagreements), researchers do not have to

consider these institutional perspectives as the

true or correct viewpoints or as the wrong

ones; they just need to know them and inte-

grate them in the analysis of educational

phenomena.

In some cases, the “scholarly legitimation”

of school knowledge can be questioned by the

noosphere, on behalf of its cultural relevance:

“Is this the geometry citizens need?” Such

a conflict situation can change significantly

the conditions of teaching and learning, by

allowing a self-referential, epistemologically
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confined teaching. Moreover, there are certain

teaching processes in which the scholarly

body of knowledge is created afterwards

because of the need to teach a given content

that has to be organized, labeled, and recog-

nized as something relevant (an illustrative

example is the case of accounting and its

corresponding body of knowledge, accoun-

tancy). It is also possible that something that

is not even commonly recognized as a proper

body of knowledge may appear as “scholarly

knowledge” for the role it assumes in a given

educational process. For instance, in the

teaching of sports, the scholarly knowledge,

albeit not academically tailored, includes that

of high-level sport players, even if they are

a far cry from what we normally consider

“scholars” to be!
Enlargement of the Object of Study

The second consequence of the detachment

process introduced by the notion of didactic

transposition is the evolution of the object of

study of didactics as a research discipline.

Besides studying students’ learning processes

and how to improve them through new teach-

ing strategies, the notion of didactic transposi-

tion points at the object of the learning and

teaching itself, the “subject matter,” as well as

its possible different ways of living – its

diverse ecologies – in the institutions involved

in the transposition process.

Let us take an example on negative numbers.

Regarding the transpositive process, the first issue

is to consider what the taught knowledge is made of

(what concrete activities that are proposed to the

students, their organization, the domain or block of

contents they belong to, etc.) and how official

guidelines and noospherian discourses present

and justify these choices (the knowledge to be
taught). Today, at most schools, negative numbers

are officially related to the measure of quantities

with opposite directions and introduced in the con-

text of real-life situations. Where does this school

organization come from? It results from different

scholar (“new mathematics”) or social (“back-to-
basics”) pressures, canalized by the noosphere, that

cannot be presented here but that delimit the kind of

mathematical practices our students learn (or fail to

learn) about this body of knowledge. If we look at

scholarly knowledge, the environment is different:

negative numbers are defined as an extension of the

set of natural numbers N and form the ring of

integers Z, without any specific discussion (http://

www.encyclopediaofmath.org/index.php/Integer).

This has not always been the case: it is very well

known that until the mid-nineteenth century, the

possibility of “quantities less than zero” was still

denied by many scholars. Their final acceptation

was strongly related to the needs of algebraic

work, which explains why, for a long time, inte-

gers were called “algebraic numbers.” It also

explains why the introduction of negative num-

bers was considered one of the main differences

between arithmetic and algebra. This relation-

ship to elementary algebraic work has now

completely disappeared from the scholar’s and

school’s conception of negative numbers,

despite the fact that some practices of calcula-

tion – for instance, those involving the product

of integers – acquire their full sense when

interpreted in this context.

Various other analyses have brought

similar results regarding how the transposition

process has affect other different mathematical

contents (school algebra, linear algebra, limits

of functions, proportionality, geometry, irratio-

nal numbers, functions, arithmetic, statistics,

proof, modeling, etc.): more generally speak-

ing, there is no such thing as an eternal, con-

text-free notion or technique, the matter taught

being always shaped by institutional forces

that may vary from place to place and time

to time. These investigations underline the

institutional relativity of knowledge and show

to what extend most of the phenomena related

to the teaching and learning of mathematics

are strongly affected by constraints coming

from the different steps of the didactic trans-

position process. Consequently, the empirical

unit of analysis of research in didactics

becomes clearly enlarged, far beyond the rela-

tionships between teachers and students and

their individual characteristics.

http://www.encyclopediaofmath.org/index.php/Integer
http://www.encyclopediaofmath.org/index.php/Integer
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The Need for Researchers’ Own
Epistemological Models

Taking into consideration transpositive phenom-
ena means moving away from the classroom and

being provided with notions and elements to

describe the bodies of knowledge and practices

involved in the different institutions at different

moments of time. To do so, the epistemological

emancipation from scholarly and school institu-

tions requires researchers to create their own

perspective on the different kinds of knowledge

intervening in the didactic transposition process,

including their own way of describing knowledge

and cognitive practices, their own epistemology.

In a sense, there is no privileged reference system

from which to observe the phenomena occurring

in the different institutions involved in the teach-

ing process: the scholarly one, the noosphere, the

school, and the classroom. Researchers should

build their own reference epistemological models

(Barbé et al. 2005) concerning the bodies of

knowledge involved in the reality they wish to

approach (see Fig. 2). The term “model” is used

to emphasize the fact that any perspective

provided by researchers (what mathematics is,

what algebra is, what measuring is, what

negative numbers are, etc.) always constitutes

a methodological proposal for the analysis; as

such, it should constantly be questioned and

submitted to empirical confrontation.
From Didactic Transposition to the
Anthropological Approach

When knowledge is considered a changing

reality embodied in human practices taking

place in social institutions, one cannot think

about teaching and learning in individualistic

terms. The evolution of the research perspec-

tive towards a systematic epistemological

analysis of knowledge activities explicitly

appears at the foundation of the anthropolog-

ical theory of the didactic (Chevallard 1992a,

2007; Winslow 2011). It is approached through

the study of the conditions enabling and the con-

straints hindering the production, development,

and diffusion of knowledge and, more generally,

of any kind of human activity in social

institutions.
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Del saber sabio al saber enseñado. AIQUE, Buenos
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What Is Meant by Didactical
Phenomenology?

The term didactical phenomenology was coined

byHans Freudenthal. Although his initial ideas for

it date from the late 1940s, he likely first used the

term in aGerman article in 1974. A few years later,

the term appeared in English in his bookWeeding

and Sowing – Preface to a Science of Mathemat-

ical Education (Freudenthal 1978). Understanding
the term requires comprehending Freudenthal’s

notion of a phenomenology of mathematics,

which refers to describing mathematical concepts,

structures, or ideas, as thought objects (nooumena)

in their relation to the phenomena (phainomena) of
the physical, social, and mental world that can be

organized by these thought objects.

The term didactical is used by Freudenthal in

the European continental tradition referring to the

way we teach students and the organization of

teaching processes. This definition of didactics

goes back to Comenius’ (1592–1670) Didactica

Magna (Great Didactics) that contains a well-

founded view on what and how students should

be taught. As such, this meaning of didactics

contrasts with the Anglo-Saxon tradition in

which it merely has a superficial meaning

involving a set of instructional tricks.

Combining the two terms into didactical

phenomenology implies considering the
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phenomenology of mathematics from a didactical
perspective.
D

Merit of a Didactical Phenomenology for
Mathematics Education

In Freudenthal’s words (1983, p. ix), a didactical

phenomenology of mathematics can “show

the teacher the places where the learner might

step into the learning process of mankind.” In

other words, a didactical phenomenology informs

us on how to teach mathematics, including how

mathematical thought objects can help organiz-

ing and structuring phenomena in reality, which

phenomena may contribute to the development of

particular mathematical concepts, how students

can come in contact with these phenomena, how

these phenomena beg to be organized by the

mathematics intended to be taught, and how

students can be brought to higher levels of under-

standing. As such, Freudenthal’s didactical phe-

nomenologies are landmarks for developing

teaching outlines.
Relation with Realistic Mathematics
Education

By disclosing the sources of mathematics in real-

ity, a didactical phenomenology is strongly

related to Realistic Mathematics Education

(RME), the domain-specific instruction theory

for mathematics, which has been developed in

the Netherlands and in which Freudenthal was

heavily involved (Freudenthal 1991). In RME,

rich, realistic situations have a prominent posi-

tion in the learning process. These situations

serve as sources for initiating the development

of mathematical concepts, tools, and procedures.

What situations can serve as contexts for this

development is revealed by a didactical phenom-

enology. By tracing phenomena in reality that can

elicit mathematical thoughts, the students are

given access to the sources of mathematics in

everyday experiences. Building on these sources

offers them an orientation basis they experience

as real and opens the possibility of personal
engagement and solving problems in a way they

find meaningful. This attachment of meaning

to mathematical constructs students have to

develop touches on a main principle of RME.
Examples of Didactical Phenomenology

InWeeding and Sowing, Freudenthal exemplified

his idea of a didactical phenomenology by

providing an analysis of the topic of ratio and

proportion. Furthermore, he announced to deal

comprehensively with didactical phenomenology

in a following book. That book was Didactical

phenomenology of mathematical structures
(Freudenthal 1983). In this book, he gave more

examples of didactical phenomenologies,

including those of length, natural numbers, frac-

tions, geometry and topology, negative numbers

and directed magnitudes, algebraic language, and

functions.

Remarkably, these examples did not just deal

with connecting mathematical thought objects to

phenomena in reality to find starting points for

learning mathematics. In fact, these examples

were profoundly scrutinized analyses of subject

matter in which the key concepts of a particular

mathematical topic were disclosed together with

contexts which have a model character and with

significant landmarks in students’ learning

pathways.
The Method

Unfortunately, in Didactical phenomenology of
mathematical structures, Freudenthal did not

elaborate much on how to establish these

didactical phenomenologies. Although the book

contains a short chapter titled The method, this

did not reveal how to generate such phenomenol-

ogies. Nevertheless, a corner of the veil was

lifted when Freudenthal (1983, p. 29) considered

the material he needed to write this book:

I have profited from my knowledge of mathemat-

ics, its application, and its history. I know how

mathematical ideas have come or could have

come into being. From an analysis of textbooks
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I know how didacticians judge that they can

support the development of such ideas in the

minds of learners. Finally, by observing learning

processes I have succeeded in understanding

a bit about the actual process of constitution of

mathematical structures and the attainment of

mathematical concepts

This statement and the provided examples

show how a didactical phenomenology results

from a number of analyses, each taking

a different perspective: didactical, phenomeno-

logical, epistemological, and historical-cultural.
Mathematics-Related Analyses
Constituting the Didactics of
Mathematics

These analyses have in common that they all take

mathematics as their starting point. Didactical

analyses examine the nature of the mathematical

content as a basis for teaching this content.

By identifying the determining aspects of mathe-

matical concepts and their relationships, knowl-

edge is gathered about didactical models that can

help students to understand these concepts.

Phenomenological analyses disclose possible

manifestations of these mathematical concepts

in reality and can suggest contexts for students

to meet these concepts. Epistemological analyses

focus on students’ learning processes and can

uncover how the mathematical understanding of

students in a classroom interaction may shift.

Finally, in historical-cultural analyses, we may

encounter current and past approaches to

teaching mathematics through which we can

gain a better understanding of learning mathe-

matics and how education can contribute to it.

These analyses are all included in

Freudenthal’s didactical phenomenology and

surpass its narrow literal meaning, which would

certainly have his approval, as in Weeding and
Sowing Freudenthal (1978, p. 116) already stated:

“[T]he name does not matter; nor is that activity

[didactical phenomenology] an invention of

mine; more or less consciously it has been

practiced by didacticians of mathematics for

a long time” (Freudenthal 1978, p. 116). Indeed,

the name is not essential, but these analyses
are. In Freudenthal’s view, they form the heart

of researching and developing mathematics

education.
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Introduction

The first challenge in addressing this topic is the

multiplicity of ways in which the term discourse

is used and defined – or not defined – within

mathematics education (see Ryve 2011). It is

frequently found, especially in discussions within

the context of curriculum reform, simply to sig-

nify student engagement in talk in the classroom.

Without denying the value of the development of

such engagement, the approaches to discourse

and discourse analysis considered in this article

http://dx.doi.org/10.1007/978-94-007-4978-8_170
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all take rather more complex and theoretically

shaped views of the nature of discourse – views

that influence the focus of research and the

analytic methods. An important component of

the ways these approaches conceive of discourse

is a concern with the relationship between lan-

guage (and other modes of communication), the

social context in which it is used, and the

meanings that are produced in this context

(Howarth 2000). It is this concern and the funda-

mental assumption that studying the way lan-

guage is used can provide insight into the

activity or practice (mathematics or mathematics

education) in which it is used that leads

researchers to adopt discourse analytic

approaches. Of course, a very high proportion of

the data used in studies across many branches of

mathematics education research is primarily lin-

guistic or textual: interviews, written responses to

questionnaires, classroom transcripts, written

texts produced by students, etc. Increasingly it

has also been recognized by researchers using

a wide range of approaches that the language

produced by students or other research subjects

is not a transparent medium through which it is

easy to decipher an underlying truth. What distin-

guishes research that adopts a discourse analytic

approach is the assumption that the language

is itself an inextricable part (or, for some

researchers, even the whole) of the object of

study. This assumption is shared with another

analytic approach, conversation analysis, and

some discourse analysts make use of methods

developed in conversation analysis. However,

whereas discourse analysis is generally interested

in characterizing the practices within which lan-

guage plays a role, conversation analysis focuses

primarily on how linguistic interactions them-

selves are organized to achieve social actions

(see Wooffitt 2005, for an introduction to the

two approaches from a conversation analytic

perspective).

Gee (1996) makes a useful distinction

between discourse, defined as instances of com-

munication, and Discourses, the conjunctions of
ways of speaking, subject positions, values,

etc. that characterize and structure particular

social practices. The notion of Discourses has
its origin in the thinking of the French philoso-

pher Foucault (e.g., 1972) whose work includes

studies of the construction of “regimes of truth”

about notions such as madness or sexuality.

Though not all discourse analytic research in

mathematics education comes from this tradition,

it can generally be characterized as tending either

towards analysis of discourse, focusing on

communication events and the local social

practices within which they arise, or towards

analysis of Discourse, taking larger scale social

practices and structures as the object of research.

Of course, some approaches move between

the two, generating interpretation of specific

communication events by applying knowledge

of wider social practices and structures or

building a picture of a significant social practice

through analysis of local communication events.

Discourse analytic approaches thus vary in two

dimensions: the extent to which they make use of

detailed linguistic analysis and the extent of

their focus on social practices, structures, and

institutions.

The adoption and development of discourse

analytic approaches in mathematics education

research largely coincided with what Lerman

termed the “social turn” (Lerman 2000).

Increased recognition of the importance of

studying and taking account of the social nature

of mathematics education practices as well as of

individual cognition demanded the development

of theoretical ways of conceiving of social

practices and methodological approaches to

studying them. Discourse analytic approaches

provided one way of addressing this demand.

This development within the field of mathematics

education reflected a much wider development of

theories of discourse and discourse analytic

methods within social science and the humani-

ties. As researchers have begun to draw on

theories and methods originating outside the

field of mathematics education, they have faced

the challenge of ensuring that both theory and

methods take account of the specialized nature

of mathematical communication and practices

and that they have the power to illuminate issues

of interest to mathematics education. Facing

this challenge is a continuing project; notable
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contributions have come from within mathemat-

ics education (e.g., Morgan 1998; Sfard 2008)

and from linguistics (e.g., O’Halloran 2005).

With a few exceptions, notably the work of

Walkerdine (1988) who used analyses of

Discourses, including Discourses of gender and

of child-centered education, in order to under-

stand how differences between various social

groups are constructed in mathematics education

practices, early interest in discourse analytic

approaches, such as that represented in the

Special Issue of Educational Studies in
Mathematics edited by Kieren et al. (2001), was

dominated by analysis of communication events

(discourse), focusing on understanding class-

room interaction and the development of

mathematical thinking in interaction. At a time

when the majority of research in mathematics

education focused on the mathematical thinking

of individuals, this application of discourse

analysis may be seen as an incremental manifes-

tation of the “social turn,” addressing the same

interest in mathematical thinking but reconcep-

tualizing it as a phenomenon that is evident

(and, for some researchers, produced) in social

interaction. More recently, the issues addressed

by the mathematics education research commu-

nity have expanded, incorporating a wider

conceptualization of mathematics and mathemat-

ics education as social practices. Thus more

research has addressed, inter alia, identity,

power relationships, and social justice – issues

that lend themselves to study using approaches

that focus on Discourses. Some of this research

has adopted approaches that may be character-

ized as structuralist, drawing on sociological

accounts of social structures such as the work of

Basil Bernstein (e.g., 2000) to describe and inter-

pret discursive phenomena. Others have adopted

poststructural approaches, in which the commu-

nicative action itself constructs the “reality” of

which it speaks. A recent edited book entitled

Equity in Discourse for Mathematics Education

(Herbel-Eisenmann et al. 2012) reflects this range

of approaches and interpretations, combining

detailed analyses of classroom interactions with

concern for how these interactions and broader

social practices affect the possibilities for
participation in mathematics of students from

different social groups.

In this article there is no space to provide

a detailed review of the full range of approaches

taken to discourse analysis. Instead, we provide

a small number of contrasting cases, exemplify-

ing the scope of discourse analytic methods

and the problems in mathematics education that

they may be used to address.
Critical Discourse Analysis

Critical discourse analysis (CDA) comprises

a group of analytic approaches, all of which make

strong analytic connections between forms of lan-

guage use, social practices, and social structures.

The label “critical” indicates a concern of the

researchers to make use of the knowledge achieved

through the analysis in order to enable critique and

transformation of the social practices and/or struc-

tures. Research using CDA approaches thus tends

to produce analyses that not only describe existing

practices but also critique the ways these practices

position students and/or teachers and the kinds of

mathematics and mathematical identities that are

valued and made possible.

CDA studies generally involve detailed

analyses of texts, including oral and written

texts produced and used by students and teachers

in the classroom but also including texts such as

the curriculum and policy documents that

structure and regulate these educational practices

and thus affect the interpretation of classroom

texts. Within mathematics education, probably

the most widely used type of CDA is based on

the approach of Norman Fairclough (2003), using

linguistic tools drawn from systemic functional

linguistics (SFL). This approach has been used to

investigate specific practices such as the

assessment of student reports of mathematical

investigation (Morgan 1998) or the use of

“real-world problems” in an undergraduate

mathematics course (Le Roux 2008). Research

adopting a CDA approach may also use a range

of other methods to address textual data,

including corpus analysis of large data sets (e.g.,

Herbel-Eisenmann et al. 2010).
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Whatever the linguistic tools used to describe

the data, the interpretative stage of CDA involves

considering how the features identified in the data

function to construe the “reality” of the practice

being studied and the social positionings and

relations of the participants. As Fairlough

argues, such interpretation requires explicit use

of “insider knowledge” of the social practices

studied (Fairclough 2003). This means that

researchers in mathematics education need to

bring knowledge of broader mathematics educa-

tion practices and knowledge of mathematical

practices to bear on their analyses. For example,

Morgan’s study of teachers’ assessment practices

is informed by an analysis of the constructs

and values found in the associated curriculum

documents, policy, and professional literature,

while Le Roux draws on Sfard’s (2008)

characterization of mathematical discourse

(discussed further below) to enable her analysis

to address the nature of the mathematical activity

involved in the use of real-world problems.
Poststructural Approaches

The approaches to discourse analysis discussed

under the heading of postmodern or

poststructural share with CDA approaches

a concern with issues such as power and

subjectivity that arise in considering relationships

between individuals and social practices and

structures. There are, however, both philosophi-

cal and methodological differences between

the approaches. There is a range of philosophical

positions associated with postmodern and

poststructural thought; however, a shared

foundation is a rejection of the notions of an

objective world and of the fixed subjectivity of

a rational knowing subject. These philosophical

assumptions are shared by some but certainly not

by all those employing CDA approaches, though

there is a common interest in characterizing the

key entities that play a role in a Discourse and the

possibilities for individual subjectivities, identi-

ties, or positioning.

The major distinction drawn here between the

approaches to discourse analysis discussed in this
section and those identified under the

heading CDA is methodological. While CDA

involves close analysis of specific texts, usually

employing analytical tools and methods drawn

from linguistics, the starting point for postmod-

ern/poststructural researchers tends to be at

the level of the major functions of discourse.

For example, Hardy (2004) uses the Foucauldian

constructs of power as production and

normalization as her analytical tools for interro-

gating a teacher training video produced as part

of the English National Numeracy Strategy to

demonstrate “effective teaching” of mathematics

in a primary classroom. Rather than focus on

detailed characteristics of the discourse of this

video, Hardy uses these constructs to provide an

alternative perspective on the data as a whole.

This enables her to tell a story of what the

Discourse of the National Numeracy Strategy

achieves – how it produces assumptions about

what is normal and what is desirable – a story

that runs counter to the “common sense” stories

about effective teaching.

A rather different approach is taken by Epstein

et al. (2010), though again founded in

Foucauldian theory. They first characterize the

ways in which mathematics and mathematicians

are represented in popular media – as hard,

logical, and ultrarational but also as eccentric or

even insane. Having identified different and in

some cases apparently contradictory Discourses

about mathematics, Epstein et al. then use these

to analyze interviews with students, identifying

how individual students deploy the various

discursive resources in order to produce their

own identities as mathematicians or as

nonmathematicians and their relationships to

mathematics as a field of study.
Mathematical Discourse, Thinking, and
Learning

The main discourse analytic theories mentioned

so far have their origins outside mathematics

education, drawing on fields such as linguistics,

ethnography, sociology, and philosophy. For

mathematics education researchers, this raises
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the important theoretical and methodological

problem of the extent to which the specifically

mathematical aspects of the practices being

studied may be captured and accounted for. In

order to address this problem, an increasing

number of researchers, including some of those

working with CDA or other discourse analytic

approaches, are turning to the work of Anna

Sfard (2008). While Sfard draws on a number of

sources, including Wittgenstein’s notion of

language game, her own theory of mathematical

discourse has been developed within the field of

mathematics education and is designed to address

the problems arising in this field. Her communi-

cative theory of cognition identifies thinking

mathematically as participating in mathematical

discursive practices, that is, as communicating

(with oneself or with others) using the forms of

discourse characteristic of mathematics. Sfard

identifies four aspects of mathematical discourse

that form the basis for her analytic method: spe-

cialized mathematical vocabulary and syntax

(what may be considered the “language” of

mathematics), visual mediators (nonlinguistic

forms of communication such as algebraic nota-

tion, graphs, or diagrams), routines (well-defined

repetitive patterns, e.g., routines for performing

a calculation, solving an equation, or demonstrat-

ing the congruence of two triangles), and

endorsed narratives (the sets of propositions

accepted as true within a given mathematical com-

munity). Scrutinizing how these four aspects are

manifested in discourse provides a means of

describingmathematical thinking and hence allows

one to address questions such as the following:

How does children’s thinking about a mathemati-

cal topic vary from that expected by their teacher or

by an academic mathematical community? How

does children’s thinking develop (i.e., how does

their use of a mathematical form of discourse

change over time)? What kinds of mathematical

thinking are expected of students taking an

examination or using a textbook?

As may be seen from the research topics

and questions illustrated in this article, discursive

approaches can address a wide range of issues

of concern within the field of mathematics

education, bridging, as indicated in the title
of Kieran et al.’s (2001) Special Issue of

Educational Studies in Mathematics, the individual

and the social. While the various approaches share

a basic assumption that language and social prac-

tices play a role in the ways that individuals make

sense of mathematical activity, they differ in the

ways they conceptualize this role (and, indeed, in

how they conceptualize language, social practice,

and mathematics). Hence they also differ in the

research questions they pose and themethodological

tools they employ. It can be argued that discourse

analytic approaches allow us to see through what is
said to reveal what is achieved by using language.

The challenge for researchers and for the readers of

research is to clarify how the theoretical and

methodological tools employed enable this and to

distinguishwhich kinds of actions and achievements

are made visible by the different approaches.
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Definition

The teaching of “discrete mathematics” is not

always clearly delimited in the curricula and can

be diffuse. In fact, the meaning of “discrete
mathematics teaching and learning” is twofold.

Indeed, it includes the teaching and learning of

discrete concepts (considered as defined objects

inscribed in a mathematical theory), but it also

includes skills regarding reasoning, modeling,

and proving (such skills are specific to discrete

mathematics or transversal to mathematics).
What Is Discrete Mathematics?

Discrete mathematics is a comparatively young

branch of mathematics with no agreed-on defini-

tion (Maurer 1997): only in the last 30 years did it

develop as a specific field in mathematics with

new ways of reasoning and generating concepts.

Nevertheless, the roots of discrete mathematics

are older: some emblematic historical discrete

problems are now well known, also in education

where they are often introduced as enigma,

such as the Four Color Theorem (map coloring

problem), the Königsberg’s bridges (traveling

problem), and other problems coming from the

number theory for instance.

There is no exact definition of discrete math-

ematics. Themain idea is that discretemathematics

is the study of mathematical structures that are “dis-

crete” in contrast with “continuous” ones. Discrete

structures are configurations that can be character-

ized with a finite or countable set of relations. (A

countable set is a set with the same cardinality

(number of elements) as some subset of the set of

natural numbers. The word “countable” was intro-

duced by Georg Cantor.) And discrete objects are

those that can be described by finite or countable

elements. It is strongly connected to number the-

ory, graph theory, combinatorics, cryptography,

game theory, information theory, algorithmics,

discrete probability but also group theory, algebraic

structures, topology, and geometry (discrete

geometry and modeling of traditional geometry

with discrete structures).

Furthermore, discrete mathematics represents

a mathematical field that takes on growing

importance in our society. For example, discrete

mathematics brings with it the mathematical

contents of computer science and deals with

algorithms, cryptography, and automated
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theorem proving (with an underlying philosoph-

ical and mathematical question: is an automated

proof a mathematical proof?).

The aims of discrete mathematics are to

explore discrete structures, but also to give a

specific modeling of continuous structures, as

well as to bring the opportunity to consider

mathematical objects in a new manner. Then

new mathematical questions can emerge, as

well as new ways of reasoning, which implies a

challenge for mathematicians.

Some famous problems of discrete mathemat-

ics have inspired mathematics educators. That is

the case of a combinatorial game: the game of

Nim, played since ancient times with many

variants. The regular game of Nim is between

two players. It is played with three heaps of any

number of objects. The two players alternatively

take any number of objects from any single one of

the heaps. The goal is to be the last one to take an

object. Brousseau (1997) explicitly refers to the

game theory to conceptualize the theory of

didactical situations. The game of Nim is the

background of the generic example of

Brousseau’s theory, “the Race to 20.”
Why Teach and Learn Discrete
Mathematics? New Context, Concepts,
and Ways of Reasoning: A New Realm
of Experience for the Classroom

To Integrate Discrete Mathematics into the

School Curriculum: A Current Challenge

More and more fields of mathematics use results

from discrete mathematics (topology, algebraic

geometry, statistics, among others). Moreover, dis-

crete mathematics is an active branch of contempo-

rary mathematics. New needs for teaching are

identified: they are linked to the evolution of the

society and also other disciplines such as computer

science, engineering, business, chemistry, biology,

and economics, where discrete mathematics

appears as a tool as well as an object. Then discrete

mathematics should be an integral part of the school

curriculum: the concepts and the ways of reasoning

that should be taught in a specific field labeled

“discrete mathematics” still should be more
precisely identified. A dialog between mathemati-

cians and mathematics educators can help for this

delimitation.

However, the place of discrete mathematics in

curricula is today very variable depending on the

countries and on the levels. In a few countries,

there has been a long tradition to introduce graph

theory in the secondary level among other

components of discrete mathematics. This place

is strengthened and attested by the contents at the

university level. In other countries, only a very

small number of discrete mathematics concepts

are taught, especially those involved in the fields

of combinatorics and number theory. Things are

changing; the reader can refer to Rosenstein et al.

(1997), and DIMACS (2001) contributions to go

into details regarding the challenge of introducing

discrete mathematics in curricula (especially

the example of the NCTM standards [National

Council of Teachers of Mathematics] which

focus on discrete mathematics as a field of

teaching). The following arguments summarize

themain ideas of these contributions, emphasizing

the interests and the potential ways to implement

discrete mathematics in the curricula:

• Proof and abstraction are involved in discrete

mathematics (for instance, in number theory,

induction, etc.).

• It allows an introduction to modeling and

proving processes, but also to optimization

and operational research, as well as

experimental mathematics.

• Problems are accessible and can be explored

without an extensive background in school

mathematics.

• The results in discrete mathematics can be

applied to real-world situations.

• Discrete mathematics brings a specific work

on algorithms and recursion.

• The main problems in discrete mathematics

are still unsolved in ongoing mathematical

research: a challenge for pupils and students to

be involved in a solving process close to the one

of mathematicians and to promote cooperative

learning (in a specific and suitable context: in

particular, teachers should be trained to discrete

problems and also to their teaching and

management).
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Benefits from Teaching and Learning Discrete

Mathematics: Some Examples

Learning discrete mathematics clearly means

learning new advantageous concepts but also

new ways of reasoning, making room for

a mathematical experience.

Many variants exist of the following famous

problems that are developed below. Some of

them are presented and analyzed for instance in

Rosenstein et al. (1997) and on the website http://

mathsamodeler.ujf-grenoble.fr/.

Accessible Problems and Concepts

Discrete concepts are easily graspable, applica-

ble, accessible, and also neutral when not yet

included in the curricula: this last argument

implies that the way students deal with discrete

concepts is quite new and different from the way

they usually consider mathematics.

Traveling salesperson problem: the problem

is to find the best route that a salesperson could

take if he/she would begin at the home base, visit

each customer, and return to the home base (“best”

was defined as minimizing the total distance).

Map coloring problem (combinatorial optimi-

zation problem): a map coloring problem consists

in discovering the minimum number of colors

needed to properly color a map (or a graph).

A map is properly colored if no two countries

sharing a border have the same color. The proof

of the minimum number of colors is also
Discrete Mathematics Teaching and Learning, Fig. 1 A
required. Similar coloring problems exist in

graph theory. Such map and graph coloring prob-

lems are very useful to explore what discrete

mathematical modeling is.

Richness of Discrete Concepts, A Way to Deal with

the Construction of Axiomatic Theory

A certain amount of discrete objects can be

defined in several ways, with different character-

izations. The modeling of continuous concepts in

the discrete case raises the problem of the con-

struction of a mathematical consistent theory

from an axiomatic point of view. It is illustrated

with the following example of discrete geometry.

Discrete Geometry: Example of Discrete

Straight Lines Discrete straight lines form

a concept accessible by its representation. It is

noninstitutionalized (an institutionalized concept

is a “curriculum” concept, i.e., a concept that has

a place in the classic taught content). Delimiting

what a straight line can be in a discrete context

proves to be quite a challenge. Professional

researchers have several definitions of it at their

disposal, but the proof of the equivalence of these

definitions remains worth considering. Research

on a discrete axiomatic theory is still in progress

(it implies, for instance, the following questions:

what is the intersection of two discrete straight

lines? What does it mean to be parallel in the

discrete case? etc.): the question of a “good” def-

inition of a discrete straight line is currently an
re these lines straight lines?

http://mathsamodeler.ujf-grenoble.fr/
http://mathsamodeler.ujf-grenoble.fr/
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Fig. 2 Are these shapes

triangles?

Discrete Mathematics Teaching and Learning,
Fig. 3 Is it a circle?

Discrete Mathematics Teaching and Learning,
Fig. 4 A garden

Discrete Mathematics
Teaching and Learning,
Fig. 5 A beast (a beast can

be rotated or reversed)
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open and interesting problem. So are the ques-

tions of the definitions of other discrete geomet-

rical concepts (Figs. 1–3).

Several Ways of Questioning, Proving,

and Modeling

Besides, discrete mathematics arouses interest

because it offers a new field for the learning and

teaching of proofs (Grenier and Payan 1999;

Heinze et al. 2004; http://mathsamodeler.ujf-gre-

noble.fr/). Some discrete problems fruitfully

bring different ways to consider proof and

proving processes. How can discrete mathemat-

ics contribute to make students acquire the

fundamental skills involved in defining, model-

ing, and proving, at various levels of knowledge?
It is still a fundamental question in mathematics

education. The following example brings an

opportunity to deal with an optimization problem

which involves several kinds of reasoning.

Besides, this problem is close to the contempo-

rary research in discrete mathematics.

Hunting the beast. Your garden is a collection

of adjacent squares (see Fig. 4) and a beast is

itself a collection of squares (like the one drawn

in Fig. 5). Your goal is to prevent a beast from

entering your garden. To do this, you can buy

traps. A trap is represented by a single black
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Fig. 6 Not a solution
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Fig. 7 A solution with 5 traps
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square that can be placed on any square of the

garden. The question we ask is the following:

what is the minimum number of traps you need

to place so that no beast can land on your garden?

On Fig. 6, the disposition of the traps does not

provide a solution to the problem, since a beast can

be placed. On Fig. 7, a solution with five traps is

suggested. Is it an optimal one for this configuration?

In the literature, the problem Hunting the

beast can be seen as a variation of the Pentomino
Exclusion Problem introduced by Golomb

(1994).

A Mathematical Experience

Discrete mathematics then brings the opportunity

for students to be involved in a mathematical
experience. Harel (2009) points out the following

principle:

The ultimate goal of instruction inmathematics is to

help students develop ways of understanding and

ways of thinking that are compatible with those

practiced by contemporary mathematicians. (p. 91)

The “doingmathematics as a professional” com-

ponent is clearly a new direction for the educational

research in the problem solving area, and discrete

mathematics offers promising nonroutine potenti-

alities to develop powerful heuristic processes, as

underscored by Goldin (2009).

Bearing in mind the aforesaid arguments, dis-

crete mathematics provides a mathematical expe-

rience and is a field of experiments that questions

concepts involved in other mathematical

branches as well. Nevertheless, if the discrete

problems are sometimes (and even often) easier

to grasp than the continuous ones, the mathemat-

ics behind can be quite advanced. That is the

reason why the didactic should analyze both the

discrete mathematics for itself and the

discrete mathematics helping the teaching of

other concepts.
Interesting Perspectives for Research in
Mathematics Education

Discrete mathematics is a relatively young

science, still in progress with accessible and

graspable concepts and ongoing questionings;

hence the questions regarding the introduction

of it in the curricula and in the classroom concern

both mathematics educators and mathematicians.

Two separated but linked perspectives for the

educational research emerge:

• The didactical study of teaching and learning

discrete mathematics

• The didactical study of the teaching of con-

cepts and skills (such as proof and modeling)

with the help of discrete problems

Besides, discrete mathematics can be intro-

duced either as a mathematical theory or as a set

of tools to solve problems. The links between

discrete mathematics as a tool and discrete math-

ematics as an object in teaching and learning

should also be analyzed in depth, as well as the
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proof dimension involved in dealing with discrete

concepts and structures. The didactic transposi-

tion of discrete concepts and ways of reasoning is

still a current problem for mathematics educa-

tion. It can raise the question of the development

of models for teaching and learning discrete

mathematics. Some epistemological models do

exist (around transversal concepts such as impli-

cation, definition, and proof (see, for instance,

Ouvrier-Buffet 2006) and specific contents such

as the teaching of graph theory (see the work of

Cartier 2008)) but the work is still in progress.

Note that it involves the same questionings for

mathematics education as the introduction of

algorithmics in the curricula.

Furthermore, the introduction of discrete

mathematics in the curricula clearly offers an

opportunity to infuse new instructional tech-

niques. In this perspective, the teacher training

should be rethinked.
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Definition

Discursive approach to learning is a research

framework grounded in the view that learning

such subjects as mathematics, physics, or history

is a communicational activity and should be

studied as such. Learning scientists who adopt

this approach treat discourse and its development

as the primary object of exploration rather than

as mere means to the study of something else

(e.g., development of mental schemes). The

term discourse is to be understood here as refer-

ring to a well-defined type of multimodal (not just

verbal) communicational activity, which does not

have to be audible or synchronous.

Background

Ever since human learning became an object of

systematic study, researchers have been aware of

its intimate relationship with language and, more

generally, with the activity of communicating. The

basic agreement on the importance of discourse

notwithstanding, a range of widely differing opin-

ions have been proposed regarding the way these

two activities, learning and communicating, are

related. At one end of the spectrum, there is the

view that language-related activities play only the

secondary role of means to learning; the other

extreme belongs to those who look upon discourse

as the object of learning. It is this latter position, the

one that practically equates mathematic with

a certain well-defined form of communicational

activity, that can be said to fully reflect

a discursive approach to learning.

Several interrelated developments in philoso-

phy, sociology, and psychology combined

together to produce this approach. It is probably

the postmodern rejection of the notion of “absolute

truth,” the promise of which fuelled the positivist

science, that put human studies on the path toward

the “discursive turn.” Rather than seeing human

knowledge as originating in the nature itself, post-

modern thinkers began picturing it as “a kind of

discourse” (Lyotard 1979, p. 3) or as a collection of

narratives gradually evolving in the “conversation

of mankind” (Rorty 1979, p. 389).

Following this foundational overhaul, the

interest in discourses began crossing disciplinary
boundaries and established itself gradually as

a unifying motif of all human sciences, from

sociology to anthropology, to psychology, and

so forth. Throughout human sciences, the

discursivity – the fact that all human activities

are either purely discursive or imbued with and

shaped by discourses – has been recognized as a

hallmark of humanity. Nowhere was this realiza-

tion more evident than in the relatively young

brand of psychology known as “discursive”

(Edwards 2005) and defined as “one that takes

language and other forms of communication as

critical in the possibility of an individual

becoming a human being” (Lerman 2001, p. 93).

As evidenced by the steadily increasing number

of studies dealing with interactions in mathemat-

ics classroom, the discursive turn has been taking

place also in mathematics education research

(Ryve 2011).

Foundations

For many discursively minded researchers, even

if not for all, the shift to discourse means that

some of those human activities that, so far, were

considered as merely “mediated” or “helped” by

concomitant discursive actions may now be

rethought as being communicational in nature.

For example, as an immediate entailment of

viewing research as a communicational practice,

one can now say that the research discipline

known as mathematics is a type of discourse,

and thus learning mathematics is a discursive

activity as well.

Recognition of the discursive nature of math-

ematics and its learning, if followed all the way

down to its inevitable entailments, inflicts a lethal

blow to the famous “Cartesian split,” the strict

ontological divide between what is going on

“inside” the human mind and what is happening

“outside.” Once thinking, mathematical or any

other, is recognized as a discursive activity,

mental phenomena lose their ontological distinc-

tiveness and discourse becomes the superordinate

category for the “cognitive” and the “communi-

cational.” This non-dualist position, which began

establishing itself in learning sciences only quite

recently, has been implicitly present already in

Lev Vygotsky’s denial of the separateness of
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human thought and speech and in Ludwig

Wittgenstein’s rejection of the idea of “pure

thought,” the amorphous entity supposed to

preserve its identity through a variety of verbal

and nonverbal expressions (Wittgenstein 1953).

In spite of the fact that the announcement of

the ontological unity of thinking and communi-

cating has been heralded by some writers as the

beginning of the “second cognitive revolution”

(Harré and Gillett 1995), non-dualism has not

become, as yet, a general feature of discursive

research. More often than not, discursivist

researchers eschew explicit ontological commit-

ments (Ryve 2012), whereas their occasional use

of hybrid languages brings confusing messages

about the nature of the objects of their study.

One can therefore speak about weaker and stron-

ger discursive approaches, with the adjective

“strong” signaling the explicit adoption of

non-dualist stance (Sfard 2008).

The ontological heterogeneity notwithstand-

ing, all discursively oriented researchers seem to

endorse Vygotsky’s (1978) famous statement that

uniquely human learning originates on the “social

plane” rather than directly in the world. Conse-

quently, they also view learning as a collective

endeavor and recognize the need to always con-

sider its broad social, historical, cultural, and situ-

ational context. Strong discursivists, in addition,

are likely to claim that objects of discourses –

numbers or functions in the case of mathematics

and conceptions or meanings in the case of

researcher’s own discourse – grow out of commu-

nication rather than signifying any self-sustained

entities preexisting the discourse about them. As a

consequence, the researchers always keep in mind

that any statement on the existence or nature of

these entities is a matter of personal interpretation

andmust be presented as such.Moreover, since the

protagonists of researchers’ stories are themselves

active storytellers, researchers must always inquire

about the status of their own narratives vis-à-vis

those offered by the participants of their study.

Strands

The current discursive research on learning at

large and on mathematics learning in particular

may be roughly divided into three main strands,
according to perspectives adopted, aspects

considered, and questions asked. The first two

of these distinct lines of research are concerned

with different features of the discourse under

investigation and can thus be called

intra-discursive or inward looking. The third

one deals with the question of what happens

between discourses or, more precisely, how

inter-discursive relations impact learning.

The first intra-discursively oriented strand of

research on mathematics learning focuses on

learning-teaching interactions, whereas its main

interest is in the impact of these interactions on

the course and outcomes of learning. Today,

when inquiry learning, collaborative learning,
computer-supported collaborative learning, and

other conversation-intensive pedagogies (also

known as “dialogical”) become increasingly

popular, one of the main questions asked by

researchers is that of what features of small

group and whole-class interactions make these

interactions conducive to high-quality learning.

Participation structure, mediation, scaffolding,

and social norms are among the most frequently

used terms in which researchers formulate their

responses. Whereas there is no doubt about

theoretical and practical importance of this strand

of research, some critics warn against the

tendency of this kind of studies for being

unhelpfully generic, which is what happens

when findings regarding patterns of learning-

teaching interactions are presented as if they

were independent of their topic.

This criticism is no longer in force in the second

intra-discursively oriented line of research on

mathematics learning, which inquires about the

development of mathematical discourse and thus

looks on those of its features that make it into

distinctly mathematical: the use of specialized

mathematical words and visual mediators, specifi-

cally mathematical routines, and narratives about

mathematical objects that the participants endorse

as “true.” Comparable in its aims to research

conducted within the tradition of conceptual

change, this relatively new type of study on learn-

ing is made distinct by its use of methods of dis-

course analysis, and this means, among others, its

attention to contextual issues, its sensitivity to the
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inherent situatedness of learning, and its treatment

of the discourse in its entirety as the unit of analysis,

rather than restricting the focus to a single concept.

Questions asked within this strand include queries

about ways in which learners construct mathemat-

ical objects, develop sociomathematical norms,
engage in argumentation, or cope with

uneasy transitions to incommensurable discourses.

Methods of systemic functional linguistics

(Halliday 2003) are often employed in this kind

of study. One of the main tasks yet to be dealt with

is to forge subject-specific methods of discourse

analysis, tailored according to the distinct needs

of the discourse under study. Another is to explore

the possibility of improving school learning by

overcoming its situatedness. Yet another regards

the question of how mathematical learning

occurring as if of itself while people are

dealing with their daily affairs differs from

the one that takes place in schools and results

from teaching.

Finally, the inter-discursively oriented studies

inquire about interactions between discourses

and their impact on learning. This type of

research is grounded in the recognition of the

fact that one’s participation in mathematics dis-

course may be supported or inhibited by other

discourses. Of particular significance among

these learning-shaping aspects of communication

are those that pertain to specific cultural norms

and values or to distinct ideologies. Studies

belonging to this strand are often concerned

with issues of power, oppression, equity, social
justice, and race, whereas the majority of

researchers whom this research brings together

do not hesitate to openly admit their ideological

involvement. The notion of identity is frequently

used here as the conceptual device with which

to describe the way cultural, political, and

historical narratives impinge upon individual

learning. Methods of critical discourse analysis

(Fairclough 2010) are particularly useful in this

kind of study.

Methods

As different as these three lines of research on

learning may be in terms of their focus and goals,

their methods have some important features in
common. In all three cases, the basic type of

data is the carefully transcribed communicational

event. A number of widely shared principles

guide the processes of collection, documentation,

and analysis of such data. Above all, researchers

need to keep in mind that different people may be

using the same linguistic means differently and

that in order to be able to interpret other person’s

communicational actions, the analysts have to

alternate between being insiders and outsiders to

their own discourse: they must sometimes look

“through” the word to what they usually mean by

it, and they also must be able to ignore the word’s

familiar use, trying to consider alternative

interpretations. For the same reason, events

under study have to be recorded and documented

in their entirety, with transcriptions being as

accurate and complete records of participants’

verbal and nonverbal actions as possible. Finally,

to be able to generalize their findings in a cogent

way, researchers should try to support qualitative

discourse analysis with quantitative data regard-

ing relative frequencies of different discursive

phenomena.

The admittedly demanding methods of dis-

course analysis, when at their best, allow the

analyst to see what inevitably escapes one’s

attention in real-time conversations. The

resulting picture of learning is characterized by

high resolution: one can now see as different

things or situations that, so far, seemed to be

identical and is able to perceive as rational those

discursive actions that in real-time exchange

appeared as nonsensical.
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Characteristics

Down syndrome is a genetic disorder which has

serious consequences for cognitive development.
Most children with Down syndrome showmild to

moderate cognitive impairments with language

skills typically being more severely impaired

than nonverbal abilities (Næss et al. 2011).

Children with Down syndrome are frequently

reported to have problems with short-term and

working memory. While a relatively large

number of studies have investigated the language

and reading skills (Hulme et al. 2011) of children

with Down syndrome, much less is known

about the development of number skills in

this group.

Early case studies and studies using highly

selected samples have reported some relatively

high levels of arithmetic achievement in individ-

uals with Down syndrome. However, for the

majority of individuals with Down syndrome, sim-

ple single digit calculations and even counting

represent a significant challenge (Gelman and

Cohen 1988). Carr (1988) reported that more than

half of her sample of 41 individuals aged 21 years

could only recognize numbers and count on the

Vernon’s arithmetic-mathematics test. Buckley

and Sacks (1997) surveyed 90 secondary school-

age childrenwith Down syndrome in the and found

that only 18% could count beyond 20 and only half

of the sample could solve simple addition

problems.

Studies conducted on larger samples consis-

tently report low arithmetic achievement in

individuals with Down syndrome relative to

other scholastic skills such as reading accuracy

(Hulme et al. 2010; Buckley and Sacks 1987;

Carr 1988). Age equivalents on standardized

number tests are typically reported to lag age

equivalent reading scores by around 2 years

in children with Down syndrome (e.g., Carr

1998).

Arithmetic performance is reported to improve

with chronological age in children with Down

syndrome, but this varies widely within IQ levels

and is not true for all children (e.g., Carr 1988). It

seems highly plausible that a relationship might

exist between IQ level and arithmetic performance

level, but thus far, there is no consensus in the

literature. Education has a positive influence on

arithmetic performance as might be expected,

and individuals in mainstream school are reported
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to achieve higher levels of mathematical attain-

ment compared to special school (e.g., Carr 1988).

Individual differences in response to interven-

tion are primarily determined by quality and

quantity of teaching (Nye et al. 2005). In the UK,

Jo Nye has written a book on adapting Numicon

for use with children with Down syndrome,

“Teaching Number Skills to Children with Down

Syndrome Using the Numicon Foundation Kit.” In

the USA, DeAnna Horstmeier has written a book

titled “Teaching Math to People with Down

Syndrome and Other Hands-On Learners: Basic

Survival Skills.” More research is needed to

determine the origin of the difficulties that individ-

uals with Down syndrome before a theory driven

intervention program can be designed.
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