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Abstract Neural networks in the brain display prominent hierarchical modular
organization and complicated rhythmical oscillations. We systematically study the
phenomenon of sustained activity in hierarchical modular networks, which are
obtained by rewiring initially random networks. We find that a hierarchical modular
architecture can generate sustained activity better than random networks. More
importantly, the system can simultaneously support rhythmical oscillations and self-
organized criticality, which are not present in the respective random networks. These
results imply that the hierarchical modular architecture of cortical networks plays
an important role in shaping the ongoing spontaneous activity, allowing the system
to take the advantages of both the sensitivity of critical state and predictability and
timing of oscillations for efficient information processing.

1 Introduction

Understanding the large-scale organization of the structure and dynamics in the
brain from the viewpoint of complex networks has become a new frontier in
neuroscience [1, 2], because the architecture of networks in brain always impacts
neural system’s dynamical behaviors and the dynamics underlie the mechanisms of
the brain’s functions.

One of the most prominent structural features in the neural system of the brain
is the organization of modules, structured hierarchically from large-scale regions
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of the whole brain, via cortical areas and area subcompartments organized as
structural and functional maps, to cortical columns, and finally circuits made up of
individual neurons [3]. Meanwhile, the networks display self-organized sustained
activity, which is persistent in the absence of external stimuli. At the systems
level, such activity is characterized by complex rhythmical oscillations over a
broadband background, such as ’, ™, and • oscillations [4]. While at the cellular
level, neuronal discharges have been observed to display avalanches, indicating
that cortical networks are at the state of self-organized criticality (SOC) [5]. Self-
organized criticality is a concept proposed in physics that mimics the avalanche
of sandpiles, and is an ubiquitous property of complex systems, such as piling of
granular media, earthquakes, and forest fire, etc. [6–8]. The concept asserts that
a system self-organized into a critical state is characterized by scale invariance.
At such a critical state, signals and perturbations can efficiently propagate over
broad spatio-temporal scales. Critical behavior in neural models has been shown
to bring about optimal computational capabilities, optimal transmission, storage of
information and sensitivity to sensory stimuli [9]. And SOC has been suggested
playing an important role in human perceptual functions [10].

SOC is characterized by power-law distribution of the size of avalanches,
indicating that there is no characteristic scale. On the contrary, rhythmic oscillations
suggest that neural activity possesses typical scales and is predictable to certain
extent. How these two apparently contradictory dynamical properties are unified
in the neural dynamics is a question that has not been addressed in the studies of
neurodynamics. In this work, we use numerical simulations to show that the modular
network organization provides such a template to unify them.

Within the modules, the activity of the neural firing is characterized by SOC,
while the weak interaction between the modules makes it possible that the
avalanches of some modules can act as the weak input to other modules, leading to
sustained activity without external stimulus.

2 Method/Models

We carried out intensive numerical simulations of a balanced neural network model
[11]: there are 80% excitatory neurons and 20% inhibitory neurons. The dynamics
of the membrane potential is described as

�
dV

dt
D .Vrest � V / C gex.Eex � V / C ginh.Einh � V /:

The value of the time constant is �D20 ms, the resting membrane potential
is Vrest D � 60 mV, reversal potentials of synapses for excitatory and inhibitory
neurons are Eex D 0 mV and Einh D � 80 mV. When an excitatory (or inhibitory)
neuron fires, the synaptic variables gex (orginh) of its postsynaptic targets are
increased by �gex (or �ginh). Otherwise, synaptic variables decay exponentially
with the time constants �ex D 5 ms and �inh D 10 ms.
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Fig. 1 (a) Connection density matrix of a 4-level HMN. Network size is N D 10,000, Rex D 0.99.
(b, c) Average duration of network activity in the parameter space (�ginh, �gex). The results are
averaged over 100 realizations of (b) random networks and (c) 4-level HMNs with Rex D 0.99,
respectively

The strengths of excitatory and inhibitory neurons are such that in a broad
range, the average input current of a neuron from the excitatory pool is roughly
canceled by that of the inhibitory pool; however, the fluctuations can be so large to
exceed the firing threshold in sparse random networks with large enough number of
neurons (10,000 neurons in our simulations). This will lead to sustained irregular
activity in such a balanced random network of neurons. In our study, we introduced
modular structure into the network connectivity. Beginning with random networks,
the neurons are divided into groups and the connections between groups are moved
into groups with a probability R. Then connections are denser within the group
but much sparser between the groups, while maintaining the total connections the
same as the original random networks. We can further divide the modules into sub-
modules to obtain a hierarchical modular network (HMN). See Fig. 1 for an example
of a 4-level HMN with 16 modules, each having N/16 D 625 neurons. Considering
the fact that inhibitory couplings form local connections and excitatory couplings
provide long-distance interactions, we rewire inhibitory inter-module connections
with the probability Rex D 1, and rewire excitatory inter-module connections with
0<Rex<1.

3 Results

In random networks, balance between excitation and inhibition exists in a region
of the parameter space of the strength of the excitatory and inhibitory synapses
(�ginh, �gex), which allows the neural network to sustain irregular activity without
external signals. In simulations, the networks were stimulated by noise in an initial
period of time. Figure 1b and c show how long the activity sustained after noise is
removed. The region III of the Fig. 1b represents the irregular sustained activity in
random networks [12]. When the rewiring probability Rex D 0.99, although modules
are dense and small, the irregular sustained region is maintained in HMNs, as shown
in Fig. 1c.
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Fig. 2 (a) Population activity of an ensemble of neurons in a random network and of a module in
the HMN rewired from the random network (upper panels), and corresponding average membrane
potentials (lower panels). (b) Power spectrum density of average potentials in random networks
(black) and HMNs (blue). (c) and (d) Distributions of the silent period in an ensemble of neurons in
random networks and in a module of HMNs. (e) and (f) Distribution of the activity size in networks
corresponding to (c) and (d). The insets in (d) and (f) show the cumulative distributions of silent
period and activity size in modules of HMNs

However, different from quite homogeneous random activity in random net-
works, the activity patterns in modular networks is very heterogeneous. In Fig. 2a,
we compare the activity of one module in a 4-level HMN obtained at Rex D 0.99
and the activity of the corresponding ensemble of neurons in the random network
before rewiring. The HMN displays intermittence with bursts of relatively strong
activity separated by distinct silent periods, while the activity in the random network
continues at a lower level, but without discernible silent intervals.

The intermittent activity of modules in the HMN exhibits the characteristics of
avalanche dynamics. We analyzed the distribution of the size of each activity of a
module and the lengths of the silent interval between two activities. In Fig. 2c and e,
distributions of both the silent interval and the activity size in random networks
are straight lines when plotted in log-linear form, showing that the distributions
follow exponential functions. On the contrary, the distributions of modules in HMNs
display straight lines in the log-log plot (Fig. 2d, f). Therefore in the HMN both
the silent interval and the activity size are distributed according to the power-law
functions.

Power-law distribution of avalanche size is the fingerprint of the self-organized
criticality [9]. These results show that HMNs are close to critical states, while
the random networks are not. The observation of critical states is consistent with
experimental data which showed a power-law distribution of the neuronal avalanche
size [5] or the intervals between large energy fluctuations [13].
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Another significant effect of the intermittent dynamics in HMNs is the emergence
of low frequency activity. In Fig. 2a one can see the fluctuation of the average
potential of modules in HMNs is more significant than that of random networks
and exhibits the characteristics of rhythmic oscillations. We perform an analysis
by calculating the power spectrum density of the average potential of networks.
Figure 2b shows that in random networks the power decays monotonically as the
frequency increases. In the HMNs with Rex D 0.99, a pronounced peak appears at
low frequency around 15 Hz.

4 Conclusion/Discussions

We studied the effect of hierarchical modular structure on the dynamics of the
sustained activity of neural networks with both excitatory and inhibitory neurons.
The modular property can support the irregular sustained activity. More importantly,
we found that the coexistence of SOC and oscillations could be realized in
modular neural networks. Our results provide a new mechanism of sustaining
activity and generating oscillations in cortex-like neural network that captures the
most prominent structural features: the hierarchical modular organization and the
coexistence of excitatory and inhibitory neurons.

Our further analysis shows that cutting SOC off at finite size due the limited
number of neurons within the module could be one of the reasons that leads to
the oscillations of the network collective activity. Currently we are exploring the
implications of the combination of SOC and oscillations in information processing,
which should shed light on the structure-function relationship in the brain. Fur-
ther studies on the role and advantages of HMNs in information processing are
interesting, and are potentially useful for understanding neural activities underlying
perceptual functions.
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