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Abstract Land cover maps provide critical input data for global models of land

use. Urgent questions exist, such as how much land is available for the expansion

of agriculture to combat food insecurity, how much land is available for affore-

station projects, and whether reducing emissions from deforestation and forest

degradation (REDD) is more cost-effective than carbon capture and sequestration.

Such questions can be answered only with reliable maps of land cover. However,

global land cover datasets currently differ drastically in terms of the spatial extent

of cropland distributions. One of the data layers that differ is cropland area. In

this study, we evaluate how models designed to help in policy design can be used

to quantify the differences in implementation costs. By examining these cost diffe-

rences, we are able to quantify the benefits, which equal the loss from making a

decision under imperfect information. Taking the specific example of choosing

between REDD and carbon capture and storage under uncertainty about the avail-

able cropland area, we have developed a methodology on how the value derived
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from reducing uncertainty can be assessed. By implementing a portfolio optimization

model to find the optimal mix of mitigation options under different sets of informa-

tion, we are able to estimate the benefit of improved land cover data and thus deter-

mine the value of land cover validation efforts. We illustrate the methodology by

comparing portfolio outputs of the different mitigation options modeled within the

GLOBIOM economic land use model using cropland data from different databases.

Keywords Value of information • Land cover maps • Land use • Mitigation

• GEOSS

8.1 Introduction

Activities within the land use, landuse change, and forestry (LULUCF) sector

will play an increasingly important role in climate change mitigation in the future.

Although LULUCF was a significant factor in the negotiations of the original Kyoto

agreement, the protocol did not specify how emissions and reductions from this

sector would be incorporated into the accounting system. Instead, this function was

assigned to the Subsidiary Body for Scientific and Technological Advice (SBSTA)

of the United Nations Framework Convention on Climate Change (UNFCCC) and

the Intergovernmental Panel on Climate Change (IPCC), where a working group

on LULUCF formulated a special report (Watson et al. 2000). The framework was

then accepted at the seventh conference of the parties (COP-7) in Marrakech in

2001 (Schlamadinger et al. 2007).

Reductions in greenhouse gas (GHG) emissions can be achieved in the LULUCF

sector in several ways, such as Reducing Emissions from Deforestation and Forest

Degradation (REDD), increasing the area of land cultivated with biofuels, and impro-

ving agricultural practices. REDD is a multi-agency initiative that aims to establish a

framework for the coordination of actions at the country level by creating a financial

value for the carbon stored in forests, offering incentives for developing countries

to reduce emissions from forested lands, and investing in low-carbon paths to sustain-

able development. However, within the Kyoto Protocol’s first commitment period,

2008–2012, REDD in developing countries is not an allowable contribution, yet

deforestation represents the main source of GHG emissions in, for example, Indo-

nesia (Schlamadinger et al. 2007). The Bali Action Plan, an outcome of COP-13, held

in Bali in December 2007, requires parties to include REDD in the post-2012 negoti-

ations of the Kyoto agreement (FAO et al. 2008). At COP-15, in Copenhagen in

December 2009, even though no overarching agreement was reached, leaders agreed

to establish a “green climate fund,” which is designed to mobilize $30 million on

REDD + (which includes forest conservation and sustainable management) for miti-

gation, adaptation, technology, and capacity building, and further progress on this has

been made at the previous COP-16 in Cancun in 2010.

Satellite remote sensing is an important potential source of data for determining

initial conditions of land cover and forest cover for LULUCF and other land use
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models (Watson et al. 2000). Urgent questions exist about the land available for the

expansion of agriculture to combat food insecurity, the extent of future competition

for land between food and bio-energy, as well as how much land is available for

afforestation projects. Moreover, questions arise about the cost-effectiveness of

REDD policies versus bio-fuel targets. Such questions can be answered only with

reliable maps of land cover. Recent data sets on global land cover are the MODIS

land cover, based on the MODIS sensor and produced by Boston University (Friedl

et al. 2002); the GLC-2000, based on the SPOT-Vegetation sensor and produced by

the Joint Research Center of the European Commission (Fritz et al. 2003); and the

GlobCover product, based on the MERIS sensor and produced by a consortium

supported by the European Space Agency (Defourny et al. 2009). However, these

data sets differ drastically in terms of cropland distributions and, especially,

cropland area. Ramankutty et al. (2008) estimated that the cropland area is between

1.22 billion and 1.71 billion ha (at the 90 % confidence interval), which translates to

a 40 % difference between land cover products. For example, using the maximum

cropland area as the upper limit from the legend definition (e.g. for single classes

100 % cover and for Mosaic classes 50–70 % cover), we find that MODIS records

1,693 million ha, GLC-2000 records 2,201 million ha and GlobCover records 1,902

million ha (Fig. 8.1). At the same time there have been questions regarding the

cropland extent reported by the UN’s Food and Agriculture Organization (FAO), in

particular for developing countries. For example, in the least developed countries,

such as Malawi, the appropriate methods and tools to undertake reliable crop area

estimates are simply not in place, and reported crop area contains a possible error of

up to 30 % (World Bank, personal communication).

These large absolute and spatially distributed differences in cropland extent

have implications for the GLOBIOM economic land use model used at the Interna-

tional Institute for Applied Systems Analysis because the data provide the initial

conditions for the evaluation of mitigation options. To explore the value of this

information, we construct a scenario with two mitigation options, REDD and

the implementation of a new technology in the energy sector, carbon capture and

storage (CCS). Each mitigation option has a different cost. However, the REDD

mitigation option has increasing costs as less and less land is available. The uncert-

ainty in these costs is also a function of which cropland extent layer is used as an

input to the land use model. Uncertainty about whether the world is correctly

represented by the figures reported by the International Food and Policy Research

Institute (IFPRI) or the GLC-2000 land cover product or MODIS may carry subst-

antial costs when choosing a mitigation policy portfolio. This is because the optimal

mix of mitigation options under uncertainty might deviate substantially depen-

ding on whether IFPRI, GLC-2000, or MODIS reflects the true state of the world.

This is also a function of the risk strategy of the decision maker. For example, a

risk-averse strategy might typically be to accept higher portfolio costs to lower the

overall risk. We acknowledge the potential importance of other sources of uncer-

tainty, such as uncertainty in the economic land-use model and its underlying

assumptions, as well as the exogenous drivers of the economic land-use model,

such as the validity of population projections and assumptions about technological
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change. For example, higher than anticipated population would exert additional

pressures on land, whereas unexpected technological breakthroughs that improve

yields would reduce demand for agricultural land. Analyzing all sources of uncer-

tainty is clearly beyond the scope of this paper. We therefore focus on land cover,

since methods and tools are currently available to reduce this type of uncertainty.

Fig. 8.1 Global distribution of cropland described by (a)MODIS, (b) GLC-2000, and (c) GlobCover
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Moreover, we acknowledge that the value of information derived in this paper

has itself a particular uncertainty attached, since not all types of uncertainties can

be considered simultaneously without obscuring the mechanisms in which we are

primarily interested at this stage.

In this paper a methodology is presented that demonstrates how the value of

reducing uncertainty can be assessed. A portfolio optimization model is imple-

mented to find the optimal mix of mitigation options using different estimates of

cropland from two land cover datasets as inputs to the model. We therefore created

two land cover layers, one using the GLC-2000 cropland minimum (the cropland

class is covered 50 % by cropland and 50 % by a noncropland class) and the other

using the MODIS cropland maximum (where the cropland class is covered 100 %

by cropland). This can still be considered a relatively conservative approach, since

the maximum cropland extent reported by GLC-2000 would be even higher.

It can be shown that an increase in the probability that either GLC-2000 or

MODIS is correct will lower the expected portfolio costs compared with the case

where both have the same probability of being correct. This finding proves that

there is added value in continuing to improve land cover information through better

validation.

In the remainder of this paper we review the concept of the value of information

along with applications in the existing literature. Subsequently, we present an

analytical framework valuing the information from having better land cover data

for two mitigation options under differing assumptions of the behavior of the cost

function, which will be illustrated with an application. Finally, we consider the

implications of this approach for the merit of global Earth observations (EO) and

applications of this approach in future research.

8.2 Value of Information

The expected value of information (VOI) is a concept that has been used in stochastic

programming for a long time (Birge and Louveaux 1997). Another term frequently

used to describe this concept is the so-called willingness to pay (for information).

The idea is that decisions taken on the basis of imperfect information can differ from

those taken in a situation of complete or perfect information, and thus the decision-

maker might be willing to pay the difference in costs or profits to be able to make a

better-informed decision.

In the approach used in this paper, we compute the expected VOI for a portfolio

model, where the optimal mitigation strategy depends crucially on the availability of

information. The method that we use to optimize the decisions under perfect and

imperfect information is standard portfolio theory (Markowitz 1952), using the

variance of costs as a measure of risk. Even though both concepts are not original,

the approach of using them to assess the VOI in the face of uncertainty about

the availability of land, and thus the cost of one of the mitigation options, is worthy

of demonstration, both in theory and with a practical example (using the case of

avoided deforestation).
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8.2.1 Review

Macauley (2006) provides a good overview of the literature from research using

VOI and emphasizes that most models depend largely on the extent of the uncer-

tainty of the decisionmakers, the cost of making a suboptimal decision in the light

of better information, the cost of making use of the information and incorporating it

into decisions, and the price of the next-best substitute for the information.

Macauley (2006) further demonstrates that the value of information is clearly 0 in

the situation where a decision maker attaches a probability of 0 or 1 to a given event,

which means that she considers the occurrence of the event no longer uncertain.

The other case in which the information has no value is when no alternative actions

are available, even if information could be obtained, or when a wrong decision will

not result in any added costs. Similarly, information is most valuable when (a) the

costs associated with a wrong action are high; (b) when many alternative actions are

available; or (c) when the decisionmaker has no clear preference for one or more of

the alternatives.

The expected VOI has been measured by two kinds of methods1:

• Hedonic pricing. These studies attempt to estimate the costs and benefits

associated with environmental systems that have a direct effect on market

values—for example, the use of wages or housing prices to infer the value of

weather information or environmental quality as these affect wages or house

prices.

• Gains in output or productivity. The VOI is generally found to be rather small in

most of these studies. Macauley (2006) attributes this to the fact that people are

willing to pay for information only beforehand. Often they are unaware of the

severe consequences that imperfect information in the case of an uncertain event

can inflict. In the same vein, people often attribute a very low probability to

catastrophic events and then choose not to pay for information that may well be

rather costly.

Finally, Macauley (2006) acknowledges that computation of the expected VOI is

a suitable tool for the valuation of EO benefits. In this case, the availability of better

information can save costs and lives and alleviate problems in the face of disasters.

In economics, the expected value of information has also been widely used.

Looking at climate change policy analysis in particular, Peck and Teisberg (1993)

and Nordhaus and Popp (1997) adopted a cost-benefit approach targeted at finding

the optimal policy response to damages due to climate change. They then proceeded

to estimate the extent to which the world would be better off economically if,

for example, climate sensitivity and the level of economic damages were known.

1 This review mainly applies to the Value of Information in the context of Earth Observations. The

principles could equally have been applied within other scientific fields, but reviewing all of these

is beyond the scope of this paper.
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Most of these studies use multistage optimization, where all information about

the correct level of the uncertain parameters arrives in one time instance. Others,

like Fuss et al. (2008), have used stochastic dynamic programming allowing for a

good description of the development of the uncertain parameters but with the

disadvantage of having less scope in terms of controls and states. The VOI is

derived by comparing profits and emissions when optimizing with stochastic prices

to profits and costs when prices are deterministic (in which case the optimal

decisions would be different from those in the stochastic setting).

8.2.2 Current Applications of Measuring Value
of Earth Observations

The 10 Year Implementation plan of the Global Earth Observation System of

Systems (GEOSS 2005) lists nine societal benefit areas (SBAs): weather, climate,

ecosystems, biodiversity, health, energy, water, disasters, and agriculture. Despite

the extensive literature on the costs and benefits of weather forecasts (Katz and

Murphy 1997; Center for Science and Technology 2007), there have been few

attempts to quantify the value and benefits of EO data in other SBAs. Studies that

have addressed the benefit of EO for health and energy applications have been

particularly scarce.

Moreover, to date, there have been few integrated assessments of the economic,

social, and environmental benefits of EO and the GEOSS. A project funded by

the European Union called GEOBENE (Global Earth Observation—Benefit Esti-

mation: Now, Next and Emerging) developed tools and methodologies for studies

of GEOSS benefit assessment. Some of those tools continue to be developed in the

EUROGEOSS project, and two case studies are presented here. In the course of the

GEOBENE project, a conceptual framework for assessing the benefits of GEOSS

via a benefit-chain concept was developed. The basic notion is that an incremental

improvement, and hence an incremental benefit in the observing system, must be

judged against the incremental costs needed to build the observing system. Since it

is not always easy to quantify the costs and in particular the benefits in monetary

terms, an order of magnitude estimation is proposed. Moreover, it was shown that

an understanding of the shape of the cost benefit curve can help guide rational

investment in EO systems (Fritz et al. 2008).

An example of improved data for biodiversity conservation planning illustrates

how the benefit chain concept can be applied. This case study, described in Fritz

et al. (2008), demonstrates the benefits of replacing commonly available coarse-

scale global data (the non-GEOSS scenario) with finer-scale data used in conser-

vation decision making. The national land cover data set for South Africa was

compared with the global GLC-2000 dataset, whose finer-scale data are like those

expected from GEOSS and can thus be used to estimate the potential benefits of

GEOSS data. When one compares the estimated cost of producing higher-resolution
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data for the South African case study (200 million €) with the cost of not having this
information (1.2 billion €), it becomes clear that the improved data have real value.

A second example is demonstrated by Bouma et al. (2009), who used Bayesian

decision theory to quantify the benefits if decisionmakers use EO data versus a

scenario in which these data were not available. The authors examined the added

value of EO for preventing potentially harmful algal blooms in the North Sea. Using

expert elicitation to assess the perceptions of decisionmakers regarding the accu-

racy of the GEO-based algal bloom early warning system, the analysis indicated

that the value (i.e., avoided damage) of an early warning system would be approxi-

mately 74,000 € per week. Since this is less than the costs of establishing and

maintaining such an early warning system, investing in satellite observation for

preventing potentially harmful algal blooms is an economically efficient invest-

ment. Increasing the accuracy of the information system substantially increases

the value of information, where the value of perfect information was estimated at

370,000 € per week (Bouma et al. 2009).

A third example, in the field of the disaster SBA, is elaborated by Khabarov

et al. (2008), who investigated, by means of simulation studies, how improvements

in the spatial resolution of weather observation systems can help reduce the area

burned by forest fires in Portugal and Spain. A fire danger index was computed on

a daily basis, which was assumed to be used in decisionmaking. Official aircraft-

based forest patrolling rules were applied. In the model, the total area burned and

the total observed area were both considered, and the benefit of having fine- versus

coarse-resolution data was assessed. By modeling the stochastic process of fire

spread, the researchers estimated how much area burned could be saved if the fires

were detected quickly through an improved patrolling pattern. This pattern could

be designed using a finer weather grid. Simulations revealed that the use of finer-

resolution data reduced the area burned by 21 % and the patrols could be reduced

by 4 %. The cost-benefit ratio points towards a higher incremental benefit than

the incremental cost of establishing a finer-grid patrol system.

An overall assessment of the GEOBENE project showed that in the majority of

case studies, the societal benefits of improved and globally coordinated EO systems

were orders of magnitude higher than the investment costs. A strong coordinating

institution is required to ensure that an integrated architecture takes full advantage

of the increased benefits and cost reductions achieved by international cooperation.

8.3 Analytical Framework: Portfolio Approach to Mitigation

8.3.1 Independent Constant-Cost Mitigation Options

In this paper we are interested in a situation where the decisionmaker can mitigate

climate change either in the land use sector (e.g., through avoiding deforestation) or in

industry (e.g., by introducing a new technology, such as carbon capture and storage).
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The focus of our analysis is on the choice between these two options, where the

land-use mitigation option exhibits increasing marginal costs, which differ between

two scenarios depending on the land cover data set that is used. Scenario 1 is the

GLC-2000 scenario, in which a substantial additional land resource is available for

agriculture and cropland expansion; this is the “available land” scenario. Scenario 2 is

theMODIS scenario, wheremost of the land is already in use andmuch less additional

land is available for agriculture and cropland expansion; this is the “limited available

land” scenario. The other mitigation option is assumed to be available at a constant

cost at the beginning and is completely independent of the first option.2

We use standard portfolio theory (Markowitz 1952) to approach the problem

of determining the optimal mitigation portfolio and derive the expected value of

perfect information for the results obtained (Birge and Louveaux 1997).3 In partic-

ular, the objective to be minimized is a weighted average of expected costs and

variance:

min
x2½0;1�

E½CðxÞ� þ oVar½CðxÞ� (8.1)

where the weight of the variance represents the level of risk aversion: the larger the

weight of the variance in the objective, the more costs the decisionmaker will adopt

to reduce this risk. E is the expected value operator; Var is the variance; o is the

measure of risk aversion and is larger than 0 for risk-averse decisionmakers and equal

to 0 for risk-neutral decisionmakers; x is the share of emissions abated through

avoided deforestation within the mitigation portfolio; and C is the mitigation costs.

Other studies analyzing mitigation strategies have also implicitly and explicitly

incorporated risk-averse decisionmakers, but it is challenging to estimate the magni-

tudes of the risk aversion parameter for global decisionmakers, although much work

has been conducted in eliciting farmers’ degree of risk aversion using different types

of utility functions (Lin et al. 1974; Binswanger 1980; Dillon 1971; Dillon and

Scandizzo 1978).

At the global scale, integrated assessment models include damages from warming

in their optimization of social welfare (see, e.g., Weyant et al. 1996 for an overview

of the early literature). Anthoff et al. (2009) find high estimates for the social cost of

carbon when explicitly including risk aversion, even with a model that incorporates

relatively conservative damage estimates.

More closely related to our work, Springer (2003) suggests that diversification of

mitigation activities allows for a reduction in risk exposure while taking advantage

2 If two options in the land use sector were analyzed, these could be competing or complementary,

so that costs would either decrease or increase as more of one option was chosen. This is not the

topic of this particular study, but will be of interest in future research that will also consider bio-

fuel policies.
3We acknowledge that this implies that we focus on the perfect information case, which will never

materialize in reality. For this reason, the expected VOI derived should be interpreted as an upper

bound of the VOI that can be attained by having increasingly accurate information.
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of low-cost options. He uses the traditional Markowitz mean-variance approach to

determine efficient international portfolios of carbon abatement options and derives

information about expected returns from investing in emissions reduction from

marginal abatement cost curves for CO2.

Although the objective function used in this paper is different from the original

Markowitz formulation of the expected value model, it is an alternative formulation

proposed independently by Freund (1956), whereas both Markowitz’s (1959) and

Freund’s (1956) formulations yield identical efficient frontiers (McCarl and Spreen

2007). Relating this back to the notation in Eq. (8.1), the expected value frontier

for the optimal decisions across all o > 0 is identical to the one given by the

Markowitz approach, with o ¼ 0 giving the case where the decisionmaker is risk

neutral. The limit case o!1, on the other hand, represents the case where only

variance is considered.

In Appendix 8.A we first derive analytically the optimal strategy and the

expected VOI for a base case, where both mitigation options feature independently

with constant costs. The expected value of perfect information (EVPI) is defined by

the following equation:

EVPIðp;oÞ ¼ E½Cð�xðp;oÞÞ� þ oVar½Cð�xðp;oÞÞ� � pC12 � ð1� pÞC21 (8.2)

where p is the probability that the first land cover map is closer to reality, �x is

the optimal share of emissions abated through avoided deforestation within the

mitigation portfolio, and Cij is the mitigation cost either for a strategy or for option j
in scenario i.

The derivations indicate that the optimal mitigation strategy is always a pure

strategy in the case of perfect information, which implies that the decisionmaker

never chooses a portfolio of the mitigation options. This result is independent of the

level of risk aversion of the decisionmaker. Whether the first or second mitigation

option is preferred thus depends on the scenario (i.e., which land cover map is a

“truer” representation of reality).

In the case of imperfect information, and assuming that on average the cost

of the first mitigation option is higher than the cost of the second option, there

are some cases in which the decisionmaker (within a given interval of risk aversion)

prefers a combination of the two mitigation options to a pure strategy. For this to

be true, the probability of the scenario in which the first mitigation is cheaper must

be sufficiently high. Otherwise, the decisionmaker will always prefer the option that

is on average cheaper—independently of his risk aversion measure.

It can be shown that the case of perfect information is in fact a limit of the

strategy in the case of imperfect information. Furthermore, the strategy is a decre-

asing function of the level of risk aversion (for a probability larger than the

threshold). This means that the more expensive mitigation option enters the

mitigation portfolio with a higher share if the decision-maker is more risk averse.

In other words, the decisionmaker trades higher costs for a decrease in the

variance—that is, risk.
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8.3.2 Constant-Cost and Increasing-Cost Mitigation Options

The derivations for scenarios 1 and 2 and two mitigation options, where one has

constant costs and the other one has increasing costs (Appendix 8.B), show that the

introduction of imperfect information causes the decisionmaker to choose a mitiga-

tion strategy that is a compromise between the strategies optimal in the individual

scenarios. This effect is independent of the risk attitude of the decisionmaker, so even

without risk aversion, we get a mix of the two mitigation options as the optimal

strategy.

Furthermore, for a given probability of the first scenario (i.e., a given land cover

map is more correct than another), the optimal mitigation strategy of a risk-averse

decisionmaker is the same as that of a risk-neutral investor, who perceives the

probability attached to the first scenario differently. This probability is uniquely

defined by the probability that the first scenario is correct and the level of risk

aversion of the decisionmaker. It can be shown—independently of the level of risk

aversion—that this probability is always closer to 0.5 than the probability that

scenario 1 is true; that is, it is always closer to the solution where the decisionmaker

is risk neutral, which is equivalent to the solution where she believes that the two

land cover maps have equal probability of being correct.

Finally, the VOI is always found to be positive and it can be shown that there is

a unique probability threshold below (above) which the VOI is increasing (decreas-

ing) in the probability that the first land cover scenario is true. This implies that

the decisionmaker’s willingness to pay for having perfect information ex ante is

highest at a given probability threshold, to the right of which the probability of

scenario 1’s being correct increases and to the left of which it decreases. That is, in

both directions we move to a more informed situation, so that the marginal value of

additional information decreases.

In the following section we present an empirical analysis, where we use the

analytical model with two options, where one has increasing and the other one has

constant costs (Appendix 8.B).

8.4 Mitigation Option Portfolio Example

Having defined the problem and the properties of the solution in a simple setting

in Sect. 8.3, we now turn to an application of the second analytical model from

Appendix 8.B using the GLOBIOM model to derive the function of the cost of

the REDD mitigation option. The alternative mitigation option (a new technology,

carbon capture and storage, in the industry and energy sector) is assumed to have

constant costs. GLOBIOM is a global recursive dynamic partial equilibrium model

that integrates the agricultural, bioenergy, and forestry sectors to give policy advice

on global issues concerning land-use competition between the major land-based
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production sectors (Havlı́k et al. 2010). The global agricultural and forest market

equilibrium is computed by choosing land-use and processing activities to maximize

the sum of producer and consumer surplus subject to resource, technological, and

political restrictions, as described by McCarl and Spreen (1980). Prices and interna-

tional trade flows are endogenously computed for 28 world regions.

GLOBIOM enables one to estimate the marginal cost of REDD (CiREDD) as the

opportunity cost of activities that could take place on the deforested land, namely

agriculture and biomass for bioenergy production. This cost is obtained from the

dual value associated with a constraint that forces the model to respect a certain level

of GHG emissions determined as a percentage of the business-as-usual emissions

from deforestation. By varying the reduction level from 0 to 100 %, the entire

marginal abatement cost curve can be uncovered.

The two alternative scenarios were differentiated by the underlying land cover

maps; we used the GLC-2000 cropland minimum (the cropland class is covered

50 % by cropland and 50 % by a noncropland class) and the MODIS cropland

maximum (the cropland class is covered 100 % by cropland). We calculated the

ratio between the MODIS cropland maximum and the GLC-2000 cropland mini-

mum area at the national level taking the GLC-2000 cropland minimum as the

reference. To mimic the MODIS maximum cropland scenario, we multiplied

the cropland reference area by this ratio and divided the crop yield level by the

same ratio, assuming that total production of the reference year is known and valid

for both scenarios. In those countries where the MODIS maximum cropland extent

exceeded the GLC-2000 minimum cropland area, the additional cropland was

assigned to the land category previously labeled “other natural land.” This reduced

the possibility of agricultural production expansion beyond forests. We consider

the difference of cropland area chosen between the two land cover scenarios as

relatively conservative, since we could also have modeled the difference between

the MODIS cropland minimum and the GLC-2000 cropland maximum. Such

scenarios would have increased the differences in cropland extent and consequently

be more extreme.

We then test the sensitivity of the optimal mitigation strategy and the associated

VOI to the cost of this “safe” alternative and the responsiveness to different levels

of risk aversion, where we refer to a weight (o) close to 0 as being risk neutral and

then increase it to 0.002 in intervals of 0.0002.

For the latter, we fix the cost of the constant-cost mitigation option at $20 per

tCO2. Because the maximum potential from REDD between 2020 and 2030 is about

20 GtCO2 with a price varying between $0 and $50 per tCO2, the total amount to

be mitigated by the combination of the constant-cost and REDD options is set equal

to 20 GtCO2.

In Fig. 8.2, the contribution of the REDD option to the overall mitigation

contingent is shown for an increasing probability that the land cover map, for

which REDD is relatively cheaper, is correct. In the risk-neutral case, where the

decisionmaker minimizes expected costs irrespective of the variance (i.e., the risk

aversion coefficient is equal to 0), we see that the red line rises from 13,000 million
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tons (mt) of CO2 to more than 16,000 mt as we become more confident that the land

cover map with more additional land is correct. This implies that as the certainty

that this map is correct increases, the REDD option becomes more and more

attractive.4 However, as the decisionmaker grows more risk averse (i.e., the lines

in light green, blue, pink), we observe a different pattern: until a threshold of 40 %

probability, the share of the REDD mitigation option actually decreases before it

starts to increase. This can be interpreted in the following way: the points where

the probability of having more land available is 0 and 100 % represent points with

complete certainty. In the first case, the map with less available land is correct,

whereas in the second case, the map for which REDD is cheaper is the true state of

the world. These points thus also coincide with the risk-neutral results. At the prob-

ability threshold referred to above, the share of the REDD mitigation option is at

a minimum, left of which the probability that the map with less available land is

correct increases (and so the share of the constant-cost mitigation option increases

at the expense of the current one). To the right of the minimum, the probability that

the map with more available land is correct is higher, so the share of the REDD option

is increased. Figure 8.3 shows the amount of mitigation using the second option

(constant cost), which is clearly the mirror image of the first option’s amount.

4 Note that the optimal mitigation portfolio is never a pure strategy—not even in the case of risk-

neutrality: it is always a mixture of both options, as explained in Sect. 8.3 and proven in the

appendix.
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Fig. 8.2 CO2 mitigated under REDD option for increasing probability that land cover data

(scenario 1, available land) are true
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As we move from the risk-neutral to the more and more risk-averse case, the

curves change shape: they are sharply sloped at the ends, where certainty in the land

cover data sets is highest, and flatter where uncertainty increases. This indicates that

for increasing risk aversion, the patterns described above are reinforced, and more

mitigation happens through the constant cost option. If we look at Figs. 8.4 and 8.5,

which display the total expected cost of the mitigation portfolio and the variance,

respectively, we can see that the decisionmaker will accept higher costs to reduce

the overall risk (or the variance). These results are in line with the theoretical,

general findings explained in the previous section and derived in the appendixes.

Finally, we compute the expected VOI according to the definitions presented in

Sect. 8.3. In Fig. 8.6, the VOI is increasing to the left of 50 % and decreasing to the

right of 50–60 % in the risk-neutral case. Only as risk aversion rises do the curves

get skewed; that is, the maximum of the lines in Fig. 8.6 moves toward 70 % and

then 80 %. This implies that the more risk averse you are, the more you value

information, but after a certain probability threshold, you start to value additional

information less because you are already relatively confident in the data. This

probability threshold also increases for higher levels of risk aversion. In economic

terms you see the marginal value of information switch signs at ever-higher prob-

ability levels, starting at 50 % for the risk-neutral case and ending around 80 % for

higher levels of risk aversion. Once you are sure that the land cover map with more

land available is correct, the VOI is 0 again.
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Fig. 8.3 CO2 mitigated under constant-cost option for increasing probability that land cover data

(scenario 1, available land) are true
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We then investigated the response of the expected VOI to changes in the

assumption about the cost of the alternative mitigation option, carbon capture and

storage—what we have called the constant-cost option above. In Fig. 8.7, the red

line is derived for costs of this option of $10/tCO2, and the other lines (light green,

blue, pink, etc.) represent progressively higher costs per ton of CO2.

In this risk-neutral case, we see all the lines in Fig. 8.7 increasing, with more and

more of the REDD option being adopted because the alternative (constant-cost)

option is assumed to be comparatively more expensive. At $60 per tCO2, we observe

a mitigation portfolio consisting of 100 % REDD, irrespective of the probability of

having more land available being high. This is also why expected the VOI is equal to

0 in this case (see Fig. 8.8).

In Fig. 8.8, The VOI assuming the constant-cost option costs $20 per tCO2 is

above the VOI assuming only a $10 cost. This is because the decisionmaker regards

the REDD option as less competitive if the alternative is so cheap. The VOI is then

highest for the blue line, corresponding to $30 per tCO2, at around 50 % probability

that the land cover data with more available land are correct. Beyond that, the

alternative mitigation option gets less and less attractive than the REDD option, and

the value of knowing with more certainty that this cover is correct decreases—that

is, the pink line is underneath the blue one, followed by the dark blue and brown

lines (at 0). Also, the maximum of expected VOI curves is to the left of the 50 %
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probability of having more land in the latter case (i.e. the constant-cost option is

relatively more expensive) and to the right of 50 % in the case where the constant-

cost option is cheap. This means that the marginal value of information decreases as

the alternative option becomes more expensive, and vice versa, and the probability

threshold beyond which additional information is valued at a decreasing rate gets

lower and lower, too. In other words, the probability threshold required to commit

more to the REDD mitigation option is not so high anymore.

8.5 Discussion and Outlook

This study has taken a very simple and straightforward approach to derive some

powerful conclusions. We have used standard portfolio optimization to derive the

optimal mitigation strategy, where one option to mitigate is avoided deforestation

and the other option is outside the LULUCF sector, where we assume that a new

technology, carbon capture and storage, becomes available at constant costs. The

REDD option, however, displays increasing costs because other land uses compete

with increasing land needs for REDD. In addition, the uncertainty surrounding

the availability of land due to the inadequacy of existing land cover maps implies

that the cost of REDD could be very different for different scenarios of land cover.

In this study, we have used two land cover products, one of which shows more land

available than the other, which means that the REDD option would be relatively

cheaper if the first product is used. The purpose was to estimate the expected VOI

and thus give us an idea about how much decisionmakers would be willing to pay to

gain more certainty in the accuracy of land cover information.

An important conclusion (that can also be proven mathematically; see Appen-

dix 8.B) is that even if the decisionmaker is risk-neutral, the existence of uncer-

tainty leads to a portfolio of the two mitigation options and a positive expected VOI

rather than a pure strategy using only the option that is on average cheaper. Only if

the constant-cost option is so expensive that the REDD option is preferred under

both land cover types do we find expected VOIs equal to 0 for any probability that

more land is available. If we interpret the expected VOI as the willingness to pay for

becoming more certain that a given land cover data set is true, then we can use

Fig. 8.8 to provide the magnitudes of funds potentially involved: if the constant-cost

option was $30 per tCO2 (the light blue line) and we were 30 % certain that the

land cover map showing more land available was true, it would be worth more

than $1 billion to increase this probability to 40 %. For another 10 % improvement,

we would still be willing to pay a little less than $1 billion, and later this would

decrease, since we are already relatively certain that this map is the right one.

Since the “total” cost of the mitigation contingent is in the order of hundreds of

billions of dollars, this represents only a small percentage. However, in absolute

terms it implies huge funding potential for marginal improvements in the existing

products. For example, the AFRICOVER project, undertaken for 12 countries in
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Africa by FAO at a cost of several million dollars, provides a significant marginal

improvement over coarser land cover maps such as GLC-2000 and improves our

knowledge about land availability. The cost-benefit ratio points towards a positive

return on investment.

Risk aversion increases the expected VOI even further. In addition, it also shifts

the point at which the marginal change in VOI ceases to be positive. This implies

that even for relatively high levels of certainty, a risk-averse decisionmaker would

be willing to pay for further security, until the value of information falls to 0 in the

case of complete certainty.

Future research should look more closely at the interaction between mitigation

options arising within the LULUCF sector, since these options might have comple-

mentary features or compete with each other, thereby reinforcing the costs. Also, it

will be of major interest to zoom into the properties of cost distributions when more

options are considered and test other risk measures than just the variance, should

potential losses not be normally distributed (i.e., if much could be lost in the tails

of the distribution). Finally, uncertainties other than those arising from the costs

surrounding the use of different land cover products should be analyzed. These include

technological uncertainties, uncertainty about the correct stabilization target, and

uncertainty about policy and regulation.

The example shown above has illustrated the tremendous value of information

that reduces uncertainties in global land cover. It has shown that there is a high

value in being able to map and quantify cropland extent accurately, in particular in

Africa, where uncertainties are the highest. This demonstration involves one speci-

fic application. However, there are many other applications in which better land

cover maps can help improve decisions, ranging from improved conservation

planning for maximizing biodiversity on a local level to overall better land-use

planning on a national level. This implies that there are co-benefits of having improved

land cover information, and the VOI is probably much higher than what has been

shown in this chapter.
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8. Appendixes

8.A Independent Mitigation Options with Constant Costs

8.A.1 Problem Formulation and Assumptions

Let us denote Cij as the mitigation costs for option j in scenario i (i; j 2 f1; 2g),
representing the mitigation costs needed in the case where the observations from

scenario j are correct and mitigation is carried out by option i. We will analyze the

optimal mitigation strategy for both a case where the correct scenario is known
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beforehand and a case where this information is not available. The comparison

between the two optimal mitigation strategies enables us not only to qualitatively

assess the effect of uncertainty in the observations, but also to derive the value of

information regarding which scenario is the correct one.

Let us assume that the mitigation cost is a linear function of the mitigation

measures needed; that is, in the case where mitigation is carried out jointly by

options 1 and 2 with options having shares of x and 1�x respectively (x 2 ½0; 1�), the
cost in scenario i is given by

CiðxÞ ¼ xCi1 þ ð1� xÞCi2: (8.A.1)

Let us further assume that the observations represented by the scenarios are in

principle diverse, such that neither of the mitigation options dominates the other;

that is, without loss of generality, we can assume

C11<C12; (8.A.2)

C21>C22: (8.A.3)

Let us further assume that without loss of generality,

C11 þ C21 � C12 � C22>0: (8.A.4)

8.A.2 Model Formulation

Let us assume the optimal mitigation strategy is determined by the solution of the

optimization problem

min
x2½0;1�

E½CðxÞ� þ oVar½CðxÞ�; (8.A.5)

where E½:� and Var½:� denote the expected value and variance, respectively. This

formulation is a standard portfolio optimization approach, where the objective

consists of the expected cost penalized by its variance. CðxÞis the mitigation cost,

which in our case is a random variable given by

CðxÞ ¼ xC11 þ ð1� xÞC12 with prob: p

xC21 þ ð1� xÞC22 with prob: 1� p:

(
(8.A.6)

The parameter o is the measure of risk aversion of the decisionmaker, where o ¼ 0

models a risk-neutral ando> 0 a risk-averse behavior, with the level of risk aversion

increasing with increasingo. The probability p represents the information or belief of
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the decisionmaker about the reliability of individual scenarios. As already mentioned,

we will investigate two cases:

• perfect information: the correct scenario is known, i.e., p 2 f0; 1g
• imperfect information: there is no such information available at the decision

moment, i.e., p 2 ð0; 1Þ

8.A.3 Solution

It is important to realize that the optimal mitigation strategy (i.e., the solution to the

problem in Eq. (8.A.5)) is a function of the underlying parameters p;o. Therefore,
let us denote the optimal mitigation strategy by �xðp;oÞ.

Perfect Information

In the case where the correct scenario is known, there is no uncertainty concerning

the mitigation costs, resulting in VarðCðxÞÞ ¼ 0.

If p ¼ 0 (i.e., the second scenario is the correct one), then E½CðxÞ� ¼ xC21

þð1� xÞC22. Since (8.A.2) holds, the solution of (8.A.5) is attained for x ¼ 0.

Similarly, in the case where p ¼ 1, the optimal strategy is x ¼ 1.

This implies that the optimal mitigation strategy is in the case of perfect informa-

tion always a pure strategy, never resulting in a portfolio of the mitigation options

independently of the risk aversion of the decisionmaker. Whether the first or second

mitigation option is preferred depends on the scenario: �xð0;oÞ ¼ 0, �xð1;oÞ ¼ 1 for

any o � 0.

Imperfect Information

The solution of problem (8.A.5) is derived in Sect. 8.A.5. The most important result

is summarized in the following Lemma:

Lemma 8.A.1. There exist p̂ 2 ð0; 1Þ, functions oðpÞ; �oðpÞ and a function ~xðp;oÞ
such that

oðpÞ<�oðpÞ;

~xðp;oÞ 2 ð0; 1Þ for p>p̂ and o 2 ðoðpÞ; �oðpÞÞ and

�xðp;oÞ ¼

0 if p � p̂

0 if p>p̂; o � �oðpÞ
~xðp;oÞ if p>p̂; o 2 ðoðpÞ; �oðpÞÞ
1 if p>p̂; o 2 ½0;oðpÞ�

8>>><
>>>:
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for p 2 ð0; 1Þ and any o � 0 . The proof and analytical expressions for the

probability threshold p̂and risk aversion thresholds oðpÞ; �oðpÞ together with the

analytical expression for ~xðp;oÞ are presented in Sect. 8.A.5.

Lemma A.1 discloses a quite natural but important conclusion. Assumption

(8.A.4) states that, on average, the cost of the first mitigation option is higher

than the cost of the second option. Lemma A.1 shows that, if p is high enough

(i.e., the probability of the scenario where the first mitigation option is cheaper is

high enough), then in some cases the decisionmaker (if his measure of risk aversion

is within the given interval) prefers a combination of the two mitigation options to a

pure strategy. On the other hand, if the probability threshold is not met, the investor

prefers the option that is on average cheaper independently of his risk aversion.

As is proven in Sect. 8.A.5, the optimal mitigation strategy in the case of perfect

information is a limit of the strategy in the case of imperfect information. In

addition, the strategy is a decreasing function of o for p> p̂, i.e., the more risk

averse the decisionmaker, the higher is the share of the second mitigation option in

the optimal strategy, meaning that a risk-averse investor is willing to sacrifice some

part of the expected costs for the benefit of a lower variance.

8.A.4 Value of Information

Using the notion of expected value of perfect information (EVPI) and the results

derived in the previous section, we can quantify the value of the information on

which scenario is the correct one.

EVPI (or often VOI) is a common term in decision theory used to quantify the

maximum amount a decisionmaker would be ready to pay in return for complete

(and accurate) information about the future (Birge and Louveaux 1997). The concept

of EVPI was first developed in the context of decision analysis and can be found

in classical references, such as Raiffa and Schlaifer (1961). The expected value of

perfect information is, by definition, the difference between the value of the objective

(i.e., costs) in the case where the information is unknown at the time of the decision

and the expected value of the objective in the case where the information is known.

In our case it can be expressed as

EVPIðp;oÞ ¼ E½Cð�xðp;oÞÞ� þ oVar½Cð�xðp;oÞÞ� � pC12 � ð1� pÞC21 (8.A.7)

with E½�xðp;oÞ�,Var½�xðp;oÞ� given by Lemma 8.A.1. Since �xð0;oÞ ¼ 0 and �xð1;oÞ
¼ 1, we have

C12 � �xðp;oÞC11 þ ð1� �xðp;oÞÞC12 (8.A.8)

and

C21 � �xðp;oÞC21 þ ð1� �xðp;oÞÞC22: (8.A.9)
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SinceVar½Cð�xðp;oÞÞ�> 0 forp 2 ð0; 1Þ, the sum ofpmultiple of (8.A.8) and ð1� pÞ
multiple of (8.A.9) yields

EVPIðp;oÞ>0 (8.A.10)

8.A.5 Formal Proofs

To derive the results presented in Sect. 8.3, we first need to prove some preliminary

lemmas:

Lemma 8.A.1.

E½CðxÞ� ¼ pðxC11 þ ð1� xÞC12Þ þ ð1� pÞðxC21 þ ð1� xÞC22Þ

VarðCðxÞÞ ¼ pð1� pÞ½xðC11 þ C21Þ þ ð1� xÞðC12 þ C22Þ�2

Proof: The first expression follows directly from the definition of the mean and

(8.A). The second expression is obtained after some rearranging of terms by

substituting (8.A) into the definition of variance, VarðCðxÞÞ ¼ E½CðxÞ2� � E½CðxÞ�2
.

Lemma 8.A.2. The minimum of VarðCðxÞÞover x 2 ½0; 1� is attained in x ¼ 0 for

any p 2 ð0; 1Þ.
Proof: After rearranging the expression for VarðCðxÞÞ derived in Lemma 8.A.1, we

obtain the following:

VarðCðxÞÞ ¼ pð1� pÞðxðC11 þ C12 � C12 � C22Þ þ C12 þ C22Þ2;

VarðCðxÞÞ is a quadratic function which is due to (8.A) increasing on x 2 ½0; 1�; thus
its minimum on the interval is attained in x ¼ 0 independently of p.

Lemma 8.A.3. The minimum of E½CðxÞ� over x 2 ½0; 1� is attained in

x̂ðpÞ ¼
0 if p 2 ½0; p̂Þ
x; x 2 ½0; 1� if p ¼ p̂

1 if p 2 ðp̂; 1�:

8><
>:

where

p̂ ¼ C21 � C22

C21 � C22 þ C12 � C11

Proof: Since E½CðxÞ� is a linear function in x, its minimum on a compact interval is

attained on its border, except for the case where E½CðxÞ� is constant. Rearranging of
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terms in the expression for E½CðxÞ� from Lemma 8.A.1 yields that this is the case if

and only if p ¼ p̂. For p< p̂; E½CðxÞ� is decreasing in x by (A), (A), hence the

minimum is attained in x ¼ 0. E½CðxÞ� is increasing for p>p̂, thus its minimum over

x 2 ½0; 1� is attained in x ¼ 1.

These results enable us to derive the solution to problem (A) for the case of

imperfect information—that is, p 2 ð0; 1Þ.
Lemma 8.A.3 in combination with Lemma 8.A.2 yields that if p<p̂, then the

minimum of both E½CðxÞ� and VarðCðxÞÞ over x 2 ½0; 1� is attained in x ¼ 0. Since

E½CðxÞ� is independent of x if p ¼ p̂, the solution of (8.A) is attained in xminimizing

VarðCðxÞÞ. Hence the solution of (8.A.5) is

�xðp;oÞ ¼ 0

for 0< p � p̂ for any o � 0.

In the following, we will assume p>p̂, p 2 ð0; 1Þ. The objective of (8.A) is a

quadratic function with a global minimum ~xðp;oÞwhich attained in x satisfying the
first-order condition, which is a linear equation. After some rearranging, the first-

order condition yields

wKx ¼ L� wkK

with

K ¼ 2pð1� pÞðC11 þ C21 � C12 � C22Þ2

k ¼ C12 þ C22

C11 þ C21 � ðC12 þ C22Þ

L ¼ pðC21 � C22 þ C12 � C11Þ � ðC21 � C22Þ

It should be noted thatK; k; L> 0 by (8.A.2), (8.A.3), and (8.A.4) andp> p̂,p 2 ð0; 1Þ.
Thus the global minimum of the objective of (8.A.5) is attained in

~xðp;oÞ ¼ L

Kw
� k:

It should be noted that ~xðp;oÞ 2 ð0; 1Þ if and only if

o 2 ðoðpÞ; �oðpÞÞ

where

oðpÞ ¼ L

ðk þ 1ÞK<
L

kK
¼ �oðpÞ:
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This observation is crucial, since �xðp;oÞ is equal to ~xðp;oÞ if and only if ~xðp;oÞ
2 ½0; 1�. If ~xðp;oÞ � 1, the objective of (3.5) is decreasing on ½0; 1� and thus �xðp;oÞ
¼ 1. On the other hand, the objective of (3.5) is increasing if ~xðp;oÞ � 0, hence

�xðp;oÞ ¼ 0. Therefore, we see that the set of ðp;oÞ on which ~xðp;oÞ 2 ð0; 1Þ is the
same as the set of ðp;oÞ for which the optimal mitigation strategy is a portfolio of

mitigation options. The derived results can be summarized as follows:

�xðp;oÞ ¼

0 if p � p̂

0 if p>p̂; o � �oðpÞ
~xðp;oÞ if p>p̂; o 2 ðoðpÞ; �oðpÞÞ
1 if p>p̂; o 2 ½0;oðpÞ�:

8>>><
>>>:

The analytic expressions for both the probability and risk-aversion measure

thresholds and the optimal mitigation strategy enable us to study their properties.

First of all, it is important to realize that for a given probability levelp, the optimal

mitigation strategy �xðp;oÞ is a continuous function ofo. Second, comparing back to

the results derived in Sect. 8.A.3 for the perfect information case, we see that

�xð0;oÞ ¼ lim
p!0

�xðp;oÞ

and since lim
p!1

wðpÞ ¼ þ1 also

�xð1;oÞ ¼ lim
p!1

�xðp;oÞ

for any or0. In other words, the perfect information case is a limiting case of the

case with imperfect information.

In addition, using the analytical expression for the globalminimum~xðp;oÞ, it can be
easily shown that the optimal mitigation strategy �xðp;oÞ is a decreasing function ofo.

8.B Increasing-Cost LULUCF Mitigation Option

8.B.1 Assumptions

Let us denote Ciðx1; x2Þ : R2 ! Rþ
0 , Ci 2 C2 the mitigation cost function depending

on the scenario i (i 2 f1; 2g) representing the mitigation cost depending on the extent

of mitigation xjperformed by option j (j 2 f1; 2g). We assume that the mitigation cost

function is scaled such that the total mitigation needed in both scenarios is equal to 1

and that no mitigation action results in 0 costs; that is, Cið0; 0Þ ¼ 0.

We will analyze the optimal mitigation strategy for both a case where the correct

scenario is known beforehand and a case where this information is not available.
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The comparison between the two optimal mitigation strategies enables us not

only to qualitatively assess the effect of uncertainty in the observations, but also

to derive the value of information on which scenario is the correct one. First let us

formulate the assumptions on the mitigation cost that are necessary for the analysis:

@Ci

@x1
>0; i 2 f1; 2g (8.B.1)

@Ci

@x2
¼ A>0; i 2 f1; 2g (8.B.2)

@2Ci

@x21
>0; i 2 f1; 2g (8.B.3)

@Ci

@x1
ð0; 1Þ � A; i 2 f1; 2g (8.B.4)

@Ci

@x1
ð1; 0Þ � A; i 2 f1; 2g (8.B.5)

@2C1

@x21
ðxÞ>@2C2

@x21
ðxÞ for x 2 ½0; 1� (8.B.6)

The first three assumptions are mathematical representations of the following

situation: The marginal costs of the second mitigation option are constant and

independent of the scenario (since the option is part of the analyzed industry) and

the cost of the first function is assumed to be increasing and convex.

The fourth and fifth assumptions form necessary conditions, so there does not

exist a dominant mitigation option; that is, the optimal choice of the investor is a

combination of the two options. The last assumption states a relationship between

the options, implying that the cost in the case of the second scenario is rising less

steeply than in the first one.

Let us further introduce some simplifying notation and basic properties of the

functions considered. Let KiðxÞ ¼ Ciðx; 1� xÞ , i.e., KiðxÞ is a function of one

variable only and denotes the mitigation cost as a function of the mitigation done in

the first mitigation option, assuming the total mitigation is such that the mitigation

target is met. KiðxÞ is an increasing (from (8.B.1) and (8.B.2)), convex (8.B.3)

function of x. The first-order condition for minimization of KiðxÞ can be formulated

in terms of function Ci as

@Ci

@x1
ðx; 1� xÞ ¼ A (8.B.7)
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(8.B.1), (8.B.3), (8.B.4), and (8.B.5) imply that there exists a unique solution of

(8.B.7), which we denote x̂iG. Moreover, (8.B.3) ensures that the global minimum

of KiðxÞ is attained in x̂iG. (8.B.6) in turn implies that

x̂1G<x̂2G (8.B.8)

8.B.2 Model Formulation

Similar to the baseline case, we are interested in finding the optimal mitigation

strategy, which will be the solution of the same optimization problem as in the

baseline case, which can be equivalently formulated in terms of functions KiðxÞ as

min
x2½0;1�

E½KðxÞ� þ oVar½KðxÞ�; (8.B.9)

where E½:� and Var½:� denote the expected value and variance, respectively. This

formulation is a standard portfolio optimization approach, where the objective

consists of the expected cost penalized by its variance. KðxÞis the mitigation cost,

which in our case is a random variable defined as

KðxÞ ¼ K1ðxÞ with prob: p

K2ðxÞ with prob: 1� p:

(
(8.B.10)

The parameter o is the measure of risk aversion of the decisionmaker, o ¼ 0

modeling a risk-neutral and o> 0 a risk-averse behavior, with the level of risk

aversion increasing with increasingo. The probability p represents the information

or belief of the decisionmaker about the reliability of individual scenarios. We

analyze the following four cases:

I. Perfect information. The information on which scenario is correct is available

prior to the decision point; that is, p 2 f0; 1g.
II. Imperfect information. Such information is not available; that is, p 2 ð0; 1Þ. The

three subcases represent different levels of risk aversion of the decisionmaker.

(a) Risk neutrality. The decisionmaker does not care about the risk associated

with the decision and is concerned only about the expected mitigation costs;

that is, o ¼ 0.

(b) Absolute risk aversion. The decisionmaker cares only about the risk

measured by the variance and neglects the expected cost.

(c) Risk aversion. The decisionmaker prefers mitigation strategies leading to

lower expected costs and a lower variance at the same time. The preference

over them is measured by the risk aversion coefficient o>0 present in
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the target function. The risk-neutral and absolute risk aversion case are the

limits of this case for o ! 0 and o ! 1, respectively.

8.B.3 Solution

Perfect Information

Let us denote the optimal strategy for the cases analyzed here; that is, p ¼ 0, p ¼ 1

as x̂2; x̂1, respectively. In the case where the correct scenario is known, there is no

uncertainty concerning the mitigation costs, resulting in VarðKpðxÞÞ ¼ 0. If p ¼ 0

(i.e., the second scenario is the correct one and E½KðxÞ� ¼ K2ðxÞ), then if p ¼ 1,

E½KðxÞ� ¼ K1ðxÞ. Thus the optimal mitigation strategies in the perfect information

case are strategies in which the minimum of KiðxÞ is attained forx 2 ½0; 1�. We have

already shown thatKiðxÞ have global minima, which are attained in ½0; 1�. Therefore

x̂1 ¼ x̂1G (8.B.11)

x̂2 ¼ x̂2G (8.B.12)

where x̂iG is the unique solution of (8.B.7), i 2 f1; 2g and from (8.B.8)

0 � x̂1<x̂2 � 1 (8.B.13)

Imperfect Information

Risk-Neutral Case

In this case we analyze a situation where o ¼ 0. That is, the problem (8.B.9) is

equivalent to

min
x2½0;1�

pK1ðxÞ þ ð1� pÞK2ðxÞ (8.B.14)

Let us denote the optimal strategy x̂p as a function of p for which the minimum of

(8.B.14) is attained. It can be proven that

x̂p 2 ðx̂1; x̂2Þ (8.B.15)

and in addition

@x̂p

@p
<0 (8.B.16)
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where

lim
p!1

x̂p ¼ x̂1 (8.B.17)

lim
p!0

x̂p ¼ x̂2 (8.B.18)

Results (8.B.15) through (8.B.18) express that if the information about which

scenario will turn out to be true in the future is not available at the decision moment,

a risk-neutral decisionmaker will always prefer a strategy that lies in between the

strategies that are optimal for each scenario if the information is available. They

further show that the share of the first mitigation option in the mitigation strategy

is decreasing with increasing probability, converging to the optimal strategy for

the first scenario for p ! 1, and to the strategy optimal for the second scenario for

p ! 0. The proof of results (8.B.15) through (8.B.18) is presented in Sect. 8.B.6

Absolute Risk Aversion

By definition of variance we have

VarðKðxÞÞ ¼ pð1� pÞðK1ðxÞ þ K2ðxÞÞ2 (8.B.19)

which means that for absolute risk aversion, the problem (8.B.9) can be formulated

as

min
x2½0;1�

pð1� pÞðK1ðxÞ þ K2ðxÞÞ2 (8.B.20)

In Sect. 8.B.6 we prove that the global minimum of pð1� pÞðK1ðxÞ þ K2ðxÞÞ2 is

attained on ½0; 1� in x̂0;5.
This discloses an interesting implication about the behavior of an absolutely risk-

averse decisionmaker. We see that the optimal mitigation strategy is the same as in

the case of a risk-neutral investor who believes that each scenario is equally probable.

Risk Aversion

As in the baseline case, let us denote the

�xðp;oÞ ¼ argmin
x2½0;1�

E½KpðxÞ� þ oVar½KpðxÞ�; (8.B.21)

o>0, p 2 ð0; 1Þ. In Sect. 8.B.6 we prove that

�xðp;oÞ 2 ðx̂p; x̂0:5Þ if p>0:5 (8.B.22)
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and

�xðp;oÞ 2 ðx̂0:5; x̂pÞ if p>0:5 (8.B.23)

This implies, in comparison with the risk-neutral case, that the decisionmaker

prefers a more balanced mitigation strategy, choosing a strategy that is always

closer to p ¼ 0:5. More importantly, we saw in (8.B.15) through (8.B.18) that x̂p is a
continuous decreasing function mapping ½0; 1� on½x̂1; x̂2�. This means that for any

p 2 ð0; 1Þ there exists a unique q 2 ð0; 1Þ such that

�xðp;oÞ ¼ x̂q (8.B.24)

where q 2 ðp; 0:5Þ for p 2 ð0; 0:5Þ and opposite otherwise. In other words, the

solution of the risk-averse case is equal to the solution of the risk-neutral case when

the probability is equal to q. This shows that, in reality, the risk-averse decision-

maker behaves in the same way as a risk-neutral investor, but in fact attaches a

different probability to the scenarios, which is always closer to 0.5.

8.B.4 Value of Information

As in the baseline, we measure the value of information by EVPI. (8.B.24) implies

that in a further analysis of the results it is sufficient to consider only a risk-neutral

decisionmaker. Therefore, in this case EVPI is a function of probability only and

can be expressed as

EVPIðpÞ ¼ pK1ðx̂pÞ þ ð1� pÞK2ðx̂pÞ � pK1ðx̂1Þ � ð1� pÞK2ðx̂2Þ (8.B.25)

As in the baseline case, we can show that

EVPIðpÞ>0 (8.B.26)

As we prove in Sect. 8.B.6.3, there exists p̂ 2 ð0; 1Þsuch that

EVPIðp̂Þ>EVPIðpÞ for any p 2 ð0; 1Þ; p 6¼ p̂ (8.B.27)

Moreover, EVPIðpÞ is an increasing function of p for p 2 ð0; p̂Þ and decreasing for

p 2 ðp̂; 1Þ.

8.B.6 Formal Proofs

Risk-Neutral Case

First let us prove the following lemma:
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Lemma 8.B.1. Let q 2 ð0; 1Þ and Fi : R ! R, Fi 2 C2, i 2 f1; 2g satisfy

•
@2F1

@x2
>
@2F2

@x2
>0

• The global minimum of FiðxÞ is attained in xi 2 ½0; 1� with x1<x2

Then Fq : R ! R defined by FqðxÞ ¼ aðqF1ðxÞ þ ð1� qÞF2ðxÞÞ satisfies

@2F1

@x2
>
@2F

@x2
>
@2F2

@x2
>0

and the globalminimumofFqis attained in x 2 ðx1; x2Þ. Moreover, for anyx 2 ðx1; x2Þ
there exists q 2 ð0; 1Þ such that the global minimum of Fq is attained in x.

Proof: Since Fi 2 C2, alsoFq 2 C2 and from the definition ofFq and
@2F1

@x2 >
@2F2

@x2 >0

we have

@2F1

@x2
>
@2F

@x2
>
@2F2

@x2
>0 (8.B.28)

Hence if a global minimum of FqðxÞ exists, it is attained in x solving the first-

order condition

0 ¼ @Fq

@x
ðxÞ ¼ q

@F1

@x
ðxÞ þ ð1� qÞ @F2

@x
ðxÞ (8.B.29)

x1 and x2 are the global minima of F1 and F2 , respectively. Since x1<x2 and
@2F1

@x2 >
@2F2

@x2 >0, we have
@Fq

@x ðx1Þ<0 and
@Fq

@x ðx2Þ>0. Since
@Fq

@x 2 C1, there exists a

unique x 2 ðx1; x2Þ such that 0 ¼ @Fq

@x ðxÞ, which is thus the global minimum ofFqðxÞ.
Furthermore, since @2F1

@x2 >
@2F2

@x2 >0, the implicit function theorem ensures, that (8.

B.29) defines a unique smooth function xðqÞ on q 2 ½0; 1� and thus x1 ¼ lim
q!1

xðqÞand
x2 ¼ lim

q!0
xðqÞ, which in turn implies that for any x 2 ðx1; x2Þ there exists q 2 ð0; 1Þ

such that the global minimum of Fq is attained in x.
In the following let us denote KpðxÞ ¼ E½KðxÞ� ¼ pK1ðxÞ þ ð1� pÞK2ðxÞ . (8.

B.15) is implied directly by Lemma B.1 for q ¼ p and FiðxÞ ¼ KiðxÞ, (8.B.17) and
(8.B.18) by the proof of Lemma B.1 (Note that the conditions of Lemma 8.B.1 are

satisfied because of (8.B.6) and (8.B.8)). The implicit function theorem, as applied in

Proof of Lemma 8.B.1, ensures that @x̂p is a smooth function of p, which implies that
@x̂p

@p exists. For any 0<p2<p1<1 we have, after some rearranging,

Kp1ðxÞ ¼ qK1ðxÞ þ ð1� qÞKp2ðxÞ (8.B.30)

for q ¼ p1�p2
1�p2

, where indeed q 2 ð0; 1Þ. Thus, by Lemma 8.B.1 for q,F1 ¼ K1 ,

F2 ¼ Kp2we have x̂p1 2 ðx̂1; x̂p2Þ, which proves (8.B.16).
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Risk-Averse Case

First let us realize that sinceCið0; 0Þ ¼ 0, (8.B.1) and (8.B.2) imply that KiðxÞ>0.

If the global minimum of LpðxÞ ¼ E½KðxÞ� þ oVar½KðxÞ� exists and is attained in

�xðp;oÞ, then x ¼ �xðp;oÞmust solve the first-order condition, which is equivalent to

0 ¼ @Lp
@x

ðxÞ ¼ @Kp

@x
ðxÞ þ 4opð1� pÞðK1ðxÞ þ K2ðxÞÞ @K0:5

@x
ðxÞ (8.B.31)

Note that L 2 C2 and KiðxÞ>0. For p<0:5 we have x̂p>x̂0:5 and thus 0<
@Lp
@x ðx̂pÞ and

0>
@Lp
@x ðx̂0:5Þ. Hence there exists �xðp;wÞ such that 0 ¼ @Lp

@x ðxÞ for x ¼ �xðp;oÞ where
�xðp;wÞ 2 ðx̂0:5; x̂pÞ. Similarly for p>0:5.

Value of Information

After rearranging terms and utilizing the first-order condition for x̂p, we obtain

@EVPI

@p
ðpÞ ¼ K1ðx̂pÞ � K1ðx̂1Þ � K2ðx̂pÞ þ K2ðx̂2Þ (8.B.32)

which is a continuous function of p. From (8.B.15), (8.B.17), and (8.B.18) we obtain

lim
p!0

@EVPI

@p
ðpÞ<0 (8.B.33)

lim
p!0

@EVPI

@p
ðpÞ<0 (8.B.34)

Moreover, because of (8.B.6), after some rearranging, we obtain

@2EVPI

@p2
>0 (8.B.35)

Thus @EVPI
@p ðpÞis an increasing continuous function of p, hence there exists p̂ 2 ð0; 1Þ

such that @EVPI
@p ðp̂Þ ¼ 0. Furthermore, (8.B.35) ensures that the global maximum of

EVPIðpÞ is attained in p̂.
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8. Commentary: The Uncertain Value of Reducing Uncertainty

Scott Farrow

Fritz et al. have an ambitious research agenda to determine the value of information

about the extent of land cover in determining optimal mitigation choices for global

climate change. The mitigation alternatives they investigate are an assumed indus-

trial carbon capture technology and an alternative that reduces deforestation. They

determine the optimal mix, including corner solutions, of the alternatives when

there is uncertainty about the amount of land cover and the decisionmaker may

exhibit varying degrees of risk aversion. Uncertainty about the amount of land

cover determines the opportunity cost of the deforestation alternative and hence the

cost of any mitigation policy.

The chapter is ambitious both because of its empirical modeling and in the

development of a theoretical structure. The body of the text focuses on a general

description of the models used to estimate the value of information and the quanti-

tative results for various elements, such as mitigation costs and the value of informa-

tion based on an economic land-use and impact model, GLOBIOM. The appendixes

contain the mathematical development of two VOI models, one based on different

but constant costs across the two mitigation options, and the other based on one

increasing-cost option (reducing deforestation) while the carbon capture technology

is assumed to be constant cost.

The careful development of the background mathematical model and its poten-

tial link to the empirical work is to be praised. However, improving the explanation

of the linkages between the theory, specific equations, and the empirical model

would be a substantial help to the reader. The authors state that the empirical results

are based on the increasing-cost model, but some of the issues that could receive

more attention are also apparent in the constant-cost model, with which I begin.

8.C.1 Core of Models Presented

The heart of the analysis is the expected value of perfect information. In the two

constant-cost case, the authors in Eq. (8.A.7) define the value of information as

EVPIðp;oÞ ¼ E½Cð�xðp;oÞÞ� þ oVar½Cð�xðp;oÞÞ� � pC12 � ð1� pÞC21 (8.C.1)

S. Farrow (*)

Department of Economics, University of Maryland–Baltimore County, Baltimore, MD, USA

The Woods Hole Oceanographic Institution, Falmouth, MA, USA

e-mail: farrow@umbc.edu
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Where (see their text for more detail)

• EVPI is the expected value of perfect information;

• p is belief, expressed as a probability, about the reliability of two measures of

land cover;

• o is a measure of risk aversion, � 0;

• E and Var are expected value and variance, respectively;

• �x is the optimal share of deforestation in the mitigation strategy; and

• C, Cij are the mitigation costs either for a strategy or for option j with strategy i.

The first two terms on the right-hand side are the objective function when the

decisionmaker chooses an optimal strategy under uncertainty; the last two terms

constitute the expected value when the information is known at the time of decision.

Although the authors characterize the objective function as a portfolio optimi-

zation approach, in that the variance as well as the expected value linearly affect the

objective, no empirical evidence or interpretation is provided to interpret o other

than 0 represents risk neutrality and there is an upper bound of infinity. Its units

are the change in the objective function per unit change in the variance of costs in

this problem. Is such a number very small? Or not? This is most obviously important

in the two constant-cost models, where a mixed strategy requires various combi-

nations of probability and risk aversion such that, as the authors present,

�xðp;oÞ ¼

0 if pbp̂
0 if p>p̂; or�oðpÞ
~xðp;oÞ if p>p̂; o 2 ðoðpÞ; �oðpÞÞ
1 if p>p̂; o 2 ½0;oðpÞ�:

8>>><
>>>:

(8.C.2)

Consequently, the scale of o is important conceptually and empirically. Further,

the authors derive the bounds in which o leads to a mixed strategy as Eq. (8.C.3),

where L, k, and K are functions of probability and cost:

oðpÞ ¼ L

ðk þ 1ÞK<
L

kK
¼ �oðpÞ (8.C.3)

Although generated by the later increasing-cost model, the authors report sub-

stantial increases in the value of information when there is risk aversion, as in

Fig. 8.C.1 below; although the effect is presumably due to suddenly incorporating

some weight on a large variance. However, we don’t know the scale of o and its

plausibility in practice.

Moving on to the structure of the increasing-cost model based on avoided

deforestation, the authors define an augmented expected value of information

measure based on optimizing the linear mean and variance objective function.

They find that the presence of risk aversion leads the decisionmaker to adjust

risk-neutral probabilities toward a probability of one-half. However, the role of

risk aversion is somewhat hidden by their focus on this probability adjustment.
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They find in Eq. (8.B.24) and related text that the optimal share of avoided

deforestation is

�xðp;oÞ ¼ x̂q q 2 ðp; 0:5Þ p 2 ð0; 0:5Þ (8.C.4)

However, the degree of adjustment based on q and its link to the scale of o are not

made explicit. Consequently it becomes difficult to accept their empirical assertions

about the value of information.

8.C.2 Alternative Framings and Extensions

The linear in mean and variance objective function plays an important role in

the authors’ results. Modelers of choice under uncertainty often specify a risk-averse

utility function in income or wealth with various properties, often constant relative

risk aversion. Such an approach seems an alternative here. Further, decisionmakers

may be interested in some version of a marginal expected value of information or of

partial information, since it is unlikely that space or any other technology will entirely

resolve the uncertainty in land use as noted by the authors. It is more likely that there
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is a statistical distribution for land cover, and information may somewhat change that

distribution. The “true” or “false” reductionist approach is useful here to get at ideas,

but it is unlikely to represent the actual decisionmaking situation.

Finally, it may be useful to get some perspective by looking at the broader problem

of uncertainty associated with making mitigation decisions for global climate change.

There are clearly many sources of uncertainty in the model presented by the authors,

such as the global economic model for the cost of the alternatives, including crop

and other prices and behavior, the technology and costs of carbon removal, the

statistical distribution of land cover, and the overall fit of the model. An approach

that investigated uncertainty in the choice of mitigation options might involve deter-

mining the sensitivity of the model to a whole suite of uncertain variables and

assessing the value of information of each from which to investigate a portfolio of

research topics. The current approach, even if correct, does not give us any insight

into whether the accuracy of the land-use cover maps is more valuable than partially

resolving other aspects of uncertainty that are involved.

Ultimately, the authors are to be commended for their development of a concep-

tual model and for linking it to a large empirical model. Such linkages often require

substantial simplification and explanation, which in the version they present makes

their empirical results tantalizing but as yet highly uncertain to this reader.
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