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  Abstract   The section about monitoring covers the development of phenological 
networks, remote sensing of the season cycle of the vegetation, the emergence of 
the science of aerobiology and, more speci fi cally, aeropalynology, pollen sampling 
instruments, pollen counting techniques, applications of aeropalynology in agricul-
ture and the European Pollen Information System. Three data sources are directly 
related with aeropalynology: phenological observations, pollen counts and remote 
sensing of the vegetation activity. The main future challenge is the assimilation of 
these data streams into numerical pollen forecast systems. Over the last decades 
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consistent monitoring efforts of various national networks have created a wealth of 
pollen concentration time series. These constitute a nearly untouched treasure, 
which is still to be exploited to investigate questions concerning pollen emission, 
transport and deposition. New monitoring methods allow measuring the allergen 
content in pollen. Results from research on the allergen content in pollen are 
expected to increase the quality of the operational pollen forecasts. 

 In the modelling section the concepts of a variety of process-based phenological 
models are sketched. Process-based models appear to exhaust the noisy information 
contained in commonly available observational phenological and pollen data sets. 
Any additional parameterisations do not to improve model quality substantially. 
Observation-based models, like regression models, time series models and compu-
tational intelligence methods are also brie fl y described. Numerical pollen forecast 
systems are especially challenging. The question, which of the models, regression 
or process-based models is superior, cannot yet be answered.  

  Keywords   Aerobiology  •  Aeropalynology  •  Phenology  •  Pollen modelling  • 
 Phenological modelling  
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    4.1   Introduction 

 Input for the aeropalynological core topics of monitoring, modelling and forecasting 
of the pollen season have been drawn from an array of disciplines and cast into this 
review chapter. History, current state, recent developments and future prospects of 
phenological and pollen counting networks have been reviewed in the  fi rst section. 
Both, phenological observations and pollen counts collected by various networks 
form the observational basis of any quantitative description of the relationship 
between the seasonal cycle of plants and their atmospheric environment. The various 
modelling strategies and their applications are extensively elucidated in the second 
section. 

 Although phenology and aeropalynology experienced separate historical devel-
opments, they meet here and share the same models, which forecast the beginning 
of  fl owering and the beginning of pollen shedding, respectively. Links between 
aeropalynology and phenology are scattered throughout this review, but are explicitly 
summarised under the headings of “Phenological observations” and “Process-based 
phenological models”:

   The natural relationship between phenology and aeropalynology may be expressed • 
in the assumption that the beginning of  fl owering equals the beginning of pollen 
shedding into the atmosphere. Pollen emission modelling can bene fi t much from 
the knowledge, observations and modelling of  fl owering phenology.  
  The effort to maintain a phenological network is less than to maintain a pollen • 
observing network. Therefore in many regions the spatial density of pheno-
logical networks is higher than that of pollen traps and phenological time series 
are longer than pollen concentration time series. Thus it is possible to infer 
something about the pollen problem from phenology with a higher spatial 
density and/or further back in time than it would be possible based on pollen 
data alone.  
  Phenology has made substantial progress during the last decade in various aspects • 
like phenological modelling, satellite observation of the vegetation cycle, relation 
with climate variability and others, so that the problem of pollen allergenicity 
now can bene fi t from that progress in phenological research.    

 The recent boost in the interest in phenology as climate impact factor has been 
motivated by the discussion about human in fl uence on climate, which became 
manifest in an increasing  fl ood of publications with phenological background and 
an extended chapter of the 4AR about the role of phenology in climate impact 
research (Rosenzweig et al.  2007  ) . Aeropalynology bene fi ts a great deal from the 
enhanced interest in phenology within the frame of the climate impact discussion. 
Both  fi elds of interest have more in common than it appears at  fi rst glance, a factor, 
which has still to be exploited.  
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    4.2   Monitoring 

    4.2.1   Phenological Observations 

    4.2.1.1   Monitoring Networks 

 Systematic phenological observation can now look back on a history, which reaches 
back as far as the eighteenth century, when Carolus Linnaeus started the  fi rst pheno-
logical network in Sweden and Finland 1750–1752 (Nekovar et al.  2008  ) . A few 
decades later phenological observations were also included in the  fi rst pan European 
meteorological network of the Societas Meteorologicae Palatinae (1781–1792). 
In the mid-nineteenth century the  fi rst national networks began their operation in 
the USA and Europe, although in most cases only for a limited time period. Ihne and 
Hoffmann managed to run their phenological network in a number of European 
countries over 1883–1941 (Fig.  4.1 ). During the 1950s the idea of International 
Phenological Gardens with a cloned set of plants was born, which resulted in a still 
operating and expanding phenological network in Europe. During the same period 
most national phenological networks began collecting phenological observations 
systematically, as recommended by the Commission for Agrometeorology (CAgM) 
of the World Meteorological Organisation (WMO).  

 A detailed global overview about phenological networks can be found in Schwartz 
 (  2003  )  and Koch  (  2010  ) , whereas    Nekovar et al.  (  2008  )  summarise the current 
situation in Europe. 

      National Monitoring Networks 

 Phenological research relies on phenological observations, collected mostly by 
national meteorological and hydro-meteorological services (NMHS). Phenological 
data collection with its rather small data volume has been usually running unobtru-
sively alongside the main stream collection of meteorological and climate data and 
thus survived in many NMHSs the ups and downs of the interest in phenological 
science through time. Another advantage of NMHSs is their experience in running 
station networks, quality controlling the incoming data, digitising and storing them 
on appropriate devices. Due to the efforts of COST Action 725 and the growing 
concern about climate change impacts, the Commission for Climatology (CCl) of 
the WMO now recommends the NHMS to organise phenological observations, 
whereas the World Climate Data and Monitoring Programme (WCDMP) and World 
Climate Programme (WCP) are working to stimulate and coordinate climate and 
climate impact monitoring activities around the world, which include phenological 
observations (  www.omm.urv.cat/media/documents/WMO.pdf    ). 

http://www.omm.urv.cat/media/documents/WMO.pdf
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 The recently published report of the COST Action 725 summarises the information 
about national European phenological networks (Nekovar et al.  2008  ) . A few 
“phenophases”, which are relevant for pollen allergies, entered the COST Action 
725 data base. Here is a list of plants shedding allergenic pollen with a useful number 
of observations of phenological events (beginning of  fl owering) in this data base: 
Norway maple ( Acer platanoides),  horse chestnut ( Aesculus hippocastanum ), black 
alder ( Alnus glutinosa ), meadow foxtail ( Alopecurus pratensis ) ,  mugwort ( Artemisia 
vulgaris ), birch ( Betula pendula ), hazel ( Corylus avellana ), forsythia ( Forsythia 
suspensa ), ash ( Fraxinus excelsior ) and goat willow  (Salix caprea ). 

 An increasing number of national weather services and other organisations 
interested in nature observation have been creating internet-based observation net-
works, where volunteers can enter their georeferenced phenological observations 
(Table  4.1 ). Some weather services merge the data from their traditional network 
and the entries from the web.   

      International Monitoring Networks and Data Collection Initiatives 

 Contrary to national networks, the distribution of plants is not in fl uenced by national 
borders. There exist two basic strategies to overcome the problem of national differ-
ences in observational methods, either by an international network in the  fi rst place 
or by merging national networks. 

  Fig. 4.1    Stations of the Hoffmann–Ihne phenological network from 1883 to 1941. Only stations 
with a minimum number of  fi ve observations are being displayed. The historical phenological 
database HPDB is maintained by the DWD (after Koch et al.  2008  )        
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 The International Phenological Gardens (IPGs), for instance, were thought to 
obtain comparable and standardised large-scale phenological observations across 
Europe (Chmielewski  2008  ) . With the same idea in mind, the Global Phenological 
Monitoring has been launched (  http://www.agrar.hu-berlin.de/struktur/institute/pfb/
struktur/agrarmet/phaenologie/gpm    ). 

 National data collection initiatives achieve their  fi nal value only after a number 
of national networks get merged over larger areas. Unfortunately, such merging 
efforts are only few because of a number of dif fi culties. COST Action 725 “Establishing 
a European Phenological data Platform for Climatological Applications” (2004–
2009) aimed at creating a European reference data set of phenological observations 
that can be used for climatological purposes (Koch et al.  2005 ; Nekovar et al.  2008  ) . 
The proposal for a follow up of COST725 so called “PEP725” (Pan European 
Phenological Database) was accepted by EUMETNET, has started in 2010 and will 
run over 5 years. PEP725 will maintain and update the COST initiated phenological 
database. Additionally, it will incorporate phenological data from before 1951 and 
develop better quality checking procedures. PEP725 will ensure an open access to 
the database for research and education. An attractive webpage will make phenology 
and climate impacts on vegetation more visible for the public, enabling a real time 
monitoring of vegetation development. 

 The European Phenology Network (  http://www.pik-potsdam.de/~rachimow/
epn/html/frameok.html    ) represents a broad based compilation of meta-information 
on phenological and related networks across the world.  

      Monitoring for Special Scienti fi c Studies 

 For some research projects, special phenological observational data sets are required, 
because observations from ordinary networks are insuf fi cient, not applicable or not 

   Table 4.1    List of web-based phenological observational networks   

 Number  Country  Name  Web address 

 1  The Netherlands  Natuurkalender    http://www.natuurkalender.nl     
 2  UK  Nature’s Calendar    http://www.naturescalendar.org.uk/     
 3  Ireland  Nature’s Calendar    http://www.biology.ie     
 4  USA  National Phenology 

Network 
   http://www.usanpn.org/?q=home     
   http://www.usanpn.org/participate/observe     

 5  USA  Appalachian 
Mountain Club 

   http://www.outdoors.org/conservation/
mountainwatch/index.cfm     

 6  USA  Project Budburst    http://www.windows.ucar.edu/
citizen_science/budburst/results.php     

 7  Canada  Alberta Plantwatch    http://plantwatch.fanweb.ca/     
 8  Canada  PlantWatch    http://www.naturewatch.ca/english/

plantwatch/intro.html     
 9  Austria  Phänologie    http://zacost.zamg.ac.at/phaeno_portal/     
 10  Sweden  Svenska fenologi-

nätverket 
   http://www.blommar.nu/index.php     

 11  Australia  ClimateWatch    http://www.climatewatch.org.au/     

http://www.agrar.hu-berlin.de/struktur/institute/pfb/struktur/agrarmet/phaenologie/gpm
http://www.agrar.hu-berlin.de/struktur/institute/pfb/struktur/agrarmet/phaenologie/gpm
http://www.pik-potsdam.de/~rachimow/epn/html/frameok.html
http://www.pik-potsdam.de/~rachimow/epn/html/frameok.html
http://www.natuurkalender.nl
http://www.naturescalendar.org.uk/
http://www.biology.ie
http://www.usanpn.org/?q=home
http://www.usanpn.org/participate/observe
http://www.outdoors.org/conservation/mountainwatch/index.cfm
http://www.outdoors.org/conservation/mountainwatch/index.cfm
http://www.windows.ucar.edu/citizen_science/budburst/results.php
http://www.windows.ucar.edu/citizen_science/budburst/results.php
http://plantwatch.fanweb.ca/
http://www.naturewatch.ca/english/plantwatch/intro.html
http://www.naturewatch.ca/english/plantwatch/intro.html
http://zacost.zamg.ac.at/phaeno_portal/
http://www.blommar.nu/index.php
http://www.climatewatch.org.au/


78 H. Schei fi nger et al.

available. Special networks are operated at a limited number of observational 
points and over a short period of time. For instance, this was the case for the larch 
phenological study in the Western Alpine Aosta valley by Migliavacca et al.  (  2008  ) , 
where the in fl uence of elevation and topography on the phenology of larch ( Larix 
decidua)  was studied. Ziello et al.  (  2010  )  linked phenological, meteorological 
and palynological data along an altitudinal gradient in the German Alps. The study 
of the  fl owering phenology of herbaceous plants in a lawn community required a 
special observational setup (Marletto et al.  1992  )  as did the observation of the beginning 
of male  fl owering of trees of the cypress family ( Cupressaceae)  for pollen modelling 
purposes (Torrigiani Malaspina et al.  2007  ) .  

      Monitoring for Pollen Forecasting Purposes 

 In the traditional phenological monitoring setup the observational sheets are returned 
to the network operator at the end of each year. For more immediate information on 
the state of the vegetation, some network operators introduced a rapid information 
system (e.g. Sofortmeldenetz of the German and Swiss weather services). Such 
immediately transmitted phenological information supports the pollen forecast 
system of the German weather service, for instance. Assuming that the observers 
enter their observed entry dates immediately, information on the current state of 
the vegetation can be derived from the web-based networks (Table  4.1 ). Remote 
sensing systems, like satellites and real time digital cameras, can also serve the 
same purpose, but are still to be included into the operational procedures. Likewise, 
assimilation systems, which consistently merge the observational real time data 
into phenological and pollen dispersion models, still have to be developed (Stöckli 
et al.  2008  ) .   

    4.2.1.2   Remote Sensing 

      Normalised Difference Vegetation Index (NDVI) 

 Live green plants absorb solar radiation in the photosynthetically active spectral 
region (400–700 nm), which they use as a source of energy for photosynthesis. At the 
same time leaf cells do not absorb but re fl ect and transmit solar radiation in the 
near-infrared spectral region. This large contrast in re fl ectance properties between 
red and near-infrared spectral regions is unique for photosynthetically active plants, 
and can be used by remote sensing sensors to distinguish them from other land 
cover types as soil, bare rock and snow. 

 Accordingly, phenological changes during the growing season can be studied by 
examining changes in the remote sensing-based Normalised Difference Vegetation 
index (NDVI) value. The NDVI is de fi ned as:

     ( ) ( )= − +NDVI Ch2 Ch1 / Ch2 Ch1 ,
   (4.1)  
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where Ch1 and Ch2 represent re fl ectance measured in the near infrared and red 
channels, respectively (Lillesand and Kiefer  1994  ) . NDVI quanti fi es the contrast 
between red surface re fl ectance, which decreases with chlorophyll content, and near 
infrared surface re fl ectance, which increases with leaf area index and crown density. 
NDVI of an area containing a dense green vegetation canopy will tend to have high 
positive values (typically 0.6–0.8); more sparsely vegetated areas will have lower 
values while clouds and snow  fi elds will be characterised by negative values of the 
NDVI index. 

 Atmospheric noise in the NDVI caused by clouds, dust and aerosols is generally 
negatively biased. This is due to the additive path radiance, which causes an increase 
in red re fl ectance, while lower atmospheric transmission reduces near infrared 
re fl ectance (Guyot et al.  1989  ) . Maximum value compositing (Holben  1986  )  is a 
common method of minimising such noise. In this method, only the highest NDVI 
value in a prede fi ned compositing period (typically 15–16 days) is retained. This results 
in fewer but more reliable NDVI values representing the time series.  

      Satellite Sensors 

 Maximum value composite NDVI datasets with global coverage and bi-monthly 
compositing period have been created using data from sensors with large swath 
widths as the National Oceanic and Atmospheric Administration (NOAA) Advanced 
Very High Resolution Radiometer (AVHRR) and the VEGETATION sensor aboard 
Satellite Probatoire d’Observation de la Terre (SPOT). The starting dates of these 
time series are 1981 and 1998, respectively, and the products are available at spatial 
resolutions of 8 and 1 km, respectively. 

 Since 2000, NDVI products have been available from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. Compared 
with the NOAA AVHRR GIMMS dataset, MODIS NDVI data have improved cali-
bration and atmospheric correction, a spatial resolution of 236 m and compositing 
intervals of 16 days. This medium-resolution dataset opens new possibilities within 
global phenological monitoring. 

 Recently, satellite series as Formosat-2, Komsat-2, and RapidEye were launched. 
This new generation of satellite sensors, with both high temporal and spatial resolution 
(<10 m), opens new possibilities for local phenological monitoring.  

      Phenological Observations by Satellites 

 Satellite image-aided analysis of phenology of natural vegetation provides spatially 
complete coverage that can be used to interpolate traditional ground-based pheno-
logical observations, and NDVI has evolved as the primary tool for monitoring 
changes in vegetation activity. Probably the most commonly used long-time dataset 
is the Global Inventory Modeling and Mapping Studies (GIMMS) dataset based on 
the AVHRR instrument (Tucker et al.  2005  ) . It has been used by many researchers 
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to study the effect of global climate change on phenological timing and primary 
production (e.g. Myneni et al.  1997 ; Walker et al.  2003 ; Stöckli and Vidale  2004  ) . 

 Karlsen et al.  (  2006,   2007  )  mapped the onset of the growing season of the whole 
of Fennoscandia by applying the GIMMS-NDVI dataset, where the onset of season 
was well correlated with the phenophase “onset of lea fi ng of birch”. They compared 
the NDVI-de fi ned start of growing season with registrations of the onset of lea fi ng 
of birch at 15 phenological registration sites across Fennoscandia. Most of the 
stations (13 out of 15) showed a moderately high correlation (r 2  = 0.22–0.65) 
between  fi eld data and the NDVI-de fi ned start of growing season. Four of the 
stations had 20- or 21-year-long time-series. For these stations, the mean coef fi cient 
of determination (r 2 ) between the start of growing season and the onset of lea fi ng of 
birch was 0.39 (p < 0.05). For all stations except one, the mean time span between 
the NDVI-de fi ned start of growing season and the onset of lea fi ng of birch was less 
than 1 week, and the root mean square error between  fi eld data and NDVI data was 
less than 10 days for all stations. For bi-monthly maximum value composited NDVI 
time series this is probably as close as it is possible to get. To decrease the difference 
it is necessary to use daily NDVI data.  

      Birch Flowering Measured by Satellites 

 Onset of  fl owering of birch and leaf-bud burst of birch are well correlated. Linkosalo 
 (  1999,   2000  )  found in southern Finland that the difference in time from male 
 fl owering to the  fi rst date of bud burst is only 1.1 days with male  fl owering occurring 
 fi rst. This indicates that the phenophase observed as leaf-bud burst could be used 
to determine the timing of local birch pollen release. Also, since bud burst of birch 
is accurately measured by remote sensing, measurements of NDVI could be used 
to determine the timing of local birch pollen release. Høgda et al.  (  2003  )  used the 
GIMMS-NDVI dataset, correlated it with birch pollen measurements from  fi ve 
stations, and found correlation values (r) in the range from 0.55 to 0.85. They also 
found trends in the timing of the start of pollen seasons, consistent with effects of 
climate change. 

 Because of its mountainous topography, deep fjords, and long distance from 
north to south, Norway is climatically and ecologically very diverse. The number 
of pollen traps is also relatively low so developing pollen forecasts in Norway is a 
challenging task.  Karlsen et al. (2009a)  used MODIS-NDVI satellite data with 
16-days time resolution and 236 m spatial resolution to map the average onset of 
birch  fl owering in Norway for the 2000 to 2007 period (Fig.  4.2 ).  

 In those studies, they found high correlation with phenological  fi eld data of onset 
of lea fi ng of birch, as well as with the date when the annual birch pollen sum reaches 
2.5% of the annual total from the ten Burkard traps across Norway. Accordingly, the 
satellite data can be used to determine the best location of the pollen traps and de fi ne 
the area with similar timing for start of birch pollen seasons as each trap. 

  Karlsen et al. (2009a)  also identi fi ed the NDVI threshold for each pixel when 
the onset of birch  fl owering occurred. On this basis they developed a model for 
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real-time monitoring of the birch  fl owering. In the model they used additional 
geo-data, where the most important was a Landsat TM based vegetation map of 
all of Norway used to identify vegetation types where birch occurs. The model 
was applied to monitor the onset of birch pollen season in near real-time during 
spring 2009  (  Karlsen et al. 2009b  ) . The method showed in most cases good agreement 
with data from the pollen traps. However, the model does not give any information 
about the amount of birch pollen or about long-distance transported pollen. This 
will be a limitation for forecasting in areas where long-distance transport is an 
important factor.  

  Fig. 4.2    Onset of birch  fl owering in southern Norway, based on mean values from the MODIS-NDVI 
dataset for the period 2000–2007, after  Karlsen et al. (2009a) . The map also shows the position of 
the pollen traps used in the study       
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      Future Prospects 

 The next step to consider would be to apply the model, which was developed for the 
start of birch pollens season in Norway, at other places. In areas with complex 
topography, as the Alps, where atmosphere-based models are less reliable, remote 
sensing-based methods would be particularly useful. The same procedure would 
have to be followed as was applied in Norway, where at  fi rst the average onset of 
birch  fl owering had to be mapped and afterwards a model for real-time measuring 
was installed. It is also believed to be possible to further develop the model to map 
the onset of the grass pollen seasons as well, but with slightly less accuracy. Since 
the release of e.g. grass pollen occurs after the peak of the seasonal NDVI curve, 
simple threshold based methods as used for birch pollen will not be suf fi cient. 
Comparing time integrated NDVI and Growing Degree Days Karlsen et al.  (  2006  )  
found a very high correlation. Accordingly, one method to apply satellite monitoring 
for estimating release dates of different pollen types could be to use time integrated 
NDVI as an additional data source. 

 The new generation of satellite sensors, with both daily data and high resolution 
(as Formosat-2, Komsat-2, and RapidEye), provide an opportunity to monitor 
the onset of the pollen season at a local scale. Due to the high data costs, it is only 
realistic to use these data for relatively small areas (<~1,000 km 2 ) and only some 
years. However, this new scale of observation creates a link between  fi eld observa-
tion of phenology/data from pollen traps and medium resolution sensors as MODIS. 
This would increase our understanding of the seasonal dynamics of the vegetation 
and improve the up-scaling from pollen traps to large regions, for instance, by the 
use of MODIS-NDVI data. 

 In the years to come there will be an increasing number of satellites with a range 
of scales in spatial resolution suitable to be used for near real time phenological 
monitoring (Ward  2008 ). Our conclusion is that satellite based monitoring of phe-
nology is rapidly developing and observations will be assimilated into phenological 
models.    

    4.2.2   Aerobiological Observations 

 There is a wide spectrum of micro-organisms and biological particulate matter 
present in the atmosphere, which is investigated with a similarly wide range of 
methods and instruments (Cox and Wathes  1995  ) . Biological aerosol sources are 
located in any place where biological activity exists. Many small organisms use the 
atmosphere as a means to be transported or to transport their own propagules. 
Bacteria, microalgae, microfungi, protozoa, insects and sometimes viruses are among 
the organisms that change their geographic location along their life cycle through 
the air. Fungal spores, lower plant spores or higher plant pollen grains are propagules 
transported by air. Fragments of fungi, animal or vegetal origin are also present in 
the atmosphere. 
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 Aerobiology studies the release of biological particulate matter into the 
atmosphere, its transport through the atmosphere, and its deposition and re-suspension. 
In order to be taken up and transported, biological particles have to be released into 
the atmosphere, which is achieved by different mechanisms: (a) active, explosive 
or turgid; (b) passive, from an external agent. For example, in the case of most lower 
plants, i.e. bryophytes and pteridophytes, one  fi nds active mechanisms for spore 
emission. In some cases, special sporangia and other devices enable an active 
emission by means of a catapult like discharge of the spores. However, these spores 
are usually large and heavy, which limits their dispersion through the atmosphere. 
In contrast, most of higher plants possess passive mechanisms for pollen emission. 
The role of pollen grains is to transfer the male gametophytes to the female repro-
ductive organs. This is called pollination and is achieved via different mechanisms 
depending on the plant, which may be classi fi ed as anemophilous, entomophilous or 
hygrophilous. In order to guarantee an effective pollination, the entire structure of 
pollen grain is subject to selection pressure. However, this review will concentrate 
mainly on airborne pollen from wind-pollinated plants that are primarily responsible 
for seasonal allergies, the prevalence of which has been increasing substantially 
during the last decades. 

    4.2.2.1   Pollen Monitoring History 

 Aerobiology is a young scienti fi c discipline that made great advances in the second 
half of the twentieth century, largely due to the introduction of advanced methods of 
monitoring. This brought a larger number of devotees to the subject and witnessed 
the rise of networks monitoring pollen and fungal spores on a national scale. Though 
aerobiology is related par excellence to ecology, it grew up following the major 
advancements in “allergology”. The term “Aerobiology” was de fi ned in the 1930s 
by Fred Campbell Meier (1893–1938), but Aerobiology did not become a recogn-
ised discipline until the 11 September 1974, when the International Association for 
Aerobiology (IAA) was founded at the 1st International Congress of Ecology, which 
was held at The Hague, in The Netherlands. Prior to this, in 1964, aerobiology had 
become a theme when the International Biological Program (IBP) was established. 
The major objective of the IBP was to study the biological basis for productivity of 
the world’s ecosystems. NASA supported the Atmospheric Biology Conference, 
with the idea that the atmospheric dispersion of biological materials might be given 
attention by the IBP. An aerobiological programme was subsequently established in 
1968, through the efforts of Benninghoff & Gregory, under the IBP section Use and 
Management of Biological Resources (UM). The IBP of fi cially  fi nished in 1974, 
when it was recognised that the studies on Aerobiology at international level 
should continue, and the IAA was formed 4 years later. Aerobiology is currently 
considered an experimental and multidisciplinary science that includes workers 
from botany, palynology, mycology, agronomy, microbiology, acarology, bioclima-
tology, meteorology, allergology and ecology. Aerobiology is made up of many 
different scienti fi c disciplines and so it is not easy to trace the most signi fi cant 
milestones in its history. 
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      The Origin of the Aerobiology 

 In ancient times, we  fi nd several references to the idea of micro-organisms and to 
the hypothesis that air can be a vector for diseases. For example, the Greek physician 
Hippocrates (460–377 BC) argued in “De Flatibus Corpus Hippocraticum” that 
people fall ill with fever after having inhaled infected air, although he was unaware 
of the nature of the infection. The author M. Terentius Varro (116–27 BC) cited 
invisible animals, which penetrated the body through mouth and nostrils thus causing 
disease. This concept was taken up in 1546 by Girolamo Fracastoro (1478–1553), 
who realised that some diseases were caused by “life seeds” that contaminate man, 
assuming that the body is reached by these particles by direct contact or by breathing 
in infected air. The Latin poet and philosopher Titus Lucretius Caro (98–55 BC) also 
mentioned small particles that can infect man.  

      Precursors of Aerobiology 

 Another important step was accomplished at the end of the  fi fteenth century by 
the invention of the microscope, the instrument that gave green light to explore the 
unknown world of the in fi nitely small and that allowed the investigation of aero-
biological particles. The natural philosopher Robert Hooke (1635–1703) made a 
number of accurate microscopic observations in the book Micrographia (1665). 
This work inspired the Dutch biologist Antonie van Leeuwenhoek (1632–1723), 
who between 1673 and 1683  fi rst described bacteria, the animalcules (protozoa) or 
diatomaceous, as well as some yeasts and moulds, and assumed that they were 
transported by the wind along with  fl oating dust. In 1682 Nehemiah Grew published 
his book “Anatomy of Plants”, which contains the  fi rst known description of pollen 
(Fig.  4.3 ).   

      Birth of the Experimental Aerobiology 

 Around 1860, French biologist Louis Pasteur (1822–1895) began to study the bio-
aerosols in the atmosphere. He built a series of specially designed glass bottles with 
a long curved neck (“a swan neck”) with a spout at their end that could be sealed. 
The bottle was positioned in a way that the dust containing spores and germs were 
deposited on infusions that were sterilised by boiling in the bottle. When the air had 
been  fi ltered or heated at a temperature high enough to kill all germs, the infusion 
remained sterile, but exposure to dust instead of air caused the deposition and 
growth of microorganisms on the infusion. Thanks to these experiments, Pasteur 
was able to demonstrate the heterogeneity of aerospora and the dispersion of germs 
in the atmosphere. Therefore, Pasteur is also considered a pioneer in aerobiology, 
the one who designed the  fi rst aerobiological experiments to examine the biological 
contents of dust in the air of Paris. 
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 His most direct descendant was without doubt the French physician Pierre Miquel 
(1850–1922), who continually monitored pollen and fungal spores in the atmo-
sphere for years with various types of samplers of his own design. The results of 
his research were published in “Les organismes vivants de I’atmosphere” (1883), 
which presents interesting data and many graphs on the amount of fungal spores and 
bacteria in the air correlated with some meteorological parameters such as temperature, 
rainfall, humidity and wind speed. 

 During the nineteenth century, the German physician and naturalist Christian 
Gottfried Ehrenberg (1795–1876) worked as one of the founders of the science 
dealing with micro-organisms transported by the atmosphere. He examined samples 
of soil, water, sediments, atmospheric dust and rocks, describing hundreds of new 
species of bacteria, protozoa, diatoms, rotifers and fossils in about 400 publications. 
Irish physicist John Tyndall (1820–1893) became famous for his studies on light 
(the Tyndall effect) and sterilisation (Tindalizzazione). He also conducted aerobio-
logical studies investigating the physical aspects of atmospheric particles and 
physiological growth of micro-organisms. Indeed, in essays on the  fl oating matter 
of the air in relation to putrefaction and infection (1881), which represents his most 

  Fig. 4.3    Nehemiah Grew ( left ), who published the “Anatomy of plants” in 1682 ( top right ). His book 
contains a plate depicting the  fi rst description of pollen ( bottom right )       
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important contribution to aerobiology, Tyndall studied the organic nature of dust 
in the atmosphere and claimed that epidemic diseases and putrefaction were 
caused by germs, thus refuting the abiogenesis. He was among the  fi rst to observe 
that seeds are abundantly present in and transported by the atmosphere. In the 
same century, Florentine Giorgio Roster (1843–1927), professor of biological 
chemistry and hygiene at the Royal Institute for Advanced Studies in Florence, can 
certainly be called one of the  fi rst experts on urban air pollution. He was the  fi rst 
true Italian aerobiologist.  

      Birth of “Aeropalynology” from “Aerobiology” 

 During the second half of the nineteenth century the study of micro-organisms 
expanded greatly. This stimulated an interest in studying also the pollen grains in 
the air, which led to the development of the  fi eld of aeropalynology. During this 
time, a number of hypotheses emerged, which tried to explain the seasonal appear-
ance of respiratory allergy in humans. It should be recalled that in 1819 the English 
physician John Bostock (1773–1846) set forth in detail the clinical picture of the 
disease.  

      Origins of Pollen Monitoring 

 In 1873, another English physician, Charles H. Blackley (1820–1900), went down in 
history as the father of aerobiology. He was the  fi rst to show that pollen was present 
in large quantities in summer and was the cause of breathing problems (described 
as Catarrhus æstivus or summer catarrh), demonstrating the direct relationship 
between the amount of pollen in the air and the severity of symptoms. From 1866, 
he compiled pollen calendars of Manchester, UK, having counted the pollen that he 
collected with a self-made sampler under a microscope. 

 During the same period, Morrill Wyman (1812–1903) described the autumnal 
catarrh in the United States of America, which appeared each year in August and 
September. He attributed it to the  fl ourishing of ragweed ( Ambrosia) . Elias Marsh 
(1835–1908), who created the  fi rst pollen calendars for ragweed pollen in 1875 for 
Paterson (New Jersey), must also be mentioned. 

 The factor that contributed most to the increase of knowledge about aerospora, 
after the invention of the microscope, was the introduction of air sampling devices. 
Starting from the  fi rst sampler of Pasteur (1860) and Blackley (circa 1866), during the 
second half of the nineteenth century, many scientists devised their own equipment 
to conduct aerobiological investigations. Most famous among them were the aero-
scopes of Maddox (1870), Cunningham (1873) and Miquel (1878), the aeroscope 
recorders for bacteria and moulds (France, circa 1884) and the electric suction pump 
of Roster (1885). These instruments relied on the state of the art technology of their 
time, but more rudimentary samplers were in operation between the late 1800s 
and the early decades of the twentieth century. For instance, samplers were built 
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with clothes pegs and a glass slide covered with glycerine  fi xed to a backing of 
wood and often covered with a small roof to shield them from the elements. These 
low precision instruments enjoyed some success primarily for economic reasons 
and they aroused the interest of many scholars for aerobiology and pollen monitoring. 
In 1946, O.C. Durham introduced his gravimetrically standardised sampler, which 
became the most frequently used instrument around the world for many years. It was 
also adopted by the “Pollen and Mold Committee of the American Academy of 
Allergy” as standard equipment. In 1967, the American Botanists Ogden and Raynor 
devised the rotary impact sampler “Rotoslide”. In 1952, the Englishman Jim Hirst 
designed a sampler with a suction pump, which was the ancestor of the modern 
Burkard and Lanzoni traps. Hirst-type volumetric samplers are still operated by the 
majority of monitoring centres throughout the world.  

      Aerobiology in 1800–1900 

 Without doubt the discovery of numerous micro-organisms responsible for infectious 
diseases have to be listed among the most signi fi cant achievements of biomedical 
science between the second half of the 1800s and the  fi rst decades of the 1900s. 
German bacteriologist and hygienist Carl Flügge (1847–1923), a colleague of Robert 
Koch who devised many bacteriological techniques and established the bacterial 
causes of a number of infectious diseases, proved around 1890 that coughing 
and sneezing releases small droplets, de fi ned as “droplets of Fluggi”, which contain 
numerous pathogenic micro-organisms that remain suspended in the air and are 
responsible for the transmission of infectious diseases to new hosts. Around 1912, 
the Czech-Austrian botanist and chemist Hans Molisch (1856–1937) coined the 
term “Aeroplankton” by including it in all sorts of particles and especially those of 
biological origin such as pollen, fungal spores, algae, etc.  

      Birth of Pollen Monitoring Networks 

 Pollen monitoring at national level started for the  fi rst time in the US by O.C. 
Durham (1889–1967) in an attempt to correlate patient and pollen data of  Ambrosia  
in 1928. Within a few years, the American network had expanded to more than 50 
stations scattered throughout the country and the measurements were extended to 
all types of pollen. The network spread in a short time over much of the continent 
including Canada, Mexico and Cuba. Durham continued to coordinate this pollen 
recording network until the 1950s. In 1955, Durham supervised the publication 
of the  fi rst report of the monitoring network, which constituted the  fi rst of its kind. 
The  fi rst conference to deal exclusively with aerobiological topics was held in 1942 
under the auspices of the “American Association for the Advancement of Science”. 
After 1970, national monitoring networks were established in most European coun-
tries and the “European Aerobiology Society” was founded in 2008. 
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 Aerobiology is still developing as a discipline and considerable advances are 
expected in the coming years. For example, many aerobiologists still use sampling 
equipment that is based on a design from the 1950s (Hirst  1952  )  and the analysis 
of samples is by light microscopy, which is labour intensive and extremely time 
consuming. One of the main areas of future development is expected to be in the 
monitoring of airborne organic particles with automated detection and analysis 
technologies (Rogers  2006  ) , such as monitoring the allergen content of the air, DNA 
analysis or image analysis. There are also likely to be improvements in atmospheric 
modelling. Many of these advances are expected to be fuelled by an increasing need 
for aerobiological data due to the effect of climate change on human health (Huynen 
et al.  2003  ) .   

    4.2.2.2   Monitoring Instruments and Sampling Methods in Aerobiology 

      Conventional Pollen Monitoring Instruments 

 Mullins and Emberlin  (  1997  )  reviewed strategies applied in sampling airborne 
pollen. The authors stressed that airborne pollen samplers, if they are to be effective, 
should be able to obtain volumetric record of all particles (5–50  m m), irrespective 
of the wind velocity. Numerous strategies including cylinder traps, sedimentation 
traps, impactors and  fi lters have been used in trapping pollen. 

 Volumetric pollen samplers based on the Hirst design (Hirst  1952  )  are used as 
the standard method in many national networks for measuring the pollen concentra-
tion in the atmosphere. Air is sucked in through a 2 mm × 14 mm nozzle at a rate of 
10 l/min. The rate of 10 l/min was chosen for operation in the  fi eld because ef fi ciency 
varied less at different wind speeds than at an alternative rate of 17.5 l/min. At a 
suction rate of 10 l/m   in there was also less danger of obscuring the spore deposit 
with  fi ne dust particles, which are less ef fi ciently impacted with a lower velocity in 
the ori fi ce (Hirst  1952  ) . Airborne particles are deposited on a tape mounted on a 
drum, which is slowly turned by clockwork (Levetin et al.  2000  ) . The sticky tape is 
then mostly stained with suitable dye and analysed under an optical light micro-
scope, whereby the pollen and spores of different taxa are determined and their 
numbers per surface area counted according to standardised procedures (Makinen 
 1981 ; BAF  1995 ; Galán et al.  2007  ) . The Hirst type volumetric pollen trap supplies 
pollen concentration data at a temporal resolution of up to 2 h. Relating the pollen 
counts with the exposure time, the number of pollen grains per cubic meter and 
time can be calculated. In order to avoid the distortion of the pollen count by local 
emissions, the traps are located on the roof of buildings, often at 12 m above street 
level (Winkler et al.  2001  ) . 

 In the US, whirling arm samplers, such as the Rotorod, are preferred. In whirling 
arm samplers, airborne particles impact on one side of translucent 6 cm long square 
rods (1.6 × 1.6 mm) that whirl through the air at 2,400 rpm resulting at a sampling 
rate of about 120 l/min. The duration of whirling period determines the sampling 
period. 
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 The Cour’s method (Cour  1974  )  is based on the principle of passive sampling, 
which has the advantage that it does not require any power supply. The traps are 
mounted in 3 m above the surface. The pollen is collected passively on a  fi lter. It is a 
volumetric method, because the results are expressed as the number of pollen grains 
per m 3  of air. The method has been applied for agronomical questions and has exclu-
sively been used by the French Association for Ragweed Study (AFEDA) for the last 
29 years. A pair of 20 × 20 cm  fi lters (400 cm 2 ) composed of six sterile cellulose 
gauzes impregnated with silicone oil are exposed over a week. The trap functions with 
a weather vane; it is always oriented perpendicular to the wind direction and retains 
pollen grains transported by air currents. Wind speed, measured by an anemometer 
at the level of the trap, is used to compute the volumetric quantity  fi ltered and the 
number of pollen grains per cubic meter of air. In the laboratory, the gauze with the 
collected material is dissolved in hydrochloric acid, hydro fl uoric acid, acetone and 
potassium hydroxide. Chemical treatment empties pollen grains of the nucleus and the 
cytoplasm. The pollen grains are concentrated in the residue which is diluted in glyc-
erine and homogenised. A volume of 50  m l of this dilution is deposited between a slide 
and a 22 × 50 mm cover slip and examined using light microscopy.  

      Pollen Counting Methods for Conventional Instruments 

 Whatever method for airborne pollen sampling is used, further analysis requires 
identi fi cation and quanti fi cation of registered pollen types. The identi fi cation of pollen 
requires knowledge on basic palynology (primarily pollen morphology), and it is 
performed either based on a comparison with reference microscopic slides or by 
using pollen identi fi cation keys and atlases. Due to their small size, pollen grains are 
commonly analysed under light microscope. The magni fi cation is chosen so that 
pollen can be safely identi fi ed according to the characteristics speci fi c for each taxon. 
The most widely used magni fi cation in aerobiological monitoring is ×400. 

 Because the Hirst-type pollen samplers are the most common ones today, the 
various quanti fi cation methods will be brie fl y described below. When performing 
the quantitative analysis of a sample collected by the Hirst-type volumetric sampling 
procedure, the most accurate method would be to count pollen on the entire surface 
of the 24 h sample. However, from a routine pollen monitoring point of view and in 
the context of producing data for forecasting and informing public on the prevalent 
allergy risk, this would be unacceptably time-consuming. Therefore, three sub-sampling 
methods, which analyse only a fraction of 24-h slide, are proposed:

    a.    The random  fi eld method (Makinen  1981  )  considers the examination of a certain 
number of  fi elds chosen at random from the entire daily surface, and counting 
the pollen present in each single  fi eld. This is probably the quickest method for 
slide analysis but, although it is good at estimating the daily mean concentration, 
it is unable to estimate short term concentrations (bi-hourly) (Kapyla and 
Penttinen  1981  ) . Furthermore, the application of the random  fi eld method can 
result in underestimates or overestimates of the pollen concentration, because 
their depositing is not uniform on the tape, but depends on the particular biological 
cycle, environmental conditions and the type of pollen (Tormo et al.  1996  ) .  
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    b.    The transverse traverses method (Emberlin et al.  1994  )  considers either the 
examination of successive tangent  fi elds in 12 transversal lines or the examination 
of complete 12 transversal lines, separated by 4 mm distance from one another. 
In this way a line is read for every 2 h, enabling an estimation of both daily and 
bi-hourly pollen concentrations. The choice of the position of the lines could 
in fl uence the  fi nal result obtained by this sub-sampling method, because pollen 
deposited within a very short time on the tape might be missed.  

    c.    The longitudinal traverses method considers either the examination of successive 
tangent  fi elds (Mandrioli  1990  )  positioned on 3 or 4 or 5 horizontal lines or the 
examination of 3 or 4 or 5 complete horizontal (   Dominguez et al.  1991 ) lines 
separated by a space of about 2 mm. Although this method enables the estimation 
of both daily and bi-hourly pollen concentrations, it was noted that overestimates 
can arise from counting only the central regions of the slide, where most of the 
pollen is deposited (Tormo et al.  1996  ) .     

 All of these sampling methods produce the pollen count expressed as concentration 
in pollen grains/m 3 , which is calculated having in mind the suction rate of the used 
sampler and the ratio between the total sample surface and the sub-sampled surface 
of the slide based on the formula: pollen grains/m 3  = (pollen count*total sample 
surface)/(sub-sample surface on which pollen are counted*total volume of air 
sampled) (BAF  1995  ) . 

 Since the main disadvantage of sub-sampling in the airborne pollen monitoring 
is the analysis of only a small proportion of the daily sample, Comtois and his col-
leagues  (  1999  )  checked the effect of sub-sampling on the accuracy of the quantitative 
analysis. They found that, when comparing concentrations obtained by counting 
the total slide surface versus counting only a fraction of it, none of the sub-sampling 
methods was able to reproduce the counting result of the total slide nor did the fractional 
counting give exactly the same result. Furthermore, the sub-sampling error was much 
higher than what is commonly believed, and it was signi fi cantly correlated with 
the abundance of pollen taxa on the sampled slide. Although each method has its 
advantages and disadvantages, all proposed methods enable a fairly good estimation 
of the whole biological population contained in a certain volume of air (Comtois 
et al.  1999 ; Sterling et al.  1999 ; Carinanos et al.  2000  ) .  

      Automated Pollen Counting Techniques 

 For forecasting purposes, a continuous delivery of pollen counts and most suitably 
in an hourly time resolution would be very valuable. This cannot be achieved by 
manual counting systems, but could be obtained with automated pollen counting 
systems. In recent literature several different methods for automated pollen detection 
have been described:

    1.    Systems that make use of multifocal optical microscopic images of air samples 
collected by a conventional Hirst-type pollen sampler. A  fi rst step in automated 
counting of the pollen is the discrimination of the pollen grains from other 
airborne material in the images (Landsmeer et al.  2009 ; Bonton et al.  2001  ) . 
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For subsequent identi fi cation of the pollen grain, several characteristic pollen 
features, including shape, statistical grey-level and speci fi c pore/colpus features 
are extracted from the images by pattern recognition software tools (Boucher 
et al.  2002 ; Chen et al.  2006  ) . These methods report various levels of success 
in identi fi cation of speci fi c pollen types: 77% in samples from airborne pollen 
(Boucher et al.  2002  )  or 97.2% in samples containing three allergenic pollen taxa 
(Chen et al.  2006  ) .  

    2.    A fully integrated pollen sampling system that automatically collects, prepares 
and records by making use of a conventional light microscope (Ronneberger 
 2007  ) . The method developed for the recognition of the pollen employs digitised 
images, using the grey-value of each pixel (Ronneberger et al.  2002  ) . This system 
reached a recognition rate in “real world” samples of 84.3% (Ronneberger  2007  ) . 
Up until now, it was not developed beyond a stage of a prototype and it did not 
reach the stage of becoming commercially available.  

      3. Other systems do not make use of digitised images of pollen, but are based on the 
technology of particle counters by laser light.

In the system described by Kawashima et al.  (  • 2007  ) , pollen is characterised by 
the sideways and forward scattering of laser light. Air, containing the airborne 
particles, is passed through the optical system and irradiated by a laser beam. 
The scattering of light signals caused by the pollen grains is recorded in real 
time and processed by a computer. During a sampling period in late summer, 
pollen from nettle ( Urticaceae) , ragweed and grass ( Poaceae)  could be sepa-
rated well by different scattering patterns. For other European pollen taxa, the 
system has not been tested yet. 
 In Japan, another real-time airborne pollen counter was developed by the com-• 
pany Kowa. The technology is based on a laser particle counter and on the 
characteristic distribution of pollen on the scattered diagram according to the 
grain size versus the  fl uorescent hue. In Japan, this counter is used by the 
Tokyo pollen information network systems (Suzuki et al.  2008  ) . 
 Recently, a new methodology was presented on the 9th International Congress • 
of aerobiology: the WIBS 4 (Wide-Issue Bioaerosol Spectrometer). This 
instrument combined information from laser light scattering with 
2D-spectroscopic measurements. The instrument was successfully used in an 
area with a low diversity of pollen (Sodeau et al.  2010  ) .  

      4. Another method is based on the Coulter counting principle (Zhang et al.  2005  ) . 
Pollen was suspended in a KCl aqueous suspension and passed through a micro-
channel. The changes in conductance, due to the passing of the pollen, were 
recorded and analysed. In this system juniper ( Juniperus)  and grass pollen could 
be discriminated.      

      Airborne Allergen Monitoring Instruments 

 Allergologists have become increasingly interested in questions concerning the 
allergenic potency of pollen, which cannot be answered by the conventional pollen 
counts. For the purpose of allergen measurement in pollen new types of pollen traps 
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needed to be developed, which now allow the application of immunological analysis 
methods like ELISA or immuno- fl uorescence. Spieksma et al.  (  1990 ,  1999 ) used a 
high volume sampler that operated at 1,130 l/min equipped with a  fi ve-stage cascade 
impactor (HSV), sampling onto glass  fi bre impaction sheets to fractionate particles 
by size class. The HVS had a high capture ef fi ciency (96–99 % for particles > 0.3  m m 
diameter) but sampling was not isokinetic or unidirectional. Also, Rantio-Lehtimaki 
et al.  (  1994  )  used a static, size selective bio-aerosol sampler (virtual impactor) 
with a  fl ow rate of 18.5 l/min that collected samples onto three  fi lters. Alternatively, 
Emberlin and Baboonian  (  1995  )  collected particles over a wide range of sizes in 
Eppendorf tubes for immunological analysis using a cyclone sampler operating at 
16.6 l/min (Mullins and Emberlin  1997  ) . 

 More recent approaches include the Coriolis ®  Delta of Bertin that works at a  fl ow 
rate of 300 l/min and transfers pollen into a liquid collection media. It has an ef fi ciency 
of 90–100% for particles with a diameter of 3  m m upwards (Bertin Technologies 
 2007  ) . 

 Other samplers have been designed that are able to separate particulate matter 
from ambient air according to its size. The Andersen sampler aspirates 28 l/min 
of air (Andersen  1958  ) . This sampler may contain up to six impaction stages, capturing 
particles with an aerodynamic size of PM > 8.2  m m, 10.4  m m > PM >5.0  m m, 
6.0  m m > PM > 3.0  m m, 3.5  m m > PM > 2.0  m m, 2.0  m m > PM > 1.0  m m and < 1  m m, 
enabling the study of the distribution of the allergenic particles according to their 
sizes (De Linares et al.  2007 ,  2010 ). The Chemvol ®  high-volume cascade impactor 
represents a more recent development (Demokritou et al.  2002  ) . Ambient air is 
aspirated at 800 l/min and split into three identical airstreams, each impacting on a 
porous polyurethane impacting substrate. A cascade of stages with cut-offs at 10, 
2.5, 1, 0.12  m m and an absolute stage can be mounted. Pollen and allergen are 
mostly detected in the stage PM > 10  m m with an additional 10–15% of allergen 
in the stage10  m m > PM > 2.5  m m. The smallest stage (particles with a diameter of 
2.5  m m > PM > 0.12  m m) is seldom used when working with pollen or allergen in 
ambient air as no allergen was found in this stage. The authors postulate that this 
could be due to concomitant collection of diesel particles at this stage, absorbing the 
possibly available allergen (Buters et al.  2010  ) . This phenomenon could be shared 
by all samplers.  

      Personal Samplers 

 The Burkard Personal Volumetric Air Sampler (Burkard Manufacturing Co., 
Rickmansworth, UK) is a portable battery-powered device similar in operation to 
the Hirst trap. Air is drawn through a vertically orientated slot-shaped intake and 
impacted directly onto an adhesive covered microscope slide. The sample may thus 
be examined under the light microscope with little additional effort (Aizenberg et al. 
 2000  ) . Whilst the term “personal sampler” is often applied to such portable devices, 
true personal samplers that sample from the breathing zone are designed to be worn 
by one person. For instance, the CIP 10, available from Arelco, was developed by 
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INERIS (Industrial Environment and Risks National Institute) to measure the 
exposure of workers to dusts in coal mines (Arelco  2004 ). The sampler can be set 
up to select either the respirable alveolar, thoracic or inhalable particle size fraction, 
collected in a foam  fi lter. The Button Aerosol Sampler (SKC, Eighty Four, PA, 
USA) is a  fi lter device that targets the inhalable particle fraction. Air is aspirated 
at a rate of 4 l/min through a curved, porous inlet designed to minimise wind sensi-
tivity and promote uniform particle distribution. Sample analysis is by microscopy, 
immunoassay or PCR (SKC  2010  ) . The Nasal Air Sampler is a passive impaction 
device worn inside the nasal cavity, thus truly measuring personal exposure rather 
than particle concentration in the breathing zone. Inhaled air is drawn past a specially 
designed adhesive strip onto which particles with suf fi cient inertia are impacted. 
Samples may be analysed using ELISA, or be mounted for microscopic examination 
(Graham et al.  2000  ) .  

      Quality Standard 

 In order to produce comparable aerobiological data a Quality Control working 
group has been established within the European Aerobiology Society (EAS) in 2008, 
which intends to create an internationally recognized standard. As a  fi rst step 
towards such a quality standard a preliminary list of “Minimum requirements” for 
all monitoring stations involved in the European Aeroallergen Network (EAN) has 
been compiled. More details of the Quality Control working group discussions have 
been published in the IAA Newsletters (beginning with number 67:   http://www.
isac.cnr.it/aerobio/iaa/IAABULL.html    ).   

    4.2.2.3   Applications of Aerobiological Monitoring 

 Mandrioli and Ariatti  (  2001  )  stated that aerobiology must be considered as a discipline 
by itself as well as a tool for other disciplines. Because pollen grains of a number of 
plant species induce allergic reactions, aerobiology and in particular airborne pollen 
research developed as a discipline in close relation to medical research. In addition 
to that, allergenic airborne pollen is the only object of aerobiological research for 
which routine monitoring on a daily basis is widely accepted and often implemented 
in country, regional or continental networks, producing long time series of data 
available from numerous regions worldwide. Bryant  (  1989  )  identi fi ed pollen as 
“ fi ngerprints of plants”, which are closely related with  fl owering, reproduction and 
distribution of the vegetation. Such relationships provide the potential for airborne 
pollen observations to be used in wide spectra of studies dealing with anemophilous 
plant species. 

 Frenguelli  (  1998  )  reviewed the potential contribution of aerobiological observa-
tions to agriculture. There it can for  instance be applied to yield forecasting. Two 
approaches have been followed: (1) the pollen index indicates the number of 
developed  fl owers, which correlates with the number of fruits in monoecious 

http://www.isac.cnr.it/aerobio/iaa/IAABULL.html
http://www.isac.cnr.it/aerobio/iaa/IAABULL.html
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plants; (2) the pollen index indicates the amount of pollen available for fertilisation 
in anemophilous plants (a higher number of successful fertilisations is linked 
with a higher fruit productivity). These approaches were successfully implemented 
in forecasting the production of olives ( Olea Europeae , Moriondo et al.  2001 ; Galán 
et al.  2004 ,  2008 ; García-Mozo et al.  2007a  ) , grapes ( Vitis vinifera , Cristofolini and 
Gottardini  2000  )  and even forest species, such us oaks ( Quercus , García-Mozo et al. 
 2007b  )  or birch (Litschauer  2003  ) . 

 On the other hand, with the development of Genetically Modi fi ed (GM) crops, 
there emerged the need for monitoring the potential gene  fl ow (Stokstad  2002  ) . 
In that context, aerobiological observations could offer data on pollen dispersal 
patterns primarily originating from wind pollinated plants, such as oak (Schueler 
et al.  2005  ) , which show an intermediate to high potential of gene  fl ow (Govindaraju 
 1988  ) . In the case of oilseed rape ( Brassica ), although it is primarily insect-pollinated, 
aerobiological studies prove transport of airborne pollen (Fiorina et al.  2003  ) . These 
 fi ndings address the potential risk of gene  fl ow in GM oilseed rape threatening 
the surrounding crops. Therefore, aerobiology should support the development of 
methods to predict the concentration of viable pollen as a function of distance from 
the source. Such predictions should be a guideline for policy makers when de fi ning 
distances needed between crop  fi elds in order to prevent gene  fl ow. 

 Aerobiological observations enable indirect analysis of plant responses (in 
particular linked to male reproductive systems) to environmental factors. For example, 
stress situations caused by frost could lead to male sterility, which would result in a 
lower pollen index, as it was observed in the case of the Mediterranean cork-oak 
( Quercus suber , García-Mozo et al.  2001  ) . Also, climate change induced differences 
in the timing and duration of the  fl owering phenophase of anemophilous plants that 
could be observed by analysis of the duration, start and end dates of the airborne 
pollen season (Tedeschini et al.  2006 ; Frei and Gassner  2008  ) . Such changes were 
also observed by Fotiou et al.  (  2011  )  who modelled the  fl owering process of north- and 
south-facing populations of spreading pellitory ( Parietaria judaica)  and compared 
the duration of the  fl owering and pollen seasons locally. 

 Pollen analysis has a great potential for providing a continuous record of pollen 
production going back thousands of years, due to the fact that pollen is produced 
in large quantities, dispersed widely and remains well preserved in wet anaerobic 
environments. In order to be able to reconstruct past climate, Autio and Hicks  (  2004  )  
suggested deducing an empirical relation between pollen production and meteoro-
logical conditions. Applying sedimentational Tauber traps, these authors analysed 
the annual variation in pollen production in the studied area in relation to meteoro-
logical parameters. The network of stations for pollen monitoring using Hirst 
type volumetric traps is well distributed all over Europe. Furthermore signi fi cant 
correlations exist between data obtained by volumetric Burkard and sedimentation 
Tauber traps (Levetin et al.  2000  ) . This allows the description of the in fl uence of climate 
variability on pollen production and deposition, which supports the quantitative 
reconstruction of past climate.  
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    4.2.2.4   The European Pollen Information System 

 At present, the Europe-wide pollen information system consists of two coherent units:

   the European aeroallergen database EAN  • 
  the public web portal  •  www.polleninfo.org        

      EAN Database 

 Both units form the basis of the aerobiological unit. Access to the database is 
restricted to a de fi ned user group: those who contribute data have read access to all 
available data for internal use. By agreement, the use of data for publication or for 
commercial purposes without the consent of the data owners is prohibited. Founded 
in 1988, the database has got a new structure in 1999 and 2009. 

 The majority of data sets cover the last decade, but some time series extend back 
as far as to 1974. In total, over 700 monitoring stations from 38 countries are incor-
porated in the database, collecting pollen and spore counts of over 200 different 
taxa. This results in about 1 million annual reports (pollen types per station and 
year). The main goal concerning pollen information services is to assist in forecasting 
and to help in developing and testing forecast models. Another frequently used feature 
is providing data for multicentre studies in allergology, forestry, and climatology.  

      The Public Web Portal (  www.polleninfo.org    ) 

 Since 1997, a European platform for pollen information has been provided for the 
public (  www.cat.at/pollen/    ). A hierarchic structure allows navigation from general 
overviews down to highly speci fi c local information contents. The up-to date infor-
mation county by country are available both in English and in the country language(s). 
The main goal is to provide links to pollen information services on a common 
European pollen information portal – in particular for travellers and for vacation 
planning. A new platform   www.polleninfo.org     has been launched in mid April 2003 
with  fi nancial support from epi Ltd. replacing the old cat.at/pollen/site.     

    4.3   Modelling and Forecasting of the Pollen Season 

 Although very different in the way of being observed and measured, phenological 
events and pollen counts can be traced back to the same phenomenon, the  fl owering 
of plants. Similarly, both kinds of data can in many respects be modelled with a 
similar set of observation-based models. Simple regression models can predict entry 
dates of phenological phases and likewise the start, peak and end of the pollen season 
or, given a greater number of independent variables, the day to day variability of the 

http://www.polleninfo.org
http://www.polleninfo.org
http://www.cat.at/pollen/
http://www.polleninfo.org
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pollen counts. Phenological models will equally well predict the entry dates of 
phenological phases as well as the start, peak and end of the pollen season. 

 Phenological models are sometimes grouped into the class of process-based 
models, because they are built on assumptions rooted in experimental results on 
plant physiological responses to various environmental variables (Chuine et al. 
 2000  ) . The other modelling approaches presented in this section are summarised 
under the term observation-based models, because no a-priori assumptions are 
involved. This includes regression models, time-series modelling and a survey about 
applications of arti fi cial intelligence methods to pollen data. A discussion of special 
problems related to numerical pollen forecast completes the literature survey. 

    4.3.1   Observation-Based Models 

 Observation-orientated models relate pollen records (dependent variable) to one or 
more variables (independent variables) that can be measured or predicted, and are 
constructed without knowledge of the sources, emission or calculations of diffusion 
(Norris-Hill  1995  ) . On the contrary, everything starts from the pollen counts being 
recorded at the pollen traps (the receptors). Pollen data usually produce mean daily 
values for the studied area and in some cases hourly or 2-h values. These data can 
be used for producing forecasts of day-to-day variations in pollen concentrations, or 
for predicting characteristics of the pollen season, such as start dates and severity. 

 All methods use certain mathematical tools in order to describe and imitate the 
behaviour of pollen count (its temporal and in some cases spatial variations); they 
may be applied for better understanding, description and knowledge concerning 
pollen season problems. The most rudimentary method for pollen forecasting is 
the pollen calendar. Recording seasonal variations in the timing and abundance of 
different pollen types is the  fi rst task undertaken by operators of pollen-monitoring 
sites. When suf fi cient data has been recorded, it is possible to relate temporal varia-
tions in pollen records (diurnal variations, daily average values or seasonal charac-
teristics) to meteorological data, such as temperature and rainfall. This is achieved 
using a variety of statistical techniques that include correlation analysis, parametric 
Pearson correlations and non-parametric Spearman Rank correlation analysis 
(e.g. Stach et al.  2008 ; Smith and Emberlin  2006 ; Galán et al.  2000 ; Rodriguez 
Rajo et al.  2005  ) , Factor Analysis (Makra et al.  2004  )  and hierarchical multiple 
regression analysis (Emberlin et al.  2007  ) . The results from these analyses can be 
used to improve qualitative predictions or provide the theoretical rationale on which 
quantitative forecast models are built. 

    4.3.1.1   Regression Models 

 Regression analysis is an empirical technique that is often used in aerobiological 
studies. It is used to predict a score on one variable from a score on the other and as a 
result is often referred to as a causal method of statistical modelling. Causal models 
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predict the future by modelling the past relationships between a dependent variable 
and one or more other variables called either independent or predictor variables. 
The goal of regression analysis is to arrive at the set of B values for independent 
variables, called regression coef fi cients, that bring predicted Y values from the 
equation as close as possible to the Y values obtained by measurement. The ability 
to  fi nd potentially causal relationships that not only predict but also explain the 
dependent variable makes regression analysis a very powerful technique (DeLurgio 
 1998 ; Tabachnick and Fidell  2001  ) . 

 In simple bivariate (two-variable) linear regression, a straight line between the 
two variables is found. The best  fi tting straight line goes through the means of X and 
Y and minimises the sum of the squared distances between the data points and the 
line (Kinnear and Gray  1999 ; Tabachnick and Fidell  2001  ) . This technique is useful 
when the dataset is not large enough for multiple regression analysis (Stach et al. 
 2008  )  as studies based on relatively small datasets are inappropriate for the multiple 
regression process because they result in in fl ated regression coef fi cients of determi-
nation ( R  2  values) and inaccurately estimated coef fi cients. In such cases, it may be 
more suitable to use simple linear regression (Ong et al.  1997  ) . 

 In multiple regression analysis, the values of the dependent variable are estimated 
from those of two or more independent variables (Kinnear and Gray  1999  ) . Multiple 
regression analysis makes a number of assumptions about the data (such as normality, 
linearity and homoscedasticity) and is not forgiving if they are violated (Kinnear 
and Gray  1999 ; Pallant  2001  ) . Many of the problems associated with these factors 
can be addressed by transforming the data prior to analysis. Different methods of 
data transformation have been used by a variety of authors, mainly when predicting 
daily variations in pollen counts; these include square root (Smith and Emberlin 
 2005  ) , lognormal (Alcazar et al.  2004  )  and log10 (Stach et al.  2008  ) . Toro et al. 
 (  1998  )  investigated the use of different methods of data transformation. The authors 
transformed daily mean grass pollen data ( x  

t
 ) expressed as the number of pollen 

grains/m 3  into different scales before attempting to construct regression models: 
log( x  

t
  + 1), √ x  

t
 , and ln(( x  

t
 *1,000,  x ) + 1). The latter method is the transformation 

proposed by Moseholm et al.  (  1987  ) . Toro et al.  (  1998  )  found that a regression 
equation obtained from data transformed by square root usually resulted in a better 
prediction because substantial errors can be introduced in de-transforming the data 
to the usual scale (pollen grains/m 3 ), although its  R  2  value was lower than equations 
obtained with other transformations. Furthermore, it was suggested that the trans-
formation proposed by Moseholm et al.  (  1987  )  should not be used to construct 
short-term predictive models because the margin of error is further increased by the 
inclusion of an additional factor ∑ x  (total of pollen grains for the whole season), 
which has to be predicted before it can be transformed (Toro et al.  1998  ) . In addition 
to data transformations, datasets also have to be cleaned prior to analysis in order to 
remove or alter univariate and multivariate outliers that regression models are sensitive 
to, as they can distort statistics (DeLurgio  1998 ; Tabachnick and Fidell  2001  ) . 

 There are several methods of multiple regression analysis commonly used in 
observation based modelling. Step-wise multiple regression analysis has often been 
used in aerobiological studies (Galán et al.  1995 ; Goldberg et al.  1988 ; Bringfelt 
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et al.  1982 ; Moseholm et al.  1987  ) . An alternative method used in aerobiological 
research is standard multiple regression analysis (Stach et al.  2008 ; Smith and 
Emberlin  2005 ; Makra et al.  2004  ) , where all the independent variables are entered 
into the equation simultaneously and each independent variable is evaluated in 
terms of its predictive power compared to that of the other independent variables 
(Kinnear and Gray  1999 ; Pallant  2001  ) . However, non-linear statistics should 
be used, if the data do not show a normal distribution (Toro et al.  1998  ) , such as 
polynomic regression (Antepara et al.  1995  )  or semi-parametric Poisson regression 
models, where the variance of the data is proportional to its mean (Stark et al.  1997 ; 
Erbas et al.  2007  ) . 

 Regression analysis has been used for predicting daily values (Stach et al.  2008 ; 
Smith and Emberlin  2005  ) , as well as the start (Emberlin et al.  1993a ; Laaidi  2001a,   b ; 
Galán et al.  1998,   2001a ; Frenguelli et al.  1989 ; Davies and Smith  1973  ) , peak 
(Orlandi et al.  2006  ) , duration (Laaidi et al.  2003  )  and severity (Emberlin et al. 
 1993b ; Galán et al.  2001b  )  of pollen seasons and the beginning of  fl owering 
(Crepinsek et al.  2006  ) . A number of different independent variables were used in 
these analyses. Variables that affect the timing of pollen release from allergenic 
plants are used to predict the start of pollen seasons and the beginning of  fl owering, 
such as monthly (Stach et al.  2008 ; Emberlin et al.  1993a ; Galán et al.  1998,   2001a ; 
Frenguelli et al.  1989 ; Davies and Smith  1973 ; Crepinsek et al.  2006  )  or 10-day 
periods (sometimes referred to as decades-of-days; Stach et al.  2008 ; Smith and 
Emberlin  2005 ; Spieksma and Nikkels  1998  )  of meteorological data, as well as 
winter averages of the North Atlantic Oscillation (Stach et al.  2008 ; Spieksma and 
Nikkels  1998  ) . Similar variables are also used when attempting to predict the severity 
of seasons (Emberlin et al.  1999 ; Laaidi  2001b ; Galán et al.  1998  ) . Observed pollen 
season starting dates, which occur before the start dates of the pollen season to be 
modelled, can also be considered as only or additional independent regression 
parameter (Norris-Hill  1998  ) . 

 A variety of different independent variables have also been used to predict daily 
average pollen counts, and include minimum (Toro et al.  1998  ) , maximum (Iglesias 
et al.  2007 ; Rodriguez Rajo et al.  2004,   2005 ; Mendez et al.  2005 ; Toro et al.  1998  )  
and mean (Toro et al.  1998 ; Rodriguez Rajo et al.  2004 ; Goldberg et al.  1988  )  daily 
temperatures, rainfall (Stark et al.  1997 ; Rodriguez Rajo et al.  2004 ; Toro et al.  1998  ) , 
relative humidity (Stach et al.  2008 ; Smith and Emberlin  2005 ; Toro et al.  1998  ) , 
sunshine hours (Stach et al.  2008 ; Toro et al.  1998  ) , wind speed (Bringfelt et al. 
 1982  )  and also direction and persistence (Damialis et al.  2005  ) , and the amount of 
pollen recorded in the previous days (Stach et al.  2008 ; Smith and Emberlin  2005 ; 
Iglesias et al.  2007 ; Sánchez-Mesa et al.  2002 ; Rodriguez Rajo et al.  2004,   2005 ; 
Mendez et al.  2005  ) . The division of grass pollen seasons prior to analysis has 
become an accepted methodology when attempting to predict daily pollen counts, 
because the relationship between pollen counts and environmental data tends to 
change during the pre-peak and post-peak periods (Sánchez-Mesa et al.  2003 ; Galán 
et al.  1995 ; Toro et al.  1998  ) . Examples include splitting the grass pollen season 
into two and de fi ned the pre-peak period as dating from the beginning of the main 
pollen season to the peak day itself (Toro et al.  1998  ) , or dividing the grass pollen 
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seasons into three (pre-peak, peak and post-peak periods of pollen release) because 
pollen counts around the peak day behave as one population, whereas pollen counts 
from the pre-peak and post-peak periods can be treated separately (Smith and 
Emberlin  2005  ) . 

 When selecting the independent variables to enter into regression analysis, it is 
important to avoid multicollinearity, which exists when the independent variables 
are highly correlated. For instance, highly correlated variables (such as maximum, 
minimum and mean daily air temperatures) should not be included in the same 
multiple regression. It is also important not to attempt to assess prediction accuracy 
with the same data used to construct the model (Stark et al.  1997  ) .  

    4.3.1.2   Time Series Modelling 

 Modelling and forecasting of pollen counts based on regression equations is simple 
and straightforward and can be carried out with any statistical package providing 
multivariate regression procedures. However, it suffers from a number of disad-
vantages. The most important one is that usually time is kept  fi xed and different 
time periods are handled as different variables, which prevents any exploration of 
the role of timescales. In order to do this, it is usually preferable to use time-series 
approaches. 

 The classical time-series method for the analysis and forecasting of pollen levels 
is the Box-Jenkins approach (Box et al.  1994  ) . This is based on the successive 
re fi nement of the model by  fi tting different deterministic and stochastic components 
of variability. First, the average value is found and then subtracted from the series. 
Then, a trend is  fi tted to these centred residuals and the values of this trend-line are 
subtracted to get the detrended values. Next, successive years are stacked on a daily, 
weekly or monthly basis and we  fi nd the average over all years for each day, week 
or month. For example, if we use a monthly basis, the model  S ( m ) for  m  = June is the 
average of the detrended values for June averaged over all years. Finally, after this 
cyclic model has been subtracted from the data, the autocorrelation structure is  fi tted 
using ARIMA techniques (Box et al.  1994  ) . Ideally, at the end of this stage, the 
residuals should be free of correlation. This is a widely-used approach, which can 
be regarded as standard, and features in several aerobiological studies (Moseholm 
et al.  1987 ; Stephen et al.  1990 ; Rodriguez-Rajo et al.  2006 ; Aznarte et al.  2007  ) . 
The model may thus be described as:

     = + + +( ) ( ) ( ) ( )εtX t M Tr t S m t    (4.2)   

 Here,  Tr ( t ) is the trend component at time  t , a steadily rising or falling back-
ground that is sometimes observed in pollen records (Damialis et al.  2007  ) , and  M  is 
the mean value of detrended series. The seasonal component is  S ( m  

 t 
 ), where  m  

 t 
 is the 

month (or week or day) of the year. Finally   e  ( t ) is the residual noise, whose structure 
can be described by an ARIMA model. It is often desirable to transform data, for 
example using the logarithm or square-root, before carrying out a Box-Jenkins analysis. 
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This is especially true in the case of pollen data, where variability is strongly skewed. 
Covariates such as temperature and humidity can also be built into this forecasting 
approach (Moseholm et al.  1987  ) . 

 Figure  4.4  shows an example of this approach applied to a pollen series (olive) 
from Thessaloniki, for the years 2001–2005. It is clear that this model can be used 
to  fi t pollen data and it should be possible to make predictions of future pollen 
concentrations, at least for certain groups.  

 However, the basic Box-Jenkins approach can also be quite limited. Figure  4.5  
illustrates some major dif fi culties of forecasting in the context of pollen dynamics. 
Noting that the scale is logarithmic, where the model fails to predict, the divergence 
can be very large (e.g. end of 2001,  fi rst cycle). Seasons can be irregular, so in 2003 
(third cycle), the season begins later and is shorter than expected. Variations in the 
seasonality of pollen concentrations are primarily driven by ecological factors 
that may in turn be driven by climate or ecological interactions leading to shifts of 
the peak (Ocana-Peinado et al.  2008  ) . The statistical behaviour of the counts does 
not conform to the usual patterns. For example, though data are extremely right 
skewed, a log-transformation does not remove it (Aznarte et al.  2007  ) . The back-
ground “noise” generates variability on all scales. It cannot be removed by smooth-
ing. For example, in Fig.  4.4 , it is clear that the cleft in the peak moves about on a 
scale of weeks. This multi-scale behaviour (Halley and Inchausti  2004  )  has major 
consequences for the design of forecast procedures. In Fig.  4.4 , the data have been 
normalised by year, that is, each year’s data have been scaled so as to lead to the 
same total for each year. Figure  4.5  shows weekly data, without this pre-processing, 
for the family Poaceae, in Thessaloniki, over the years 1996–2004. Yearly counts 
vary considerably, so this introduces an extra twist that illustrates the direction we 
need to take in pollen season forecasting.  

  Fig. 4.4    Application of the Box-Jenkins method to forecast olive pollen levels in Thessaloniki 
for the years 2001–2005 based on a model parameterized for the years 1995–2000. The data and 
predictions are resolved on a weekly basis per m 3  of air. The units in the range have been stan-
dardised and logarithmically transformed. We plot  X  

 t 
  = log( P  

 t 
  + 1), where   R   

 t 
  is the pollen level, 

against time  t        
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 There is clearly a year to year variation of pollen counts. Thus, we have a more 
suitable model for pollen prediction:

     = + + +( ) ( ) ( )· ( ) εt t tX t M Tr t A y S m    (4.3)   

 Here, the seasonal component is the product of a random annual component  A  
for the year  y  

 t 
 , and the cyclic seasonal component that depends only on the month, 

 m , as before. This modi fi ed Box-Jenkins model addresses some of the multiple-
scale variability that needs to be included in any attempt to forecast pollen levels. 

 Other time-series based approaches include neural networks (Arizmendi et al. 
 1993  )  or neuro-fuzzy approaches (Aznarte et al.  2007  )  and functional regression 
(Ocana-Peinado et al.  2008  ) . To assess the relative success of forecasting, various 
comparisons have been made, but as yet have been mainly con fi ned to speci fi c 
places, taxa and timescales. Thus, there is a need for considerable work on the 
multiple-scale nature of pollen variability, which can be addressed within a suitably 
modi fi ed Box-Jenkins framework or using other time-series based methods. It is 
too early to say, which of the methods is the best. Investigations into appropriate 
measures of deviation of models from data are needed to quantify the relative merit 
of different models.  

    4.3.1.3   Computational Intelligence 

 Environmental data are very complex to model due to underlying interrelations 
between numerous variables of different type. However, as standard statistical tech-
niques may possibly fail to adequately model complex, non-linear phenomena and 
chemical procedures, the application of Computational Intelligence (CI) methods 
for forecasting of a wide range of air pollutants and their concentrations at various 
time scales, perform usually well in atmospheric sciences. 

  Fig. 4.5    Weekly counts of pollen of the Poaceae family in Thessaloniki, for the years 1996–2004 
inclusive. The data are resolved on a weekly basis per m 3  of air. Because of the large between-year 
variability, no model curve is drawn. The time axis begins on January 1, 1996 and ends December 
31, 2004. There is no transformation of pollen levels  P  

 t 
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 Computational Intelligence methods, such as Neural Networks, Classi fi cations 
and Regression Trees, Self Organising Maps, Support Vector Machines, etc. are 
advanced tools for knowledge discovery and forecasting parameters of interest. CI 
methods can be used for multiple tasks, such as classi fi cation, numerical prediction, 
clustering etc., while the main advantage of these methods is the accuracy combined 
with computational ef fi ciency. CI techniques such as Arti fi cial Neural Networks 
(ANNs), Classi fi cation and Regression Trees (CART) and Support Vector Machines 
have already been applied for analysing and forecasting air pollution parameters 
(Slini et al.  2006 ; Karatzas and Kaltsatos  2007  ) . The performance of CI methods 
is similar or in some cases better compared with that of deterministic models, 
when applied to the atmospheric environment (Kukkonen et al.  2003  ) , thus CI methods 
are appropriate tools to be applied for the development of operational forecasting, 
among others. 

 The application of CI methods for analysing and modelling pollen concentration 
data has increased in the recent years, since it was identi fi ed that methods, such as 
Arti fi cial Neural Networks and Neuro-Fuzzy models, clearly outperform traditional 
linear methods in forecasting tasks (Sánchez-Mesa et al.  2002 ; Ranzi et al.  2003 ; 
Aznarte et al.  2007  ) . Most of these applications have taken into account daily 
average pollen concentrations and meteorological parameters, aiming at forecasting 
pollen concentration of certain species 1 to 5 days ahead. CI methods have also been 
applied in order to investigate the relationships between pollen and air pollution 
with very promising results (Voukantsis et al.  2010  ) , while papers published 
concerning the use of CI methods for analysing and forecasting pollen data are 
appearing more and more frequently (Degaudenzi and Arizmendi  1998 ; Aznarte 
et al.  2007 ; Voukantsis et al.  2011  ) . 

 The rest of this chapter presents a short description of some of the most popular 
CI methods applied in atmospheric sciences are included, based on Tzima et al.  (  2007  ) . 

 Decision trees usually assume that the function f(x) to be learned, is constant in 
intervals de fi ned by splits on the individual attribute axes. Internal nodes of the 
tree implement split decisions based on impurity measures (de fi ned in terms of 
the class distribution of records before and after splitting), while leaf nodes de fi ne 
“neighborhoods” of records, each of which is assigned a speci fi c class attribute value 
(class label). 

 In neural networks the target function f(x) is implemented as a composition of 
other functions     ( )ig x   :

     

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑( ) ( ) ,i i

i

f x K w g x
   

(4.4)
  

where  K  is some prede fi ned transfer function, such as a member of the sigmoid 
family (typical for multi-layer perceptron networks) or a radial basis function (as 
in RBF Networks). Given a speci fi c task to solve, and a class of functions  F,  the set 
of observations is used in order to  fi nd the optimal target function that minimizes a 
prede fi ned cost function. For CI applications, where the solution is dependent on 
the training data, the cost must necessarily be a function of the observations, such 
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as the mean-squared error between the network’s output, f(x), and the target class 
value y over all the example pairs. 

 Neural networks can be effectively applied to classi fi cation problems, even in 
the presence of large datasets. However, the resulting model’s robustness depends 
heavily on the appropriate choice of the model (network size and topology), the cost 
function and the learning algorithm. Inappropriate implementations, combined 
with bad choice of a training data set, typically impair the classi fi er’s generalisation 
ability or lead to model over fi tting. 

 The self-organising map (SOM) also referred to as Kohonen Network, is a subtype 
of arti fi cial neural networks. SOM is based on competitive learning, which runs in 
an unsupervised manner, aiming at selecting the so called winning neuron that best 
matches a vector of the input space. In this way, “a continuous input space of activation 
patterns is mapped onto a discrete output space of neurons by a process of competition 
of the neurons in the network” (Haykin  1999  ) . This makes SOM one of best methods 
for modelling a knowledge domain with the aim to reveal topological interrelations 
and hidden knowledge, via the visualisation of the network’s neurons. 

 SOM is capable of learning from complex, multi-dimensional data without 
speci fi cation of the output, thus making it very appropriate to be applied in pollen and 
atmospheric quality data. The resulting nonlinear classi fi cation consists of clusters 
that can be interpreted via visual inspection. The method’s unsupervised learning 
algorithm involves a self-organising process to identify the weight factors in the 
network, re fl ecting the main features of the input data as a whole. In that process, 
the input data is mapped onto a lower dimensional (usually two-dimensional) 
map of output nodes with little or no knowledge of the data structure being required 
(a characteristic of the method that renders it appropriate for data compression). 
The output nodes (neurons) represent groups of entities with similar properties, 
revealing possible clusters in the input data. It should be noted that, although the 
method is unsupervised in learning, the number of the output nodes and con fi guration 
of the output map (number of nodes included, etc.), need to be speci fi ed before the 
learning process. 

 Rule-based algorithms apply “if…then…” rules of the form (Condition)- > y, where 
Condition is a conjunction of observable attributes and y is the class label, where the 
values are put. The collection of rules may contain rules that are:

   mutually exclusive (each record is covered by at most one rule) or not (the rule • 
set is ordered or employs a voting scheme);  
  exhaustive (each record is covered by at least one rule) or not (a record may not • 
trigger any rules and be assigned to a default class).    

 Among others, advantages of rule-based algorithms include the fact that they 
are easy to interpret and highly expressive. Moreover, they are fast to generate 
and can classify new instances rapidly, with a performance comparable to that of 
decision trees. 

 Bayesian classi fi ers compute conditional probability distributions of future 
observables given already observed data. More speci fi cally, the analysis usually 
begins with a full probability model – a joint probability distribution for all attributes 
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including the class – and then uses Bayes’ theorem to compute the posterior 
probability distribution of the class attribute. The classi fi er’s prediction is the value 
of the class attribute that maximizes this posterior probability. Naïve Bayes classi fi ers 
additionally assume independence among all attributes, given the class, when 
computing posterior probabilities. 

 Despite the fact that the independence assumptions made by Naïve Bayes 
classi fi ers are often inaccurate, the latter have several interesting properties that 
may prove useful in practice. They are robust to isolated noise points and irrelevant 
attributes and can handle missing values by ignoring the instance during probability 
estimate calculations. Moreover, their independence assumption allows for each 
distribution to be estimated independently as a one dimensional distribution, thus 
alleviating problems such as the “curse of dimensionality”. Finally, another advantage 
of all Bayesian classi fi ers is their conceptual and interpretation simplicity, rendering 
them appropriate for use by non-domain experts. 

 Support vector machines (SVMs) were introduced by Vapnik in 1963. The original 
algorithm de fi nes a method for  fi nding the optimal hyperplane that separates, with 
the maximum margin, a set of positive examples from a set of negative examples. 
Thus, it is a linear classi fi er. A later extension of the algorithm, though, proposes 
the use of the “kernel trick” to maximum-margin hyperplanes: every dot product 
in the original algorithm is replaced by a non-linear kernel function, allowing the 
transformation of the feature set to a high-dimensional space, whose hyperplanes are 
no longer linear in the original input space.   

    4.3.2   Process-Based Phenological Models 

 Phenological models determine the entry dates of phenological phases as function 
of environmental factors. First efforts date back to the idea of Reaumur  (  1735  ) , who 
explained spatial and temporal differences in phenological entry dates as a result 
of different heat sums during plant development. During the past years a number of 
review articles about phenological modelling have been published so that we will 
keep this sub-chapter as concise as possible. In addition, we will evaluate the current 
phenological modelling scene and touch a number of problems, which have been 
discussed only marginally in the literature. Special sections will deal with the appli-
cation of phenological models to seasonal pollen modelling. More extensive reviews 
about phenological models are to be found in Hänninen  (  1995  ) , Menzel  (  1997  ) , 
Chuine et al.  (  1998,   2003  ) , Chuine  (  2000  ) , in Schwartz  (  2003  ) , Schaber and 
Badeck  (  2003  ) , Chuine and Belmonte  (  2004 ) and Linkosalo et al.  (  2008  ) . The 
phenological models introduced here refer to plants of medium to high latitudes, 
whereas low latitude phenological modelling requires different approaches (Hudson 
et al.  2010  ) . 

 Generally two different kinds of phenological models exist. The purely statistical-
empirical approach relates the entry dates usually with mean temperatures over 
certain time periods preceding the phenological occurrence date. No mechanistic 
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details of the relationship between plant physiology and environment are considered. 
The second kind of phenological models, also called process based models, is based 
on experimental studies about possible mechanisms, which are supposed to govern 
the relationship between plant physiology and the environment. During the vegetation 
period the buds for the next season are created, but remain in an inactive state called 
dormancy. During autumn and early winter dormancy is overcome through chilling. 
After dormancy has been released, the development of leaf,  fl ower and shoot buds 
begins in the following spring. The timing of these events is the crucial point for 
the plants. If it occurs too early, frost might damage the plant organs, if it happens 
too late, the plant suffers from a loss of photosynthetic potential (Linkosalo et al. 
 2006  ) . Although the high-temperature requirements of bud burst and  fl owering are 
well established, there is great uncertainty about the mechanisms enabling bud 
development. Among the basic factors governing the seasonal plant development are:

    1.    chilling temperature  
    2.    forcing temperature  
    3.    photoperiod  
    4.    water availability     

 Phenological models may consider at least one or any combination of these four 
factors. There follows a short description of phenological models, which use individual 
factors or combinations of them, as found in literature. 

    4.3.2.1   Models Considering Thermal Forcing Only 

 The Thermal Time or Spring Warming model or Growing Degree Day models 
ignore the chilling requirement and consider only the temperature forcing in spring 
(Linkosalo et al.  2008  ) . They describe the start of bud development in spring, omit-
ting the dormancy phase altogether. Thermal Time models implicitly assume that 
environmental conditions required to release dormancy have been met before the 
starting date of temperature sum accumulation. The start date of temperature 
summation can be  fi xed or determined via an inverse procedure separately for each 
phase and station. The entry date  t  

 2 
 is a function of the starting date of temperature 

accumulation  t  
 1 
  , and the temperature sum  F  between  t  

 1 
  and  t  

 2 
  above the temperature 

threshold  T  
 b 
 :    2 1( , , )bt f t T F=   . The state of forcing  F  (forcing units usually in degree 

days) is represented by
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where  t  
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  is the starting date of temperature accumulation,  t  
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  the entry date of the 

phase and  R  
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  the rates of forcing, which are de fi ned as
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where  T  is the daily mean temperature and  T  
 b 
  the temperature threshold. 
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 A number of variants and simpli fi ed versions of Thermal Time model have been 
applied to the pollen period and compared with each other (García-Mozo et al. 
 2000  ) . For instance the threshold temperature may be omitted and daily maximum 
temperatures may be added up from the end of the chilling period to the entry date. 
Most works prefer the daily mean temperature as input for the calculation of 
temperature accumulation, whereas some use alternatively the maximum daily tem-
perature. Weighting of the temperature before summation has also been considered 
by some authors (Clot  1998 ;  2001  ) . 

 An interesting alternative formulation of the thermal accumulation method is 
described in Aono and Kazui  (  2008  ) , who consider the thermal energy accumulated 
during the developmental period of the plants. The daily DTS (number of days 
transformed to standard temperature) value is a ratio expressing the amount of 
growth that occurs in one day at the actual daily mean temperature with respect to 
that which occurs at the temperature set as a standard. The authors claim their method 
to produce a generally 0.4 days lower RMSE in comparison to the conventional 
degree day models.  

    4.3.2.2   Models Considering Chilling Only 

 For some species it turned out that there exists a useful relationship between 
the date, when the required chilling hours have been accumulated and the onset 
date of bud burst. Orlandi et al.  (  2004  )  tested two different chilling models and their 
ability to predict the onset date of bud burst in olive trees. Similarly, it appears that 
the chilling requirements exert a greater in fl uence than the heat requirements for the 
start of black alder pollen release in the Mediterranean region (Jato et al.  2000  )  

      4.3.2.3 Models Considering Thermal Forcing and Chilling 

 The following models include a description of the dormancy and the thermal forcing 
factor. Chilling requirement must be met before ontogenetic development can 
commence. Here follows a short description of each of the thermal forcing and 
chilling models with their underlying speculative assumptions:

   Sequential models are based on the assumption that chilling units must have • 
been accumulated completely before accumulation of heat units can commence 
(Linkosalo et al.  2006  ) .  
  Parallel models consider chilling and forcing factors too, but assume that both • 
processes may proceed in parallel.  
  Alternating models assume a negative exponential relationship between the sum • 
of forcing units required for completion of quiescence and the sum of chilling 
units received (Chuine et al.  2003  )   
  The deepening-rest model stipulates that the state of chilling must increase, • 
before it can loosen its block on assimilation of heat units again.  



1074 Monitoring, Modelling and Forecasting of the Pollen Season

  The Four Phases model assumes three phases of dormancy (pre-rest, true-rest • 
and post-rest) before the phase of quiescence. This is formalised by an increasing 
temperature threshold for forcing during pre-rest and a decreasing temperature 
threshold for forcing during post-rest, and buds cannot respond to forcing tem-
perature at all during true rest (Chuine et al.  2003  ) .      

    4.3.2.4   Models Considering Thermal Forcing, Chilling and Photoperiod 

 The evidence showing that the dormancy is released solely by the chilling requirement 
is far from solid (Linkosalo  2000  ) . There is in fact evidence that increasing day 
length has to do with the onset of ontogenetic development.  

    4.3.2.5   Models for Herbaceous Species Considering Temperature, 
Photoperiod and Soil Water Availability 

 Among the commonly recognised environmental factors governing the beginning of 
 fl owering of grasses, such as temperature and photoperiod, water availability plays 
a dominant role, especially in Mediterranean areas (Clary et al.  2004  ) . Although 
various authors have developed models for predicting daily grass-pollen concentrations 
(Moseholm et al.  1987 ; Emberlin et al.  1999 ; Sánchez-Mesa et al.  2002  ) , few papers 
have addressed the development of models to forecast the main pollen-season dates, 
i.e. start date and peak date (Clot  1998 ; Chuine and Belmonte  2004 ; Laaidi 
 2001a    ; Stach et al.  2008 ; García-Mozo et al.  2009  ) . The main dif fi culty in developing 
forecasting models for this taxon is that grass pollen counts are an amalgam of 
pollen from many species, and pollen release dynamics prompt a large number of 
peaks (Férnández-González et al.  1999 ; Emberlin et al.  1999  ) . García-Mozo et al. 
 (  2009  )  developed process-based models to predict the start- and the peak-date of the 
grass pollen season. The models take into account the effects of temperature, 
photoperiod and water availability on the timing of grass  fl owering in Spain. Apart 
from predicting the pollen-season start and peak dates, process-based models provide 
information on (i) the Poaceae response to weather-related factors, (ii) the period 
during which these factors affect grass growth, and (iii) the relationship between 
photoperiod, temperature and water availability for the  fl owering of grasses.  

    4.3.2.6   Generalised Phenological Models 

 There are two even more generalised models, which can be summarised in a sepa-
rate group (Linkosalo et al.  2008  ) . They are based on the idea that a model with a 
 fl exible structure will conform to the essential features of phenological control when 
 fi tted to a dataset.

   The Uni fi ed model was developed by Chuine  (  • 2000 ), where various weighting 
functions regulate the relationship between temperature and the development of 
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chilling and forcing. Weighting is summarised by two generalised functions with 
all together nine parameters, which must be determined by a numerical optimisa-
tion procedure.  
  The Promotor-Inhibitor model by Schaber and Badeck  (  • 2003  )  is based on the 
idea that a hypothesised balance or ratio between promotory and inhibitory 
agents determines the physiological state of development of the plant and its 
reaction to external driving forces.     

    4.3.2.7   Thermal Time Models Incorporating Real Time 
Phenological and Pollen Data 

 A number of authors experimented successfully with the idea to hinge the Thermal 
Time model forecast on the observation of entry dates of previously  fl owering 
species (Driessen and Moelands  1985 ; Driessen et al.  1989 ; Frenguelli and Bricchi 
 1998 ; Norris-Hill  1998  ) . This approach requires real time phenological observa-
tions or pollen counts of the preceding species, which might not be readily available 
everywhere.  

    4.3.2.8   Optimisation of Model Parameters 

 From the schematic representation of for example the Thermal Time model 
    2 1( , , )bt f t T F=   as explained above, it becomes clear that the three parameters  t  

 1 
  , T  

 b 
  

and  F  have to be determined such that the phenological model yields best results 
with lowest error values. 

 In many cases it may be suf fi cient to work with a-priori  fi xed parameter values. 
From experimental evidence, for instance it appears that for a great number of 
species in the temperate zone 5°C represents an optimum threshold  T  

 b 
  (Frenguelli 

and Bricchi  1998 ; Jato et al.  2000  ) . For colder regions 0°C has been suggested 
(Gerad-Peeters  1998 ; Clot  1998  )  and in warmer climates some authors have proposed 
12.5°C (Alcalá and Barranco  1992 ; Galán et al.  2001a  ) . 

 It is dif fi cult to generalise model parameter values across a number of species or 
over large areas, as it turned out that the threshold temperature of certain species and 
phases depends on environmental factors, like the bio-climatic region and altitude. 
In the case of olive, the optimum threshold temperature was 10°C in Malaga 
(5 m.a.s.) but 12.5 in Córdoba (123 m.a.s.) within the same bio-climatic belt (thermo-
Mediterranean). Different plants in the same locality have different temperature 
requirements: i.e. in Córdoba province, it has been de fi ned at 11°C for oaks (early 
spring  fl owering), and 12.5°C for olive (late spring  fl owering, Galán et al.  2001a, 
  2005 ; García-Mozo et al.  2002 . Ribeiro et al.  (  2006  )  suggest around 9°C for the 
olive in Portugal, but Orlandi et al.  (  2005  )  use temperatures between 7 and 15°C for 
the olive, in Spain and Italy, respectively. 

 For the start date of temperature accumulation  t  
1
 , a number of suggestions can be 

found in the literature. In Europe, 1 January has been suggested for early  fl owering 
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species (Frenguelli and Bricchi  1998 ; Ribeiro et al.  2006 ; Orlandi et al.  2005  ) , 
whereas 1 March for late  fl owering ones (Alba and Díaz de la Guardia  1998 ; 
Clot  1998  ) . 

 Today’s numerical techniques make it comparatively easy, to determine the optimum 
values of model parameters. A number of authors rely on LUT (Look Up Table) 
methods to optimise model parameter values. The phenological model is applied 
through a range of parameter values with a set increment. With the help of a cost 
function, which can be the squared error, standard deviation or root mean square 
error (RMSE), the optimum values are determined (for instance Van Vliet et al. 
 2002 ; Crepinsek et al.  2006 ; Migliavacca et al.  2008  ) . If the dimensionality of the 
phenological model is not too high (not more than two or three model parameters), 
the LUT results can be plotted and viewed (Fig.  4.6 ). In case of phenological 
models, it turned out that the RSME values form a valley with any number of very 
differing optimum parameter values along the valley  fl oor with similarly low RSME 
values. One may conclude that there is no unique solution to the problem and any 
one from an in fi nite number of parameter value sets is equally well describing 
the phenological behaviour. The objective selection of the most adequate set of 
parameter values constitutes a problem, which has not been solved yet. One way to 
arbitrarily select the most appropriate set is to calculate a mean from a certain fraction 
of the best parameter values.  

 Apart from the graphical visualisation of the minimisation problem, another 
advantage of the LUT method consists in its robustness. But the computational 
effort increases quickly with each additional dimension respectively model parameter 
to be optimised. 

 The other group of works prefer numerical methods to  fi nd the optimum parameter 
values of the phenological model. Kramer  (  1994,   1995  )  applies various numerical 
procedures (FITNONLINEAR from the GENSTAT package, NAG subroutine 
E04FCF, Downhill Simplex from Press et al.  (  1992  )  or a Newton approximation), 
whereas Linkosalo et al. ( 2009 ) rely on the direct search algorithm of Hooke and 
Jeeves (  http://www.netlib.org./opt/hooke.c    ). The Simulated Annealing Algorithm 
provided in Press et al.  (  1992  )  has gained some popularity among phenological 
modellers (for instance Chuine et al.  1998  or Schaber and Badeck  2003  ) . In 
comparison with the LUT methods, the numerical algorithms are computationally 
much more ef fi cient, especially, if the phenological model needs considerably 
more than two or three parameters to be optimised. On the other hand, the proce-
dure may converge or not to the global minimum. The Simulated Annealing 
Algorithm tries to overcome that problem by introducing a random  fl uctuation, 
which helps the procedure to step over local minima. In some cases, it might be an 
advantage to apply more than one method, especially, if the results of a numerical 
procedure are doubtful. 

 To assess the model quality, Galán et al.  (  2005  )  provide Root Mean Square Errors 
(RMSE) for a temperature sum model for olive in Spain. The RMSE range between 
6.2 and 7.8. The mean absolute difference between the modelled and the actual date 
was 4.8 days using independent data. In a similar but older study (Galán et al. 
 2001a  ) , this number was 4.7 for olive (though not tested on independent data).  

http://www.netlib.org./opt/hooke.c
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    4.3.2.9   Application of Process Based Phenological Models to Pollen Season 
Modelling 

 The year-to-year variability of the beginning of the  fl owering season is strongly 
linked with the year-to-year variability of the atmospheric conditions prior  fl owering 
inception. The modelling and forecasting of the start of the  fl owering season as 
function of the atmospheric conditions is therefore very useful for the pollen fore-
cast procedure. Once  fl owering has started, the subsequent temporal development 
of the pollen concentration follows a certain pattern, which can also be modelled 
(Linkosalo et al.  2010  ) . 

 The application of phenological models to predict the start, peak and end of 
the pollen season of various anemophilous species appears well established and 
generally yields reliable results (Thibaudon and Lachasse  2005  ) . Nevertheless, the 
application of phenological models to the pollen season modelling is not straightfor-
ward and therefore the underlying ideas should be critically reviewed. The following 
two assumptions are tacitly expected to be true:

   Assumption 1. If the start of the local  fl owering season has been observed, local • 
pollen shedding has also started.  

  Fig. 4.6    Sample plot of a LUT (Look Up Table): the phenological phase is lilac beginning of 
 fl owering at the Austrian station of Kremsmuenster (1951–2004), the minimisation function is the 
RMSE (Root Mean Square Error) depicted in various shades of grey at starting date ( t  

 1 
 ) yearday 71 

(2 March). A three step approximation procedure selects only the relevant area and leaves the 
rest white       
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  Assumption 2. If pollen of a certain species has been recorded by the local pollen • 
sampler, local pollen shedding has started.    

 If Assumption 1 holds, one could apply a phenological model to predict the entry 
of the  fl owering phase and thus have an indication of the beginning of the local 
pollen season. This has actually rarely been done because of a number of reasons. 
Generally, the species range of pollen data is much wider than that of phenological 
networks. Phenological and pollen networks have been created independently, are 
not coordinated and are usually run by different organisations, so that pollen and 
phenological species overlap only to a minor extent in most networks. Only in a few 
cases the density of phenological data are suf fi cient to calibrate a phenological 
model to support the forecast of the beginning of the pollen season. 

 Assumption 2 implies that pollen is not transported over larger distances and that 
the local pollen record faithfully re fl ects the local pollen shedding after  fl owering of 
the local plants has commenced. But Estrella et al.  (  2006  )  did show that in the case 
of birch, in Germany, Assumption 2 needs not be true. They found major temporal 
discrepancies between local phenology and local pollen concentration. Pollen 
can be transported over large distances from areas with currently  fl owering plants to 
the recording site, where plants have either not yet commenced  fl owering or have 
stopped  fl owering already. Therefore, the locally observed entry date of the pheno-
logical phase of  fl owering, the locally recorded beginning of the pollen shedding 
and the beginning of the pollen season may not be identical. 

 Usually, Assumption 2 is applied and a phenological model is  fi tted for a date 
relevant for the pollen season, like start and end, according to a selection criterion, 
or peak of the pollen season. In order to convert pollen concentration values to one 
or more of such dates, a range of de fi nitions has been suggested in literature. 
Although transport processes in fl uence the local pollen concentration, pollen season 
start dates (regardless of how they are de fi ned) can be modelled as function of 
temperature sums.   

    4.3.3   Special Problems in Pollen and Phenological Modelling 

    4.3.3.1   Application to Large Areas 

 When designing a pollen forecast procedure, one has to choose an area large enough 
to accommodate for a possible long range transport of pollen. This, in turn, requires 
the modelling of the start and progress of the pollen season over a larger area, 
beyond national boundaries and with a spatial resolution, much higher than that of 
existing networks. In complex terrain, for instance, it makes much sense to calculate 
the phenological entry dates on a grid with a high spatial resolution, either few km 
or even <1 km, because deviations in elevation between the DEM and real topography 
can cause a substantial shift of entry dates modelled on a grid (entry dates may 
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vary between 20 and 40 days/1,000 m elevation, Schei fi nger et al.  2002  ) . Typically, the 
density of the phenological, pollen or meteorological networks is not high enough 
to enable such a procedure for the required spatial resolution. 

 The spatial robustness of phenological models has been tested with a set of 
European phenological and pollen data (Chuine  2000 ; Chuine and Belmonte  2004  ) . 
In some cases, models  fi tted with data from one station set predicted pollen season 
entry dates well at a set of neighbouring stations or even at stations more than 
900 km apart. If the model gave reliable results in the area, where it was  fi tted, the 
probability was high that it also worked well at distant stations. The geographical 
range of the applicability of the model parameters appeared to be to some extent 
also species dependent. 

 García-Mozo et al.  (  2008  )  grouped Spanish pollen stations according to pheno-
logical model parameter values. Phenological models  fi tted with local pollen and 
meteorological data yielded the best results (75–95% explained variance); pheno-
logical models  fi tted with regionally deduced parameter values resulted in lower 
explained variances at individual stations (55–85%), whereas phenological models 
 fi tted with parameter values deduced on the basis of all stations gave the lowest 
explained variance (51%). One might conclude from that study that in order to 
achieve the best  fi t, only locally deduced model parameters should be applied or a 
method needs to be found to interpolate the model parameter values to each indi-
vidual climate station or grid point. 

 White et al.  (  1997  )  developed a phenological model for the onset of greenness of 
deciduous broad leafed forests and grasslands of the temperate zone based on the 
Thermal Time model approach including radiation. They found that the temperature 
sums combined with radiation sums at onset of greenness are a function of average 
annual temperature and radiation. Applying this relationship they were able to model 
the onset of greenness over the contiguous US with a high degree of accuracy (mean 
absolute errors ranged from 5.3 to 7.1 days).  

    4.3.3.2   Real Time Modelling 

 Numerical pollen forecast procedures require real-time operational phenological 
models and the spatial interpolation of phenological entry dates (Helbig et al.  2004 ; 
So fi ev et al.  2006 ). The temporal development of  fl owering in space with the subse-
quent pollen emission is the essential input for atmospheric transport models. 
Phenological real-time observation is still in its infancy and cannot be used for 
the purpose of pollen forecast. Therefore, phenological models have to simulate the 
developmental stages of the plants in real time. If the entry of the  fl owering phase 
has been calculated in an area, another model must assess the quantity of pollen 
emitted into the atmosphere, which is then input for the dispersion model. All pro-
cess-based phenological models are basically suitable for such a real-time applica-
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tion. As real-time phenological observation systems (remote sensing via satellites 
and digital cameras) and real-time pollen measuring devices are being developed, 
the question of assimilation of such data into the operation models becomes relevant 
in the near future. 

 In some cases, the pollen forecast procedure is designed so that an interpolation 
of observed or modelled phenological entry dates is not necessary. If the prognostic 
atmospheric model provides a temperature  fi eld with the required spatial resolution, 
the phenological model can directly be applied to the temperature data on the same 
grid (Puppi and Zanotti  1992 ; Kawashima and Takahashi  1995 ; Hidalgo et al.  2002  ) . 
Possible model temperature biases have to be taken into account.  

    4.3.3.3   High Resolution Spatial Representation of Phenological Entry Dates 

 In other cases it might be desirable to interpolate phenological entry dates observed 
at network stations or modelled on a comparatively coarse grid to a Digital Elevation 
Model (DEM) with a higher spatial resolution (for a more detailed overview see 
Jeanneret and Rutishauser  2010  ) . For pollen modelling purposes, for instance, the 
spatial distribution of phenological entry dates must be available on a DEM, which 
resolves the main topographical features of the area. A great mismatch between the 
spatial resolution of the phenological information and the real topography inevita-
bly leads to an equivalent mismatch between the modelled entry dates on the DEM 
and on the real topography. 

 A number of methods have been developed to produce phenological maps. 
Beginning with Ihne’s  (  1885  )  work, a good historical overview and a description of 
the theoretical background of spatial interpolation of phenological observations is 
given in Puppi and Zanotti  (  1989  ) . If the terrain is largely  fl at or the grid is rather 
coarse, one might just interpolate the entry dates straightforward with Inverse 
Distance Weighting (IDW, Ahas et al.  2002 ; Schei fi nger et al.  2002  ) . If the area is 
large (from a few hundred up to a few thousand kilometer in diameter) and it turns 
out that the relationship between phenological entry dates and space is strict (for 
instance >70%), a multiple regression model can be applied, where the phenological 
entry dates are modelled as a function of station longitude, latitude and elevation 
(Rötzer and Chmielewski  2001  ) . Small scale topographical features are considered 
by height reduced methods, like reduced detrended Kriging (Badeck et al.  2004  )  or 
via a radiation model, which is applied to a high resolution DEM to subsequently 
provide the spatial weights for the phenological entry dates (Chytry and Tichy 
 1998  ) . A more complex approach is presented by Puppi and Zanotti  (  1989  ) , where 
the phenological entry dates are calculated as a function of a number of independent 
environmental variables, like altitude, slope, incident solar radiation, tree layer 
cover, urbanisation or geomorphologic features (sides and bottom of the valley) via 
a set of regression equations. Geostatistical software can facilitate interpolation 
and visualisation of interpolated  fi elds (García-Mozo et al.  2006  ) .    
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    4.4   Discussion and Summary 

 This section is thought to present a few ideas, which pop up when one begins to re fl ect 
about the compiled snap shot of the current state of the art about monitoring and 
modelling of pollen counts, pollen season and phenology. 

 Each of the highly diverse scienti fi c disciplines contributing to aeropalynology 
has its own history, where tools and technologies have been developed and data sets 
collected. These factors could be called science intrinsic factors. Similarly, external 
factors have evolved related, for instance, with the public health issue of pollinosis. 
Driven by external factors, the accumulated expertise of each discipline is being 
summarised by a small scienti fi c community within the  fi eld of aeropalynology, 
which has just begun to exploit their heritage in a most fruitful manner. Pollen transport 
models, which are being developed by a number of European weather services, 
can be cited as an example for such a combined interdisciplinary effort, where 
biologists, meteorologists and physicians work together. 

 Plant physiology, atmospheric dispersion and the human immune system are 
rather complex research objects, so that progress in many aspects of aeropalynology 
is counterbalanced by an increasing number of unresolved questions. Thus, this  fi eld 
appears both challenging and fascinating. 

    4.4.1   Monitoring 

 The chapter about monitoring reviews the current situation of three data sources, 
which are directly related with aeropalynology: phenological observations, pollen 
counts and remote sensing of the vegetation activity. Up to now, all three data sets 
more or less co-exist, without much exchange or fusion. Any assimilation of two or 
all three of them into one is in its infancy, if existing at all. A number of assimilation 
techniques have been developed in earth sciences, from which suitable ones could be 
chosen and adapted. Phenological observations, pollen counts and remote sensing 
information on the state of the vegetation could then be assimilated into pollen 
emission models and  fi nally into the numerical pollen forecast. Pollen modelling 
would bene fi t a great deal from such a data fusion. 

 Over the last decades, consistent monitoring efforts of various national networks 
have created a wealth of pollen concentration time series. These constitute a nearly 
untouched treasure, which is still to be exploited to investigate questions concerning 
pollen emission, transport and deposition. 

 New monitoring methods emerge, which allow measuring the allergen content in 
pollen. This adds a new dimension to the problem of pollen related allergies. Results 
from research on the allergen content in pollen, like the HIALINE project (  http://
www.hialine.com/en/klinikum-rechts-der-isar-der-technischen-universitaet-
muenchen.php    ) are expected to make the operational pollen forecasts more speci fi c, which 
in turn helps the sufferers to improve their avoidance strategies.  

http://www.hialine.com/en/klinikum-rechts-der-isar-der-technischen-universitaet-muenchen.php
http://www.hialine.com/en/klinikum-rechts-der-isar-der-technischen-universitaet-muenchen.php
http://www.hialine.com/en/klinikum-rechts-der-isar-der-technischen-universitaet-muenchen.php
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    4.4.2   Modelling 

 Although process-based phenological models have been around for a couple of 
decades, a number of problems remain to be solved, when applying them to statistical 
and numerical pollen forecast models:

   Model quality• 

   Model quality is restricted by the noise inherent in the data. Phenological entry  –
dates are observed subjectively and pollen counts are in fl uenced by plant 
distribution and atmospheric factors. Models can not be more accurate than 
the observations they are based on.  
  The Thermal Time Model appears to exhaust the noisy information contained  –
in commonly available observational data sets. Attempts have been made to 
explicitly incorporate plant physiological concepts into the process-based 
phenological models, but model quality could not substantially be improved 
beyond that of the simple Thermal Time models (Chuine  2000 ; Schaber and 
Badeck  2003 ; Linkosalo et al.  2008  ) .     

  Operational statistical or numerical pollen forecast ideally requires the model • 
results over a large area on a grid. Up to now, only a few studies have proposed 
methods to model phenological entry dates over a larger area and a practical 
solution is still absent.  
  As already mentioned in the monitoring section, the assimilation of pheno-• 
logical observations, pollen counts and remotely sensed information about 
vegetation will emerge as one of the central topics in the  fi eld of numerical 
pollen forecast.    

 Regression models, where the pollen count is modelled as function of a num-
ber of environmental variables, are well established and widely used to reliably 
improve the operational day to day pollen forecast. More elaborate statistical 
techniques, like computational intelligence methods, have still to become estab-
lished for the operational pollen forecast. Some statistical packages offer such 
methods, like neural networks in the SPSS package, which can be run on personal 
computers. 

 The question, which of the models, regression or process-based, is superior, 
cannot yet be answered. Reviewing the wide range of models for forecasting the 
start of the pollen season, no superior model can be identi fi ed. Laaidi et al.  (  2003  )  
employed a temperature sum model and a regression model using a number of 
predictors (air temperature, rainfall, relative humidity, sunshine duration and soil 
temperature) to forecast the start of the pollen season of  Ambrosia . The regression 
model performed better during calibration, but the temperature sum model showed 
better results when tested on independent data. Chuine et al.  (  1999  )  conclude from 
a model comparison study that there is no single model that accurately predicts the 
dates of  fl owering of every species. Depending on the species, different models may 
perform best. Even among a single species there is not one model performing best, 
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because relationships between the species and the environment may differ according 
to the climatic region. This emphasises the importance of careful evaluation and 
testing of various models for predicting the start of the pollen season.       
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