
Chapter 5
Novel Ultrasound Imaging Applications

Francesco Simonetti

Abstract Routine applications of ultrasound imaging combine array technology
and beamforming (BF) algorithms for image formation. Although BF is very robust,
it discards a significant proportion of the information encoded in ultrasonic signals.
Therefore, BF can reconstruct some of the geometrical features of an object but with
limited resolution due to the diffraction limit. Inverse scattering theory offers an al-
ternative approach to BF imaging that has the potential to break the diffraction limit
and extract quantitative information about the mechanical properties of the object.
High-resolution, quantitative imaging is central to modern diagnostic technology to
achieve cost-effective detection through high sensitivity and limited false positive
rate. This chapter lays out a framework encompassing theoretical and experimental
results, and in which inverse scattering and modern array technology can be com-
bined together to achieve super-resolution, quantitative imaging.

5.1 Introduction

Whether the aim is to detect a cancer mass in the human body, a precursor of damage
in a metal, or to monitor CO2 sequestration in an oil reservoir, the complexity of the
host medium can result in a very challenging process. As an example, the different
spatial scales that characterize the structure of the human body from molecular to
organ system level and which in turn determine life functions, result in an extraordi-
narily complex system where discriminating between a state of disease, especially
at an early stage, and normal function, poses a fundamental challenge.

The extent of the detection challenge is better understood by considering the final
stage of the detection process when the diagnosis is formulated. In this context, the
most basic form of detection is based on the analysis of signals such as the one
shown in the diagram in Fig. 5.1(a). To illustrate the underpinning principles we
consider the problem of damage detection in NDE although similar observations
apply to other fields. This signal contains a signature that is related to the presence
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Fig. 5.1 The detection problem. (a) A signal contains signatures due to noise and features of inter-
est; (b) to differentiate between noise and features a detection threshold is introduced; (c) lowering
the threshold enables the detection of smaller features (d) but leads to false positives; (e) typical
trends of probability of detection (POD) and false positives (PFP) as a function of feature size

of damage and some nuisance signatures that do not bear any direct relationship to
damage and arise from the complexity of the host medium. Here, we refer to the
nuisance signatures as noise. The key challenge in diagnostics is to decide whether
a particular signature is due to noise or to the feature of interest. For this purpose
an inspector sets a threshold level, Fig. 5.1(b), and decides that damage is present
if somewhere in the signal the amplitude of one of the signatures rises above the
threshold. Since the choice of the threshold level is somehow arbitrary, this approach
is reliable only if the amplitude of the signature from damage is larger than the
amplitude of noise, i.e. the signal to noise ratio (SNR) is high. In fact, if the damage
is smaller in size, the amplitude of its signature can drop below the threshold and the
flaw would go undetected. To detect the smaller flaw it is then necessary to lower the
threshold, Fig. 5.1(c); however, now also noise intersects the threshold level leading
to a false positive when damage is not present, Fig. 5.1(d).

The tradeoff between the detection of weak signatures, hence small features,
and the occurrence of false positives is very important when assessing the cost-
effectiveness of a diagnostic technology. In particular, the cost associated with false
positives can be far more important than the direct cost of the diagnostic test. For in-
stance, x-ray based mammography is the gold standard for breast cancer detection.
However, it is known that in dense breast it leads to a 80 % false positive rate which
results in unnecessary biopsies [22]. As a result, most of the more than $ 2 billion
spent annually on biopsies and follow up ultrasound in the USA is spent on benign
lesions.

To characterize the cost-effectiveness of a diagnostic method two key metrics
are used: sensitivity and specificity [43]. The former refers to the rate of true posi-
tives whereas the latter gives the rate of true negatives. In NDE, sensitivity is more
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Fig. 5.2 Images of a
photograph of the
hieroglyphics on a
sarcophagus in the British
Museum: (a) High and
(b) low resolution. The
arrows point at a feature
shaped like the number 9, as
resolution decreases it is no
longer possible to detect
individual features

often referred to as probability of detection (POD). Under ideal conditions, a detec-
tion technology should achieve 100 % sensitivity and 100 % specificity. However,
real values of sensitivity and specificity tend to be lower and vary depending on the
characteristics of the feature of interest. Figure 5.1(e) illustrates typical trends of the
POD and probability of false positive (PFP) as a function of damage size for a typi-
cal NDE inspection technique (PFP = 1-specificity). As damage size decreases the
POD decreases while the PFP increases due to the need for lowering the detection
threshold. The POD and PFP curves can be combined in a single curve resulting in
the Receiver-Operating Characteristic (ROC) which summarizes the performance of
a diagnostic system [43].

Detection of small features is becoming increasingly more important in a number
of fields. Examples include early stage detection of cancer, which is known to reduce
mortality rates, and detection of damage precursors that allows life extension of
complex engineering systems such as jet engines.

Imaging technology offers the potential to improve the sensitivity of diagnos-
tic methods whilst limiting or even lowering the PFP. This is possible because
an image is the synthesis of the information contained in multiple measurements
recorded by sensors deployed at different positions along an aperture. This spatial
diversity yields complementary information that enhances the SNR of individual
signals when they are combined together to form an image.

Although image-based detection could use threshold levels applied to the image,
in a similar fashion to conventional detection (Fig. 5.1), thresholding would not
make full use of the information available in the image. In fact, an image provides
geometrical information about the structures within an object which allows target
features to be discriminated from other nuisance features, thus detecting a target
even in the presence of a highly complex background.

The metric used for quantifying the amount of information contained in an image
is resolution. As an example Fig. 5.2 shows the high and low resolution versions of a
photograph of the hieroglyphics on a sarcophagus. From the high resolution image it
is possible to conclude that the sarcophagus contains a hieroglyphic that resembles
the number 9 (pointed to by the arrow). On the other hand, the same conclusion
cannot be reached from the low resolution image, thus illustrating how a loss of
resolution results in a loss of information.

While resolution is important to discriminate between the different geometrical
features of an image, it is not sufficient to characterize the full amount of information
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Fig. 5.3 Comparison
between a structural (a) and a
quantitative image of a
three-dimensional object.
(a) Features can be detected
thanks to speckle contrast;
(b) grey levels provide a
spatial map of sound speed
throughout the object

that is contained in the image. For instance, Fig. 5.3 shows two experimental images
of a complex three-dimensional breast phantom. Figure 5.3(a) is obtained using ul-
trasound based sonography and is characterized by a granular appearance due to the
speckle phenomenon [1]. Thanks to the speckle contrast it is possible to detect two
circular dark inclusions inside the phantom. Next, is an ultrasound tomography im-
age of the same phantom obtained with the method introduced in [37]. The image
shows how the speed of sound, which is related to the mechanical properties of the
materials in the phantom, varies in space with each grey level corresponding to a
numerical value of sound speed. While the sonogram provides a structural image
containing geometrical information, the tomogram in Fig. 5.3(b) is a quantitative
image that blends together the geometrical and material properties of the probed
object. Importantly, thanks to the sound-speed contrast in Fig. 5.3(b) it is possible
to observe that the two inclusions are different in nature whereas, they appear to
be the same on the sonogram. The sound-speed information is critical to increase
specificity (lower the PFP). As an example, in human tissue it is known that cancer
masses tend to be stiffer and have higher sound-speed than healthy tissue [17]. As a
result, by examining the image in Fig. 5.3(b) it would be possible to conclude that
the bright inclusion, which has high sound speed, is a cancer mass while the dark
one could be a cyst of simply fat. Therefore, although the two images in Fig. 5.3
have comparable level of spatial resolution, the quantitative image yields additional
information that leads to higher specificity and hence to a superior diagnostic tech-
nology.

To meet the requirements of high sensitivity and specificity of modern diagnos-
tics, imaging methods have to provide quantitative information with high spatial
resolution. However, the resolution of classical imaging methods is dictated by the
diffraction limit that leads to a minimum resolvable size of the order of the wave-
length, λ, of the probing wave (see, for instance, Ref. [16]). This has important
practical implications in subsurface imaging. In fact, to achieve high resolution short
wavelengths need to be propagated. However, as λ decreases the penetration depth
of the probing wave decreases due to increasing absorption and scattering. As a re-
sult, the higher the resolution the shallower the volume of the object that can be
imaged, this being the major limitation of conventional ultrasonic imaging systems.

This chapter provides an overview of recent progress on acoustic imaging meth-
ods that can break the diffraction limit to achieve super resolution as well as recon-
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structing spatial maps of material properties. Therefore, the imaging problem is for-
mulated in Sect. 5.2 which also introduces the classical diffraction limit. Section 5.3
links acoustic scattering to the imaging problem using a general wave-matter inter-
action model. Section 5.4 introduces beamforming that is used in routine ultrasound
imaging and shows its connection to diffraction tomography. Section 5.5 presents
the approach to subwavelength resolution imaging which is based on nonlinear in-
verse scattering as discussed in Sect. 5.6. To support the inverse scattering approach,
experimental results are presented in Sect. 5.7 which is followed by conclusions in
Sect. 5.8.

5.2 The Imaging Problem

Modern imaging technology builds on recent progress in solid state electronics and
micromachining that have led to the rapid development of ultrasound arrays.

Scattering experiments can be performed with sensors arranged under differ-
ent configurations. If the entire surface of the volume is accessible, they can be
distributed in a full-view configuration (Fig. 5.4(a)) whereas in the limited view
case, data can be collected by using an array interrogating the accessible surface
(Fig. 5.4(b)). Array elements can be excited individually, launching a wave which
propagates in the background medium and is scattered by the features contained in
it. The scattered field is detected by all the transducers and recorded individually.
Therefore, for an array with N elements, N2 signals can be measured.

The general imaging problem can be formulated in terms of reconstructing the
spatial distribution of one or more physical parameters characterizing the structure
of an object from a set of scattering experiments performed with an array. Let us
assume that scattering can be described by a scalar wavefield, ψ , solution to

̂Hψ(r, kr̂0,ω) = −4πO(r,ω)ψ(r, kr̂0,ω), (5.1)

where ̂H is the Helmholtz operator, (∇2 + k2), k is the background wavenumber
(2π/λ), r̂0 specifies the direction of the incident plane wave which illuminates the
object and ω is the angular frequency. The object is described by the Object Func-
tion, O(r,ω), of support D corresponding to the volume occupied by the object

O(r,ω) = 1

4π

(

ω

c0(ω)

)2[(

c0(ω)

c(r,ω)

)2

− 1

]

− 1

4π
ρ1/2(r)∇2ρ−1/2(r), (5.2)

Fig. 5.4 Diagram of typical
transducer arrangements for
acoustic imaging. Signals are
collected for each
permutation of transmitter
and receiver element pairs in
the array: (a) full view;
(b) limited view
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where, c0 is the sound speed in the homogeneous background and c(r), and ρ(r)
are the local sound speed and mass density inside the object [27]. The analysis per-
formed in the rest of this chapter will consider monochromatic wavefields, therefore
the explicit dependence on ω is omitted.

Equations (5.1) and (5.2) provide an accurate representation of the acoustic scat-
tering problem where elastic effects can be neglected. Therefore, while this model is
suitable to describe the propagation of ultrasound in human tissue it is less accurate
when studying ultrasonic NDE of solids or seismic wave scattering in the earth. De-
spite these limitations, the acoustic model underpins most of the imaging methods
used in NDE and seismic imaging, therefore it will be adopted as the basic model
for the theory presented in the following sections.

To obtain a quantitative image of the object, the spatial function O(r) needs to be
reconstructed from the set of scattering experiments. Spatial maps of sound speed
and density can then be obtained by inverting (5.2) [23]. Structural imaging on the
other hand, only reconstructs the boundaries of sudden variations of O(r) as in the
case of the sonogram shown in Fig. 5.3(a).

Even with the most advanced quantitative imaging method, it is not possible to
reconstruct O(r) exactly as this would require unlimited resolving power. A rigor-
ous definition of resolution can be based on the representation of the object function
in the spatial frequency domain, Ω , obtained by performing the three-dimensional
Fourier transform of O(r)

˜O(Ω) =
∫ ∞

−∞
d3rO(r)e−iΩ·r. (5.3)

The resolution of an imaging system is then determined by the largest spatial fre-
quency, |Ω|, that the system can reconstruct.

5.2.1 The Diffraction Limit

While a homogeneous medium does not support the propagation of monochromatic
wavefields oscillating over a spatial scale smaller than λ, subwavelength oscillations
can occur on the surface and within the interior of the probed object [16]. The sub-
wavelength oscillations are described by evanescent fields that are trapped on the
object’s surface and do not radiate energy into the far field. The interplay between
radiating and evanescent fields can be seen by considering the scattering of a plane
wave incident on a planar surface. Let ψs(r‖,0) be the resulting complex scattered
field, measured along an aperture close (� λ) to the surface. By means of the an-
gular spectrum method [16], the spectrum of the field along a parallel aperture at
distance z from the first is ψ̃s(k‖, z) = ψ̃s(k‖,0) exp(ik⊥z) where ψ̃s(k‖,0) is the
spectrum of ψs(r‖,0) and k‖ and k⊥ are related to the medium wavenumber, k

k⊥ =
⎧

⎨

⎩

√

k2 − k2‖ if |k‖| ≤ k,

i
√

k2‖ − k2 if |k‖| > k.
(5.4)
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The condition, |k‖| ≤ k, corresponds to propagating waves that can travel from
the object to a remote detector placed in the far field. In this case, k‖ and k⊥ are the
projections of the wavenumber vector k along the plane of the aperture and in the
direction perpendicular to it. Since |k‖| ≤ k, propagating waves oscillate over a spa-
tial scale larger than λ (k = 2π/λ). In contrast, |k‖| > k corresponds to evanescent
waves that decay exponentially in the direction perpendicular to the aperture, thus
making their detection increasingly more difficult as the detector moves away from
the surface of the object. Evanescent waves can oscillate over a subwavelength scale
along the surface of the object and the smaller their spatial period, the more rapid
their exponential decay is. As a result, if detectors are placed many wavelengths
away from the object, the contribution from the evanescent fields is negligible and
the wavefield is effectively bandlimited with bandwidth B = 2k [16].

Classical imaging methods, from microscopy to sonography, are based on a lin-
ear, one-to-one mapping between the spatial frequencies contained in a radiating
wavefield and the spatial frequencies, Ω , of the object function ˜O(Ω) [4]. Since the
wavefield is bandlimited to 2k, the largest object bandwidth that can be retrieved is
also 2k leading to the classical Rayleigh limit [16].

In 1928 Synge suggested that subwavelength resolution could be achieved by
probing the evanescent fields directly. The premise of this approach is that evanes-
cent waves encode information about the subwavelength properties of the object
due to their super-oscillatory behavior. Synge’s original idea has led to the devel-
opment of Near-field Scanning Optical Microscopy (NSOM) where resolution in
the order of λ/100 has been reported (for an overview of the topic see [11]). How-
ever, a major limitation of NSOM is that to access the evanescent fields a probe
has to be scanned close (< λ) to the surface to be imaged. This is not feasible in a
number of subsurface imaging problems where the surface or volume of interest are
many wavelengths away from the sensors. This chapter explores the possibility of
achieving super resolution when all the sensors are in the far field (� λ).

5.3 Acoustic Scattering and the Far-Field Operator

The link between the spatial frequencies of the object function and those of the radi-
ating scattered field is dictated by the scattering mechanism describing how waves
interact with matter. In this section this link is considered further based on the the-
ory of acoustic scattering. For this purpose, it can be observed that the potential ψ

in (5.1) is also a solution to the Lippman-Schwinger equation

ψ(r, kr̂0) = exp(ikr̂0 · r) +
∫

D

d3r ′ G(r, r′)O(r′)ψ(r′, kr̂0), (5.5)

where exp(ikr̂0 · r) is an incident plane wave and G(r, r′) is the free-space Green’s
function solution to ̂HG(r, r′) = −4πδ(|r− r′|). Using the far-field approximation,
|r − r′| → r[1 − (r · r′)/r2], (5.5) leads to the asymptotic expression of ψ
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lim
r→∞ψ(r, kr̂0) = eikr̂0·r + f (kr̂, kr̂0)

eikr

r
, (5.6)

where f (kr̂, kr̂0) is the scattering amplitude defined as

f (kr̂, kr̂0) =
∫

D

d3r ′ e−ikr̂·r′
O(r′)ψ(r′, kr̂0). (5.7)

We now introduce the T-matrix or transition amplitude [41]

T (αû, kr̂0) =
∫

D

d3r ′ e−iαû·r′
O(r′)ψ(r′, kr̂0), (5.8)

so that T (αû, kr̂0) = f (kr̂, kr̂0) for αû = kr̂. As shown in [32] the scattering am-
plitude can be related to the spectral representation of the object function ˜O(Ω) and
the transition matrix according to

f (kr̂, kr̂0) = ˜O
[

k(r̂ − r̂0)
] + 1

2π2

∫ +∞

−∞
d3α

˜O[kr̂ − αû]T (αû, kr̂0)

k2 − α2 + iε
, (5.9)

where ε is an infinitesimal introduced to remove the singularity at k = α. Equa-
tion (5.9) links the spectrum of O(r) to the measurements and is central to super
resolution imaging as explained in Sect. 5.5.

5.3.1 Born Approximation

Under the Born approximation, the total field under the integral sign in (5.5) is
approximated to the incident field which causes the integral term in (5.9) to van-
ish [32]. As a result, the Born approximation leads to a one-to-one mapping between
the measured scattering amplitude f (kr̂, kr̂0) and ˜O(Ω) at the spatial frequency
Ω = k(r̂ − r̂0), i. e.

f (kr̂, kr̂0) ≈ ˜O
[

k(r̂ − r̂0)
]

. (5.10)

To illustrate the physical implications of the one-to-one mapping, Fig. 5.5 depicts
a two-dimensional scattering problem. If the object is probed with a circular ar-
ray consisting of N transducers, the scattering amplitude can be measured for N2

combinations of the illumination, θ , and scattering, φ, angles through (5.6). The
measurements can be arranged into a N × N matrix, known as the multistatic ma-
trix, whose i–j entry is the scattering amplitude measured under the scattering angle
φi when the object is illuminated in the direction θj . Due to (5.10), the entries of
the multistatic matrix map into a subset of the Ω-space which coincides with a disk
(sphere in 3-D) of radius 2k known as the Ewald limiting disk [4]. This also implies
that under the Born approximation, measurements are independent of the spatial
frequencies of the object larger than 2k or in other words the spatial periodicities
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Fig. 5.5 (a) Diagram of scattering experiments showing a transmitter, Tx , launching a plane wave
and a receiver, Rx detecting the scattered field. (b) The multistatic matrix—a discrete representa-
tion of the T∞ operator. (c) The spatial frequency domain showing how measurements map onto
the Ewald limiting disk

of the object function that vary over a spatial scale shorter than λ/2 do not affect
the far-field measurements. Therefore, since the measurements are independent of
the sub-λ/2 structures, any imaging method consistent with the Born approximation
will not be able to achieve sub-λ/2 resolution.

For the Born approximation to be valid the object should have low contrast rel-
ative to the background. Moreover, its size should be comparable to λ so that the
phase delay accumulated by the incident field as it travels inside the object is less
than π [19]. These are very stringent conditions for most practical applications and
are in common with other linear approximations such as Rytov [24]. Finally, it is
observed that the Born approximation violates energy conservation [18].

5.3.2 Factorization of the Far-Field Operator T∞
Here, we follow the approach proposed by Kirsch [20, 21]. Central to any imaging
method is the far-field operator, T∞ : L2(S) → L2(S) defined as

T∞
∣

∣g(r̂)
〉 =

∫

S

ds(r̂0)f (kr̂, kr̂0)g(kr̂0), (5.11)

where we have made use of the Dirac notation1 and S is the unit shell in R
3. The

physical significance of T∞ can be understood by observing that T∞|g〉 is the far-
field pattern of the scattered field, |us〉, due to a linear combination of incident plane
waves, exp(ikr̂0 · r), with relative complex amplitude g(kr̂0), i.e.

|us〉 = T∞|g〉. (5.12)

1This is a convenient way of describing both the continuous and discrete cases. For instance, |v(r)〉
can refer to a continuous function of space, v(r), or a vector field, v, whose entries correspond to
the values of v(r) at the nodes of a discrete representation of space. Similarly, an operator becomes
a matrix such as the multistatic matrix representing T∞. Note that 〈v(r)| is the transpose conjugate
of the vector |v(r)〉 [2].
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Therefore, T∞ describes how any arbitrary incident field is scattered by the object.
From a functional analysis perspective, T∞ maps the space of the functions |g〉 that
define the incident field into the space of the far-field scattering patterns |us〉.

The definition of T∞ allows the scattering process to be expressed as the com-
bination of three consecutive events: 1) the propagation of an incident field from
the far-field (or array of transducers) to the object; 2) the interaction of the incident
field with the object physical properties and the resulting local perturbation to the
incident field; 3) the radiation of the perturbation from the object to the far field.

The three scattering events can be described by three separate mathematical op-
erators that combined together result in T∞. To show this, let us introduce the illu-
mination operator H : L2(S) → L2(D) which maps the illumination functions |g〉
into the incident field |φ〉 inside the object

|φ〉 = H |g〉 =
∫

S

ds(r̂0) exp(ikr̂0 · r)g(kr̂0). (5.13)

Similarly, it is possible to define a radiation operator H † : L2(D) → L2(S) that
maps a continuous distribution of point sources in D with strength defined by the
continuous function |σ 〉 into the radiated far-field pattern

|us〉 = H †|σ 〉 =
∫

D

dr3 exp(−ikr̂0 · r)σ (r). (5.14)

By definition H † is the adjoint operator of H . Crucially, both H and H † depend on
the geometry of the scatterer but are independent of its mechanical properties.

Finally we introduce the interaction operator S : L2(D) → L2(D) that trans-
forms the incident field inside the object, |φ〉, into the source distribution |σ 〉 char-
acterizing the perturbation to the incident field. This operator accounts for the wave-
matter interaction and can take different forms depending on the scattering model
under consideration. As an example, under the Born approximation it is assumed
that each point inside the scatterer acts as an independent point scatterer. Therefore,
the equivalent source distribution coincides with the incident field multiplied by the
object function and S is a diagonal operator defined as

|σ 〉 = S|φ〉 = O(r)φ(r). (5.15)

The expression of S in the case of multiple scattering can be found in [21].
We are now able to decompose the far-field operator into the three main steps

of the scattering process. In particular, from the diagram in Fig. 5.6 it is clear that
|us〉 = T∞|g〉 = H †SH |g〉, which leads to the factorization

T∞ = H †SH. (5.16)

The factorization of T∞ suggests a formal approach to imaging. In particular, we
have already observed that only S depends on O(r). Therefore, to reconstruct O(r)
from T∞, it is necessary to isolate the contribution of S from H and H †.
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Fig. 5.6 The mapping of the
space of the illumination laws
|g〉 into the space of scattered
fields |us〉 can be described
by three operators. In
anticlockwise order: the space
of illumination functions |g〉
maps onto the space of
incident fields inside the
object |φ〉 via H . The space
of incident fields then maps
onto the space of secondary
sources |σ 〉 through S.
Finally the secondary sources
radiate into the space of the
scattered fields |us〉 as
described by H †

5.4 Beamforming and Diffraction Tomography

Beamforming (BF) is the image formation method underpinning current commer-
cial imaging technology. Fields of application include: sonar [3], medical diagnos-
tics [42], and non-destructive testing [13].

Although several hardware and software implementations of BF have been pro-
posed, the general working principle consists of two stages as illustrated in Fig. 5.7.
In the first stage and for each point in the image space, z, a focal law is defined. This
sets the relative time delays between the input signals fed into each array transducer
so that the acoustic waves excited by the array elements interfere coherently with
each other only when they reach z. For this purpose, the transducer that is at the
greatest distance from z is fired first while the closest transducer is fired last. The
field resulting from the superposition of the waves radiating from the array elements
is an acoustic beam focused at z. If a point scatterer is present at z, the beam is scat-
tered into a spherical wave radiating from z. The scattered wave is subsequently
detected by the array elements that measure wavepackets arriving at different times
depending on the element relative distance from z. The signals are again time shifted
using the same focal law used in transmission and summed coherently. This ensures
that maximum weight is given to the energy scattered from z and represents the sec-
ond stage of BF imaging. This two-stage process shares the same physical principle
used in confocal microscopy where two separate lenses are used to achieve the two
focusing stages. To form an image, the BF process is repeated for all points in the
volume to be imaged assuming that the scattering event at a particular location z is
independent of the scattering events occurring at neighboring points, i.e. multiple
scattering effects are neglected. Therefore, BF makes use of the Born approxima-
tion.

The two stages of the BF process aim at isolating the interaction operator S from
H and H † in the factorization of T∞. To illustrate this, we first consider an ideal
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Fig. 5.7 The two stages of beamforming imaging. In the transmission stage, the array elements
are phased according to a delay law that results in a focused beam at a prescribed point z. In the
reception stage, the signals received by different array elements are again time shifted with the
same delay law to isolate the energy scattered from z. For illustration purposes two separate arrays
are shown; however, in practice the two operations are performed by a single array

scenario where it is possible to focus a beam at a point in space, z, with unlimited
resolution, or in other words there exists an illumination law |gz〉 such that

H |gz〉 = δ
(|r − z|). (5.17)

By reciprocity, this also means that it is possible to ‘see’ a secondary source at the
same position z with unlimited resolution

〈gz|H †|σ 〉 = σ(z). (5.18)

Using properties (5.17) and (5.18) and the factorization of T∞ in (5.16) one obtains

〈gz|T∞|gz〉 = S(z, z). (5.19)

Under the Born approximation, (5.15) and (5.19) then lead to

〈gz|T∞|gz〉 = O(z), (5.20)

which is the object function reconstructed with unlimited resolution. However, the
ideal focusing in (5.17) and (5.18) is not physically possible. Symmetry considera-
tions imply that in a homogeneous medium with transmitters placed far away from
the focal point, the sharpest acoustic beam is obtained by using the focal law

|gz〉 = exp (−ikr̂0 · z), (5.21)

which is also known as the steering function. This function produces a relative phas-
ing between the sources that is equivalent to the time delays between the elements
of an array in BF imaging. Therefore, properties (5.17) and (5.18) now become

H |gz〉 = 4πj0
(

k|z − r|), (5.22)

〈gz|H †|σ 〉 = 4π

∫

D

dr3 O(r)j0
(

k|z − r|), (5.23)
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where j0 is the zero-order spherical Bessel function of the first kind. Under the Born
approximation, the finite spatial extent of the focal spot now implies that the object
function reconstructed with BF, RBF(z), is2

RBF(z) = 〈gz|T∞|gz〉 =
∫

D

dr3 O(r)hBF
(|r − z|), (5.24)

which is the spatial convolution of the object function with the point spread function
(PSF) hBF(|r − z|) defined as

hBF
(|r − z|) = 〈gz|I |gz〉 = 16π2j2

0

(

k|r − z|). (5.25)

In the spatial frequency domain the convolution in (5.24) is equivalent to

˜RBF(Ω) = ˜O(Ω)h̃BF(Ω), (5.26)

where, h̃BF(Ω) is the Fourier transform of (5.25)

h̃BF(Ω) =
{

16π3

k2
1

|Ω| if |Ω| ≤ 2k,

0 if |Ω| > 2k.
(5.27)

From (5.26) and (5.27) it follows that the BF process leads to a reconstruction of the
object function which is a low-pass filtered version of O(r) with a cutoff at 2k con-
sistent with the diffraction limit. However, BF also introduces a distortion caused by
the factor 1/|Ω| in (5.27) which tends to amplify the low spatial frequencies of the
object at the expense of the higher ones. Because of this distortion, the use of BF is
limited to structural imaging as in the case of sonography. Diffraction tomography
(DT) algorithms rectify the distortion while retaining the same resolution level pro-
ducing a PSF with a flat spectrum h̃DT(Ω) = 1 within the ball |Ω| < 2k and zero
outside it [4]. The reconstructed object function is therefore low-pass filtered

˜RDT (Ω) = ˜O(Ω)h̃DT(Ω), (5.28)

with

hDT(r) = 4k3

π2

[

j1(2k|r − z|)
2k|r − z|

]

, (5.29)

where, j1(·) is the spherical Bessel function of the first order.
From (5.26) and (5.28) it is clear that the DT image can be obtained from the BF

image by deconvolving the latter with the BF PSF in (5.27). Similar considerations
apply to the two dimensional problem [33].

2In practice BF is performed in the time domain according to the procedure illustrated in Fig. 5.7.
This is equivalent to integrating (5.24) over the frequency bandwidth of the input signal and in-
cluding the negative frequencies.
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5.5 Subwavelength Imaging

Equation (5.9) describes the encoding of subwavelength information into the far
field. In fact, the integral term in (5.9) which is due to multiple scattering, links
the entire spectrum of O(r) to a single scattering measurement f (kr̂, kr̂0) since
the integral spans the entire R

3 domain rather than being limited to a point inside
the Ewald limiting sphere. Therefore, far-field measurements are sensitive to the
spatial frequencies larger than 2k and hence to the subwavelength structures of the
object. This is a key observation because if the measurements are sensitive to the
subwavelength structure of the object then it should be possible to retrieve them.
The encoding mechanism for the simple case of two point scatterers has been studied
in [29, 36].

In order to extract this information from the far field, the inverse scattering prob-
lem needs to be solved. While the forward scattering problem predicts the scattered
field for a prescribed object function [solving (5.1)], the inverse problem attempts
to retrieve O(r) from the measured T∞. The former is well posed whereas the latter
is ill-posed in the sense of Hadamard, because although the solution exists and is
unique (at least under full view conditions), it is unstable [9].

From a mathematical perspective, the uniqueness of the solution to the inverse
problem implies that the object function could be reconstructed with unlimited res-
olution, since only the exact object function is the solution to the inverse problem.
However, the problem is also unstable, which means that small measurement errors
(e.g. noise) can be amplified in the reconstructed image leading to significant ar-
tifacts or even causing the non-existence of the solution. As a result, central to the
imaging problem is the solution of the inverse scattering problem in a stable fashion.

The solution of the inverse problem is further complicated by its nonlinear na-
ture. In fact, while the forward problem is linear with respect to the incident field,
it is nonlinear relative to the object function due to the presence of multiple scatter-
ing. On the other hand, under the Born approximation the problem becomes linear
because multiple scattering is neglected. As a result, DT and hence BF are solutions
to the linearized inverse scattering problem. This implies that even if real measure-
ments are affected by multiple scattering, both DT and BF are not able to decode
the subwavelength information that is encoded by multiple scattering.

To extract subwavelength information it is therefore necessary to account for the
actual physical mechanism that describes the interaction of the incident field with
the object and solve the fully nonlinear inverse problem.

5.5.1 The Information Capacity of Noisy Measurements

Before discussing methods to solve the inverse scattering problem it is important
to consider the extent of information available in noisy measurements. According
to the definition introduced in Sect. 5.2 a super resolved image of O(r), R(r), is
characterized by a spatial bandwidth B > 4/λ. Since the bandwidth of R(r) will
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be finite, a complete representation of R(r) can be obtained by calculating R(r) at
the nodes of a regular grid where the nodes are spaced 1/B apart. If the object is
contained in a cubic field of view with dimensions L, R(r) is fully characterized by
NR = (1 + LB)3 nodal values; here, we refer to NR as the number of degrees of
freedom (DOF) of the reconstruction. The NR nodal values of R(r) are obtained by
solving the inverse scattering problem which uses as an input the discrete number
of measurements contained in the matrix representation of T∞. On the other hand,
if the measurements are performed with an array with N transducers, the number
of independent measurements after performing all the possible transmit-receive ex-
periments is M = N(N + 1)/2, since some of the measurements are redundant by
reciprocity. If the number of measurements is kept constant, the inverse problem be-
comes increasingly more ill-posed as we try to increase resolution—a larger number
of DOF needs to be determined from the same number of measurements, M . This
would suggest that to increase resolution whilst limiting ill-posedness one should
increase the number of measurements, e.g. by increasing the number of transducer
elements. However, in the presence of noise only a finite number of measurements
are truly independent. To show this, let us consider an object contained in a ball
of radius R0 probed with an ideal spherical array of radius R � R0 concentric
with the ball. The scattered field measured by the array when one transducer is
excited is

ψs(kr̂0, r, θ,φ) =
∞
∑

n=0

n
∑

m=−n

amn(kr̂0)
h

(1)
n (kr)

h
(1)
n (kR0)

Ym
n (θ,φ), (5.30)

where the position of the receiving array element is expressed in spherical co-
ordinates {r, θ,φ}. The coefficients amn(kr̂0) depend on the distribution of the
scattered field over the sphere of radius R0, vary with the illumination direc-
tion r̂0, and encode information about the properties of the object. Even if the
field does not contain evanescent waves, the coefficients anm can be non-zero
for any order.3 The functions h

(1)
n are the spherical Hankel functions of the

first kind and order n representing outgoing waves, Ym
n (θ,φ) are the spheri-

cal harmonics of order n and degree m [2]. By considering the asymptotic case
r → ∞, h

(1)
n (kr) ≈ (−i)n+1 exp(ikr)/r , the scattering amplitude can be written

as

f (kr̂0, θ,φ) =
∞
∑

n=0

n
∑

m=−n

(−i)n+1 amn(kr̂0)

h
(1)
n (kR0)

Ym
n (θ,φ). (5.31)

Equation (5.31) shows that any order n of the scattered field on the sphere of radius
R0 radiates into the far field. All the spherical waves decay at the same rate, 1/r ;
therefore, the possibility of measuring a particular amn coefficient depends on the
efficiency with which the corresponding spherical wave radiates from the object.

3Consider, for instance, the spherical wave expansion of a plane wave [39].
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Fig. 5.8 Required dynamic
range as a function of the
order of the spherical
harmonics to be detected
when kR0 = 10. If the
dynamic range of the array
system is D , only harmonics
up to nmax can be detected

This is determined by the factor 1/h
(1)
n (kR0) in (5.31) which for n � kR0 has the

asymptotic form

1

h
(1)
n (kR0)

≈ exp

(

−n ln
2n

ekR0

)

. (5.32)

From this expression it is clear that for high order spherical waves n � kR0,
the radiation efficiency rapidly decays as the order n increases. In other words,
the radiation mechanism leads to a greater attenuation of the higher order spher-
ical waves, thus making their detection more challenging. In particular, there ex-
ists an upper bound to the maximum order, nmax, of the spherical waves that
can be detected by an array system. This is dependent upon the noise character-
istic and dynamic range of the array system. The latter refers to the capability
of the detector to measure large signals, as well as small ones and is defined as
D = 20 log(Smax/Smin) where Smin is the amplitude of the smallest signal that can
be detected.

Assuming that all the coefficients amn have comparable magnitude, the amplitude
of the corresponding spherical waves reaching the detectors would only be depen-
dent on their radiation efficiency which for n > kR0 decays according to (5.32). As
a result, for large orders (n > kR0) the minimum dynamic range, D(nmax), required
to detect the orders up to nmax is

D(nmax) ∝ nmax ln
2nmax

ekR0
. (5.33)

Figure 5.8 shows the dynamic range for increasing orders n when kR0 = 10. For
n > kR0, the dynamic range increases rapidly with the order to be detected.

Since any detector will have a finite dynamic range, the wavefield is bandlimited
by the maximum order that the system can sense, i.e. B = nmax where B is the
effective bandwidth. The spatial sampling criterion for a bandlimited field sampled
over a spherical surface was given by Driscoll and Healy [14] and states that the
wavefield can be represented by B2 sampling points distributed over an equiangular
grid of points (φi, θj ), i, j = 0, . . . ,2B − 1, where φi = πi/2B and θj = πj/B .
Therefore, the number of sampling points is n2

max; a larger number of detectors
would yield redundant information. For detectors with low dynamic range, it can be
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assumed that the maximum order is kR0; therefore it is sufficient to sample the field
with an array that contains

N ≈
{

k2R2
0 in 3D,

2kR0 in 2D,
(5.34)

elements [5, 34]. By reciprocity, it can be shown that the number of independent
illumination directions is also limited by the dynamic range of the array system and
the number of independent scattering experiments is still M = N(N + 1)/2, where
N is limited by the effective bandwidth as discussed earlier.

So far it has been assumed that scattering experiments are performed at a single
frequency. However, ultrasound imaging utilizes broadband signals from which it
is possible to extract measurements at different frequencies by means of Fourier
analysis. Therefore, it can be expected that measurements at different frequencies
yield complementarity information. From an information theory perspective, this is
understood in terms of information capacity of an imaging system. As an example,
in an optical system such as a microscope, the number of DOF necessary to describe
the wavefield in the image plane is

NF = 2(1 + LxBx)(1 + LyBy)(1 + T BT ), (5.35)

where Bx and By are the spatial bandwidth determined by the optics of the sys-
tem, Lx and Ly are the widths of the rectangular image area in the x and y

directions, respectively. T is the observation time and BT is the temporal band-
width of the signals, and the factor 2 accounts for two possible states of polariza-
tion. According to the invariance theorem [25] and in the absence of noise, one
of the spatial bandwidths in (5.35) can be extended at the expense of the others—
provided that NF remains constant. The invariance theorem can be extended to the
case of noisy measurements by introducing the concept of information capacity de-
fined as

NC = (1 + 2LxBx)(1 + 2LyBy)(1 + 2T BT ) log(1 + S /N ), (5.36)

where S and N are the average signal and noise power. By applying the invari-
ance theorem to NC , it is possible to extend the spatial bandwidth at the expense of
other parameters, including the noise level, provided that some a priori knowledge
is available [12]. For the acoustic problem considered throughout this chapter it is
realistic to assume that the object to be imaged is finite in size and that its proper-
ties do not vary with time. The latter assumption implies that the spatial bandwidths
can be extended at the expense of the temporal bandwidth whilst maintaining the
same SNR and leads to so-called time multiplexing [30]. We now observe that an
ultrasonic array can be thought of as the image plane of a particular optical system
without lenses, therefore the spatial bandwidths in (5.36) correspond to the spa-
tial bandwidth B of the array (as determined by its characteristic dynamic range).
As a result, in principle it is possible to increase B from BT , or in other words to
increase the number of independent data by using measurements at different fre-
quencies.
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5.6 Nonlinear Inverse Scattering

Since the introduction of regularization methods for ill-posed problems by Tikhonov,
the nonlinear inverse scattering problem has attracted considerable interest across a
number of disciplines. It is possible to discriminate between two main streams of
research depending on whether the inversion is performed directly or by means of
multiple iterations.

Iterative inverse scattering methods fall within the category of optimization meth-
ods and nonlinear filters. A variety of methods have been therefore proposed and the
reader is referred to [8] for a general overview. Common to all iterative techniques
is the use of a forward model that allows the output of scattering experiments to be
predicted if the object function is known. The key idea of these methods is then to
update the object function in the forward model until a cost function defined by the
residual between the measured and predicted scattered field is minimized. The use
of numerical solvers for the forward problem allows for accurate wave-matter in-
teraction models to be used. In particular, it is possible to model multiple scattering
effects that are central to achieving super resolution. Iterative techniques require an
initial model for the object function to be assumed at the beginning of the iterations.
This is a very critical step because if the model is not sufficiently close to the true
object function, several iterations are required to achieve convergence and most im-
portantly the iterations could converge to a local rather than the global minimum.
To address this problem, frequency hopping techniques can be used. The key idea
is to perform a frequency sweep, using the image produced at a lower frequency as
the initial model for the next higher frequency. The premise is that at lower frequen-
cies the resolution is lower and therefore the accuracy of the initial model is less
critical. In addition, the use of multiple frequencies allows the limited bandwidth of
the detection system to be expanded from the temporal one. This method has been
implemented in geophysics [28] and optical and microwave imaging leading to the
experimental super-resolved reconstructions in [6, 7].

Although iterative methods are extremely versatile they do not allow a direct rep-
resentation of the link between measurements and reconstruction. Therefore, direct
inverse scattering methods are considered in greater detail next.

5.6.1 Sampling Methods

Here, the nonlinear inverse problem is replaced with a linear integral equation of the
first kind whilst still accounting for multiple scattering. However, while the iterative
methods can reconstruct the object function, these methods can only reconstruct its
support D, i.e. the shape of the object.

The sampling methods are based on the factorization of T∞ and use two main
results: 1) If the H † operator is known, the shape of the object can be reconstructed
exactly; 2) H † can be characterized from T∞ by means of the factorization in (5.16).

It can be shown [9] that if we select a point z in the image space and consider the
far-field pattern of a point source at z, gz = exp (−ikr̂ · z), the solution to
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H †|a〉 = |gz〉, (5.37)

exists if and only if z ∈ D. In other words, if z belongs to D there exists a continuous
source distribution, |a〉 inside D that produces a far-field pattern equal to the pattern
of a single point source at z. On the other hand, such a source distribution does not
exist if z is outside D. Therefore, the shape of the object is the locus of all points
z for which (5.37) is solvable. In functional analysis this condition (solvability) is
expressed by saying that gz is in the range of the operator H †.

The second result is based on the fact that the range of H † can be evaluated
from T∞ without knowing H †. In particular, Kirsch [20, 21] has demonstrated that
the range of H † is equal to that of the operator

√
T∞. As a result, the condition of

existence of the solution to (5.37) can be assessed by considering the equation
√

T∞|a〉 = |gz〉. (5.38)

The condition can be verified by using the singular value decomposition of T∞
{μn, |pn〉, |qn〉} where μn are the singular values (real) so that

T∞|pn〉 = μn|qn〉 and T †∞|qn〉 = μn|pn〉. (5.39)

According to Picard’s theorem, the solution to T∞|x〉 = |y〉 exists if and only if

∞
∑

n=1

1

μ2
n

∣

∣〈y|qn〉
∣

∣

2
< ∞. (5.40)

By Silvester’s theorem the singular value decomposition of
√

T∞ is {√μn, |pn〉,
|qn〉}; therefore, the condition of existence in (5.37) via (5.40) leads to the central
result of the sampling methods

z ∈ D ⇐⇒
∞
∑

n=1

1

μn

∣

∣〈gz|qn〉
∣

∣

2
< ∞, (5.41)

which means that the series converges only inside the scatterer. An image of the
shape of the object can be formed by plotting the functional

F(z) =
( ∞

∑

n=1

1

μn

∣

∣〈gz|qn〉
∣

∣

2

)−1

, (5.42)

which is non-zero inside the object and vanishes outside it. Equation (5.42) defines
the Factorization Method (FM) [20]; slightly different expressions have been given
for the Linear Sampling Method [8] and Time Reversal and MUSIC [26].

In the absence of noise, condition (5.41) leads to the reconstruction of the ob-
ject shape with unlimited resolution since the condition is exact. However, in the
presence of noise the resolution degrades. In fact, T∞ is a compact operator with
a countable number of singular values accumulating at zero. In other words, when



134 F. Simonetti

n → ∞, μn → 0 with the singular values following a similar trend to that shown in
Fig. 5.8 with a cutoff order at n = kR0 [10]. Therefore, as the order of the terms in
the series in (5.41) increases, errors in the estimation of the singular functions |qn〉
are amplified by the small singular values at the denominator.

The limited resolution of BF can also be explained in terms of the singular value
decomposition of T∞ [33]

RBF(z) = 〈gz|T∞|gz〉 =
∞
∑

n=1

μn〈gz|qn〉〈pn|gz〉. (5.43)

Due to the rapid decay of the singular values of orders larger than kR0 only the first
n ≈ kR0 terms in the series contribute to RBF . As a result, the information contained
in the higher order singular functions is lost due to the small weight given by the
corresponding singular values μn.

5.7 Experimental Examples

To illustrate how the inverse scattering approach is applied to experimental data this
section outlines methods and results that have been reported in previous communi-
cations. We start with full-view experiments that have been performed with a proto-
type array system for breast ultrasound tomography (BUST) [15]. BUST produces
tomographic slices of the breast using ultrasound rather than the ionizing radiation
used in CT. The basic measurement setup is shown in Fig. 5.9(a). The patient lies
prone on a table with a breast suspended in a water bath through an aperture in the
table. A toroidal ultrasound array encircles the breast and scans it vertically from
the chest wall to the nipple region. The array consists of 256 transducers, which
are mounted on a 200 mm diameter ring, and can measure the multistatic matrix
in around 0.1 seconds. A total of 65536 signals is recorded within this time and
the data is stored in around 100 MBytes of RAM. Similar systems with more array
elements have been built, e.g. [40].

The signals are wideband therefore, the i–j entry of the multistatic matrix at a
particular frequency ω, is obtained by performing the Fourier transform of the i–j

signal and selecting the complex value of the spectrum at the frequency ω. This leads
to the amplitude and phase of the multistatic matrix shown in Fig. 5.9(b), (c) which
have been measured for the complex three-dimensional breast phantom shown in
the CT image in Fig. 5.9(d) at 750 kHz.

Figure 5.9(e) is the sound-speed map obtained from the data shown in
Fig. 5.9(b), (c) with the inverse scattering approach introduced in [37]. The sound-
speed reconstruction shows striking similarities with the CT image revealing, for
instance, the irregular contour of the bright inclusion on the right. Some artifact
outside the phantom boundary is due to aliasing caused by spatial undersampling.4

4For a phantom diameter of 120 mm and λ = 2 mm the sampling criterion given in (5.34) requires
377 sensors while the array has 256 only.
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Fig. 5.9 Example of quantitative imaging under a full-view configuration. (a) Diagram of the
BUST setup for cancer detection; (b) amplitude and (c) phase of the multistatic matrix at 750 kHz;
(e) X-ray CT of a complex 3-D breast phantom showing density distribution; (f) sound-speed map
obtained with the inverse scattering approach; (g) BF reconstruction representative of sonography

Another important characteristic of the reconstruction in Fig. 5.9(e) is that it is
relatively free of speckle. Speckle is instead dominant in the reflection image shown
in Fig. 5.9(f) which is obtained with BF [38]. Thanks to speckle contrast, the irregu-
lar outline of the glandular tissue and three of the four inclusions are revealed. At the
same time, speckle masks the presence of the smallest inclusion, thus affecting the
sensitivity of BF to the smaller lesions. These results show that current ultrasound
array technology is sufficiently mature to achieve high resolution tomographic im-
ages of complex 3-D objects, comparable to those obtained with X-ray CT.

The super resolving capabilities of the inverse scattering approach can be demon-
strated using the sampling methods. As an example Fig. 5.10 refers to an experiment
performed with two 0.25 mm diameter nylon wires immersed in the water bath per-
pendicularly to the plane of the array (the experimental setup is detailed in [35]).
Due to the small diameter of the wires compared to λ, the reflected signal is very
weak as can be seen from Fig. 5.10(a). The reflections are buried in the background
noise and the SNR is lower than 0 dB.

Figure 5.10(b) is a monochromatic image of the wires obtained at 1 MHz
(λ = 1.5 mm) with the FM over an area λ × λ around the wires; the BF image
is shown in Fig. 5.10(c) for comparison. While BF cannot resolve the two wires,
FM clearly resolve them despite of their λ/4 spacing. Moreover, FM provides a
well defined reconstruction of the shape of the scatterers revealing features which
are even smaller than λ/4. Note that the diameter of the wires is λ/6. This is a re-
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Fig. 5.10 (a) Pulse-echo signals showing the reflection (between 120 and 140 µs) from two
0.25 mm diameter nylon wires immersed in water; (b) monochromatic image obtained with the
FM at 1 MHz (λ = 1.5 mm); (c) monochromatic image at 1 MHz obtained with BF

Fig. 5.11 Experimental
demonstration of super
resolution imaging under
limited view. The images
show an area of 15 × 15 mm
centered in between two holes
in a block of steel, the circles
representing the position and
actual size of the holes.
(a) Image obtained with
commercial BF technology;
(b) cross-section of (a);
(c) super resolved image
obtained with the methods;
(d) cross-section of (c)

markable result given the low SNR and the large distance between the wires and the
sensors, ∼70λ.

Finally we consider a limited view configuration [Fig. 5.4(b)] in which a mild
steel block is probed with a 32 element linear array. The block contains two parallel
through-thickness holes 1 mm diameter, 1.5 mm apart, and at a 46 mm depth from
the array (see, for more details, [31]). Figure 5.11(a) is a BF image of the two holes
at 2 MHz obtained with a commercial BF system from Technology Design. The
image reveals the presence of the scatterers but is not able to resolve them. This
is better shown in Fig. 5.11(b) which is a cross section of Fig. 5.11(a) along the
direction joining the two hole centers. The lack of resolution is predicted by the
Rayleigh criterion [16] which, for the aperture of the array and the depth of the
holes, predicts a minimum resolvable distance d = 0.61λ/ sin(θ) = 1.32λ. Since
λ = 3 mm, d = 4 mm which is well above the actual distance between the holes
(1.5 mm).

Figures 5.11(c), (d) show the reconstructions obtained with the sampling meth-
ods at 2 MHz [31]. By contrast with BF the two holes are completely resolved and
the image is very sharp as better seen in Fig. 5.11(d). The resolved distance is more
than 2.5 times smaller the minimum resolvable distance predicted by the Rayleigh
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criterion. This means that in order to achieve the same resolution with BF, a fre-
quency of 5 MHz would be required, thus resulting in a much higher attenuation
(in metals the attenuation due to grain scattering increases with the square of the
frequency).

5.8 Conclusion

The detection of small features in complex background media is a recurrent prob-
lem across a number of application areas, medical diagnostics and non-destructive
testing being two important examples. In this context, imaging techniques offer sig-
nificant potential for achieving cost-effective detection through high sensitivity and
limited false positive rate. However, to fully realize this potential, it is crucial to
extract all the information encoded in the physical signals that are used to form the
image. Current, off-the-shelf ultrasound imaging technology is underpinned by the
beamforming (BF) method, which although very robust, discards a significant pro-
portion of the information carried by ultrasonic signals. Therefore, BF reconstructs
some of the geometrical features of the object but with a resolution limited by the
wavelength of the probing signals according to the diffraction limit.

This chapter has introduced the notion that scattering measurements encode more
information about the object’s structure than BF can extract. In particular, the distor-
tion experienced by the probing wavefield as it travels within the object and which
is caused by multiple scattering, encodes information about the subwavelength fea-
tures of the object in the far-field pattern of the scattered wave. To unlock this in-
formation, it is necessary to approach image formation from an inverse scattering
perspective. By accounting for multiple scattering effects when solving the inverse
problem, it is then possible to obtain subwavelength resolution beyond the diffrac-
tion limit. Moreover, the inverse scattering approach introduces a shift of paradigm
from the structural imaging of BF that is limited to the geometrical features of an
object, to quantitative imaging that reveals complementary information about the
mechanical properties of the object.

The use of advanced inverse scattering techniques is now possible thanks to
progress in computer power and advances in ultrasound array technology and the
front-end electronics used to drive them. These technologies enable a fast and ac-
curate mapping of the perturbation to the free propagation of ultrasound induced by
the presence of an object. The dynamic range of the array system, which measures
the ability of the system to detect large signals as well as small ones, is a limiting
factor in measurement accuracy. Importantly, the maximum achievable resolution
is dictated by the dynamic range of the detector and is not an intrinsic physical
limitation of wave propagation and scattering mechanisms.
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