
Chapter 10

Estimating the Benefits of Land Imagery
in Environmental Applications: A Case Study
in Nonpoint Source Pollution of Groundwater

Richard L. Bernknopf, William M. Forney, Ronald P. Raunikar,
and Shruti K. Mishra

Abstract Moderate-resolution land imagery (MRLI) is crucial to a more complete

assessment of the cumulative, landscape-level effect of agricultural land use and

land cover on environmental quality. If this improved assessment yields a net social

benefit, then that benefit reflects the value of information (VOI) from MRLI.

Environmental quality and the capacity to provide ecosystem services evolve because

of human actions, changing natural conditions, and their interaction with natural

physical processes. The human actions, in turn, are constrained and redirected by

many institutions and regulations such as agricultural, energy, and environmental

policies. We present a general framework for bringing together sociologic, bio-

logic, physical, hydrologic, and geologic processes at meaningful scales to interpret

environmental implications of MRLI applications. We set out a specific application

using MRLI observations to identify crop planting patterns and thus estimate

surface management activities that influence groundwater resources over a regional

landscape. We tailor the application to the characteristics of nonpoint source

groundwater pollution hazards in Iowa to illustrate a general framework in a land

use-hydrologic-economic system. In the example, MRLI VOI derives from reduc-

ing the risk of both losses to agricultural production and damage to human health

and other consequences of contaminated groundwater.
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10.1 Introduction

Moderate-resolution land imagery1 (MRLI) accrues benefits to society at large by

providing a spatiotemporal land use and land cover (LULC) signal that can be

linked to ground-based, land management activities and their effects on human and

natural ecosystems. In this chapter, we develop a general framework for estimating

the value of MRLI in an application to public policy issues related to agricultural

production and its effects on ecosystem services.2 An interdisciplinary analytical

framework for making decisions is developed using the intrinsic heterogeneity

of regional land characteristics (e.g. land cover transitions, soil characteristics,

geomorphology, temperature, geology, transport and biochemical processes, and

climatic regime), and external inputs (e.g., irrigation, nutrient application, crop

management) to land parcels to produce corn and soy crops.

The societal benefits from MRLI information–that is, the value of information

(VOI)–is the incremental value (i.e. cost savings) to public sector decision making

(i.e. government regulation). Cost savings arise from avoiding costly errors in

administering regulations for sustaining ecosystem services (e.g. groundwater

contamination and compliance with the Clean Water Act). MRLI sensors and

their data archives provide LULC information at a derived error rate in detecting

farm land use that can be used as inputs to a probabilistic estimate of adverse

change to an ecosystem service. For example, MRLI can provide a cumulative,

multi-temporal accounting of crops that have differential effects on groundwater

quality, which can be used to forecast critical levels of nitrate (NO3
�) concentration

in an aquifer. The data can inform decisions to regulate land use for mitigating a

potentially irreversible loss of groundwater resources.

User surveys suggest that MRLI is used for decision making in land-use

planning and management, water resources management, ecological forecasting,

emergency and disaster management, national and homeland security, coastal zone

1Moderate resolution land imagery is defined in the spatial domain as having a pixel resolution

between 30 and 250 meters.
2 Ecosystem services are defined as the production of goods (such as timber, seafood, and

industrial raw materials), life support processes (such as pollination, water purification, and

climate regulations), life fulfilling conditions (such as beauty, cultural inspiration, and serenity),

and preservation of future options of resource (such as biodiversity and genetic conservation for

future use) (Daily 1997). In this particular case study, only the good of groundwater quality is

considered.
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management, and transportation management and infrastructure planning (Miller

et al. 2011). Nelson et al. (2007) reviewed applications of Landsat—an MRLI

sensor—in the agriculture sector, broadly defined to include production agriculture,

water resources management, rangeland management, forestry, and environmental

management. Early studies by Earth Satellite Corporation (1974) and ECON Inc.

(1974) identified potential operational benefits of Landsat, in which both studies

contained projections anticipating that agricultural applications would provide a

significant share of the total benefit of the imagery. Results reported by Earth

Satellite Corporation were $158 million3 to $414 million for agricultural

applications and those reported by ECON, Inc. (1974) would be in the range of

$3.8 billion to $25.8 billion for agricultural applications. In both studies, the

benefits from remotely sensed data were estimated by assuming that it resulted in

improvements in production forecasts.

Other studies about the valuation of Global Earth Observation System (GEOS)

information focused primarily on potential benefits of GEOS information (Macauley

2006, 2007; Williamson et al. 2002; Kalluri et al. 2003; Isik et al. 2005). Potential

societal benefits from MRLI include cost savings in natural resource allocation,

environmental regulation and reduced damage to public goods (Macauley 2007).

Only a few studies have attempted to quantify the benefits of information from

GEOS in monetary values (Macauley 2010; Bouma et al. 2009). Macauley (2010)

developed an expenditure-based VOI estimation model to derive a value for

Landsat data from the economic value of accurate estimates for forest carbon

offsets. The study considers the scenario where a new hyperspectral sensor added

to the platform can change the derived value of Landsat data for the period

2022–2026. This information is combined with climate policy scenarios and related

to economic data about forest sequestration projected for the same time period.

Bouma et al. (2009) used the stated-preference method to estimate the economic

benefits of satellite-based information to be $2.68 million annually for managing

water quality in the North Sea. Nelson et al. (2007) also reviewed the use of Landsat

by the Risk Management Agency (RMA). This agency, as part of the United States

Department of Agriculture (USDA), is responsible for monitoring compliance with

the terms of the federal crop insurance program and assessing whether fraud has

been committed. In testimony before Congress in 2006, USDA estimated the

agency’s return-on-investment in 2005 alone was 458 times the cost, based on

$34.4 million in restitution and forfeiture and a $75,000 USDA image archive

subscription fee. The Farm Security and Rural Investment Act of 2002 authorizes

the secretary of Agriculture to issue rules the secretary considers necessary to

ensure producers’ compliance with programs that help farmers manage market

risk and safeguard environmentally sensitive land. Some other, non-monetized

uses of Landsat imagery are to approximate the extent and temporal dynamics of

natural disasters such as flooding, hail storms and forest fires. Evaluation of cost

3 All dollar values in this chapter are deflated to the 2009 price level.

10 Estimating the Benefits of Land Imagery in Environmental Applications. . . 259



savings attributed to each of the MRLI applications described above provides a

limited indication of the partial VOI of MRLI.

This chapter is part of a larger study being conducted by the U.S. Geological

Survey (USGS) to identify operational applications of Landsat data that have a

quantifiable economic value. This chapter describes the development of a concep-

tual economic model that links remote sensing to physical processes. In the first

section, the components of an integrated assessment approach (IAA) (Antle and

Just 1991) that support the general framework are described. These components

include profit maximization by producers, revealed preference for social risk, and

cost effectiveness of regulation. The general framework is applied to a regional

environmental externality problem. The next section contains an application of

the economic model for agricultural production, nutrient loading, and the effects to

an ecosystem service. This type of application expresses benefits as value-in-use,

bequest, option, and existence values that result from the integration of remotely

sensed observations and natural science process models and data. MRLI informa-

tion is used to observe and help document the effect of agricultural production on

ecosystem services to avoid costly errors in administering regulations to sustain

those services. Satellite imagery is especially useful at the regional scale because it

captures the temporal change of the population of land activities better than

conventional methods of spatial and temporal sampling of representative locations

(Wilkie and Finn 1996). Furthermore, MRLI observation and long-term datasets

(archives) provide increased accuracy and precision for modeling biophysical

processes such as LULC change related to groundwater dynamics, thereby improv-

ing the targeted response of decision makers and regulators as they seek to manage

and maintain ecosystem services of the resources (groundwater quality). The

example highlights the intersection—and potential conflict—of policies that

encourage biofuels from corn production and incentivize reduced agricultural

production via USDA conservation programs, and provisions of the Safe Drinking

Water Act of 1974 (P.L. 107–377, 2002, amended). Depending on the quality of

information available to decision makers, these policy and management tools may

be employed more or less effectively. In other words, the greater sources of

nonpoint source pollution can be more specifically addressed while locations that

do not contribute to the nitrate loading and pollution of a given well could be less

strictly regulated.

The model estimates the joint output of agricultural production and groundwater

pollution as an example. On one hand, the model is used to estimate the economic

value of agricultural production while minimizing the risk of a loss in groundwater

quality. On the other hand, the model estimates the increased cost to producers from

either increased input costs or reduced fertilizer application. The joint output model

is followed by a loss estimation procedure that is used as the basis for comparing the

value of sensor data sets. The example assumes the regulator needs to be cautious

(reduce or eliminate fertilizer application for corn production) to avoid the loss of

groundwater resources due to nonpoint source contamination (Lichtenberg 1991).

The regulator’s decision involves the implementation of regulation(s) in anticipa-

tion of a natural resource failure to avoid more costly alternatives later. The cost

effectiveness of the MRLI is demonstrated when decisions are made less costly to
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society with the imagery rather than without it. Although the example presented

here is preliminary, it is representative of the types of applications that are possible

with MRLI. Finally, we summarize the model and express the need for empirical

testing of the framework. At the time of the writing of this chapter, a pilot analysis

is underway to evaluate the framework in Iowa.

10.2 Conceptual Framework

The conceptual framework for valuing MRLI is developed in an IAA within the

context of agricultural, energy, and environmental policies. In the IAA, we combine

two levels of decision making in an adaptation of the Antle and Just (1991)

integrated framework (Fig. 10.1). The first level is the farmer and the second is

the regional decision maker or regulator. The economic model is based on a

farmer’s choice among competing land uses in a geographic region (Antle and

Valdivia 2006; Antle and McGuckin 1993; Antle and Just 1991). The upper part of

1. Prices and Market
Mechanisms

2. Policies
and

Regulations

4. Management Decisions: Land Use, Input Use

5. Output: Acres/Yield 6. Pollution of common pool resources

7. Joint Output estimates with MRLI in various models

8. Regional Land Use Protfolio for Policy Analysis

9. Benefit estimation of MRLI

3. Local and
Regional Land

Attributes

Fig. 10.1 Conceptual framework for integrated assessment approach (Adapted from Antle and

Just 1991)
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Fig. 10.1, boxes 1–6, relates to decisions by individual producers that result in a

joint output of economic production and pollution. The lower part of figure, boxes 7

and 8, contains the observations of MRLI over multiple years and crop rotations to

estimate temporal regional-scale production, the accumulation of agricultural

inputs on the environment, and the risks to the decision maker. Box 9 of Fig. 10.1

integrates all previous boxes into a risk assessment associated with agricultural,

energy, and environmental policies and the desirability of regulation.

The IAA incorporates two conceptual vectors, “Scale” and “Time,” that are

critical to consider for the analytical approach (Hong et al. 2007). Input variables

are distributed spatially across the region and vary according to land characteristics

and external factors that affect a given parcel. It is important to note that a parcel

could include many fields, and farming operations could include multiple parcels.

Depending on the crop, its price elasticity, tendency for substitution, and the size

and structure of the market, price data (Fig. 10.1, box 1) fluctuate from year to year

and within a given year (The Financials 2010), whereas pollution (Fig. 10.1, box 6)
potentially has a spatial and temporal cumulative effect on the resource over a

number of years.

Environmental impacts of agricultural activities are controlled under several

regulatory frameworks,4 R, (Fig. 10.1, box 2). The degree to which these federal

and state environmental and agricultural policies, regulations, and statutes apply

depends on the particular farm and location of its fields (Fig. 10.1, box 3). Some

locations, such as riparian corridors, will likely have more beneficial uses for a

wider range of regulations (e.g. under the Clean Water Act, Endangered Species

Act, and Safe Drinking Water Act). Others, such as highly permeable soils that

allow surface water to infiltrate into the groundwater aquifer system, are likely to

have fewer beneficial uses if the range of regulations is narrowed (e.g. under the

Groundwater Protection Act, and total maximum daily loads, TMDLs). For those

that do apply, the temporal interval that influences the decisions of an agricultural

producer is assumed to be yearly, while the effect on natural resources is assumed

to be monthly to seasonal. That said the creation, alteration, monitoring and

enforcement of these regulations occur over longer time scales, which are assumed

4Regulatory frameworks include Farm Bill provisions, the USDA Conservation Programs, envi-

ronmental policy, and energy policy. The Farm Bill legislation began in 1933. The Farm Bill is

responsible for influencing many activities related to the decisions facing a farmer including crop

insurance, credit programs and direct and counter-cyclical payment contracts. The Farm Bill also

governs the USDA’s Conservation Programs that provide voluntary, yet binding, cost-share

programs. Depending on the contract and the program mechanism, the USDA’s cost-sharing

programs (Figure 10.1, box 2) have a duration of anywhere from three to thirty years. In addition

to the agricultural programs, farmers in states such as Iowa face federal and state environmental

policies and regulations such as the Federal Clean Water Act, Endangered Species Act, National

Environmental Policy Act, Safe Drinking Water Act, 1990 Clean Air Act Amendments, Food

Quality Protection Act of 1996; and the State Air Quality Code, Water Quality Codes, Groundwa-

ter Protection Act, Contaminated Sites (pesticides and fertilizers) Code, Pesticide Act of Iowa,

Agrichemical Remediation Act, Agricultural Drainage Wells Code, Soil Conservation Districts

Laws, Fishing and Game Hunting laws, Endangered Plants and Wildlife laws, Farmland Preser-

vation Statutes, and Manure Management Plans and Tile Lines (Figure 10.1, box 2).
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to be exogenous drivers of the producers behavioral changes and management

decisions (Fig. 10.1, box 4).

As for energy policy, although the first energy policy that influenced ethanol

production was the 1978 Federal Tax Credit, two more recent bills are of greater

significance. The Energy Policy Act of 2005 set the renewable fuel standard (RFS)

to increase ethanol levels from 4.0 billion to 7.5 billion gallons per year by 2012.

In 2007, the Energy Independence and Security Act (P. L. 110–140) increased the

RFS levels to require the use of at least 36 billion gallons of biofuel by 2022, 15

billion gallons being corn ethanol and the remainder being cellulosic ethanol (such

as perennial grasses, biomass and municipal solid waste) and other advanced

biofuels (Fig. 10.1, box 2). Spatially, their influence on the IAA is at the farm

scale. As posited in this conceptual framework, the goals for ethanol production and

the influence of the RFS on decision making of the producer will be across all their

fields in response to expectations of higher corn prices.

Natural resource damage arises from agrichemical pollution and other effects of

agricultural production, which range across many biogeochemical patterns and

processes (Fig. 10.1, boxes 3 and 6). Some of the more salient ones are erosion

and sedimentation, surface and groundwater nutrient loading and pesticide pollu-

tion, greenhouse gas fluxes, habitat and native vegetation loss, wetland dewatering

and conversion, reductions in biodiversity, and take of at-risk or listed species

(Fig. 10.1, box 6). For implementation of the IAA, essential considerations are: (1)

the number of natural resource processes, pollutant loadings and their associated

effects on ecosystem services (Fig. 10.1, box 6); (2) the degree of original modeling

(or easily—adaptable existing models) to incorporate and adequately characterize

the biophysical processes of the system related to the particular ecosystem services

(Fig. 10.1, box 7); and (3) the temporal and spatial consistency of all the modeling

components and their data availability. For our initial example in this study, we

focus on groundwater pollution from agricultural nonpoint source pollution.

An economic model is developed for efficient allocation of resources from a

regulator’s perspective. Producers are expected to behave as profit maximizers

under given regulatory constraints. A probabilistic estimate of pollution is based on

a spatiotemporal agricultural production portfolio, which can be derived from a Cobb-

Douglas production function.A forecast of the time to exceed a regulatory standard for

resource consumption is made after the risk of contamination is determined. Whether

and how much to regulate then depends on the regulator’s risk preference.

10.2.1 Economic Model

Regulators seek to maximize the value of agricultural output while limiting the risk

of resource damage. Given prevailing crop prices P, they choose regulations R:

max
R

PQ

s:t: risks � a
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where P represents prices of relevant crops, Q represents aggregate production

of those crops, and a represents the probability of exceeding a regulatory standard

that causes damage to a resource (here groundwater). Both the plot level and

regional risks are related to the quality of information about crop production (q),
variable inputs (v), farm management practices (z) and plot characteristics (e).
The crop production q is the amount of each crop produced on a plot. It is a function

of v, z and e.
In terms of v, by making decisions to maximize the production from their fields

(Fig. 10.1, box 5), producers apply fixed and variable inputs such as irrigation,

fertilizer, soil amendment, and pesticides (North Dakota State University 1997).

These decisions and the rates and durations of application are made at certain times

of the year, generally assumed to be within a given growing season. For example,

during certain periods of the crop’s growth cycle, fertilizer is applied to facilitate

plant growth or insecticides are applied to limit the invasion of parasitic insects.

The application of these two products, however, may not occur at the same time.

This can hold true for other v used in production.

In terms of z, the methods for production, farm management practices are

tempered by the biophysical characteristics of a given location. The method options

available to farmers include weed and insect management techniques such as

integrated pest management, seed selection (genetically engineered products,

seed collected from previous years, and hybrid seed), crop rotation, tillage and

biomass practices, mechanized- or hand- labor efforts, and others (Fig. 10.1, box 4)

(North Dakota State University 1997).

In terms of e, properties of the plot that play crucial roles in the production of

corn and potential damage to ecosystem goods are soil characteristics and variation

in precipitation and temperature (Fig. 10.1, box 3). Physical and chemical

properties of soils govern the quantity of agricultural inputs available to production

as well as their fate and transport into groundwater resources. Additionally, rainfall

intensity and duration and the use of irrigation are important factors in the fate and

transport of inputs. These factors help explain crop yield in addition to resource

pollution dynamics.

Next we describe more extensively and formulate models for each of the

components that constitute the inputs needed for the regulator’s maximization

problem in Eq. (10.1).

10.2.2 Producer Behavior

The objective function and constrained risk in Eq. (10.1) depend on the behavior of

the producer. That producer’s behavior is one of profit maximization. Q is the

aggregation of producer outputs q at the plot level and risk is a function of plot
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conditions e accumulating because of the actions of the producer. Given R the

producers seek to maximize profit on each plot:

max
qt;vt;ztf g

X1
t¼t0

dtp qt; vt; zt;PðRÞt;WðRÞt; et
� �

s:t: etþ1 ¼ et þ De qt; vt; ztð Þ
Rqmin

t � qt � Rqmax
t

Rvmin
t � vt � Rvmax

t

Rzmin
t � zt � Rzmax

t (10.2)

Discounting is by factor d, p is the annual profit function, W is input costs vector

and R is explicitly shown as minimum and maximum regulatory constraints on the

decision variables and subsidies applied to the prices and costs the producer faces.

Current choice variables affect the future by changing the properties of the plot by the

function De( � Þ. Time, t, is discrete corresponding to planting decisions made each

annual growing season. In terms of aggregating the estimation of joint output and

conducting statistical analyses for regional policy analysis, we assume an annual basis

is appropriate (Fig. 10.1, box 8). Although many of the financial outlays for corn

production practices, their pollution consequences, related biophysical phenomena,

and environmental science measurements occur at finer time periods, the bottom line

for a farmer is the amount of money she ends up with at the end of the year from the

choices she has made during the prior year and in years past (Lence and Hayes 1995).

10.2.3 Revealed Preference for Social Risk

The regulator solves Eq. (10.1) acting as if a is given, but this acceptable risk is

also the result of an optimization process at the higher level of authority of the

policy maker. A probability of exceeding regulatory standard, a(R), is associated
with policies R. The expected present discounted value of the policies to society,

ps(R, a (R)), can be optimized by choosing R* from possible policies G:

max
R2G

ps R; a Rð Þð Þ (10.3)

The choices of policy makers reveal social preferences.5 To the extent that

ps and G are stable, a* ¼ a (R*) is also stable. We can infer a* from observed

5Others have used observed government actions to reveal social preferences. McFadden (1975)

inferred the revealed value of indirect costs and benefits to highway route selectors and Ross

(1984) shows how revealed preference can be applied to infer the implied social weights of

regulators. We aren’t using reveled preference to infer values, but rather to infer the optimal

constraints implied by those values.
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regulatory outcomes. This inferred a* is the risk constraint to which regulators have

conformed, and we assume it is a reasonable risk constraint for the future to apply to

marginal alterations of policy or to the case of improved information structure.

The risk constraint matrix, a, consists of the acceptable risk level for multiple

resources (designated by the subscript) at multiple thresholds of failure (designated

by the superscript):

a¼
aT11 aT21 � � �
aT12 aT22 � � �
..
. ..

. . .
.

2
64

3
75 (10.4)

For example, the subscript 1 in Eq. (10.4) could designate nitrate pollution in

unconstrained deep aquifers and the superscript T1 could designate threshold

10 mg/l, such that a1
T1 is the probability that nitrate pollution in an unconstrained

deep aquifer will exceed 10 mg/l.

The conditional probability of exceeding the natural resource quality standard a
is derived from a cumulative probability distribution, which is a function of

properties of a land plot that affect the regional groundwater resources and

hydrogeologic processes of the aquifer.

10.2.4 Cost Effective Regulation with MRLI

The regulations described above with the additional information fromMRLI (v(1))

would be R*(v(1), a) and without additional information (v(0)) would be

R*( v(0), a) for the probability of exceeding the regulatory standard for resource

damage a. The additional information may allow regulations to be better targeted

so that the crop production will be different Q*
R(v(1), a) with the information than

without Q*
R(v(0), a) at the same resource risk level. Therefore, the VOI to the

regulator is stated explicitly as:

VOIvð1Þ ¼ P Q�
R vð1Þ;að Þ �Q�

R vð0Þ;að Þ
h i

(10.5)

The application of the conceptual framework involves the use of the LandsatMRLI

archive to estimate the joint outputs of agricultural production and pollution. Specific

crop rotations are evaluated in a dynamic model that includes spatially explicit inputs

in four dimensions: latitude, longitude, depth in the hydro-geologic system, and time.

Our model characterizes relevant biogeochemical processes from the land surface

through geologic strata to groundwater well extraction and quantifies the effect on

farm income and potential damage to private and public well water supplies resulting

from repeated applications of nitrogenous fertilizer (nitrogen) over the past several

decades. As observed by MRLI, the pattern of the joint output of crops and pollution
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from the portfolio of land uses creates information to analyze locations by screening

them on the basis of different criteria and to estimate an expected return on investment

from farming practices in a socially-relevant context, namely their pollution and

effects on common pool resources. Note that this approach is a close approximation

of an alternative value of information based on the policy maker’s optimization

problem (Eq. (10.3)). Equation (10.5) will yield a lower VOI than this alternative,

given diminishing returns of crop production, however this alternative approach

would rely on a detailed understanding of the value of groundwater protection

that is difficult to accurately observe.

10.3 Application

As a demonstration of the IAA, we forecast the risk of exceeding a regulatory

standard for groundwater pollution in Iowa. As mentioned before, earlier studies

on the application of MRLI show significant use in the agricultural sector. MRLI

provides a time series of LULC signals that are linked to levels of inputs in crop

production and their potential consequences to natural resources. In predominantly

agricultural states such as Iowa, where approximately 80 % of the population

depends on groundwater for drinking water, regulation of nitrate contamination

associated with agricultural production is an issue of serious concern. Therefore,

application of the conceptual framework to agricultural production and its effects

on the ecosystem service of groundwater quality is selected.

10.3.1 Agricultural Production and Its Ecosystem Service Effects

Farmers may overuse or underuse fertilizers, especially nitrogenous fertilizers

(Mortensen and Beattie 2005). The improper choice of fertilizer application rate

can be costly to the farmer in terms of lower yields as a result of excessive vegetative

growth, susceptibility to storm and insect damage, and poorer crop quality (Brady

and Weil 2002) as well as higher fertilizer cost. We model producers’ fertilizer

application decision (1) as part of the dynamic optimization of profit. This decision

hinges on the uncertainty faced by producers about the growing season’s weather

conditions. Given the policies and market conditions they face, producers might

address uncertainty by choosing to err on the side of under- or over-application

(Sheriff 2005). Fertilizer runoff and leaching-often a result of over fertilization and

lack of uptake by vegetation-into streams or groundwater is an unintended conse-

quence that can cause ecological and environmental damage (Martinez and Albiac

2006). Groundwater pollution occurs as a result of the interaction of several factors

at the land surface including fertilizer application and its interaction with the soils

and hydrogeology below the surface. Furthermore, under-fertilization limits

yields. Both overuse and underuse are a misallocation of resources. Although it
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is assumed that a farmer must meet all the requirements of the laws and that the

ecological structure and function of some locations provide multiple benefits and

ecosystem services, a catastrophic social loss of clean groundwater is risked when

over-application of nitrogenous fertilizer is widespread and persistent (Heal 1991).

A regulator’s informed intervention could help internalize externalities and reduce

the losses associated with a misallocation of resources.

We apply a simple production function to model crop yield with a response

plateau beyond which the marginal product is zero (Hall 1998). Further, we assume

that corn producers operate at constant returns to scale and display diminishing

marginal productivity (Livanis et al. 2009). We apply the production function

(Eq. (10.6)) to many parcels in a regional-scale analysis, so the response function

must be representative of the physical processes while being tractable region-wide.

A Cobb-Douglas production model with a plateau meets both criteria (Mortensen

and Beattie 2005):

q ¼ z0 P
ne

i¼2
e
zei
i P

nz

i¼1
z
zzi
i z1 þ v1 þ e1ð Þzei for v1 þ e1ð Þ<NITmax

¼ z0 P
ne

i¼2
e
zei
i P

nz

i¼1
z
zzi
i z1 þ NITmaxð Þzei otherwise ð10:6Þ

where q is one element of q—production in tons per hectare of a crop, v1 is

the nitrogenous fertilizer application rate, zi is one of the nz relevant elements of z
(e.g. no till, irrigation), ei is one of the ne relevant elements of e (e.g. e1 is residual
nitrogen, and other ei include moisture content, slope, soil type, and depth to water),

and NITmax is the amount of nitrogen beyond which marginal production is 0. The

profit-maximizing behavior of individual farmers will neglect the overall welfare of

the region. Here we hypothesize that a mismatch of parcel characteristics and crop

production can lead to an increased likelihood of exceeding the regional regulatory

standard for nitrate concentration in groundwater.

In this problem, given the land characteristics and the particular crop that the

farmer is trying to grow, we assume there is a continuum of land parcel types, and

an associated optimal application of land uses, fertilizer and irrigation and other

inputs as costs of production. The combination of individual production decisions

and observation of the producers at regional scale provides a mechanism to evaluate

pollution issues at both intensive and extensive agricultural margins over time.

Decisions at the intensive margin include management decisions such as chemical

application rates for a given unit of land (Antle and McGuckin 1993; Antle and Just

1991). These types of decisions are usually short run input decisions including how

much nitrogenous fertilizer should be applied during a specific growing season.

Decisions at the extensive margin determine what land is used for production versus

other purposes (e. g., USDA conservation programs), and thus determine the

environmental characteristics of land in and out of production. These decisions

entail long-run concerns such as crop rotations over different growing seasons.

Thus, some parcels of land ought to be used in a different way (e.g. marginally
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productive lands close to streams ought to be in a USDA conservation program) and

the parcels of land in a given LULC assignment can be mismanaged (i.e. fertilizers

can be over applied). Both of these problems increase the magnitude of the

pollution problem. The magnitude of the problem is a function of the history of

use j. Depending on such characteristics as application rates, watershed size and

connectivity, slope position, nitrate mobility, dispersion and travel times, aquifer

and well depth, and groundwater age, the history of use can influence the ground-

water pollution levels on the order of years, decades or centuries (Tomer and

Burkart 2003; Meals et al. 2010).

Evaluation of the accumulation of regional environmental effects begins with

application of a multi-period, spatial model of agricultural production for corn-

soybean crop rotations (Lambert et al. 2006), where the land use and crop rotations

are observed using MRLI. The first part of the model is the agricultural production

and response function in Eq. (10.6). The planting pattern dictated by Eq. (10.6)

will—in steady state—reduce either to some rotation pattern between corn and

soybean or to fallow (i.e., in forage, conservation program, or non-agricultural use)

We should also note that, to a relatively minor extent in our study area, the choice is

sometimes to grow crops other that corn and soybeans. The choice to plant a crop

in a given season depends on relative prices of the crops and costs of inputs. The

decision to produce corn during a particular rotation means that a specific quantity

of nitrogen is applied and if the decision is to produce soybeans, a different quantity

of nitrogen (if any at all) will be applied (Lambert et al. 2006). Fallow land requires

no nitrogen, but later planting of the site will affect retained nitrogen.

The longest ongoing studies of corn-soybean sequencing in the northern Corn

Belt (Lauer et al. 1997) indicate that in a typical rotation, the production of corn is

13 % higher than with continuous corn and soybean production is 10 % higher than

with continuous soybean. Transitioning from fallow, first year corn is 15 % more

productive, but no improvement is apparent for second-, third-, or later-year corn

crops, compared to simply growing corn continuously. Soybean production is 18, 8,

and 3 % more productive for first-, second-, and third-year crops, respectively,

compared to continuous soybean, and no improvement is found after the third

consecutive year of soybean planting. These data average results from specific

experimental plots and indicate the crops’ typical production trends over time; the

exact effect of a rotation cycle for a given crop’s production depend on the

particular site’s characteristics, rotation history, and other management practices.

The producer re-calculates the dynamic optimization in Eq. (10.2) with all

available information at time t ¼ t0 when preparations for the next planting are

made. The producer knows site characteristics, past planting on the site, cost of

inputs, and expectations for the price of the alternative crops this season and future

costs and prices. At that time, the producer chooses the next crop to plant that

maximizes the profit for the current season plus the discounted expected profit from

all future seasons (that also depend on the current choice). This choice is a transition

from the past planting to the next. Because of uncertainty about each producer’s

knowledge and expectations, this transition is a probabilistic transition from the
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crop of one season to the crop for the next. The state of the crop planting at time t is
represented by dt:

dt ¼
d1;1;t d1;2;t d1;3;t d1;4;t
d2;1;t d2;2;t d2;3;t d2;4;t
d3;1;t d3;2;t d3;3;t d3;4;t

2
4

3
5 (10.7)

where dj, l, t ¼ 1 for land use j at time t for the lth consecutive year and

0 otherwise,dj, 4 ,t ¼ 1 if land use j is planted at time t for the fourth or higher

consecutive year and 0 otherwise.

The crop choice is mutually exclusive; therefore:

X
j

X
l

dj;l;t ¼ 1 (10.8)

The state of the crop planting can transition to either the first year of another crop

or the next year of the same crop. The probability g describes the probability that

dt will transition to some dt+1. The transition probability from the lth year of crop j to

the l1th year of crop j1 is gj1;l1j;l zt;Pt;Wt; etð Þ. Thus, given each possible crop state, we
have a discrete choice of three possible outcomes that depend on prices and

characteristics known at time t. For first-year corn in the prior year, the next crop

state could be second-year corn with probability g1;21;1 or first-year soybean with

probability g2;11;1 , or first-year other with probability g3;11;1 . But, for first-year corn all

other transitions are not possible, e.g. the crop state could not be third-year soybean

next season or fourth-year other, so those transition probabilities are by definition zero.

We relate the transition probabilities to known factors using a multinomial logit:

In
g1;21;1

1� g1;21;1 � g2;11;1

 !
¼ 1;2

1;1b0 þ 1;2
1;1b1p1 þ 1;2

1;1b2p2 þ 1;2
1;1b3p3 þ 1;2

1;1b4w1

þ 1;2
1;1b5w2 þ 1;2

1;1b6w2z1 þ 1;2
1;1b

eeþ e2;11;1 ð10:9Þ

In
g2;11;1

1� g1;21;1 � g2;11;1

 !
¼ 2;1

1;1b0 þ 2;1
1;1b1p1 þ 2;1

1;1b2p2 þ 2;1
1;1b3p3 þ 2;1

1;1b4w1

þ 2;1
1;1b5w2 þ 2;1

1;1b6w2z1 þ 2;1
1;1b

eeþ e2;11;1 ð10:10Þ

g3;11;1 ¼ 1� g1;21;1 � g2;11;1 (10.11)

where p1 is the real price of corn, p2 is the real price of soybean, p3 is the real

subsidy per hectare for conservation program lands, w1 is the real cost of nitroge-

nous fertilizer, and w2 is the real cost of diesel fuel for operations including

irrigation. Similar equations apply to the transition from every other crop state.
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10.3.2 Loss Estimation

A societal choice involves decisions at regional scale and has an overarching effect

on a variety of individual land-owners and firms. Over long periods of time,

production of corn, its associated pollution, and its cumulative environmental

effects at regional scale can cause substantial changes to groundwater. The policy

issue is whether this ecosystem service becomes stressed and could be com-

promised, or even lost, because of changes in the land use pattern. The social risk

is the under- or over-regulation pertaining to groundwater contamination. However,

the true state of contamination in space and time at the regional scale is unknown

and can be only estimated with uncertainty. Thus, there is a need for a probabilistic

model of groundwater vulnerability.

A probabilistic estimate of where and when to regulate the crop producers in a

region can be based on the relevant circumstances above the groundwater over

t years or by way of a health standard, both of which can be assembled into the

vector a in Eq. (10.4). Thus, for our analysis we assume there exists some condi-

tional probability distribution of an adverse environmental effect in a region from

land use j that is known to the regulator (Nelson and Winter 1964) and consists of

three elements (Philips 1988): (1) the set of possible states of the environment Dkf g
that a nonpoint source groundwater contamination incident of resource damage

type for all j,j 2 J land uses involved in the transition to state k, k 2 K , possible

states of concentration; (2) an observation about land use j with information o from

a specific type of MRLI; and (3) the conditional probability that a time series of land

uses was observed, suggesting that a particular state of the environment will prevail

in the future.

Like the production function in Eq. (10.6), the probability of a particular level of

groundwater resource damage attributed to a land use at any one point in time in

Eq. (10.12) is related to the intensity of crop production q, the variable inputs v, the
methods z, and the properties of the plot e:

pk ¼ f q; v; z; eð Þ (10.12)

pk depends on nitrogenous fertilizer related activities on the soil surface and

other nitrogen sources (e. g., atmospheric deposition, land use and cropland type,

population density, and manure management), management practices including

irrigation and tillage, properties of the soil in the plot, temperature and precipita-

tion, movement of nitrate (converted from nitrogenous fertilizer) to aquifers

(depending on soil biological, chemical, and physical properties and the presence

of clay), movement and conductivity of the lithology (depending on characteristics

of sub-surface geology such as hydraulic conductivity and bedrock such as lime-

stone), denitrification of accumulated nitrate in aquifers (presence or absence of

denitrification facilitating layers in the soil and at depth), texture of aquifers

(especially unconsolidated sand and gravel), and drainage and recharge rate of

and well extraction from the groundwater system (Nolan and Hitt 2006; Nolan et al.

1997, 2002; Canter 1997).
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The contamination problem is one of a rate of accumulation of long-term nitrogen

application in crop production. Near-surface, soil nitrogen-cycling processes such

as fixation, mineralization, immobilization, nitrification, denitrification and plant

uptake are often costly and difficult to measure accurately and precisely (Nolan et al.

2010). That said, a model focusing on the near-surface soil processes is:

e1;tþ1 ¼ e1t þ v1t � let � �t � ut (10.13)

where v1t is the quantity of nitrogen applied as fertilizer e1t is the nitrogen stock

in the soil, and let is the quantity of nitrogen that has leached from the soil. Of the

remaining variables ut is the amount of nitrogen uptake by land use j, and �t is the
nitrogen volatilization. Nitrogen uptake and volatilization are a proportion of yield

ut ¼ uqtð Þ and fertilization ut ¼ tv1tð Þ, respectively, where t is the volatilization rate
into the air, u is the nitrogen uptake rate by plants, and t is the number of time

periods of observation by MRLI.

The nitrate leached let, is the principal component of nitrogen applied that

accumulates in groundwater over the period of time. Nitrogen fertilizer leached in

the form of nitrate let is explained by:

let ¼ f Y;NIT;PPT; TEM; Si; LMf g (10.14)

Where variables are the amount of fertilizer applied (NIT), residual nitrogen in soil,
nitrogen uptake by crops, properties of soil (Si, i.e. soil texture, and hydrologic

group), soil temperature (TEM), water inputs (PPT, i.e. irrigation/precipitation),
water table height, and land management practices (LM).

The quantity of leached nitrate in a given year depends upon the activities and

properties of an area contributing its pollution in the given year. That area is

hereafter termed as the catchment zone of a well. Earlier research on groundwater

pollution defined its catchment zone as a circular area around a well. For example,

Nolan (2002) used a circular area with diameter 500 m to model nitrate contamina-

tion in groundwater in given period. One of the ways to determine catchment zone

would be to use an analytical element method (AEM). The AEM is capable of

determining catchment zones for number of time periods using hydrogeologic

properties such as aquifer base elevation, aquifer thickness, porosity and hydraulic

conductivity of the geologic layers, flow gradient, and net extraction from wells.

The quantity of nitrate contributed to a well by certain land use within a catchment

zone for each year is used in estimating the amount of nitrate accumulated over a

period of time.

Suppose a decision must be made in each t about whether to regulate nitrogen

use at the land surface because of an increase in the concentration of nitrate in well

water. Does the decision maker wait until the groundwater in a well is contaminated

when sampled or does she anticipate the exceedance of the nitrate standard and

intervene, through regulation, before a contamination incident occurs? We assert

that a point in time exists when the regulator will have estimated that the probability

of exceeding the standard at some point in the future will be great enough to take

action to mitigate an adverse effect in the present.
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To capture the dynamic nature of the nitrate contamination problem, we intro-

duce the cumulative nitrate indicator (CNI) shown in Fig. 10.2. Cumulative nitrate

pollution in a well can be modeled with a difference equation (Yadav 1997).

Equation (10.15) is the difference between the accumulated nitrates in the previous

time period since time period i plus the addition of nitrate to the pool in the year

the nitrogenous fertilizer was applied:

CNIt ¼ CNIt�1 þ DNO3ð Þt (10.15)

where CNIt is the value of the cumulative nitrate indicator in year t, CNIt � 1 is the

value of the cumulative nitrate indicator in year t � 1, and DNO3ð Þ is the nitrate

concentration change over the course of 1 year.

The nitrate concentration change in a year depends upon the surficial activities

and weather variables in previous years and the soil characteristics, and chara-

cteristics of the geology underneath. The CNI provides the foundation for

estimating the probability of exceedance of the regulatory standard. The CNI
captures the spatially and temporally cumulative exposure of the aquifer to nitrate

contamination while accounting for nitrate degradation during transport to the

aquifer. The CNI can be expressed as:

CNIt ¼ CNIt�1 þ b0e0t þ
X
g2G

cg qt�g; vt�g; zt�g; et�g

� �
(10.16)

where b represents the coefficients for explanatory variables, g designates the

groundwater catchment zone that affects the well bottom, g years after a surface

16

14

12

10

8

6

4

2

0

Year

Time to failure

Observation Period
N

it
ra

te
 L

ev
el

,m
g

/L

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Fig. 10.2 Hypothetical illustration of cumulative nitrate indicator (CNIt) of nitrate level
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activity by the function cg qt�g; vt�g; zt�g; et�g;
� �

. Note that g is both a label that

designates the catchment zone and a parameter—the average travel time from the

zone to the well bottom. G is the set of groundwater zones identified for a well or

potential well and some recovery is possible depending on the properties of the well

bottom, e0t .
The CNIt, because it is calibrated to use all available information to estimate

groundwater nitrate concentration, also brings together all information needed to

assess the likelihood that contamination standards will be exceeded. Nitrate accu-

mulation is determined by fertilizer application and other nitrogen sources, leaching

of deposited nitrogen, and its transportation to groundwater strata. Transportation

of leached nitrate to an aquifer depends on the travel time through geologic layers

underneath the soil surface to the aquifer and sinks. There is a lag time in surface

water infiltration through the hydrogeologic system, which depends on factors such

as the thickness and infiltration rates of the unsaturated zone (Oakes 1982). Estima-

tion of travel time to an aquifer must include the variability of the surficial geology

and its hydraulic conductivity, dispersion, advection, permeability and oxidation

zones, pump and rates of extraction, and the age and recharge rate of the ground

water system (Canter 1997; Marsily 1986; Bear 1979).The CNIt is an input to the

conditional probability of exceeding a concentration level k, threshold of nitrate

contamination that adversely affects humans. A survival (1 � failure, F) analysis
(Kleinbaum 1996; Lancaster 1990; Kalbfleisch and Prentice 1980) is applied by the

regulator using a.6 The exceedance probability of a given loss is the combination of

the loss L and the exceedance probability a. The first step is to estimate the

instantaneous potential per unit time for a contamination event to occur as the

hazard rate of transitioning from an uncontaminated state to a contaminated state of

the groundwater. The nitrate concentration hazard function is the instantaneous rate

of leaving the current state to destination k per unit time period at t:

hðtÞ ¼
Xk
k¼1

hkðtÞ (10.17)

where

hkðtÞdt ¼ Pr ðdeparture to state k in the short interval t; tþ dtð Þ; given survival to t

hkðtÞ ¼ lim
dt!0

Pr t � T � tþ dt;Dk ¼ 1 T � tjð Þ
dt

¼ pk fkðtÞ
�FðtÞ (10.18)

where T is the duration time of staying in state k, Dk is a set of K dummy

variables with a value of 1 if state k is entered and 0 otherwise, pk ¼ Pr(when

departure occurs to destination k) and can be estimated with a rank-ordered or

6 It is assumed that good regulatory policy reduces or eliminates the adverse health effects of

nitrates on humans.
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mixed logit statistical regression estimated with the variables in Eq. (10.12),
�FðtÞhkðtÞdt ¼ pk fkðtÞdt,

�FðtÞhkðtÞdt ¼ Pr survival to tð Þ � Pr departure to k in t; tþ dtð Þð Þ given survival to tj
¼ Pr departure to k in t; tþ dtð Þ ; and

�FðtÞ ¼
XK
k¼1

pk �FkðtÞ; �FkðtÞ

¼ Pr survival to t, given that when departure occurs it is to kð Þ

The specific model used in the application is the Weibull proportional intensities

hazard function (Lancaster 1990):

hkðtÞ ¼ a exp x
0
kbk

n o
ta�1 (10.19)

and

a ¼ �FðtÞ ¼ exp �ta
XK
k¼1

exp x0kbk;CNIt
� �( )

(10.20)

Where x0bk here are explanatory covariates, �FðtÞ is a cumulative distribution

function that is the survivor function (Lancaster 1990) and is synonymous with

the exceedance probability a, a is the Weibull parameter, and pk fkðtÞ is the

probability of an event that is defined as the nitrate concentration level in a number

of wells in a region that exceeds a maximum contamination level (MCL) for

specific health effects as a result of land use j. The greater the number of wells

exceeding MCL, the more damaging the event—or loss L—is to the regulator.

There are two components to estimating the loss, L: the size and extent of the

natural resource damage to the ground water and the lost economic benefits of

agricultural production for the area causing the natural resource damage, Li.
Regulation of agricultural production requires the estimation of the economic

loss associated with a loss event Li, i ¼ 0; . . . ; I, possible events that cause a given
amount of resource damage. The economic loss is the cost to producers of

regulating nitrogenous fertilizer application at the intensive margin as a tax on

fertilizer inputs or as a standard limiting use, and/or at the extensive margin as an

incentive to reduce the amount of crop acreage (e.g., the USDA Conservation

Reserve Program). This calculation applies in our region of interest above the

social risk threshold. By definition, the optimal loss is the loss in agricultural

production in this region. The optimal loss will be the value of the resource at

risk below the risk threshold. However, because the decision affects the producer

and the public differently, there is an asymmetry of loss in the decision. See the

appendix for a description of a Bayesian decision approach to the problem. Here we
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estimate the economic loss associated with the regulatory constraint in Eq. (10.3).

The loss to the producers Li is the economic loss from event i:

Li ¼ P Q R�ð Þ �Qð Þ (10.21)

Combining the survivor function in Eq. (10.20) with the expected loss in

Eqs. (10.21) and (10.22), yields an estimate of the exceedance probability of a

given economic loss a(Li) (see Grossi and Kunreuther 2005, for an application of a

survivor function to catastrophe modeling that is termed a probability of exceed-

ance) is based on nitrate health standards. The exceedance probability for a given

level of loss from event i is:

a Lið Þ ¼ Pr L>Lið Þ (10.22)

The risk to the decision maker of a groundwater resource failure can now be

determined. To conduct a risk analysis we set a tolerance level at a specific exceedance

probability for a regulatory standard (i.e. nitrate concentration in groundwater).

The risk tolerance level for a ¼ 0.01 is shown in Fig. 10.3. The dashed line shows

for that exceedance probability an economic loss (cost to the producers) if the health

standard is exceeded. The vertical axis represents the exceedance probability and

the horizontal axis is the economic cost due to the regulation associated with an

estimated amount of natural resource damage.

Alternatively, we can construct a marginal groundwater protection supply curve

based on the marginal loss in production. This creates a more direct—and less

difficult to appropriately apply—measure of the value of the protected resource.
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This supply curve shifts as crop prices change from, say, P1 to P2 (Fig. 10.4). At the

observed levels of groundwater protection, a1 and a2, the marginal cost of this

protection level equals the marginal value of the groundwater protected, TEV1 and

TEV2. From the observed history of variation in crop prices and the corresponding

variation in groundwater protection, we can estimate a demand curve for groundwater

protection that aggregates all of the values of the resource, for total economic value.

10.3.3 VOI: Comparison of Sensor Data Sets

Implementation of the IAA assumes that individual producers use prior information

about markets, prior production, and regulations to decide whether to plant corn

or do something else with the land. MRLI is used to observe those decisions.

Thus, a policy could either target specific sensitive parcels of land, or, more likely,

adjust general rules or incentives that change the pattern of planting and fertilizer

application across the region’s landscape. The estimates are based on the chara-

cteristics and derived classification products of each distinct sensor carried on a

specific satellite platform and their imagery archives. For the National Aeronautics

and Space Administration’s (NASA) and the USGS’s Landsat program, a 38-year

archival history of observations existswhile the Indian SpaceResearchOrganization’s

AdvanceWide Field Sensor (AWiFS) has a 5-year history. The sensors’ attributes and

their expected cost savings can be compared.

The sensor and resolution characteristics of each type of MRLI provide data at a

given error rate (i.e. typical remote sensing user and producer accuracy assess-

ments) in detecting the land use practices of individual farmers that is central

to the VOI determination. Calculation of VOI involves a two-phase analysis:

(1) estimate VOI derived from remotely sensed land imaging versus traditional
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sampling methods7 and (2) estimate VOI derived from a satellite sensor aboard

Landsat versus another sensor on a different satellite (e. g., AWiFS). The VOI is the

incremental cost savings in an application to demonstrate an economic return to the

investment in the imagery. The VOIv(1) is the benefit B possible given information

from some source v(1) minus the information available without that source v(0):

VOIvð1Þ ¼ Bvð1Þ � Bvð0Þ (10.23)

Alternatively stated, the difference between the predicted loss of value of

production as a result of more stringent regulation pertaining to prevent groundwa-

ter resources loss using v(1) and v(0) is the proxy for VOI. Thus, some important

VOI questions follow: which information source (v), is more accurate and com-

prehensive? Which MRLI source has fewer errors of commission and omission?

Does the estimation error affect the decision? How does an information archive

improve prediction of resource loss from stock pollutants? Because an MRLI

archive is critical for estimating the historical use of the land and its associated

legacy of effects on common pool resources, does the temporal extent of the archive

make any difference? Can MRLI sensors from different satellites like Landsat and

AWiFS be coupled to improve the LULC classification probability distribution and

associated estimates?

To summarize aspects of the previous sections and to frame the following

example, the model is implemented using the following steps:

1. Identify an operational use of remotely sensed data that has a quantifiable

economic value and policy relevance, in this case, the effects of land use

practices on groundwater quality. Highlight the intersection of policies that

encourage biofuels from corn production, incentivize a reduction of agricultural

production for protecting resources via USDA conservation programs, and

conflict with provisions of the Safe Drinking Water Act.

2. Apply Landsat or other MRLI to monitor changes in LULC that affect ecosys-

tem functions, goods and services to estimate how the use of MRLI data brings

tangible economic benefits to users.

3. Use annual MRLI observations as the basis for estimating crop yields and

nutrient loading into the soil. Estimate the joint outputs of agricultural produc-

tion and pollution. Couple observed land uses over time with water quality test

7 Traditional sampling methods have included the following trajectory over time: prior to 1945,

crop area estimates were not consistently available; from 1954 to 1978, area sampling frames with

aerial photography were determined and field-surveys conducted; from 1978 to 1999, Landsat

supplemented aerial photography for sampling stratification, but field surveys still included

regression estimators for major crop acreages, harvest by region, state and county as well as

livestock numbers, economic variables and farm demographics; from 2000 to present, the

remotely sensed and classified Cropland Data Layer provides wall-to-wall crop types and areas,

yet it still requires the June Agricultural Survey to collect ~11,000 field-based samples nation-wide

(Hale et al. 1999; Lubowski et al. 2005).
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data at different depths in a statistical survivor analysis. Use the conditional

probability of exceeding a nitrate regulatory standard as the threshold for

regulating agricultural production.

4. Measure the economic consequences for farm income and potential effects on

private and public well water supplies resulting from repeated nitrogen usage.

10.4 Example

Groundwater has both market and nonmarket values. These include use values that

are sometimes partially paid for, such as drinking water and irrigation supply, and

non-market use values such as wetlands and spring water sources for in-stream

flow. Groundwater also has non-use values that are related to quality, such as option

value (Weisbrod 1964), and existence value (Krutilla 1967). The nonmarket value

can be estimated using revealed-preference methods such as travel cost and hedonic

pricing, or stated-preference methods such as contingent valuation and conjoint

analysis. The overall purpose of the various techniques is to determine the willing-

ness to pay (WTP), in this case WTP for protecting groundwater quality. WTP

estimated using contingent valuation ranges from $57.37 to greater than $1434.37

per household per year (Crutch-field et al. 1997; Poe 1999). Jordan and Elnagheeb

(1993) used a contingent valuation payment card to estimate WTP specifically for

nitrates reduction at $204.89 per household per year for public wells, and $237.17

for private wells. Poe and Bishop (1999) estimated WTP for a one-unit improve-

ment in nitrate contamination at $136.64 per household per year in a study

conducted in Wisconsin, and in Delaware it was estimated at $150.79 by Sparco

(1995). Loomis et al. (2009) used conjoint analysis to estimate WTP for reducing

health risks in infants by reducing nitrate in drinking water using actual and

hypothetical markets. WTP estimates for reduction in risk of shock, brain damage

and mortality in infants was $2, $3.70 and $9.43, respectively, in actual markets,

and $14, $26, and $66, respectively, in hypothetical markets, indicating bias in the

hypothetical situation. Contingent valuation and conjoint analysis also can be used

to value groundwater protection. The range in values here, however, suggests that

the application of these methods contains variability in outcomes, and uncertainty

about the correct, absolute value.

Complete and correct aggregation of all the use and non-use, market and

non-market values of clean groundwater to a total economic value demand curve8

is fraught with uncertainty and methodological difficulties. Care is needed to avoid

(1) double accounting of some values contributing to more than one component

value and (2) omission of unidentified, yet significant, values. Furthermore, as

8We will express demand as the as the schedule for the price, TEV, that society is willing to pay to
ensure groundwater will be protected with certainty 1 � a. Thus, TEV is dollar value of marginally

increasing 1 � a.
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suggested above, the accuracy of the component values is limited by the valuation

techniques used.

In the example, MRLI is used to observe (screen) the land uses of a population of

land parcels in Iowa that vary in their biophysical, ownership, and location

characteristics. The land parcels are assigned a land use j, (j ¼ corn, soybeans,

other agriculture, or developed). An observation is processed for locations across a

landscape relevant to a groundwater resource that results in a label for that land

parcel; this label assigns a land use j for all land associated with a groundwater

resource. Using spatial autocorrelation of well nitrate measurements can determine

the possible spatial extent, lag distance, and direction of the influence that other

well nitrate observations may have on a particular well, which can relate to the

delineation of the catchment zone. After receiving the land-use signal and updating

the exceedance probability for the regulatory standard, the regulator makes the

decision to either regulate or not regulate the use of nitrogen given the crop rotation

pattern covering the groundwater recharge area.

10.4.1 Data

Two primary sensors are compared in the example: Landsat 7 Enhanced Thematic

Mapper plus ETM + ¼ (v(1)), and AWiFS ¼ (v(0)). Some basic characteristics

of the two sensors are detailed in Fig. 10.5. The return intervals and number of

bands for the two sensors are as follows:

1. Landsat 7: 16 days,9 8 bands (3 visible, 2 short-wave infrared, 1 thermal infrared,

1 mid-wave infrared, and 1 panchromatic).

2. AWiFS: 5 days, 4 bands (3 visible, 1 short-wave infrared).

1: Landsat 7 2: AWiFS

900 m2

(0.22 ac)

30m

30m

56m

56m
3,136 m2

(0.77 ac)

Fig. 10.5 Spatial characteristics of twoMRLI sensors. The thermal band (10.6) has a resolution of

60 m, and the panchromatic band (10.8) has a resolution of 15 m (Note: Representations of spatial

sensor resolutions are to relative scale)

9 Please note, with Landsat 5 and 7 operating concurrently with polar-opposite orbits, the revisit

rate is 8 days.
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Among other factors, the ability of sensors to detect ground features accurately

is a function of pixel size, spectral signatures, band combinations, frequency of

overflights, cloud cover, and image processing, classification, and analysis

techniques. Assumptions about the scale of certain features important to the

integrated assessment (e. g., field, parcel, farm, census block, ZIP code, county)

are implicit to the scale to which a sensor can resolve. For example, a typical center-

pivot irrigation system on a large, factory farm can cover 128 acres, an area

resolvable by both sensors. Some family and organic farms, however, are much

smaller and may be only one field on a portion of a parcel. These scales may be

resolvable only by AWiFS or Landsat, just Landsat, or not by MRLI at all.

Furthermore, the return intervals of the different sensors, especially when consid-

ered in conjunction with the potential for cloud cover, can create an incentive or

disincentive for using one sensor over another. This is further complicated by the

number of bands and potential band combinations available from each sensor for

classification purposes.

Returning to the economic model with the MRLI capabilities and sensor

characteristics in mind, v(1) is the information with continuing Landsat data

from the 38 year history of Landsat. v(0) is the data available if Landsat were

discontinued and includes the best available alternative data, which we presume to

be from the AWiFS remote-sensing platform. v(0) includes the Landsat historical

archive, but these archival data are less compatible with the AWiFS data so

calibrating risk models and assessing the cumulative condition of the sites will be

compromised. v(1) includes the continuation of spatially—explicit LULC data

derived from Landsat observations, specifically whether the land is used to grow

corn, soybeans, or other cover types, or is developed. The primary difference in

the information structure and availability between v(1) and v(0) is that no new

Landsat observations are available.

10.4.1.1 MRLI Observation and Classification

Figure 10.6 displays a time series of MRLI observations and classification of LULC

from 2000 to 2008. The land is classified each year according to what the sensor

detects, the ability of the classifier, and the availability of ancillary data. The 9 years

of observations depicted in Fig. 10.6 indicate that: (1) crop rotations, although

persistent, are not perfectly repetitive as evidenced by the field outlined in blue; (2)

apparent differences exist in the resolution of ground features in the earlier years

with Landsat relative to the later years with AWiFS; and (3) the area that is neither

corn nor soybean is consistent over time but less prevalent with AWiFS. Each of

these points leads to a different amount of actual and modeled nitrogen use. For

example, with year-over-year blanket coverage of the area, there is less chance of

missing disruptions to the crop rotation patterns and the associated changes in

nitrogen application than compared to traditional sampling techniques.

Next, the classified land uses are input to the agricultural production function in

Eqs. (10.6), (10.7), (10.8), (10.9), (10.10), and (10.11) to estimate nitrogen use. If the
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land has been classified as corn, based on the county and state agriculture records,

we calculate the amount of nitrogen applied for a given range of yields in the area.

If not corn, the amount of nitrogen for soybeans is less and for fallow it is zero.

10.4.1.2 Historical Agriculture and the Hydrogeologic System

This section provides agricultural and hydrogeologic context for the application of

the conceptual framework to estimate CNIt, a, and pk in Iowa. Figures 10.7 and 10.8
provide historical context for the acreages and yields of corn and soy harvested in

Iowa. It is interesting to note the general linear trends (with some outliers) in yield

Waterloo

Legend

CORN

Soybeans

Small grains / Hay

Alfalfa

Fallow / Idle Cropland

Urban / Developed

NLCD-Developed/Low Intensity

NLCD-Developed-Open Space

NLCD-Developed/Medium Intensity

NLCD-Developed/High Intensity

NLCD-Barren

NLCD-Grassland, Herbaceous

NLCD-Deciduous Forest

NLCD-Pasture/Hay

NLCD-Woody Wetlands
1:24,000

Grass / Pasture / Non-ag

Woodland

2000 2001
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2006 2007

Fig. 10.6 Cropland data layer: Landsat (2000–2005) and AWiFS (2006–2008)
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per acre for corn and soybeans in Iowa from 1960 to 2007 (Fig. 10.7), which

suggests that agricultural production technology and techniques became more

sophisticated, industrialized, and efficient. One of the influencing agricultural

production technologies is increased use of nitrogenous fertilizer, which results in

an increase in nitrate concentration in groundwater. The general trends, which are

less linear, for acreage in production for corn and soybeans in Iowa from 1960 to

2007 are shown in Fig. 10.8. In both Figs. 10.7 and 10.8, the R2 values are provided
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Fig. 10.7 Corn and soybean trends in yield in Iowa (Source: Iowa State University Extension

Service 2010)
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Fig. 10.8 Corn and soybean trends in acreage in Iowa (Source: Iowa State University Extension

Service 2010)
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(where linearity is assumed), and the explanatory power of the variance in the trend

lines are high.

In comparing the correlation of national and state trends—as well as in-state

trends—in acreage, given the apparent indication that the trends are non-linear, the

significance was tested with Kendall’s tau and Spearman’s rank tests instead of

Pearson’s product–moment correlation test. For corn, correlations were 0.745 and

0.880 (both p-values < 0.01), respectively, suggesting a statistically significant

correlation in acreage dedicated to production over time at national and state levels.

For soybeans, correlations were 0.809 and 0.928 (both p-values < 0.01), respec-

tively, also suggesting a statically significant correlation over time in acreage

dedicated to production at national and state levels. In Iowa, the correlation

between corn and soybean acreage for the Kendall’s tau test was not found to

be significant at the p-value < 0.01 level, but the Spearman’s rank test was found

to be significant at that level, thereby suggesting an inconclusive result that the

annual rotation patterns between crops are not necessarily regular and definitively

correlated.

Turning to the groundwater resources information, well data and hydrogeologic

properties of well-locations are available from the USGS and the Iowa Department

of Natural Resources. Locations, depths, and nitrate levels of the USGS National

Water Quality Assessment database and the groundwater provinces of northeast

Iowa are shown in Fig. 10.9. The driving factors of the hydrogeologic system,

depending on the hydraulic conductivity and permeability, groundwater moves at

Fig. 10.9 USGS monitored sites and groundwater provinces. Approximately 20,000 Iowa

Department of Natural Resources wells are monitored, but not shown

284 R.L. Bernknopf et al.



rates from a few inches a year to several feet per minute. Groundwater resources

occur at various depths and in a variety of materials (Prior et al. 2003). Surficial

aquifers occur in relatively loose granular sediments that lie between the land

surface and deeper bedrock. The surficial aquifers and aquitards consist of alluvium

(water-deposited sand and gravel), loess (wind-deposited silt) and glacial till

(pebbly or sandy clay deposited by ice). Thickness of these materials ranges from

0 m in parts of northeastern Iowa to 180 m in west-central Iowa. Loess and glacial

till are fine textured and have moderate to low permeability. Alluvial aquifers are

unconfined. Some alluvial deposits consist of fine grained-silts and clays; others

are coarse thick and extensive. If coarse and permeable materials, alluvial aquifers

may have high yield and occur at depths of less than 30 m. Significant alluvial

aquifers occur along the Mississippi River corridor in eastern Iowa.

Bedrock aquifers consist of solid rock layers such as limestone, dolomite, and

sandstone. The groundwater in deep aquifers in Iowa can be older than 10,000 years.

Bedrock consists of sedimentary rock layers, limestone and dolomite (carbonate

rocks) as well as shale, siltstone, and sandstone. Thickness ranges from 1,580 m in

southwest Iowa and about 240 m in the northeast. Some of the more prominent

deep aquifers are the: Dakota aquifer, Mississippian aquifer, Silurian aquifer,

Devonian aquifer, and Cambrian Ordovician aquifer.

10.4.2 Comparing Loss Estimates of Two Alternative MRLIs

This section presents an example of a hypothetical application of the integrated

assessment approach with alternative data sets, Landsat and AWiFS. It includes the

calculation of an estimate of the economic loss associated with the regulation of the

maximum contamination level standards using the remotely sensed observations as

well as the difference in the estimated economic loss between them. This difference

can have an important effect on the decision to regulate.

We begin by identifying the relevant decision time increment of 1 year for t and
setting a for a risk tolerance level. These two components are combined to provide

the estimate of the expected loss a(Li). To calculate a(Li), we estimate the condi-

tional exceedance probabilities for MCL regulatory standards of 4 and 10 mg/l as

specified by the U.S. Environmental Protection Agency (EPA). The current MCL of

10 mg/l is more than double that of Germany and South Africa, where the standard

is 4.4 ppm (Kross et al. 1995). Other nitrate concentrations may be relevant for a

parallel analysis, since only below 0.2 mg/l is the risk considered low, while above

4.8 mg/l carries known risks (Nolan and Hitt 2006). The nitrosamines and

nitrosamides that result when nitrates react with organic compounds are associated

with 15 types of cancers including tumors in the bladder, stomach, brain, esopha-

gus, bone and skin, kidney, liver, lung, oral and nasal cavities, pancreas, peripheral

nervous system, thyroid, trachea, acute myelocytic leukemia, and T and B cell

lymphoma (Mirvish 1995).
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For the example, consider a hazard rate for exceeding the nitrate standard

(based on the MCL analyzed in the wells sampled) in a region of Iowa of 0.05 as a

result of land use j. The greater the number of wells that exceed MCL in the region,

the more severe event i would be. In our hypothetical example, (pk) ¼ 0.0005 is the

regional probability for an event that has an aon ¼ 0.01 averaged over the number of

wells, n in the region. If regulation occurs, the economic loss, Li, is the total loss

in value of agricultural production due to the regulatory change (e.g., changing the

tax on nitrogenous fertilizer).

The total production loss can cover a wide range depending on event size in a

major agricultural region that is also heavily dependent on ground water resources

for potable water as in Iowa. Consider the region described by Fig. 10.9. For our

hypothetical severe event (pk ¼ 0.0005), the horizontal dashed line located at

a ¼ 0.01 identifies the expected loss estimate based on each type of MRLI data.

The two MRLI information types yield different loss estimates. The economic loss

at a ¼ 0.01 could be either a little under $120 million for Landsat (point a) or

almost $160 million for AWiFS (point b) in Fig. 10.10. Depending on which MRLI

information is available, the cost of preventing the low probability, severe-

contamination event is either $160 million or $120 million.

The VOI for this example is the estimated difference in the economic value of

agricultural production lost if the MRLI information of the lower cost regulation

(fewer acres in corn production) is implemented. That is, in this illustration of the

method, if Landsat is available and corn production is regulated, the benefit

(savings) of avoiding the loss of the groundwater is $40 million less in income

loss to the farmer than is the case with AWiFS.
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10.5 Summary

In this chapter, we have assembled models from a variety of scientific disciplines

into a general framework of economic decision making. The integrated assessment

approach links MRLI data to models of productive land uses, emissions and

environmental damage caused by the land uses and risks to natural resources to

better assess the joint production of market goods and environmental degradation.

The VOI for MRLI in this particular case is based on the more efficient and accurate

estimation of the joint production of market and environmental (i.e. non-market)

goods made possible by better information.

In our application, we link the MRLI data to agricultural production, nitrate

loading and groundwater vulnerability models to estimate the joint output of

agricultural production and nitrate groundwater pollution. The VOI of MRLI for

this case is the increased value of agricultural production that is possible because of

better-calibrated regulatory measures for the protection of groundwater. Given that

this is only one case study involving estimates of a limited set of goods, the VOI of

MRLI should be considered a lower bound of its overall value to society.

We illustrate the method and application with a hypothetical example in which

the VOI derives from: (1) providing cost effective information on the population of

land activities across space and over time to analyze a particular harm to ecosystem

services, and (2) reducing the risk of a regulatory decision error in cases where

groundwater pollution is a likely problem. The use of MRLI information must show

an incremental cost savings or result in a new application to demonstrate an

economic return.

This research provides a method to demonstrate the value of MRLI information

in an operational application and to assist in estimating the cost effectiveness of

investment in space-based remote sensing that informs congressional policy makers

and other stakeholders about the potential environmental risks associated with

specific agricultural and health policies and regulations. Empirical application of

the conceptual framework would involve a two-phase analysis: first, estimate VOI

derived from remotely sensed land imaging vs. traditional sampling methods, and

then determine VOI derived from Landsat versus. other satellite sensors. VOI

pertaining to other regulatory decisions can be similarly estimated; for example:

• In the agricultural sector, nitrogen application and surface water protection,

pesticide application and protection of surface water and groundwater resources,

and water quality monitoring of impaired waterways that fall under the jurisdic-

tion of EPA’s TMDLs;

• In the mineral sector, mining for coal and downstream pollution; and

• LULC changes that affect patterns and processes of landscapes such as wildlife

corridors and habitat connectivity for listed species, and indices of biodiversity,

ecosystem integrity, and forest health.

The value of information arises from the spatial data or temporal archive or both

provided by MRLI. The framework developed in this chapter has many potential

applications.
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Appendix

Previous studies on the economics of information and uncertainty established that

information becomes valuable when the information can be profitably employed in

a decision making process by reducing the risk facing decision makers, especially

when the consequences to the decision maker are uneven (Morgan and Henrion

1990). In this application where the consequences are uneven, the underlying

behavior is the use of nitrate fertilizers on fields. Of critical interest to the regulator

is when to intervene to control the rate of change in the groundwater quality to

avoid the costly treatment of water wells. To intervene either too early or too late

relative to a regulatory threshold is to affect individuals and firms, e.g., agricultural

production, negatively or to contaminate either or both shallow and deep ground-

water. On the other hand, to intervene too late allows a greater potential of

contamination, i.e., the regulator’s risk. Bayesian Decision Analysis can be applied

as a regulator’s decision problem involving uncertainty.

The loss functionwe face is asymmetric (Fig. 10.A.1) since groundwater resource

damage is very costly to mitigate and thus the total economic value of diminished

current and potential uses and existence of a pristine resource is large relative to the

marginal loss of agricultural output. Edwards (1988) found the willingness to pay to

prevent groundwater damage increased linearly with risk. The marginal risk to the

groundwater increases as nitrate fertilizer application increases, we model the social

loss of over application with an exponential functional form.

The modified linex loss function in Fig. 10.A.1 is adapted to the risk analysis in

the hypothetical example (van Noortwijk and van Gelder):

L Dð Þ ¼ �cvIn að Þ � l� � lð Þ þ d

1� d
LiðjÞa exp In að Þ � l

� � l
l

� 	
� 1


 �
(10.A.1)

where cv is the additional variable cost to reduce nitrogen use, In að Þ is the q-quantile
(level of risk tolerance) of the nitrate concentration distribution, and l is the

parameter of the nitrate loading distribution.

Fig. 10.A.1 Decision risk faced by regulators of societal cost of groundwater damage (red) vs.
loss of agricultural production (blue). Asymmetric loss to regulator: too little NIT ¼ crop income/

profit loss; too much NIT ¼ risk of aquifer loss
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10. Commentary: Satellite Observations and Policy
Improvements for Agriculture and the Environment

Catherine Shelley Norman

Bernknopf, Forney, Raunikar and Mishra (BFRM 2010) consider the value of

medium-resolution land imagery (MRLI) to a regulator focused on keeping water

quality risks to an acceptable level. They present a general model of the biological,

physical and economic processes at work, and then outline a specific example

focusing on corn and soybean rotations and the fate and transport of associated

nonpoint source pollution in a nitrogen-limited region of Iowa. MRLI allows the

regulator to monitor changes in land use and optimize regulations to reflect nutrient

burdens on the system, economic costs, and the value of mitigation plans.

In offering a comprehensive, integrated approach to valuing the information

provided by programs like Landsat, the authors’ focus is on valuing the decisions

that hinge on the information provided by a given set of observations. Their model

is unusual in that it takes multiple disciplinary perspectives—ecological processes,

agricultural science, economics, and hydrology, among others—seriously and

simultaneously. Regulation of land uses and management practices is well suited

to medium-resolution land imagery. Monitors can use simultaneously updated,

geographically complete information rather than relying solely on sampling

programs that require regulators to select representative sites over time and across

space. Space-based data can be coordinated with direct sampling to improve

inferences from images and to support enforcement efforts.

Although the full data required to reach conclusions are not available to BFRM,

this work is a strong and ambitious initial step toward a framework supporting

improved program evaluation. I consider some clarifications, limitations, and

possible extensions of this work, with a focus on producing credible estimates to

inform decisions about the use of MRLI.

10.C.1. Major Contributions

Satellite imagery supports multiple overlapping objectives in the regulatory and

political arena. BFRM focus on one agricultural regulatory application, working to

quantify the benefits from that use alone. In theory, one could aggregate up to a total

value for a space-based observation program by considering all users, though as we

can see from this relatively straightforward application, the informational and

C.S. Norman (*)
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technical demands associated with such an effort would be very high. Additionally,

for many earth observations satellites, information on all uses is likely to be

confidential for reasons of national security, and some part of the value will be

strategic or political—and thus more challenging to quantify than ecosystem

services. It is perhaps better to think of VOI in this framework as valuing data

access or specific data uses rather than a program as a whole. If this kind of use is

the primary driver of value for the program in question, it should still be

emphasized that estimates produced in this way, no matter how comprehensive,

will be lower bounds of value rather than estimates of total value. Even rough

information about the scale of a given use relative to uses for the satellite informa-

tion as a whole would provide useful context for decisionmaking.

Some VOI quantification of the sort proposed is critical to maintaining and

instrumenting costly space-based information resources. Cost-benefit analysis is

mandatory in many public decisionmaking processes and a common, well-

understood framework in the remainder. If those of us who use this information

cannot usefully answer questions about what it enables us to do, it is difficult to

justify maintaining either the systems themselves or access to the information.

BFRM present a model to capture the benefit to a policymaker focused on risk

management (for avoiding threshold environmental effects) and thus assess the

value, to regulators and the public good, of operating with the additional clarity and

scope offered by space observation systems.

I attempt to lay out some of the most interesting questions this work posed

below, focusing on the economics of regulation. Moving this model from the

general to the specific requires the authors to confront political and public choices

that are difficult to observe or theorize about in a way that yields usable numbers.

It will be important in applications that the assumptions used to develop the

regulator’s objectives and constraints are made transparent, and perhaps subjected

to sensitivity analyses.

10.C.2. Social Preferences and Risk

In Sect. 10.2.3, the authors note that we can infer the optimal risk of failure (in a

whole matrix of failure points reflecting reduced water quality due to pollution) of

a given regulatory regime for the regulator and link this to social risk preferences.

The regulator takes those social preferences as given from a ‘higher level of

authority.’ In the illustrating example, the analyst must infer the political level of

tolerance for a multitude of risks of reaching various pollution thresholds in various

environmental media and locations. I would be interested in much more detail

on how this matrix is populated; there is a small but longstanding literature on

identifying the preferences of government bodies (McFadden 1975, 1976; Ross

1984 are identified in the chapter), but recent efforts (e.g., Ahlroth et al. 2010;

DeCanio and Norman 2005) are in much narrower applications, and even in such

settings, inferences based on political choice are met with considerable skepticism.

290 R.L. Bernknopf et al.



Social decisions should yield some sort of information about the willingness of

society to make trade-offs and incur costs, but methods for determining political

willingness to pay (or similar) are by no means well established. BFRM view the

regulator’s problem as one of reducing risk to an acceptable level without providing

information on social risk aversion; individual and firm risk aversion are difficult

to infer outside highly controlled settings (Chetty 2006 describes some of the

complexities involved), and moving from individual choices to social choices

involves a fairly fundamental determination about the relationship between a

government and the citizenry: ought a government represent the median voter?

Or should the state, with a (potentially) much longer lifespan and broader area of

influence, worry more about the future than individuals?

It might be more feasible to go backward from costs incurred for specific

environmental efforts rather than to look at political decisions directly: those

probabilities can be translated into expected payouts to replace ecosystem services

if they are reduced or eliminated by insufficiently stringent policy choices—and it

may be that that’s what BFRM will do to quantify the requirements of the higher

governmental authority—but there is insufficient information for the reader on the

methods envisioned for general applications of this framework at present.

10.C.3. Regulator’s Objectives

In the BFRM example, the regulator’s objective is to maximize the total value of

agricultural output, given the constraints established by the willingness of society to

accept the ecological risks outlined above. The farmer’s objective is to maximize

profit. Thus, a farmer would prefer a lower yield method if costs were sufficiently

reduced to preserve profits, but the regulator cannot support this. In the agricultural

sector it is often the case that polluting inputs can be replaced with less polluting

alternatives or increased handwork; as regulatory environments and water and

land quality evolve over time, this may be a profit-maximizing, output-reducing

solution, which appears to be excluded in this analysis.

It is not clear to me that EPA or USDA, the primary agencies in this environ-

ment, value total output over total profitability in this context. Readers would

benefit from efforts to explain the motivation behind this modeling choice and its

implications for VOI calculations. In particular, this choice seems closely tied to the

choice to value MRLI information as some fraction of total farm revenues.

The language of the chapter seems to suggest that there is a positive value for the

information from the satellite system only if the information allows the regulator to

relax restrictions on farmers. I don’t believe this is required in the model; if it is, the

authors should explain their motivation in more detail or perhaps consider relaxing

this assumption. Given the level of geophysical detail in the example, it seems

plausible that relaxing nutrient loading restrictions in some places and tightening

them in others might provide aggregate benefits. Additionally, there is value in

improved information that leads to greater restrictions: if we’ve gotten the
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regulations wrong because a sampling regime or alternate set of instruments led us

to underestimate aquifer risks, for example, we gain from the changes even if they

reduce output or profits.

As an extension, a more dynamic perspective might allow adaptive management

to be built in to policy choices. VOI would thus derive from a more flexible system

as well as from a system that is better at a specific moment in time. Given the slow

pace of the regulatory and legislative process, this would not entail changes in

middle of a crop cycle; rather, a set of observations could mean that restrictions

were automatically loosened or tightened according to a preset schedule, obviating

the need for ongoing legislative action.

Also on a longer scale, it is worth constraining “optimal” policy choices in the

model to those that are politically feasible and legally defensible. Detailed spatial

data may reveal significantly different optimal restrictions on farmers in the same

jurisdiction growing the same crop using the same technology. It would be disin-

genuous to suggest that the VOI is contingent on such policies’ being enacted.

That said, given a broader array of policy choices, MRLI data combined with

hydrologic and other spatial data could be used to improve environmental quality

(or reduce risks to environmental services) at minimum costs by treating neighbor-

ing parcels differently. We might use these data to identify land values that may be

declining to a point where the parcels are appropriate for conservation easements,

for example, and payments could be based on forgone income opportunities.

It is also worth noting that in the longer term, VOI is very sensitive to the national

or international policy regime in place. In addition to the gains from improved

management of water resources, monitoring of agricultural land uses and changes

will provide credible baselines for measuring carbon sequestration and perhaps

granting offsets. This is true globally, of course, and in an environment where offsets

are valuable, the entire community of nations included in the carbon dioxide regime

would gain from the sum total of land imagery available. Establishing a baseline

now, assuming monitoring of changes will be needed in the future, creates an option

value for farmers and regulators anticipating policy changes of this nature.

10.C.4. Monitoring and Enforcement

Some of the value associated with MRLI in this context will come from the broad

applicability to monitoring and enforcement of existing law. Monitoring and

enforcement are currently exogenous in this model, but repeated imagery of all

farmers in a region will affect compliance behavior. Although 17-day satellite

sweeps and missed observations due to weather mean that enforcement opport-

unities from satellite information cannot be perfect, MRLI offers more observation

of practices and outcomes (with less awareness of the specifics of observation than

an inspector arriving at the farm gate) than conventional practice. Over time,

habitual offenders should be identifiable, and for some rules even a single pass can

provide evidence of noncompliance with watershed protection law. Even limited
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enforcement actions taken based on this information could have significant

spillovers in compliance behavior for a region (Shimshack and Ward 2005).

Agricultural nonpoint sources are enormously significant nutrient sources in

strained watersheds; resource limitations and the difficulty of tracing a given pollutant

load to a specific plot of land mean that enforcement is difficult and inspections

relatively rare. Improved compliance as a result of farmers’ expectations about the

use of satellite imagery (perhaps to direct site visits) will offer reduced uncertainty not

only about watershed conditions but also about land use and growers’ behavior as

regulations change.

10.C.5. Baselines

When fuller data are available to complete the analysis envisioned in BFRM, clarity

about the specific baseline considered (and alternative baselines) will be essential.

If we are considering a proposed Landsat 10 mission, for example, it will have a

value relative to no use of satellite imagery in regulatory decisionmaking, a value

relative to the other satellites whose data will be used if the mission does not take

place, and plausibly a value relative to whatever other alternatives may be avail-

able. Each of these alternatives also has costs, either to build and run or to purchase

data from. We can then estimate how much of the value of the management plan

derives from the improved information associated with the MRLI source. We will

never make decisions about regulating agriculture for water quality protection in an

information vacuum, so the marginal value is always contingent on our expec-

tations about the information that will be available without the mission (or without a

specific instrument’s inclusion in the mission).

If, as the authors suggest, the next-best information is from the Advanced Wide

Field Sensor (AWiFS), which is under the charge of the Indian Space Research

Organization, the VOI in the proposed Landsat mission is likely to be increased by

the greater control U.S. agencies would have over Landsat. This is harder to

quantify than the ecosystem services approach outlined in BFRM, but a simplified

approach might rely on estimates of the probability of having to move from AWiFS

to another next-best solution in a given year.

10.C.6. VOI and Time-Series Continuity

In the example given by BFRM, we are concerned with the value of information

associated with Landsat imaging. One important area that is not yet extensively

developed is the value of continuity in the time series. On a short-term basis, the

value of one satellite mission relative to another may be roughly comparable, but

most researchers would prefer a mission that offers greater continuity with past and

future missions over one that does not. In particular, scientists and policymakers
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interested in climate change and in carbon sequestration rely on comparability of

current and older imagery. Direct comparisons are especially useful for looking at

trends over large scales when medium- and low-resolution imagery does not allow

detailed observation of the phenomenon of interest: we may not be able to count the

trees on a plot of land, but seeing how the same instrument records changing levels

of things associated with trees (height of ground cover, albedo, etc.) allows us to

make inferences about changing ecology, land use, and productivity over time.

Valuing this is more complex than valuing a given piece of data over its entire

use cycle, which is itself not straightforward. The switch from SIC codes to NAICS

codes for the collection and provision of industrial data by the U.S. government

prompted some discussion of the value of continuous time-series information and of

the processes used to connect different time series; the Census Bureau’s Economic

Classification Policy Committee (1993) report presents the core concerns of data

collectors and users. It details millions spent to construct “bridge” data to help users

get some of the benefits of the long series even after classification schemes has been

changed to reflect new patterns of production and provide improved comparability

across nations.

What value there is in continuity will not automatically accrue to ongoing

Landsat missions. Each mission has differing instrumentation and data charac-

teristics. The additional value of information that is part of a 40-year stream of

information of the same sort is thus contingent on efforts to merge the varying

Landsat series (or to merge Landsat data usefully with alternative space-based

observations). Information about those costs or about the number and type of

users who would benefit from more determined efforts in this direction is not

readily available. It does, however, seem likely that efforts to connect data from

various Landsat missions will be easier, cheaper, and more likely to be pursued by a

single entity responsible for all the data than if Landsat observations were replaced

by AWiFS, as in the illustrative case.

10.C.7. Additional Considerations

This work covers a very large area, and space precludes consideration of everything

that is important or interesting in this context. An extended analysis might take

into account some or all of the considerations in this section.

In BFRM, financials are allowed to fluctuate weekly in the model. This makes

sense for inputs to production but is less appropriate for revenues, since farmers can

typically store corn and soybeans for a time if prices are not favorable. This storage

decision could be added to the model, or annual output price figures could be used

to approximate outcomes of storage decisions and costs.

Consideration of farm- and community-level spatial interactions would be inter-

esting. Do we allow the production decisions of farmers to affect those of other

producers spatially near them? If one farmer changes her crop rotation, do the neigh-

bors respond? There may be thin local markets in processing or storing facilities
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or farm labor, or limited transportation or storage infrastructure that vitiate incentives

toward more homogenized crop patterns in a region. This could operate through

increased input costs or input cost volatility, affecting expected profit and income

volatility.

Analysts would also need fuller details on the actual instrumentation considered

for a given mission and how it could be used. For those unfamiliar with the details

of the program, information about what spectra will be measured at what level of

detail, and which will be used for the regulatory purposes envisioned, would clarify

the application of the methodology to the illustration. Is the regulator hiring staff to

visually inspect images of farms? Are heat and albedo sensors informing estimates

of growth rates or nitrogen concentrations in specific locations? VOI will be very

sensitive to the specific instrumentation and uses envisioned.

Lastly, broader consideration of ecosystem services, including carbon seques-

tration, biodiversity support, and erosion outcomes, would provide more opport-

unities for enhanced regulatory decisionmaking, thus increasing the VOI to

environmental management based on MRLI.

10.C.8. Conclusion

The authors integrate a complex set of hydrogeologic, biophysical, social, and

economic models to provide an estimate of the state of water quality and agricul-

tural products in a given region with regulators with identical preferences but

two possible data sources. The value to society of better information in this setting

is estimated by examining the effects of changes in regulations associated with

higher-quality MRLI. Although applying this approach will be data and time

intensive, and explaining it to decisionmakers will need to done very carefully,

this is an important step toward estimating the value of satellite information in a

broad array of uses.

References

American Society for Photogrammetry and Remote Sensing Survey (ASPRS). (2006). Moderate
resolution imagery survey.

Antle, J., & Just, R. J. (1991). Effects of commodity program structure on resource use and the

environment. In R. Just & N. Bockstael (Eds.), Commodity and resource policies in agricul-
tural systems (pp. 97–128). Berlin: Springer.

Antle, J., & McGuckin, T. (1993). Technological innovation, agricultural productivity, and

environmental quality. In G. Carlson, D. Zilberman, & J. Miranowski (Eds.), Agricultural
and environmental resource economics (pp. 175–220). New York: Oxford University Press.

10 Estimating the Benefits of Land Imagery in Environmental Applications. . . 295



Antle, J., & Valdivia, R. (2006). Modeling the supply of ecosystem services from agriculture:

A minimum-data approach. The Australian Journal of Agricultural and Resource Economics,
50, 1–15.

Ahlroth, S., M. Nilsson, G. Finnveden, O. Hjelm, and E. Hochschorner, 2010. “Weighting and

valuation in selected environmental systems analysis tools - suggestions for further

developments.” Journal of Cleaner Production, In Press, Available online, DOI: 10.1016/j.

jclepro.2010.04.016.

Bear, J. (1979). Hydraulics of groundwater. New York: McGraw–Hill.

Bouma, J. A., van der Woerd, H. J., & Kuik, O. J. (2009). Assessing the value of information

for water quality management in the North Sea. Journal of Environmental Management, 90,
1280–1288.

Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils (13th ed.). Upper Saddle

River: Prentice Hall.

Canter, L. W. (1997). Nitrates in groundwater. Boca Raton: CRC Press.

Chetty, R., 2006. “A New Method of Estimating Risk Aversion.” American Economic Review 96:

1821-1834.

Crutch-field, S. R., Cooper, J. C., & Hellerstein, D. (1997). Benefits of safer drinking water:
The value of nitrate reduction (Agricultural Economic Report No. 752). U.S. Department of

Agriculture, Economic Research Service, Food and Consumer Economics Division.

Daily, G. C. (Ed.). (1997). Nature’s services: Societal dependence on natural ecosystems.
Washington, DC: Island Press.

de Marsily, G. (1986). Quantitative hydrogeology. Orlando: Academic.

DeCanio, S.J. and C.S. Norman, 2005. “Economics of the ‘Critical use’ of Methyl Bromide Under

the Montreal Protocol,” Contemporary Economic Policy 23(3): 376-393.
Earth Satellite Corporation. (1974). Earth resources survey benefit-cost study (Contract No.

14-08-0001-13519, 6 Vols and Appendices). Washington, DC: Earth Satellite Corporation.

ECON, Incorporated. (1974). The economic value remote sensing of earth resources from space:
An ERTS overview and the value of continuity of service. Princeton: ECON, Inc.

Economic Classification Policy Committee (ECPC). 1993. Issues Paper No. 5, “The Impact of

Classification Revisions on Time Series.” Available at: http://www.census.gov/epcd/naics/

issues5

Edwards, S. (1988). Option prices for groundwater protection. Journal of Environmental Econom-
ics and Management 15:475–487

Grossi, P., & Kunreuther, H. (2005). Catastrophic modeling: A new approach to managing risk.
New York: Springer.

Hale, R. C., Hanuschak, G. A., & Craig, M. E. (1999). The appropriate role of remote sensing in
U.S. agricultural statistics. National Agricultural Statistics Service (USDA), FAO regional

project: Improvement of agricultural statistics in Asia and pacific countries, GCP/RAS/171/

JPN.

Hall, H. (1998). Choosing an empirical production function: Theory, nonnested hypotheses, costs
of specifications (Agricultural Economics Research Report No. 59). Lexington: Department of

Agricultural Economics, University of Kentucky.

Heal, G. (1991). Economy and climate: A preliminary framework for microeconomic analysis.

In R. Just & N. Bockstael (Eds.), Commodity and resource policies in agricultural systems
(pp. 196–212). Berlin: Springer.

Hong, N., White, J. G., Weisz, R., Gumpertz, M. L., Duffera, M. G., & Cassell, D. K. (2007).

Groundwater nitrate spatial and temporal patterns and correlations: Influence of natural

controls and nitrogen management. Vadose Zone Journal, 6, 53–66.
Iowa State University Extension Service. (2010). Chartbook corn tables. Available at: http://

www2.econ.iastate.edu/outrea.ch/agriculture/periodicals/chartbook/files/corn.htm. Accessed

on 14 Sept 2010.

Isik, M., Hudson, D., & Coble, K. H. (2005). The value of site-specific information and the

environment: Technology adoption and pesticide use under uncertainty. Journal of Environ-
mental Management, 76, 245–254.

296 R.L. Bernknopf et al.

http://www2.econ.iastate.edu/outrea.ch/agriculture/periodicals/chartbook/files/corn.htm
http://www2.econ.iastate.edu/outrea.ch/agriculture/periodicals/chartbook/files/corn.htm


Jordan, J. L., & Elnagheeb, A. H. (1993). Willingness to pay for improvements in drinking water

quality. Water Resources Research, 29, 237–245.
Kalbfleisch, J., & Prentice, R. (1980). The statistical analysis of failure time data. New York:

Wiley. 321p.

Kalluri, S., Gilruth, P., & Bergman, R. (2003). The potential of remote sensing data for decision

makers at the state, local and tribal level: Experiences from NASA’s synergy program.

Environmental Science & Policy, 6, 487–500.
Kleinbaum, D. (1996). Survival analysis: A self-learning text. New York: Springer.

Kross, B. C., Olson, M. L., Ayebo, A., & Johnson, J. K. (1995). Ameliorating effects of alternative

agriculture. In J. Rechchigl (Ed.), Soil amendments: Impacts on biotic systems (pp. 153–214).
Boca Raton: Lewis Publishers.

Krutilla, J. (1967). Conservation reconsidered. American Economic Review, 57, 787–796.
Lambert, D., Lowenberg-DeBoer, J., & Malzer, G. (2006). Economic analysis of spatial-temporal

patterns in corn and soybean response to nitrogen and phosphorus. Agronomy Journal, 98,
43–54.

Lancaster, T. (1990). The econometric analysis of transition data. Cambridge: Cambridge

University Press.

Lauer, J., Porter, P., & Opplinger, E. (1997). The corn and soybean rotation effect. Agronomy

advice, Agronomy Department, University of Wisconsin. http://corn.agronomy.wisc.edu/aa/

a014.aspx

Lence, S., & Hayes, D. (1995). Land allocation in the presence of estimation risk. Journal of
Agricultural and Resource Economics, 20, 49–63.

Lichtenberg, E. (1991). Determination of regional environmental policy under uncertainty: Theory

and case studies. In A. Dinar & D. Zimmerman (Eds.), The economics and management of
water and drainage in agriculture (pp. 700–716). Boston: Kluwer Academic Publishers.

Livanis, G., Salois, M., & Moss, C. (2009). A nonparametric kernel representation of the
agricultural production function: Implications for economic measures of technology. Paper
presented at the 83rd Annual Conference of the Agricultural Economics Society, Dublin.

Loomis, J., Bell, P., Cooney, H., & Asmus, C. (2009). A comparison of actual and hypothetical

willingness to pay of parents and non-parents for protecting infant health: The case of nitrates

in drinking water. Journal of Agricultural and Applied Economics, 4, 697–712.
Lubowski, R. N., Vesterby, M., Bucholtz, S., Baez, A., & Roberts, M. J. (2005).Major uses of land

in the United States (USDA Economic Information Bulletin, No. 14).

Macauley, M. K. (2006). The value of information: Measuring the contribution of space-derived

earth science data to resource management. Space Policy, 22, 274–282.
Macauley, M. (2007). The role of earth observations in revolutionizing management of natural

resources and the environment: Identifying the Landsat contribution, report to the United
States Geological Survey. Washington, DC: Resources for the Future.

Macauley, M. (2010). Climate adaptation policy: The role and value of information (Resources for
the Future, Issues Brief 10-10).

Martinez, Y., & Albiac, J. (2006). Nitrate pollution control under soil heterogeneity. Land Use
Policy, 23, 521–532.

McFadden, Daniel, 1975. “The Revealed Preferences of a Government Bureaucracy: Theory.”

The Bell Journal of Economics 6(2): 401-416.
McFadden, Daniel, 1976. “The Revealed Preferences of a Government Bureaucracy: Empirical

Evidence.” The Bell Journal of Economics, 7(1): 55-72.
Meals, D. W., Dressing, S. A., & Davenport, T. E. (2010). Lag time in water quality response to

best management practices: A review. Journal of Environmental Quality, 39, 85–96.
Miller, H., Sexton, N., Koontz, L., Loomis, J., Koontz, S., & Hermans, C. (2011). The users, uses,

and value of Landsat and other moderate-resolution satellite imagery in the United States
Executive Report (U.S. Geological Survey Open-File Report 2011-1031).

10 Estimating the Benefits of Land Imagery in Environmental Applications. . . 297

http://corn.agronomy.wisc.edu/aa/a014.aspx
http://corn.agronomy.wisc.edu/aa/a014.aspx


Mirvish, S. S. (1995). Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of

gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known

exposures to NOC. Cancer Letters, 97, 271.
Morgan, M. G., & Henrion, M. (1990). Uncertainty: A guide to dealing with uncertainty in

quantitative risk and policy analysis. New York: Cambridge University Press.

Mortensen, J. R.,&Beattie, B.R. (2005).Does choice of response functionmatter in settingmaximum
allowable N-application rates in Danish agriculture? (Cardon Research Papers, 2005-01).

Available at: http://ag.arizona.edu/arec/pubs/researchpapers/2005-01mortensenbeattie.pdf

Nelson, R., & Winter, S. (1964). A case study in the economics of information and coordination:

The weather forecasting system. Quarterly Journal of Economics, 78, 420–441.
Nelson, G., Schimmelpfennig, D., & Sumner, D. (2007). Can satellite-based land imaging data be

made more valuable for agriculture? (Report to the US Department of Agriculture, Coopera-

tive Agreement 58-6000-6-0047).

Nolan, B. T., & Hitt, K. J. (2006). Vulnerability of shallow groundwater and drinking-water wells

to nitrate in the United States. Environmental Science and Technology, 40, 7834–7840.
Nolan, B. T., Ruddy, B. C., Hitt, K. J., & Helsel, D. R. (1997). Risk of nitrate in groundwaters

of the Unites States—A national perspective. Environmental Science and Technology,
31, 2229–2236.

Nolan, B. T., Hitt, K. J., & Ruddy, B. C. (2002). Probability of nitrate contamination of recently

recharged ground waters in the conterminous United States. Environmental Science and
Technology, 36, 2138–2145.

Nolan, B. T., Puckett, L. J., Ma, L., Green, C. T., Bayless, E. R., & Malone, R. W. (2010).

Predicting unsaturated zone nitrogen mass balances in agricultural settings in the United States.

Journal of Environmental Quality, 39, 1051–1065.
North Dakota State University (in conjunction with North Dakota Corn Utilization Council).

(1997). Corn production guide. Available at http://www.ag.ndsu.edu/pubs/plantsci/rowcrops/

a1130-2.htm#Index. Accessed on 12 Jan 2009.

Oakes, D. B. (1982). Nitrate pollution of groundwater resources: Mechanisms and modeling. In:

Proceedings of an IIASA Task Force Meeting on nonpoint nitrate pollution of municipal water
supply sources (Issues of Analysis and Control, Series No. CP-82-S4). Laxenburg: Interna-

tional Institute of Applied Systems Analysis.

Philips, L. (1988). The economics of imperfect information. Cambridge: Cambridge University Press.

Poe, G. L. (1999). Maximizing the environmental benefits per dollar expended: An economic

interpretation and review of agricultural environmental benefits and costs. Society and Natural
Resources, 12, 571–598.

Poe, G. L., & Bishop, R. C. (1999). Valuing the incremental benefits of groundwater protection

when exposure levels are known. Environmental and Resource Economics, 13, 341–367.
Prior, J., Howes, J. M., Libra, R., & VanDorpe, P. (2003). Iowa groundwater basics (Iowa

Geological Survey Educational Series 6). Iowa Department of Natural Resources.

Ross, T. W. (1984). Uncovering regulators’ social welfare weights. The RAND Journal of
Economics, 15, 152–155.

Sheriff, G. (2005). Efficient waste? Why farmers over-apply nutrients and the implications for

policy design. Review of Agricultural Economics, 27, 542–557.
Shimshack, J. and M.B. Ward, 2005. “Regulator Reputation, Enforcement, and Environmental

Compliance,” Journal of Environmental Economics and Management 50: 519-540.
Sparco, J. (1995). Marginal valuation of health related attributes of ground water using conjoint

analysis. Northeastern Agricultural and resource economics association meetings, Burlington,

VT.

The Financials. (2010). www.commodities.thefinancials.com. Verified June 15, 2010.

Tomer, M. D., & Burkart, M. R. (2003). Long-term effects of nitrogen fertilizer use on ground

water nitrate in two small watersheds. Journal of Environmental Quality, 32, 2158–2171.
Van Noortwijk, J.M., and Van Gelder, P.H.A.J.M., 1998. Bayesian estimation of quantiles for the

purpose of flood prevention. In: Coastal Engineering, 27, 3529–3541.

298 R.L. Bernknopf et al.

http://ag.arizona.edu/arec/pubs/researchpapers/2005-01mortensenbeattie.pdf
http://www.ag.ndsu.edu/pubs/plantsci/rowcrops/a1130-2.htm#Index
http://www.ag.ndsu.edu/pubs/plantsci/rowcrops/a1130-2.htm#Index
http://www.commodities.thefinancials.com


Weisbrod, B. A. (1964). Collective consumption services of individual consumption goods.

Quarterly Journal of Economics, 78, 471–477.
Wilkie, D. S., & Finn, J. T. (1996). Remote sensing imagery for natural resources monitoring.

New York: Columbia University Press.

Williamson, R. A., Hertzfeld, H. R., Cordes, J., & Logsdon, J. M. (2002). The socioeconomic

benefits of earth science and applications research: reducing the risks and costs of natural

disasters in the USA. Space Policy, 18, 57–65.
Yadav, S.N. 1997. Dynamic optimization if nitrogen use when groundwater contamination is

internalized at the standard in the long run Amercian Journal of Agricultural Economics, Vol. 79,

No. 3, pp. 931–945.

10 Estimating the Benefits of Land Imagery in Environmental Applications. . . 299


	Chapter 10: Estimating the Benefits of Land Imagery in Environmental Applications: A Case Study in Nonpoint Source Pollution of Groundwater
	10.1 Introduction
	10.2 Conceptual Framework
	10.2.1 Economic Model
	10.2.2 Producer Behavior
	10.2.3 Revealed Preference for Social Risk
	10.2.4 Cost Effective Regulation with MRLI

	10.3 Application
	10.3.1 Agricultural Production and Its Ecosystem Service Effects
	10.3.2 Loss Estimation
	10.3.3 VOI: Comparison of Sensor Data Sets

	10.4 Example
	10.4.1 Data
	10.4.1.1 MRLI Observation and Classification
	10.4.1.2 Historical Agriculture and the Hydrogeologic System

	10.4.2 Comparing Loss Estimates of Two Alternative MRLIs

	10.5 Summary
	Appendix
	10. Commentary: Satellite Observations and Policy Improvements for Agriculture and the Environment
	10.C.1. Major Contributions
	10.C.2. Social Preferences and Risk
	10.C.3. Regulator´s Objectives
	10.C.4. Monitoring and Enforcement
	10.C.5. Baselines
	10.C.6. VOI and Time-Series Continuity
	10.C.7. Additional Considerations
	10.C.8. Conclusion

	References


