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Abstract We present a computational machinery for describing and capturing the
global qualitative behavior of dynamical systems (Arai et al. SIAM J Appl Dyn
Syst 8:757–789, 2009). Given a dynamical system, by subdividing the phase space
into a finite number of blocks, we construct a directed graph which represents
the topological behavior of the system. Then we apply fast graph algorithms for
the automatic analysis of the dynamics. In particular, the dynamics can be easily
decomposed into recurrent and gradient-like parts which allows further analysis of
asymptotic dynamics. The automatization of this process allows one to scan large
sets of parameters of a given dynamical system to determine changes in dynamics
automatically and to search for “interesting” regions of parameters worth further
attention. We also discuss an application of the method to time series analysis.

The method presented in Sects. 1–4 below is given in [1] for the first time, which
is based on and combines a number of theoretical results as well as computational
software packages developed earlier. For the details, see the original paper [1].

1 Conley-Morse Decompositions

Throughout the paper, we assume that the system is given by a family of continuous
maps

f WRn � R
d 3 .x; �/ 7! f�.x/ 2 R

n:
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We are interested in the analysis of global dynamics generated by f as the parameter
� is varied over Rd . In most situations, only some bounded regions R � R

n and
� � R

d have physical meaning for the analyzed model. If both R and � are
rectangular regions then one can easily introduce finite rectangular grids H and
L in both of them.

A Morse decomposition of a dynamical system is a finite collection of disjoint
isolated invariant sets S1; : : : ; Sn (called Morse sets) with strict partial ordering �
on the index set f1; : : : ; ng such that for every x in the phase space there exist indices
i � j such that the ˛- and !-limit sets of x is contained in Sj and Si , respectively.
A Morse decomposition can be represented in terms of a directed graph G D .V; E/

where V D fS1; : : : ; Sng and .Si ; Sj / 2 E iff j � i . This graph is called a Morse
graph. If each Morse set is assigned its Conley index [3, 4] then such a structure
is called a Conley-Morse decomposition, and the corresponding graph is called a
Conley-Morse graph [1].

Note that a Morse decomposition of X is not unique. In particular, if i; j are such
indices that i � j but there is no other index k such that i � k � j then one can
create a coarser Morse decomposition by replacing Si and Sj with Si [Sj [C.i; j /,
where C.i; j / denotes the union of the images of all the complete orbits such that
�.t/ ! Si and �.�t/ ! Sj as t ! 1.

2 Graph Representation

Given a formula for f� and some grid H in the region R � R
n, for each parameter

set L 2 L one can use the interval arithmetic directly to compute a combinatorial
representation FLWH ( H for f�, which then will be represented by a directed
graph G D .V; E/ where V D H and .v; w/ 2 E iff w 2 F.v/. It turns out
that the analysis of the graph G can easily provide meaningful information on the
asymptotic dynamics of f� represented by FL. For example, each combinatorial
invariant set defined as a set S � H for which S � F.S/ \ F�1.S/ covers an
isolated invariant set with respect to f�. More precisely, if S is a combinatorial
invariant set then jSj is an isolating neighborhood, and if S is an isolated invariant
set with respect to f� for some � 2 L then its minimal cover S is a combinatorial
invariant set. Another example is a combinatorial attractor defined as a set A �
H such that F.A/ � A which covers a real attractor for f�. In fact, if A is a
combinatorial attractor then jAj is an isolating neighborhood whose invariant part
A WD InvjAj is stable in the sense of Conley, that is, every positive semitrajectory
starting in some open neighborhood of A tends to A. In particular, if there exist
two combinatorial attractors for FL then this implies the existence of two disjoint
attraction basins for f� for every � 2 L. See [2] for detail.

Extensive analysis of the dynamics can be obtained by computing the strongly
connected components of G. It is known that all the strongly connected components
of G form isolating neighborhoods for the union of all the chain recurrent sets of
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the dynamical system, and thus can serve as a combinatorial Morse decomposition
fMi W i D 1; : : : ; kg, for some k > 0, which represents a family of isolating
neighborhoods jMi j. The sets Mi are called combinatorial Morse sets. A partial
order � between the computed combinatorial Morse sets can be determined by the
analysis of paths in G connecting those sets.

3 Continuation and Bifurcations

If two adjacent sets of parameters L1; L2 � �, with L1 \ L2 6D ;, are considered,
and the combinatorial Morse decompositions computed for L1 and L2 are equivalent
then we talk about continuation of combinatorial Morse decompositions. More
precisely, let .M1

1; : : : ;M1
k1

; �1/ be a combinatorial Morse decomposition for FL1

and let .M2
1; : : : ;M2

k2
; �2/ be a combinatorial Morse decomposition for FL2 . We

say that these decompositions are equivalent if k WD k1 D k2 and there exists a
bijection b of the set f1; : : : ; kg onto itself such that M1

i \ M2
j 6D ; iff j D b.i/,

and b does not violate the order defined by the relations �1 and �2, that is, for no
i; j one has i �1 j and b.j / �2 b.i/.

This definition provides a very weak kind of continuation; it is, in fact, the
continuation of isolating neighborhoods in the sense of Conley (see [3]). In
particular, the lack of continuation suggests a substantial change in dynamics. It
implies such a change only if one ignores spurious Morse sets in the comparison of
combinatorial Morse decompositions. One can use the Conley index to determine
which combinatorial Morse sets are not spurious, and the lack of continuation
between those sets with nontrivial Conley indices implies that a bifurcation is taking
place. The type of bifurcation can be determined to certain extent by analyzing
failures of continuation; for example, a bifurcation that resembles the saddle-node
bifurcation at the scale of isolating neighborhoods can be detected as a series of
two failures of continuation: first, a combinatorial Morse set with a trivial index
appears from nothing, and second, this set splits into two combinatorial Morse
sets with non-trivial indices, one corresponding to a stable fixed point or periodic
orbit, and the other one corresponding to an unstable fixed point or periodic orbit,
respectively.

4 Applications

The practicality of the method is illustrated in [1] with the application to the
2-dimensional non-linear Leslie population model f WR2 � R

4 ! R
2, which is

given by

f .x; yI �1; �2; �; p/ D �
.�1x C �2y/ e��.xCy/; px

�
:
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Fig. 1 Morse decomposition
for �1 D �2 D 32:0

Fig. 2 Conley-Morse graph
for �1 D �2 D 32:0

The numerical studies in [5] indicate that this system exhibits a wide variety of
different dynamical behavior, and thus is considered a meaningful test for the
usefulness of our method. In particular, the coexistence of multiple chaotic attractor,
a very important behavior from a practical point of view, is observed for some
parameter values [5]. However, the computation in [5] is done only for a limited
set of parameters and therefore, we would like to ask when this coexistence happens
for a larger parameter region.

The parameter � is just a rescaling factor, so it is arbitrarily set to 0:1, as in [5].
The parameter p is fixed to 0:7, also the same as in [5].

By applying our method to the nonlinear Leslie model with �1 D �2 D 32:0, we
obtain Figs. 1 and 2. Figure 1 shows resulting three Morse sets: the fixed point at
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Fig. 3 “Bifurcation” diagram

the origin, the oval-shaped region in the middle and the largest one surrounding oval
one. Figure 2 is the Conley-Morse graph. The numbers inside the vertices carry the
information of Conley indexes of associated Morse sets. From this graph, we can
read the coarse gradient behavior of the dynamics: the origin and the oval invariant
set are relative repellers and there exist connecting orbits from these repellers to the
attractor.

The result of the continuation analysis of the previous section is illustrated
in Fig. 3. For simplicity, the parameter space .�1; �2/ 2 Œ10; 35�2 is subdivided
into 64 � 64 equal squares here. The bounded region R in the phase space is
subdivided into 4096 � 4096 rectangles of the same size and a combinatorial
Conley-Morse decomposition is computed for each parameter box using this grid.
In the picture, adjacent boxes in the parameter space .�1; �2/ with equivalent Morse
decompositions are plotted in the same shade of gray and white squares correspond
to parameter boxes for which no continuation could be found to any adjacent box.
The transitive reduction of the Morse graph is illustrated for some regions; a square
indicates an attractor, a filled circle corresponds to a Morse set with a nontrivial
Conley index, and a hollow circle indicates a Morse set with the trivial Conley
index . From the figure, we can easily identify the parameter region with multiple
attractors. We want to emphasize here that this computation is fully automatic and
no a priori knowledge is required. Therefore our method can also be applied for
higher dimensional problems where it is difficult to answer the number of attractors
from simple numerics.

One can interactively explore computational results explained in this section at
the project web site http://chomp.rutgers.edu/database/.

5 Time Series Analysis

In practical applications, the data of the system of our interest is often provided
as a time series coming from experiments. In this section, we thus present some
preliminary computations towards the application of Conley-Morse graph method
to time series analysis.

http://chomp.rutgers.edu/database/
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Fig. 4 From a time series of
length 30 � 2,000

We remark that in real experiments, the size of the data is always finite. Therefore
even if we know that the system is driven by a continuous dynamical system, its
behavior can not be entirely reconstructed from the data. Hence, our goal would
be to reconstruct a coarse-grained system as close to the original one as possible.
Since the Conley-Morse graph method explained in previous sections involves a
procedure of coarsening, namely, fixing a grid-size on the phase space and ignoring
the behavior of the system smaller than this grid size, it is natural to apply this
method to time series analysis.

For this purpose, we need to notice that due to practical restrictions on experi-
ments, a time series is usually not fully distributed on the phase space or attractors
of the system. That is, the information of the system may be missing on significantly
large parts of the phase space. And furthermore, a times series may contain unknown
experimental noise. Therefore, we muse discuss the robustness of the Conley-Morse
graph computation under the existence of noise and deficits.

Figure 4 illustrates the result of a Morse decomposition for a time series of
length 30 � 2,000 (the data of 2,000 orbits of length 30) generated by the non-linear
Leslie model with �1 D �2 D 32:0. Compared with Morse sets in Fig. 1 where we
constructed them directly from the dynamics, we find that Morse sets reconstructed
here from the time series miss some parts while their rough geometric shapes are
similar.

Figure 5 is the same as Fig. 4, but for a time series of length 30 � 500. Notice
that although the size of the series is one-fourth of the first figure, we still have a
qualitatively similar decomposition of the invariant set.

Figure 6 shows the Morse decomposition obtained for a noisy time series. The
parameter of the system is the same as before, but here we put Gaussian noise of
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Fig. 5 From a time series of
length 30 � 500

Fig. 6 From a noisy time
series

standard deviation 0.15. Notice that the shape of Morse sets now blurs to some
extent but still keeps the essential structure of the original decomposition.

These computations advocate a vague kind of robustness of Conley-Morse
graph and possible application to times series analysis. To obtain mathematically
meaningful results, we need a more detailed study on it taking the dependency
of Conley-Morse graph on noise and deficits into account. This will be discussed
elsewhere.
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