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Preface

Five decades of brain research have led to the emergence of a new field, spanning
the entire spectrum of cognition from synaptic dynamics to social interactions,
and which integrates nonlinear neurodynamics operating simultaneously at and
across various scales. A new kind of scientist is emerging, schooled in multiple
academic disciplines, comfortable in working with data from different levels, and
conversant with the mathematical and computational tools that are essential to cross
the boundaries of these disciplines.

Cognition, in its essence, is dynamic and multilayered, and the pursuit of new
clues inevitably leads us from one layer to the next, both reductionist and holistic.
A new trend in the study of cognition from the point of view of neurodynamics has
emerged as a result of the rapidly evolving developments of the activity within the
field of Nonlinear Dynamics and Cognitive Science.

In order to promote the integration of Cognitive Science and Neurodynamics as
a whole, the International Conference on Cognitive Neurodynamics has been held
biannually since 2007 under the support of the editorial board meeting of Cognitive
Neurodynamics (Springer). The first conference, ICCN2007, was held in Shanghai,
and the second, ICCN2009, in Hangzhou, also in China.

And this was the third ICCN, at The Hilton Niseko Village, Hokkaido, Japan,
from June 9–13, 2011. Due to the tragedies of the Great East Earthquake and ensu-
ing tsunami in Japan, many people had difficulty in attending, so we are very grateful
for the efforts of those who nonetheless helped to make ICCN2011 a success.
There were 161 participants from 17 countries, 6 plenary talks by Prof. Leslie Kay,
Prof. Robert Kozma, Prof. Soo-Young Lee, Prof. Hajime Mushiake, Prof. Noriko
Osumi, and Prof. Peter Robinson, 130 papers, and invited lectures by 3 renowned re-
searchers, Prof. Shun-ichi Amari, Prof. Minoru Tsukada, and Prof. Walter Freeman.

The conference ranged from a microscopic model of the neural impulse to a
macroscopic model of the sleeping rhythm. Key sessions were: Neuronal Impulse,
Patterns and Bifurcation, Integrative and Multi-level Approaches for Cognitive
Neurodynamics, Model Complexity in Neural Network Phenomena, Toward
Understanding of Intelligence: Collaboration between Neuroscience and Robotics,
Spatiotemporal Network Dynamics, Shaping Embodied Neurodynamics through
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Interaction, Mathematical and Statistical Aspects of Neurodynamics, Dynamic
Patterns of Neural Activity in Human Information Processing, and Neural Basis of
Biological Timing. We express our sincere appreciation to all the session organizers.
We also appreciate the session presenters who maintained discussions throughout
the sessions and at the poster presentations.

Another highlight was the young researcher session in which we asked young
researchers to discuss and create a tentative collaboration plan which was then
evaluated by the senior researchers. The young researchers learned much from
the suggestions of the senior people. We also wish to acknowledge the Dynamic
Brain Forum (DBF), co-organized with ICCN2011, and in particular, Prof. Jan
Lauwerence for his organization of DBF sessions.

Historically, DBF was the “Origin of Brain Dynamics Study”, the core research
field of ICCN. DBF was initiated by the Japanese “Gang of Five” who were
focused on nonlinear dynamics and their activity led to related work in Cognitive
Neurodynamics in China which finally resulted in ICCN2007. So, ICCN owes
much to DBF for their research field concept establishment, and ICCN2011 was
happy to have coordinated with DBF2011. The next ICCN2013 will be held
in Sigtuna, Sweden, by Prof. Hans Lijenstrom (Swedish Univ. of Agricultural
Science). We look forward to sharing fresh topics and ideas both among the people
who originally gathered at Niseko and with all other attendees.

We would also like to express our gratitude to the supporting organizations,
Grant-in-Aid for Scientific Research on Innovative Areas “The study on the neural
dynamics for understanding communication in terms of complex hetero systems
(No.4103)” of MEXT Japan, RIKEN BSI, and Tamagawa University Global COE
Program “Origins of the Mind”; for financial support from SCAT, sponsorship
by Springer, FIRST project and Budapest Seminar, and co-sponsorship by JNNS,
INNS and CNS. We hope all the supporting activity will continue to foment the
development of this fast-moving and exciting scientific field.

Yoko Yamaguchi
Takashi Omori

Ichiro Tsuda
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Artificial Cognitive Systems with Active
Learning and Situation Awareness Capabilities

Soo-Young Lee

1 Introduction

From 1998 to 2008 we had developed Artificial Brain inspired by brain information
processing mechanism, which had successfully demonstrated lower-level secretarial
functions [1]. From 2009 we are now extending this approach toward higher
cognitive functions for intelligent agents, i.e., Artificial Cognitive System (ACS).

The essential functions of ACS for intelligent agents are proper decision making
and following action (behavior). The decision making is based on situation
awareness, which is also based on knowledge representation and accumulation.
These five modules will be developed based on computational models of proactive
knowledge development and self identity. Eventually both hardware and software
will be developed.

The research will utilize relevant previous researches for audio-visual perception
as well as cognitive science, and extend into computational models and HW/SW
systems.

However, the cognitive scientific knowledge is not good enough due to poor
temporal and spatial resolutions. Among available non-invasive techniques, fMRI
provides about 1 mm3 spatial resolution with 1 s temporal resolution, while EEG
and MEG provide 1 ms temporal resolution with 1 cm resolution. Although there
exist many attempts to combine fMRI and EEG/MEG for cognitive modeling, it
is beyond current status-of-art technologies to measure brain signals with enough
spatial and temporal resolutions.

In this position paper we propose to combine fMRI and EEG experiments,
and the missing links will be filled-in from engineering knowledge, especially
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the information theory. In Sect. 2 we present the higher cognitive functions to be
implemented for our intelligent agents, i.e., Artificial Cognitive System (ACS), and
the multidisciplinary multimodal approach will be presented in Sect. 3.

2 Artificial Cognitive Systems

The ACS will be based on our previous works on Artificial Brain and its secretarial
developments, called OfficeMate, and then further extended with additional func-
tions.

The Artificial Brain was developed through Korean Brain Neuroinformatics
Research Program from 1998 to 2008. It was a joint effort of researchers from
many different disciplines including neuroscience, cognitive science, electrical
engineering, and computer science, and about 35 professors and 70 professors from
many Korean universities were involved in the program.

The Korean Brain Neuroinformatics Research Program had two goals, i.e., to
understand information processing mechanisms in biological brains and to develop
intelligent machines with human-like functions based on the mechanism. In 2008 we
had developed an integrated hardware and software platform, i.e., Artificial Brain.
With two microphones, two cameras (or retina chips), and one speaker, the Artificial
Brain looks like a human head, and has the functions of vision, auditory, cognition,
and behaviour. Also, with this platform, we had developed a testbed application,
i.e., “artificial secretary” alias OfficeMate, which might reduce the working time of
human secretary by a half.

As shown in Fig. 1, the information processing functions in the Artificial Brain
consist of four modules. Among five human sensory processes the vision and

Fig. 1 Functional modules of Artificial Brain
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Fig. 2 Basic concept of Artificial Cognitive Systems

the auditory modules provide the richest information, and complex information
processing is performed. All the sensory information is integrated in the inference
module, which provides learning, memory, and decision-making functions. The
last module, action module, generates signals for required sensory motor controls.
Although there may be many feedback pathways in biological brains, feed-forward
signal pathways are mainly depicted here for simplicity.

The Artificial Brain may trained to work for specific applications, and the
OfficeMate was our choice of the application test-bed. Similar to office secretaries
the OfficeMate would help users for office jobs such as scheduling, telephone
calls, data search, and document preparation. The OfficeMate should be able to
localize sound in normal office environment, rotate the head and cameras for visual
attention and speech enhancement. Then it would segment and recognize the face.
The lip reading would provide additional information for robust speech recognition
in noisy environment, and both visual and audio features would be used for the
recognition and representation of “machine emotion.” The OfficeMate would use
natural speech for communications with the human users, while electronic data
communication may be used between OfficeMates. Some role of secretarial jobs
had been demonstrated.

We are now further extending the approach toward higher cognitive functions
for intelligent agents, i.e., Artificial Cognitive Systems (ACSs). As shown in Fig. 2,
based on the computational models of proactive knowledge development (PKD) and
self-identity (SI), we would like to build functional modules for Knowledge Rep-
resentation & Accumulation, Situation Awareness, Decision Making, and Human
Behavior. The developed ACS will be tested against the new Turing Test for the
situation awareness.

Models of Proactive Knowledge Development: The model of self-developing
knowledge development will include active learning by asking proper questions
based on the estimation of itself and environment.

Models of Self-Identity and Emotion: The model of self-identity and emotion
will be developed based on recurrent neural network, of which internal hidden state
represents one self-identity or emotion.
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Fig. 3 Neural network model of Artificial Cognitive Systems

Knowledge Representation and Accumulation: Basic units of knowledge, i.e.,
features, and hierarchical network architecture based on the features will be
developed for knowledge accumulation from bilateral interaction with environment
(people, other robots, internet).

Situation Awareness: Recognition algorithm of unknown environment and situ-
ation will be developed based on (common) knowledge, previous experience, and
self-identity.

Decision Making: The model of decision making based on situation, user models,
and its own internal states will be developed.

Human Behavior: Action models will be developed for facial expression, hand
motion, and speeches.

Artificial Systems Development: Hardware and software development. Figure 3
shows the neural network model of ACS.

New Turing tests: The Test problems will consist of several video clips, and the
performance of the ACSs will be compared against those of human with several
levels of cognitive ability.

As a simple demonstration, the developed personality-based agent model was
applied to the Prisoners’ Dilemma problems, and demonstrated the personality may
be evolved by the interaction with other agents, i.e., the opponent of the Prisoners’
Dilemma game. Actually to make its own decision the Agent tries to estimate
the opponent’s behavior, and different personality evolves for different opponent.
In a society of many adaptive Agents they interact each other throughout many
generations, and may co-evolve to different societies. In our experiments the society
usually evolves cooperative or competing society of homogeneous Agents. In the
cooperative society each Agent converges to a personality with mutual benefits,
while it converges to egoist personality in the competing society.
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The network architecture of ACS in Fig. 3 has internal state clusters to model
the self-identity. The output (action) is a function of the internal states as well as
audio-visual inputs. Also, the output makes change of the internal states.

Although audio and visual pathways are separated in brain anatomy, as demon-
strated by McGurk effect [2] audio-visual interaction occurs in human perception.
The hierarchical knowledge clusters perform this audio-visual interaction as well as
their interaction with action and internal states. It is also important to have hierarchy
for easy knowledge addition and deletion.

3 Multi-modal Multi-disciplinary Approach

For the development of ACS we need mathematical models of higher cognitive
functions, which may not be available at this moment. Therefore, in addition to
utilizing existing knowledge, we are conducting our own cognitive experiments.

Figure 4 shows how we would like to come up with mathematical models of
higher cognitive functions in metaphor. When ten blind men are trying to figure our
an elephant, each man just knows one small part of the elephant. As shown in the
upper-left corner, the collection of knowledge does not do much good. Provided the
relative locations of ten blind men were known in the upper-right corner, one may
obtain some vague idea on an element. Then, one tried to utilize domain knowledge
to extract something useful from the vague idea. In this case one may utilize the fact

Fig. 4 Combining multimodal data from cognitive neuroscience and engineering knowledge from
information technology for mathematical models of higher cognitive functions
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that any edge is likely to be extended, and the result in the lower-right shows clear
picture of an elephant. If one adds temporal dynamics, it will become much clearer
and even distinguishes legs and noise. The figure shows usefulness of combining
multimodal data for both high temporal and spatial resolutions while the missing
links are filled in by domain information theory.

4 Conclusion

For the intelligent agents we propose to learn from brain information processing
mechanism. Although the cognitive neuroscience dose not yet provide enough
knowledge to build mathematical models of higher cognitive functions such as
situation awareness and self-identity, we can utilize multimodal measurements such
as fMRI with higher spatial resolution and EEG for higher temporal resolution. The
still-existing missing links will be filled-in from engineering knowledge such as
information theory.
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Dynamic Neuronal Representation
in the Prefrontal Cortex

Hajime Mushiake, Keisetsu Shima, Kazuhiro Sakamoto, Yuichi Katori,
and Kazuyuki Aihara

Abstract The present paper investigated the neural mechanisms underlying
dynamic neural representation in the prefrontal cortex (PFC), which is thought
to play a crucial role in flexible cognitive behavior. Neural representation is discrete
or continuous according to the information to be encoded. The multistable attractor
model is a plausible theory of flexible control of representation. Attractor states are
dependent on functional connectivity in which neuronal subpopulations actively
communicate with one another at any particular moment in time. We discussed new
optogenetics tools to manipulate the state of local circuits to investigate dynamical
neural function.

Keywords Prefrontal cortex • Attractor • Dynamics
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1 Introduction

The brain interacts with the world through the body and creates representations
of the internal state of the body and external state of the environment to cope
with the ever-changing world in a flexible manner. Recent studies have revealed
that the prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior
by adaptively encoding various aspects of goal-directed behavior through cross-
modal and cross-temporal integration according to a given behavioral context [1–4].
Adaptive representation depends on functional connectivity in which neuronal
subpopulations constantly communicate with one another. Thus, it is important to
understand the mechanisms underlying the dynamic processing of neural activity in
local PFC circuits.

We investigated the neural mechanisms underlying flexible performance during
cognitive tasks in non-human primates by analyzing the neuronal dataset using a
representation-level approach to determine the information encoded by each neuron
and a dynamic-system approach to describe the neural system as a state defined by
a set of variables mapped in the state space over time [5–7]. The physiological vari-
ables measured included field potential, spiking activity, membrane potentials, and
other quantitative physiological parameters. The representation-level and dynamic-
system approaches are not mutually exclusive and represent two sides of the
coin. We examined the neural mechanisms underlying flexible cognitive control by
reviewing recent findings on representational and dynamic approaches. Moreover,
we discuss the need for innovative research tools to study dynamic neural states in
vivo. Optogenetics, a promising new tool, allowed us to manipulate the state of local
circuits with high space–time resolution.

2 Dynamic Representation of Information

Neurons in the PFC are thought to be involved in an executive function by
dynamically processing neural representations to cope with future demands in a
prospective manner. Accumulating evidence indicates that prefrontal neurons not
only hold external and internal information in a working memory but also transform
online information from one type of behaviorally relevant information to another in
a flexible manner [8–14]. These studies have suggested the existence of two types
of representation: discrete and continuous. Our previous studies investigating PFC
involvement in flexible mapping between goals and actions provide an example of
dynamic representational changes in discrete information. Monkeys were trained to
perform a path-planning task that required the use of two manipulanda to move
the cursor from an initial position in a maze displayed on the computer screen
to reach a given goal [10, 11, 14]. The goal was one of four peripheral positions
in the maze that could be reached by various combinations of cursor movements.
Several PFC neurons exhibited initial selectivity for the final goal and subsequent
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1st step-related

2nd step-related

3rd step-related

Neuronal activity reflecting future step
of cursor movements(1st, 2nd 3rd step)

Parallel activation
of future steps

Serial reactivation
of current steps

Fig. 1 Examples of discrete
representation

selectivity for the immediate goal of the first action during the preparatory period
[10, 11]. We also observed neuronal activity representing the first, second, and third
steps of future actions during the late preparation period [14]. Three examples of
PFC neuronal activity associated with the first, second, and third steps of the path-
planning task are shown in Fig. 1. Each neuron exhibited a distinct response only
for the preferred future action. Furthermore, many of these neurons were reactivated
during the execution period of each step. Therefore planned future actions were
represented in a parallel manner in advance and serially executed with stepwise re-
activation of the PFC neurons.

Behavioral tasks requiring an association between different types of discrete
representations often involve a transition between different classes of representation.
For example, stimulus–response association task involves the transition between
representations of sensory domain and motor domain.

In a recent paper [15], we described continuous representation with a graded
magnitude of neural activity. Interval timing of an action is a continuous vari-
able, but a particular interval is often specified in a discrete manner. The pre-
supplementary motor area (pre-SMA) is located in the medial frontal cortex and
is closely connected with the prefrontal areas. To investigate pre-SMA-encoded
interval timing, we trained animals to perform a time-production task that required
them to determine a hold time of three different intervals before initiating a key-
release movement in response to three color cues on the computer screen. We found
two types of responses in the pre-SMA: a ‘time-specific’ response that reflected
the retrieval of a specific interval of time in response to a visual cue and a ‘time-
graded’ response that exhibited decay or build-up changes in activity depending on
the length of the interval (Fig. 2).

The time-specific discrete responses and time-graded continuous parametric
responses contributed equally to the generation of interval timing. Continuous
and discrete representations also appear to play a crucial role in decision-making.
Gold and Shadlen [16] claimed that the neural process underlying decision making
requires a continuous process of evidence accumulation and a binary decision by
filtering continuous magnitude data with adjustable thresholds in their work using
perceptual decision-making tasks. Furthermore, a study that compared two vibration
frequencies in the frontal cortex during a decision-making task reported integration
of discrete and parametric neural presentations [9].
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Fig. 2 Examples of parametric representation

3 Representations as Attractor States

Theoretically, the working memory-related persistent neuronal activity commonly
observed in the PFC is thought to be an attractor state in that relatively small
amounts of variation in this state lead it back to the same state [6, 17, 18].
Multiple attractors consist of ensembles of neurons with resting and active states
such that a memory state can be represented by one state of attractors. This
formulation is plausible insofar as a state of local circuits is dynamically stable
in time. However, in real-time situations in the face of various behavioral demands,
neural representations in one dimension at one epoch must be dynamically linked
with different-dimensional representations at the next epoch to cope with various
internal and external changes. Representations can be switched by reorganizing
attractor states according to short-term changes in synaptic efficacy such as synaptic
facilitation or depression. In this way, attractor states allow a neural system to
work within different characteristic frames of reference corresponding to different
types of representations. In our preliminary studies, we observed neural model-
based dynamic multiple-attractor states that reproduce representational changes
from goals to actions in the PFC. In this model, information in one modality is
encoded by multiple attractor states of a neural population. When the attractor state
is transformed into another state by short-term changes in synaptic efficacy, an
overlapping but different cluster of neurons encodes information in that modality.
Thus, the multi-dimensional information is represented as a different configuration
of neurons, and short-term synaptic changes in local circuits contribute to maintain
or shift attractor states in local circuits (i.e., synapsembles [19]). We believe
dynamically reorganizable multi-attractor model can be applicable to flexible repre-
sentational changes across multi-dimensional information observed in the PFC.
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4 Local Circuits Underlying Dynamic Representation

Attractor states are maintained and modulated at different hierarchical levels in local
neural circuits [17, 20]. (1) The intrinsic regenerative dynamics of single neurons
involves positive feedback between membrane depolarization/spike discharges and
active inward currents that can produce persistent activity outlasting a transient input
current pulse. (2) Excitatory and inhibitory balance within inputs to dendrites of a
single neuron and/or within a local circuit play an important role in the maintenance
or switching of attractor states working within excitatory recurrent collaterals. (3)
Cortico–cortical interactions contribute to the coordination of attractors by biasing
weights of information flows within interconnected target areas. (4) Neurons in
the various cortical areas are interlinked through multiple semi-open loops such
as the thalamo–cortical loop, cortico–basal ganglia, and cortico–cerebellar loop.
These loops may contribute to the selection, maintenance, and suppression of
attractor states. Furthermore, changes in one hierarchical level may influence neural
states in other levels. Contingent phenomena caused by an ensemble of neurons,
such as oscillation of local field potentials, synchronous activities, and fluctuations
in neuronal activities within local circuits, may influence the maintenance or
reorganization of neural states. Until recently, the study of dynamic attractor
states within cortical circuits has been difficult because an appropriate method to
manipulate the state of local circuits with high resolution of space and time was not
was available.

5 Optogenetics as a New Tool to Manipulate Local Circuits

Optogenetics, a promising new tool for the assessment of neural states, uses
a combination of genetic and optical methods to control targeted neurons by
inducing inward or outward currents across stimulated membranes [21]. Recently,
channelrhodopsin-2 (ChR2)-mediated photo stimulation of neurons has been used to
investigate the state of neural networks in vivo. Preliminary results using transgenic
rats expressing ChR2 in neurons demonstrated that optogenetic injection of the
patterned oscillatory currents (opto-current clamp) caused state changes in local
circuits [22]. Optically induced perturbation of local circuits are a useful method to
study the mechanisms underlying attractor-state reorganization at the mesoscopic
level.

6 Discussion and Conclusions

Transiently active ensembles of neurons dynamically represent relevant information
in the cortical association areas including the prefrontal cortex. We classified
representations into two types according to whether the information to be encoded
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was a discrete (binary) or continuous (parametric) representation. Dynamic changes
in representation are thought to reflect a multiple-attractor state, which is dependent
on rapidly changing functional connectivity in the cell assembly. According to this
idea, it is very important to intervene and evaluate the state of local circuits in vivo
experiments of animals with high time and space resolution. Recent progress in bio-
opto engineering including optogenetics has allowed us to optically manipulate the
state of local circuits in the cortex while simultaneously electrically monitoring their
activity. Innovative bio-optical methods for neuroscience will open new avenues for
understanding neural dynamics.
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Timing at Multiple Scales in Olfactory
Perception

Leslie M. Kay

Abstract Olfactory perception spans multiple time scales, from sub-millisecond
and millisecond generation and timing of action potentials to developmental time. In
this paper I review recent research addressing the mesoscopic scale and interactions
with events that occur on longer time scales. Oscillatory local field potential
frequency and coherence patterns can be modulated by behavioral state, sniffing
patterns, intentional processes, learning, and circadian changes in gene expression.
The olfactory system also shows species-selective interactions with development
and expression of seasonality related to reproductive status, immune response and
affective state. Causal interactions at different temporal scales represent the rule
rather than the exception in this system.

Keywords Temporal scale • Olfactory bulb • Oscillation • Local field potential

1 Introduction

The olfactory system uses timing information at several different scales, from
milliseconds to weeks, and we now see that these scales have the potential to interact
in ways that set up the possibility for complex dynamical effects. The interactions
occur across processes and mechanisms, from gene expression to sensory perception
to affective state. We track these effects primarily through electrophysiology and
surgical and behavioral manipulations. Mesoscopic neural processing of odor
information is represented by temporal information at the millisecond to hundreds of
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milliseconds scale, from gamma oscillations of the local field potential (40–100 Hz)
to inhalations and sniffs (2–12 Hz). However, if we expand our scope to include
several longer time scales, the picture is more complex and more interesting.

When we view the many scales which can interact in this system, we begin to
identify a set of control and order parameters that may influence and be influenced
by mesoscopic activity [1, 2]. The processes encompassed by these parameters
range from attentional changes in neuromodulator levels to gene expression patterns
associated with sexual development and seasonal responsiveness. These parameters
occupy temporal scales from milliseconds to months or even years, and time
becomes a source of complexity.

2 Temporal Processing Scales

Mesoscopic activity is best represented by the local field potential (LFP). This
signal shows the cooperative activity of hundreds to thousands of neurons. Because
the LFP is the local population coherence, this signal represents what downstream
neurons are likely to receive. The coherent signal is what best survives any pathway
that disperses activity, referred to by Freeman as the ‘brain laundry’ [2]. Three
oscillatory bands dominate the LFP spectrum in the olfactory system, the gamma,
beta (�20 Hz) and theta (2–12 Hz) bands. Each of these bands represents different
aspects of olfactory behavior and relies on different circuits [3].

Gamma oscillations represent local firing precision of neurons in the olfactory
bulb (OB) and the insect antennal lobe, the analog of the vertebrate OB [2, 4]. When
downstream neurons in the piriform cortex (PC) or the insect mushroom body are
viewed as feature detectors, we see that mesoscale activity translates downward to
affect the probability of a single spike in downstream neurons. Neurons in the PC
are sensitive to a few spikes arriving in a brief (�5–10 ms) time window. Mushroom
body neurons fire when specific antennal lobe neurons are activated in tight temporal
precision. Gamma oscillations and mitral cell precision are local events and are
enhanced when central input to the OB is removed.

We and others have proposed that olfactory system beta oscillations serve to
couple areas for distributed processing and may also facilitate the transfer of
information from the OB to the PC and hippocampus [5–8]. In contrast to gamma
oscillations, beta oscillations rely on central input to the OB; when this input
is removed, beta oscillations disappear [9]. We presume that these oscillations
represent coordinated firing of neurons within and across multiple areas, since they
appear in multiple areas as the result of associative learning or sensitization.

Theta oscillations and the sensorimotor act of sniffing overlap in the OB. In
this structure, and to a lesser extent in the PC, theta oscillations represent rodents’
respiratory behavior. Interactions between scales are apparent when rats and rabbits
change their sniff frequencies. During high frequency sniffing gamma oscillations
often decrease in periodicity, indicating less global precision in the underlying mitral
cell population [10, 11]. Glomerular activation patterns in the input layer of the
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olfactory bulb are also affected by the type of sniff [12]. These data suggest that
mesoscopic changes effected by the type of sniff an animal takes can influence lower
level activity on the scale of a few milliseconds.

There is more detail in the form of temporal structure of odorant mixtures as they
diffuse through the mucosal layer and bind to olfactory receptors. Human subjects
are sensitive to this timing information [13], and rats also appear to be (J Dink and
LM Kay, unpublished observations).

While we are accustomed to think of mesoscopic phenomena as representing
collective activity at lower levels, processes at much longer timescales affect
mesoscopic activity in often complex ways. I divide these into several categories
based on their temporal scales: (1) seconds to minutes, (2) minutes to hours,
(3) hours to days, and (4) seasonal and developmental timeframes.

On the scale of seconds to minutes, there are a growing number of studies that
address the relationships between behavioral state and LFP signal characteristics.
Most obvious are the changes that occur within a single behavioral trial, as a subject
moves from one behavioral epoch to the next [10]. Rats are trained to a sequence of
behavioral state changes that over time adopt relatively high precision. For instance,
trained rats produce a stereotyped sampling duration, in our hands �550 ms, to
accomplish a binary odor discrimination at >90% performance levels in either a
go/no-go or 2-alternative choice paradigm. Operant responses are also on the order
of 500 ms [14]. LFP statistics change along with these behavioral epochs with some
features apparently dependent on the task [3].

Arousal states can affect coupling and information flow within the olfactory
system. Urethane anesthesia produces sleep-like slow- and fast-wave states. Slow-
wave states are accompanied by increased low frequency (<15 Hz) coherence
between the PC and limbic structures, such as the hippocampus and amygdala.
Information flow in this state proceeds from the hippocampus toward the periphery.
During fast-wave states the PC has greater coherence with the OB, and information
flow is from the periphery towards the hippocampus, as it is in waking states
[5, 6, 15]. Coupling strength thus oscillates on the scale of seconds to many minutes,
and this slow coupling and decoupling interacts with the direction and fidelity of
information transfer.

Slow monotonic changes in neuromodulator levels or other processes associated
with attention or affective state can gradually change mesoscopic features, such as
the power of gamma oscillations during discrimination of high-overlap odors [16].
However, because neuromodulator release can be regulated on the order of hundreds
of milliseconds [17], this parameter change could provide more complexity than can
be predicted from a simple monotonic rise or slow periodicity.

On the scale of minutes to hours, spanning into days, we begin to see long term
changes in connection strength and gene expression that can affect the circuit that
produces mesoscopic activity. It is not until rats have reached criterion performance
on a task (often over many days) that beta oscillations in the OB exceed baseline
levels [7]. However, once a rat has learned one discrimination and transfers that
knowledge to a second odor set, beta oscillation coherence between the OB and both
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the dorsal and ventral hippocampus remains elevated, even when beta oscillations
in the OB are at baseline levels [8]. Beta coherence between the two hippocampal
subfields remains at baseline levels until the rat reaches criterion performance on the
new odor set. At this point coherence between the dorsal and ventral hippocampus
is again elevated.

Studies which address the ways in which rodents learn the rules of olfactory
behavior and transfer them to new stimulus sets show that once rule learning is
established, the properties of LTP and LTD in both the PC and the hippocampus are
altered, as are patterns of gene expression that support these changes in connectivity
[18, 19].

Circadian time influences processes that may present at the mesoscopic scale.
PER gene expression modifies OB neuron excitability and shows entrainable circa-
dian rhythms that persist independent of the suprachiasmatic nucleus [20, 21]. These
rhythmic forces are likely to affect mesoscopic activity, perception and behavior.

Seasonal and developmental time. Olfactory bulbectomy (complete removal of
both olfactory bulbs) clearly affects odor perception, but bulbectomy also influences
affective state independent from loss of the sense of smell. Bulbectomy is a robust
model for unipolar depression. It produces behavior in rats that is reminiscent
of depression-linked anxiety, and the animals respond to chronic, but not acute,
treatment with anti-depressants, as do humans [22]. Olfactory bulbectomy also has
species-specific effects on reproductive responses to changes in day length. Seasonal
reproductive responsiveness, normally absent in rats, is released when rats are bul-
bectomized prepubertally [23]. Syrian hamsters, which do show seasonal changes
in reproductive status, lose this seasonality after bulbectomy [24]. Bulbectomy has
no gonadal effects on seasonally reproductive Siberian hamsters, but they do present
changes in immune response to seasonal cues [25, 26]. We have recently shown that
day length modulates the depressive effects of bulbectomy in laboratory rats and that
postpubertal bulbectomy does not release the seasonal reproductive response [27].
These results together show that second order neural pathways from the olfactory
system to the suprachiasmatic nucleus can modulate developmental, immunological
and affective processes, and that the timing of this manipulation is crucial to the
constellation of effects and varies across species.

3 Conclusion

Interactions between temporal scales are ubiquitous in the olfactory system, from
millisecond to seasonal and even developmental time. Each of these processes
might be viewed as control parameters that can be manipulated by various physical
methods, such as neurotransmitter levels, day length, time of day, sniffing rate, etc.
Each can eventually be understood at a mechanistic level. How might we then use
this information to understand perceptual awareness in intact brains?



Timing at Multiple Scales in Olfactory Perception 21

We are used to thinking of processes that occur on longer timescales as
having approximately monotonic effects on mesoscopic and perceptual processing.
However, actual effects can be much more complex and produce emergent order
parameters that drive perception, hierarchical processing, flexible learning of new
goals, and even higher order processes such as self-autonomy [28, 29]. By examin-
ing interactions among temporal scales we will enable a description that relies on
complex dynamics related to perception, and it is here that we may make the leap
from coding-based sensory information to describing an individual’s awareness and
understanding.
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Structure, Stability, Dynamics, and Geometry
in Brain Networks

Peter A. Robinson

Abstract The role of physical and geometrical constraints in determining structure
of brain networks is outlined. It is shown that requirements imposed by dynamics,
stability, and network geometry strongly constrain possible networks to structures
that strongly resemble those found in real brains.

1 Introduction

Observed brain networks exhibit complex patterns of anatomical interconnections
and functional dynamics. Brain networks are subject to a range of competing
constraints that limit the range of possible network architectures. These constraints
include long-recognized limitations on physical volume, speed of processing,
path length, and metabolic load [1]. More recently recognized constraints include
requirements that networks must be dynamically stable with respect to epilepsy-
like disruptions of activity [2], but must remain in an “edge of chaos” state of
near-marginal stability to enable complex behavior and rapid functional adaptability
[3]. Moreover, this level of dynamical stability must be maintained as functional
and/or anatomical connections are made and broken on time scales spanning task
performance, information processing, development, and evolution [3], a criterion
that echoes Simon’s observations on the advantages of modularity in complex
systems [4].

The above considerations imply that only certain types of theoretically
possible networks can actually be relevant to the real brain. More abstract
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information-theoretic criteria such as maximizing complexity or mutual information
may be relevant in quantifying complex behavior [1], but must ultimately arise from
physical principles.

This paper briefly reviews how principles such as a requirement of stability
against seizures, and geometric constraints imposed by the two-dimensional (2D)
cortical geometry, strongly limit the types of brain architectures that are possible.
Neural field theory (NFT) [5] provides a useful means of testing network stability
properties [3, 6–8] and this paper concentrates on this approach.

2 Models

Connectivities between different brain regions (or nodes) are typically expressed in
terms of brain connection matrices (CMs) that usually have 50–1,000 nodes, each
representing 108–109 neurons. The structure of such CMs and their corresponding
networks is most often studied by examining quantities such as clustering, degree
distribution, and other graph-theoretic measures, without direct reference to the
physical properties of the actual brain from which the CM has been abstracted.
Alternatively, network architectures—e.g., regular, random, small-world, modular,
hierarchical, as illustrated in Fig. 1—are hypothesized and their network properties
are compared with those of observed brain structures to find the best match.

Fig. 1 Schematic connection matrices (CMs) of networks with neural populations labeling rows
and columns, and white entries for a connection between a given row and column [2]. (a) Regular
network. (b) Random network. (c) Small world network. (d) Hierarchical network shaded to show
density of connections. (e) Exemplar hierarchical network. (f) Cat cortical CM (Adapted from [9])
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A number of studies have examined the dynamics of activity in brain networks.
Early investigations mostly assumed or enforced stability of dynamics, but recent
work has examined the roles of network structure in stability [2,3,6–8]. For example,
the ability of hierarchical networks (HNs) to restrict spread of seizure-like activity
has been examined by using a simplified spreading model [2]. Here, we focus on
the problem of what network architectures can exist under requirements that their
dynamics be stable under the changing circumstances found in real brains.

Many approaches exist to studying brain network dynamics, most directly by
simply connecting large numbers of model (e.g., integrate-and-fire) neurons accord-
ing a specific CM. However, to represent the extremely large numbers of neurons
represented by each node of an observed CM it is more practical to endow each node
with physiology based neural population dynamics, embodying their average behav-
ior. These nodes are then linked according to the CM of interest to study network
dynamics and stability. Here we focus on recent approaches based on NFT [3,6–8].

The model focused on here incorporates the synaptodendritic dynamics that
result in the soma potential, the resulting average firing rate, and the consequent
field of outgoing pulses �.t/ that propagates between nodes with a damping rate
� that reflects the finite average time taken to reach axonal terminals. In the limit
nodes are close enough to treat as a continuum this model has been extensively
used to investigate the corticothalamic system, producing excellent agreement with
a wide range of other neural activity phenomena [5].

To analyze brain networks we assume there are no spatial dependences within a
given population (i.e., node), which is assumed to comprise identical neurons, with
a soma voltage response time 1=˛ to incoming spikes. Linear perturbations of the
neural field �a, for each population a about its steady state are then described in
Fourier space by Gray and Robinson [6]

D.!/�a.!/ D
X

b

Gab�b.!/; (1)

D.!/ D .1 � i!=˛/2.1 � i!=�/2; (2)

where ! is the angular frequency,Gab is the connection gain (the number of action
potentials produced in a per action potential from b); if Gab > 0, the connection is
excitatory and if Gab < 0 it is inhibitory. Only cases with Gab D g D constant are
considered here.

Letting G D ŒGab� D gC be the matrix of gains, where C is the CM, (1) can be
written

A.!/ˆ.!/ D 0; (3)

where A D G � D, ˆ is a column vector of the �a, D D D.!/I, and I is the
identity matrix. Equation (3) describes the linear dynamics of a network of neural
populations with no external input and thus determines its stability via the solutions
! of the dispersion relation

det A.!/ D 0: (4)
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The set of solutions of (4) is termed the dispersion spectrum. In the complex! plane
the boundary between stable and unstable regions is the real axis, and networks with
dispersion solutions at this boundary are marginally stable. The solution !1 with
the largest imaginary part Im! is least stable and determines the network’s overall
stability. We term this the dominant solution. Setting � D D.!/, the dispersion
relation is

det .G � �I/ D 0; (5)

whose solutions ! are obtained by solving

� �D.!/ D 0; (6)

for each eigenvalue � of G. The set of eigenvalues is the spectrum of the network,
denoted Sp.G/. If all � in Sp.G/ have corresponding! with Im.!/ < 0, the network
is stable. However, if there is any � corresponding to Im.!/ � 0, it is unstable. The
eigenvalue �1 corresponding to !1 is the least stable and is termed the dominant
eigenvalue. For !1 � ˛, one can make the approximation

!1 D i.
p
g�1 � 1/: (7)

3 Results

In this section we show how physical conditions constrain network architectures. We
first test various proposed cortical network architectures for the dynamical stability
of their activity and find constraints on network parameters. For example, the regular
network in Fig. 1a has g�1 D kg and hence is stable only for kg < 1, where k is
the number of neighbors to which each node is connected—i.e., the degree. For the
random network in Fig. 1b, we find g�1 � npg and hence that the criterion for a
high probability of stability Ps is npg < 1 where n is the number of nodes and p is
the probability of a connection between a randomly chosen pair of nodes. Figure 2a
illustrates this criterion for various n, p, and g, with the transition from high to low
Ps sharpening as n increases [6]. Random networks always become unstable as n
increases if local properties remain the same [10]. Figure 2b shows the spectrum of
a marginally stable random network, with !1 D 0.

Real brain networks are highly clustered (i.e., there are disproportionately many
short-range connections), but have short mean path length L between nodes.
Regular brain networks have high clustering C and large L, with the reverse for
random networks. Small world (SW) networks have been proposed to circumvent
these problems. The CM of such networks, shown in Fig. 1c, can be constructed by
severing a small fraction p of the connections of a regular network and randomly
rewiring them between other pairs of nodes. This introduces a few long-range
connections that dramatically reduce L but leave C high. Figure 3 shows L and
C vs. p, demonstrating an intermediate SW regime with large C and small L.
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Fig. 2 Stability of random excitatory networks (Adapted from [6]). (a) Probability of stability Ps
of vs. npg. (b) Dispersion spectrum for npg D 1

Fig. 3 SW clustering
(pluses) and path length
(diamonds) vs. rewiring
probability p (Adapted
from [7])

For p � 1, the stability of SW networks is chiefly determined by the regular
backbone. The network becomes approximately random if np � 1, in which case
�1 increases with n.

We have examined constraints on C and L in networks of specified structure,
but real brains undergo evolution (increase of size, complexity), development
(growth, neural pruning), learning (formation of connections), and information
processing (transient connections). The dynamical reconnectability requirement that
the network remain stable under all these processes imposes additional constraints
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Fig. 4 Principal CM eigenvalue �1 vs. n for random (triangles), SW (pluses), regular (circles),
and hierarchical (dots) networks [3]

on structure [3]. Moreover, networks must have a number of connections nc that
increases only in proportion to n to keep wiring to a constant fraction of brain
volume [3]. To enable dynamic reconnection, networks must also be able to be
combined or divided without appreciably changing their architecture, stability, or
the strength of more than a small fraction f of connections, ideally with f ! 0

as n ! 1 [3]. These conditions enable the evolutionary, developmental, and
functional reorganizations required and reflect the principle that complex structures
are most efficiently assembled from working substructures [4].

It was recently found [3] that a modular hierarchical network (HN) can satisfy
dynamical reconnectability constraints while still maintaining high C and low L.
Such a network’s connectivity probability is shown in Fig. 1d, which exhibits a
hierarchical fall-off in blocks successively further from the diagonal; a specific
realization drawn from this distribution is shown in Fig. 1e [3, 11]. Figure 4 shows
that the resulting �1 remains near-constant as n increases, so stability is unchanged
[3], and networks can remain in a marginally stable “edge of chaos” state of complex
dynamics.

The cortex is approximately a 2D sheet and is highly uniform in its anatomical
structure. This might appear to contradict findings of structure in CMs; however,
most cortical connections are short-range, thereby inducing geometric modularity
that can be disguised by the CM representation if nodes are not indexed appro-
priately. For example, indexing a 2D regular network in a spatial raster pattern
yields the CM in Fig. 5a, whereas if close nodes maintain close indexes, the CM
in Fig. 5b results [8]. Remarkably, this shows a structure very similar to the HN and
cat CMs in Fig. 1e, f, even though no explicit network modularity or hierarchy is
present [8]. This network satisfies the dynamical reconnectivity criteria, has high
C and (because it is 2D) low L. Moreover, with suitable choice of parameters,
quantitative measures of these quantities and modularity closely match those of the
cat cortex [8].
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Fig. 5 2D regular network
CMs [8]. (a) With raster
labeling. (b) With
geometrically close nodes
having closer labels than
in (a)

4 Discussion

Structural, dynamic, and geometric constraints together imply that only certain types
of networks can be relevant to the real brain, without invoking abstract criteria
such as maximization of complexity or mutual information in network activity.
CMs of suitably constrained networks closely resemble observed ones, suggesting
that physical constraints strongly limit the allowable types of brain networks.
One possible architecture is that of a modular hierarchical network, which has
small-world properties and can robustly maintain dynamics near marginal stability.
Regular 2D networks with a preponderance of short range connections can also
satisfy the physical constraints discussed—a result that may resolve the apparent
contradiction between the appearance of modularity in CMs and the high degree of
uniformity in cortical architecture.
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Mathematical Theory of Neural Networks:
A Personal and Historical Survey

Shun-ichi Amari

Abstract Mathematical neuroscience has become an important discipline of neu-
roscience, although it has not yet been fully established. We state historical remarks
on the progress of mathematical neuroscience from the personal viewpoint. We also
show some formulations of mathematical neuroscience with historical comments.
We conclude with long-standing unsolved problems.

Keywords Mathematical neuroscience • Statistical neurodynamics • Neural
field • Learning and memory

1 Introduction

Since theoretical approaches to dynamics of neural networks has a long history,
it is difficult to give a full survey. Instead, I show here a personal perspective,
summarizing my own researches for nearly a half century. There have been the
rise and fall of theoretical approaches, but I am glad to say that computational and
mathematical neuroscience has gradually been established itself as an important
discipline of brain science.

One may ask why mathematical neuroscience is necessary and what it is. The
brain has been created through the long history of evolution, so that it looks
indeed a very complex system having no definite design principles. However,
there must be fundamental principles that guarantee the capability of information
processing by using a large number of neural elements through parallel dynamical
interactions and learning. The nature has found these principles through random
searches of evolution, so that the brain uses them in a very complicated style,
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not well designed. This means that it is difficult to find the principles only by
accumulating experimental findings. We need pierce theoretical eyes, especially
mathematical theories to discover the principles, where simplified abstract models of
neural networks would be used. We can then construct more realistic models based
on these principles, where computational neuroscience plays an important role.

Historical Remarks on Mathematical Neuroscience

Prehistory: There were a number of important researches before the 1950s. One
may mention such big names as Rashevsky, Wiener, Rosenblueth, and Ashby among
many others.

Old period: The perceptron introduced by Rosenblatt was epoch-making, by
initiating study on brain-inspired learning machines and lots of works followed.
Caianiello also contributed dynamical aspects of learning by proposing the adiabatic
method. Zeeman proposed the topology of the brain, where homology theory
was used. Based on these intriguing works, there emerged lots of mathematical
researches in America (W. Freeman, M. Arbib, S. Grossberg), in Europe (J. Cowan,
Ch. Von der Malsburg, T. Kohonen) and in Japan (K. Fukushima, K. Nakano, S.
Amari). We should not forget Russian activities (L.I. Rozonoer, Y.Z. Tsypkin and
others), which were isolated from the western world.

It was this period that a number of mathematical theories and models were
established. They include statistical neurodynamics, neural field theory, learning
theory, associative memory and neural self-organization.

Strum-und-drang: It was a big surprise to me that a new trend called the
connectionism emerged in the early 1980s. The connectionism appealed researchers
with the slogan ‘parallel distributed processing (PDP)’, and welcomed from a wide
range of science and engineering community. Not only brain scientists but cognitive
scientists, physicists, engineering scientists, etc. joined enthusiastically to the new
trend, and it was said that this would generate industries of scale of billions of
dollars. Although this dream did not realize, its scientific impact was extraordinarily
strong.

The old theories were rediscovered again together with lots of newly developed
theories and models. This trend successfully connected different methods and fields
of research, searching for miracle of the brain, in particular how distributed and
parallel computation works together with learning.

Contemporary research: After the boom, lots of deeper researches are going on
today both in the direction of understanding the mechanism of the brain and in
the direction of engineering applications. In particular, it is widely recognized that
computational neuroscience is a very important part of brain science. Integration of
robotics and neuroscience is another important aspect. I am glad to see that the term
‘mathematical neuroscience’ has become popular now.
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Topics of Mathematical Neuroscience

1. Dynamics of neuron pools, neural oscillators and statistical neurodynamics
Given a pool of neurons, its dynamics may be written as

�
dui
dt
D �ui C

X
wij '

˚
uj .t/

�C si � h; (1)

where ui is the (average) membrane potential of neuron i , wij is the connection
weight from neuron j to neuron i , ' is a sigmoidal function, si the external input
and h is threshold. This is called the Hopfield network, but it was used in Amari
[7], (discrete-time version in [3]), Wilson and Cowan, 1972, etc. There are rich
dynamic aspects covered by this simple model, such as multi-stability, oscillation
and chaos.

When the connection weights are randomly assigned subject to a probability
law, we may investigate dynamical behaviors common to all such networks.
This approach is called statistical neurodynamics. When a network consists of a
number different neuron pools, for example, pools of excitatory and inhibitory
neurons, by introducing macroscopic variables U˛.t/ of average membrane
potential for pool ˛, statistical neurodynamics derives the macroscopic equation

�
dU˛.t/

dt
D �U˛.t/C

X
W˛ˇ‰

˚
Uˇ.t/

�

C S˛ �H; (2)

where
X˛ D ‰ .U˛/ (3)

is the activity level (firing rate) of pool ˛, and studies the dynamical properties.
When the network consists of excitatory neurons and inhibitory neurons,

we may consider two types of macro-variables Ue and Ui . The dynamical
behavior is multi-stable or oscillatory, depending of the parameters. The neural
oscillation of this type was first demonstrated by Amari (discrete-time dynamics,
[3] and continuous time, Amari [7]). Wilson and Cowan, 1972 proposed a similar
equation, so that it is now call the Wilson-Cowan neural oscillator.

Chaotic behaviors and oscillations are very important. Sompolinski is the first
who demonstrated the chaotic behaviors in a random network of asymmetric
connection. Aihara demonstrated the role of chaotic behavior in decision systems
and associative recall dynamics. Tsuda postulated that such chaotic dynamics
constitutes a fundamental principle of the brain.

Yamaguchi is one of the first who remarked the importance of neural
oscillations in information processing. She analyzed the role of the phase in the
hippocampus. Now it is a hottest topic in brain science to integrate information
in various areas of the brain.
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2. Dynamics of neural fields
Neurons are arranged in the cerebrum as a multilayer 2-dimensional neural field.
Its dynamics was proposed by Wilson and Cowan, 1973. Amari [4] followed
their idea to give a rigorous mathematical analysis of the dynamics and its
stability. Ermentrout applied the field theory to explain hallucination. Now
dynamics of neural field is one of hot topics, applied to explain working memory,
psychological phenomena and robotics navigation.

The equation is written as

�
@U˛.�; t/

@t
D �U˛.�; t/

C
X

ˇ

Z
W˛ˇ

�ˇ̌
� � � 0 ˇ̌�‰

˚
Uˇ
�
� 0; t

��
d� 0 C S˛.�; t/ � h: (4)

Here � is a (two-dimensional) coordinates of the field.
3. Associative memory

A prototype model of dynamics of associative memory was proposed in 1972 by
a number of researchers. The model rediscovered by Hopfield, the so called the
Hopfield model, is exactly the same as that proposed and analyzed by Amari [8].
He also proposed the association mechanism of a sequence of patterns by using
an asymmetric connection matrix.

It is a great achievement of Hopfield who proposed the concept of capacity,
which was analyzed by physicists, using the replica method. The dynamics of
recall was analyzed by Amari and Maginu [13], showing a very complex basins
of attraction. This was generalized by Okada to a higher-order theory. J. Hawkins
considers this type of association mechanism a fundamental principle of the brain
and proposed to construct a brain-inspired machine.

The prototype associative memory model is too simple to explain the mem-
ory mechanism of the real brain. However, it inspired the physiological and
molecular-biological study of the hippocampus.

4. Learning and self-organization, reinforcement learning
A general theory of classic synaptic learning was proposed by Amari [6]. This
includes associative, supervised and unsupervised learning. It includes the PCA
mechanism, which later rediscovered by Oja. The self-organization of feature
extraction was shown possible through the balance of inhibitory and excitatory
synapses. This was the same as the BCM mechanism proposed later except for
the interpretation (sliding threshold or enhancement of inhibition).

The self-organization of neuron pools and neural fields was proposed by
von der Malsburg and Willshaw and Malsburg. Their models and theories were
epoch-making. Amari and Takeuchi [10] applied it to show the dynamics of self-
organizing neural fields. Based on these prior research, Kohonen proposed the
SOM model.
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The classic theory does not cover the following new research topics. Rein-
forcement learning is an old topic of research, but its neural version was proposed
by Barto and Sutton. Since then, it is a hot topic of research both in brain science,
where basal ganglia and dopamine neurons play a role, and robotics learning.

Beyond the rate firing resume, information processing by neuronal spikes has
been remarked, since this gives more detailed description of neural activities,
and synchronization of spikes are hot topic. See Diesmann et al for the classic
dynamical analysis of propagation and formation of neural synchrony. A learning
mechanism called STDP is also a hot topic of research, where it generates
automatically inhibitory effect of synapses, giving richer phenomena.

5. Statistical analysis of neuronal spikes
Neurons are believed to generates spikes not deterministically but rather stochas-
tically due to various fluctuations. Spikes of neurons are correlated spatially and
temporally. There are extensive studies of statistical analysis of neuronal spikes.
Consider a joint probability distributions of spikes of n neurons p .x1; � � � ; xn/,
where each xi takes 0 or 1 depending on the non-existence or existence of a
spike.

Neuronal spikes are correlated. Usually only pairwise correlations are taken
into account, but higher-order correlations such as intrinsic triplewise correla-
tions exist. In order to elucidate their roles, it is useful to consider the set S of
all such probability distributions. This forms an .2n � 1/-dimensional manifold.
Since S is an exponential family, we can introduce a dually flat coordinate
systems together with a Riemannian metric. The firing rate coordinate system
is dually flat, and its dual represents higher-order interactions. Since these two
coordinate systems are blockwise dually orthogonal, we can decompose (joint)
firing rates and (higher-order) correlations orthogonally.

6. Machine learning
The perceptron is a learning machine proposed by Rosenblatt. The learning
algorithm of its multilayer version, called the multilayer perceptron, was pro-
posed by Amari [2], and then rediscovered many researchers, in particular by
connectionists, and has become popular under the name of the error backprop-
agation learning algorithm. Although it is used in many applications, there are
difficulties: slow convergence and local minima.

In order to overcome the local minima problem, the support vector machine
is used and become popular with the kernel method. Another approach is the
boosting method where weak learners are integrated to give a good performance.
Information geometry is used in its theoretical analysis.

The dynamics of learning in multilayer perceptron was studied in [2] (the
results are later rediscovered by Heskes and Kappen). It was shown by statistical
physical method that the retardation of learning (called the plateau phenomena)
is given rise to by the symmetrical structure of the machine, where the symmetry
breaking is required. This is the cause of the retardation.

It was shown that symmetry causes singularities in the manifold of per-
ceptrons where learning trajectories are embedded. The Fisher information
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degenerates at the singularities. Amari [18] proposed a new learning method
called the natural gradient, which avoids the difficulty of slow convergence. The
dynamical behavior learning near singularities are studied in detail.

Unsolved Problems

We mentioned some long-standing mathematical problems which have not yet been
solved in the oral presentation.
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Memory Information Representation
in the Hippocampus

Minoru Tsukada

Abstract The hippocampal network consists of three types of synapses that form
a circuit. A spatiotemporal signal serves as the input to the hippocampus and is
transmitted through a synapse in the dentate gyrus (DG) to the CA3, then through
another synapse to the CA1. There also exists a simultaneous input which directly
connects to the CA1.

Keywords Hebb learning rule • Spatio-temporal learning rule (non-Hebb) •
Dendritic-soma system

1 Long Term Potentiation (LTP), Depression (LTD)
and Hebbian Type Learning Rule

Hebb [15] formulated the idea that modification is strengthened only if the pre-
and post-synaptic elements are activated simultaneously. Experimentally, long term
potentiation (LTP) and long term depression (LTD) are generally considered to be
the cellular basis of learning and memory. Recently, a series of experiments provided
direct empirical evidence of Hebb’s proposal [5, 8–11, 20, 21, 25, 36]. These
reports indicated that synaptic modification can be induced by repetitive pairing
of EPSP and back-propagating action potentials (BAPs). The influence of location
dependency of synaptic modification along dendritic trees was examined in the CA1
area of rat hippocampal slices. A pair of electrical pulses was used to stimulate the
Schaffer-commissural collaterals (SC) and stratum oriens (SO). Then we estimated
the profile of LTP and LTD at a layer specific location from the proximal to distal
region of the SR.
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These instances of LTP and LTD showed a globally symmetric window of spike
timing similar to a “Mexican hat function.” We tested the location dependence of
synaptic modification along dendritic trees. A symmetric window was obtained at
the proximal region of the SR where GABAergic interneurons are projected, while
an asymmetric window was obtained at the distal region of the SR where there is no
projection of GABAgic interneurons.

2 Spatio-Temporal Learning Rule (Non Hebbian)

The spatiotemporal learning rule (STLR), proposed as a non-Hebbian type by
Tsukada et al. [32], Tsukada and Pan [33] consisted of two defining factors: (a)
cooperative plasticity without a postsynaptic spike and (b) temporal summation.

Neurophysiological evidence of “temporal summation” was obtained by apply-
ing temporal stimuli to Schaffer collaterals of CA3 [1–3, 31, 32]. Cooperative
plasticity by using two stimulus electrodes to stimulate the Schaffer-commissural
collaterals (SC) [34]. The functional connection/disconnection depends on the
input-input timing dependent LTP (cooperative plasticity) [12]. This is different
from the Hebbian learning rule, which requires coactivity of pre- and post-cell.
However, the magnitude LTP is also influenced by BAPs. From these experimental
results, it can be concluded that the two learning rules, STLR and HEBB, coexist in
single pyramidal neurons of the hippocampal CA1 area.

3 The Functional Differences Between STLR and HEBB

The two rules are applied to a single-layered feed-forward network with random
connections and their abilities to separate spatiotemporal patterns are compared with
those of other rules, including the Hebbian learning rule and its extended rules [33].
The differentiation of output-patterns represented in learned networks was analyzed
by their Hamming distances.

HEBB produced the same output pattern, with a Hamming distance of zero,
for all of the different spatiotemporal input patterns. This proves that the Hebbian
learning rule cannot discriminate among different spatiotemporal input patterns. The
spatiotemporal learning rule had the highest efficiency in discriminating among
spatiotemporal pattern sequences. The novel features of this learning rule were
induction of cooperative plasticity without a postsynaptic spike and the time history
of its input sequences. According to the Hebbian rule, connections strengthen only
if the pre- and post-synaptic elements are activated simultaneously, and thus, the
Hebbian rule tends to map all of the spatio-temporal input patterns with identical
firing rates into one output pattern. HEBB has a natural tendency to attract analogous
firing patterns into a representative one, put simply, “pattern completion.” In
contrast, the spatio-temporal rule produces different output patterns depending on
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each individual input pattern. From this, the spatiotemporal learning rule has a high
ability in pattern separation, while the Hebbian rule has a high ability in pattern
completion.

4 Interaction of Both Rules in a Dendrites-Soma System

The neuron can learn both the input context and its value function by top-down
information, i.e. input contexts can be characterized by the top-down information.

Acetylcholine dependent plasticity. The role of soma spiking in relation to
top-down information raises a number of interesting computational predictions.
Hippocampal theta is one of the candidates of top-down information which is driven
by the brain area, “the medial septum/the horizontal limbs of the diagonal band
(MS/DB)” [6]. During active waking, acetylcholine from MS/DB input makes theta
rhythms in CA3 and CA1 through interneurons. Synaptic modification by theta
rhythms constricts the input window of neural information to theta band frequency
[13, 14]. During quiet waking or slow-wave sleep, theta band constraints emerged
owing to the low concentration of acetylcholine. The theta stimulation of adult rat
hippocampal synapses induces LTP [29]. On the other hand, pyramidal neurons in
CA1 area directly receive acetylcholine input from MS/DB . Acetylcholine input
carries top-down modulation (motivational and/or attention) to the CA1 neuron.
Direct acetylcholine application increased the amplitude of the BAP [26, 30], and
increased the efficacy of LTP [24]. In conclusion, the regulation of the state of CA1
neurons by acetylcholine input reflects top-down modulation related to the value
function of episodic memory by direct and indirect ways.

Noradrenergic dependent plasticity. Another candidate of extrinsic modulation
is noradrenaline. Noradrenergic input carries emotional and/or arousal information
[27]. The hippocampus receives a major noradrenergic input from the locus ceruleus
(LC). Concurrent with acetylcholine input, noradrenergic input contributes to a
synergistic effect at the same synapses [35], and enhances the synaptic process of
learning [23]. Including noradrenaline, such neuromodulator molecules as serotonin
and histamine may alter neuronal throughput and BAPs (so-called “meta-plasticity”)
in such a way that these transmitters diffuse broadly.

Multi-functional synapse [17]. CA1 pyramidal neurons receive three inputs from
different sources of information. The first one is sensory events as bottom-up
through a gamma window [7], and the information is consolidated in synaptic
weight space by using STLR. The second is the contexts as top-down signals
through theta window [4, 22, 28], and modify the sensory information by using Heb-
bian learning rule. The third is neuromodulator (i.e. dopamine [16], acetylcholine,
noradrenarine, etc.) inputs which relates to reward, attention, emotion, and controls
the bias of its synaptic plasticity.
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5 Conclusion

We have shown, experimentally, that both STLR and HEBB coexist in single
pyramidal cells of the hippocampal CA1 area [18, 19]. Based on these facts, a
theoretical neuron model was proposed that consolidates both local (bottom-up)
and global (top-down) information into its synaptic weight space. The proposed
model presented a computational framework for understanding the sophisticated
context-sensitive mechanisms in the hippocampal CA1 neurons, depending on the
value of novelty (dopamine dependent plasticity), motivational or attentional values
through the theta rhythm (acetylcholine dependent plasticity), and emotional or
arousal information (noradrenergic dependent plasticity).
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Functional Significance of Rall’s Power of Three
Halves Law in Cortical Nonpyramidal Cells

Yoshiyuki Kubota, Masaki Nomura, Fuyuki Karube, and Yasuo Kawaguchi

Abstract Neurons receive thousands of synaptic inputs onto their dendrites and
soma, and spatially and temporally integrate these inputs to produce appropriate
output in the form of action potentials generated in axons. The morphology of
dendrites can influence the integration of synaptic input, as well as affect the
pattern of action potentials. Using computer simulations of three different model
neuron subtypes with different dendritic dimension of the same branching pattern
identical to the authentic cortical interneuron in the rat frontal cortex: Martinotti
cell, fast spiking basket cell, double bouquet cell, and large-basket cell, we found
the functional significance of Rall’s power of three halves law at the dendritic
bifurcation point. It may facilitate even distribution of somatic depolarization into
all compartments of the dendritic tree, and it may contribute equal signal conduction
from soma to all dendritic branches.
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1 Introduction

Dendrite of neuron is a complex structure with many bifurcations and receives
thousands of synaptic inputs. It spatially and temporally integrates these inputs to
produce appropriate output in the form of action potentials generated in axons [1–4].
The morphology of dendrites can influence the integration of synaptic input, as well
as affect the pattern of action potentials [5–7].

We analyzed dendritic trees in four morphologically distinct interneuron sub-
types present in the rat frontal cortex: Martinotti (MA) cell, fast spiking (FS)
basket cell, double bouquet (DB) cell, and large-basket (LB) cell, using three-
dimensional reconstructions from light and electron microscopic observations, and
found three conserved principles [8]. The first: cross-sectional area at any given
point within a dendrite is proportional to the summed length of distally located
dendrites beyond it. The second: total cross-sectional area is conserved at dendritic
bifurcation points and also the Rall’s so called “three-halves power law” is right
in dendrite bifurcations of these cortical cells. The third: dendritic cross-sections
become more ellipsoidal at proximal locations, resulting in a conservation of the
surface to volume ratio throughout the dendritic tree. Computer simulations using
passive model cells found how these topological features compensate for distance
dependent filtering of somatic EPSPs, while facilitating the even distribution of
somatic depolarization into all compartments of the dendritic tree.

We hypothesize the Rall’s power of three-halves law [9] is a functional key
structure for the equilibrated signal flow mechanism of the dendritic arborization.
We made two kinds of computational passive model cells, which faithfully represent
morphology of the real nonpyramidal cells, with active channels in soma and axon
initial segment to activate spike to investigate the functional role of the law using
NEURON simulator [10]. We also found that spike depolarization in soma distribute
more evenly in the model cells which faithfully represent Rall’s power of three
halves law.

2 Methods

Using an in vitro slice preparation containing the neocortex of juvenile rats p19–
p23, we made whole-cell recordings to fill nonpyramidal cells with biocytin. After
fixation, the morphologies of these neurons were recovered by DAB staining and
reconstructed with Neurolucida. We selected four interneurons representing each of
four nonpyramidal cell subtypes: a regular spiking nonpyramidal (RSNP) MA cell,
a fast spiking FS cell, an RSNP DB cell, and a burst spiking nonpyramidal BSNP
LB cell (Fig. 1). Neurons selected had at least a few complete dendritic trees not
severed during slice preparation. Slices containing these neurons were re-sectioned
into ultra-thin (90 nm) sections for 3-dimensional reconstruction of their dendritic
structures [11]. Each subtype had stereotypical morphological properties of axonal
and dendritic arborization that were previously described [12, 13].
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Fig. 1 Dendrite structures of neocortical cells representing four nonpyramidal neuron subtypes.
Dendrites and soma of the Martinotti, FS basket, double bouquet and large basket cell. The property
of their dendritic dimension was morphologically analyzed by the light and electron microscopic
observations

All the simulation studies were done in NEURON platform [10]. The real
morphology model neurons faithfully represented the present morphological results
of the nonpyramidal cells, which follow the Rall’s power of 3/2 laws. Each model
incorporates no active ion channels but passive leak channel. (Membrane resistance:
25,000 �cm2, intracellular resistance: 200 �cm, membrane capacity: 100 F/cm2,
equilibrium potential: 158 mV (MA cell),�72 mV (FS cell),�62 mV (DB cell) and
�63 mV (LB cell)) [9]. To explore transmission of back-propagation of action po-
tential, Nav1.2, Nav1.6 and Kv channels are introduced in the axon initial segment
and the soma. Channel densities are distributed in the same way as described [14].

We also made the other type of model neurons in each nonpyramidal cell
subtypes: “Conductance mismatch model cell A and B”, which has branching points
do not follow the Rall’s power of three halves law. We modified diameters of thicker
daughter dendrites at the branching point being half of their originals i.e. cross
sectional area became quarter size in type A model. We made the diameter of smaller
daughter dendrite 1.5 times larger than the original size i.e. cross sectional area be-
come 2.25 times larger than the original, and the diameter of larger daughter dendrite
half of the original size in type B model. The conductance mismatch model cells
broke the Rall’s power of three halves law at the bifurcation points to some extent.

3 Results

The functional significance of the Rall’s power of three halves law was studied
by computational passive models of reconstructed neuron morphologies (real-
morphology model) and morphologies modified to eliminate branch point
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Fig. 2 Back propagated depolarization peak of three type of Martinotti cell model. (a) Plot of
peak depolarization of dendritic compartments in response to a generated spike at soma in the real
morphology model cells. The back-propagated current is evenly distributed in primary dendrites,
and their associated trees. (b) Plot of peak depolarization of dendritic compartments in response to
a generated spike at soma in the conductance mismatch model cell type A. The back-propagated
current is rather variously distributed in different branches. (c) Plot of peak depolarization of
dendritic compartments in response to a generated spike at soma in the conductance mismatch
model cell type B. The back-propagated current is more variously distributed in different branches
than the type A model cell

conductance matching (conductance-mismatch model) of four nonpyramidal cell
subtypes (Fig. 2, see Sect. 2). We examined passive attenuation of somatically
generated spike depolarization in computational models.

Firstly we compared the variability of back-propagated depolarization to differ-
ent dendritic branches among the three Martinotti model cell subtypes. The somatic
spike generated more even depolarization of dendritic branches in neurons with
morphologically authentic branch points and consistently limited variation in peak
depolarization irrespective of distance from the soma (Fig. 2a), while models with
conductance mismatched branch points exhibited highly variable depolarization
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Table 1 Conductance
matching index of Martinotti
cell

Model

n Real Morpho Con Mis A Con Mis B

Average 18 1.22 0.77 1.14
SD 0.15 0.18 0.22
Range 0.80–1.45 0.47–1.29 0.71–1.56

Fig. 3 Dendritic branch points are optimized for the uniform distribution of somatic voltage into
the dendritic tree. (a) Plot of peak depolarization of dendritic compartments in response to a
generated spike at soma in the real morphology model cells. The back-propagated current is evenly
distributed in different branches. Primary dendrites, and their associated trees, are color coded as
the dendrogram in c. (b) Plot of peak depolarization of dendritic compartments in response to a
generated spike at soma in the conductance mismatch model cells. The back-propagated current is
rather variously distributed in different branches. (c) Dendrogram of the model cells

of dendritic branches, with the magnitude of variability increasing with distance
from the soma (Fig. 2b, c). Conductance mismatch model type B showed higher
variability at the middle and distal range in the distance from soma than the type A
(Fig. 2b, c). To quantify this relationship, we calculated the conductance matching
index by dividing the summed dendritic

p
c � a of the two daughter branches by

the
p
c � a of the parent dendrite [8], where ‘c’ is circumference and ‘a’ is cross

sectional area of the dendrite (Table 1). The matching index of the type B model
cell is similar to the real morphology model cell and the standard deviation is higher
than the type A and real morphology model, therefore we chose type B for the
further comparison of back propagated depolarization peak analysis with the real
morphology model of the four subtypes. The similar results were observed in the
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other neuron model subtypes, as well (Fig. 3). It indicated that the Rall’s power
of three halves law is an important structure for the even distribution of the back-
propagated depolarization of somatic spike.

4 Discussions

We made three different type of model cell of four nonpyramidal cell subtypes
to investigate the role of Rall’s power of 3/2 law and found that the law is a
key structure to establish even distribution of somatic spike depolarization into
different dendritic branches. The conductance mismatch models showed less even
distribution of the depolarization than the real morphology model cell. It implicated
that somatic depolarizing potential back propagation differently affect the different
branches and it might change the firing pattern from the real morphology model
cell, although further investigation is necessary.

We also believe that some model neurons may not respect the dendritic dimen-
sion of the real neuron [15]. We can make realistic membrane property and firing
pattern of the model cell that resemble with the real neuron with adjustment of the
active channel distribution and density appropriately. If the dendritic dimension of
the models cell would be authentic, then the adjustment of the channel distribution
should be easier and they could be similar to the real neuron. We can estimate
the channel distribution of the real cell with referring them of the authentic model
neuron.

Acknowledgements This work was supported by Grant-in-Aid for Scientific Research on Inno-
vative Areas “Neural creativity for communication (No. 4103)” (22120518) from the MEXT of
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A Computational Study of the Role
of the Sub-thalamic Nucleus in Behavioral
Switching During Saccadic Movements

Rengaswamy Maithreye and V. Srinivasa Chakravarthy

Abstract In this work, we have modeled the role of the STN-GPe during the
switch from automatic to voluntary movement using the control of saccadic eye
movement as an example. We show that our network model of the basal ganglia
is able to reproduce some experimental results and suggests a novel role for the
STN-GPe network as a source of exploration in the function of the basal ganglia.
This is particularly relevant to the Reinforcement Learning driven view of the BG,
where the explorer is a necessary component of the Reinforcement Learning (RL)
apparatus.

1 Introduction

The basal ganglia (BG) are a set of seven deep brain nuclei which are thought to
play an important role in decision making and action selection [1, 2]. There are two
important and alternate pathways through which information can flow in the BG-
the direct pathway (DP) and the indirect pathway (IP). These pathways are gated by
the neuromodulator dopamine (DA), which is a key player in the function of the BG.
The DP is selected in conditions of high DA and leads to a ‘Go’ response whereas
the IP is selected in conditions of low DA and leads to a ‘No-Go’ response [3].

The RL framework has been extensively used to model the function of the BG,
with the discovery that DA corresponds to the difference between the expected and
actual reward [4]. The difference, called temporal difference or TD error is the basis
for learning in the RL framework [5]. The RL framework involves an actor, which
performs actions, a critic, which computes the value of performing an action and an
explorer which enables the exploration of alternate actions. Subsequently, the dorsal
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striatum has been associated with the computation of the value of each state, thus
functioning as a critic while both ventral striatum and motor cortex is thought to
be analogous to the actor [6, 7]. However, no sub-cortical substrate for the explorer
has been proposed. The explorer is an essential component of the RL machinery
since it generates the alternatives that are required for learning to take place. We
hypothesized that the Sub-Thalamic Nucleus (STN) is a good candidate for the role
of the explorer in the BG since it possesses the complex activity required for this
role [8]. Also, lesions of the STN are shown to lead to an increase in perseverative
behavior where the animal repeats previously rewarding actions even after they
cease to be rewarding [9].

Recent work [10] has shown that the STN is a crucial link in the BG, especially
during the switch from automatic to voluntary movements. During such a switch, a
control signal to stop ongoing movement is thought to be sent via the hyperdirect
link from cortex to STN, subsequent to which a new movement may be initiated.
Interestingly, this work shows the presence of different types of STN neurons, (ac-
tive only during switching to voluntary movement), some of which stop movement
while others initiate new movement, lending support to our hypothesis that the STN
can function as a source of exploration.

We have created a model of the BG with explicit representations of the striatum,
the STN, the GPe and the SNr. We used this model to study the switch from
automatic to voluntary movement using the same experimental set up as in [10], but
without considering the hyperdirect pathway. We show that using only the direct
and indirect pathways of response, we can match some of the reported experimental
results, including the presence of ‘switch’ neurons which are active only during the
switch from automatic to voluntary response.

2 Methods

A schematic version of the model is shown in Fig. 1. The task is to saccade to
one of two targets whose color matches the cue color, which can change randomly
[10].While the cue color remains unchanged (non-switch trials), an automatic
response would be sufficient whereas when the cue color changes (switch trials),
voluntary control is required. The number of non-switch trials before a switch
occurs can be varied. In our model, the input (i.e. the scene) consists of one red
and one green dot whose position can alternate randomly. The cue can be either red
or green and is supplied to the striatum, along with the red and green components
of the input (called red and green feature maps- Rmap and Gmap respectively) via
cortico-striatal and cue-striatal weights, both of which are trainable. The striatum,
functions as the ‘critic’ and computes the value of the scene as a function of the
previous reward. It is represented as comprising of DP and IP neurons, represented
by separate CANNs of 1� 20 neurons each [11]. The motor cortex (not represented
explicitly) is considered to be the ‘actor’ which executes the saccade. The temporal
difference (TD) error which is the average difference in the value between the
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Fig. 1 Schematic
representation of the model

current and previous scenes represents the dopamine (DA) signal, produced in
response to a signal from the striatum by the Substantia Nigra pars compacta (SNc,
not modeled). The magnitude of the DA signal is thought to select between the direct
(DP) and indirect (IP) pathways by controlling the response from these neurons
[3]. The response of the DP striatal neurons is directly passed on to the Substantia
Nigra pars reticulata (SNr) whereas the response of the IP striatum is passed on to
the Globus pallidus externa (GPe), which interacts with the Sub-Thalamic nucleus
(STN) to produce an output. The STN-GPe network is modeled as an activator–
inhibitor network of 20� 20 neurons each, which possess lateral connections and
reciprocal connections between STN and GPe. The firing rates of the STN and GPe
neurons is assumed to be a function of DA such that these neurons are maximally
active at low DA levels and their activity decreases with increasing DA [12]. The
output of the STN-GPe network is summed and then passed on the SNr, again
modeled as 1� 20 layer of neurons. The signals from DP and IP are integrated
in the SNr and sent to the Superior Colliculus (SC) where competition between
signals directing movement to different locations is resolved, the saliency map is
computed and the co-ordinates of the next saccade are determined as the location
where the signal crosses a saliency threshold. When the cue color is unchanged, the
DP is chosen and STN activity is low, whereas when cue color changes, DA levels
decrease leading to activation of the IP and an increase in the firing rate of the STN
and GPe neurons. STN neurons send a noisy signal to the SC, which functions to
direct the saccade to a different location, thereby leading to exploration.

3 Results

We start out by examining the success rates in the switch and non-switch trials.

Success rates: Non-switch trials were 100% successful whereas the error rates in
switch trials was 30% (Fig. 3a, blue curve). As the number of non-switch trials
before a switch trial increased (3–10), the error rates also increased (from 16%
to 40%).
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Fig. 2 Dynamics of the STN during (a) non-switch (high DA) and (b) switch trials (low DA).
Here the X and Y axes represent the neuron positions while the color coding represents activity
level with white representing maximum and black representing minimum activity

Time taken for switch and non-switch saccades: Switch trials (106 steps) took
longer than non-switch trials (68 steps) (Fig. 3a, red curve). The wrong switch trials
(112 steps) took slightly longer on average than the correct switch trials (104 steps).
Here, the number of steps corresponds to the number of iterations required to cross
saliency threshold.

Influence of DA on behavior of STN-GPe network: Since we were interested in the
role of the STN in the functioning of the basal ganglia, we studied at the effect of
DA levels on STN activity. Specifically, we looked at the STN response to high and
low levels of DA. As can be seen from Fig. 2, at high levels of DA i.e. in non-switch
trials, the STN network shows a nearly uniform low level of activity, as expected
because of the low firing rate of STN neurons. At low levels of DA i.e. during the
switch trials, much more complex activity is seen in the STN with a small region
of intense activity as can be seen from Fig. 2b. Thus, we can see that different STN
neurons behave differently.

We analyzed the activity of STN neurons in switch and non-switch trials and
found that (i) the activity of the STN becomes more desynchronized in switch trials
(average correlation between the neurons is 0.97 in case of non-switch trials as
compared to an average correlation of 0.87 in the switch trials.) (Fig. 3b, c) and
(ii) There is a small sub-population (20% of the 400 STN neurons) that shows
distinctive activity as compared to the other neurons during the switch trials alone
(Fig. 3c, red traces). These neurons are analogous to the ‘switch’ neurons reported
in [10]. The activities of all the STN neurons during switch and non-switch trials are
shown in Fig. 3b and c from which the distinct activity of the switch neurons (red
curves, Fig. 3c) can be seen clearly.

4 Discussion

The role of the STN in the basal ganglia has been debated much in the past. It
has been proposed variously that the STN functions to delay decisions till correct
information is available[12] or alternately that it functions to carry a specific stop
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Fig. 3 (a) Error rates (blue) and reaction time (red) in switch and non-switch trials. STN activity
during (b) non-switch and (c) switch trials. Activity of all the neurons is shown

signal during switching from automatic to voluntary responses [10]. Here, we
propose an alternative view of STN function, where it acts as a source of exploration
or noise in the BG. We show through our model that such a view is also compatible
with experimental evidence. Using our model, we are able to match the success rates
in and also show the presence of specialized switch neurons in the STN. The time
of occurrence of correct and incorrect switch trials is the main factor that does not
match with experimental results. It is likely that the hyperdirect pathway, which is
not included in the current version of the model, is necessary to achieve this effect.
Future studies would include this pathway as well.
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Spiking Neural Network Ink Drop Spread,
Spike-IDS

Mohsen Firouzi, Saeed Bagheri Shouraki, and Mohammad Ghomi Rostami

Abstract ALM is an adaptive recursive fuzzy learning algorithm which is inspired
by some behavioral features of human brain functionality. This algorithm is fairly
compatible with reductionism concept in philosophy of mind in which a complex
system is representing as combination of partial simpler knowledge or superposition
of sub-causes effects. This algorithm utilizes a fuzzy knowledge extraction engine
which is called Ink Drop Spread in brief IDS. IDS is inspired by non-exact
operation paradigm in brain, whether in hardware level or inference layer. It enables
fine grained tunable knowledge extraction mechanism from information which is
captured by sensory level of ALM. In this article we propose a spiking neural model
for ALM where the partial knowledge that is extracted by IDS, can be captured and
stored in the form of Hebbian type Spike-Time Dependent Synaptic Plasticity as is
the case in the brain.

1 Introduction

Today according to some biological evidences, we know that information processing
in biological neural networks is being performed in the form of spike time dependent
temporal coding that is called spike coding. This computation paradigm enables
fast temporal and spatial processing simultaneously and prepares powerful networks
with considerably less neurons and interconnects in comparison with conventional
rate coding ANNs [1].

Besides micro-level neurophysiological findings of brain machine, some clinical
researches have been done to study the black box of human mind through another
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point of view. Due to some evidences, human intelligence deals with real world
phenomena with qualitative non-exact concepts which is generated by non-exact
distributed hardware structure, that is mentioned as brain [2]. Moreover it appears
that human brain confronts with real world complex problems by breaking down
them into simpler and more comprehensible concepts the way that consumes less
energy to acquire information and obtain knowledge. Then these fine grained partial
knowledge could be refined and they are integrated by an inference process to make
decision and recognition [3].

ALM was developed based on this set of hypotheses with the purpose of human
brain learning simulation [3]. ALM is an adaptive recursive fuzzy algorithm which
tries to express a Multi-Input Multi-Output (MIMO) system as a fuzzy combination
of some simpler Single-Input Single-Output (SISO) sub-systems. This viewpoint of
ALM to human learning process is compatible with some reductionism concepts in
philosophy of mind in which a complex system is supposed as sum of its parts. In
other words this fact can be represented more specifically in causal reductionism,
which implies that the causes acting on the whole are simply the sum of the effects
of the individual causalities of the parts [4]. This integrative approach has been used
in some related works such as CAM Brain Machine which has been proposed by De
Garis [5].

In this work we propose a spiking neural model for ALM. This Hybrid Model
comprises single layer feed-forward multi-synaptic spiking neural structures in
which partial knowledge can be extracted and stored through synaptic plasticity
of SRM neurons. These partial knowledge are unified by fuzzy inference layer
eventually to make decision surface. This work is a good reminder to need for
unification of brain studies in different attitudes.

In next section IDS is explained in more detail, in Sect. 3 proposed model is
presented and finally in Sect. 4 some evaluation results are reported.

2 Ink Drop Spread, IDS

As we discussed before in ALM a MIMO system is broken down into simpler SISO
systems. Each SISO system is interpreted as xi�yj grid plane which is called IDS
unit and consists of projected data points corresponding to specific interval domains
of another input variables. Figure 1 shows a simple 2-input single-output ALM with
two partitions for each variable domain. As we can see in Fig. 1 ALM can be
represented in three layer: input layer, where input pattern variable is distributed
in IDS units in correspondence with membership of another variables to fuzzy
intervals. Modeling layer as most important layer of ALM in which IDS operator
operates on IDS units to extract partial knowledge. IDS is like a Gaussian Ink Drop
with radius R which spreads around each projected data points in order to extract
two important features in partial knowledge space: Narrow trajectory (‰ in Fig. 1)
which describes input-output characteristic of IDS units and Spread value (	 in
Fig. 1) which shows importance degree and effectiveness of partial knowledge in
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Fig. 1 Structure of 2-input 1-output ALM

overall system. This effectiveness is related reversely with Spread value. Finally
these features are consolidated by fuzzy inference layer of algorithm to make overall
input-output modeling surface. Mathematical implementation of Narrow and Spread
is described as follow:


d.x; y/ D e
�.x � p1/2
0:22:R2 � e

�.y � p2/2
0:22:R2 ;

q
.x � p1/2 C .y � p2/2 	 R (1)

Where �d(x,y) is ink intensity in point (x,y) of IDS plane, (p1,p2) is the point
of ink drop and R is Ink radius. Narrow path and Spread are described as (2), (3)
respectively:

 .xi / D

nP
jD1

Iij � yij
nP

jD1
Ij

(2)

Where n is IDS grid plane resolution, Iij denotes as Ink intensity for each yj values
corresponding to xi.

	.x/ D max fyjd.x; y/ > 0g �min fyjd.x; y/ > 0g (3)
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Fig. 2 A simple IDS plane,
after applying IDS

In Fig. 2 a simple IDS unit after IDS operation is presented. Also extracted
narrow trajectory and spread value is shown. In inference layer of ALM, a Fuzzy
inference unit applies narrow and spread values to generate a rule base in order
to integrating partial knowledge and extract knowledge expertness existing in data
samples. In the case of N-input with mi partitions for ith input variable, the number
of combination rules and IDS units corresponding to ith input which is denoted by
li and total number of rules, L is as follows:

li D
YN

kD1;¤i mk (4)

L D
XN

iD1 li D
XN

iD1
YN

kD1;¤i mk (5)

Also the kth rule of ith input variable, Rik (kD 1, 2, : : : , li)
can be described as:

Rik W if x1 2 A1j1 ^ x2 2 A2j2 ^ : : : ^ xi�1 2 Ai�1ji�1^
xiC1 2 AiC1jiC1

^ : : : ^ xN 2 ANjN then Y D  ik (6)

Where 1	 js	ms, the overall output of model is obtained by (7):

Y is ˇ11‰11 or : : : ˇik‰ik or : : : or ˇN lN‰N lN (7)
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ˇik D ˛ik�ik

NP
pD1

lpP
qD1

˛pq�pq

; ˛ik D log.
1

	ik
/ (8)

3 Spiking Neural Network IDS, Spike-IDS

3.1 Network Architecture

Network architecture of this work which is shown in Fig. 3 comprises multiple
delayed synaptic terminals which is imitated by multiple synaptic gap in biolog-
ical neurons. Each sub-synapse has specific arranged delay and synaptic weight.
Membrane potential that is called internal state variable for a post-synaptic neuron j
with m sub-synapse for each connection can be expressed as:

xj .t/ D
X

i2�j
Xm

kD1 wkij ".t � ti � dk/ (9)

".t/ D t

�
e.1� t

� / (10)

Where "(t) is simplified model of biological Excitatory Post-Synaptic Potential,
ti is firing time of pre-synaptic neuron i, dk is fixed delay for kth sub-synapse which
is arranged from zero (dkDf0,1, : : : ,m�1g) and wk

i,j stands for synaptic weight of
kth sub-synapse of i,j connection. Besides 
 j is set of pre-synaptic neurons which
are connected to post-synaptic neuron j. When internal state variable, xj, exceeds
from threshold voltage, # , neuron j fired in tj. this model of neuron is called as
Spike Response Model in brief SRM [6].

Fig. 3 General architecture
of Spike ANN which is used
in this work
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Fig. 4 Gaussian receptive fields for eight neurons encoding and delays for 0.3 as input

3.2 Information Coding

Proposed coding is a kind of population delay coding [7] which is inspired by non-
exact spatial coding of IDS operator. In this coding scheme analog input or output
variables are encoded with graded overlapping Gaussian receptive field profiles.
Receptive fields capture spatial content of input variable in spike time delay format
and store output features in RBF-like output neurons with same coding. Each input
and output neuron stands for each receptive field with specific center and width.

In Fig. 4 overlapping Gaussian receptive fields for eight neurons are shown.
Normalized firing times of related neurons for analog value of 0.3 is shown in Fig. 5.
Neurons related to receptive fields which fire in more than 0.9 ms are supposed to be
silent neurons and never to be fired. Center and Width of Gaussian receptive fields
for n profiles are set as follows:

Ci D 2.i � 3/
2.n� 2/ ; !i D 1

�i .n � 2/ (11)
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Fig. 5 General scheme of
spike delays for spike neurons
related to 0.3 as input

3.3 Learning Algorithm

The learning algorithm is based on reinforcement Hebbian learning algorithm. It is
demonstrated that there is a temporal reinforcement learning process in biological
neuronal systems [1, 7]. When a neuron is stimulated artificially by extracellular
electrode pulse train in way that enforced to be fired, EPSP which is made by a single
spike stimulus from same connection gap has been strengthen in comparison with
before pulse train stimulus and spike generation. This Hebbian type reinforcement
plasticity mechanism is known as STDP in precise temporal coding [8]. These
biological findings demonstrate that pre-synaptic neurons which contribute in firing
of a post-synaptic neuron should be rewarded. Therefore to implement STDP like
mechanism, a learning window which is defined as a function of time difference
between firing times of ti and tj is proposed. This time window controls updating
the weights based on this time difference as bellow (�tijkD ti � tjC dk):


wkij D �L.
tkij /;wini t D 0; 0 < w < 3 (12)

L.
t/ D .1C b/e .
t�ı/
2

2.��1/ � b; � D 1 � �2

2 ln .b=b C 1/ (13)

This function reinforces synapses between neurons i, j with rate � if �ti,jk <�
and depress synaptic weight if �ti,jk >�. Figure 6 presents learning window. It is
noticeable that because of time constant � in EPSP (10), the firing of neuron i
contributes in firing of neuron j not exactly after distribution of spike. Therefore
learning window should be shifted slightly to achieve this consideration. In Fig. 6 ı
denotes this shifting and usually sets to �� value. Parameter � indicates reward
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Fig. 6 Learning window of proposed SNN

neighborhood and b determines penalty depth. Also silent neurons should be
penalized. So�wij for weights between silent input neurons and fired output neuron
is set to ��.

3.4 Narrow and Spread Extraction

General overview of learning steps is as follow: Initial value for Wij
k sets to

zero; regarding to single-input single-output structure of IDS units, input and
output domain is encoded by receptive profiles; according to learning window
the synaptic weights are updated in accordance with input-output firing times. In
another viewpoint, proposed learning algorithm is a coding from Ink intensity in
IDS plane into spike firing time in SNNs which enables tunable non-exact view to
crisp data such as IDS. This learning algorithm implements overlapping Ink Drops
which strengthens each other by successive weight updating for neighboring data
points. Also in this learning method firing time of output neurons means to activation
degree of related sensing profile. So by consolidating output firing times like COG
Defuzzification, Narrow can be implemented in modeling phase. Also by thanks
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of spatial arrangement of neurons, difference of receptive field centers for last and
first fired output neurons stands for Spread value similar to IDS spread and narrow
extraction method. Mathematical form of aforementioned mechanism is as:

Q .xin/ D
Pmo

iD1 TiCiPmo
iD1 Ti

; Q	.xin/ D Clast � Cfirst (14)

Where mo is number of output receptive fields, Ti is firing time of stimulated
output neuron i and Ci is related receptive field center, Clast and Cfirst are centers of
receptive fields related to last and first fired output neurons and § and ¢ stand for
Spike-IDS extracted narrow and spread values in modeling phase.

4 Evaluation Results

To evaluate proposed structure with IDS we choose a non-linear function approx-
imation problem (two-input single-output system modeling) which is used as a
benchmark in related works [9].

y.x1; x2/ D
s

2.
sin.x1/

x1
/
2

C 3. sin.x2/

x2
/
2

(15)

Where 1	 x1,x2	 10, also in order to verify the model accuracy, the error was
measured using the fraction of variance unexplained (FVU) [9]:

FV U D
PL

iD1 .
_
y.xi /� y.xi //

2

PL
iD1 .y.xi / � Ny/2

; Ny D .1=L/
LX

kD1
y.xk/ (16)

Where xl is lth input vector (lD1,2,..,L), y- denotes the output of a constructed
model. The FVU value is calculated from 2,500 points at regular intervals over the
input domains. Table 1 shows mean value of FVU error over ten random learning
data sets with different set-size and partition numbers for proposed approach and
IDS. Spike-IDS consists 15 input and 25 output neurons with 12 sub-synapse
and learning parameters are experimentally set as: � D 3, bD 0.2, ıD�3, �D 5,
� D 1.4, �D 0.3, # D 10mv with epoch number 15. Resolution of IDS units is set
to 256 and IDS radius is set to medium size, equal to 9 [9]. It is illustrated from
Table 1 that Spike-IDS has good ability to model subjected system as well as IDS.
Also it seems in the case of deficiency of knowledge, when learning set size is small,
smaller partitioning that means less granularity, causes better performance and vice
versa.
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Table 1 FVU error of system modeling for Spike-IDS approach in comparison
with IDS with medium Ink Drop size (9) over different training set number and
different partition number

Training set size

Number of partitions IDS vs. spike-IDS 100 250 400 550

5 IDS 0.171 0.068 0.043 0.039
Spike-IDS 0.095 0.089 0.061 0.055

8 IDS 0.256 0.059 0.034 0.022
Spike-IDS 0.153 0.057 0.051 0.025

12 IDS 0.35 0.083 0.036 0.021
Spike-IDS 0.221 0.046 0.042 0.023

5 Conclusion

A novel Spike type artificial neural model of ALM learning algorithm is proposed in
which IDS knowledge extraction mechanism is implemented by temporal synaptic
plasticity of SRM neurons. This Hybrid algorithm is inspired by some integrative
approach of behavioral and some structural features of human brain activity. The
results show that Spike-IDS can extract human knowledge expertness as well as
IDS.
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A Biophysical Model of Neuro-Glial-Vascular
Interactions

Bankim S. Chander and V. Srinivasa Chakravarthy

Abstract Functional neuroimaging techniques measure hemodynamic response as
an indirect indicator of neuronal activity. These imaging techniques consider only
forward pathway (neuron! astrocyte! vessel) and often the effect of metabolic
feedback on neural activity is ignored. To understand brain’s computation, we
propose a biophysical model of neuro-glial-vascular interaction forming a func-
tional loop. This model describes key biochemical signaling pathways involved in
astrocyte mediated neuro vascular coupling using a series of first order nonlinear
differential equations.

Keywords Neuron • Astrocyte • Vessels • Cerebral circulation • Neurovascular
interactions

1 Introduction

Unlike other cells, neurons convey “hunger” signals to the vascular network via an
intervening layer of glial cells (astrocytes); vessels dilate and release glucose which
fuels neuronal firing. Modeling neurovascular interaction has particular application
in quantitative interpretation of Functional Magnetic Resonance Imaging (f MRI)
which measures blood oxygenation level dependent (BOLD) signal as an indicator
of neuronal activity. However, such models focus on the forward branch of this loop
(neuron! astrocyte! vessels), whereas for a reliable, quantitative understanding
of neurovascular interactions, it is necessary to study the entire loop consisting
of neurons-astrocytes-vessels. Neuronal firing causes release of neurotransmitter
which triggers release of vasodilator by astrocytes. Vasodilators released from
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Fig. 1 Schematic of biophysical signaling pathways

astrocytic endfeet cause blood vessels to dilate and release glucose into the intersti-
tium, part of which is taken up by the astrocytic endfeet. Glucose is converted into
lactate in the astrocyte and transported into the neuron. Glucose from the interstitium
and lactate (produced from glucose) from astrocyte are converted into ATP in the
neuron. Neuronal ATP is used to drive the Na-K pumps, which maintain ionic
gradients necessary for neuronal firing (Fig. 1). Using the model described below
we have attempted to study the effect of metabolic feedback on neuronal activity.

2 Model

The modeling components are designed as follows: Hodgkin-Huxley (HH) model is
used as neuron model; astrocyte model is from [1]; the model for metabolic feedback
is from [2]. Glial KC buffering and Na-K ATPase pump activity is incorporated to
compensate for changes in ion concentration across the membrane due to neural
firing [3]; the model for synaptic glutamate release is taken from [4]. The model
describes the events in the neurovascular loop as follows. On application of an
external current, the neuron generates action potentials (APs), which cause quantal
release of glutamate. The glutamate flux is given by the number of glutamate
molecules (n) times the reaction flux of exocytosis. The latter is equal to the number
of releasable vesicles (Nrel) multiplied by exocytosis rate constant (Prel*ICa), where
Prel is release probability of the vesicles and ICa is calcium current associated with
each action potential. Nrel is the product of two factors: the dimensionless ratio
of releasable vesicles (Rrel) and the sum of empty and releasable vesicles (Ntot).
Synaptic clearance of glutamate occurs with time constant �G.
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dŒGlu.t/�

dt
D nNtotRrelPrel ICa

NAVs
� ŒGlu�

�G
(1)

Synaptic glutamate triggers Inositol trisphosphate (IP3)-mediated Ca2C transient
in astrocyte which generates Epoxyeicosatrienoic Acid (EET). This leads to hyper-
polarization of smooth muscle which causes relaxation and consequent vasodilation.
Dynamics of [IP3], [Ca2C] and [EET] in astrocyte is described by a set of three
simultaneous non-linear differential equations [1].

@ŒIP3�

@t
D r�h G� � kdegŒIP3� (2)

dŒCa2C�
dt

D ˇcyt
�
JIP3 � Jpump C Jleak

�
(3)

d ŒEET �

dt
D VEET 
 ramp

��
Ca2C

� � �Ca2C�
min

� � :2 ŒEET �

ŒEET �C 18 (4)

where rh* and kdeg are constants, G* is the ratio of activated G-protein due to
synaptic glutamate to total G-protein. JIP3, Jpump and Jleak are the rates of Ca2C
concentration change due to release through IP3 receptor channels, pump uptake
into the ER, and leak from the ER respectively; ˇcyt is a constant factor describing
Ca2C buffering. VEET is a constant production rate of EET and [Ca2C]min is the
minimum [Ca2C] for EET required for production. The clearance of EET is given
by the subtraction term in the Eq. (4). Smooth muscle membrane potential (Vm)
is described as a nonlinear function of [EET] and change in vessel radius (r) is
assumed to be linearly related to smooth membrane potential.

Vm D 5 � 80 1

1C e�2ŒEET�
(5)

r D rmin C .rmax � rmin/

�
Vmax � Vm
Vmax � Vmin

�
(6)

where rmin and rmax refers to minimum and maximum vessel radius corresponding to
constricted and dilated state respectively. Vmin and Vmax refer to minimum and max-
imum smooth muscle membrane potential corresponding to relaxed and contracted
state respectively. Vessel dilation facilitates glucose release into interstitium. The
model of metabolic flux [2, 5] is based on experimentally determined glucose and
lactate transporter concentration values, glucose and lactate kinetics in endothelium,
neuron and astrocyte. Glucose is metabolized in astrocyte to produce pyruvate
and lactate. Lactate is transported to neuron via interstitium and is metabolized to
ATP, which fuels Na-K pump required for maintaining ionic gradients. The pump
dynamics are described as
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Apump D
	
1C KmK

ŒKC�o


�2	
1C KmNa

ŒNaC�i


�3	
1C KATP

ŒATP �


�1
(7)

where pump activity (Apump) is a function of potassium ion concentration outside the
neuron ([KC]o); sodium ion concentration inside the neuron ([NaC]i) and cytosolic
ATP concentration. KATP, KmK and KmNa are constants [3]. Sodium (INa) and
potassium (IK) currents as functions of pump activity are

IK D �2�Imax�Apump (8)

INa D 3�Imax�Apump (9)

where Imax is the maximum pump current. The rate of ion accumulation [3] across
membrane due to net current of a particular ion is expressed as

dŒion�i

dt
D IP.ion/

�S
F �Vi

(10)

dŒion�o
dt

D �I
P
.ion/

�S
F �Ve

(11)

where, subscripts ‘i’ and ‘o’ refer to internal and external respectively. S is the
surface area of the neuron and Vi and Ve is the intracellular and extracellular volume
respectively. The delicate balance between the pump current and ion channel current
determines the net ion transfer across the neuronal membrane. To sustain neuronal
firing the pump current must nullify the channel current and thereby maintain the
ionic gradient across the membrane.

3 Results

On application of stimulus current beyond a threshold, the neuron exhibits firing.
Only when there is a sufficient glial KC buffer capacity firing is continuous.

Variation in neuronal membrane potential and synaptic glutamate concentration
follow the same pattern as shown in Figs. 2 and 3 respectively. Glutamate pulses
cause release of EET by astrocyte.

A delay of 1 s is observed in release of EET (Fig. 4) after activation of mGluR
by synaptic glutamate. Vessel dilation (Fig. 5) occurs instantly on EET release by
astrocyte.

Vessel dilation (Fig. 5) improves glucose and lactate flux into the interstitium.
Glucose and lactate reserve of neuron and astrocyte is exhausted within 1 s after
onset of neuronal firing. On vessel dilation, glucose and lactate is instantly available
for astrocyte (Fig. 6) and neuron (Fig. 7).
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Lactate is oxidized via Tricarboxylic Acid (TCA) cycle to generate ATP which
is used for maintaining ionic gradient across neuronal membrane. For subthreshold
stimulation and low initial [ATP], bursting or firing with initial pause is observed.

Neurovascular interactions under pathological conditions like blocked glutamate
transmission or constricted vessels are also studied, which show reduction in
duration of neuronal firing and amplitude of APs when compared with normal
operation (Fig. 8).
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4 Discussions

The proposed model can be scaled up to network level to explore role of “metabolic
plasticity” (activity dependent variation in astrocyte-vessel interaction) in neurovas-
cular interactions. The model suggests that brain’s computations may be more
comprehensively understood in terms of neuro-glial-vascular dynamics and not in
terms of neural firing alone.
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Model Complexity in the Study of Neural
Network Phenomena

Claus C. Hilgetag, Marc-Thorsten Hütt, and Changsong Zhou

Abstract In this paper, we explore features of neural network dynamics that were
identified in simulation approaches with highly complex models (representing large
populations of coupled oscillators) on the one hand, or basic discrete excitable
models, on the other. Both types of modeling approaches could produce features
such as irregular sustained network activity or modular functional connectivity. This
observation poses the question, what are the essential model features that lead to
characteristic phenomena of neural network dynamics?

1 Introduction

The increasing affordability of computer power has produced a recent trend in neural
network modeling towards large-scale and supercomputational approaches, taking
into account detailed biophysical properties of the individual network elements
(neurons or neuronal populations). However, there are a number of network
phenomena that can also be replicated with much simpler models. For example,
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modularity of functional connectivity has been observed in models ranging in
complexity from large populations of coupled oscillators [1] to networks formed
by discrete excitable nodes [2].

These observations pose the question: How intricate does a neural model have
to be in order to produce a particular network phenomenon, such as irregular
sustained activity, bursting, neural avalanches or slow-frequency coupling of high-
frequency oscillators? What are the minimal models for these phenomena, what
features (e.g., noise, delays, heterogeneity of connections) do they need to include?
While analytical answers for most of these questions may be still out of reach, we
seek an improved practical understanding of essential parameters and constraints
for neural network modeling.

2 Methods

We explored two kinds of neural node models of different complexity: a detailed,
continuous model of coupled populations of FitzHugh-Nagumo oscillators (CO), as
in [1], or alternatively, discrete excitable (DE) nodes with few categorical states
(susceptible, active, refractory) operating in discretized time [2]. The choice of
these models was motivated by the desire to explore the global network dynamics
produced by a popular continuous model on the one hand and a basic, minimal
dynamic model on the other. We used these models to investigate the relation
between network topology and global dynamics for different benchmark networks
(random, scale-free, modular networks) as well as biological neural networks,
such as the large-scale connections among more than 50 cat cortical areas [3]. In
the case of the DE model, the correlations were expressed through the dynamic
modularity Qdyn, which computes the alignment between the topological and
functional groupings of network nodes according to different features, such as
topological modularity (TM) or centrality (CN). Qdyn was determined as a function
of the rate of spontaneous node excitations f, which may be interpreted in terms of
high or low levels of background activity or noise in the system.

3 Results

Despite greatly disparate model complexity, both kinds of models were capable
of producing intricate, sustained dynamics at the network level, see Fig. 1. Both
models also produced modular dynamics that corresponded to the modular network
connectivity, see Fig. 2. The dominance of the modular topology of the cat cortical
network was reflected in a distinct increase of Qdyn for the TM-dependent correlation
for high levels of spontaneous node activity f, while distance from central hub
nodes appeared to play only a marginal role. Other networks, however, such as
the cellular network of C. elegans displayed a strong dependency on the distance
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Fig. 1 CO and DE models for exploring neural network topology. (a) Mean field activity produced
by the large-scale coupled oscillator (CO) model, based on coupled populations of Fitzhugh-
Nagumo oscillators [1]. Weak global coupling results in patterns of irregular multi-frequency
activity. (b) Mean activity produced by a basic discrete excitable (DE) model [2]. Intermediate
ranges of stochastic refractory periods result in sustained irregular activity (red trace). Thus, both
modeling approaches, despite great differences in their complexity, may produce intricate network
dynamics that can be used to probe network topology

to central nodes for a wide range of f [2]. Similarly to the exploration of cat
cortical connectivity by the DE model, the CO model showed a close alignment of
the modular functional connectivity with the underlying structural modularity. This
alignment is demonstrated in Fig. 2 through the correspondence between anatomical
connections (small black dots) and functional connections (blue circles) of cat
cortical areas.

4 Discussion and Conclusions

It is currently unclear how much detail and model complexity at the node level are
required in order to explore essential phenomena of global network dynamics, such
as irregular multi-frequency activity and modular functional connectivity. While
it has been suggested that the appropriate tuning of features such as coupling,
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Fig. 2 Neural network dynamics in two models of the cerebral cortical network of the cat brain.
Large-scale connectivity data of the cat have been used previously to explore relationships between
the topology and dynamics of neural networks. (a) Lateral view of the cat cerebral cortex, depicting
cortical areas at the mesoscopic scale (Adapted from [4]). (b) Modular connectivity of the cat
cortical network. Cluster analysis of 892 structural interconnections among 55 cat cortical areas [3]
revealed four principal modules. These modules predominantly contain visual, auditory, sensory-
motor and frontal-limbic areas, demonstrating the alignment of connectivity with functional
modalities in the brain ([5]; Adapted from [6]). (c) Dynamic exploration of the cat cortical network
by a minimal model of discrete excitable nodes and correlation of the resulting co-activation
patterns to topological features, such as distance from a central hub node (CN) or grouping by
topological modules (TM). (d) Correlation between structural and functional connectivity of the
cat cortical network explored by a supercomputational model in which areas were represented as
large populations of coupled oscillators (Adapted from [1])

delay and noise in continuous models is essential for producing realistic network
dynamics [7], even simpler models may be sufficient for studying the principle
relations between network topology and dynamics. In future work, we face the
challenge of developing suitable approaches for more precisely scaling model
complexity and for defining a transition between discrete and continuous models
in order to compare them more directly.

Acknowledgments We thank Gaurang Mahajan for contributing numerical simulations.
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From Spiking Neurons to Neural Fields:
Bridging the Gap to Achieve Faster Simulations
of Neural Systems

Peter A. Robinson and Jong Won Kim

Abstract Representing the neural activity in terms of spikes or rates are
complementary approaches to computing neuronal dynamics. Likewise, commu-
nication between neurons via individual pairwise links or via smoothed fields are
complementary approaches to modeling information transfer. Here it is shown that
many intermediate and hybrid approaches exist, which enable different aspects of
the dynamics to be probed and permit faster computation in many circumstances.

1 Introduction

There are two well-known limiting perspectives on how to model large neural
systems. One is to simulate large numbers of individual spiking neurons in
neural networks, where each model neuron has dynamics with some degree of
physiological realism, and multiple neurons interact with one another via spikes [1].
In the opposite limit, neural firing rates are followed and neural properties and states
are locally averaged over many neurons to obtain neural field equations for activity
that propagates through neural tissue approximated as a continuum [2]. These limits
are analogous to molecular and continuum approaches to materials, where neither
limit gives the whole story and each uncovers some of the dynamics—i.e., they are
complementary, not mutually exclusive [3, 4].

Spiking neural networks are most directly linked to the basic biophysics, but
are extremely computationally intensive to simulate [5] and produce amounts of
output so large as to make interpretation problematic [6]. On the other hand, neural
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field theory omits more biophysical details, but is advantageous for uncovering
multiscale and emergent phenomena, such as brain oscillations and criticality [2].
These points highlight the importance of understanding the relationships between
these limiting cases, including areas of overlap, which phenomena are accounted for
most naturally and tractably by which level(s) of description, and how to simulate
realistic systems most efficiently.

By re-examining the assumptions and approximations of rate-based vs. spiking-
neuron theories, and pairwise vs. field-based interactions, it is shown that interme-
diate and hybrid possibilities exist. These include faster means of computing with
spikes, ways to infer spiking properties from field theories, and improved ways to
treat spike propagation using fields.

2 Models

2.1 Neuronal Dynamics

Spiking neuron models represent the most commonly considered way of approach-
ing neural dynamics. These models range from biophysical conductance-based
models, to idealized ones, such as integrate-and-fire models [5]. These types of mod-
els incorporate an input current, which can come from other neurons (see below),
or from an artificial external source. If this current charges the soma sufficiently to
exceed the firing threshold potential, the neuron will produce an action potential, or
spike. Thus, many such models incorporate conductance equations that track various
ion currents in and out of each cell, and the resulting changes of soma potential V .
Such equations must be integrated with a sub-millisecond timestep ıt throughout
when dealing with networks of coupled neurons; typically ıt � 0.1 ms.

One type of approximate spiking neuron model treats each neuron as a phase
oscillator that produces one spike per cycle. Such models track the smoothly varying
phase, rather than V , and one spike is produced each time the phase advances by
2� [1]. In many phase oscillator models, all spikes are assumed to be identical and
the dynamical equations can be integrated with much larger time steps
t (typically
over 1 ms) than if every spike had to be temporally resolved [7].

In some cases, what is of interest is the spike rate Q, rather than spike
timings. It has recently been shown that many types of spiking dynamics can be
approximated using Q, rather than fast variables such as V [3]. Together with
the phase interpretation above, this has enabled physiologically based spiking and
bursting dynamics to be closely approximated while integrating using time steps

t , or longer if Q only changes slowly [3].

Another way the dynamics can be simplified, and time steps extended, is by
noting that spikes received by downstream neurons are subject to low-pass filtering
by synaptic and dendritic dynamics, and by the effects of soma charging, giving a
frequency cutoff of around�20 Hz for typical parameters [8,9]. This means that fine
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Fig. 1 Schematic of different
models of neuronal dynamics
and communication. (a)
Spiking neurons of various
types with pairwise
connections. (b) Spiking
neurons with communication
via a field that carries V ,
smoothed spikes V , or Q
(NIC). (c) Populations
pairwise connected. (d) NFT

structure in individual spikes has little effect on spike dynamics downstream. Hence,
because the low-pass filtering is approximately linear [9], it is mathematically
possible to move it to a point before axonal propagation [10, 11]. One can then
adopt neuronal dynamics that generate prebroadened spikes, using longer time steps
(�
t). These spikes then interact with subsequent neurons without further synaptic
or dendritic broadening, yielding dynamics identical to the original system. A key
advantage of using prebroadened spikes is that axonal signals also need only be
resolved on the scale 
t .

The types of neuronal dynamics discussed above are shown schematically in
Fig. 1, some parts of which are discussed in Sect. 2.2. Overall, the ability to use
simplified systems of equations with coarser time resolution in numerical integration
can lead to speedups of up to 2–3 orders of magnitude relative to tracking individual
spikes using conductance-based models: 10- to 100-fold from larger timesteps, and
up to 10-fold, or even more, from simplification of the dynamical equations [5]. The
maximum timestep may be further limited by the resolution required for specific
applications.

2.2 Neuronal Communication

The simplest way to couple multiple neurons to study large-scale system dynamics
is to track spikes via links between all relevant pairs of neurons. However, for N
neurons this involves up to N2 axonal links, in which signals must be resolved at
the same timescale as individual neurons.

An alternative method of communicating between individual neurons is sug-
gested by the particle-in-cell (PIC) method of plasma physics [12]. Instead of using
N2 pairwise interactions, we make the approximation that the interaction between
two neurons depends only upon their spatial locations and spike timings. In this
case, all neurons can be viewed as contributing to a field � that carries spike profiles.
These spikes can be sharp, broadened, of the phase oscillator type, or can be replaced
by a spike rate in the case the neurons’ dynamics are rate-based. The field � is then
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propagated by solving its field equation (e.g., a damped wave equation). It then
serves as the input to other neurons. Normally, � conveys dynamical quantities in
the form used in the internal dynamics of the model neurons. The advantage of this
“neuron in cell” (NIC) method is that specification of the field can involve far fewer
points than neurons. Hence, neural communication can be simulated much faster
than via pairwise interactions. For example,N neurons interacting via field defined
on P � N points can be simulated in a time of order N rather than order N2, with
fields carrying spikes or rates.

A further approximation is to take the multiple neurons represented by a given
grid point and examine not their individual dynamics, but the mean rate-based
dynamics of this whole group. This yields a population network model, in which
populations at different locations interact [13]. Communication between these
populations can then be calculated in a pairwise fashion in a time of order P2, at a
time resolution of order
t .

If the P neural populations are viewed as representing neurons in a single
spatially continuous structure, such as the cortex, one can index them by position
rather than via discrete labels. One then obtains a continuous neural field theory
(NFT) of their averaged dynamics [2, 8]. This enables the dynamics of the entire
system to be tracked in a time of order P , where P is large enough to resolve the
linear scales of activity phenomena of interest. In the limit that the spatial structure
of activity is not required, one can set P D 1 to obtain a neural mass theory (NMT)
[2, 14], where the entire population of neurons is treated as a single point mass. For
NMT to hold, time lags for signals to cross the system must be much less than the
shortest phenomena of interest. Neural mass theories can be simulated in a time
independent of N and P .

The above approaches to neural communications are shown schematically in
Fig. 1.

3 Results

Relative runtimes of the above approaches to dynamics and communication con-
stitute some of the key results, as described in Sect. 2. These are summarized in
Table 1, which shows the runtime scalings to simulate networks consisting of a
single type of neuron using the various methods. Scalings obtained from numerical
implementations of several of these methods are illustrated in Fig. 2, which confirms
the relative dependences on N and P .

Figure 3 shows some examples of computations carried out with the methods
discussed here. It compares individual bursting neuron dynamics calculated via
rate-based variables with those calculated via conductance-based equations. It is
seen that there is a close parallel between both types of simulations. Indeed, if one
integrates the total phase advance over each burst and divides by 2� , we predict
3 spikes per burst, exactly the number seen in the spike-based approach [3]. This
demonstrates that phase- or rate-based approaches can yield accurate results for
spike timings, even though they do not represent spikes explicitly.
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Table 1 Scalings of runtimes
for simulations of N neurons

Method Runtime
C N2=ıt

PO N2=
t

PB N2=
t

Rate N2=
t

C NIC N=ıt

PO NIC N=
t

PB NIC N=
t

Rate N=
t

Population network P 2=
t

NFT P=
t

NMT 1=
t

First four lines are for pairwise-coupled
spiking models with C conductance, PO
phase oscillator, PB prebroadened spikes,
ıt � 0:1ms,
t � few ms. Next three lines are
for communication via fields on P � N grid
points. Last three lines are for populations. Finer
steps may be needed to resolve phenomena or
satisfy the Courant condition
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Fig. 2 Runtimes of
pairwise-coupled neurons
(circles), NIC (squares
P D 10, diamonds
P D 100), and NFT (dashed
P D 10, dash-dotted
P D 100) simulations vs.
number of neurons N

Fig. 3 Bursting neuron dynamics (Adapted from [3]). (a) From conductance-based equations.
(b) From rate-based equations



88 P.A. Robinson and J.W. Kim

t (s)

N
eu

ro
n a

b

c

1 1.5 2 2.5
0

20

40

60

80

100

t (s)

G
rid

 p
oi

nt

d

e

f

1 1.5 2 2.5
0

5

10

15

0.8 1 1.2 1.4 1.6

c

b

a

t (s)

V
 (

V
)

0.8 1 1.2 1.4 1.6

f

e

d

t (s)

V
 (

V
)

Fig. 4 Examples of system dynamics for N D 100, pairwise connected spiking neurons vs. NIC
(N D 100 and P D 20). Resting neurons are triggered via a strong input current at the center at
t D 1:0 s and firing propagates outward. Input current of (a) pairwise connected spiking neurons,
(b) NIC. Firing patterns at the points denoted by dotted horizontal lines in (a) and (b) for (c)
pairwise connected neurons, and (d) NIC

Figure 4 shows some preliminary results the networks of interacting neurons
simulated with spiking-neuron and NIC methods, parameters otherwise being the
same. We see that systems-level spreading of activity is very similar, as are the
single-neuron firing patterns.

4 Discussion

A sequence of hybrid and intermediate approaches to brain modeling is introduced
that combine features of spiking-neuron and neural-field approaches in various ways
that balance the degree of physiological detail against speed of computation. It is
shown that these can dramatically speed computations involving large ensembles
of interacting neurons (see Fig. 1). These new methods provide alternatives that
can be used to explore the boundary between the discrete and continuum limits
to determine which systems-dynamic effects depend on which aspects of the neural
dynamics and/or communication are retained. Mathematical details will be provided
in a forthcoming work [7].
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Multi-population Network Models
of the Cortical Microcircuit

Tobias C. Potjans and Markus Diesmann

Abstract In this paper, we investigate a data-based multi-population extension of
the balanced random network model (BRN) (Amit DJ and Brunel N, Cereb Cortex
7:237–252, 1997; van Vreeswijk C and Sompolinsky H, Science 274:1724–1726,
1996). We observe that the findings based on the mono-layered network model,
especially regarding the asynchronous irregular activity state, largely generalize to
the multi-population model (MPM). In addition, the increased complexity of the
network structure yields cell-type specific activity features which we relate to other
data-based microcircuit models as well as to experimental data. We argue that the
specificity of the connectivity between cell types is crucial to achieve consistency
of simulated and in vivo activity.
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1 Introduction

Fifteen years ago, Amit and Brunel [1] and van Vreeswijk and Sompolinsky
[2] simultaneously developed the BRN, employing the balance of excitation and
inhibition to understand the dynamics of membrane potentials and asynchronous
irregular spiking activity. However, it has been recently demonstrated that the
spiking activity obtained by juxta-cellular recordings in awake animals is cell-
type specific, see e.g. [3]. Although the mono-layered BRN continues to make
important contributions to the understanding of experimentally observed cortical
network dynamics it is indispensable to extent this model (see Fig. 1) to incorporate
the multi-layered nature of the cortical microcircuit and to provide a link between
the experimentally observed network structure and activity.

Here, we investigate, firstly, in how far the mono-layered models generalize to a
data-based MPM [4]. Secondly, we analyze the relationship of the simulated cell-
type specific activity and experimental data as well as other existing MPMs covering
a broad range of neuronal description levels. We focus on the activity of layer 2/3
(L2/3) excitatory neurons that have been reported to exhibit spontaneous firing rates
of less than 1 Hz.

2 Methods

We employ full-scale simulations of a spiking MPM of the cortical microcircuit
comprising around 80,000 integrate-and-fire neurons and 0.3 billion synapses
(Fig. 1b). We distinguish eight populations, corresponding to four excitatory and
four inhibitory cell types in the cortical layers 2/3, 4, 5 and 6. The cell-type
specific connectivity of the model is captured in an integrated connectivity map
[4] which is predominantly based on existing anatomical [5] and physiological
[6] connectivity maps. Furthermore, the integrated map introduces inter-layer
connections specifically targeting interneurons which have been reported in studies
based on multiple recordings and photostimulation in brain slices as well as electron
microscope anatomy but which are elusive in light-microscope anatomy. All other
parameters are determined in analogy to the BRN [1].

a b

Fig. 1 (a) BRN [1, 2]
consisting of excitatory, E,
and inhibitory, I, populations
with external input, X, and (b)
its multi-population
extension [5]



Multi-population Network Models of the Cortical Microcircuit 93

Fig. 2 Regime of
asynchronous irregular
activity of the MPM. The
isolines mark the regime
where all populations (“100%
AI”) or half of the
populations (“50% AI”) fire
asynchronous irregularly. It
largely corresponds to the one
from mono-layered
models [7]

The presented simulation results consider changes in the relative inhibitory
synaptic strength g D �Ji=Je and in the external inputs. The rate of Poissonian
background spikes a single neuron receives is the product of the background rate
�bg, modified for Fig. 2, and the number of background synapses Nbg, modified for
the gray shaded bars shown in Fig. 3 [4].

Simulations are carried out using the NEST simulation tool (www.nest-initiative.
org). We investigate the dependence of the activity state of the network on the
balance of excitation and inhibition and the external input. We quantify the network
state as irregular if the mean coefficient of variation of the interspike intervals of
individual neurons in a population is between 0.7 and 1.2 and as asynchronous if
the Fano Factor of the population firing rate (binned in 3 ms windows) is below 8.
Firing rates represent the mean population firing rates.

3 Results

Figure 2 shows the regime of the asynchronous irregular activity of the MPM. We
observe that the dependence of the activity state on �bg and g from mono-layered
models [7] is largely conserved for the data-based MPM.

BRN activity is typically in the range of a few Hz and identical for excitatory
and inhibitory populations [1]. In the MPM, see Fig. 3, the imposed cell-type
specific connectivity structure yields cell-type specific firing rates. The distribution
of firing rates is robust when the network is confronted with varying external inputs.

www.nest-initiative.org
www.nest-initiative.org
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Fig. 3 Comparison of simulated and experimentally observed spontaneous firing rates of excita-
tory neurons in L2/3, L4, L5 and L6. Black colors denote experimental data from in vivo recordings
in awake animals (e.g. [3], see [4] for an overview), circles indicating numerically given mean
values and bars indicating given ranges (e.g. 4–7 Hz). Shades of gray indicate simulated data of
the MPM based on the integrated connectivity map [4], stars indicating mean firing rates of the
reference parametrization and bars indicating the mean ˙ std when changing external inputs (see
Methods)

Excitatory cells in L2/3 and L6 exhibit lowest firing rates with a mean value below
1 Hz and excitatory cells in L5 fire at highest rates and also show the largest
variability.

Comparison to in vivo data Experimentally, cell-type specific spontaneous activ-
ity in awake animals has been measured by juxtacellular and multi-unit recordings
as well as by two-photon imaging. The mean firing rates are shown in Fig. 3
in comparison to the simulated activity. Overall, we observe a good agreement
of experiments and simulations, without any particular tuning of the simulated
network. In particular, in L2/3, where most evidence is currently available, see [3],
and L6, the low level of activation is preserved.

Relation to other MPMs Table 1 summarizes a number of recent spiking MPMs
of the cortical microcircuit. The studies apply a wide range of neuron models,
regarding morphologies (from point to multi-compartmental neuron models) and
underlying dynamics (integrate-and-fire models (IAF), phenomenological models
[11, 14] or Hodgkin-Huxley models [15]). Similarly, these studies span a range of
research foci, e.g. the function of the frontal eye fields (FEF) or the computational
performance of generic microcircuits. Regarding the connectivity, the majority
of models build on one of the two previously introduced connectivity maps;
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Table 1 MPMs of the local cortical network

Neuron model Connectivity Focus

Izhikevich and
Edelmann

Multi-comp. Izhikevich Anatomical map Large-scale
model

Heinzle et al. Single-comp. cond.-based
IAF

Anatomical map FEF function

Traub et al. Multi-comp.
Hodgkin-Huxley

Own data-based Fast oscillations

Hill and Tononi Single-comp. Hill-Tononi Own data-based Slow oscillations
Haeusler and Maass Single-comp.

Hodgkin-Huxley
Physiological map Comput.

performance
Rasch et al. Single-comp. Izhikevich Physiological map Stimulus-driven

activity
Potjans and Diesmann Single-comp. curr.-based

IAF
Integrated map Cell-type specific

activity

The table lists, from top to bottom, a number of recent spiking, data-based MPMs [4, 8–13], with
the applied neuron model, the chosen connectivity map and the main research focus

only the two works published in 2005 compile their own data-based maps. Our
generalization of the BRN is the only MPM based on the inclusion of specific target
type selection [4].

Due to the diverse research foci of these works, not all provide detailed
information on the cell-type specificity of the simulated activity. Nevertheless,
it is remarkable that none of these works reports firing rates in L2/3 or L6 as
low as recent experiments. Hill and Tononi [11] provide a detailed comparison
of simulated and experimentally observed spontaneous activity and observe that
especially the simulated excitatory cells in L2/3 exhibit a higher activation than
reported experimentally.

4 Discussion

We present evidence that the extension of cortical network models from BRNs
to data-based MPMs conserves the main feature of the mono-layered models,
the asynchronous irregular activity state. We furthermore compare our simulated
spontaneous activity to experimental data from awake animals and also to a number
of other MPMs.

In order to account for the cell-type specific features of in vivo activity, it is
essential to consider MPMs. However, the parametrization of the connectivity of
MPMs poses a major problem and previous models were not able to reproduce
the strikingly low spontaneous activity especially in cortical layer 2/3, in spite of
applying a wide range of modeling approaches to the description of the constituents
of the network, the neurons and synapses. We argue that our integrated connectivity
data set [4] captures essential information on connectivity, such as the specific target
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type selection of a subset of inter-layer projections, which is not included in other
available data sets but necessary for reproducing cell-type specific in vivo activity
features.

We propose the comparison of cell-type specific spontaneous activity in simula-
tions and experiments as a critical benchmark for MPMs.
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Attentional Cholinergic Projections May Induce
Transitions of Attractor Landscape via
Presynaptic Modulations of Connectivity

Hiroshi Fujii, Takashi Kanamaru, Kazuyuki Aihara, and Ichiro Tsuda

Abstract There is evidence of presynaptic modulation of inhibitions on pyramidal
neurons in cortical layers 2/3, mediated by muscarinic M2-receptors activated
by transient releases of the corticopetal acetylcholine associated with top-down
attention. Little is known, however, regarding its system-level consequences and
possible implications for cognitive functions. It is possible that, through a tempo-
ral modulation of connectivity between neurons, memory traces or the attractor
landscape in the cortex might be significantly affected. We present a hypothetical
argument on attractor ruins and temporal reconstructions of attractors by top-down
attention. In this paper, we discuss the mathematical validity of this scenario with a
computer study using a phase neuron model.

Keywords Transitions of attractor landscape • Presynaptic modulations of
connectivity • Muscarinic M2-receptors • Corticopetal acetylcholine • Top-down
attention • Temporal modulation of connectivity between neurons • Temporal
reconstruction of attractors • Phase neuron model
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1 Introduction

Purely internal cognitive process is an important and essential human activity. One
example of such activity is “mental imagery.” When a person is asked: “which is
longer – a donkey’s ears or an ear of corn?,” most people report that they visualize
the objects, and “see” the pertinent properties [1]. As Kosslyn pointed out [1],
this sort of introspection suggests that visual mental images reconstruct the spatial
geometry of objects. Here, no external stimuli are involved. How are top-down
signals implemented to help reconstruct internal representations of images in the
absence of external stimuli?

The crucial significance of corticopetal acetylcholine (ACh) in cognitive func-
tions is well recognized. Its deficiency, either due to diseases such as Alzheimer’s
disease or dementia with Lewy bodies (DLB), or due to pharmacological treatments
with an ACh antagonist (such as scopolamine or atropine) causes aberrant cognitive
disorders such as deficits of attention(s) and recurrent complex visual hallucinations
(RCVH) [2]. We have, however, only a vague concept regarding the representation
of such images and the neural mechanisms involved.

In relation to these questions, the core of the arguments presented here will focus
on the intrinsic cortical dynamics in ongoing states,1 and their transitions to, and
back from, more attractor(-like) states due to transient and local projections of
corticopetal ACh. Kenet and coworkers investigated the brain’s “internal views”
of the world through experiments in the cat visual cortex, with both eyes closed,
that is, in the absence of external stimuli, and with no or at least minimal conscious
attention(s) due to anesthetization [3]. They found that the ongoing brain state was
not random, but continually fluctuating among a number of local internal states,
which are inherent within hierarchical structures in the cortical circuits (Fig. 1).

pattern 2

pattern 1

pattern 3
pattern 2

pattern 1

pattern 3

Fig. 1 Baseline level of ACh keeps the landscape with attractor ruins (left), while high level of
ACh transiently released from the NBM makes a transition to a more attractor-like landscape
temporarily (right). Note that by a landscape we mean the spatial structure of attractor basins.
The “landscape” shown here is only for illustrative purpose

1An “ongoing state” is used here to mean primarily layer 2/3 dynamical state of a local cortex with
a circumstance where the cortex does not receive external input via layer 4, and also essentially no
spike volleys to layer 1 (and probably also layer 6) as related to conscious attention.
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From a dynamical systems standpoint, the transitory intrinsic states could be
viewed as an expression of “attractor ruins” [4]2 or “quasi-attractors”, observed in a
mesoscopic dynamical system – the brain.

The authors presented a scenario of possible role for corticopetal ACh [5] in such
transitions of attractor landscape, focused on the dynamics of the superficial layers
(the layers 1 and 2/3).

We hypothesized that

1. In the absence of bottom-up external stimuli the layer 2/3 state exhibits transitory
dynamics itinerant among attractor ruins until top-down attention occurs. This
situation is maintained by the non-local baseline concentration of cortical ACh.

The attractor ruin2 here is a dynamical systems-theoretical expression of pre-
built-in “internal states” [3], “features” [6], “proto-objects” [7] or “templates” [8]
appearing in various contexts. (See, also the Treisman theory: “pre-attentively,
features are free floating” [6].)

2. The commencement of top-down attention reverses the process, and temporarily
recovers the local landscape with attractors. This is a result of transient and local
ACh release due to top-down attention via the NBM (nucleus basalis of Meinert)
[9] which is bi-directionally activated by the mPFC (medial prefrontal cortex).

3. The selection of the orbit (state), i.e., the dynamical assignment of a specific
attractor is achieved by instantaneous glutamatergic (Glu) top-down spike
volleys projected onto layer 1.

Computer studies were conducted to clarify whether the scenario described above
can be justified from a dynamical systems standpoint, based on realistic cortical
network configurations. The model network used was the phase neuron model
developed by one of the authors (T.K.). For full details, see Kanamaru et al. [10].

Our simulations reconstructed dynamics such as:

1. Ongoing state dynamics – transitive dynamics between attractor ruins at a
baseline level of ACh.

2. Transition of the attractor landscape: from a landscape with attractor ruins at a
baseline ACh level, to one with attractor-like states associated with transient ACh
release onto layer 2/3.

3. Dynamic assignment of a specific attractor through instantaneous Glu spike
volleys onto layer 1.

2An attractor ruin (or, quasi-attractor) must have a mechanism for allowing both transition and
return to and from a state. A typical example of an attractor ruin is a perturbed structure of the
non-classical Milnor attractor [13], which possesses the positive measure of attracting orbits, but
may simultaneously possess the property of repelling orbits from itself.
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2 Cholinergic Functions in the Cortex

With conscious attention, two kinds of top-down signals arrive at the cortex, i.e.,
Glu spike volleys from “higher” cortical levels (and from the matrix element of the
thalamus), and corticopetal ACh ascended from the NBM. We hypothesize that, as
with overt or covert attention to external stimuli, ACh is transiently projected also in
internal attentions, in view of the attention to memory, or the internal representation
hypotheses (see, for example, [11]).

The existing data on cellular effects of ACh mediated by either muscarinic or
nicotinic receptors are, at present inconclusive, and sometimes controversial [12].
We are, however, primarily concerned with transient and local ACh released in
concert with top-down attention [12, 14].

According to [12], both pyramidal neurons (PYRs) and GABAergic FS (fast
spiking) interneurons (IN) in layer 2/3 are non-responsive to transient ACh release
post-synaptically. However, recent studies suggest that such a transient release of
ACh would induce a marked decrease of inhibition on layer 2/3 PYRs by IN [15, 16]
as a result of cholinergic muscarinic (probably, M2 receptor-mediated) presynaptic
effects, which may bring about an extensive modulation of network connectivity.
The system-level consequences of such cholinergic effects leading to transitions of
attractor landscape are our main concern here. (see also the discussion in Sect. 4.)

The top-down Glu spike volleys projected onto layer 1 also play an essential role
in the dynamic assignment of attractors to be stabilized, kicking the orbit into the
basin of an assigned attractor. See, simulation 2, below (Fig. 3).

3 Computer Study Using the Phase Neuron Model

Here we provide a brief report of our simulation study on ACh-dependent transient
modulation of presynaptic inhibition of pyramidal neurons (PYRs) in layer 2/3. See,
[10] for the phase neuron model and full details of the results.

0 12500 25000 37500 50000
0

0.5

0
0.5

Fig. 2 Transitory dynamics
among attractor ruins which
appears corresponding with a
baseline level of ACh. Firing
rates of 16 “units” are shown
here
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Fig. 3 Top-down spikes are projected during a brief period (12,500< t< 13,500) onto units 9
and 10 (a) with a baseline level of ACh (top), and (b) with an increased level (bottom) of ACh,
respectively. In the case of (b), the state transits, but does so temporarily to pattern 3, in which the
units 9 and 10 are “active” members. The level of ACh determines how long the state is maintained.
When ACh is phasically released in concert with the top-down spikes, the activated attractor is
more transient (Data not shown here. See [10])
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Simulation 1: Transitory dynamics among attractor ruins at a baseline level
of ACh.

When ACh levels are low, at a baseline level, i.e., under a strong inhibition of
PYRs (here the ACh level is “mimicked” by the strength of inhibitions of FS neurons
on PYRs), the originally built-in attractors (designated as “pattern” 1, 2 and 3 in
Fig. 2) are no longer stable, and the dynamics are chaotically transitive among the
three attractor ruins.

Simulation 2: Recovery of a specific attractor by an injection of brief top-down
spikes onto the distal apical dendrites of PYR neurons in layer 2/3.

When spikes are projected briefly onto a fragment (say units 9 and 10) of an
attractor ruin (i.e., pattern 3) at a baseline ACh level, the dynamics maintain their
transitive nature even under “top-down” inputs (Fig. 3a top). On the other hand, the
whole pattern 3 is activated transiently when the ACh level is increased (Fig. 3b
bottom). This is a dynamic pattern completion controlled by the ACh level.

4 Discussion

Attentional ACh decreases IN! PYR inhibitions in layer 2/3, while intra-cortical
PYR ” PYR excitatory connections may be simultaneously depressed [17,
18], although there are studies suggesting that this may depend on its concentration
[19]. Our simulations suggest that as long as the levels of excitatory and inhibitory
inputs remain balanced during attention, our central proposition that ACh release
transiently recovers the relevant attractor in the landscape still holds. (see [10].)
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Forced Wakefulness for Entrainment
to Permanent Shift Work: A Computational
Study

Svetlana Postnova and Peter A. Robinson

Abstract A physiologically based model of sleep-wake cycles is used to examine
the role of forced wakefulness during shifts on circadian entrainment of permanent
shift workers. We demonstrate that forced wakefulness is crucial for entrainment to
night and early morning shifts, while on afternoon and late evening shifts entrain-
ment can be achieved simply due to changes in light. We explain this phenomenon
by the properties of the human circadian pacemaker which requires non-photic
entrainment for its phase advance in the early hours of the night. This finding
is important for a better design of shift workers routine in order to decrease
sleepiness.

Keywords Sleepiness • Fatigue • Circadian • Homeostatic • Sleep-wake
cycles • Mathematical modeling

1 Introduction

Shift work and atypical sleep schedules are associated with an increased number of
accidents due to sleepiness and fatigue [1–3], and lead to long-term health problems,
including diabetes, obesity, and cancer [4]. These are hypothesized to be related
to prolonged desynchronization among different circadian rhythms in the body.
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Understanding of the mechanisms underlying circadian entrainment of workers to
shift schedules will help to design conditions to reduce sleepiness and improve
overall well-being of shift workers.

Sleep-wake cycles are controlled by a complex system of multiple interacting
neurobiological structures. Understanding of their dynamics has been significantly
advanced by computational approaches, and a number of mathematical models sim-
ulating performance of shift workers exist in the current literature [e.g., 5, 6]. Most
of these models are built up using a high level approach of interacting functions
formally simulating interaction between the circadian and homeostatic processes,
which modulate sleep pressure and control sleep-wake transitions [7]. These models
are very successful in predicting short-term effects of shift work on sleepiness and
performance, but do not address long term changes and underlying physiological
mechanisms. Recent advances in neurobiology of sleep [8] enabled development of
physiologically based models of sleep-wake cycles [9–11] and allowed examination
of long-term effects of shift work on sleep and entrainment, along with probing
mechanisms underlying sleepiness on the level of the interacting brain nuclei [12].

In this work we use such a physiologically based model of sleep-wake cycles
to understand the role of forced wakefulness during shifts on entrainment and
sleepiness of permanent shift workers. It is well known that often, especially during
night shifts, workers fall asleep either accidentally due to high sleep pressure
or purposefully if given a chance when work load is low. Such naps improve
performance of shift workers in short term, because they reduce an immediate sleep
pressure [13]. In this paper we examine long term effects of free versus enforced
wakefulness conditions during the shifts. We demonstrate that it is important to
enforce wakefulness on the night shift to entrain to permanent shifts and reduce
sleepiness in the long term.

2 Methods

The model used here is combined from two earlier models: a physiologically based
model of the ascending arousal system (AAS) [9], and a model of the human
circadian pacemaker entrained by light and non-photic inputs [14]. The schematic
of the model is shown in Fig. 1a. A similar combined model has already been
used to study sleep of different circadian chronotypes and general mechanisms
underlying sleepiness and entrainment of shift workers on different schedules [12,
15]. Therefore, here we briefly describe the key concepts involved in the model.

The AAS model is built up using neural mass modeling methods [9]. It simulates
average voltages and firing rates of the wake-active group of monoaminergic
neurons (MA) in the brainstem and the sleep-active ventrolateral preoptic nucleus
(VLPO) in the hypothalamus. These inhibit one another, thereby contributing to
the flip-flop like switch between sleep and wakefulness. The dynamics of the
MA and the VLPO are under influence of the homeostatic (H) and circadian (C)
processes [16].
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LIGHT

NonPhotic

H

MA VLPO

SCN (C)

a b

Fig. 1 (a) Schematic of the model. The bar-headed lines correspond to inhibitory connections,
while arrow-headed – to excitatory. (b) Time course of the homeostatic H, circadian C, and total
sleep drive D. Shaded areas indicate sleep intervals

The precise mechanisms of the H process are not yet known but are postulated to
increase sleep pressure during wakefulness and dissipate it during sleep, as shown
in top panel of Fig. 1b. Some of the proposed mechanisms include accumulation
of somnogens during wakefulness, and synaptic plasticity of specific neurons
[8, 10].

The circadian process modulates sleep drive depending on the time of the day
and external “time givers” (the so-called zeitgebers), including light, feeding times,
and locomotion. Change in zeitgebers leads to change of the phase of the circadian
oscillator. The master circadian clock in the brain is the suprachiasmatic nucleus
of the hypothalamus (SCN in Fig. 1a), which neurons change their firing rate
depending on the time of the day. Maximum activity of the SCN is observed during
the day and minimum during the night, as shown in Fig. 1b [16].

In the model presented here the circadian process C is incorporated as an input
to the VLPO from the model of the human circadian pacemaker [14] as shown in
Fig. 1a. This model uses Van der Pol oscillator to simulate circadian oscillations
and accounts for the effects of light and of non-photic stimuli on the phase of the
oscillator.

The combined effects of the circadian and homeostatic processes on sleep
pressure give a total sleep drive DD �vhHC �vcC, where �vh >0 and �vc <0 are
coupling constants. The coupling constant for the homeostatic process is positive
because H promotes sleep, while the constant for the circadian process is negative,
because C promotes wakefulness. Thus, D is minimal when C is maximal. The
sleep drive D controls the transitions between sleep and wakefulness. During normal
sleep-wake cycles, sleep is initiated when D is above a certain threshold value, and
transition to wake happens when D is below it, as shown by the shaded areas in
Fig. 1b.

In this study we examine the simplest case of permanent 8 h shifts without week-
ends and simplest light conditions in order to understand the general mechanisms.
Therefore, in the absence of shift work the light input to the model is constant 200
lx between 08:00 and 22:00. During the shifts additional light input of the same
intensity is introduced. During sleep light input is set to zero assuming that workers
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sleep in total darkness. Forced wakefulness during shifts is implemented by keeping
the MA and VLPO in wake state, while allowing dynamic changes of H and C (for
detail see [12]).

The total sleep drive D is used here as the simplest measure of sleepiness.
Average values of D during the shifts are used to compare sleepiness on different
schedules and days.

3 Results

When shift work with forced wakefulness during the shifts is introduced, it results in
increased total sleep drive D in the first days on the new schedule [12]. This happens
due to reduced sleep time resulting from sleeping during a day; i.e., during high
circadian input. The new external zeitgebers introduced due to shift, particularly the
additional light input, lead to re-entrainment of the circadian oscillator and, finally,
to re-establishment of normal sleep amount after a certain number of adaptation
days. It has been shown that in the absence of days off on the night shifts mean daily
sleep drive increases during the first 2–5 days on the new schedule, then starts to
decrease, and stabilizes when circadian re-entrainment is achieved. For description
of mechanisms, see [12].

Re-entrainment leads to change of the circadian phase and, accordingly, to a
different location of the circadian maximum. With the considered light profile in the
absence of shifts the circadian maximum, which corresponds to the minimum of D,
is located at 15:00. Shift work moves the circadian maximum towards either later or
earlier time depending on the time of the shift, as shown in Fig. 2.

As shown in Fig. 2a shift work leads to advance of Dmin to earlier time on the
night shifts starting between 23:00 and 08:00, in the presence of forced wakefulness.
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wakefulness on circadian
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On the afternoon and evening shifts, starting between 15:00 and 23:00 it leads to
delay of Dmin. Shifts starting between 8:00 and 15:00, which are normal work times,
do not change circadian phase, and thus have the same timing of Dmin.

The time course of D can be approximated by a sine wave (see Fig. 1b), thus
minimal average sleep drive during the shifts is obtained when Dmin is in the middle
of the shift; i.e., for the shift onset at 11:00. Night shifts lead to a significantly higher
hDshifti, because when entrainment is achieved Dmin is at the border of the shift (see
Fig. 2a).

With free sleep-wake activity during the shifts; i.e., sleep as allowed at any time
of the shift, the model does not allow relocation of Dmin to an earlier time during the
night shifts, while on the other shifts the dynamics are the same (compare the solid
and dashed lines in Fig. 2a). Therefore, hDshifti for the night shifts is significantly
higher in the case without forced wakefulness, as shown in Fig. 2b. This means that
proper entrainment to night shifts can only be achieved when wakefulness is forced.

This finding is counterintuitive considering that napping on night shifts reduces
sleepiness [13]. However, the reduction of sleepiness is observed only in the short
term, while in the long term re-entrainment to the new external cues introduced by
the shift is much more beneficial, as shown in Fig. 3.

This figure demonstrates an example of the change of the mean sleep drive
during the night shift over the time span of 2 weeks. According to this plot the
shifts with forced wakefulness lead to a higher D during the first 3 days on the
new schedule, while afterward it starts decreasing until it stabilizes at much lower
values of hDshifti than those achieved without forced waking. Thus, the schedules
with forced wakefulness are beneficial in the long term.

4 Discussion

In this study we have used a physiologically based mathematical model of sleep-
wake cycles to study sleepiness of shift workers. We have showed that forced
wakefulness during the shifts is essential to enable entrainment to night shifts, and
that such re-entrainment is beneficial on long-term permanent schedules. We explain
these dynamics by the fact that the human circadian pacemaker cannot be advanced



110 S. Postnova and P.A. Robinson

in the early hours simply by light inputs [16]. Non-photic stimulation is required
for re-entrainment, and this is achieved when wakefulness is enforced along with
changed lighting.

In the presence of forced wakefulness the model shows good re-entrainment
to the new zeitgebers. However, in practice, entrainment is not easily achieved,
due to diverse social commitments and other factors affecting the timing of
sleep and wakefulness. Thus, in future studies effects of random influences on
entrainment should be implemented and examined. Future work will also include
more complicated shift schedules, like rotating shifts, and account for effects of
weekends.

In practice, when sleep is allowed during the shifts, the workers do not usually
sleep until their sleep pressure is sufficiently decreased. Instead, they may just have
short naps at different times of the shift until a next task has to be performed.
Therefore, the model reproduces an idealized situation when the workers can sleep
just following their sleep drive. It is expected that the average sleep drive on such
shifts will be even higher than the one shown with the dashed line in Fig. 3. However,
during the first day(s), hDshifti on completely free sleep-wake schedules will still be
lower than hDshifti with forced waking. Also scheduled naps appearing at the same
time every day may lead to different dynamics, since they may promote entrainment.
This case should be examined in the future studies.

In summary, this study provides new insights into the conditions that allow to
improve sleepiness of shift workers and demonstrates how physiologically based
models of sleep expand applicability of modelling to understand sleepiness.

Acknowledgments This work is supported by the Australian Research Council and National
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Towards a Modeling and Simulation Platform
for Multi-level Neuronal Networks

Yoshiyuki Asai, Hideki Oka, Taishin Nomura, and Hiroaki Kitano

Abstract We have been developing an open platform for enhancing the integrative
life science called Physiome and systems biology, on which users can build
mathematical models of biological and physiological functions with hierarchical
structure, and perform simulations with parallel computing. We also have been
proposing a XML-based language for describing a wide variety of models, and
developing a model database in order to facilitate model sharing. Neuroscience
is one of the research fields in which mathematical models played effectively
important roles to reveal physiological principles. We will discuss on a possibility
to apply our platform for neuroscience.
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1 Introduction

Accumulation of knowledge of physiology has opened a new scientific field, i.e.
integrated life-science with the keywords such as Physiome [1] and systems biology
[2], in which inter-level principles as well as intra-level disciplines are explored.
Roles played by multi-scale and multi-level mathematical modeling of physiological
functions are becoming more and more important, since mathematical models are
capable of describing dynamics, i.e., time evolution of states of biological systems,
quantitatively based upon physical and chemical principles or phenomenological
logic governing system behaviors [3].

The framework for supporting to build such mathematical models of physio-
logical functions and for archiving and sharing models is inevitable for further
development. We have been developing an open platform called“insilico platform”
[3], and now we are going to develop PhysioDesigner as a successor of the
insilico platform, besides other pioneering efforts to promote physiome and systems
biology, such as SBML and CellML [4]. On the platform, physiological functions
are considered as an aggregate of modules which are easily viewed and edited on
insilicoIDE (ISIDE) [5], a main application to provide a integrated development
environment in insilico platform. Based on this modularity, physiological functions
are structuralized and modeled. The model is described in insilicoML (ISML),
an XML based language, which we defined to well describe the modular and
hierarchical structure of the models [6]. Using our platform users can integrate not
only mathematical expressions but also experimentally obtained timeseries data and
morphological data. We also developed databases (insilicioDB: ISDB) to enhance
sharing of models and those data.

Neuroscience is one of the scientific areas in which mathematical models have
been playing active roles successfully through past decades. Now by combining
computational and theoretical neuroscience, systems biology and neurophysiology,
a new approach so called neurophysiome is arising. Several pioneering technologies
such as NEURON, GENESIS, NeuroML [7] and so on in this field are supporting
the basis of the theoretical and computational neuroscience. We will discuss on a
possibility to apply our platform for neuroscience.

2 insilico Platform Outline

The insilico platform is composed of three blocks, i.e. ISML, ISIDE and ISDB.
ISML is a language specification based on XML to describe mathematical mod-

els of physiological functions. In a model in ISML, each of physiological entities is
represented as a module. Each module is quantitatively characterized by several
physical-quantities, which are used to represent constant/variable parameters as
well as dynamical variables used in the definition of time evolution of the system
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state, such as only ordinary differential equations, partial differential equations,
rules for multi agent systems. ISML is also capable of describing the integration
of morphological and time-series data to mathematical models.

The structural and functional relationships between two modules are defined
by edges spanned between them. For example, if one module physically includes
another module (e.g. cell membrane includes mitochondria) they are connected by
a structural edge. If a module quantitatively affects to another module (e.g. an ionic
current flowing a channel on a cell membrane changes the membrane potential), the
two modules are linked by a functional edge. When a module wants to refer a value
of a physical-quantity defined in the other module, the value can be transferred to
the module along a functional edge spanned between the two modules.

A concept to make a kind of package of a physiological function has been
introduced to ISML, which is called capsulation, in order to enhance the model
sharing. Several modules acting together as a certain physiological function are
encapsulated by a capsule module. All connections to (from) the encapsulated
modules from (to) outside of the capsule must go through the capsule module to
secure the independence of the encapsulated modules. By this isolation of modules,
it becomes easy to reuse the encapsulated modules in other parts of the model or in
other models.

We also have been developing a simulator insilicoSim (ISSim) [8]. In the
framework of the insilico platform, the model construction and the simulation are
clearly separated. Users can focus on the structure and logic of a model, and do not
need to take care about algorithms for numerical calculations because ISSim takes
care such issues instead of users. ISSim also can perform parallel computing for
simulations of ISML models using multiple cores on a PC. This is one of advantages
to use this platform since if users want to adopt a parallel computing technology on
a multi-core environment, usually users are required to learn specific techniques
additionally, which is a time consuming task. ISSim can parse SBML as well.

3 Examples of ISML Model

Figure 1 shows an example of ISML model displayed on ISIDE. This is a coupled
two Hodgkin-Huxley (HH) model [9]. A HH model is a well-known conductance
based model of an excitation of neuron membrane. The membrane potential can be
calculated by an integration of three major ionic currents, i.e. voltage-dependent
persistent Potassium ion (KC) current, voltage-dependent transient Sodium ion
(NaC), and a leak current which is considered to be mainly carried by Chloride
ion (C l�), and at the same time to represent other channels which are not described
explicitly. The NaC and KC currents are regulated by three gating variables. In
total the model is described by four ordinary differential equations corresponding to
the membrane potential and three gating variables, and a couple of functions to
calculate currents and so on. In Fig. 1 two HH neuron modules, one external
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Fig. 1 An example of a hierarchical and modular expression of a coupled Hodgkin-Huxley neuron
model on insilicoIDE and a simulation result computed by insilicoSim

stimulus current generator module, and a gap junction module are shown. Modules
form tree structures on ISIDE. Double tapping on a module toggles showing and
hiding modules in its sublayers. A HH neuron at the left side in Fig. 1 shows its
substructure (three ionic current modules). The membrane of the HH neuron, each
ionic currents, channel conductances, and channel gating variables are represented
as modules. Equations and parameters are defined in each module.

4 Modeling with Morphology

To integrate morphological information into a model is inevitable for considering
physiological functions. For now, the morphometric data can be utilized on ISIDE
to define a domain on which partial differential equations are solved. For example,
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Fig. 2 Morphology viewer dialog. (a) A 3D morphology model with a slicing function to view
the inside. (b) Selecting a region with a rubber band function to define as a segment which is used
to set, for example, an initial condition or boundary conditions

as shown in Fig. 2a, if one has morphometric data of a brain as an organ level
model, the data can be integrated to the model. Segments can be defined on the
morphology model to which an initial condition and boundary conditions can be
defined (Fig. 2b). By combining the morphology with partial differential equations
representing conduction of electric field and ordinary differential equations repre-
senting an excitable neuron membrane, users can construct a model, for example,
reproducing the EEG evoked by a neuronal activity. A model including morphologi-
cal data with partial differential equations can be numerically solved by FreeFEM++
which is a third-party free software developed at http://www.freefem.org.

5 Modeling with SBML

We proposed a method to create a multi-level model including cell and subcellular
phenomena in cooperation with SBML [10]. We will directly utilize models
described by SBML on insilico platform. SBML is a pioneering model description
language for systems biology, such as subcellular signaling pathways, metabolic
pathways, gene regulation, among others. The scheme of the hybridization of SBML
and ISML is illustrated in Fig. 3.

ISML is designed to represent a functional network and hierarchical structure
using its modular representation. The insilico platform provides a function to import
a whole SBML model in a module of ISML. The model in SBML is not converted
into ISML, but be wrapped by ISML and be kept in a module in the model. Then the
module can represent the subcellular phenomena which is modeled by the SBML
model. In this sense, the model is consequently written in a kind of hybrid language
of SBML and ISML.

http://www.freefem.org.
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Fig. 3 Schematic diagram of a model written in SBML and ISML. XML shows an example of
ISML description including a whole SBML model. In a schematic figure of a module, squares
surrounded letters (K and S) represent physical-quantities of ISML. An oval in the module
represents a SBML model in which three hexagons corresponding to species of SBML are
described. The dotted arrows shows associations between physical-quantities and species. By these
associations, numerical interactions between ISML and SBML are defined

There are “species” and “parameters” in SBML to represent quantitative
attributes of biochemical entities. At a module including a SBML model, it is
possible to define associations between physical-quantities and species/parameters.
By this association, a physical-quantity can get a value from a species/parameters or
can give a value to them, and the SBML model is effectively involved in the model.
By linking the module including the SBML model to other modules by structural
and functional edges, the SBML model eventually is integrated in the ISML module
network in the senses of both structural and functional relationships.

6 Discussion

The platform we have been developing can be also applied to neuroscience among
other fields. Let us take modeling of the basal ganglia as an example scenario.
To consider the overall functioning of the basal ganglia-thalamocortical motor
system, we can find neural network models [11] including projections among
neuronal nuclei in the basal ganglia which may be affected by LTP and LTD at
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striatum. A striatal synaptic plasticity has been modeled by Nakano et al. (2010)
[12] incorporating all major signaling molecules such as dopamine- and cyclic
AMP-regulated phosphoproteins. The model is written in SBML and shared at
BioModels [13]. One of inputs to the model is dopamine concentration which is
tightly related to the particular burst firing of the dopaminergic neurons in substantia
nigra pars compacta. There is a dynamical system model [14] stored in ISDB,
which reproduces the membrane potential dynamics of dopaminergic neurons.
Though these models are just examples, we can find several models developed
in each level such as molecular, single cell and network level. However, we can
scarcely find models bridging multiple levels, and we expect that ISIDE and coming
PhysioDesigner can be complementary technology to contribute to development of
multilevel modeling based on SBML and ISML.

Acknowledgements This work is supported in part by MEXT Global COE program at Osaka
University, and Grant-in-Aid for Scientific Research on Innovative Areas at Osaka university and
at OIST.
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Robust Computation in Two Dimensional
Neural Field

Yuzuru Sato and Shun-ichi Amari

Abstract In this paper, we discuss robust computation represented by collective
motion of large neural dynamics. There exist stable traveling bumps and their
collisions in a two dimensional neural field. By using the stable traveling bumps and
their collisions, arbitrary logical operations can be constructed. The resulting com-
putation processes in the neural field is structurally and orbitally stable and the basin
measure of the dynamics of the computations is finitely positive. Thus, the compu-
tations are robust and constructive in the framework of dynamical systems theory.

1 Introduction

In which way, can information processing be embedded in statio-temporal pattern
dynamics? This problem has been broadly investigated in theoretical neuroscience
based on contemporary notions of information processing.

Computational ability of network of neurons was first studied by McCulloch
and Pitts [1] to show computational universality [2] directly constructing Boolean
circuits by using binary neurons. Other developments of computation in network
of neurons are found in studies on particle computation in cellular automata [3, 4],
representing computational process as collective motion. With two-dimensional cel-
lular automata (as a special case of binary neuron networks), universal computation
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is achieved as a new level of behavior that is different from the lower level of explicit
spatial configurations. Universal computation is also achieved with carefully con-
structed finite dimensional dynamical systems. For example, three-dimensional flow
which is topologically equivalent to universal Turing machine, can be implemented
in a billiard system with finitely complex boundary [5]. Real number computation
has been also studied in terms of computation in dynamical systems [6, 7] and the
limit of analog computaion has been discussed. However, these computations based
on intrinsic symbolic dynamics are not rubust but highly fragile.

Here we study robust computation represented by collective motion in large
neural dynamics. There exist stable traveling bumps and their collisions in a
two-dimensional two-component neural field [8, 9]. By using the stable traveling
bumps and their collisions, arbitrary logical operations can be constructed. Unlike
logical circuits in McCulloch-Pitts binary neurons, particle computation in cellular
automata, and symbolic dynamics in flow, the computational process in the neural
field is structurally and orbitally stable, and the basin measure of orbits of arbitrary
computation is positive. Thus, the computations in the neural field are robust
attracting sets. The initial conditions and boundary conditions are fully constructive
in the framework of dynamical systems theory. In the following, we explain a two
dimensional neural field model, show properties of stable traveling bumps and their
collisions, and discuss robust computation in the neural field.

2 Two Dimensional Neural Field

A neural field model is a continuous version of neural network describing the spatio-
temporal patterns of populational neuronal firing activities [8]. Let x D .x; y/ be
the coordinates of a two dimensional field, and u.x; t/ and v.x; t/ be excitatory
and inhibitory variables at position x. The activation-inhibition mechanism is
described as,

@u.x; t/
@t

D Luu Œu.x; t/�C Luv Œv.x; t/� (1)

@v.x; t/
@t

D Lvu Œu.x; t/�C Lvv Œv.x; t/� (2)

where Luu; Luv; Lvu and Lvv are operators representing interactions of the field
variables. The reaction-diffusion equation uses the linear Laplacian diffusion for
Luu together with pointwise interactions for Luv [10], whereas the equation of a
neural field uses non-local interactions for Luu due to the synaptic connections of
neurons, represented by a spatial convolution of the type

Luu Œu.x; t/� D
Z

w
�
x � x0�f

�
u
�
x0; t

��
dx0; (3)
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where f is a nonlinear function. The typical equations for a 2D neural field are as
follows:

@u.x; t/
@t

D
Z

w1
�
x � x0� f1

�
u
�
x0; t

� � h1
�
dx0

�
Z

w2
�
x � x0� f2

�
v
�
x0; t

� � h2
�
dx0

�u.x; t/; (4)

@v.x; t/
@t

D
Z

w3
�
x � x0� f3

�
u
�
x0; t

� � h3
�
dx0

�
Z

w4
�
x � x0� f4

�
v
�
x0; t

� � h4
�
dx0

�v.x; t/: (5)

Here, u.x; t/ and v.x; t/ are the mean potentials of excitatory and inhibitory neurons,
respectively, at position x and time t . The convolutive functions w1 .x � x0/, : : :,
w4 .x � x0/ represent the synaptic efficacies from position x0 to x. The functions
f1, : : :, f4 denote the activation functions of neurons. They are activated by u.x; t/
and in turn inhibited by v.x; t/. The activation functions are sigmoidal functions or
Heaviside functions satisfying 0 	 fi .u/ 	 1; .i D 1; 2; 3; 4/, and the synaptic
efficacy functions wi .x/ � 0 are radial symmetric, that is, wi .x/ are functions of
kxk, for i D 1; 2; 3; 4. Hence, the two dimensional neural field is homogeneous and
rotationally invariant.

The neural field model can be regarded as a special case of the field equation
with excitation and inhibition mechanisms, similar to the standard reaction-diffusion
equation. While the reaction-diffusion equation is restricted within local interactions
due to diffusion term, the neural field model has a spatially wide range of
interactions, i.e., non-local interactions, that exhibit richer dynamical phenomena.
In the two dimensional two-component reaction-diffusion equation, the existence
of spatially localized traveling objects has not been reported with local operators
[11]. It is known that global operators added to two-component systems may induce
a single stable traveling bump, but may not induce multiple solutions [12]. On
the other hand, many three component systems with local operators show multiple
travelling bumps.

An example of multiple stable traveling bumps in a two dimensional neural
field model, which is a two-component system with non-local operators, is recently
presented [9]. In this case, the spatial convolution term plays the role of the third
component to stabilize the bump, which supports existence of multiple bumps.
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3 Stable Traveling Bumps and Their Collisions

We use the following simple equations comprising a two-dimensional extension of
the model given by Pinto and Ermentrout [13]

@u.x; t/
@t

D �u.x; t/� v.x; t/

C
Z

w
�
x � x0� f

�
u
�
x0; t

� � h� dx0 (6)

@v.x; t/
@t

D ˛u.x; t/ � ˇv.x; t/; (7)

where ˛ D 0:6, ˇ D 0:8=3, h D 3:0, and

w.x; y/ D 7:32e� x2Cy2

2 ; f Œu� D 1

1C e�2.u�4/ : (8)

Numerical experiments suggest that the field can be tristable, admitting the
quiescent state, a stable traveling bump with a characteristic length (Fig. 1), and a
traveling band solution growing to infinite length [9]. A number of traveling bumps
may coexist in a field, and they strongly interact when they are close. When two
bumps collide, they fuse into a single bump. The resulting bump converges to one
of the tristable states depending on the collision angle (Fig. 1). The threshold angle
is around 3

8
� . We use external inputs to control directions of motion of traveling

bumps to adjust the collision angle. There are no standing objects other than the
traveling bumps in the parameter settings because of the lack of diffusion terms, so
that even with complex collisions, the resulting output is thought to be only one of
the following: (1) quiescent state, (2) stable traveling bump, or (3) growing band
solution, implying that the field is very “clean” without complex after effects. As

Fig. 1 Stable traveling
bumps and their collisions in
two dimensional neural field.
The resulting bump converges
to one of the tristable states
(1) quiescent state, (2) stable
traveling bump, or (3)
growing band solution,
depending on the collision
angle. The threshold angle is
around 3

8
�
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for complex transitory collision phenomena, see [14] for the various collision and
scattering phenomena of traveling spots in the reaction-diffusion equation with three
components.

4 Robust Computation in Neural Field

The stability of localized traveling bumps does not require any geometric restriction
or boundary to prevent them from propagating away. As an application of these
findings to theoretical studies of neural information processing, we construct logical
operations by using stable traveling bumps, their collisions, bump generators, and
bump eliminators with local boundary conditions (Fig. 2).

Computational ability of networks of binary neurons was first studied by
McCulloch and Pitts [1]. They constructed logical operations taking dynamics of
a single binary neuron as an elementary mechanism and an individual spike
as information carrier. Based on automata theory, computational universality of
binary neuron networks was shown. Studies on reliable computation in probabilistic
automata [15] were one of the extensions.

The theory was developed to “stochastic neural networks” to treat macroscopic
statistics and dynamics, known as theory of neural networks. In Amari-Hopfield
networks [17, 18], stochastic functions formed by stochastic neurons represent
elementary mechanics and distribution of spikes does information carrier. Statisti-
cal inference plays a key role in this theory represented by the fact that a multilayer
perceptron consists of sigmoidal neurons is a universal function approximator [16].

Fig. 2 Logical operation in two dimensional neural field: In the diagram below, (G) denotes the
bump generator and (E) does the bump eliminator. The circle represents collisions of traveling
bumps. The bump generator is constructed with periodically activated region and two fixed
quiescent region adjusting the characteristic length of bumps. The bump eliminator is simply a
fixed quiescent region whose size is about the characteristic length. Direction control is done by
external pulse inputs. Controlled multiple bump collisions can work as logical NOT and AND
operation with local boundary conditions
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Statistical and information theoretic problems were unified into this theory to
solve thousands of important problems in theoretical neuroscience such as memory
capacity, classification, optimization, and statistical learning. Amari investigated
statistical learning in neural networks introducing information geometry [19].

There are other developments of studies on logic and computation in spatiotem-
poral dynamics. Early studies are found in Conway’s game of life [3] and particle
computation in cellular automata [4]. In these systems, computational process
is represented by collective motion. We can construct logical operations taking
dynamics of a large number of binary neurons as elementary mechanism and
pattern dynamics of spikes as information carrier. In life game computer, by taking
two-dimensional cellular automata, universal computation is achieved as a new level
of behavior that is different from the lower level of spatial configurations.

Based on stable traveling bumps and their collisions, we can construct logical
operations taking dynamics of a large number of stochastic neurons as elemen-
tary mechanism and pattern dynamics of distribution of spikes as information
carrier. Combining elementary logical operations, arbitrary logical operation can
be executed in two dimensional neural field at the collective level (See also
computation by waves in reaction diffusion dynamics with boundary conditions
[20].). Unlike McCulloch-Pitts binary neurons, cellular automata, and symbolic
dynamics in flow, the computational process in the neural field is structurally
and orbitally stable, and the basin measure of orbits of arbitrary computation is
positive. Thus, the computations in the neural field are robust attracting sets. The
initial conditions and boundary conditions are fully constructive in the framework
of dynamical systems theory. Spatial continuity, non-local interaction, and logical
operation construction at the collective level support this result.

5 Discussion

We discussed robust computation with stable traveling bumps and their collisions
in a two dimensional neural field. Logical operations can be constructed by
using collisions of multiple traveling bumps with local boundary conditions. The
presented results would be the simplest starting point to study neural information
processing as spatial pattern dynamics in neural field.

Multiple bumps in neural field can be a model for working memory [21]. In this
point of view, we may consider problems of memory formation, such as collisions
of working memory, resulting propagation phenomena, and creation of new working
memory as after effects. These spatial memory formation would imply short-term
learning in neural field. Pattern dynamics in heterogeneous media [14] may be
related to the multiple structured model for real neural systems corresponding to the
boundary conditions for the robust computation. Rigorous mathematical analysis
of traveling bumps, their collisions, and their controls will have to be conducted to
explore these problems.
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Dynamical Synapses Enhance Mobility,
Memory and Decoding

C.C. Alan Fung, K.Y. Michael Wong, and Si Wu

Abstract Depending on their activities, synapses in neural systems are dynamical
in relatively short time scales. This effect is known as short-term plasticity (STP),
which appears as short-term facilitation (STF) or short-term depression (STD). In
this paper, we describe the effects of STD and STF on the intrinsic phases and
plateau states. Consequently, we find that STD enhances the tracking performance
in continuous attractor neural networks, and provides a mechanism for an iconic
memory to shut off naturally. On the other hand, STF improves the precision in
population decoding.

1 Introduction

The short-term plasticity (STP) of dynamical synapses appears in two forms:
short-term facilitation (STF) and short-term depression (STD). STF is due to
the accumulation of calcium ions caused by the pre-synaptic spikes. This effect
enhances the release probability of neurotransmitters, and hence the connection
efficacy. STD is due to the fact that the recovery time of neurotransmitters is much
slower than the synaptic time scale [1].

In this paper, we will briefly describe the effects of STD and STF on the
intrinsic dynamics and plateau states of neural systems, and consequently their

C.C. Alang Fung • K.Y.M. Wong (�)
Hong Kong University of Science and Technology, Hong Kong, China
e-mail: alanfung@ust.hk; phkywong@ust.hk

S. Wu (�)
Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal
University, Beijing, China
e-mail: wusi@bnu.edu.cn

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (III),
DOI 10.1007/978-94-007-4792-0 18,
© Springer ScienceCBusiness Media Dordrecht 2013

131



132 C.C. Alang Fung et al.

impact on the performance of neural computation. We will use continuous attractor
neural networks (CANNs) as our working model, but the results are applicable to
general cases. CANNs are recurrent networks that can hold a continuous family
of localized states. These states are localized in position, with neuronal activities
decreasing from a maximum at the center to a background level with increasing
distance from the center, and is hence usually known as bumps [3]. When an
external stimulus changes position, the bump shifts its position accordingly among
the continuous attractors. This process is called tracking, and hence can model how
the brain processes continuous stimuli, such as orientations, head directions and
spatial locations. As we shall see, dynamical synapses can enhance the tracking
performance of CANNs, provide a mechanism for an iconic memory to shut off
naturally, and improve the precision in population decoding.

2 Model

The state of a neuron is specified by the population-averaged neuronal current,
u.x; t/, as well as the neuronal firing rate r.x; t/, where x is the preferred
stimulus ranging from .�1;1/. r.x; t/ and u.x; t/ are related by r.x; t/ D
u.x; t/2=

�
1C k� R dx00u.x00; t/2�, in which k is the parameter controlling the

global inhibition, and � is the density of neurons in the space of the pre-
ferred stimulus [2]. In simulations, there are N neurons with preferred stim-
ulus ranging within .�L=2;L=2/. So, � D N=L in simulations. The exci-
tatory connection weight between different neurons are given by J.x; x0/ �
.J0=
p
2�a2/ exp

��.x � x0/2=.2a2/�, where J0 controls the strength of excitatory
connection, and a represents the width of the tuning curves. For a� L, the results
of simulations should be effectively the same as those with L D 1.

The neuronal current is governed by Tsodyks et al. [3] and Fung [4]

�s
@u

@t
D I ext.x; t/ � u.x; t/

C �
Z
dx0J.x; x0/

�
1C f .x0; t/�p.x0; t/r.x0; t/; (1)

where I ext is the external stimulus, and �s is the synaptic time constant of the order
1 ms. The effects of dynamical synapses are introduced by including f .x; t/ for
STF and p.x; t/ for STD in the last term of Eq. (1). They are governed by

@f

@t
D �f .x; t/

�f
C ˛ .fmax � f .x; t// r.x; t/; (2)

@p

@t
D 1 � p.x; t/

�d
� ˇ Œ1C f .x; t/� p.x; t/r.x; t/; (3)
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where ˛ and ˇ are the parameters controlling STF and STD respectively. �f and �d
are time scales for STF and STD, respectively. They are of the order 100 ms. In this
paper, we study STD and STF separately, focusing on their individual effects.

3 CANNs with STD

3.1 Intrinsic Dynamics

In this section, three key intrinsic phases are introduced in the .k; ˇ/ space when
there are no external stimuli. They are the static phase, metastatic phase and moving
phase.

For the case without STD and STF, if k is below a critical value kc , the steady
state solution for Eq. (1) is a bump with a Gaussian profile, whose width is

p
2a

and whose center of mass is Oz [2]. The value of Oz can take a continuous range,
characteristic of continuous attractor neural networks. One may expect that, when ˇ
is small enough, the shape of the steady state of u.x; t/ is effectively Gaussian. Also,
the steady state of p.x; t/ has a background level of 1 depressed by a bump-shaped
profile. Their profiles are shown in Fig. 1a. Based on this observation, we propose
search for Gaussian-shaped solutions of Eqs. (1) and (3). We can then figure out
the regions including metastatic and static phases (dashed line in Fig. 2) over the
parameter space of .k; ˇ/.

In the static phase, the height of the bump is stable and the velocity of the bump is
zero. In the metastatic phase, the height of the bump remains stable, but the position
of the center of mass is metastable, and is hence described as metastatic. This means
that when the static bump is given a small displacement, the bump will continue to
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Fig. 1 Profiles of synaptic input current, u.x; t /, and synaptic depression, p.x; t/ for (a) static
bumps and (b) moving bumps
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move spontaneously. The condition for this happen can be studied by introducing
a small asymmetric distortion to the solution of Eqs. (1) and (3). By considering
whether the variations diverge or converge, we can obtain the boundary between
metastatic and static phases respectively, separated by the phase boundary indicated
by the dotted line in Fig. 2.

The existence of spontaneously moving bumps in the network can be attributed
to the presence of STD. This is because neurons tend to be less active in the
locations of low values of p.x; t/, causing the bump to move away from locations
of strong synaptic depression. For the moving bumps, the profile of p.x; t/ is no
longer symmetric about the center of mass of u.x; t/, as shown in Fig. 1b. Therefore,
the assumption of a Gaussian-shaped depression is not appropriate for the case of
moving bumps. To solve this problem, higher order distortions are included in the
term 1 � p.x; t/. We note that a Gaussian distortion is the lowest order member of
a family of distortions, commonly used to describe wave functions of the quantum
harmonic oscillator. Successively higher order functions of this family can describe
distortions in the position, width, and skewness etc. of the bump. Mathematically,
this family of functions is complete, meaning that any arbitrary distortion can
be expressed as a combination of these functions. This enables us to predict the
boundary of the moving phase (solid line in Fig. 2). Beyond the boundary, only the
silent phase with u.x; t/ D 0 exists.

In the moving phase, the static bump cannot exist, and there are only moving
bumps.

The metastatic nature of the bumps enhances the tracking performance of
CANNs. When the network is tracking an external stimulus that changes position
rapidly, metastability speeds up the movement of the bump, as shown in Fig. 3.
Interestingly, when the synaptic depression is very strong, the network state can
even overtake the moving stimulus, reminiscent of the phase precessing behavior of
place cells in the hippocampus [5].
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3.2 Plateau State

The plateau state provides a possible mechanism for the iconic memory. The
presence of STD provides an extra parameter region in which the bump states are
marginally unstable in amplitude, such as point P in Fig. 2.

Figure 4 shows two examples of plateau states, A and B, corresponding to
different kinds of initial conditions. A corresponds to the initial condition that the
network is under the influence of a stimulus for a long enough time, while B is for
the case the presence of stimulus is just long enough to excite function u.x; t/.

Consider the initial state B. In the marginally unstable regime, the static bump
solution just loses its stability. The bump is stable if the synaptic depression is
fixed at a low level, but unstable at high level. Since the synaptic time scale is
much shorter than that of STD, a bump can build up before the synaptic depression
becomes effective. This maintains the bump in the plateau state with a slowly
decaying amplitude as shown in Fig. 4a. After a time duration of the order �d , the
STD reaches a threshold, as shown in Fig. 4b, and the bump state eventually decays
to the silent state.

The plateau state for initial condition A does not last as long as that of B.
However, since the system is marginally unstable, there are states at which the
dynamics is very slow. When the system dynamics passes through these states, the
relaxation of the bump is slowed down.
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4 CANNs with STF

Compared with STD, STF has a qualitatively opposite effect on CANNs with
dynamical synapses. STF provides an extra translational stability to a bump. To
check this, we consider a noisy stimulus, I ext.x; t/, which is a Gaussian function
of width

p
2a, height A and centered at position �.t/, �.t/ being a white noise

satisfying h�.t/�.t 0/i D 2Ta2�sı.t � t 0/. In the inset of Fig. 5, the decoding results
of CANNs with and without STF are shown. With STF, the CANNs can filter out
the fluctuational effects due to the noises considerably. We calculate the influence
of the noise on the decoding result is shown in Fig. 5. This figure shows that the
presence of STF can improve the decoding efficiency when noises are present.

5 Discussion

In the absence of the stimulus, the CANN with STD favors different phases
with different system parameters, .k; ˇ/. For k < kc and small ˇ, the static
bump is stable. If one increases the strength of STD, ˇ, the system will become
translationally unstable. York et al. found similar behaviors in a system with uniform
input current [6], while we found that this instability can improve the network
reaction to changes of stimuli.

The plateau state is due to the marginal instability of the bump state. It can
make the bump state last for a longer period such that the signal may have more
time to propagate to neurons of subsequent layers. Hence we predict that STD
should be important in early information pathways of the brain. For systems without
dynamical synapses, this behavior is not easily seen. However, the presence of STD
provides an extra parameter region so that the plateau state can be seen more easily.
Indeed, how to shut off the activity of a CANN has been a challenging issue that
received wide attention in theoretical neuroscience. Here, we show that STD may
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provide an important mechanism that supports the signal for a relatively long time
and allows the neuronal activity to turn off naturally.

STF has an effect qualitatively opposite to STD. Unlike STD, STF provides
translational stability such that it can improve the decoding performance. With this
property, CANNs with STF can be used as a noise filter processing noisy stimuli.
Based on the different advantages of STD and STF, we predict that each of them
should be dominant in different areas of the brain. STD should be dominant in
areas where time-varying stimuli are processed, whereas STF should prevail in areas
where accurate decoding of stimuli is required.
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Input Dependent Variability in a Model
of the Striatal Medium Spiny Neuron Network

Adam Ponzi and Jeff Wickens

Abstract In previous work we have shown how a biologically faithful medium
spiny neuron (MSN) network model of the striatum generates highly irregular firing
and coherent population dynamics on slow timescales. Here we investigate how the
firing irregularity depends on cortical activity. We find that irregularity is suppressed
for many hundreds of msecs after cortical stimulus onset in good agreement with
several neural observations. We also find that most cells spike count time series
display non-normal diffusion and fractal charasteristics.

1 Introduction

In recent modeling work on the striatal MSN network [1, 2] we have shown
that coherent cell assembly population dynamics on slow behaviourally relevant
timescales can be generated by the MSN network providing the network has the
sparse random striatally relevant connectivity of around 10% and cortical excitation
is weak so that the cells are just above firing threshold. We demonstrated that at these
connectivities even when simulations were completely deterministic individual cells
displayed highly irregular firing, broadly distributed firing rates consistent with a
power-law and that the network generated complex identity-temporal dynamics.
Here we investigate how this MSN network generated variability interacts with
cortical stimulation. We show that switches in cortical stimulation lead to a
temporary suppression of noise in the network. It has been observed that, in many
brain areas, stimuli cause significant suppression of neuronal variability [3–7]. Our
results are in agreement with this.
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2 Methods

The network is composed of model MSNs with parameters set so they are in the
vicinity of a bifurcation from a stable fixed point to spiking limit cycle dynamical
behaviour [1]. This models the dynamics in the UP state when the cells are all
receiving excitatory drive to firing threshold levels of depolarization. To describe
the cells we use the INa;p C Ik model described in [8] which is two-dimensional
and given by,

C
dVi

dt
D Ii .t/ � gL.Vi �EL/
�gNam1.Vi /.Vi � ENa/
�gkni .Vi �Ek/ (1)

dni

dt
D .n1 � ni /=�n

having leak current IL, persistent NaC current INa;p with instantaneous activation
kinetic and a relatively slower persistent KC current IK . Vi .t/ is the membrane
potential of the i -th cell, C the membrane capacitance, EL;Na;k are the channel
reversal potentials and gL;Na;k are the maximal conductances. ni .t/ is KC channel
activation variable of the i -th cell. The steady state activation curves m1 and n1
are both described by, x1.V / D 1=.1 C expf.V x1 � V /=kx1g/ where x denotes
m or n and V x1 and kx1 are fixed parameters. �n is the fixed timescale of the KC
activation variable. The term Ii .t/ is the input current to the i -th cell.

The parameters are chosen so that the cell is the vicinity of a saddle-node on
invariant circle (SNIC) bifurcation which is appropriate bifurcation to use for a
model of an MSN in the UP state, because its dynamics are in good qualitative
agreement with studies of MSN firing [1, 9–11].

The input current Ii .t/ D ICi .t/ C IMi .t/ in Eq. 1 is composed of two parts.
One component IMi .t/ comes from the MSN inhibitory network and the other
component ICi .t/ represents the current from excitatory sources, the cortex and the
thalamus. We describe the excitatory component first.

We model the excitatory part as a stochastic process. In general the excitatory
component will be given by Rall type synapses [12] ICi .t/ D .VC � Vi.t//Xi .t/
where Xi.t/ D P

l k
C
il ail .t/. VC is the excitatory reversal potential, set here to

the realistic value 0:0mV. The MSN cells are considered to be contacted by many
excitatory inputs l which are non-overlapping between the MSN cells i . kCil are
fixed channel parameters from the l-th excitatory cortical or thalamic input to the
i -th MSN cell, described below. The ail .t/ are the quantities of postsynaptically
bound neurotransmitter from the l-th excitatory input to the i -th MSN cell. They
are given by �a

dail
dt
D P

m ı.t � ti lm/ � ail where the dirac delta function ı./ part
represents a series of spikes from the l-th input to the i -th cell at times ti lm and �a
is a time scale which we set to the realistic value of 10 msec.
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If we assume the spikes follow independent Poisson process with rates ril .t/
then the contribution provided by many such processes is approximately Gaussian
and we can replace the spike series by a term given by the mean rate plus
a fluctuation proportional to the standard deviation, ril .t/dt C �il .t/

p
ril .t/dt

where �il .t/ is a standard normally distributed random variable (mean zero,
std unity) [13]. Assuming that spikes are independent across i and l , the termP

l �i l .t/k
C
il

p
ril .t/dt which arises can also be replaced by its expectation and

fluctuation 0C �i .t/
q
dt
P

l .k
C
il /

2ril .t/ where �i .t/ is standard normal noise term

independent in i and t and we have used h�il .t/i D 0 and h�il .t/�ik.t/i D 0,
.l ¤ k/ and h�il .t/�ik.t/i D 1, .l D k/. Therefore we calculate Xi.t/ using,

�adXi D
 
NCX

l

kCil ril .t/ �Xi
!
dt

C�i .t/Œdt
NCX

l

.kCil /
2ril .t/�

1=2:

MSN cells are each contacted by around 10,000 cortical and thalamic cells and
we therefore set NC = 10,000. Average cortical firing rates are around 10 Hz and we
therefore draw the 10,000 rates ril .t/ for each MSN i independently randomly.

The kCil are also fixed in our simulations reported here, although in reality they
may vary with short term facilitation and suppression as well as by LTP andLTD.
We choose the kCil so that the MSN cells’ input current ICi .t/ is just above the SNIC
bifurcation point Ibif D 4:51�A/cm2 and accordingly draw the kCil independently
uniformly from the interval Œ0; 0:002�. These values of excitatory input current mean
that all cells would be firing if the network inhibition were not present. In fact the
inhibitory network causes some cells to become quiescent by reducing the total input
current to below the bifurcation point.

The inhibitory current part is provided by the GABAergic collaterals of the
striatal network and given by IMi .t/ D .Vi .t/�VM /

P
j �kMij gj .t/. These synapses

are also described by Rall-type synapses [12] contributing to Ii .t/ where the current
into postsynaptic neuron i is summed over all inhibitory presynaptic neurons j and
VM and kMij are channel parameters. gj .t/ is the quantity of postsynaptically bound

neurotransmitter given by, �g
dgj
dt
D ‚.Vj .t/ � Vth/ � gj for the j -th presynaptic

cell. Here Vth D �40mV is a threshold, and ‚.x/ is the Heaviside function. gj
is a low-pass filter of presynaptic firing. The timescale �g should be set relatively
large so that the postsynaptic conductance follows the exponentially decaying time
average of many preceding presynaptic high frequency spikes. In all simulations
here it is set so that postsynaptically bound transmitter exponentially decays to half
its value in time �gln.2/ � 34msec.

The network structure is described by the parameters kMij D .kM=p/�ijZij
where �ij is another uniform quenched random variable on Œ0:8; 1:2� independent in
i and j .Zij D 1 if cells i and j are connected and zero otherwise. In the simulations
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reported here we use random networks where cells i and j are connected with
probability p, producing binomial degree distributions, and there are no self-
connections, Zii D 0. kM is a parameter which is rescaled by the connection
probability p so that when the network connectivity is varied the average total
inhibition on each cell is constant independent of p. kM is set so that IPSPs
are around 200�V, very similar to real striatal IPSPs, at connectivities of around
p D 0:1 when the postsynaptic cell is just above firing threshold.

Striatal MSNs are likely to contact (and be contacted by) about 500 other
MSNs[14–16]. Furthermore the probability of a connection is estimated to be
fairly low, p = 0.05–0.3. To simulate a striatal network which respects these two
figures would require, say, a network of around 500=0:2= 2,500 cells. However this
neglects the fact that not all cells are cortically excited into the UP state and such
never firing cells can be left out of network simulations. We suppose that only about
10–30% of MSNs are cortically excited at any time, and perform simulations of 500
UP state MSNs with sparse connectivities. All simulations were carried out with
the stochastic weak second order Runge–Kutta integrator described in [17] with
integration time step 0.1 msec.

3 Results

Here we investigate how the network responds to a switching input protocol. To
this end we construct two fixed cortical input firing rate matrices, rA;Bil for two
cortical inputs A and B , which do not vary in time. The input rate matrices are
alternated every 2,000 msec. The synaptic weights kCil are fixed for the duration of
the simulation the same for both inputs A and B . The fano factor is a standard
tool used to understand how neural systems respond to varying stimulation. To
make stimulus locked fano factors we first construct the spike count observations
N iT
mn which are the number of spikes fired by cell i in T msec window centered

on .T=2/n msec from the onset of the mth presentation of stimulus A. Stimulus
locked fano factors are defined as F iT

n D VarfN iT
mng=hN iT

mni where the expectations
h: : :i are taken over all presentations m. The F iT

n are then averaged over all cells
i (which have at least one non-zero spike count among the averaged observations)
and denoted F T

n . The fano factor F T
n time series versus time .T=2/n msec for a

range of T values for a single network simulation are shown in Fig. 1. Two things
are evident, firstly the fano factors increase with time window size T and secondly
the fano factors decrease suddenly after stimulus onset and then revert slowly.

In fact for a normally diffusive process the mean hN iT
mni and variance VarfN iT

mng
of the spike counts both increase linearly with time T and therefore the fano factor
is independent of time T . However the process generated by the network diffuses
faster than normal on average across cells so that while the mean spike count grows
linearly with T the variance grows faster than this. The fano factor therefore grows
with T . Indeed in Fig. 2 we plot logVarfN iT

mng where the variance is calculated
over all stimulus presentations m and over all time epochs n versus log.T / for
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Fig. 1 Mean fano factor across all cells for a single network simulation versus time since stimulus
A onset calculated for several different window sizes T , shown in the key. The smaller time
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Fig. 2 Diffusion plots in log–log scale of spike count variance versus window size T for several
randomly chosen cells from the simulation whose fano factor time series is shown in Fig. 1. Each
cell is a different solid line. The dashed lines indicate linear behaviour
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several different cells i , for the same simulation as shown in Fig. 1. The dashed
lines describe linear behaviour VarfN.T /g / T . As can be seen for most cells the
variance increases faster than linearly VarfN.T /g / ˛T ˇ where ˇ > 1, for low T

before becoming more linear at high T . This indicates that at low T < 2,000 msec
the behaviour is superdiffusive with positive autocorrelation and a fractal dimension
D D 2�ˇ=2 before reverting to normal diffusion for sufficiently long T . As can be
seen there are also cells which display subdiffusion with ˇ < 1 for low T . A cell’s
behaviour is probably dependent on the structure of its network connections, and
not analysed here.

The time series of mean fano factors shown in Fig. 1 is also not constant
throughout the whole 4,000 msec period. As can be seen the fano factor decreases
after stimulus onset before increasing slowly. A similar behaviour has been observed
in several experimental studies showing stimuli can cause a suppression of neural
variability. Here it is caused by a transient effect after stimulus switching whereby
the slow network dynamics do not quickly accommodate the new input rate
distribution.

4 Discussion

Here we have shown that irregular firing generating by a biologically faithful
network model of the striatum is suppressed for many hundreds of seconds after
cortical stimulus onset. The slow network dynamics are much slower than any
timescale represented in the model parameters. Although there are no striatal
studies, many cortical and cerebellum experimental investigations report similar
suppression of variability [3–7]. In the future we will investigate how this behaviour
depends on network properties such as connectivity.
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Selection Criteria for Neuromanifolds
of Stochastic Dynamics

Nihat Ay, Guido Montúfar, and Johannes Rauh

Abstract We present ways of defining neuromanifolds – models of stochastic
matrices – that are compatible with the maximization of an objective function such
as the expected reward in reinforcement learning theory. Our approach is based on
information geometry and aims to reduce the number of model parameters with the
hope to improve gradient learning processes.

1 Introduction

Within many formal models of neural networks the dynamics of the whole system
can be described as a stochastic transition in each time step, mathematically
formalized in terms of a stochastic matrix. Well-known models of this kind are
Boltzmann machines [2], their generalizations [5], and policy matrices within
reinforcement learning [7]. It is helpful to consider not only one stochastic
matrix but a parametrized family of matrices, which forms a geometric object,
referred to as a neuromanifold within information geometry [1,2]. This information
geometric view point suggests to select appropriate neuromanifolds and to define
corresponding learning processes as gradient flows on these manifolds. The natural
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gradient method, developed by Amari and co-workers (see for example [1]), proved
the efficiency of the geometric approach to learning. The study of learning systems
should further address the interplay between geometric properties and the quality
of learning. In this paper we study criteria for the selection of neuromanifolds. We
do not only focus on manifolds that are directly induced by neuronal models, but
also study more general geometric objects that satisfy natural optimality conditions.
Therefore, in the following we will talk about models instead of neuromanifolds.

We assume that learning maximizes an objective function f W C ! IR defined
on the set C of stochastic matrices. A model N � C is consistent with f , if the
set of maximizers of f can be reached through the learning. This implies that the
maximizers should be contained in the closure of N . If f is convex on C, then each
locally maximal value is attained at an extreme point (vertex) of C, and therefore
corresponds to a deterministic function. We refer to the following three examples in
which optimal systems also turn out to be close to deterministic functions:

1. Optimal policies in reinforcement learning [6],
2. Dynamics with maximal predictive information as considered in robotics [8], and
3. Dynamics of neural networks with maximal network information flow [3].

This suggests to consider parametrizations that can approximate all extreme points
of C, the deterministic functions. In this paper we concentrate on the first example
to illustrate the main idea.

2 The Main Geometric Idea

We first consider general convex sets and return to stochastic matrices in Sect. 3.
The convex hull of a finite set �.1/; : : : ; �.n/ in IRd is defined as

C WD
(

nX

iD1
p.i/ �.i/ W p.i/ � 0 8i and

nP
iD1

p.i/ D 1
)
:

The set of extreme points of this polytope C is a subset of f�.1/; : : : ; �.n/g. In general,
there are many ways to represent a point x 2 C as a convex combination in terms of a
probability distribution p. Here, we are interested in convex combinations obtained
from an exponential family. To be more precise, denote Pn the set of probability
measures p D .p.1/; : : : ; p.n// 2 IRn and consider the map

m W Pn ! C; p 7!
nX

iD1
p.i/ �.i/:

For a family of functions � D .�1; : : : ; �l / on f1; : : : ; ng, we consider the
exponential family E� consisting of all p 2 Pn of the form
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p.i/ D e
Pl
kD1 �k �k.i/

Pn
jD1 e

Pl
kD1 �k �k.j /

; i D 1; : : : ; n:

We denote the image of E� under m by C� . With the choice

��
k .i/ WD �

.i/

k ; i D 1; : : : ; n; k D 1; : : : ; d;

the closure of the exponential family E� can be identified with the polytope C. This
allows to define natural geometric structures on C, such as a Fisher metric, by using
the natural structures on the simplex Pn. In the context of stochastic matrices this
leads to a Fisher metric that has been studied by Lebanon [4] based on an approach
by Čencov. The above construction also motivates the following definition: We call
a family C� an exponential family in C if the vectors �k , k D 1; : : : ; l , are contained
in the linear span of the vectors ��

k , k D 1; : : : ; d .
In general, the families C� are not exponential families but projections of expo-

nential families. In this paper the models C� will play the role of neuromanifolds.
We are mainly interested in models that are compatible with the maximization of a
given function f W C ! IR in the sense that the closure of C� should contain the
maximizers of f . This is clearly not the only consistency condition, but here we
focus on this assumption only.

As stated above, in many cases the local maximizers of f are elements of the
set f�.1/; : : : ; �.n/g, and hence the problem stated above reduces to finding a family
� D .�1; : : : ; �l / of functions such that C� contains that set in its closure. This is
always possible with only two functions �1; �2. One such family can be constructed
as follows: Consider a one-to-one map ' of the n points �.1/; : : : ; �.n/ into IR, for
instance �.i/ 7! i , i D 1; : : : ; n, and the following family of distributions:

p˛;ˇ.i/ D e�ˇ.'.�.i//�˛/
2

Pn
jD1 e�ˇ.'.�

.j //�˛/2

D e�1 �1.i/C�2 �2.i/Pn
jD1 e�1 �1.j /C�2 �2.j /

; (1)

where �1.i/ WD '.�.i//, �2.i/ WD '2.�.i//, and �1 WD 2 ˛ ˇ, �2 WD �ˇ. It is easy
to see that for ˛ D '.�.i// and ˇ !1, the distribution p˛;ˇ converges to the point
measure concentrated in i . The convex combination

Pn
jD1 p˛;ˇ.i/ �.i/ therefore

converges to the point �.i/. This proves that the closure of this two-dimensional
family in C contains all the points �.i/, i D 1; : : : ; n. In general, the geometric
properties of this family strongly depend on ', as we discuss in the following
section.
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3 Application to Reward Maximization

Given non-empty finite sets X and Y , the stochastic matrices from X to Y are
maps .x; y/ 7! �.xIy/ satisfying

�.xIy/ � 0 for all x 2 X ; y 2 Y ; and

X

y2Y
�.xIy/ D 1 for all x 2X :

The set of stochastic matrices is denoted by C WD C.X IY /. Stochastic matrices
are very general objects and can serve as models for individual neurons, neural
networks, and policies. Each extreme point of this convex set corresponds to a
deterministic function f WX ! Y and is given as

�.f /.xIy/ D
�
1; if y D f .x/;
0; else:

Although the number of these extreme points is jY jjX j, according to Sect. 2 there
always exists a two-dimensional manifold that reaches all of them. Note that in the
particular case of N binary neurons we have X D Y D f0; 1gN and therefore
.2N /.2

N / extreme points.
To illustrate the geometric idea we consider the example X D f1; 2; 3g and

Y D f1; 2g. This can, for instance, serve as a model for policies with three states
and two actions. In this case C is a subset of IRX �Y Š IR6 which can be identified
with the hypercube Œ0; 1�3 through the following parametrization (see Fig. 1a):

Œ0; 1�3 3 .r; s; t/ 7!
0

@
r 1� r

s 1� s

t 1� t

1

A:

To test the properties of that family with respect to the optimization of a function,
we consider a map .s; a/ 7! Ra

s , which we interpret as reward that an agent receives
if it performs action a after having seen state s. The policy of the agent is described
by a stochastic matrix �.sI a/. The expected reward can be written as

f .�/ D
X

s

p�.s/
X

a

�.sI a/Ra
s :

In reinforcement learning, there are several choices of p� (see [7]). Here we
simplify our study by assuming p� to be the uniform measure.

We investigate the influence of the map ' and compare the natural gradient flow
(gradient with respect to the Fisher metric, see [1]) with the ordinary gradient. For
the experiments we drew a random reward matrix R and applied gradient ascent
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Fig. 1 Optimization with ordinary (light) and natural (dark) gradient on the model C� for two
different choices of '. (a): A Hamilton path ' D .1; 2; 3; 4; 5; 6; 7; 8/. (b): An arbitrary map
' D .1; 7; 3; 5; 2; 8; 4; 6/

(with fixed step size) on f .�/ restricted to our model and several choices of '
(see Fig. 1a/b for typical outcomes). The optimization results strongly depend on '.
We restricted ourselves to the case that ' maps the vertices of C onto the numbers
f1; : : : ; ng. Such a map is equivalent to an ordering of the vertices. We recorded the
best results when ' corresponds to a Hamilton path on the graph of the polytope
C, i.e. a closed path along the edges of the polytope that visits each vertex exactly
once. This way ' preserves the locality in C, and the resulting model C� is a smooth

manifold. In Fig. 1a, both methods reach the global optimum
0

B@
0 1

1 0

0 1

1

CA. In Fig. 1b, '

is ‘unordered’. We see that the landscape f .�˛;ˇ/ is more intricate and contains
several local maxima. The natural gradient method only converged to a local but not
global optimum, and the ordinary gradient method failed. In Fig. 1a/b every vertex
� of the cube is labeled by '.�/ for the corresponding '.
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4 Towards a Construction of Neuromanifolds

Here we approach implementations of policies � in the context of neural networks.
We start with the case of two input neurons and one output neuron (Fig. 2, left). All
neurons are considered to be binary with values 0 and 1. The input-output mapping
is modelled in terms of a stochastic matrix � . The set of such 4�2-matrices forms a
four-dimensional cube. A prominent neuronal model assumes synaptic weights w1
and w2 assigned to the directed edges and a bias b. The probability for the output 1,
which corresponds to the spiking of the neuron, is then given as

�.x1; x2I 1/ D 1

1C e�.w1x1Cw2x2�b/ : (2)

This defines a three-dimensional model in the four-dimensional cube, see Fig. 3.
Some extreme points are not contained in this model, e.g. the matrix �.0; 0I 1/ D
�.1; 1I 1/ D 0, �.0; 1I 1/ D �.1; 0I 1/ D 1. This corresponds to the well-known
fact that the standard model cannot represent the XOR-function. On the other hand,
it is possible to reach all extreme points, including the XOR-function, with the two-
dimensional models introduced above. However, there are various drawbacks of our
models in comparison with the standard model. They are not exponential families
but only projections. Moreover, we do not have a neurophysiological interpretation
of the parameters.

x1

x2

y

x1

x2

y1

y2
Fig. 2 Two simple neural
networks

1 0
0 1
0 1
1 0

Fig. 3 The standard model given in Eq. (2) for three values of the bias parameter b (left) and the
new model (right) introduced in Sect. 2
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Fig. 4 Histogram of the
objective value f .�/ after
500 steps of gradient ascent
in Nnew. Lower part: natural
gradient. Upper part:
ordinary gradient

We now discuss models for the case of one additional output neuron. The system
is modelled by stochastic 4 � 4 matrices, which form the 12-dimensional polytope
C WD C.f0; 1g2I f0; 1g2/. A natural assumption is the independence of the outputs Y1
and Y2 given the input pair X1;X2. This is the case if and only if the input-output
map of each neuron i is modelled by a separate stochastic matrix �i , i D 1; 2. The
stochastic matrix of the whole system is given by

�.x1; x2Iy1; y2/ D �1.x1; x2Iy1/ � �2.x1; x2Iy2/:

This defines an 8-dimensional model Nproduct that contains all extreme points of C.
Furthermore, it contains the submodel Nstandard given by the additional requirement
that �1 and �2 are of the form (2). The model Nstandard is an exponential family
of dimension 6. However, as in the one-neuron case, Nstandard does not reach all
extreme points. Another submodel Nnew of Nproduct is defined by modelling each
of the stochastic matrices �i in terms of two parameters as described above. The
following table gives a synopsis:

Model Dim. Exp. fam. Reaches ext. points

C 12 Yes Yes
Nproduct 8 Yes Yes
Nstandard 6 Yes No
Nnew 4 No Yes

We conclude this section with the maximization of a reward function in the
family Nnew, as in the previous section. Figure 4 shows a histogram of the results
for a fixed randomly chosen reward R after 500 steps for ordinary gradient and
natural gradient methods. We chose a constant learning rate and 5,000 different
initial values. Both methods find three local maxima. The natural gradient process
tends to converge faster. Furthermore, it finds the global maximum for a majority of
the initial values, which is not the case for the ordinary gradient.

5 Conclusions

We proposed and studied models which contain all extreme points in the set of
stochastic matrices (the global maximizers for a variety of optimization problems).
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These models have very few parameters and a rich geometric structure, and they
allow a simple implementation of natural gradient methods. At this stage we do
not suggest them for describing neural systems but as basis for extensions to more
plausible models.
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A Manipulative Approach to Neural Dynamics
by Combined TMS-EEG

Keiichi Kitajo, Yumi Nakagawa, Yutaka Uno, Ryohei Miyota,
Masanori Shimono, Kentaro Yamanaka, and Yoko Yamaguchi

Abstract We propose a new approach for manipulating neural dynamics by using
combined TMS (Transcranial magnetic stimulation) – EEG (Electroencephalogra-
phy) recordings. We demonstrate that we can perturb the phase dynamics of ongoing
neural oscillations by TMS. Using the manipulative approach we can investigate
(1) state-dependency in frequency-specific network connectivity by analyzing how
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TMS-evoked phase reset of ongoing activity propagates from one cortical area to
the rest of the brain in humans and (2) causal links between the neural dynamics
and brain functions. We can causally confirm dynamical and computational models
in manipulative manners using this approach.

1 Introduction

Growing evidence indicates that synchronous neural oscillations are important in
mediating perceptual and cognitive processes [1, 2]. A lot of “neural correlates”
studies demonstrated the correlation between synchronous neural activity and
brain functions. It is important, however, to show causal links between the neural
dynamics and brain functions, which are beyond the correlation between them.
Stochastic resonance is one of the ways to manipulate neural oscillations and
look at functional changes in the human brain [3]. To address this issue more
directly we propose another new manipulative approach using TMS-EEG. New
findings on the human brain start to emerge from combined TMS–EEG studies
[4, 5]. Massimini et al. for example, demonstrated evidence for a breakdown of
long-range effective connectivity during NREM sleep by combined TMS–EEG
recordings analyzing propagation of TMS evoked response across the brain [5].
This study suggests that TMS can transiently perturb and modulate cortical ongoing
activity in the human brain. No study, however, has shown frequency-specific,
state-dependent changes in large-scale cortical synchronous network connectivity.
We therefore investigated frequency-specific and state-dependent cortical network
connectivity by analyzing how TMS-evoked phase perturbation of ongoing activity
at one cortical area measured by EEG is propagated to the rest of the brain at
different frequencies.

We propose that using the new manipulative approach we can investigate (1)
state-dependency in frequency-specific network connectivity by analyzing how
TMS-evoked phase reset of ongoing activity propagates from one cortical area to
the rest of the brain and (2) causal links between the neural dynamics and brain
functions in humans confirming dynamical and computational models.

2 Methods

In total 40 right-handed adult participants with normal or corrected-to-normal
vision gave informed consent. The study was approved by the ethical committee
of RIKEN. Using a 19-channel (Neuroprax, neuroConn, Germany) or a 64-channel
(BrainAmp MR plus, Brain Products, Germany) TMS-compatible EEG amplifiers,
we recorded TMS (Magstim rapid, The Magstim company, UK) – modulated
ongoing brain activity while normal participants sit on a chair with their eyes closed
or eyes open fixating a gray cross in the dark on a black background in the center
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of a 1900 CRT monitor (100 Hz refresh rate) at a distance of 95 cm. A chin rest
maintained participants’ head position throughout the experiment. Participants were
instructed to avoid making eye movements or blinks.

EEG data were sampled at 4,096 Hz and off-line resampled at 1,024 Hz
(Neuroprax) or sampled at 1,000 Hz (BrainAmp MR plus). EEG records were
digitally re-referenced to averaged earlobe electrodes. Electrode impedances were
kept below 10 k�.

We targeted TMS to the left primary motor cortex with intensity at the 95%
motor threshold or the visual cortex with intensity at the 95% phosphene threshold.
Participants were given 50–60 pulses in eyes-open and eyes-close conditions.
In 19ch EEG experiments, 17 subjects participated in the motor area targeted
experiments. 14 different subjects were identified as those who were able to see
TMS-induced phosphenes and participated in the visual area targeted experiments.
The electrooculogram (EOG) was recorded with electrodes positioned 1 cm from
the outer canthi of both eyes and above and below the left eye. Epochs with artifacts
caused by blinks or eye movements or amplifier saturation were detected using an
amplitude criterion (C� 150uV) and excluded from further analysis. Three subjects
in the motor area targeted and four subjects in the visual area targeted experiments
were excluded because too few epochs survived after the artifact rejection. The
signal was segmented into a series of 3,000 ms-long epochs. Each epoch consists
of 1,500 ms pre TMS and post TMS periods. The EEGLAB, Matlab toolbox
was used for artifact rejection, visualization and topographic plots [6]. We band-
pass filtered the EEG or EEG SCD (scalp current density) signals and computed
instantaneous phase and amplitude of the filtered signal by constructing the analytic
signal using the Hilbert transform or wavelet methods or a two-cycle complex
exponential sequence [7]. By using these methods, we can dissociate instantaneous
phase from amplitude of signals. Next, to quantify the TMS evoked phase reset
of ongoing activity, we computed phase locking value (PLV), which is a measure
of phase consistency across trials for each time/frequency point, according to the
following [8]:

PLV.t; f / D 1

N

ˇ̌
ˇ̌
ˇ

NX

nD1
ei'.t;f;n/

ˇ̌
ˇ̌
ˇ

where '(t, f, n) is the instantaneous phase at time t and frequency f from an electrode
of the n th trial. N is the number of trials.

3 Results

In all participants, we observed strong modulation of phase of ongoing activity by
TMS. Figure 1 shows representative PLV headmaps from a single subject using a
64ch EEG SCD data at 10 Hz. In this case we stimulated the occipital pole at the
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Fig. 1 Representative PLV head maps of EEG-SCD at 10 Hz at various times after single-shot
TMS for a single subject. The visual area (occipital pole) was stimulated at the 95% phosphene
threshold in the eyes-open condition
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Fig. 2 PLV averaged across all channels and participants (ND 14) in eyes-open, eyes-closed
conditions and difference between eyes-open – eyes-closed conditions for the motor area targeted
TMS experiment

95% phosphene threshold. Strong phase reset was observed right after TMS around
the target site. Then, the phase reset propagated from the visual area to the rest of
the brain very globally and disappeared at around the motor cortex.

In our group experiments using 19ch EEG recordings, (Motor area targeted
TMS: ND 14, Visual area targeted TMS: ND 10), we found significant increase
in PLV by single shot TMS (p<0.05, FDR corrected permutation test). Figures 2
and 3 show PLV time frequency diagrams averaged across all channels for the
eyes-open and eyes-closed conditions in the motor area targeted and visual area
targeted experiments, respectively. We found that global propagation of phase reset
was most prominent at 3–6 Hz delta to theta ranges and 8–13 Hz alpha range
in both eyes-open and eye-closed conditions. We observed more widespread and
prolonged propagation of phase reset of ongoing activity in the eyes-open condition
than in the eyes-closed condition most prominently around 10 Hz (p<0.05, FDR
corrected, permutation test) both in motor area targeted (Fig. 2) and visual area
targeted experiments (Fig. 3).
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Fig. 3 PLV averaged across all channels and participants (ND 10) in eyes-open, eyes-closed
conditions and difference between eyes-open – eyes-closed conditions for the visual area targeted
TMS experiment

4 Discussions

We observed prominent phase reset of ongoing EEG by single-shot TMS. The phase
reset propagated from the stimulated area to the rest of the brain in a frequency spe-
cific way. We speculate that phase reset propagated globally across coupled neural
oscillators in the human brain. Large-scale cortico-cortical and/or thalamocortical
synchrony networks [5] should be associated with global propagation of phase reset
by a single-shot TMS.

We found more prominent propagation of phase rest in the eyes-open condition
than in eyes-closed condition at around 10 Hz. It has been shown that the
phase of pre-stimulus alpha oscillations modulates visual detection [9, 10]. It has
been also demonstrated that detection of TMS-evoked phosphenes is modulated
by alpha power [4, 11]. These studies and our results suggest the alpha-band
synchrony networks might be mediating gain regulation of incoming flow of visual
information.

Our study provides evidence that TMS-EEG can reveal frequency-specific, state-
dependent changes in large-scale cortical synchronous network connectivity. Our
results also indicate that TMS can reset and control the phase of ongoing oscillations
locally and globally. We therefore speculate that we can manipulate global phase
dynamics and look at functional consequences. This idea will lead to a new system
neuroscience method for real-time control of neural dynamics for showing causal
links between neural dynamics and brain functions.

In our preliminary experiments, we also used double-shot TMS and found fre-
quency specific entrainment of ongoing oscillations. More specifically, we observed
stronger phase reset at 6 Hz when giving double-shot TMS at 6 Hz than 10 Hz. The
results suggest that repetitive TMS might be better in perturbing frequency specific
synchronization networks.

In conclusion, TMS-EEG is an excellent manipulative tool for investigating
(1) state-dependency in frequency-specific network connectivity by analyzing how
TMS-evoked phase reset of ongoing activity propagates from one cortical area to the
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rest of the brain in humans and (2) causal links between the neural dynamics such
as the phase of ongoing activity and brain functions. By using this manipulative
approach we can causally confirm dynamical and computational models.
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Long-Tailed Statistics of Corticocortical EPSPs:
Origin and Computational Role of Noise
in Cortical Circuits

Jun-nosuke Teramae, Yasuhiro Tsubo, and Tomoki Fukai

Abstract Neurons in the brain exhibit highly irregular asynchronous firing even
without sensory stimulation. Here, we study the recently proposed hypothesis
that a highly non-homogeneous distribution, typically lognormal distribution, of
cortico-cortical EPSP (excitatory postsynaptic potential) accounts for the low-rate
spontaneous irregular activity observed in vivo. When amplitude distribution of
EPSPs among excitatory neuron pairs obeys the lognormal distribution, networks of
leaky integrate-and-fire model neurons robustly show ongoing firing state with low
firing rate. Moreover, consistent with cortical neurobiology, the obtained activity
had high irregularity, low synchronicity, and dynamically balanced excitation-
inhibition population activity. We derive effective evolution equations for excitatory
and inhibitory population activities from a recurrent network of the leaky integrate-
and-fire neurons coupled with highly non-homogeneous connections. Based on the
evolution equation, we perfume stability analysis of nontrivial solutions of the
equation and reveal underling mechanisms and computational functions of the noise
in cortical circuits.
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1 Introduction

Even in the absence of sensory stimulation, cortical neurons exhibit highly irregular
asynchronous firings in low spiking rate [1]. The spontaneous cortical activity,
or noise in cortical circuits, is influential to our perception and also modifiable
by sensory experiences [2–6], and have been discussed in relation with cortical
activities during sleep [7]. However, the underlying mechanisms and computational
roles of the intrinsic cortical noise have remained unclear until very recently.
Recent electrophysiological recordings revealed that some corticocortical excitatory
postsynaptic potentials (EPSPs) can be as large as several millivolts, while the
majority is weak (<1 mv) [8, 9]. The highly non-homogeneous EPSP distribution is
well described by long-tailed distributions, typically by the lognormal distribution.

Asynchronous irregular (AI) firing of cortical neurons has been studied in
various model studies. Sparsely connected networks of binary neurons receiving
external noise can generate ongoing states similar to the AI state [10]. Under the
assumption that excitatory and inhibitory inputs to neurons is averagely balanced,
inputs mediated by relatively strong synapses enable the model to generate large
temporal fluctuations crucial for irregular firing. The network states realized with
excitatory-inhibitory balance and external input have been extensively studied in
sparsely connected networks of spiking neurons [11]. Such networks can generate
AI states even without external noise [12, 13]. However, the generation of very low-
rate asynchronous firing (<10 Hz) was difficult in the previous models [14]. The
typical frequency of spontaneous cortical activity is as low as 1� 3 Hz in pyramidal
neurons [1].

Previous models with weak and modest EPSPs require either highly synchro-
nized input or asynchronous input at relatively high rates to evoke postsynaptic
spikes. Therefore, these models are considered to show relatively high spontaneous
firing rate to maintain spontaneously ongoing firing. However, if some EPSP is
extremely large, as observed in in vitro experiments, we may solve the above
difficulties of the previous models in generating low-rate spontaneous activity. Here,
we consider the recently proposed hypothesis based on this possibility that the low-
rate spontaneous irregular activity of neurons is due to the highly non-homogeneous
EPSP distribution [15].

We study a recurrent network of excitatory and inhibitory leaky integrate-and-
fire model neurons. While connections among neurons are randomly generated, we
assume that amplitude of EPSPs on each excitatory neuron distribute according
to a lognormal distribution which well reproduces experimental literatures. We
develop a theory to describe activities of the lognormally connected network.
This theory reveals that low-rate irregular firing emerges spontaneously in the
lognormally connected network even without external input or background noise.
Modeled activity is consistent with various experimentally known properties of
intrinsic cortical activity, including high irregularity [16], low synchrony [17, 18],
excitatory-inhibitory balance [19], for which several computational advantages are
known, depolarized membrane UP state, and existence of precisely firing structures.
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Moreover, depolarize membrane potential about 10 mV above the resting potential,
which sustained by many synaptic inputs on small synapses maximizes spike trans-
mission received at extremely strong synapses. This maximal spike transmission is
confirmed experimentally by dynamic-clamp recordings of cortical neurons.

2 Methods

We consider the network consists of conductance-based leaky integrate-and fire
model neurons,

dv

dt
D � 1

£m
.v � VL/� gE .v � VE/� gI .v � VI /;

where gE and gI are excitatory and inhibitory synaptic conductances which evolve as

dg

dt
D � 1

�s
g C

X

j

Gij
X

k

ı.t � tj;k � dij /

with synaptic decay time constant £s. tj,k is the k-th spike time of the j-th neuron, dij

is the synaptic delay from neuron j to neuron I, Gij characterize coupling strength
of the connection. While we use random topology for the network structure, on
each excitatory neuron, we fixed synaptic coupling strength between excitatory
neuron pairs such that EPSPs measured at the resting membrane potential of the
postsynaptic neuron distribute according to the lognormal distribution,
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and variance is
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�
¢2
� � 1� :

Since the lognormal distribution has a right long-tail, a few EPSPs on each
neuron can be extremely strong while majority of EPSPs are still sufficiently weak.
We use uniform values of G for other types of connections. The network we have
used consists of ND 10,000 and ND 2,000 inhibitory neurons with few mill second
synaptic delays.
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3 Results

In the lognormally connected network, we can divide the contribution of synaptic
inputs to the firing rate into two components. The first component arises from weak
and modestly strong synapses, which is estimated from the membrane potential
fluctuations. The second component comes from a few extremely strong synapses
which characterize long-tailed nature of the lognormal connectivity. Since output
spikes are highly irregular and asynchronous, we can safely assume that input spike
trains to each neuron are well described by independent identical Poisson processes.
Denoting the rates of the Poisson processes as rE and rI for excitatory and inhibitory
presynaptic neurons, respectively, we can adopt the diffusion approximation for
dynamics of v, gE and gI to obtain a set of Langevin equations. Because of
the nonlinearity of the Langevin equations, we need further approximation to
solve these equations. Here we employ the assumption in which we remove the
nonlinearity by replacing v�VE and v�VI with V0�VE and V0�VI in the equation.
Here

V0 D �e
	
VL

�m
C hgEiVE C hgI iVI




and

�e D
	
1

�m
C hgEi C hgI i


�1

are the effective equilibrium membrane potential and the effective membrane time
constant respectively.

With this approximation, we can obtain the stationary distribution function for
normalized membrane potential u as

P .u; z/ D 1

2�
p
	uu	zz

exp

	
� u2

2	uu
� z2

2	zz




where z is du/dt. Since the probability current along the direction of u is given as zP,
the first component of output firing rate of neurons are given as

rout;1 D e�
�2

2	uu

2�

r
	zz

	uu
;

where ™ is the gap to the firing threshold from V0.
The second component of output firing rate is given as the sum of products

of presynaptic firing rate at an extremely strong synapse and the probability of
postsynaptic firing in response to the evoked strong EPSP as
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where the erf(x) is an error function.
By utilizing self-consistency between input firing rates and output firing rates

in recurrent networks, we finally obtain the evolution equations for the excitatory
and inhibitory population of neurons. The obtained equation has a nontrivial fixed-
point solution might correspond to the irregular spontaneous activity. To study the
stability of the nontrivial solution, we apply the linear stability analysis around the
fixed point and we obtain a closed-form equation for the stability index œ as,

�
��e;E C 1 � aEEe��dEE

� �
��e;I C 1 � aII e��dII

� D aIEe��dIE aEI e��dEI :

By solving the equation numerically, we can examine the stability of the
spontaneous activity.

The result of the analysis shows that the fixed point is unstable if the second
component of output firing rate which comes from the long tail of the lognormal
EPSP distribution. However, an introduction of the second component easily
stabilizes the fixed point. The fixed point is robust against modification of model
parameters. Moreover, We also find that even though the second component
significantly contributes to the sustaining spontaneous activity, the second term
only is not sufficient to realize the sustained activity. Actually, removing the first
component reduces the equilibrium membrane potential of neurons and drastically
decreases firing probability of postsynaptic neuron to the strong EPSP. The fixed
point disappears due to the reduction.

To confirm above analytical results from a different viewpoint, we compared AI
states between the lognormally connected network and one in which the weights
of recurrent synapses are distributed as a Gaussian that has the same mean and
variance as the lognormal distribution. The resultant Gaussian-connected network
only has relatively weak synapses. We numerically simulated the two models to
obtain the regions of the parameter space spanned by inhibitory conductances in
which AI states are stable with sufficiently low firing rates. The lognormally-
connected network offers a wide region of the parameter space to AI states with
low frequencies (<10 Hz), low synchronicity and highly irregular spiking (the
average coefficient of variation � 1). In contrast, the stable region for low-frequency
firing is narrow and irregular firing turns less asynchronous in the Gaussian-
connected network. These results indicate that AI states are much more robust in
the lognormally-connected network than in the Gaussian-connected network against
changes in the network parameters.

To clarify the crucial role of strong synapses in generating low-frequency AI
states, we added a small number of the strongest synapses from the lognormal
EPSP distribution to each excitatory neuron in the Gaussian-connected network,
and calculated diagrams similar to those for the lognormally-connected network.
The diagrams obtained when the top five strongest synapses were added to each
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excitatory neuron, which are surprisingly similar to those for original lognormal
network. We further conducted a similar analysis when only the strongest synapse
was added. Except that the region of parameter space for a stable asynchronous
firing was slightly narrowed, the results were essentially unchanged. Thus, although
we cannot rigorously separate ‘weak’ and ‘strong’ synapses for the lognormal EPSP
distribution, the coexistence of both weak and strong synapses is essential for the
generation of the AI state.

4 Discussions

The results of our analysis reveals that the long-tailed statistics of cortico-cortical
EPSPs are responsible for stable maintenance of the intrinsic noise in networks
of spiking neurons. The activity is maintained by coexistence of both input from
a few strong synapses and that from many weak synapses which lifts membrane
potential up to the high-conductance depolarized state. Due to the depolarized state,
inputs on strong synapses are transmitted into output spikes of the neurons with high
probability. Thus intrinsic noise in cortex is not just noise but significantly contribute
to achieve reliable information transmission via spike trains in cortical circuit.
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On a Theory of Precise Neural Control
in a Noisy System

Wenlian Lu, Shun-ichi Amari, Jianfeng Feng, and David Waxman

Abstract In this paper, we introduce a novel computational paradigm based on
modern control and optimization theory and biological observations. We investigate
the ‘minimum-variance principle’ of a controlled dynamical system with noise,
assuming that the noise inherent to the control signal is sub-Poisson. In this case, we
find that the optimal solution of the stochastic controller is not an explicit function
but is composed of a parameterized measure. Moreover, in contrast to the supra-
Poisson or Poisson noise, this sort of parameterized measure can achieve precise
control performance even in the presence of noise.

1 Introduction

The purpose of this paper is to introduce a mathematical framework to realize
precise neural control in a noisy system. The initial motivation of the paper comes
from several biological observations. Noise is believed to be inevitable since it
is an intrinsic component of the signal and furthermore its magnitude could also
strongly depend on the signal magnitude [1]. However, as reported in [2], the
movement error is believed mainly due to inaccuracies of the neural-sensor system,
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and not associated with the neural-motor system, which implies that the neural-
motor system may be precisely controlled, even with randomness. A key feature
of the neural signal is that it is locally distributed and likely to have only three
states, namely inactive, excited, and inhibited. To make progress in understanding
how precise movement control can be achieved in a noisy environment, we shall
investigate theoretical relationships which may connect the observed activity of
neurons with precise control performance.

In a mathematical form, the neural control problem can be expressed as
minimizing the execution error caused by the noise inherent in the control signals
[3]. One characteristic of the noise is the dispersion index, ˛, which relates the
variance in the control signal to the mean control signal and hence describes the
statistical regularity of the control signal. When the variance in the control signal
is proportional to the 2˛-th power of the mean control signal the dispersion index
of the control noise is said to be ˛. It was shown in [1, 3] that an optimal solution
of analytic form can be found when the stochastic control signal is supra-Poisson,
i.e., when ˛ � 0:5. However, the resulting control is not precise and a non-zero
execution error arises.

In the present work, thanks to an elegant theory developed by Young (Young
measure) [4,5], we introduce some of mathematical principles linking the regularity
of the control signal noise and the precision of the resulting control performance.
We consider two examples of neural control: saccadic eye movement control and
straight-trajectory arm movement control, where neural spikes act as control signals,
which are formulated as Gaussian processes with signal dependent variances. Our
results show that if the control signal is less random than a Poisson process (i.e.,
˛ < 0:5) then the control optimization problem naturally involves solutions with
a specific character (parameterized measure optimal solutions), which can achieve
precise control.

2 Methods/Models

The purpose of our control task is to minimize the variance of the final ‘value’ of a
dynamical system under a constraint on its average activity. That is,

8
ˆ̂̂
<̂

ˆ̂̂
:̂

min�.t/
R TCR
T

varŒx.t/�dt;

subject to W dx
dt
D a.x.t/; t/C b.x.t/; t/u.t/

x.0/ D x0I EŒx.t/� D z; t 2 ŒT; T CR�I
�i .t/ 2 Œ�MY ;MY �; t 2 Œ0; T CR�:

(1)

Here, var.�/ and E.�/ represent variance and expectation respectively, x.t/ is a
state vector while u.t/ D Œu1.t/; � � � ; um.t/�> is a controller vector, a.x; t/ denotes
the uncontrolled dynamical system and b.x; t/ is the gain matrix with respect
to u. Let ui .t/ D �i .t/ C �i .t/, where �i .t/ denotes the mean control signal
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and each �i .t/ is an independent white noise with the properties E.�i .t// D 0 and
E.�i .t/�j .t

0// D 	i .t/	j .t 0/ı.t � t 0/ıij , while ı.�/ is a Dirac delta function and ıij
a Kronecker delta. The noise fluctuation 	i .t/ explicitly depend on the magnitude
of the signal: 	i D �i j�i.t/j˛ , with �i > 0, and ˛ is the dispersion index of the
control process. The aim of control is to let x.t/ reach a target z at time t D T and
stay there for the period ŒT; T CR�.

Due to limited space, we cannot provide any details in the present paper, but
give a summary of the main ideas. The mathematical contents can be found in our
other papers. The abstract Hamiltonian minimum (maximum) principle (AHMP) [6]
provides a necessary condition for the optimal solution, which is composed of the
points that minimize the integrand function of the Hamiltonian (IFH). This principle
indicates that the optimal solution should be a minimum of the given IFH for each t .
If the control noise is supra-Poisson or Poisson, i.e., ˛ � 0:5, then the IFH is convex
(or semi-convex), which implies that there is a unique minimum of the IFH for each
t . Hence the optimal solution is an explicit function, in the sense that for each t , �.t/
is the unique value that minimizes the IFH. If, however, the control signal is sub-
Poisson, i.e., ˛ < 0:5, then no explicit function �.t/ exists as the optimal solution,
since the IFH is not convex. However, an optimal solution that is not an explicit
function but a parameterized measure, f�t .�/g, exits. It is called ‘Young measure’
following [4, 5] and yields a set of values on which a measure (i.e., a weighting)
�t .�/ is defined for each t . And, the optimal solution of Young measure has the form
�t .�/ D �1;t .�/ � � � ��m;t .�/, with

�i;t .ds/ D Œ�i .t/ı.s �MY /C �i .t/ı.s CMY /

C.1 � �i .t/ � �i .t//ı.s/�ds (2)

with �i.t/ and �i .t/ non-negative and �i .t/ C �i .t/ 	 1, �i.t/�i .t/ D 0. In
addition, we can derive that

min
�

sZ T

0

varŒ�.x; t//�dt D O.1=.M1=2�˛
Y //; (3)

as MY ! 1. This implies the execution error approaches zero as MY goes to
infinity if ˛ < 0:5. This is in clear contrast to the situation where the control signals
are Poisson or more random than Poisson (i.e., ˛ � 0:5) where the optimal control
signal is an ordinary function, not a parameterized measure, and the variance in
control performance cannot approach zero.

3 Results

We consider two examples of neural controls, where the control signal is described
as a Gaussian process: �.t/ C 	.t/dWt=dt , with the noise depending on the
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frequency �.t/, that is 	.t/ D �j�.t/j˛ for some ˛ > 0; � > 0. Then, the
underlying dynamical system can be formulated as Itô diffusion.

First, we consider the model (4) of saccadic eyeball movements, which was
studied in [7].

Rx D � 1

�1�2
x � �1 C �2

�1�2
Px C �

�
�.t/C�j�.t/j˛.t/dWt=dt

�
; x.0/ D 0; Px.0/ D 0:

(4)

Here x is the position of the eyeball, �; �1;2 are positive parameters of the oculomotor
plant, and �.t/C �j�.t/j˛dWt=dt describes the control signal accompanying with
signal-dependent noise [1]. The control object is to let x.t/ reach a targetD at time
t D T and stay there for a period Œt; T CR�. We revisit this problem via the idea of
Young measure. As shown in Fig. 1A(a–c) with ˛ D 0:25 (< 0:5), one can see that
the control signal is localized (Fig. 1A(b)) and the performance of control is precise
(Fig. 1A(b)), in comparison to the case ˛ > 0:5 which cannot achieve a precise
performance (Fig. 1A(c)).

Second, we consider a more complicated model of the arm movement related to
biological signal control. The sensorimotor transformations are often formalized in
terms of coordinate transformation. The nonlinearity arises from the geometry of
the joints. For simplicity, we neglect gravity and viscous forces, and formulate the
model as (5),

N.�1; �2/

" R�1
R�2

#
C C.�1; �2; P�1; P�2/

" P�1
P�2

#
D �0

�
Q1

Q2

�
; �1.0/ D ��

2
; �2.0/ D �

2
;

P�1;2.0/ D 0

with ND
"
I1 Cm1r

2
1 Cm2l

2
1 C I2 Cm2r

2
2 C 2k cos �2 I2 Cm2r

2
2 C k cos �2

I2 Cm2r
2
2 C k cos �2 I2 Cm2r

2
2

#
;

C D k sin �2

" P�2 P�1 C P�2
P�1 0

#
; Qi D �i.t/C �0j�i .t/j˛dW1=dt; (5)

where �1;2 are the angles between upper arm and horizontal direction, forearm and
upper arm, respectively, �1;2.t/ are control signals to two directions accompanying
with signal-dependent noises, and all other symbols (m1;2, I1;2, r1;2 and �0) are
constant parameters. The relation between the position of hand .x.t/; y.t// and
the angles �1;2 is �1 D arctan.y.t/=x.t// � arctan.l2 sin �2=.l1 C l2 cos �2// and
�2 D arccosŒ.x2Cy2� l21 � l22 /=.2l1l2/�. For the details of the model, please refer to
[8]. We are to control the final hand position to reach the given targetH D ŒH1;H2�.
We can use a numerical approach to calculate an approximate solution, as shown
in Fig. 1B(b). As it is shown in Fig. 1B(a), when ˛ < 0:5, the optimal localized
solution has a precise control performance, in comparison to the case ˛ > 0:5,
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Fig. 1 Optimal control and performance. The ODE is numerically solved by the Euler method
with a time step 0:01 ms. Panel A: Saccadic eye movement model with parameters �1 D 224ms,
�2 D 13ms, � D 1e � 2, � D 0:58, T D 50ms, R D 50ms, D D 10 degree and MY D 500.
(a) the dynamics of the position (in degree) under optimal control with ˛ D 0:25; the curves are
plotted with ten overlaps (blue lines) by randomly picked initial values, the red line represents the
mean over ten overlaps and the red circle is the pre-given position of the eye. (b) The localized
sampling distributions of the value MY which is picked by the Young measure �t .�/ with ten
overlaps (indicated by different colors). (c) the dynamics of the position (in degree) under the
optimal control with ˛ D 1; the curves are plotted with ten overlaps (blue lines) by randomly
picked initial values and the red line represents the mean over ten overlaps. Panel B: Straight-
trajectory arm movement model with parameters m1 D 2:28 kg, m2 D 1:31 kg, l1 D 0:305m,
l2 D 0:254m, I1 D 0:022 kg�m2 , I2 D 0:0077 kg�m2, r1 D 0:133m, r2 D 0:109m, T D 650ms,
R D 10ms, � D 3�=4 and MY = 20,000. (a) the movement of the arm in a platform under the
optimal control with ˛ D 0:25. The red dash circle represents error region over ten overlaps and
the gray line is the theoretical trajectory. (b) the local distribution of the optimal Young measure,
where x and y axes represent the �1;2 respectively, and the red points represent that �1;2 are picked
values at MY and otherwise in dark blue. (c) the movement of the arm in a platform under the
optimal control with ˛ D 1 and the red dash circle represents error region over ten overlaps

which possess a deterministic solution but an unprecise performance as shown in
Fig. 1B(c). The movement error also depends strongly on ˛ and MY . The error
decreases as MY increases and the logarithm of the standard deviation is linearly
dependent on the logarithm of MY with a slope very near ˛. This relation can be
described as Eq. (3) but is not shown in this paper.
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Real-Time Wireless Sonification of Brain Signals

Mohamed Elgendi, Brice Rebsamen, Andrzej Cichocki, Francois Vialatte,
and Justin Dauwels

Abstract In this paper, an alternative representation of EEG is investigated, in
particular, translation of EEG into sound; patterns in the EEG then correspond to
sequences of notes. The aim is to provide an alternative tool for analysing and
exploring brain signals, e.g., for diagnosis of neurological diseases. Specifically,
a system is proposed that transforms EEG signals, recorded by a wireless headset,
into sounds in real-time. In order to assess the resulting representation of EEG as
sounds, the proposed sonification system is applied to EEG signals of Alzheimer’s
(AD) patients and healthy age-matched control subjects (recorded by a high-quality
wired EEG system). Fifteen volunteers were asked to classify the sounds generated
from the EEG of 5 AD patients and five healthy subjects; the volunteers labeled most
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sounds correctly, in particular, an overall sensitivity and specificity of 93.3% and
97.3% respectively was obtained, suggesting that the sound sequences generated
by the sonification system contain relevant information about EEG signals and
underlying brain activity.

1 Introduction

One of the interesting multidisciplinary applications of EEG is sonification, i.e.,
converting the brain waves into music.

As far as we know, sonification was for the first time attempted in 1965 by
Alvin Lucier (composer) and Edmond Dewan (physicist); in their composition,
called Music for Solo Performer [3], human brain waves control percussion
instruments. Although several researchers and musicians tried to generate sound
from EEG signals, there are still many open questions and challenges, and plenty of
opportunities. For example, the recent advent of convenient wireless EEG headsets
[4–8] may further stimulate and advance the area of EEG sonification.

In this study we design and implement a system that in real-time translates EEG
signals, recorded from a wireless EEG headset, into sounds. We assess the sound
representations in an offline fashion, by applying our sonification system to EEG
collected from Alzheimer’s disease (AD) patients and from healthy subjects. The
sounds generated from AD EEG should be distinct from sounds extracted from
the EEG of healthy subjects. We investigate whether our EEG sonification system
improves diagnosis of AD, following an approach proposed earlier by Vialatte
et al. [9].

The paper is structured as follows. In the next section we explain our methodol-
ogy. In Sect. 3 we evaluate our system offline by means of an EEG dataset of AD
patients and control subjects. In Sect. 4 we discuss our results and offer concluding
remarks.

2 Methods

The proposed sonification system has two operating modes: offline and real-
time sonification. In the offline mode, the system extracts sounds from EEG
signals that have been recorded earlier. In Sect. 3, we will apply our system to
an EEG dataset from Alzheimer’s patients and control subjects, recorded by a
wired high-performance EEG system. In real-time mode, EEG signals are acquired
and immediately transformed into sounds. In the following, we will elaborate
on the EEG signal acquisition. Next we will explain how we extract sounds
from EEG.
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2.1 Data Acquisition

The real-time EEG signals have been collected using a wireless EEG headset,
specifically the Emotiv EPOC wireless headset [4] with a sampling frequency
128 Hz. The headset has 14 data collecting electrodes and two reference electrodes.
The electrodes are placed approximately at the 10–20 locations AF3/4, F3/4, FC5/6,
F7/8, T7/8, P7/8, and O1/2. We used the software package BCI2000 [10] to interface
with the Emotiv EPOC wireless headset. The headset transmits encrypted data
wirelessly to a laptop computer.

The Emotiv headset is mostly intended for entertainment (e.g., video games)
rather than research or medical applications [4]. However, it is inexpensive and user-
friendly, and with suitable signal processing, it may become suitable for research
and clinical purposes. In particular, the device seems to be prone to various artefacts
(such as eye blinking, ECG, EMG, body movements, power sources, etc.). In our
ongoing work, we are developing real-time algorithms for removing artefacts, which
is a crucial step towards reliable real-time EEG sonification.

2.2 Sonification

The system computes the relative power in three non-overlapping frequency bands
(4–10, 10–20, and 20–30 Hz) and generates notes from the computed values. The
EEG spectrum is known to depend on the mental state (e.g., relaxation, sleep);
moreover, abnormal EEG spectra seem to be associated with neurological disorders,
e.g., Alzheimer’s disease (AD) [11, 12]. We characterize the EEG spectrum by
computing relative power in three different EEG frequency bands. Relative power is
a simple measure that can readily be computed in real-time. In future work, we will
experiment with other spectral measures as well.

We now provide more details on the sonification algorithm. The power spectrum
P is calculated for each EEG channel; next relative power features f1, f2, and f3 are
calculated:

f1 D P.4 � 10Hz/

P.4 � 30Hz/
f2 D P.10 � 20Hz/

P.4 � 30Hz/
and f3 D P.20 � 30Hz/

P.4 � 30Hz/
:

Those features are averaged across all channels. The averaged features are then
mapped to music notes. To keep the generated sounds as simple and transparent
as possible, we considered only notes from one octave (MIDI Octave -1) with
pentatonic scale (five notes per octave); we limited ourselves to only one instrument
(acoustic bass). Obviously, one could incorporate more music instruments and
multiple octaves. However, the extracted sound easily becomes cacophonic and
difficult to parse. In the future, we will explore alternative schemes to generate music
from EEG relative power. We consider the following three notes and corresponding
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MIDI note number: (C,48), (E,52), and (A,57). Those three notes will be played
according to the three values of relative power (f1, f2, f3): If feature fi is above a
certain threshold THi, note i is played. More precisely, the notes are generated as
follows:

IF f1 > TH1 THEN play bass note 48
IF f2 > TH2 THEN play bass note 52
IF f3 > TH3:THEN play bass note 57.

The EEG is divided in consecutive segments of 1 s. In each segment the features
(f 1, f 2, f 3) are computed, and notes are generated according to the above rule. Note
that at most three notes can be generated for each EEG segment; that occurs when all
three features are above threshold. Typically, however, one or two notes are played
during each segment, which leads to simple sequences of notes. In future work,
we hope to extract more melodic and harmonic compositions, perhaps by mapping
features to multiple notes, music samples, natural sounds, etc.

We implemented our sonification system in Python (specifically, pyPortMidi [13]
and Numpy [14]). The generated MIDI sequences are synthesized by SyFonOne
[15] in conjunction with MIDI-YOKE [16]. The sound sequences are saved into
MP3 files for further offline analysis.

3 Evaluation

Our sonification system translates EEG signals into sounds. It is important to verify
whether the sounds are representative of EEG. To this end, we conducted a test:
We asked several volunteers to use our EEG sonification system for diagnosing
Alzheimer’s disease. The procedure is as follows. By means of our sonification
system, we extract sounds from EEG signals of Alzheimer’s patients (AD) and age-
matched control subjects. We ask the volunteers to label the generated sounds (AD
vs. healthy). If the sounds reliably represent the EEG signals, it should be possible
to distinguish sounds generated from AD EEG from sounds extracted from healthy
EEG. Interestingly, the volunteers were indeed able to reliably classify the sounds.
In the following, we describe our EEG data set; next we discuss the test procedure,
and present our results.

3.1 EEG Dataset

We consider EEG data of mild-AD patients and age-matched control subjects. The
EEG data set has been analyzed in previous studies [17–19]; the data was obtained
using a strict protocol from Derriford Hospital, Plymouth, U.K., and had been
collected using normal hospital practices [18]. This EEG dataset is composed of
24 healthy Ctrl subjects (age: 69.4˙ 11.5 years old; ten males) and 17 patients
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with mild AD (age: 77.6˙ 10.0 years old; nine males). The EEG time series were
recorded using 21 electrodes positioned according to Maudsley system, similar to
the 10–20 international system, at a sampling frequency of 128 Hz. EEGs were
band-pass filtered with digital third-order Butterworth filter (forward and reverse
filtering) between 0.5 and 30 Hz. For each patient, an EEG expert selected by visual
inspection one segment of 1920s artifact free EEG, blinded from the results of
the present study. From each subject, one artifact-free EEG segment of 1920s was
extracted and analysed.

3.2 Classification Procedure

A critical issue in our sonification system is the choice of thresholds THi. Depending
on the application, we can determine the thresholds through various statistical
principles. In the application at hand, we determine the thresholds THi with the
aim of detecting AD EEG. We noticed that relative EEG power has substantially
different values in AD patients than in healthy subjects. By appropriately choosing
the thresholds, the generated sounds will differ as well. Following this reasoning,
we have determined the thresholds as follows:

TH1 D .�A.f1/� 	A.f1//C .�H .f1/C 	H .f1/
2

;

TH2 D .�H .f2/ � 	H .f2//C .�A.f2/C 	A.f2/
2

;

TH3 D .�H .f3/� 	H .f3//C .�A.f3/C 	A.f3/
2

:

where �A and 	A is the mean and standard deviation respectively of the features
for AD EEG, and likewise �H and 	H for healthy (control) EEG. Those choices of
thresholds can be understood as follows. For example, relative power in the 4–10 Hz
band is clearly larger in AD patients. Therefore, we choose the corresponding
threshold TH1 below the mean value (of relative power in the 4–10 Hz band) for
AD EEG and above the mean value for control EEG. As a result, for AD EEG
the threshold TH1 will be reached more often, which will lead to more frequent
low-pitch notes (bass note 48). Similarly, AD EEG will yield fewer high-pitch
notes (E,52) and (A,57). Now we explain our survey in more detail. We asked 15
volunteers to listen to the generated sounds, and to guess whether they stem from
AD patients or healthy subjects. Particularly, we asked each volunteer to classify
sound sequences from ten different subjects (one sequence from each subject). Each
volunteer was asked to score the sound sequences from 0 to 10 (0: certainly healthy,
5: unsure, and 10: certainly Alzheimer’s). We did not provide any further details
about the sound files.
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Prior to this test, each volunteer was trained with sound sequences from four
subjects (2 AD patients and two healthy subjects), so that they can learn to
appreciate how the sounds generally different in both subjects groups; we also
briefly explained how the sounds were generated, and emphasized that, in our
sonification scheme, AD EEG tends to generate more low-pitch notes.

4 Results

Overall, the volunteers were able to reliably label the sound sequences; they
correctly classified 95% of the subjects, with sensitivity of 93.3% and specificity
of 97.3%. Note that we tested just ten subjects out of 41, and classification on the
entire database might be worse. Nevertheless, this experiment demonstrates that the
proposed sonification system translates EEG into meaningful sounds, which can for
example be used for detecting EEG abnormalities (as in, e.g., AD EEG).

As a benchmark, we conducted linear discriminant analysis (LDA) with the
same features (f1, f2, f3) for the same ten subjects; we average those features
over the entire EEG segment of 1920s. In other words, we do not consider here
individual EEG segments of 1 s. We compute classification rates through leave-
one-out crossvalidation. It is noteworthy that through this approach, at most 90%
of the subjects are correctly classified. In contrast, our sonification system yielded
classification rates of 95%.

5 Discussion and Conclusion

In this study we have developed a system that translates EEG signals (acquired by a
wireless headset) to sounds in real-time. The proposed sonification system has been
validated offline by means of a small EEG data set, collected with high quality wired
EEG headset.

Interestingly, the results show that the presented sonification algorithm can be
used to differentiate offline, by listening to their sonified EEG, the subject with the
mild Alzheimer’s disease from control subjects with 95% accuracy (see samples on
internet [20]), and therefore, it seems the real-time system can be used as a reliable
AD diagnostic tool.
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Oscillator Cell Networks in the Hypothalamic
Suprachiasmatic Nucleus, the Mammalian
Circadian Clock

Sato Honma, Daisuke Ono, and Ken-ichi Honma

Abstract The master circadian clock of the mammals locates in the hypothalamic
suprachiasmatic nucleus (SCN) which is composed of multiple oscillator cells.
Cellular oscillators mutually synchronize to form several regional pacemakers
which further couple to make-up the master circadian clock for coherent rhythm
expression in physiology and behavior. In the present experiment, bioluminescent
imaging of cultured SCN from mice carrying a Per1 promoter-driven luciferase
reporter revealed two separate pacemakers which locate in the anterior and posterior
SCN, and regulate the onset and offset of behavioral activity, respectively. Thus the
activity time is photoperiodically regulated depending on seasons. The neuronal
and molecular mechanisms for forming the regional pacemakers are still poorly
understood, however, Per1 and Per2 are suggested to have different roles in the
photoperiodic clock. Furthermore, CRY1 and CRY2 seem to be involved in coupling
between these oscillators.

1 Introduction

Mammalian circadian clock is located in the hypothalamic suprachiasmatic nucleus
(SCN) which is composed of about 20,000 neurons in mice and rats. In the dispersed
cell culture, about 70–80% SCN neurons with spontaneous firing show significant
circadian rhythms in their firing rate, suggesting that most of SCN neurons possess
an autonomous circadian oscillator. In addition, circadian periods of dispersed SCN
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neurons followed Gaussian distribution in a relatively wide range from 20 to 30 h
[1]. Therefore, synchronization among cellular oscillators is critical for circadian
rhythm expression in physiological functions. In the organotypic slice culture of the
SCN, the distribution of the circadian period in single neuronal rhythms became
much narrower, between 22 and 26 h, but the average circadian periods were similar
to that of dispersed cell culture. The result suggests that mutual coupling of single
cell oscillators depends on cell architecture within the SCN. Circadian rhythms
were also observed in the release of neuropeptides from cultured SCN slices. We
previously reported synchronized circadian rhythms in the release of vasopressin
(AVP) and Vasoactive intestinal polypeptide (VIP) [2]. However, two rhythms were
desynchronized to each other by antimitotic treatment in the beginning of the
culture, suggesting oscillatory cell networks form at least two regional pacemakers
in the SCN.

Currently, an autoregulatory transcriptional and translational feedback loop is
regarded as the intracellular molecular clock machinery. In the loop, heterodimeric
transcription factors, CLOCK and BMAL1, activate transcription of Period (Per)
1, Per2, Cryptochrome (Cry) 1 and Cry2. The protein products PERs and CRYs
translocate into the nucleus and bind CLOCK/BMAL1 heterodimers to suppress
their own transcription, thus closing the feedback loop. A single turn of the feedback
loop takes about 24 h. Per1 and Per2 are induced by phase-resetting light signals
but with different kinetics. CRY1 and CRY2 are regarded as indispensable for
the loop to turn and Cry1 and Cry2 double deficient (Cry1�/�/Cry2�/�) mice are
regarded as “clock-less” mutants, because they become behaviorally arrhythmic
immediately after they were exposed to constant darkness (DD). On the other
hand, we previously reported that Cry1�/�/Cry2�/� mice exhibit behavior rhythms
with circadian periodicity by chronic treatment with methamphetamine, a potent
dopamine releaser in the central nervous system [3]. The finding suggested that
Cry1�/�/Cry2�/� mice are not arrhythymic mutant but have an oscillatory system
which can exhibit rhythms with circadian periodicity.

Recently firefly luciferase reporter genes are utilized for monitoring gene
expression in living cells in real-time. In the present experiment, by using transgenic
mice carrying a Per1 promoter driven–luciferase gene, we examined (1) location
and functions of regional pacemakers which measure photoperiods and interface
seasonal changes in the environments to bodily functions, and (2) coupling mecha-
nisms within and between these regional oscillators in the SCN.

2 Methods

Animals: We used adult and newborn mice of C57BL/6J background carry-
ing a Per1 promoter driven luciferase reporter gene (Per1-luc). We also used
Cry1�/�/Cry2�/� mice carrying a Per1 reporter gene (Cry1�/�/Cry2�/�). They
were housed in controlled environmental conditions, 12 h light-12 h dark condition
(LD 12:12), lights-on 6:00–18:00, unless otherwise stated. All experiments were
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conducted in accordance with the Guidelines for the Care and Use of Laboratory
Animals in Hokkaido University.
Behavioral activity recording: Adult male mice were singly housed in a light-
tight box. Spontaneous locomotor activity was measured every minute by a infrared
thermal sensor in Experiment 1, and wheel-running activity rhythm was measured
in Experiment 2.

SCN culture: For measuring Per1-luc rhythms, we made coronal SCN slices from
adult mice kept in LD and measured bioluminescence either from the entire SCN
slice using a photomultiplier or from single SCN cells by bioluminescence imaging
with an EMCCD camera as described elsewhere [4].

For measuring neuronal activity, we made a coronal SCN slice of 200 �m
thick from 2 to 5 day old pups and plated on a collagen precoated multi electrode
array dish (MED) with 64 electrodes in the area of 0.56 mm2. They were cultured
as described elsewhere with minor modification [5]. Spontaneous discharges of
signal/noise >2.0 were simultaneously recorded from 10 to 19 electrodes.

Rhythm analysis: Significant circadian rhythmicity was evaluated by a chi-square
periodogram using data of 5 consecutive days between 10.0 and 40.0 h with a
significance level of 0.01.

Experimental protocols: In Experiment 1, we exposed adult male mice to one
of following three different photoperiods for more than 3 weeks, LD 6:18, LD
12:12, and LD 18:6. After measuring behavior rhythms, brains were sampled for
culturing two serial coronal SCN slices, anterior and posterior slices. We also made
horizontal slices to further identify the regional pacemakers. In Experiment 2, we
used Cry1�/�/Cry2�/� and control mice carrying a Per1-luc reporter. Adult mice
kept in LD 12:12 were used for bioluminescence imaging, and 2–5 day old mice
were used for MED recording.

3 Results

Experiment 1: The peak phase of Per1-luc rhythms always appeared earlier in the
posterior SCN than in the respective anterior SCN. Irrespective of photoperiods,
posterior peaks were phase-locked to the end of activity, suggesting the site of the
pacemaker regulating the activity end, and the anterior peaks, to the activity onset,
suggesting the site of the pacemaker regulating the activity onset. Under LD18:6,
a bimodal Per1-luc pattern appeared only in the anterior SCN which gradually
merged together in 5 days of culture. Single cell analyses by bioluminescence
imaging revealed that the bimodal patters are composed of two oscillating cell
groups with the early and late peaks (Fig. 1). These findings indicate that there
are three oscillating cell groups in the SCN which constitute regionally specific
circadian pacemakers and regulate photoperiodic response of behavioral rhythm.
The Per1-luc rhythms from horizontal slices further localized the site of three
pacemakers in the SCN. However, Per1-luc rhythms are not always in phase with



188 S. Honma et al.

Fig. 1 Per1-luc rhythms in single cells of an anterior SCN from mice in LD18:6 revealed two
regional oscillating cell groups. Dark horizontal bars indicate the subjective night

Fig. 2 Representative wheel-running activity records of a wild type mouse (WT) and
Cry1�/�/Cry2�/� mouse (KO). Number of wheel revolutions in every 5 min was plotted as a
histogram. Shaded areas indicate dark period. White and dark horizontal bars on the top indicate
light and dark period under LD

Per2 rhythms, suggesting the different phase adjustment in Per2 expression. In
addition, the location of regional pacemakers was not coincided with the distribution
of major neuropeptides, AVP and VIP, in the SCN.

Experiment 2: Behavioral rhythms of CRY deficient mice: Cry1�/�/Cry2�/�
mice showed significant 24 h circadian rhythms under LD in their behavior activity,
and became arrhythmic immediately after they were exposed to constant darkness
(DD) (Fig. 2). However, the activity onset under LD was not always observed at the
dark onset in Cry1�/�/Cry2�/� as in the wild type mice. The mean activity onset was
located at 14.8˙ 2.7 h (˙ SD, nD 14) which was significantly advanced compared
with that of wild type (18.0˙ 0.1 h). Among 14 Cry1�/�/Cry2�/� mice examined,
the activity onsets of ten mice were located 2–10 h before the dark onset. These
findings suggest that the circadian behavioral rhythm of Cry1�/�/Cry2�/� mice in
LD is not due to simple masking by light but rather an expression of oscillatory
entrainment to LD.
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Fig. 3 A bright field image of SCN slice culture on an MED probe (a) and bioluminescence image
of A (b). Black squares are electrodes. OC optic chiasm, VIII the third ventricle. Spontaneous
discharges from the SCN were shown with scale bars (50 �V, 0.5 s) (c)

In a cultured SCN slice of wild type mice, all SCN cells examined showed
robust circadian bioluminescent rhythms. They were synchronized within a single
SCN slice as demonstrated by the robust circadian rhythms in a whole SCN slices.
The peak phases were located in the middle of the subjective day on the first day
of culture similar to those in situ. In the SCN slices from Cry1�/�/Cry2�/� mice,
most single SCN cells showed significant but less robust circadian bioluminescent
rhythms. However, significant rhythms were not detected in a whole SCN, and the
rhythms in a single SCN slices were desynchronized. The peak phases of cellular
rhythms distributed in an extremely wide range even on the first day of culture,
which markedly contrasted with the consolidated circadian peaks at the subjective
noon in the control cells. These results indicate that individual SCN cells can exhibit
circadian Per1-luc rhythms without CRYs, but they are desynchronized in a cultured
SCN slice.

Robust and significant firing rhythms were also detected from all recorded elec-
trodes in the wild type mice (Fig. 3). Interestingly, spontaneous firing of individual
neurons exhibited robust and synchronized circadian rhythms in a cultured SCN
slice of Cry1�/�/Cry2�/� mice.

4 Discussions

By monitoring Per1-luc rhythms, we demonstrated three regional pacemakers in
the SCN. Two of them separately entrain to the light-on and light off signals and
regulate the offset and onset of behavioral rhythms, thus change the activity time,
the duration of active period in a day, depending of seasons. The long-lasting
model for seasonal adaptation of behavioral rhythms is the two mutually coupled
oscillators which separately respond to dawn (E-oscillator) and dusk (M-oscillator)
and regulate the activity onset and end, respectively [6]. The two oscillating cell
groups of synchronous Per1 rhythms demonstrated the localization of the E and M
oscillators within the SCN. The role of the third oscillator is not known, but seems
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to relate dawn or dusk signals. The molecular mechanisms for the couplings within
and between these regional oscillators are not known. VIP released from the ventral
SCN and VIP receptors in the SCN are known to involve in oscillator networks in
the SCN [7]. But other mechanisms may be involved in the present results. Since
they are not photoperiodic, and VIP receptor deficient mice can exhibit behavioral
rhythms in DD. The present study also suggested CRY1 and CRY2 are involved in
the oscillatory network in the SCN. A lack of these proteins results in behavioral
arrhythmicity in the constant condition, yet Cry1�/�/Cry2�/� mice still have some
mechanism for entraining light-dark cycles.

In the SCN, there are different levels of oscillatory networks; multiple molecular
networks within a single cells, networks among cellular oscillators within a regional
pacemaker and those among regional pacemakers. The hierarchical multi-oscillator
pacemaker system seems to be advantageous to adapt flexibly to a large variability
of environmental cycles without losing stable and precise oscillation. Since there
are different levels of networks in the SCN, disruption of oscillatory networks at
any level would result in arrhythmicity in rhythm outputs.
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Oscillator Network Modeling of Circadian
Rhythm in the Suprachiasmatic Nucleus

Isao Tokuda, Hirokazu Fukuda, and Naoto Hayasaka

Abstract Oscillator network model is presented for the simulation of phase waves
observed in a cultured slice of the suprachiasmatic nucleus (SCN). The coupling
matrix is obtained by partial synchronization analysis of the bioluminescence image
data, which represent gene expression signals. Numerical simulations show that
the coupling matrix itself is not sufficient for the network model to reproduce
the phase waves. Our study implies that additional condition such as gradient
distribution of the oscillation periods is necessary to reproduce the dynamics of
the measurement data.

1 Introduction

Biological clocks, the generators of the circadian rhythm with a natural period of
nearly 24 h, are ubiquitous in almost all living organisms. In mammals, the master
circadian clock is located in the suprachiasmatic nucleus (SCN) of the brain. In
the rat SCN, at least two subregions have been reported, i.e., the ventrolateral
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SCN (vlSCN, core) and the dorsomedial SCN (dmSCN, shell). The SCN is a
network of approximately 20,000 neurons. Within each individual neuron, clock
genes and proteins compose interlocked regulatory loops that generate circadian
oscillations on molecular level [1]. SCN neurons dispersed in cell cultures display
cell-autonomous oscillation, with periods ranging from 20 to 28 h [2, 3]. Coupling
and synchronization among SCN neurons are ensured by neurotransmitters and
other factors. How such a network of heterogeneous circadian oscillators achieves a
synchronous and coherent output rhythm has motivated extensive experimental and
theoretical works [4–6]. Although anatomical studies provide a deep insight into
the SCN physiology [7, 8], yet they are not enough to identify the core mechanism
that maintains the synchronized neuronal rhythmicity in the SCN. Interestingly,
recent technology of bioluminescence imaging has revealed synchronization of the
SCN neurons and the robust temporal gradients in circadian clock gene expression
in cultured SCN slices, which persist for weeks [9]. This kind of coordinated
and recurring gradients, which we refer to as “phase wave,” potentially reflect
unique and critical characteristics of the central circadian clock. Little is however
known about the mechanism underlying the propagation of the phase wave and its
biological significance.

In nonlinear physics, wave propagation in spatio-temporal system is usually
induced by local diffusive coupling in the oscillatory media. This implies that the
propagation of the phase wave in SCN is primarily due to local coupling among
the neurons [10]. On the other side, it has been also speculated that there exists
a monotonic gradient in the spatial distribution of the oscillation periods of the
SCN neurons [11]. Such gradient may strongly contribute to the formation of the
phase wave even under the global coupling. Towards understanding the mechanism
underlying the phase wave, the present paper studies the effect of two factors,
i.e., coupling function among the neurons and gradient distribution of the neuronal
periods, on the formation of the phase wave observed in the SCN.

2 Experimental Data

Transgenic rats carrying a Per2::Luciferase reporter gene were generated [10].
Coronal brain slices including the SCN (300�m thickness) were prepared from
2-week-old rat. Bioluminescence was measured with a luminescence microscope
optimized for live cell imaging. The recording duration was 7 days.

To characterize the spatiotemporal dynamics of the circadian oscillations in the
cultured SCN slices, phase of the bioluminescence oscillations in each pixel was
computed by the peak picking technique, which defines inter-peak-interval as one
cycle [12]. Moving images of the phase dynamics shows that the phase waves were
initiated from the innermost dmSCN and traveled regularly from the dmSCN to the
vlSCN with a velocity of about 0.2 mm/h [10].
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3 Partial Phase Synchronization Analysis

In the SCN, neuronal oscillators are synchronized to achieve a coherent output
rhythm. From such global coherence, it is important to distinguish direct and indirect
dependencies among the neurons. To make such distinction, partial phase synchro-
nization analysis [13] was carried out. This methodology has been developed based
on the concept of graphical models and partialization analysis to phase signals of
nonlinear synchronizing systems.

Consider phases of N neurons f˚k.t/jk D 1; 2; � � �; N g. First, synchronization
matrix is computed as

R D
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represents phase of k-th neuron. The asterisk denotes complex conjugation. Then,
the inverse PR D R�1 of the synchronization matrix R provides partial phase
synchronization index

Rk;ljZ D jPRk;l jp
PRk;kPRl;l

between k-th and l-th neurons conditioned on the remaining neurons f˚Z.t/jZ D
1; � � �; N IZ¤k; lg. If the phase synchronization indexRk;l is considerably different
from zero, while the corresponding partial phase synchronization index is close to
zero (Rk;ljZ�0), there is a strong evidence for an indirect coupling between k-th
and l-th neurons.

From the bioluminescence image data, gene expression signals of 83 neuronal
points were picked up at different locations (N D 83). The partial phase
synchronization analysis was then applied. Since the oscillations of the SCN slice
show strong coherent activity, the synchronization indices Rk;l were all high. In
contrast, partial phase synchronization index Rk;ljZ were variable. Figure 1 shows
the partial phase synchronization indeces Rk;ljZ between the neuron located by
white box and the neurons located by colored boxes. The red and purple colors
indicate strong coherence associated with direct interaction, whereas blue colors
indicate weak coherence with indirect interaction. We see that the neighboring
neurons tend to exhibit a strong partial coherence, whereas strong coherences exist
also in some of the long-range connections. Figure 2 shows dependence of the
partial synchronization index Rk;ljZ on the distance dk;l between k-th and l-th
neuronal points. Although the distribution is rather noisy, the regression line of
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Fig. 1 Partial phase
synchronization indeces
Rk;ljZ between one neuron
(white box) and another
(colored box). The red and
purple colors indicate strong
partial coherence (Rk;ljZ�1)
associated with direct
interaction, whereas blue
colors indicate weak
coherence (Rk;ljZ�0)
associated with indirect
interaction
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Fig. 2 Dependence of the
partial phase synchronization
index Rk;ljZ on the distance
dk;l between k-th and l-th
neuronal points. The dotted
line represents a regression
line of Rk;ljZ D
�0:00022dk;l C 0:28
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Rk;ljZ D �0:00022dk;l C 0:28 indicates an abstract tendency that the partial
coherence is weakened as the interaction range becomes longer. The noisy structure
might be partially due to the estimation error cased by the limited duration of
measurement and inaccurate extraction of the phase.

4 Modeling Study

4.1 Mathematical Modeling

Mathematical modeling based on Stuart-Landau equations was utilized for studying
the synchronization-induced rhythmicity in the SCN.

Pzj D .˛j C i˝j � jzj j2/zj C K

N

NX

kD1
Tk;j .zk � zj /;

where j D 1; ::; N (N D 83), the overdot means differentiation with respect to
time t , zj is the complex amplitude of the j th neuron, ˝j is the natural frequency,
K represents the coupling strength among the neurons, and Hopf parameter ˛j
determines whether j -th neuron is self-sustained or dumped oscillator. In the
numerical simulations, the Hopf parameter was randomly chosen as ˛j�N.0; 0:12/.
As the coupling matrix, the partial phase synchronization indeces were utilized
(Tk;j D Rk;j jZ).

We test whether the coupling matrix T, obtained by the partial phase synchro-
nization analysis is sufficient to generate the phase waves or additional condition
is necessary. Two conditions were examined. (A) Natural periods (2�=˝j ) of the
neurons were randomly distributed as �N.24; 1:52/, while natural period was set
to be 25 h only for the rightmost neurons next to vlSCN (in accordance with
experimental measurement [11]). (B) Natural periods (2�=˝j ) were monotonically
increased from 23 to 25 h in the direction from the innermost dmSCN to vlSCN.

4.2 Simulation Results

With a strong couplingK , mutual synchronization among all neurons was achieved
for both conditions. In condition (A) with random setting of the natural periods, the
phase wave was not observed. On the other hand, in condition (B) with gradient dis-
tribution of the natural periods, phase waves, which travel from the innermost dm-
SCN to vlSCN, were clearly observed. Figure 3 shows the phase profiles observed in
conditions (A) and (B). Condition (A) exhibits random ordering of the phases. Con-
dition (B), on the other hand, gives rise to a monotonic decrease in the phase profile,
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Fig. 3 Phase profile of neurons located from innermost dmSCN to outer dmSCN. (a) and
(b) correspond to simulation conditions of (A) and (B), respectively, where (c) corresponds to
real data from the bioluminescence imaging technique
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which is quite similar to the measurement data. This implies that the coupling matrix
itself is not sufficient to produce the phase wave and that gradient distribution of the
oscillation periods is necessary to reproduce the measurement data.

5 Discussions

In summary, our quantitative analysis and mathematical model simulation of the
phase wave propagation provided new insights into the network structure of the
SCN neurons. The partial phase synchronization analysis revealed that the neurons
are connected directly with neighboring neurons. Direct connections however exist
also among distant neurons. Simulations of the oscillator network showed that
the network structure itself could not well reproduce the phase wave. Additional
condition such as the gradient distribution of the neuronal periods was necessary for
the simulation of the phase waves. Our study needs further careful examination. In
particular, limitation of the partial synchronization analysis due to short duration of
the measurement data should be taken into account. It is of great interest to clarify
possible functional roles of the phase waves from biological perspective.
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In Vivo Monitoring of Circadian Output
in Clock Mutant Mice

Wataru Nakamura

Abstract It is well established that the suprachiasmatic nucleus (SCN) is the
master circadian pacemaker in behavior and vice versa locomotor activity rhythm
reflect SCN function as well. In this paper, we reported functional correlations
between the SCN and locomotor activity in circadian systems by using direct read
out of neuronal activity in the SCN and Clock mutant mice as effective tools.
Further behavioral analysis revealed a possibility of unknown circadian oscillatory
mechanism.

Keywords Circadian rhythm • Suprachiasmatic nucleus • Locomotor activity •
Social interaction

1 Introduction

The master circadian clock in mammals is located in the suprachiasmatic nucleus
(SCN) of the anterior hypothalamus, drives the daily circadian rhythms of the
physiological and behavioral processes. The SCN functions as a self-sustained
oscillator and is synchronized to the environmental 24-h light-dark (LD) cycles.
Although circadian rhythm generation appears to be the property of individual SCN
neurons, SCN tissue organization seems to be responsible for synchronizing the
multiple oscillator neurons and producing an ensemble period that closely matches
the period of the locomotor rhythm [1, 2]. Significant progress has been made in
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manifesting the molecular mechanism underlying the mammalian circadian system.
The core molecular circuitry of opposing interlocking transcriptional feedback loops
has been defined as the fundamental basis of the circadian clock [3]; however, the
network complexity of the clock system is becoming apparent [4–6]. Consequently,
we are seeking how these cell-autonomous circadian oscillators interact in multi-
cellular organisms to regulate physiology and behavior.

The mouse Clock mutation was identified in an N-ethyl-Nnitrosourea muta-
genesis screen for circadian variants [7]. Clock is a semidominant mutation [8]
that lengthens circadian period by 1 h in heterozygotes (Clock/C) and by 4 h in
homozygotes (Clock/Clock). With prolonged exposure, Clock homozygotes fail to
express persistent circadian rhythms in constant darkness. The lengthened-period
and loss-of-rhythm phenotypes are the hallmarks of the original mutant allele.

The apparent complexity of the circadian control over the locomotor activity
rhythms, drive us to monitor neuronal activity of the SCN in freely moving mice [9].
In the present study, we have used this technique to describe the characteristics of
the SCN in vivo, the differences between the Clock mutant and wild-type combining
with the detailed behavioral analysis. The purpose of this study is to elucidate the
certain responses to environmental cues in behavioral circadian rhythms. Those
results provide a new framework for understanding the regulation of locomotor
rhythms in the circadian timing system.

2 Methods

Animals. Wild-type and Clock mutant mice were used in this study. Genotypes were
determined for each individual by using a PCR mutagenesis method before surgery.
The breeding colony was kept on a 12 h light: 12 h dark cycle (light on at 0800 h);
food and water available ad libitum; light intensity of 200 lx at cage level.

Locomotor Activity recording. The mice were housed individually in standard cages
(182� 260� 128 mm) placed in light-tight, ventilated boxes. Locomotor activity
was detected with a passive infrared sensor (Biotex, Kyoto, Japan) positioned 30 cm
above the center of the cage floor. Activity counts were monitored continuously by
computer which can control light-dark cycle for each recording boxes and summed
and stored at 1 min intervals. ClockLab (Actimetrics, IL) was used for analysis and
display of activity data.

In Vivo Multiunit Neural Activity Recording. In vivo multiunit neural activity record-
ing (MUA) from SCN was performed as previously described [9]. Simultaneously
with neural activity monitoring, the locomotor activity in individual mice also was
detected with a passive infrared sensor.

Social entrainment analysis. Pairs of female Clock/C and wild-type mice, 2 months
old at the beginning of the experiment, were formed from animals previously kept in
litter mate groups. Those pairs of mice were housed in cages and locomotor activity



In Vivo Monitoring of Circadian Output in Clock Mutant Mice 201

was detected with a passive infrared sensor under constant darkness. After paired
recording, each mouse was transferred to individual cages and monitored locomotor
activity separately. Determination of the circadian period in individual records was
obtained by the method of the chi square periodogram.

3 Results and Discussions

Light entrainment of the Clock/Clock mouse. The entrainment behavior of
Clock/Clock mice to a light-dark cycle (LD) of 12 h: 12 h (LD12:12) appeared
relatively normal. To determine whether photic entrainment may have been altered
in Clock/Clock mice, we examined the phase relationship to the light cycle of
LD 4:20, 2:22 and 1:23 (Fig. 1). The difference between the two genotypes was
clearly seen when the durations of light period were shortened. Wild-type mice had
negative phase angle of activity onset to the light off in all of 24 h light cycles.
On the other hand, Clock/Clock mice showed positive phase angle under LD 4:20
and 2:22, consequently, the shortened light phases hit on those activity off. The LD
1:23 condition did not entrain Clock/Clock mice fully and we observed the “relative

Fig. 1 Light entrainment to 24 h LD cycle in the locomotor activity rhythms of wild-type (a) and
Clock/Clock (b) mice. Behavioral records are double-plotted. The gray and clear areas on the first
part of actograms indicate the LD conditions denoting at the middle. The actograms show clear
differences between the two genotypes in circadian property including free-run period and phase
response to the lights
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Fig. 2 Circadian rhythms of MUA in the Clock/Clock SCNs. Serial-plotted actograms of
neural and locomotor activity show a long-lasting circadian rhythm (a) and a damping rhythm
(b). Lighting condition is indicated at the top of the figure. Bottom trace represents simultaneous
recorded locomotor activity. The number of spikes for MUA or activity counts for locomotor
activity was counted every minute and integrated every 6 min

coordination” of lengthened circadian rhythms of the mutant mice. Under constant
darkness (DD), the mutant mouse showed free-run rhythm with a period of 27.0 h.
The wild-type mouse was entrained to LD 2:22 after several LD regimes with larger
phase angle than before (Fig. 1a) and the Clock/Clock failed to be entrained to the
24 h cycle (Fig. 1b). Those suggest the “after effects” of circadian rhythms [10] in
both genotypes.

Damping circadian rhythms of MUA in the Clock/Clock SCN. As previously
reported [9] Clock/Clock mice exhibited elevated MUA during the day in the
SCN under LD 12:12 (Fig. 2). After released in DD, one of homozygous mutants
exhibited a long lasting free-running rhythm both in locomotor and MUA in the
SCN (Fig. 2a). The peak in MUA occurred in the middle of the subjective day and
in antiphase with locomotor activity. Another Clock/Clock mouse showed damping
circadian locomotor rhythm for up to five cycles (Fig. 2b). When the mutant mouse
showed the damping rhythm, a small elevation of MUA in the SCN occurred
just before the onset of behavioral activity. That “anticipatory” elevation of MUA
disappeared when the mouse got arrhythmic in locomotor activity except for an
ultradian rhythm.

Functional input into the SCN. MUA in the SCN showed light response in circadian
phase dependent manner. During the subjective day, the baseline discharge was
relatively high and 1 h light pulse during this phase elicited only small responses
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Fig. 3 Light response and correlation with locomotor activity of MUA in the wild-type SCN.
Both MUA and locomotor activity were plotted in 1 min bins. MUA were normalized with the
mean counts of pre- 60 min of light pulse (a). Positive (b, top) and negative (b, bottom) correlation
were observed in different mice suggesting a regional heterogeneity within the SCN

(Fig. 3a bottom). During the subjective night, when baseline discharge was in its
lower phase, large light responses were obtained for CT15 (Fig. 3a top) and CT21
(Fig. 3a middle). The MUA responses corresponded behavioral phase shift, phase
delay of CT15, phase advance of CT21 and no phase shift of CT 6. Even though
subtle light response during subjective day, certain correlation between MUA in the
SCN and locomotor activity were observed (Fig. 3b). Because positive or negative
correlations were consistent throughout the MUA recording, those directions might
be dependent on the regional heterogeneity within the SCN. The functional effects
of the behavioral feedback on the SCN remain to be elucidated.

Social interaction as a zeitgeber? By using of approximately 1 h difference of
intrinsic circadian period between wild-type and Clock/C mice, we examined the
effect of social interaction on circadian systems. The actograms from a pair of
females showed two components of circadian rhythmicity (Fig. 4a, b). Those two
components might attribute to each intrinsic circadian periods of the SCN in two
genotypes because individual females showed their own period after separation
(Fig. 4a, left for wild-type, right for Clock/C mice). We observed that some mice
continued to show two circadian rhythmicities for several cycles after separation.
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Fig. 4 Implication of a “social entrainable circadian pacemaker”. Two representative actograms
of social interaction trials are shown (a, b). For the first 40 days, locomotor activity of paired wild-
type and Clock/C mice were monitored in a same cage under DD. Then the pair was separated and
monitored in individual recording box. The first part of actograms were duplicated and followed to
individual recordings, respectively. The lefts are for wild-type and the rights are for Clock/C mice
in either actograms (a, b)

One seems to be its own circadian period and the other was in accordance with the
period of another genotype (Fig. 4b, left for wild-type). Although, the substantial to
be determine, we propose that the second component might be controlled by social
entrainable oscillator; SEO. Seeking the “SEO” circuit within and/or out of the SCN
might be an intriguing challenge and we can extend our understandings of circadian
systems beyond the SCN.
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Modular Organization Enables Both
Self-Organized Criticality and Oscillations
in Neural Systems

Shengjun Wang, Claus C. Hilgetag, and Changsong Zhou

Abstract Neural networks in the brain display prominent hierarchical modular
organization and complicated rhythmical oscillations. We systematically study the
phenomenon of sustained activity in hierarchical modular networks, which are
obtained by rewiring initially random networks. We find that a hierarchical modular
architecture can generate sustained activity better than random networks. More
importantly, the system can simultaneously support rhythmical oscillations and self-
organized criticality, which are not present in the respective random networks. These
results imply that the hierarchical modular architecture of cortical networks plays
an important role in shaping the ongoing spontaneous activity, allowing the system
to take the advantages of both the sensitivity of critical state and predictability and
timing of oscillations for efficient information processing.

1 Introduction

Understanding the large-scale organization of the structure and dynamics in the
brain from the viewpoint of complex networks has become a new frontier in
neuroscience [1, 2], because the architecture of networks in brain always impacts
neural system’s dynamical behaviors and the dynamics underlie the mechanisms of
the brain’s functions.

One of the most prominent structural features in the neural system of the brain
is the organization of modules, structured hierarchically from large-scale regions
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of the whole brain, via cortical areas and area subcompartments organized as
structural and functional maps, to cortical columns, and finally circuits made up of
individual neurons [3]. Meanwhile, the networks display self-organized sustained
activity, which is persistent in the absence of external stimuli. At the systems
level, such activity is characterized by complex rhythmical oscillations over a
broadband background, such as ’, ™, and • oscillations [4]. While at the cellular
level, neuronal discharges have been observed to display avalanches, indicating
that cortical networks are at the state of self-organized criticality (SOC) [5]. Self-
organized criticality is a concept proposed in physics that mimics the avalanche
of sandpiles, and is an ubiquitous property of complex systems, such as piling of
granular media, earthquakes, and forest fire, etc. [6–8]. The concept asserts that
a system self-organized into a critical state is characterized by scale invariance.
At such a critical state, signals and perturbations can efficiently propagate over
broad spatio-temporal scales. Critical behavior in neural models has been shown
to bring about optimal computational capabilities, optimal transmission, storage of
information and sensitivity to sensory stimuli [9]. And SOC has been suggested
playing an important role in human perceptual functions [10].

SOC is characterized by power-law distribution of the size of avalanches,
indicating that there is no characteristic scale. On the contrary, rhythmic oscillations
suggest that neural activity possesses typical scales and is predictable to certain
extent. How these two apparently contradictory dynamical properties are unified
in the neural dynamics is a question that has not been addressed in the studies of
neurodynamics. In this work, we use numerical simulations to show that the modular
network organization provides such a template to unify them.

Within the modules, the activity of the neural firing is characterized by SOC,
while the weak interaction between the modules makes it possible that the
avalanches of some modules can act as the weak input to other modules, leading to
sustained activity without external stimulus.

2 Method/Models

We carried out intensive numerical simulations of a balanced neural network model
[11]: there are 80% excitatory neurons and 20% inhibitory neurons. The dynamics
of the membrane potential is described as

�
dV

dt
D .Vrest � V /C gex.Eex � V /C ginh.Einh � V /:

The value of the time constant is �D20 ms, the resting membrane potential
is VrestD � 60 mV, reversal potentials of synapses for excitatory and inhibitory
neurons are Eex D 0 mV and Einh D � 80 mV. When an excitatory (or inhibitory)
neuron fires, the synaptic variables gex (orginh) of its postsynaptic targets are
increased by 
gex (or 
ginh). Otherwise, synaptic variables decay exponentially
with the time constants �ex D 5 ms and �inh D 10 ms.
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Fig. 1 (a) Connection density matrix of a 4-level HMN. Network size is ND 10,000, Rex D 0.99.
(b, c) Average duration of network activity in the parameter space (
ginh, 
gex). The results are
averaged over 100 realizations of (b) random networks and (c) 4-level HMNs with Rex D 0.99,
respectively

The strengths of excitatory and inhibitory neurons are such that in a broad
range, the average input current of a neuron from the excitatory pool is roughly
canceled by that of the inhibitory pool; however, the fluctuations can be so large to
exceed the firing threshold in sparse random networks with large enough number of
neurons (10,000 neurons in our simulations). This will lead to sustained irregular
activity in such a balanced random network of neurons. In our study, we introduced
modular structure into the network connectivity. Beginning with random networks,
the neurons are divided into groups and the connections between groups are moved
into groups with a probability R. Then connections are denser within the group
but much sparser between the groups, while maintaining the total connections the
same as the original random networks. We can further divide the modules into sub-
modules to obtain a hierarchical modular network (HMN). See Fig. 1 for an example
of a 4-level HMN with 16 modules, each having N/16D 625 neurons. Considering
the fact that inhibitory couplings form local connections and excitatory couplings
provide long-distance interactions, we rewire inhibitory inter-module connections
with the probability RexD 1, and rewire excitatory inter-module connections with
0<Rex<1.

3 Results

In random networks, balance between excitation and inhibition exists in a region
of the parameter space of the strength of the excitatory and inhibitory synapses
(
ginh, 
gex), which allows the neural network to sustain irregular activity without
external signals. In simulations, the networks were stimulated by noise in an initial
period of time. Figure 1b and c show how long the activity sustained after noise is
removed. The region III of the Fig. 1b represents the irregular sustained activity in
random networks [12]. When the rewiring probability RexD 0.99, although modules
are dense and small, the irregular sustained region is maintained in HMNs, as shown
in Fig. 1c.
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Fig. 2 (a) Population activity of an ensemble of neurons in a random network and of a module in
the HMN rewired from the random network (upper panels), and corresponding average membrane
potentials (lower panels). (b) Power spectrum density of average potentials in random networks
(black) and HMNs (blue). (c) and (d) Distributions of the silent period in an ensemble of neurons in
random networks and in a module of HMNs. (e) and (f) Distribution of the activity size in networks
corresponding to (c) and (d). The insets in (d) and (f) show the cumulative distributions of silent
period and activity size in modules of HMNs

However, different from quite homogeneous random activity in random net-
works, the activity patterns in modular networks is very heterogeneous. In Fig. 2a,
we compare the activity of one module in a 4-level HMN obtained at RexD 0.99
and the activity of the corresponding ensemble of neurons in the random network
before rewiring. The HMN displays intermittence with bursts of relatively strong
activity separated by distinct silent periods, while the activity in the random network
continues at a lower level, but without discernible silent intervals.

The intermittent activity of modules in the HMN exhibits the characteristics of
avalanche dynamics. We analyzed the distribution of the size of each activity of a
module and the lengths of the silent interval between two activities. In Fig. 2c and e,
distributions of both the silent interval and the activity size in random networks
are straight lines when plotted in log-linear form, showing that the distributions
follow exponential functions. On the contrary, the distributions of modules in HMNs
display straight lines in the log-log plot (Fig. 2d, f). Therefore in the HMN both
the silent interval and the activity size are distributed according to the power-law
functions.

Power-law distribution of avalanche size is the fingerprint of the self-organized
criticality [9]. These results show that HMNs are close to critical states, while
the random networks are not. The observation of critical states is consistent with
experimental data which showed a power-law distribution of the neuronal avalanche
size [5] or the intervals between large energy fluctuations [13].
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Another significant effect of the intermittent dynamics in HMNs is the emergence
of low frequency activity. In Fig. 2a one can see the fluctuation of the average
potential of modules in HMNs is more significant than that of random networks
and exhibits the characteristics of rhythmic oscillations. We perform an analysis
by calculating the power spectrum density of the average potential of networks.
Figure 2b shows that in random networks the power decays monotonically as the
frequency increases. In the HMNs with RexD 0.99, a pronounced peak appears at
low frequency around 15 Hz.

4 Conclusion/Discussions

We studied the effect of hierarchical modular structure on the dynamics of the
sustained activity of neural networks with both excitatory and inhibitory neurons.
The modular property can support the irregular sustained activity. More importantly,
we found that the coexistence of SOC and oscillations could be realized in
modular neural networks. Our results provide a new mechanism of sustaining
activity and generating oscillations in cortex-like neural network that captures the
most prominent structural features: the hierarchical modular organization and the
coexistence of excitatory and inhibitory neurons.

Our further analysis shows that cutting SOC off at finite size due the limited
number of neurons within the module could be one of the reasons that leads to
the oscillations of the network collective activity. Currently we are exploring the
implications of the combination of SOC and oscillations in information processing,
which should shed light on the structure-function relationship in the brain. Fur-
ther studies on the role and advantages of HMNs in information processing are
interesting, and are potentially useful for understanding neural activities underlying
perceptual functions.
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Traveling Waves in Locally Connected Chaotic
Neural Networks and Their Phenomenological
Modeling

Makito Oku and Kazuyuki Aihara

Abstract The emergence of traveling waves is a universal property of nervous
systems. However, mechanisms of these waves and their functional roles have not
yet been fully elucidated. Here, we numerically investigate traveling waves in a
locally connected large-scale chaotic neural network (CNN) consisting of more than
one million units. We simulate it by parallel computing and visualize the network
output by using color images. If the refractoriness of neurons is sufficiently large,
many local cell assemblies are generated and the boundaries between them move as
traveling waves. We also develop a simplified phenomenological model for the CNN
by adding a negative self-feedback mechanism to the Potts model. The proposed
meso-scopic model can qualitatively reproduce complex wave patterns in the CNN.
Because the model requires less computational resources, it may serve as a useful
tool for investigating traveling waves in nervous systems.

1 Introduction

The emergence of traveling waves is a universal property of nervous systems. These
waves have been widely observed experimentally in many organs such as the retina
[1, 2], olfactory cortex [3], neocortex [4–6], hippocampus [7], and cerebellum [8].
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Furthermore, theoretical and numerical analyses support the idea that traveling
waves are easily generated in locally connected neural networks [9–13]. However,
mechanisms of traveling waves and their functional roles have not yet been fully
elucidated.

Detailed investigation of traveling waves requires large-scale simulations. This is
because traveling waves are meso-scopic phenomena and involve a large number of
neurons. Certain types of traveling waves are actually observable only in large-scale
simulations [12].

Usually, the term “traveling waves” refers to the phenomenon of activation of
some local region in the brain, and propagation of the activity to neighboring
regions. However, not only the strength of neural activity but also higher-order
properties may propagate in the actual brain. One such example of traveling waves
is those of cell assemblies in a locally connected associative memory model [14,15].
Here, cell assemblies refer to particular patterns of active and inactive neurons.
Movement of boundaries between the assemblies results in alternation of local
activity patterns.

In this study, we first numerically investigate traveling waves in a locally con-
nected large-scale neural network. Then, we develop a simplified phenomenological
model for the network.

2 Models

2.1 Chaotic Neural Network Model

In this study, we use the chaotic neural network (CNN) model [16,17]. This network
is composed of N units, each of which has two internal variables �i and �i and
one output variable yi . The units also receive a uniform and time-invariant external
input. Let us adopt the vector representation � D f�1; : : : ; �N gT, � D f�1; : : : ; �N gT,
and y D fy1; : : : ; yN gT. Then, the model dynamics can be described by the
following difference equations:

�.t C 1/ D kf �.t/CW y.t/; (1)

�.t C 1/ D kr �.t/ � ˛ y.t/C a; (2)

y.t C 1/ D f .�.t C 1/C �.t C 1//; (3)

where W D .wij / denotes the N � N weight matrix; 0 	 kf ; kr 	 1, the decay
constants; ˛ � 0, the strength of the refractoriness; and a D fa; : : : ; agT, the bias
that includes the external input and the threshold. The activation function f is an
operation that applies the logistic function f .x/ D .1 C exp.�x=�//�1 to each
element of the argument vector, where � denotes the steepness parameter.
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Fig. 1 Four color images
(256 � 256 pixels, 24-bit
RGB mode) stored in the
network

The weight matrix W is determined in the same manner as that in the conven-
tional associative memory model [18]. This model defines the way in which the
network memorizes some spatial patterns by changing its synaptic weights. The
data here are K binary patterns sk D fsk1 : : : ; skN gT .k D 1; : : : ; K , ski 2 f�1; 1g/.
For simplicity, we assume that each pattern contains an equal number of 1’s and
�1’s. Then, the weight matrix is determined by the autocorrelation matrix of the
patterns as follows:

W D 1

K

KX

kD1
sk.sk/T: (4)

Now, we change the network’s connectivity. Since many connections in the real
brain are short-range ones, we restrict the connections in the neighborhood of each
unit [14, 15]. Let us assume that the units are arranged in a two-dimensional lattice
and let .ui ; vi / denote the position of unit i . Its neighborhoodNi is defined as Ni D
f.u; v/ j max.ju � ui j; jv � vi j/ 	 d g. Within the area Ni , we select L units at
random and connect them to unit i . Then, Eq. 4 is modified as follows. If there is a
connection from unit j to unit i , wij D K�1PK

kD1 ski skj . Otherwise, wij D 0.
To visualize the network’s state, we use the color images shown in Fig. 1 and

store them in the network. By using a method proposed in our previous study [19],
we convert the color images to binary patterns so that the network can memorize
them. The length of the binary patterns is N D 24 � 2562 D 1,572,864. We
also adjust some statistics of the images so as to facilitate emergence of chaotic
transitions among the patterns. Specifically,

P
i s
k
i D 0,

P
i s
k
i s

l
i D 0:08N .k ¤ l/,

and
P

i s
k
i s

l
i s

m
i D �0:08N (k ¤ l , l ¤ m, and m ¤ k).

2.2 Phenomenological Model

Since large-scale simulations of the CNN are still computationally difficult, we
develop a simplified phenomenological model based on the Potts model [20]. The
Potts model is a generalization of the Ising model, which is a simple mathematical
model of ferromagnetism in statistical physics. The Potts model is composed of
spins that take discrete states si 2 f1; : : : ;Qg. The spins are arranged in a lattice
and interact only with their nearest neighbors.
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In our model, a single Potts spin represents the state of a small group of units
in the CNN. Each state of the spin corresponds to the retrieval of a stored pattern
within the local area. We also introduce the refractoriness variable hqi for each state
q of each spin i . This variable intuitively shows to what extent spin i tends to avoid
state q. The dynamics of hqi is described by the following difference equation:

h
q
i .t C 1/ D � hqi .t/C c ı.si ; q/; (5)

where 0 	 � < 1 denotes the decay constant and c � 0 denotes the strength
of the refractoriness. ı.�; �/ is the delta function. The size of the time step is the
characteristic time in which every spin is updated once.

The refractoriness variable changes the form of the system’s Hamiltonian H . It
is then becomes as follows:

H D �
X

i;j

Jij ı.si ; sj /C
X

i

QX

qD1
h
q
i .t/ ı.si ; q/; (6)

where Jij denotes the strength of the interaction between spin i and spin j . If these
spins are neighbors, Jij D J > 0. Otherwise, Jij D 0. In this study, we use a
two-dimensional lattice of size 100 � 100 and adopt the Moore neighborhood, that
is, each spin has eight neighbors.

To investigate the model dynamics, we adopt the standard Monte Carlo method
for the Potts model. In each step, we pick a spin i at random. Then, we update its
state according to the following probability distribution:

p.si ! q/ D exp.�ˇH.si D q//PQ

q0D1 exp.�ˇH.si D q0//
; (7)

where ˇ denotes the inverse temperature. H.si D q/ denotes the value of the
Hamiltonian when si is set to q with other spin states fixed. Because those terms
that do not involve si can be canceled in the numerator and denominator, only the
states of the nearest neighbors contribute to the probability distribution.

3 Results

In the following simulations of the CNN, we set kf D 0:7, kr D 0:9, � D 0:015,
d D 10, and L D 400. As an initial condition, �i .0/ takes a random value
that is uniformly distributed in Œ0; 1�, and �i .0/ D 0. The simulations are run
on a cluster of four Linux server machines that have two 3.0-GHz dual-core
processors and 8.0-GB RAM each. Computation of one step of the simulation takes
approximately 1 s.
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Time

Time

a

b

Fig. 2 Spatio-temporal
patterns in the CNN
displayed with ten-step
intervals. (a) ˛ D 0, a D 0.
(b) ˛ D 20, a D 6:4

First, we set ˛ D 0 and a D 0 so that the neurons have no refractoriness. In
this case, the network is initially divided into many small clusters of different colors
(see Fig. 2a). These clusters merge to become bigger ones with time and are not very
mobile.

Next, we investigate the influence of the refractoriness by setting ˛ D 20

and a D 6:4. In this case, the network shows rich spatio-temporal dynamics (see
Fig. 2b). The boundaries between clusters move as traveling waves. When two
waves moving in different directions collide, rotating waves or spiral waves are
sometimes generated temporally.

Finally, we investigate the behavior of the phenomenological model. We set
J D 1, ˇ D 3, Q D 4, and � D 0:98. Initially, si takes a random state and
h
q
i .0/ D 0. The model exhibits dynamics qualitatively similar to those of the CNN.

If there is no refractoriness, i.e., c D 0, cluster merging is observed (see Fig. 3a). In
contrast, with refractoriness (c D 0:08), complicated wave patterns are generated
(see Fig. 3b).
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4 Discussion and Conclusions

We have shown that a locally connected CNN exhibits rich dynamics of traveling
waves (see Fig. 2b). These waves correspond to moving boundaries of local cell
assemblies, and the waves disappear if the neurons have no refractoriness (see
Fig. 2a). Therefore, refractoriness plays a key role in the emergence of traveling
waves in the CNN. In the case of the real brain, the refractoriness—and possibly
some other negative self-feedback mechanism such as spike-frequency adaptation
and synaptic depression—could also contribute to the emergence of traveling waves.

Next, we showed that the proposed meso-scopic model can qualitatively repro-
duce complex wave patterns in the CNN (see Fig. 3b). Because the model requires
less computational resources, it may serve as a useful tool for investigating traveling
waves in nervous systems.

Time

Time

a

b

Fig. 3 Spatio-temporal
patterns in the
phenomenological model
displayed with eight-step
intervals. (a) c D 0. (b)
c D 0:08
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Furthermore, we found that rotating waves and spiral waves are often generated
in both models. This seems to contradict the fact that such waves are rarely observed
in experiments [21, 22]. Perhaps our model is not precise enough to reproduce real
neuronal activity. However, some other numerical studies have also reported the
emergence of rotating waves and spiral waves [12, 23, 24]. Thus, despite difficulty
in detection of these waves, they may be actually generated in the brain.
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Spatial Filtering by a Two-Dimensional
Interconnected Network with Spike Timing
Dependent Synaptic Plasticity Depending
on Its Temporal Properties

Kazuhisa Fujita

Abstract In the present study, we investigated the dependence of characteristics of
spatial filtering by the two-dimensional interconnected network with spike timing
dependent plasticity (STDP) on its temporal properties. STDP has different temporal
properties according to the area of a brain. The temporal properties are indicated
by the form of learning window. In the previous study, we studied the response of
an one-dimensional interconnected network with STDP in spatial processing using
computer simulation and found that the one-dimensional network well responded
to a particular spatial frequency component of the input. Here, we showed that the
two-dimensional interconnected network with STDP provided two types of spatial
filtering. One is spatial low-pass filtering using the learning rule of electric fish type.
The other is spatial high-pass filtering using the learning rule of hippocampus type.

1 Introduction

Spike timing dependent synaptic plasticity (STDP) plays an important role in
temporal processing because of dependence of synaptic modification by STDP on
time differences between pre- and postsynaptic spike firing. Synaptic modification
by STDP is found in various areas of various neural systems [3]. For example, STDP
is found in the cultured hippocampus of rats [2], the visual cortex of cats [5], the
electrosensory lobe of a weakly electric fish [1], etc. These STDP learnings have
the individual temporal properties. The temporal properties are indicated by the
form of learning window. Learning window is the function that indicates the relation
between the intensity of synaptic modification and time difference of firings between
pre- and postsynapse. In hippocampus, if time difference is negative, synaptic
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efficacy is strengthened, whereas synaptic efficacy is weakened if time difference
is positive [2], we call this learning “hippocampal type”. Meanwhile, the reversed
learning rule is found in the electrosensory lobe of a weakly electric fish [1]. In this
paper, we call this learning “electric-fish type”.

In the previous study, we studied the response of an one-dimensional intercon-
nected network with STDP in spatial processing using computer simulation and
found that the one-dimensional network well responses particular spatial frequency
of input [6]. In the present study, we showed that the two-dimensional intercon-
nected network with STDP worked as spatial filter. The function of spatial filtering
depended on temporal properties of learning window. The network provided low-
pass spatial filtering applying electric-fish type learning window. The network
provided high-pass spatial filtering applying hippocampal type learning window.
Furthermore we investigated the dependence of the filtering function on time
constant � of learning windows defined by Eq. 1.

2 Methods

Figure 1 shows the interconnected network using in this study. The structure of the
network is two dimensional array. A neuron of the network has connection to neigh-
bor neurons through synapses with STDP. The neuron i; j connects with neurons
from i�RF to iCRF and from j �RF to j CRF. RF is the size of connecting area.
Each synapses were facilitated and depressed being subject to STDP learning rule.

2.1 Neuronal Model

The “leaky integrate and fire” neuron was used as a single neuron. The membrane
potential V.t/ of a neuron is determined by �m

dV.t/

dt
D V0 � V.t/ C In.t/, where

�m is a time constant, In.t/ is the input voltage of the neuron. V0 indicates resting
potential. A neuron generates a spike and resets the membrane potential to V0 when
the membrane potential reaches threshold # . Spike S.t/ is 1 if V � # . Otherwise,

Fig. 1 Network model.
A neuron on the network
connects with neighbor
neurons. The network
received two-dimensional
inputs
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S.t/ is 0. A neuron is stimulated with input voltage and synaptic potential evoked
by connected neurons. In.t/ is summed input voltage, synaptic potential, and noise.
In.t/ is determined by In.t/ D Ic C g.t/.EV � V / C Noise, where Ic is input
voltage and g.t/ is synaptic conductance. In the present study, Ic is voltage of a
direct current. The noise is a uniform random number from 0 to 1 and is generated
at each step.

2.2 Synaptic Model

We used the synaptic model proposed by Song and Abbott [7]. The synaptic con-
ductance g.t/ is determined by �g

dg.t/

dt
D �g.t/, where �g is a time constant. This

model is based on a leaky integrator, thus synaptic conductance only decreases and
comes to converge to 0. Synaptic conductance g.t/ increases when a presynaptic
neuron generates a spike. If a presynaptic neuron generates a spike at t , synaptic
conductance at t C dt is determined by g.t C dt/ D g.t/ C W.t/, where W.t/
is synaptic efficacy. On STDP, synaptic efficacy changes when the spikes from pre-
and postsynaptic neurons reach the synapse. Synaptic efficacy W.t/ is given by
W.t C
t/ D W.t/C F.tpre � tpost/Wmax, where F is the synaptic change rate that
is called “learning window”, tpre is the time of presynaptic spike arrival, and tpost is
the time of postsynaptic firing. The initial value ofW.t/ is chosenW0. The synaptic
change rate F is determined by

F.
t/ D
(
AC exp.
t=�/ if 
t > 0

A� exp.
t=�/ otherwise
; (1)

where 
t is tpre � tpost. W is Wmax when W is more than Wmax. W is 0 when W is
less than 0.

Temporal properties of STDPs are indicated by the form of learning windows
of STDP. Learning window is defined by asymmetric exponential curves (Eq. 7).
The temporal properties of learning window represents intensities of synaptic
modification AC and A�, and time constant � in Eq. 1.

The values of parameters are: RF D 8, �m D 20msec, V0 D �70mV, # D
�54mV, EV D 0mV, �g D 5msec, Wmax D 0:005, W0 D Wmax=2. AC D 0:005

and A� D �AC when the learning is electric-fish type. AC D �0:005 and A� D
�AC when the learning window is hippocampal type.

2.3 Frequency Characteristics of the Network

To assess features of outputs of the network, we computed frequency characteristics
FC. FC is defined by FC D P

i Pifi=
P

i Pi , where fi is frequency of component
i of the input, Pi is power of the component in the frequency fi . Simply, FC means
weighted average of spatial frequency components of the input.



224 K. Fujita

3 Results

3.1 Spatial Filtering by the Two-Dimensional Network

We investigated the response of the two-dimensional interconnected network with
STDP learning. To address this issue, we calculated responses of the network.
The network has 80 � 80 neurons. The synaptic connections between neurons
are modified based on STDP. Here, time constant � of the learning window
is 20 msec.

Using the learning rule of electric-fish type, the network acted as spatial low-
pass filter. Figure 2a, c show the input image that consists of a filled circle and
spatial white noise. Figure 2b, d show the output of the network. The output image
means firing counts of the neurons of the network from 9,000 to 10,000 msec. In
this case, spatial high frequency noise was reduced and spatial low-frequency signal
was represented in the output of the network. Thus the network functioned as spatial
low-pass filter using the learning rule of electric-fish type.

Using the learning rule of hippocampal type, the network acted as spatial high-
pass filter. Figure 2e, g show input image. Figure 2f, h show the output of the
network. The output image means firing count of neurons of the network from 9,000
to 10,000 msec. In this case, firing counts of the neurons which were on the edge of
the input image was higher than that of other neurons. Thus the network enhanced

i

j

i

j

i

i

i

i

a

e

b

f

c

g h

d

Fig. 2 Inputs and responses of the two-dimensional interconnected network. (a) The input image
of the network with electric-fish type learning. Neurons on white and grey area received high
and low intensity of input voltage, respectively. (b) Response of the network with electric-fish type
learning. (c) Input intensity of the network at j D 40. This input intensity is a input voltage divided
by the maximum input voltage that is 35 mV. (d) Response of the network at j D 40. Response
is defined by a firing count of a neuron divided by the maximum firing count. (e) The input image
of the network with hippocampal type learning. (f) Response of the network with hippocampal
type learning. (g) Input intensity of the network at j D 40. This input intensity is a input voltage
divided by the maximum input voltage that is 27 mV. (h) Response of the network at j D 40
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i

j
a

b

Fig. 3 (a) The input of the network to investigate frequency characteristics of the output of the
network. The input consisted of 2 Hz spatial wave and white noise. (b) Frequency characteristics
of the network. The vertical line indicates FC that means frequency characteristics of the network.
The horizontal line indicates � that is the time constants of learning window of STDP. The solid
line shows frequency characteristics of the network with electric fish type STDP. The broken line
shows frequency characteristics of the network with hippocampal type STDP. The dotted line
shows weighted average of frequency components of the input

the edge of the input image. In other words, the network might function as spatial
high-pass filter using the learning rule of hippocampal type because the edge of
image consists of spatial high-frequency components.

3.2 Frequency Characteristics of an Output of the Network

We showed the response of the network depending on learning window mentioned
above. In this subsection, we showed the dependence of frequency characteristics of
the output of the network on time constant � of learning window. The network using
in this subsection has 200 � 20 neurons. The input of the network consisted of the
signal that formed the 2 Hz wave and white noise shown in Fig. 3a. Here, one Hz
as spatial frequency in this subsection has a spatial periodic interval 200 neurons.
We calculated FC of the output of the network with changing time constant � of
learning window.

Figure 3b shows frequency characteristics FC of the output of the network with
time constant � of learning window. Solid line indicates the FC of the output of the
network with electric-fish type learning. The FC decreased with � from 0 to about
40 msec. From about 50 msec, the FC unchanged. The FC is lower than weighted
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average of frequency components of the input. This result shows that the network
with electric-fish type learning could work as spatial low-pass filter. Broken line
indicates the FC of the output of the network with hippocampal type learning. The
FC increased with � from 0 to about 40 msec. From about 40 msec, FC unchanged.
The FC is higher than weighted average of frequency components of the input.
This result shows that the network with hippocampal type learning could work
as spatial high-pass filter. The FC reached about 100 Hz at 40 msec. One hundred
Hz means that spatial period is 2 neurons. This result shows spatial filtering of the
network did not work. When time constant � is around 20 msec, spatial filtering
of the network works enough. The value of � that is 20 msec is appropriate for
experimental results [1, 4].

4 Discussion

The purpose of the present study is to investigate the function of a two-dimensional
interconnected network with STDP and the change of the function according
to temporal properties of learning window of STDP. We showed that the two-
dimensional network could worked as spatial low-pass and high-pass filter applying
electric-fish type and hippocampal type learning, respectively. Furthermore, we
showed that characteristics of filtering of the network depended on time constant
� of learning window and the value of � is appropriate for experimental results
when the network work as spatial filter enough.
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Neural Model for Hierarchical Processing
of Auditory Information in Mammal’s Cortex

Yusuke Hara and Yoshiki Kashimori

Abstract In this paper, we present a model of auditory cortex, which performs
a hierarchical processing of auditory information. We show that the aspects of
spatiotemporal activity in the primary cortex are encoded by a combination of
feature-detective neurons and then by a dynamical attractor in higher-ordered cortex.
The present study provides a clue for understanding the mechanism of how the
information of notes and syllables are constructed from the spatiotemporal activity
of the primary auditory cortex.

1 Introduction

Animals utilize auditory information for survival and communications of con-
specifics. Researchers have focused on several model systems to investigate the
mechanism of auditory information processing. Studies on localization behaviors
have demonstrated how auditory information of target is processed in animal brains.
Bats have a specific brain maps for representing the features of target signal such as
relative velocity and distance [1]. Barn owl also has the map structures in the brain,
in which neurons respond selectively to interaural time difference and interaural
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level difference [2]. Although mammalian auditory cortex has also frequency map
structure in the primary auditory cortex, auditory information is encoded by a
distributed pattern of neuronal activity.

A sequence of sound is analyzed in animals’ brain as elementary components
such as notes and syllables. Bird song has been a subject for investigating the
neural mechanism underlying vocal learning. Studies on bird song revealed how
birds are able to learn their own song in early period of life [3]. The reciprocal
interaction between HVC and RA enables the song learning [4–6]. In contrast to
the mechanism of the vocal learning, how auditory information about notes and
syllables are represented in bird’s auditory brain remains unclear.

It has been reported that auditory information is represented by spatiotemporal
activity of primary auditory cortex (A1) of mammalians [7, 8]. The neural model of
A1 has been proposed to account for the mechanism for generating the spatiotem-
poral activity in A1 neurons [10]. Recent study also showed that neural responses
in the secondary auditory cortex mirror perception, showing categorical responses
to continuous stimuli [11]. However, how the elementary components of sound are
extracted from the spatiotemporal activity of neurons is poorly understood.

To address this issue, we present a model of auditory cortex, which performs a
hierarchical processing of auditory information. The model consists of three layers
of 2-dimensional networks. We show that the aspects of spatiotemporal activity in
the primary cortex are encoded by a combination of feature-detective neurons and
then by a dynamical attractor in higher-ordered cortex. The present study provides a
clue for understanding the mechanism of how the information of notes and syllables
are constructed from spatiotemporal activity of the primary auditory cortex.

2 Model

We propose a neural network model for hierarchical processing of auditory informa-
tion, which consists of three networks, as shown in Fig. 1. The auditory information
is encoded with spatiotemporal pattern of neuronal activity in the primary auditory
(A1) cortex. The model of A1was made based on the previous model by Yamaguchi
et al. [10]. The network has a 2-dimensional array of A1 neurons, each of which is
constructed with a pair of excitatory and inhibitory neurons. The balance in the exci-
tatory and inhibitory connections between these neurons makes the spatiotemporal
activity of A1 stabilize as a stationary pattern. The excitatory connections among the
excitatory neurons enable propagation of stationary pattern across the network. Then
the spatiotemporal aspect of the neuronal activity evoked in A1 is detected by the
feature-detective (FD) neurons in the second layer. These FD neurons integrate the
spatiotemporal pattern over a short time period, thereby enabling the second layer
to represent the information about notes and about the correlation of notes. The
FD neurons were organized by Kohonen’s self-organized map [12]. Thus the FD
neurons extract the features of the snapshot of the spatiotemporal activity, indicating
the compression of spatiotemporal auditory information. The information encoded
by the FD neurons is then combined as a linkage of attractors in the feature-binding
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Fig. 1 The network model of
auditory cortex. The model
consists of three layers,
primary auditory cortex (A1),
feature-detective (FD) layer
and feature -binding (FB)
layer. “A”, “B”, and “C” in
the FB layer indicate
dynamical attractors. Each
network has a 2-dimensional
array of neurons. The
auditory information is
hierarchically processed by
these three layers

(FB) layer, providing semantic information such as word. The network model of FB
layer has a 2-dimensional array of neurons, each was based on the Leaky integrate-
and fire neuron model [13]. The temporal correlation between attractors was formed
with spike timing-dependent plasticity (STDP) learning [14].

3 Results

Figure 2 illustrates the snapshots of the neuronal activity of A1 and the activity of
FD layer corresponding to the activity of A1 neurons, respectively, in response to the
sound “a-b-c”. The sound was represented as a spatiotemporal pattern of neuronal
activity of A1. The balance of excitatory and inhibitory inputs to neurons enables
the network to stabilize the propagation of A1 activity. The FD neurons integrated
the spatiotemporal activity over a short time period, enabling the encoding of the
features of the neuronal activity averaged over a short time period. The encoding
by the FD neurons shapes the representation of a compressed, or a coarse-grained
information of the spatiotemporal activity of A1.

Figure 3a and b illustrate the spatiotemporal activities of the FD neurons
detecting the features of the note “a” of “a-b-c” and “a” of “c-b-a”, respectively. The
sound features were encoded by the population of FD neurons. The spatial activity
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Fig. 2 Neural responses of A1 and FD layer to the sound “a-b-c”. Activated neurons are depicted
by white-colored clusters in A1 and filled circles in FD layer, respectively. The snapshots are
depicted every 20 ms

Fig. 3 Spatial activities of FD neurons in response to notes and their overlaps. Spatial activities of
the FD neurons detecting the features of the notes, “a” of “a-b-c” (a) and “a” of “c-b-a” (b), and
of the overlaps, “a-b” of “a-b-c” (c) and “b-a” of “c-b-a” (d). These patterns indicate the activated
FD neurons during the presence of the notes and overlaps

of FD neurons in response to “a” in “a-b-c” exhibited the similar pattern to “a” in
“c-b-a”. In contrast, FD neurons showed different patterns in response to “a-b” in
“a-b-c” “and “b-a” in “c-b-a”, as shown in Fig. 3c and d. Other notes and overlaps of
them also had similar tendency to the patterns of the note “a” and the overlaps “a-b”
and “b-a”. The FD neurons exhibited the similar spatial patterns in response to the
notes, but did the different patterns for the overlap of the notes. This indicates that
it is important for auditory perception to extract the features of the overlap between
notes, besides the features of notes. Thus FD neurons encode the information about
notes (“a”, “b”, and “c”) and the temporal correlation between the notes.

Figure 4 illustrates the network state of the FB layer during the perception of
words, “a-b-c” and “c-b-a”. The spatiotemporal correlations among the attractors
were formed by STDP learning. The information about notes and their correlations
were combined as a linkage of dynamical attractors, enabling the network to
represent the two words, “a-b-c” and “c-b-a”. After the perception of “a-b-c” or “c-
b-a”, the network state was recovered to a background state, in which the network
state exhibited an itinerant state between the attractor “a-b-c” and “c-b-a”.
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Fig. 4 Temporal variation of
the network state of binding
layer. The short vertical bar
means the attractor in which
the network state stays

4 Discussions

We have shown a network model for hierarchical information processing in the au-
ditory cortex, which consists of three layers. These layers encoded the information
about different aspects of auditory features along the pathway from A1 to FB layer,
enabling the system to percept a word in the FB layer. The present study provides
an insight to understanding the information processing in auditory cortex.

In the present study, we have proposed the network models of the higher ordered
areas beyond A1. The FD layer encodes the information about notes and syllables,
which are extracted from the spatiotemporal activity of A1. The FB layer combines
these features of notes and syllables and represents the information of a word as
a linkage of dynamical attractors. The second auditory cortex neurons have been
reported to exhibit categorical responses to continuous stimuli [11]. This might
correspond to the function of the FD layer. It seems also reasonable that sound
features are dynamically combined in a higher ordered area of auditory cortex.
Further studies are needed to understand how semantic information such as words
is constructed from spatiotemporal activity of A1.
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Modeling Dynamics of the Human Limbic
System

Mark H. Myers and Robert Kozma

Abstract In this paper, we proposed a computational model of the limbic system
in order to capture the spatio-temporal dynamics of abnormal/normal brain states.
Power spectral density measurements of the abnormal seizure states are captured
in order to differentiate from normal brain states. Electrical titration therapy is
proposed through this model to demonstrate how the model can be utilized as an
EEG simulator that demonstrates how external stimulation restores the model back
to its normal chaotic operating state.

Keywords Power spectral density • Electroencephalograph • Seizure •
Non-linear • Biological neural network

1 Introduction

Studies of the brain’s electrical activity based on EEG analysis provide methods to
differentiate among various cognitive states, i.e., sleep, awake, normal, or seizure
[6]. Models of relatively large groups of interacting excitatory and inhibitory
neural populations have been developed to exhibit abnormal/normal brain states
and the effects of imbalanced excitatory and inhibitory neurons [12]. Tsakalis and
Chakravarthy [2, 11] developed a neural mass model, with an internal feedback
mechanism to maintain synchronous behavior within normal levels despite elevated
coupling. Normal internal feedback quickly regulates an abnormally high coupling
between the neural populations, whereas pathological internal feedback can lead to
hyper-synchronization and the appearance of seizure-like high amplitude oscilla-
tions. Feedback decoupling is introduced [2] as a robust seizure control strategy. An
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external feedback decoupling controller is also introduced to maintain normal levels
of synchronous behavior. Other internal feedback models featured closed-loop
feedback control systems in epileptic seizures combining methods from seizure
prediction and deep brain stimulation [7]. Periodic stimulation was also performed,
with a reduction of seizure frequency in 33% of six rat modeling instances.

Clinical studies are often grouped by anatomical targets [1, 3, 8], but target-
specific factors need to play a greater role in individualizing electrotherapy strategy
and characterizing its mechanisms. Afferent connections throughout the different
regions of the brain can influence the dynamics of neuronal populations and
sensitivity to electrical stimulation.

2 Methods

High density arrays of electrodes were placed onto the surface of the scalp of four
patients with medically intractable epilepsy, who are candidates for the Vagus Nerve
Stimulator (VNS) surgical treatment. Features of normal/abnormal brain activity
have been monitored for 60–90 min. EEG evoked response potentials are captured
at a sampling rate of 250 points/s. Power spectral density analysis was performed on
the EEG data sets. Due to the identified spatio-temporal dynamics of EEG signals,
the power spectral density (PSD) often exhibits a linearly decreasing behavior over
log-base10 coordinates considering frequency and amplitude of PSD or spectral
power. This is called in the literature “power law” or scale-free behavior “1/f�’”,
where cognitive processing states varied by “’” [6]. The power law relation is seen
on the example of Fig. 1 over the whole range of frequencies from 10 to 100 Hz,
i.e., the beta-gamma range. Power law behavior is attributed to the brain structural
connectivity and dynamical properties.

The PSD of the states of sleep, awake, seizure, and VNS dampened seizure
conform to the power law relation, 1/f�’, where ’D�3 when the patient is at rest,
’D�3 to �2 during the awake state, ’D�2 during cognitive tasks and intentional
behaviors [5]. The case ’D�2 is mathematically referred to as brown noise, 1/f2,

Fig. 1 The EEG of the
normal state depicted as the
slope of the PSD where
’D�2.16
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Fig. 2 The EEG of a seizure
state depicted as the slope of
the PSD here ’D�3.68

whereas ’D�3 is called sometimes as black noise. The calculated PSD linear
regression values during the seizure state will have ’<�4. Figure 1 exhibits low
alpha values signifying the normal EEG state, while Fig. 2 exhibits alpha values in
the seizure range.

The KIV model is a biologically inspired neural network [10]. The K-set family
includes hierarchy of K models of increasing complexity. They represent different
aspects of the vertebrate brain. It has the functionality of sensory perception and
action selection. The fundamental building block of the KIV model is the dynamics
corresponding to the K0 set which is governed by a point attractor. This means that,
over time, a non interacting population of neurons will converge to the point zero.
The K0 set is the basic unit of the K models, upon which the rest of the hierarchy is
based on. The dynamics of the K0 set are given by the following second order ODE
(ordinary differential equation).

1

ab

�
d2p.t/

d t2
C .aC b/dp.t/

dt
C abp.t/

�
D X.t/C I.t/

where ‘a’ and ‘b’ are rate constants determined based on physiological experiments,
p(t) is the pulse density at time t and X(t) is the internal input, and I(t) is the external
input at time t. The KIV model architecture is represented by three major parts; the
KIII cortex, KIII hippocampus and the KII amygdala. Hippocampus models include
navigation functions. The cortex models sensory processing and pattern recognition
in various sensory modalities. The amygdala is the unit where the activations from
the cortex and hippo-campus are projected and decision is made concerning the next
action, based on the fusion of the signals from other brain areas.

The KIV model is used as an EEG simulator to exhibit similar attributes found in
the analysis of human EEGs. In order to exhibit the ‘normal’ chaotic state of human
EEGs, the KIV model was adjusted to exhibit the same ‘noisy’ attributes through
the input of random variables throughout the network. Low coupling between the
networks enabled low feedback to occur and therefore diminish the influence of the
three networks onto each other.
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Fig. 3 The simulated EEG of
the normal state depicted as
the slope of the PSD where
’D�2.73

Fig. 4 The simulated EEG of
the seizure state depicted as
the slope of the PSD where
’D�3.88

We have utilized the seizure parameterized KIII and incorporate this model into
the KIV model [4]. Due to the increased energy in the theta brain state frequency
range, the calculated alpha value, derived by the slope of the PSD is much steeper
than the alpha value of the PSD of the normal state. The epilepto-genesis created in
the KIII is due to the imbalance of inhibitory nodes/neurons in the delayed feedback
connections of the KIII causing runaway inhibitory behavior.

Figure 3 shows normal simulated normal EEG behavior. Figure 4 displays
abnormal simulated EEG behavior using the KIV model.

3 Results

The PSDs of four human patients EEGs were analyzed to find the differing alpha
values found between the normal and seizure states, as seen in Tables 1 and 2. These
behaviors are modeled in the KIV network. The PSD values found during seizure
activity exhibited high power in both the low and high theta ranges, corresponding
to the 3/s wave that dominated the EEG [6].
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Table 1 PSD- EEG – normal
state

Patient 1 (25) Patient 2 (25) Patient 3 (25) Patient 4 (25)

Ave 2.38 2.53 2.46 2.51
Std 0.24 0.29 0.25 0.24
Min 2.02 2.01 2.04 2.15
Max 2.91 2.93 2.86 2.89

Table 2 PSD-EEG – seizure
state

Patient 1 (25) Patient 2 (25) Patient 3 (25) Patient 4 (25)

Ave 3.65 3.68 3.72 3.64
Std 0.16 0.14 0.11 0.10
Min 3.41 3.39 3.54 3.42
Max 3.89 3.91 3.88 3.81

Table 3 PSD-KIV – normal
state

A1 (25) A2 (25) A3 (25) A4 (25) A5 (25)

Ave 2.40 2.40 2.50 2.67 2.70
Std 0.28 0.26 0.24 0.22 0.16
Min 2.04 2.06 2.12 2.32 2.41
Max 2.86 2.88 2.92 2.95 2.96

Table 4 PSD-KIV –
abnormal state

A1 (25) A2 (25) A3 (25) A4 (25) A5 (25)

Ave 3.61 3.65 3.74 3.77 3.77
Std 0.18 0.17 0.13 0.11 0.11
Min 3.31 3.33 3.44 3.57 3.60
Max 3.96 3.91 3.95 3.97 3.98

Additionally, the KIV normal and seizure state exhibited the same alpha value
range. The role of noise in the KIV is illustrated in Table 3 and 4 Five simulated
patients are constructed through the KIV by varying the levels of noise throughout
the KIV by 5%, whereas patient A1 is a KIV with full input noise, and patient
A5 has 20% less noise than A1. Noise is applied to the external input I(t) of the
second order ODE of the K0 set. These simulated ‘patient’ EEGs illustrate how
noise affects the alpha values collected from their respective EEGs. The lessening
of noise from patient A1 to A5 seems to increase the PSD alpha values from the
normal to abnormal KIV time series. The rise of PSD values found in the theta
frequency bands of 3–8 Hz causes the slope of the PSD to rise sharply, causing the
higher frequency bands to diminish due to the reduction of noise in the system [9].
Takeshita et al. have proposed that noise is still present in the seizure state as well as
the normal state and may contribute to seizure initiation within neural populations
where transitions between bistable states (epileptic and nonepileptic) are caused by
noise [12].

The simulation using noise in the KIV requires temporal filtering to give 1/f
amplitude spectra of temporal frequencies. This method of simulation is based on
the premise that EEG activity is due to near-white noise generated by immense
numbers of interacting pyramidal cells, whose activity episodically undergoes
transient increases in spatial coherence [5]. Noteworthy are the steepened slope of
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Table 5 PSD – KIV restored
state

A1 (25) A2 (25) A3 (25) A4 (25) A5 (25)

Ave 2.47 2.52 2.61 2.69 2.77
Std 0.18 0.17 0.17 0.17 0.16
Min 2.13 2.17 2.28 2.36 2.44
Max 2.65 2.70 2.78 2.89 2.95

1/f PSD in the seizure state compared with the normal EEG state, which is simulated
in the KIV model. PSD values found during the EEG time series and the simulated
EEG time series exhibit low standard deviation during the seizure states per patient.
This activity may be due to the entrainment of large scale neural population whose
power per frequency is limited to the theta range. High theta activity causes the
slope of the PSD to rise sharply, and diminishes any other brain activity state, i.e.,
the carrier wave in the rest state, active state and sleep state which seems to be
diminished or lost during the seizure [6].

Additionally, KIV network is able to simulate behavior characteristic to the so-
called ‘restoration’ state that mimics the external stimulation of the VNS therapy
onto the brain to restore the effects of the seizure state back to the brain’s normal
neural chaotic behavior. The ‘seizure to restore’ state is accomplished through the
input of Brain Stimulator Interface (BSI) object. The de-synchronizing external
signal is a KII signal with the original internal node values. In this manner, we
are adding a KII network to the KIV network to overcome the semi-periodic neural
abnormal firings of an ‘abnormal firing’ KII network due to runaway inhibitory
neuron hyper-excitation. The KII object also consists of an amplitude reduction
signal which is a sample of the seizure state time period increased by 1%. The
BSI added input restore the signal back to its normal state (Table 5). This technique
mirrors the approach from Tsakalis [11] Decoupling Control mechanism.

The previous PSD values show that the restoration state also exhibits small
standard deviation across the simulated patient EEGs, while maintaining the alpha
range of 2–3. The external signal that restores the KIV model back to its initial
state causes the runaway inhibitory signal to become ‘rebalanced’, since the external
signal may provide the excitatory signal needed to restore the signal.

4 Discussions

Measurement of the slope of the PSD of human EEG data provides ’ values in the
range of 2–3 for normal brain states, and values approaching four near the seizure
location. Changes of the power law index alpha values are successfully modeled by
the KIV network. Injection of KII object as a BSI object onto the simulated seizure
state restores the normal simulated EEG state, which is of potential modeling benefit
to titration therapies.
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Infant’s Primitive Walking Reflex
from the Perspective of Learning in the Uterus

Hiroki Mori and Yasuo Kuniyoshi

Abstract Recently, researchers have found that preterm infants’ walking starts later
than term infants, epidemiologically. In previous study, we have discussed about
fetal development in uterus from a perspective of learning and self-organization in
the uterine environment and hypothesized that the fetal experience affects an infant’s
walking ability because fetuses learn reflexive alternating foot stepping relative to
primitive walking. We conducted a fetal development simulation and analyzed the
feet trajectories by canonical correlation analysis to detect legs’ alternating coordi-
nated movements. The results of the analysis show the appearance of alternating feet
movements through the uterine experience. Finally, we conducted primitive walking
experiments out of the uterine environment with learned neural connectivity and
random neural connectivity. In conclusion, the behavior such as primitive walking
is acquired through the uterine experience in the simulation and we show the
possibility that uterine experience contributes to walking development after birth.

1 Introduction

Even just after birth, term infants can perform walking-like leg movements when
one holds them to stand on a floor. Researchers have considered that the reflexive
leg movements, which are called walking reflex or primitive walking, facilitate
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the development of walking. Thelen and Smith had implied that infants’ nervous
system for walking does not disappear, based on results from a primitive walking
experiment in water with 2 months old infants, which do not perform walking reflex
above ground. They concluded that the stepping behavior at birth continuously
contributes to walking development around 1 year old of age.

A recent epidemiological study revealed delay in the walking development of
preterm infants. According to Jeng et al. [1], preterm infants start to stand and walk
2 months later than term infants do, on average. We have discussed the effects of
fetal experiences in the uterus for fetal motor development from the perspective
of the self-organization of dynamical system of the nervous system, the body, and
the uterus, based on a whole body fetal computer simulation. From that aspect, we
considered that the duration of the fetal experience in the uterus affects walking
development after birth.

In this research, we proposed the scenario of shaping the reflex neural circuit for
primitive walking through experience in uterus and the proposal was examined by a
computer simulation of a fetal whole body muscloskeletal model and a spinobulbar
system with tactile cells.

2 Methods

To study fetal sensori-motor development, we previously developed a fetal whole
body muscloskeletal model (Fig. 1) with 198 muscles, 22 joints, 1,542 tactile cells,
an uterine wall and amniotic fluid [2]. The distribution of the tactile cells depends
on two-point discrimination lengths, so there are many cells on the face, the hands
and the feet whereas there are fewer cells on the arms, the thighs, calfs and the body
trunk (Fig. 2).

The spinal cord model, including inter-neurons, ˛ motor neurons and � motor
neurons, is based on He et al. [3] while a neural oscillator model, modeling neurons
in medulla to generate general movements [4], is based on Asai et al. [6]. The neural
oscillator is embedded in a one-to-one manner for each muscle, implementing a
Coupled Chaotic System [5].

The proposed nervous system is illustrated in Fig. 3. The nervous system model
has totally-coupled connectivity from tactile cells to the ˛ motor neurons and
the neuronal oscillators. The connectivity weights from the tactile cells to the
motor neurons change depending on a modified Hebbian learning (Covariance
rule) [8].

In previous work, we proposed a scenario that fetal motor developments,
including isolated arm/leg movements and hand/face contacts [7], emerges from
tactile experiences with complex and smooth movements, which are regarded as
general movements [2]. The scenario had been validated based on the fetal computer
simulation. In this paper, we hypothesized the scenario that stepping behaviors
emerge from an interaction between leg movements and the uterine response
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Fig. 1 A fetal whole body
simulation with uterus

Head

  365     6       32         45         22

Shoulder

     15               17            14        173

Thigh  Calf   Foot

   22       17     43

(Whole tactile points: 1542)
Tactile points on right or left side

5cm

Upper arm Forearm Hand

Neck Chest Abdomen Hip

Fig. 2 A simulation model of fetus with tactile cells

through tactile signals before birth, and from an interaction between leg movements
and the floor response through tactile signals after birth, since a little biased tactile
pattern on right or left foot due to the body trunk’s squirm and kicking womb is
gradually strengthened by Hebbian learning in the uterus.
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Fig. 3 A nervous system
model with tactile cells

To validate our scenario in which the fetal experiences facilitate the construction
of the neuronal circuit to induce primitive walking, we conducted the fetal computer
simulation in uterus with learning for 10,000 s, and primitive walking experiments
on a floor without learning for 1,000 s with the following three conditions.

1. Randomized(initial) connectivity, on the floor.
2. Learned connectivity, above the floor.
3. Learned connectivity, on the floor.

Condition 1. corresponds to preterm infants without the experience in uterus.
Condition 2. corresponds to term infants without interaction with the environment.
Condition 3. corresponds to term infants with environment interaction experience.

The result is analyzed by three aspects. One of them is correlation of distances
between both fetal model’s feet and its groin. The feet perform stepping movements
if the correlation was a negative value. The second is the weight from the feet to the
motor neurons which indicate the effect of tactile signals for the behavior. Finally,
canonical correlation analysis (CCA) is used to detect the most coordinated feet
movement patterns as the first canonical vectors.

3 Results

In the fetal simulation experiment in the uterus model, the leg movements gradually
change from random to alternating or stepping, qualitatively.

For the quantitative account, the change of correlation between both feet is
illustrated in Fig. 4. The result indicates the stepping behavior increases while the
value became negative by 10,000 s.

The weights from tactile cells on both feet to ˛ motor neurons for muscles in
both legs at 10,000 s is displayed in Fig. 5 The weight values to the right and the left
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Fig. 4 The change of
correlation of distances
between both feet and groin
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Fig. 5 The weight of connectivity from foot tactile cells to leg muscles

leg muscles are inverted, which means that the neuronal circuit induces alternating
leg movements by inverted signals to muscles in the right and the left leg through
tactile signals.

To demonstrate the most coordinated leg movement pattern, the results of CCA at
the first 1,000 s and the last 1,000 s of the simulation are displayed in Figs. 6 and 7.
The canonical correlation increases along with the increase of experience in uterus.
The first canonical vectors change from simultaneous forward or backward kicking
Fig. 7a to stepping to right or left Fig. 7b.

After the learning period, the fetal model was located on the floor without the
uterine model. In Condition 1 (Fig. 8a) and Condition 2 (Fig. 8b), the leg movements
did not perform stepping movements. In Condition 3 (Fig. 8c), the leg movements
perform stepping movements which are similar to primitive walking by term infants.

Finally, we show the appearance of the primitive walking experiment in Condi-
tion 3 in Fig. 9. The fetal model appears to move right and left legs alternatively,
such as primitive walking by real infants.



248 H. Mori and Y. Kuniyoshi

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Each 100 [sec]

co
rr

el
at

io
n

First cannonical correlation
Second cannonical correlation
Third cannonical correlation

Fig. 6 The change of
canonical correlation between
right and left foot

−0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

0.15

x [m]

y 
[m

]

Right foot path

Left foot path

Front

Back

First cannonical
vector for right foot

First cannonical
vector for left foot

0 - 1000 [sec]

−0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

0.15

x [m]

y 
[m

]

Right foot path

Left foot path

Front

Back

First cannonical
vector for right foot

First cannonical
vector for left foot

9000 - 10000 [sec]

a b

Fig. 7 Feet coordination at the first and the end of learning. Foot paths are illustrated for 100 s
in each time duration. First canonical vectors are calculated from the both feet paths for 1,000 s.
(a) 0–1,000 s; (b) 9,000–10,000 s

−0.1 −0.05 0 0.05 0.1 0.15
−0.12

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08

x [m]

y 
[m

]

Front

Back
−0.1 −0.05 0 0.05 0.1 0.15

−0.12
−0.1

−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08

x [m]

y 
[m

]

−0.1 −0.05 0 0.05 0.1 0.15
−0.12

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08

x [m]

y 
[m

]

Front

Back

a b c

Fig. 8 Results of CCA for a primitive walking experiment (1,000 s) with three conditions. (a) The
fetal model on a floor with random connectivity. (b) The fetal model above a floor with learned
connectivity. (c) The fetal model on a floor with learned connectivity
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Fig. 9 Primitive walking experiment with neural connectivity experienced in uterus

4 Discussion

The traditional perspective of development is that human development is scheduled
along with a built-in time clock, whereas the traditional perspective of learning,
such as reinforcement learning, is that learning is adapted to only a certain purpose
in the here and now. However, we do not think that the above two perspectives can
describe the human development efficiently.

According to the computer simulation in this paper, fetal intrauterine experiences
do not only shape intrauterine behavioral development but also primitive walking on
the ground, which contributes to walking development after birth. It is plausible that
the structure of a body and a nervous system under a dynamics for cognition and
behaviors is shaped (or prepared) through the interaction among the nervous system,
the body, and the surrounding environment in a self-organizing way before a certain
cognitive or behavioral development appear. This concept for human development
is similar to “pre-adaptation” in the field of evolutional study.

It is problem that the simulation duration, which is 10,000 s, is too short to
validate the model to explain the real fetal developments. An simple way to solve
the problem is that the gain from merkel cells to motor neurons and the learning
coefficient are identified from observation data of fetal behaviors. Finally, we should
execute “lifelong” simulations with realistic parameters.

We believe that this scenario contributes to novel therapy methods for preterm
infants to help with their walking development.
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Socially Developmental Robot based on
Self-Induced Contingency with Multi Latencies

Hidenobu Sumioka, Yuichiro Yoshikawa, Masanori Morizono,
and Minoru Asada

Abstract Early social development is a process that a human infant and his/her
caregiver adapt to each other. This paper presents a learning mechanism to find
the contingency of human-robot interaction in the real world, which is intended to
enable similar process to the mutual adaptation in the infant-caregiver interactions.
A contingency measure based on information theory is applied not only to acquire
behavior rules but also to find suitable latency to observe the found contingency.
Experimental results show that a robot can acquire a series of social behavior such as
gaze following and utterance to a human subject through 20 min interaction. Mutual
adaptation between them is discussed in terms of transition and synchronization of
their behavior, based on the analysis of the interaction data.
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1 Introduction

Human infants acquire a variety of social behavior and gradually socialize through
various interactions with their caregivers [1]. For example, they become to follow
the gaze of an adult and then begin to show gaze alternation, i.e., successive looking
between a caregiver and an object, and pointing. However, it remains unclear how
these abilities are acquired through multimodal sensorimotor association with their
caregivers.

When we try to understand such a learning process, we need to consider not
only the information processing for learning in an infant but also dynamics of the
interaction with a caregiver because the caregiver adapts himself/herself to infant
development. In other words, it is necessary to model mutual adaptation of dynamics
among cognition and actions of both an infant and a caregiver. However, it seems
difficult to study such adaptation and to understand how an infant adapts itself to its
caregiver. A simple computational model might miss key elements such as response
time to a caregiver.

We approach to reveal a basic mechanism underlying the dynamics of early social
development from a viewpoint of the cognitive developmental robotics [2]. As a
learning principle of an infant, we focus on contingency that refers to a rule of
environmental changes caused by a certain action given a certain context. Finding
contingencies in the interaction with another person is supposed to be the most
fundamental for early social development [3]. Synthetic studies have reported that
such ability allows a robot to acquire a social skill such as gaze following [4] and
detection of responses from another person [5]. Although some mechanisms based
on contingency or similar principles have been proposed for learning several motor
skills or social ones [6–8], computation time was unrealistic [8] or time interval to
find contingencies in the interactions was fixed [6–8].

In this paper, we build and examine a robot that extracts contingencies from the
interaction with a person and utilizes them as behavior rules for realizing mutual
adaptation with the person. A contingency measure proposed in [8] is applied not
only to find the behavior rules but also to improve them online in order to refine the
robot’s behavior during the interaction. It is also used to find suitable time intervals
between robot’s actions to highlight the found rules. Experimental results show that
a robot can acquire a series of social behavior such as gaze following and utterance
to the human subject through 20 min interaction.

2 Methods

We assume a scene of human-robot interaction where a person sits across from a
robot and tries to teach it colors of objects on a table between them (see Fig. 1). We
also assume that the robot detects the following information: locations of objects,
orientation of the human’s head, human’s utterance, and its own posture. The robot



Socially Developmental Robot 253

Fig. 1 An experimental
setup

executes actions such as gaze shift and vowel utterance. These senses and actions
are represented and processed in a discrete manner. The robot has no knowledge
about relations among them at the beginning.

Let sti and atj be a state of sense Si and a motor command for act Aj at

time t , respectively. Contingency among stk , atj , sti , and stC
tk , is measured as the

reliability of the transition rule from stk to stC
tk caused by atj given sti . We refer to
a combination (SkjSi ; Aj ) as an event. The task of the robot is to find several events
with larger expected values of contingencies than other possible events. The found
values are then exploited for learning behavior rules and for tuning time interval
t
between its actions so as to highlight the contingencies.

We use the information theoretic measure proposed by Sumioka et al. [8],
called C-saliency, to evaluate contingencies in each event. C-saliency of an event�
SkjSi ; Aj

�
is given by:
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where TY!X shows transfer entropy [9] representing the dependency of a processX
on a process Y , and e.stC
tk ; atj j stk; sti /, called an element of C-saliency, indicates

the reliability of the contingency among stC
tk , stk , atj , and sti . A behavior rule is
defined as selecting an action with the highest element of C-saliency.

The robot incrementally acquires behavior rules based on the extended mech-
anism of the previous method proposed in [8] (Fig. 2). The mechanism includes
a prediction evaluator to ignore doubtful behavior rules and a timing adjuster to
tune time interval for each rule to highlight the found contingencies, in addition
to four existing modules: (1) a contingency detector; (2) contingency reproduction
modules (CMs) that output motor commands according to behavior rules; (3)
reactive behavior modules (RMs) that output ones according to pre-defined rules;
and (4) a module selector.

RMs and CMs output motor commands to be executed and the reliability values
that are computed based on elements of C-saliency. The reliabilities are used by the
module selector to decide robot’s actions after they are modified by the prediction
evaluator. The history of the state and the selected motor command are stored with
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Fig. 2 The proposed mechanism

the resultant state in the contingency detector to find a contingent event and to
generate subsequent CM based on it. A behavior rule in the CM is updated online
so that the C-saliency of the contingent event increases, while it was fixed in [8].

Although a robot and its caregiver were assumed to alternately act at a fixed
time interval in the previous model [8], it is not likely in the real world interaction.
The timing adjuster finds an appropriate time interval to observe contingent change
caused by the last action of the robot, based on the prediction of the change. This
module allows the robot to take its next action at different interval.

3 Results

We implemented the proposed mechanism into a humanoid robot and observed
its interaction with a person during about 20 min. In the interaction, the person
responded to its behavior and tried to draw its attention to an object. The robot’s
senses and acts were given and represented by six sensory variables, allowing
the duplicated definitions for the same property, and two action ones: orientation
of person’s head (S1), a state of an object (S2), person’s utterance (S3), person’s
frontal face (S4), person’s profile (S5), own posture (S6), gaze shift (A1), vowel
utterance (A2).
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P2

a

b

P3

P1

Fig. 3 Change of robot’s
behavior in face-to-face
interaction. (a) change in
gaze shift (b) change in
utterance. One step in the
horizontal axis indicates an
action selection of the robot.
The vertical one indicates the
moving average of the
occurrence rate of each
behavior among the last 50
steps. The timing of
generating new CMs is shown
as arrows at the top of the
graphs

The robot was able to acquire various behavior rules with different time intervals,
although their types, orders, and intervals depended on the history of the interaction.
We pick up and analyze a case where it acquired some social skills. Fig. 3 shows the
change of its behavior through the interaction. The robot found a rule in (S3jS2; A2)
that its utterance to an object causes human’s utterance (U-1) and then often chose
to utter a vowel when looking at an object (green line in Fig. 3b). Then, it become
to often keep its gaze on an object due to the next rule found in (S2jS6; A1) at G-1
(cyan line in Fig. 3a). After that, the utterance during looking at the person (red line
in Fig. 3b) and shifting its gaze to the person given human utterance (magenta line
in Fig. 3a) increased from U-2 and G-2, respectively. Finally, it became to follow
the person’s gaze by using the rule found in (S2jS1; A1) at G-3 (red line in Fig. 3a).
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Fig. 4 Examples of probability distributions of the contingent changes observed during 4.5 s after
the last robot’s action. The red and blue lines show the case of contingent change for an object
(G-1) and one for a human (U-1), respectively

An analysis of time intervals found by the robot revealed different tendencies
between events concerning objects and those concerning the person (Fig. 4). The
time interval for objects had a peak immediately after the last robot’s action
while one for the person was observed a few seconds later which is considered
to correspond to the duration between a robot’s action and a human response. As
a result, longer interval was observed when a contingent change concerning the
person was expected, compared to one concerning an object.

We observed changes of the dynamics of person’s behavior as well as ones of
the robot (see Fig. 5). The person increased the utterance to an object (blue line in
P1 of Fig. 5b) as the robot increased its utterance to an object (green line in P1 of
Fig. 3b). The person’s utterance to the robot was often observed when the robot kept
its gaze on an object (aqua line in P2 of Fig. 3a and red one in P2 of Fig. 5b). When
the robot became to follow the person’s head (red line in P3 of Fig. 3a), the person
often uttered a vowel to an object (blue line in P3 of Fig. 5b). Since the changes in
the person seem to synchronize with ones in the robot, mutual adaptation between
them might cause the transition of interaction patterns.

The synchronization between the person and the robot was also observed in terms
of the timing of their actions. They took actions alternatively as the interaction
develops: the ratio in Fig. 5c approached to one. The time interval between their
actions seemed to get shorter (data not shown).

4 Discussion and Conclusion

The proposed mechanism allowed a robot to acquire a series of social behavior
through interaction with a person. Moreover, mutual adaptation between the person
and the robot was observed in terms of transition and synchronization of their
behavior. Although similar tendencies were observed among some of persons, there
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Fig. 5 Changes of human’s behavior. (a) Change in gaze shift of the human. (b) Change in
human’s utterance. (c) Transition of the ratio of the number of actions to a robot’s action. A step in
the horizontal axis shows the robot’s action selection. The vertical one shows the moving average
among the last 2 min before robot’s action

was a diversity of their behavior patterns. Further analysis on the influence of
person’s behavior on learning of the robot will shed light on how the behavior of
a caregiver facilitates early social development.

It is noteworthy that the changes in the robot and the person were observed
through the 20 min interaction. By virtue of the shorter time scale necessary for
mutual adaptation, the proposed system is expected to provide a new research field
where early social development can be synthesized and examined through human-
robot interaction.
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On the Brain’s Dynamical Complexity:
Coupling and Causal Influences Across
Spatiotemporal Scales

Emmanuelle Tognoli and J.A. Scott Kelso

Abstract The goal of this paper is to reflect on how neural ensembles affect
one another, that is, to characterize their causal influences. The work is based
on the tenets that function emerges at several levels of organization between
micro- and macro-scale and unfolds on multiple time scales. Such dynamical
context creates the condition for complexity and blurs the classical Shannonian
definition of transmission upon which causality can be unambiguously established.
Our arguments are supported by analysis of models of and empirical support for
spatiotemporally metastable brain dynamics: a scale-independent self-sustained
regime in which integration (tendencies for the parts to act in a coordinated manner)
and segregation (tendencies for independent behavior) are simultaneously realized
in space and time.

1 Introduction

Function is a fundamental concept for biological systems. It rests on two foun-
dations. The first one is coordination between parts of the system. As a matter
of fact, it is difficult to imagine any function produced by just one biological
entity: a single thing “is” but does not “do”. In effect, exchange of information,
energy or matter between parts creates functional coupling or synergies, from which
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function emerges [1]. The second foundation is dynamics: for the system to adapt
to ever changing external and internal milieu, it is proscribed that interactions
between its parts would be fixed. This is most evident when studying the cognitive
brain.If spatiotemporal patterns of brain activity ever freeze rather than perpetually
change, thinking, memory, perception, emotion, action and consciousness vanish
hopelessly. Within the framework of Brain Coordination Dynamics, and its key
concept, metastability [1–3], here we explore how functionally meaningful neural
ensembles influence each other. After a theoretical discussion of concepts (Sect. 2),
we will consider two types of informational paths, that of synaptic coupling of
neurons (Sects. 3 and 4), and that of extracellular neuromodulation of neural
ensembles by global neural fields (Sect. 5).

2 Functional Coupling: Irregular Contours in Space�Time

The brain exhibits organized activity at many spatial and temporal scales, in which
neural ensembles couple and uncouple dynamically. This complex spatiotemporal
patterning has been demonstrated empirically, both at rest and during interac-
tion with the environment. The fact that change in spatiotemporal organization
arises spontaneously (and with it, associated itinerancy of the mind) imposes
specific constraints on our theories of the brain: a plausible theory should explain
changing spatiotemporal patterns from within, without resort to inexplicit control
mechanisms, the brain’s deus-ex-machina. Theories have proposed that the brain’s
dynamically coordinated behavior is accomplished under the rule of attractors
[1, 4, 5] or more flexible attractor remnants [1, 3, 6] or both [2]; in the presence of
attractors, spontaneous changes in brain coordination dynamics are obtained from
multistability on one end, and noise (rest) or incoming energy (stimulation) on the
other; in the absence of attractors, spontaneous changes naturally occur as attractor
remnants are successively visited and escaped from. A model of coupled oscillators
that exhibit simultaneous phase-locking (attractors) and metastability (attractor
remnants) is that of Kuramoto and Battogtokh [7]. In this model, oscillators that
do escape phase-locking were initially described as following an “incoherent”
behavior [7]. We have demonstrated that their dynamics exhibited dwell� escape
patterns of relative phase behavior that is characteristic of metastability [8]. Study
of this model revealed that integrative tendencies exist within irregular space� time
contours (Fig. 1). Over time, larger or smaller ensembles integrate their activity,
and from the complementary spatial standpoint, oscillators join collective behavior
for longer or shorter periods of time. The resulting space-time portrait of this
behavior (in the Minkowski sense) reveals irregular contours: a challenge for
separate spatial or temporal approaches (see boxes, Fig. 1) that if not addressed,
limits our understanding of brain complexity.

By relaxing the constraints on spatial and temporal order simultaneously (Fig. 2),
spatiotemporal metastability also presents the joint possibility for integrative
behavior and information flows. It offers a compromise between two radical views
in which the brain is deemed to function in terms of information propagation (in the
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Fig. 1 From Kuramoto and Battogtokh’s chimera model [7], a space 	 time portrait of integration
is shown. Oscillators are represented on the vertical axis and their partaking in collective behavior
over time (horizontal axis) is encoded following the color scale on the right (integrative tendencies
in yellow; segregative in dark red). Integrative behavior emerges in a space 	 time domain that
has irregular contours (yellow surface) which are not properly captured by techniques that follow
only a spatial or temporal approach: as black rectangles suggest, only a fraction of the integrative
behavior is expressed in such partial approaches, namely those with less complex and dynamical
coordination behavior

Fig. 2 A conceptual view of
the spatial and temporal order
in the behavior of neural
ensembles. Concepts of order
in time (blue, “transfer”) and
space (red, “synchroniza-
tion”) have been most
studied. In their pure form,
each hampers the meaningful
expression of the other.
Complexity lives in the dark
areas of this diagram
(spatiotemporal metastability)
-with its mixture of
integrative and segregative
tendencies in space	 time

strict Shannonian sense) or coupled oscillations [e.g. 1, 4, 5, 9]. Yet, metastability
creates difficulties with the interpretation of the direction of information flow which
emerge at multiple levels of description and become dependent on spatial and
temporal scales, as we further discuss in Sect. 3.

3 Causality in Simple and Complex Systems

Coupling is a concept more akin to spatial order (Sect. 2), whereas causality
relates more closely (albeit not exclusively) to temporal order. In this latter
respect, a substantial part of today’s neuroscience paradigm draws from Shannon’s
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“Mathematical Theory of Communication” (1948) [10]. This seminal paper
describes transfer of information between emitter and receiver in telecommunication
networks, and implies two fundamental boundaries: discrete communication acts,
and well-defined direction for the transfer of information in unique channels.
In a single channel of communication with emitter and receiver as defined by
Shannon [10], to define causality, it suffices to track the temporal ordering of
information to determine the system’s causal flows. The paradigm’s success in
Neuroscience owes much to the fact that it works sufficiently well insofar as
only two brain components are isolated: with their directional interactions, a pair
of neurons immediately comes to mind as an ideal substratum for Shannonian
transmission. Even in a more complicated system composed of multiple components
and reciprocal connectivity, if the system is initially silent and then subjected to
external stimulation, its transmission path(s) can readily be identified. But the
brain as a whole is operating in a self-sustained nonequilibrium regime [1, 6,
11–13], and is not amenable to such formalism: if observed for sufficient time
especially at meso- and macro-levels, it is clear that parts of the brain “talk”
continuously and simultaneously to each other: they are self-organized. When
there is energy input coming in (for instance, a stimulus entering the system
through sensory receptors), what happens is not the recruitment of mute regions
that suddenly enter into action -each at their turn- and return to rest. What happens
instead is that the ongoing coordination is “perturbed” and ripples across the many
spatial and temporal scales at which brain self-organization lives. The “event”
is woven into the brain’s ongoing activity. In this (general) case, causal influences
between brain parts are much less straightforward to define. Since information flows
cannot be described as departure from equilibrium states, well-defined causality is
restricted to narrow spatiotemporal windows in the vicinity of a particular “input” or
“event” (see also fig. 5 from Izhikevich and Edelman [14] for related account). And
because observation windows are finite, empirical quantifications of information
flows are restricted: lack of information about the system’s past prevents accurate
characterization of ongoing dynamics and its coupling with incoming information
(see Sect. 4).

4 Entangled Precedence

We have argued that spatiotemporal metastability prevents stagnation of information
flow, while simultaneously allowing for collective (coordinated) behavior (Fig. 2).
The challenge becomes to determine which brain parts influence which others,
through space and time, and across their respective scales of observation (Fig. 3).
When emitter and receiver are not a priori defined, a useful concept is that of
precedence (Sect. 3). However, even in the simpler case of the resting brain
transiently removed from external input, its intrinsic dynamics includes continuous
exchange of information between the parts (A-causes-B-causes-A : : : ), and salient
“causes” to any neural event exist at multiple times in the history of the system’s
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Fig. 3 Functional nodes across spatial scales shown at two successive time points t and tC1:
the dendrograms link microscopic parts (bottom) according to their momentary coupling. Every
node influences every other at all times, with a finite strength k(iti,jtj). A few nodes are marked
to exemplify upward and downward causation (e.g. influence of B on C, and vice-versa),
instantaneous (e.g. A on B) and delayed (D on E) causality. An important challenge is to discover
key causal nodes in this system: which set of relationship is strongest across spatial scales, within
and across time [15]

self-organized dynamics: causes are entangled over continuous and reciprocal
information exchange. To understand spatiotemporal influences between brain
parts requires one to confront this “entangled precedence”: that is, to incorporate
precedence and causality from Shannonian systems (Sect. 3) with ongoing coupling
expressed at multiple time scales (Sect. 2), which, under metastable regimes of
coordination, fluctuates over time.

Rather than attempting to identify causality in a time-independent manner, a
solution consists of quantifying its manifold expression across temporal and spatial
scales (which are interrelated: see e.g. Fig. 1). Figure 3 shows a dendrogram that
clusters phase similarity of neural ensembles over spatial scales at different times.
Each node of the dendrogram speaks of a transient neural ensemble, which exerts
a finite influence k on each of the other nodes. The strongest directional couplings
between pairs of nodes in the system reveal key causal relationships.

5 Beyond Synapses: Dendritic Sensing
of the Extracellular Field

So far, we have only explored (slow) information exchange via synaptic coupling.
This scheme of information exchange suffers delays of several tens of milliseconds
for the communication of information between most distant neural groups. Dendritic
trees however are exposed to two types of information: that delivered through their
synaptic contacts and that due to local fluctuations in the ionic composition of extra-
cellular space. This raises the theoretical possibility that neurons attune themselves
to specific aspects of extracellular fields, using their spatially extended dendritic
branches to appreciate extracellular gradients and to sense the global patterning of
the brain near-instantaneously. According to this suggested mechanism, the brain
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would be endowed with two ways to exchange information, one global and fast, the
other local or selective and slow. Such a mechanism could have a profound impact
on the definition and quantification of coupling and causality in the brain.

6 Conclusion

Identifying information flows in the brain constitutes an important challenge with
significant consequences: for instance, with such knowledge, ideal functional nodes
for therapeutic intervention could be discovered and operationalized. We have
stressed that brain complexity constitutes an obstacle to the unambiguous and
unique definition of causal paths in the brain. We discussed whether causality : (1)
is uniquely defined by the structural network; (2) is context-dependent; (3) flows
in an identical manner across spatial scales of description; and (4) is expressed
in a similar manner across different temporal scales. These considerations point
toward the importance of spatiotemporally metastable dynamics for understanding
the workings of the brain.
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Formulating a Cognitive Branching Task
by MTRNN: A Robotic Neuroscience
Experiments to Simulate the PFC
and Its Neighboring Regions

Fady Alnajjar, Yuichi Yamashita, and Jun Tani

Abstract The foremost objective of our research series is to construct a neuro-
computational model that aims to achieve a Large-Scale Brain Network (LSBN),
and to offer a better insight of how the macro-level anatomical structures, such
as the connectivity between the frontal lobe regions and their dynamic properties,
can be self-organized to obtain the higher order cognitive mechanisms. To address
this issue, this paper focuses in proposing a model that intends to understand the
mechanisms underlying the cognitive branching function, a higher order cognitive
mechanism, in which a delaying to the execution of an original task occurs until the
completion of a subordinate task. The model is constructed by a hierarchical Multi-
Timescale Recurrent Neural Network (MTRNN) and conducted on a humanoid
robot in a physical environment. Experimental results suggest possible neural
activities and network’s layout at the investigated regions that act as an important
factor to accomplish such a task.

1 Introduction

Defining the functional organization of the frontal lobes and its neighboring regions
in the human brain remains a significant challenge for cognitive neuroscience. The
importance of such areas is its responsibility to operate higher cognitive functions
and controls [1]. Although many studies have provided various assumptions of
how the neurons on the frontal cortex are organized, connected, functioning and/or
communicating, through neuropsychological, and neuroimaging studies [1, 2], these
assumptions are still in a very abstract level [1]. The common argument is mainly
that the frontal regions along the rostro-caudal axis interact with one another
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hierarchically [3]. The more anterior regions on the brain influence processing
in the more-posterior regions to a greater extent than vice versa. Although this
issue has been so far generally formulated in phenomenological terms, their
functional organization remains controversial. The question is how such hierarchal
connectivity between the frontal lobes and the dynamic properties of each of its
local region, can be self-organized to obtain the higher order cognitive mechanisms,
such as planning, reasoning, cognitive branching, etc.

Neurocomputational models attempt to establish detailed links between biology
and cognition in a way that is consistent with established neural information
processing principles. Their main advantages are being able to describe functional
principles of how the simulated neural system in the brain operates in a relatively
comprehensible set of equations, which makes it a powerful tool for studying
mechanisms of neural systems. MTRNN model has been considered as a suitable
candidate to simulate, to some extent, the brain activities [3]. It has been proven to
achieve the function hierarchy through a form of self-organization that is not only
based on the spatial connection between neurons but also on multi distinct types of
neuron activities, each with different time properties. Through such various neuron
activities, continuous sequences of any set of behavior are segmented into reusable
primitives which in turn are flexibly integrated into diverse sequential behaviors.
The biological observation of such a type of hierarchy has been discussed in details
by Badre [1], who suggested that levels of abstraction might gradually reduce along
the rostro-caudal axis in the frontal cortex of the monkey and human brain. Others
have also addressed that the rostral part is considered to be more integrative in
processing information than the caudal part due to its slower timescale dynamics,
which result in such a formation of functional hierarchy in the frontal cortex.

The purpose of this paper, therefore, is to construct a neurocomputational model
of the frontal lobes based on anatomical and functional image data collected from
the brain of monkey and human [1, 2]. The proposed model will aim to pave
the way to achieve a large-scale brain network, and to offer a better insight of
how macro-level anatomical structures can be self-organized to obtain the higher
order cognitive mechanisms. More precisely, we are trying to understand how the
dorsolateral prefrontal cortex (BA9/46) with its neighboring regions, such as the
lateral frontopolar cortex (BA10), the premotor cortex (BA8&6), and the primary
motor cortex (BA4) are structured and linked to ruling the cognitive branching task,
in particular (Fig. 1a).

The validity of the resulted model is examined and analyzed through a variety
of robotic experiments. We believe that this proposed study can be considered as
a joint research between the synthetic and the empirical studies, which can open a
new era for better understanding of brain mechanisms.
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Fig. 1 (a) Anatomical sites of area of focus on the human brain. (b) The proposed MTRNN model

2 Methods

2.1 Task Design

A small humanoid robot was used in the role of a physical body interacting with
the actual environment Fig. 2. The robot was fixed to a stand, with tasks involving
movement of the head and the right arm of the robot. The arm moves with 4ı of
freedom m t̂ (4 dimensional vectors representing the angles of the arm joints), and
the head motor moves with 2ı of freedom s t̂ (2 dimensional vectors representing
the stimulus position (a red mark)). The joints of the robot have rotation ranges
which are mapped to values [0.0� 1.0]. Encoder values of these arm joint sensors
are received as the current proprioceptive sensory feedback and sent to the network.
A vision system mounted on the robot’s head was programmed to locate a red mark
on the workspace. The direction of the robot’s head, indicated by encoder values
of two neck joints, expressed the object position in the visual field relative to the
robot. This relative location of the object was treated as visual input to the system
to observe the stimulus status.
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Fig. 2 The workspace and the robot tasks

For the workspace, a workbench was set up in front of the robot. A sheet of a
white paper, which shows four numbers and moveable red mark, was placed on the
workbench to conduct the experiment Fig. 2. The robot’s task was to autonomously
reproduce a cognitive branching behavior: (1) Start an original task: dialing a certain
sequence of numbers by clicking on these numbers using its right arm index finger
whenever the red mark is replaced on the initial position. (2) When an external
stimulus appears, i.e. the red mark is placed to one of the interruption positions (I1,
I2, I3), the robot should suspend working on its original task until accomplishing the
interruption subtask (clicking directly on the red mark). (3) When the red mark is
returned to its initial position, which is a Go-Back signal, the robot should resume its
outstanding original task starting always from the arm in its Home-Position (Fig. 2).

2.2 System Overview

The main component of the current model is borrowed from a Continuous Time
RNN (CTRNN) [4]. CTRNN is a type of RNN that implements a feature of
biological neurons, thus the activities of neurons are determined not only by the
current synaptic inputs but also by the history of neural states. Due to these
characteristics, CTRNN can reproduce complex dynamics, and continuous sensori-
motor sequences.

To construct a hierarchy structure of CTRNN, we adopted the model of the
MTRNN (Fig. 1b). The functional hierarchy in MTRNN is made possible through
the use of three distinct types of neurons, each with different temporal properties.
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The first type of neurons is the “fast” unit, whose activity change quickly over the
short term. The second type of neurons is the “mid” unit, whose activity change over
time between the fast and the slow unit, which in turn represents the third type of
neurons “slow unit”.

In the model, inputs to the system were the proprioception m t̂ and the vision
sense s t̂. Based on the current m t̂ and s t̂, the model generated predictions of
proprioception mtC1 for the next time step (vision is not predictable since it is
randomly occurring). The prediction of the proprioception mtC1 was then sent to
the robot in the form of target joint angles, which acted as motor commands for
the robot in generating movements and interacting with the environment. For the
initial teaching signal, the experimenter guided the robot’s right hand along the
trajectory of each task sequences. These trajectories were then recorded and used,
in an off-line manner, as teaching sequences to the model using the conventional
Back-Propagation Through Time (BPTT). The learning target was to find optimal
values of synaptic weights that minimizing the error between teaching sequences
and the model output.

Neural activity in the model can be described by the following differential
equation [3]:

�i Pui;t D �ui;t C
X

j

wij xj;t (1)

where ui,t is the membrane potential, xi,t is the neural state of the ith unit, and wij

is synaptic weight from the jth unit to the ith unit. The second term of the equation
corresponds to synaptic inputs to the ith unit. The time constant � is defined as
the decay rate of the unit’s membrane potential, analogous to the leak current of
membrane potential in real neurons. When the � value is large, the activation of the
unit changes slowly, because the internal state potential is strongly affected by the
history of the unit’s potential. On the other hand, when the � value of a unit is small,
the effect of the history of the unit’s potential is also small, and thus it is possible
for activation of the unit to change quickly.

The network that was used in the current model consisted of input-output and a
context unit. Context unit was divided into three groups based on the value of time
constant � . The overall connection between the units in the model is as shown in
Fig. 1b. The setting of neuron initial states are self-organized through the learning
process [5], thus the initial values which correspond to the same behavior are very
close to each other in the state space of initial values.

2.3 Training

Through the training process, the network learns gradually to predict the motor
feedback for the next time step. After teaching the network in a closed-loop manner,
the robot in turn will be able to reproduce the learned movements.
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Fig. 3 Example of behavior sequences for (a) multi task TA with an interruption (I1), (b)
multi TB with I1, and (c) multi TA with I1 (different initial synaptic weights). The trained
networks reproduced target behavior sequence successfully (teach modeD trained network output
(simulation mode)). In this example, fast-unit (£D 3), mid-unit (£D 8), and slow unit (£D 40).
Due to different initial synaptic weights, different neural representations that can affect long-term
memory stability have been observed during the experiments

Three learning trials were conducted with randomized initial synaptic weights.
Optimal trained weights were then tested through the interaction of the robot in
the simulation and the physical environment. Figure 3 illustrates an example of the
trained model generated by mental simulation while performing Task A and Task B.
In our experiment, both in mental simulation and in the actual robot interacting
with a physical environment, the trained network reproduced the desired behavior
successfully.

2.4 Results

In the first example, Fig. 3a and b, when the robot reproduces the movements of a
task, the slow context unit changes gradually and systematically without showing
the details of the motor moving patterns (represents a very abstract manner).
Accordingly, no significant discrimination between the original and the interruption
task can be observed in this unit.

The mid-unit, in contrast, shows better the distinction between these tasks. The
repetitions of similar patterns, e.g., click 1, click 2, etc., are also observed partially
in the mid-unit activities, and in more details in the fast-unit (results are not shown).
These results suggest that the robot, in this example, has indeed encoded the memory
of the original task in the slow unit, forming a role similar to that of the parametric
bias [3]. Such a memory formation build a static-type memory, which helped the
robot to have stability when dealing with a multi and/or long term interruption task,
as has been experimentally observed.

In the second example, Fig. 3c, on the other hand, the slow context unit seems to
be much involved in encoding both the original and the interruption tasks, which
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in turn leads to form a dynamic-type memory that decreases the robot memory
stability. If the interruption task occurs for a longer period, for instance, all the
units, including the slow unit, will gradually tuned to fit with the interruption task
making returning to the original task impossible. This phenomenon has also been
experimentally observed.

3 Conclusions and Future Directions

In this study, the proposed model successfully situated itself to perform properly
the desired behavior; suspending an original task up to the time of the completion
of the extraneous subtask. The result analyses outlined how both the mid- and the
slow units could work to form the memory by delaying the outstanding task. The
memory formation (static or dynamic), however, seems to be highly affected by
the randomized initial synaptic weights. From the results, we believe that this work
could contribute as a possible neural implementation for a better insight of how
macro-level anatomical nodes in the frontal lobe are dynamically structured and
organized to obtain such a higher order cognitive mechanism. An important issue
for the future directions will be to scale both the model and the task into a further
complex level: as for the model, it is important to look at the direction and the
strength of connection between the local units. While as for the task, we are planning
to conduct an additional switching task and compare between its neural dynamics
and the reported dynamics from the current task. It will be also interesting to try to
enhance the interruption task to occur not only in the HP period but also in between
the task sequences itself.

Acknowledgments Use of the robot was made possible through a collaboration with SONY
Corporation.
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Neurodynamical Account for Altered Awareness
of Action in Schizophrenia: A Synthetic
Neuro-Robotic Study

Yuichi Yamashita and Jun Tani

Abstract We hypothesize that altered awareness of action in schizophrenia may
arise from disturbance of the forward model originating in functional disconnection
in a hierarchical neural network. The proposed idea was tested through a neuro-
robotic experiment using a hierarchical neural network model connected to a
humanoid robot interacting with a physical environment. The results demonstrate
that not only top-down forward dynamics, but also bottom-up regression processes
driven by prediction error are important mechanisms for flexible adaptation to
unpredictable changes in environment. In the simulated functional disconnection, in
contrast to the normal condition, it turns out that this bottom-up regression process
generates unnecessary modulatory signals which may induce altered awareness of
action in patients. These results suggest that the proposed hypothesis may provide
novel insight for understanding the pathological mechanisms of schizophrenia.

Keywords Prediction error • Neural networks • Hierarchy • Disconnection •
Motor control

1 Introduction

It is generally thought that complex and diverse behavior of animals result from
functional hierarchy of the neural systems [1, 2]. In such hierarchical neural
systems, top-down and bottom-up interactions play an important role for flexible
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adaptation to the environment. For example, in a cognitive task such as the
Wisconsin card sorting test, a subject selects a response based on an internally
represented task context (i.e. a current appropriate matching rule) in a top-down
manner. During the course of the test, the matching rules could be switched by
the experimenter with unpredictable timing, resulting in a discrepancy between
top-down prediction and the actual feedback. Based on this discrepancy signal,
the task context should be modulated so as to match with the current appropriate
rule (bottom-up regression). This interaction between top-down and bottom-up
processes in a hierarchical network could allow animals to produce skillful behavior
and to achieve flexible adaptation to changes in environment.

However the underlying neural mechanisms governing the interactions between
top-down and bottom-up processes in hierarchical neural systems have not yet been
clarified. In the previous studies, Tani [3] showed that a robot can produce adaptive
behavior through the top-down prediction and bottom-up regression processes
using a simple computational principle of minimizing prediction error. Based on
a similar idea of minimizing prediction error, but using a statistical formulation,
Friston [4] also proposed a computational model as a general principle of brain
functions. In the current study, we test these hypotheses through examining a
pathological symptom of neuropsychiatric disease as a failure in the interaction
of top-down and bottom-up processes in hierarchical neural systems. Specifically,
we focus on a symptom of altered awareness of action (delusion of control) in
schizophrenia.

Delusion of control is one of the characteristic symptoms of schizophrenia, where
a patient feels that his actions are generated not by himself but by some outside
force, even though his action itself is basically intact. Some biological observations
suggest that delusion of control is associated with abnormal functionalities in the
prefrontal cortex and the parietal cortex [5]. However, there is little evidence for
the anatomical abnormalities in those local regions. Based on this fact, Friston
proposed a hypothesis that basic pathology of schizophrenia may be associated
with functional disconnectivity between prefrontal and posterior brain regions (i.e.
“disconnectivity syndrome hypothesis” [6]).

This pathological phenomenon is also considered from the aspect of motor
control theory. Frith [7] hypothesized that delusion of control arises due to a failure
to form the sensory prediction of action (“forward model hypothesis”). According
to this hypothesis, the sense of agency (awareness that one executes and controls
one’s own action) is based on the sensory attenuation which occurs when the
forward prediction of action consequences matches the actual sensory feedback. In
schizophrenic patients, due to the impairment of forward model, mismatch between
the forward prediction and actual sensory feedback would arise. As a result, altered
awareness of action may be induced, even though patient’s action itself is intact [7].

In the current study, we unite these two lines of theory. We hypothesize that
delusion of control may arise from disturbance of the forward model originating
in functional disconnectivity in a hierarchical network. In order to test this idea,
we developed a hierarchical neural network model connected to a humanoid robot
interacting with a physical environment.
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2 Methods

The task for the robot was to repeatedly reproduce the following series of sequential
behavior associated with positioning an object: (1) move the object up and down
three times at the position L, (2) move the object from the position L to the
position R, (3) move the object left and right three times at the position R, (4)
move the object from the position R to the position L. This sequence is described
by the state transition diagram in Fig. 1a. In addition to producing the periodic
behavior sequences, the robot was also required to adapt to unpredictable sensory
perturbation. Specifically, during execution of task behavior, the position of the
object was switched by an experimenter with unpredictable timing.

Figure 1b shows an overview of the system. Inputs to the system were the
proprioception and the vision senses. Based on the current input, the system
generates predictions of proprioception and the vision senses for the next time step.
The forward prediction of the proprioception was sent to the robot in the form of
target joint angles, which acted as motor commands for the robot in generating
movements.

The main component of the system was modeled by a “multiple timescale
recurrent neural network (MTRNN)” [2] which is a type of a continuous time
recurrent neural network. The model of neurons is a conventional firing rate model,
in which each unit’s activity represents the average firing rate over a group of
neurons. The continuous time characteristics of the MTRNN are described as
follows,

�i Pui;t D �ui;t C
X

j

wij xj;t (1)

where ui,t is the membrane potential and xi,t is neural state of the ith unit at time t.
The MTRNN is made up of two different types (fast and slow) of context units,
each type with its own distinct time constant � (multiple timescale). Through the
introduction of the multiple timescales, functional hierarchy, within which the slow
units represents task context states as a higher level and the fast units represents
sensori-motor interaction as a lower level, can be self-organized [2].

Fig. 1 (a) Robot task and (b) system overview
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A network was trained by means of supervised learning (back-propagation
through time algorithm (BPTT)) using teaching sequences obtained through tutoring
by the experimenter. The objective of training was to find optimal values of
connective weights minimizing sensory prediction error.

In order to achieve quick adaptation to environmental changes, we also
introduced a bottom-up regression process [3], in which task context states were
modulated so as to minimize prediction error (Fig. 1b). In the current model,
we introduced conflict resolver (CR) units which modulate activities of the slow
context through the bottom-up regression process. The role of CR units is similar
to a “parametric bias” [3], in the sense that activity of the CR unit can be modified
only through the regression process, not by external inputs. Update of CR activity
is calculated as follows,

pet D
tX

sDt�l

X

i2O
Oyi;s log

	 Oyi;s
yi;s



(2)

where pet is prediction error within time window l at time step t, error is determined
as a KL-divergence between the prediction of the network yt and actual feedback
Oyt . Membrane potential of the CR unit is updated in a direction opposite to that of
the gradient @pe/@u, which is calculated using BPTT algorithm. Interested readers
could find details of the calculation as described in our previous work [3].

In order to simulate disconnection syndrome, connective weights between the
slow (task context level) and fast (sensori-motor level) context units were slightly
modified by adding random noise.

3 Results

As a result of training, the proposed network successfully reproduced learned
task behavior with the interaction of robot’s body and a physical environment.
Moreover, the robot successfully adapted to unpredictable sensory perturbation,
through the bottom-up modulation of task context. Figure 2 illustrates an example of
sensori-motor sequences and changes in the activities of the trained network during
robot’s task execution. Due to the unpredictable switch of the object’s position,
prediction error was temporally increased. This increase of prediction error induced
the activation of CR units resulting in the modulation of task contexts represented
in the slow units.

In the simulation of disconnection syndrome, despite no external sensory pertur-
bation, intermittent increases of the prediction error were observed (Fig. 3). This
indicates that functional disconnection in a hierarchical network led to impairment
of forward prediction. However, the increase in prediction error induced the acti-
vation of CR units resulting in the context states of the higher level of the network
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Fig. 2 Example of behavior sequence with sensory perturbation by experimenter. Arm: 4 dimen-
sional joint angles, Vision: relative position of the object (x–y axis), Pred error: prediction error
accumulating for past ten steps. A long sideways rectangle indicates the single unit activity of fast,
slow, and CR units over many time steps. Activation level was indicated by the intensity of grey
scale

Fig. 3 Example of behavior sequence with simulated functional disconnection

being automatically modulated so as to minimize prediction error. As a result of this
top-down and bottom-up interaction, the robot was able to generate seemingly nor-
mal behavior. Modulatory signals resulting from the functional disconnection were
equivalent to those from external sensory perturbations. These observations suggest
that, the modulation signal induced by internally generated prediction error might
account for the feeling that the patient’s action is affected by some outside force.
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4 Discussions

We demonstrated that not only top-down forward dynamics, but also bottom-
up regression processes driven by prediction error are important mechanisms
for flexible adaptation to unpredictable changes in environment. In contrast to
the healthy condition, in the simulated disconnection syndrome, this bottom-up
regression process generates unnecessary modulatory signals even in the predictable
environments. This unnecessary modulatory signal may induce altered awareness of
action in patients. These results of the robot experiments support the hypothesis of
the impaired forward model resulting from functional disconnection in a hierar-
chical network and may provide novel insight for understanding the pathological
mechanisms of schizophrenia.

The current study also showed that production of sequential behavior and flexible
adaption to changes in environment can be realized based on a simple computational
principle of minimizing prediction error. This result is consistent with the idea that
minimizing prediction error may act as a general principle of the computation of the
brain conducted in different levels and various modalities [3, 4].

Acknowledgments Use of the robot was made possible through the collaboration with SONY
Corporation. This work was partially supported by KAKENHI (#23700279).
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Self-Organizing Dynamic Neural Fields

Nicolas P. Rougier and Georgios Is. Detorakis

Abstract In this paper, we propose a model of cortical self-organization based
on the dynamic field theory. Learning is made through the modification of feed-
forward connections using a time invariant learning rule that allows for dynamic (or
life-long) learning. This preliminary model suggests that cortical plasticity may be
conveyed through feed-forward connections only while cortico-cortical connections
role would be to ensure dynamic competition among cortical columns.

1 Introduction

We introduced in [1] the dynamic self-organized map architecture that is a variation
of the self-organizing map algorithm [2] where the original time-dependent (learn-
ing rate and neighborhood) learning function has been replaced by a time-invariant
learning rule. This modification allows the network to support life-long learning and
may explain to some extent cortical plasticity. However, current implementation is
not biologically plausible since it requires a central supervisor (to designate the
winning unit) and the neighborhood influence is computed using a function.

This article introduces preliminary results concerning a biologically plausible
implementation using numerical, distributed and local computations, based on the
original dynamic neural field definition [3].

The concept of self-organization using lateral connections is well-known and
well-investigated, especially by Sirosh and Miikkulainen [4] and Bednar et al. [5].
In those works authors provide an algorithm for self-organization learning lateral
weights using a Hebbian-like learning rule. On the other hand, we put forward a
new approach of self-organization using a combination of a dynamic neural field
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and a Hebbian-like learning rule. Thus, self-organization can be achieved, learning
only the feed-forward weights. Because of that property our model is quite simple,
straightforward to implement and it does not require any outlandish handling.

2 Model

The neural field theory has been introduced by Wilson and Cowan [6, 7] and latter
formalized by Amari [3] and Taylor [8]. This theory introduces a model at the level
of a population of neurons in the form of an integro-differential equation describing
the spatio-temporal evolution of coarse-grained variables such as synaptic or
firing rate value [9]. We will use notations introduced by Amari and consider the
membrane potential to be governed by the following equation:

�
@V.x; t/
@t

D� V.x; t/C hC I.x; t/

C
Z

M

W.jx � yj/f .V .y; t//dy (1)

where V.x; t/ designates the membrane potential at position x and time t ,W.jx�yj/
is the lateral connection weight function between position x and y (we assume here
that the system is spatially homogeneous and isotropic), f is the mean firing rate
function, I.x; t/ is the input at position x and h is the resting potential.

2.1 Fitting Input

Depending on the firing rate function f , the lateral connectivity function W and
the input I , such fields are known to exhibit a range of dynamic behaviors going
from spatially and/or temporally periodic patterns to localized regions of activity.
This latter case has been extensively used in a number of work to model visual
attention [10], motor control [11], working memory [12], etc. In the following, we
will consider the lateral connectivity function to be a Difference of Gaussians (DoG)
of the form:

W.x/ D Ae�x2=2	A2 � Be�x2=2	B2

and the firing rate function to be a simple positive linear function:

f .x/ D
(

x if x > 0

0 if x 	 0
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Fig. 1 One dimensional neural field using n D 100, � D 10, A D 1:5, 	A D 0:1, B D 0:75,
	B D 1:0. For any uniform and positive input level I , the neural field maximum activity is
approximately equal to I after convergence

The numerical simulation of such fields requires the spatial discretization of the
domainM into n spatial elements while the temporal integration can be made using
classical integration schemes. Considering M D Œ0::1� and h D 0, we can thus
rewrite Eq. 1 as:

�

V.xi; t/


t
D� V.xi; t/C I.xi; t/

C
nX

jD0
W.jxi � xjj/f .V .xj; t//

with xi D i=.n � 1/. In the following, we will use the forward Euler integration
scheme. Under these assumptions, we have been studying a set of parameters for
the lateral weight connection that exhibit the following property: for any uniform
and positive input I, the neural field converges towards a single localized packet
of activity whose maximum is approximately equal to I. We do not have yet the
formal proof of such behavior but we found the property to be very consistent
over a wide set of numerical simulations using different parameters (n, I , 
t).
We report in Fig. 1 such a simulation where the field is able to fit a constant input
of level 0:45 after convergence. Instead of a stereotyped packet of activity with a
constant maximum, the field activation represents a measure of the input. We will
now explain how to use such property to ensure self-organization.
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2.2 Self-Organization

Let us now consider the slightly modified equation:

�
@V.x; t/
@t

D� V.x; t/C 1 �
Z

M

jI.t/ �WF .x/jdx

C
Z

M

WL.jx � yj/f .V .y; t//dy (2)

where I is now considered to be uniform over M while a set of feed-forward
weights WF has been added such that the actual input for any position x is
1 � jI.t/�WF .x/j.

Considering the set of parameters given in the previous subsection and consid-
ering a given input I , if we have WF .x/ D I , the actual input of the field would
be 1. In such a case, we explained that the field maximum activity would match
this value (1). However, it is not possible to have such equality for any value of I
because it would means to change all feed-forward weights at once. Nonetheless,
we can restrict this equality to the support of the localized packet of activity at the
equilibrium point. Said differently, it is sufficient to haveWF .x/ D I for x such that
V.x; t/ is not null at the equilibrium point. The goal of the learning rule is thus to
reach such a state.

We considered the learning rule introduced in [1] that reflect two main ideas:

• If a neuron is close enough to the data, there is no need for others to learn
anything: the winner can represent the data.

• If there is no neuron close enough to the data, any neuron learns the data
according to its own distance from the data.

To achieve such behavior, we propose to consider the following learning rule:

@WF .x; t/
@t

D �Le.x; t/
�
I.t/ �WF .x; t/

�
(3)

where Le.x; t/ D
R
M WLe .jx � yj/f .V .y; t//dy denotes the excitatory part of the

lateral interaction such that WL D WLe �WLi and � is a constant learning rate. The
modification of feed-forward weights is thus directly correlated with the closeness
of weights to the input and this is modulated by the amount of lateral excitation.
Since we know the final state of the model is a localized Gaussian-shaped packet of
activity, learning occurs maximally in this vicinity.
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3 Results

3.1 Experimental Setup

A set Sk of samples is generated by drawing k evenly spaced values in the interval
Œ0::1� with special case S1 whose values are drawn uniformly from the interval
Œ0::1�. A sample is randomly chosen from Sk and presented to the network which
has been previously reset. The network is then simulated and learning occurs until
"-convergence has been reached, i.e. 8x; jV.x; t C dt/ � V.x; t/j 	 ". Another
sample is then drawn and the procedure is repeated for a given number of epochs.

3.2 Learning Discrete Values

We trained a network of 100 neurons for 2,500 epochs and using as parameters,
� D 10, A D 1:5, 	A D 0:1, B D 0:75, 	B D 1:0, self-organization was obtained.
In Fig. 2 is illustrated the results of the simulation. The feed-forward weights were
randomly initialized (the red line) and after 2,500 epochs the feed-forward weights
were organized (the blue line), as the network learned the three input values (0,1/2,1).
Hence, that step-like shape of feed-forward weights is because the first 20 neurons
learned the value 0, the 20 middle neurons learned the value 1/2, and the last 20
neurons learned the value 1. Moreover, the rest of the neurons learned different
values from the input and may be that provide a smooth drift from one batch of
neurons to another one.

Fig. 2 A neural field has been trained for 2,500 epochs on S3 (0, 1/2 and 1). Blue and red curves
respectively show initial and final set of weights
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Fig. 3 A neural field has been trained for 2,500 epochs on S
1

. Blue and red curves respectively
show initial and final set of weights

3.3 Learning Continuous Values

We used the same network architecture as in introduced in previous paragraph but it
has been trained on the S1 set. After 2,500 epochs the network has learned the feed-
forward weights. In addition, the so-called step-like shape of feed-forward weights
was substituted by an almost linear shape. That’s because of the continuous nature
of the input. It is to be noted that almost all values are represented but the bounds
due to the non-toric nature of the network. This side effect is well-known in the case
of Kohonen’s map. Results are depicted in Fig. 3 while Fig. 4 shows the evolution of
the receptive fields of unit #50 that slowly drifts from a weak and random response
to a sharp localized one.

4 Discussion

We introduced a one dimensional dynamic neural field that can continuously and
dynamically self-organize itself around a set of one-dimensional discrete or uniform
values by modifying its feed-forward connections and using the lateral weighted
sum of excitation as a modulation signal for learning. We are currently investigating
the two-dimensional case, due to obtain a more biological plausible model since the
cortex can be modeled as a two-dimensional sheet of neurons. In this context, we
would like to investigate meta-plasticity and/or homeostatic plasticity as it has been
reported in [13].
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Fig. 4 Evolution through time (t) of the receptive field of unit #50 from a network learning S
1

. At
each record time, learning is frozen and the network is presented successively with values ranging
from 0 to 1 with step of 0.01. Activity level of unit #50 is recorded (after convergence) for each of
these input values and is plotted for each record time

Finally, we would like to examine the properties of cortical reorganization
under the presence of a lesion. Such lesions have been extensively investigated
by Kaas [14] and others from a neurophysiological point of view and there is
consequently a strong and detailed experimental background providing significant
data which could feed our computational model.
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Spontaneous EEG Activity and Biases
in Perception of Supra-Threshold Stimuli

Andrey R. Nikolaev, Sergei Gepshtein, and Cees van Leeuwen

Abstract Human perception of oriented visual stimuli is biased: some orientations
are seen more often than others. We studied how the orientation bias is represented
in the electrical brain activity that preceded presentation of ambiguous supra-
threshold visual stimuli. We examined scalp EEG over the parieto-occipital regions
during 1 sec before stimulus presentation. The alpha activity of pre-stimulus EEG
was associated with the orientation bias: the preference for vertical orientation in
most observers corresponded to low pre-stimulus alpha power. The results indicate
that the orientation bias is encoded in intrinsic properties of ongoing cortical
dynamics, forming spontaneous orientation-specific patterns of activity.

Keywords EEG • Spontaneous alpha activity • Perceptual organization •
Perceptual bias

1 Introduction

The perception of a stable and continuous world is mediated by neural mechanisms
that are adept at resolving ambiguities of stimulation. One factor that helps to
resolve the ambiguities is expectation of stimuli from prior experience in similar
perceptual situations. Perception can therefore be viewed as a competition of two
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forces: current stimulus and stimulus expectation. Unnoticeable in regular viewing
conditions, the competition comes to the fore in the perception of multistable stimuli
[1, 2].

Gepshtein and Kubovy experimentally measured and modeled the competition
in ambiguous visual stimuli [3]. They explicitly separated the factors extrinsic
to the brain (called “stimulus support”) from intrinsic factors (“perceptual bias”)
in grouping by proximity. The authors showed how perception depends on both
factors, and how stimulation controls perception when it overcomes the intrinsic
perceptual bias.

Gepshtein and Kubovy proposed that the intrinsic factor depends on ongoing
brain activity [3]. Supporting this notion, previous studies found that the power
[4] and phase [5] of ongoing electrical brain activity (EEG) affected perception
of the upcoming stimuli. These studies mainly used stimuli near the threshold of
detection. Here we asked whether ongoing activity may also affect perception of
supra-threshold stimuli.

We studied perceptual grouping in ambiguous dot lattices, each of which can
be seen as strips of dots in different orientations. Perception of these stimuli is an
outcome of competition between stimulus factors that support several orientations,
and intrinsic orientation bias that presumably originates in ongoing brain activity.
We looked for associations between electrical brain activity that precedes stimulus
presentation and the perception of subsequent dot lattices.

2 Methods

Thirteen healthy participants took part in the experiment. The stimuli were dot
lattices which are spontaneously perceived as strips of dots [6]. The shorter the
distance between the dots in a certain orientation, the more likely the dots group
along that orientation. According to the pure distance law [7], grouping in dot
lattices depends on their aspect ratio (AR), which is the ratio of two shortest inter-
dot distances. We used dot lattices with four values of AR: 1.0, 1.1, 1.2, and 1.3. The
lattices were presented at four orientations, such that the orientation of the shortest
distance was rotated counterclockwise from the horizontal for 22.5ı, 67.5ı, 112.5ı,
or 157.5ı (Fig. 1).

Each trial consisted of four phases: fixation, stimulus, blank screen, and response
screen. During fixation, observers were instructed to look at a small circle at the
screen center for a duration that varied randomly according to a uniform distribution
on the interval of 1,200–1,500 ms. The durations of stimulus and blank-screen were
both fixed at 300 ms. A response screen was presented until a response was received.
The task was to report the orientation of the perceived dot grouping by choosing one
of the four response icons (shown as white insets in Fig. 1) on the response screen.

EEG was recorded using a 256-channel Geodesic Sensor Net (Electrical
Geodesics Inc., USA). Data were digitized at 250 Hz. All channels were referenced
to the vertex electrode (Cz). Further details of stimulus, procedure, and EEG
recordings are available in [8].
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Fig. 1 A dot lattice presented
at four orientations. The
orientations of 22ı and 157ı

are close to the horizontal,
and the orientations of 67ı

and 112ı are close to the
vertical. The aspect ratio of
this lattice is 1.3

Ef fect of Orientation : F(3, 36)=13.206, p=.00001
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Fig. 2 Behavioral results:
orientation bias. Reports of
the close-to-vertical percepts
were more common that
reports of the
close-to-horizontal percepts

We estimated the power of alpha-band activity (8–13 Hz) during a 1-s interval
prior to stimulus presentation (i.e., during fixation). The alpha power was computed
using FFT in 59 electrodes selected over the parieto-occipital regions. Electrodes
were sorted by alpha power in descending order. We selected 29 electrodes
with highest power and averaged their alpha power. The power values were log-
transformed so the distribution of values approached the normal distribution.

3 Results

All other factors being equal, observers preferred vertical over horizontal dot
groupings (Fig. 2). We estimated the strength of this orientation bias by measuring
the difference in frequency of reports of “vertical” and “horizontal” groupings.
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Bin effect: F(4, 48)=3.23, p=0.02
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Fig. 3 (a) Strengths of orientation bias within bins of trials for different levels of pre-stimulus
alpha power. Alpha power decreases from left to right. (b) Association of bias strength and pre-
stimulus alpha power. Each point represents a different observer. The association of alpha power
and bias strength was more pronounced in those trials where perception was dominated by bias

We sorted trials by alpha power in descending order, divided them into five bins,
and calculated the strength of orientation bias for trials within each bin. Pre-stimulus
alpha activity was associated with orientation bias: the bias for vertical orientation
occurred more often in trials with low pre-stimulus alpha power (Fig. 3a). This effect
was modulated by bias strength: the higher the bias the more it was associated with
pre-stimulus alpha power (Fig. 3b).
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Fig. 4 (a) Log alpha power as a function of AR plotted separately for trials in which horizontal
and vertical groupings were seen. The three panels represent three sequential parts a session, each
part containing one third of trials. The association of alpha power and AR was present only in the
first third of session, and only when horizontal groupings were reported. (b) Log alpha power for
reports of horizontal and vertical grouping in the first third of session (left ordinate), and behavioral
bias strength (right ordinate). Both alpha power and bias strength decreased with AR in trials where
horizontal groupings were seen. The data are shown for ten observers whose performance was the
highest

Next we asked whether the effect of alpha power depended on stimulus ambiguity
(controlled by lattice aspect ratio, AR). We found that alpha power was not
associated with AR when all trials were analyzed together. But when trials from
different parts of experimental sessions were studied separately, it turned out that the
strength of orientation bias was high in the beginning of the session, and gradually
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decreased toward the end. We therefore divided the session in three equal parts,
each about 200 trials long, and studied associations of alpha power in each part
separately. We found that alpha power significantly increased during session time
course (F(2,18)D 20.3; pD .00003) (Fig. 4a), suggesting that observers became
more relaxed toward the session’s end.

Alpha power was significantly higher in trials with reports of horizontal than
vertical grouping (F(1, 9)D 8.1, pD .02), consistent with an effect of alpha power
on orientation bias (Fig. 3a). In the first third of trials, alpha power was associated
with AR. Alpha power gradually decreased with AR in trials with reports of
horizontal grouping (F(3, 27)D 3.2, pD .039). This decrease was consistent with
the decrease of bias strength as a function of AR (Fig. 4b). That is, the association
of pre-stimulus alpha power with perception was largest in the most ambiguous dot
lattices (ARD 1.0).

4 Discussion

Studies of perceptual organization suggested that perception of ambiguous figures
depends on two competing factors: extrinsic (stimulus support) and intrinsic
(perceptual bias) to the brain [3]. Here, we found in ongoing electrical brain activity
a correlate of the intrinsic bias in the perception of supra-threshold visual stimuli.
Alpha power of pre-stimulus cortical activity correlated with the degree to which
intrinsic bias affected perception (Fig. 3a). This relationship was most prominent in
the trials where grouping was inconsistent with the proximity principle (Fig. 4b).
Since high alpha power is considered an indicator of cortical inhibition [9], the
association of low alpha power with large perceptual bias suggests that the bias is
an intrinsic property of the visual system manifested during its active state. Previous
studies showed that ongoing cortical activity can spontaneously generate patterns
that correspond to certain stimulus orientations, in absence of stimulation [10]. Our
results show how this spontaneous activity affects perception.

Analyzing the event-related potentials in the same data set we previously
found that orientation of dot lattices is reflected in early C1 component of the
stimulus-evoked activity: C1 amplitude gradually changes with orientation [8].
Alpha activity correlates with early components of the evoked potentials [9]. This
may indicate the mechanism of influence of pre-stimulus brain state on subsequent
perception of orientation.
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Functional Roles of Corticofugal Plasticity
in Detecting a Moving Target in Bat’s Auditory
System

Yoshitaka Muto, Yoshihiro Nagase, and Yoshiki Kashimori

Abstract In the present paper, we present a neural model for detecting Doppler-
shifted frequency of echo sound reflecting from a target. We present here the neural
mechanism by which the centripetal and centrifugal best frequency (BF) shifts are
elicited. These BF shifts come from the modulations of the receptive field of cortical
neurons elicited by short-term synaptic learning, depending on the stimulus context.
This synaptic learning enables the system to follow a rapid frequency modulation,
leading to detection of a moving target.

1 Introduction

Animals usually receive complex sensory signals in external world. To perform
sensory perception, they must select actively the sensory information relevant to
their behavior. To extract such information from complex signals, the feedback
signals from cortex to subcortical and peripheral regions are needed. However, it
is not yet clear how the feedback signals contribute to the selection of sensory
information. The behavioral characteristics of the sound selection determine that
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the underlying neuronal substrate must be a back projection system and is able
to implement selective sound processing based on auditory information already
registered in the higher auditory processing levels. To address the issue of sound
selection, we study echolocation of mustached bats, because the physiological
properties of neuronal activities modulated by the feedback signals have been
actively investigated [1–4], and the functions of the cortical areas have been well
characterized [5].

Mustached bats emit ultrasonic pulses and listen to returning echoes for ori-
entation and hunting flying insects. The bats analyze the correlation between
the emitted pulses and their echoes and extract the detailed information about
flying insects based on the analysis. This behavior is called echolocation. The
neuronal circuits underlying echolocation detect the velocity of target with accuracy
of 1 cm/s and the distance of target with accuracy of 1 mm. To extract the
various information about flying insects, mustached bats emit complex biosonar
that consists of a long-constant frequency (CF) component followed by a short
frequency-modulated (FM) component. Each pulse contains four harmonics and
so eight components represented by (CF1, CF2, CF3, CF4, and FM1, FM2, FM3,
FM4) [6]. The information of target distance and velocity are processed separately
along the different pathways in the brain by using four FM components and four CF
components, respectively [5].

In natural situation, large natural objects in environment, like bushes or trees,
produce complex stochastic echoes, which can be characterized by the echo
roughness. The echo signal reflecting from a target insect is embedded in the
complex signal. Even in such a environment, bats can detect accurately the detailed
information of flying insect. To extract the information about insects, the feedback
signals from cortex to subcortical areas are needed.

To investigate the role of feedback signals in extracting the information about
insect, we consider the neural pathway for detecting velocity of target, which
consists of cochlea, inferior colliculus (IC), and Doppler-shifted constant frequency
(DSCF) area. The IC and DSCF area are located in subcortical and cortical area,
respectively. The cochlea is remarkably specialized for fine-frequency analysis
of the second harmonic CF component (CF2) of Doppler-shifted echoes. The
information about echo CF2 (ECF2) is transmitted to IC, and the relative velocity of
target insect is detected in DSCF area by analyzing the Doppler-shifted frequency
[7]. Xia and Suga [4] have shown on intriguing property of feedback signals that the
electric stimulation of DSCF neurons evokes the best frequency (BF) shifts of IC
neurons away from the BF of the stimulated DSCF neuron (centrifugal BF shift) and
bicuculline (an antagonist of inhibitory GABA receptors) applied to the stimulation
site changes the centrifugal BF shifts into the BF shifts towards the BF of stimulated
DSCF neurons (centripetal BF shift). Although these BF shifts are generated by the
feedback signals from DSCF neurons to IC neurons, it is not yet clear how the
feedback signals determine the direction of BF shift.

To address this issue, we present a neural model for detecting Doppler-shifted
frequency of echo sound reflecting from a target. We present here the neural
mechanism by which the centripetal and centrifugal BF shifts are elicited. These BF
shifts come from the modulations of the receptive field of cortical neurons elicited
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by short-term synaptic learning, depending on the stimulus context. This indicates
that the tuning properties of subcortical neurons change on-line. This synaptic
learning enables the system to follow a rapid frequency modulation, leading to
detection of a moving target.

2 Model

We propose a network model for detecting the Doppler-shifted frequency, as shown
in Fig. 1. The model consists of cochlea (Ch), inferior colliculus (IC), and Doppler-
shifted constant frequency (DSCF) area, each of which has a linear array of
frequency-tuned neurons. Each of the three layers contains a tonotopical map, in
which the neurons in each layer are tuned in to specific echo frequency ranging from
60.0 to 63.0 kHz, corresponding to the frequency range of the second harmonics.
The bat uses the Doppler-shifted frequency of echo sound to detect the relative
velocity of target. The neuron was modeled with the Leakey integrate-and-fire
neuron model [8], because temporal information may play an important role in
auditory information processing. The neurons in the three layers are reciprocally
connected with each other, with on center-off surrounding connections. The neurons
in different layers are connected with an excitatory and inhibitory synapse, whose
weights are updated with learning with short-term dynamics.

3 Results

Figure 2a shows the modulation of tuning property of IC neurons in the case where
electric stimulus (ES) was applied to a DSCF neuron. The ES evoked the BF shift
away from that of the electrically stimulated DSCF neuron, that is, centrifugal BF
shift. Before the ES, the IC neurons maximally responded to 60.6 kHz (vertical

Fig. 1 Neural model for
detecting Doppler-shifted
frequency of echo sound. The
excitatory and inhibitory
synaptic connections are
depicted by the solid and
dashed lines, respectively
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Fig. 2 Two types of BF shifts. (a) centrifugal and (b) centripetal BF shifts. The dashed line
indicates the frequency tuned in control condition. ES and BI mean electric stimulation and
bicuculline injection, respectively

Fig. 3 Effect of synaptic plasticity on centripetal BF shift. The solid and dashed lines indicate the
centripetal BF shifts elicited by IC neurons with and without synaptic plasticity, respectively

dashed line). When DSCF neuron tuned to 60.9 kHz was electrically stimulated,
the BF of IC neuron was shifted from 60.6 to 60.4 kHz. That is, the IC neurons
showed a centrifugal shift. Our model reproduced also centripetal BF shift evoked
by the application of bicuculline, an antagonist of GABA, as shown in Fig. 2b. The
inhibition of GABA by bicuculline led to the BF shift of the IC neuron towards
the BF of the bicuculline-injected DSCF neuron. The BF of IC neurons shifts from
60.6 to 60.9 kHz. That is, the IC neurons showed a centripetal BF shift. These BF
shifts come from the modulation of receptive field of top-down from DFCF to IC
neurons.

Figure 3 shows the centripetal BF shifts of IC neurons with and without synaptic
changes. The synaptic changes modulated the receptive field of top-down signals,
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Fig. 4 Time course of the firing patterns of DSCF neurons in response to a moving target

leading to a rapid BF shift to the echo signal. IC neurons without synaptic changes
exhibited a broad firing in response to echo signal and did not cause a significant BF
shift, as shown in Fig. 3.

Figure 4 shows the response of DSCF neurons for a moving target. The target
was oscillated with the frequency of 2 Hz. The DSCF neurons could follow rapidly
the frequency change of the moving target. The system without the synaptic changes
failed to follow the frequency modulation induced by the moving target. Thus the
detection ability of DSCF neurons is due to fast synaptic changes of top-down
connections from DSCF to IC neurons. The synaptic plasticity modulates the
balance of excitatory and inhibitory signals to IC neurons, producing the responses
of IC neurons depending on stimulus context.

4 Discussions

We have presented a network model of the Doppler shifted frequency. The model
well reproduced the two types of BF shifts observed by Xiao and Suga [4]. The
synaptic weights rapidly changed, enabling DSCF neurons to detect the temporal
varying stimuli such as echo signals reflecting from a moving target.

The balance of excitatory and inhibitory inputs to neurons has been reported to
play important roles in sensory coding. Recent study has demonstrated that detailed
balance of excitation and inhibition can efficiently gate the propagation of firing
rate [9]. The balance between excitation and inhibition appears also in short-term
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synapses, responsible for a temporal filtering of sensory signals [10]. Similarly to
the functions of short-term synaptic plasticity, the synaptic plasticity used in our
model also modulates rapidly the receptive field of DSCF neurons, enabling the
rapid adaptation for temporal-varying signal induced by a moving target. Thus the
short-term synaptic change may play a crucial role in extracting desired information
depending on stimulus context.
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The Origin of the Spatial Pattern of Amplitudes
in Trial-Averaged MEG

David M. Alexander, Peter Jurica, Andrey R. Nikolaev, Mikhail Zvyagintsev,
Klaus Mathiak, and Cees van Leeuwen

Abstract We analysed the spatial pattern of trial-averaged MEG time-series over
the whole scalp. The contributions of both signal phase and amplitude to these
spatial patterns were assessed. While a substantial proportion of the pre-stimulus
time-series is explained by the amplitude component in the alpha/beta range, most
of the post-stimulus evoked response is explained by averaging of the phase-only
component. We suggest that the whole scalp pattern of evoked responses is akin to
an interference pattern produced by trial averaging.

1 Introduction

The origin of event-related brain signals and the role phase therein is subject
to debate [1]. We distinguish the effects of cross-trial phase locking and single
trial amplitudes on the trial-averaged signal [2]. Understanding the relationship
between the signals underlying whole scalp patterns of event-related fields (ERFs)
is important for at least three reasons. First, whole scalp ERFs are typically used
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in source localization techniques. A reasonable alternative, though technically
challenging, would be to fit the equivalent current dipole to individual trial data
and then average these fits. So it matters what, exactly, is being localized when
averaged signal is fit to an equivalent current dipole [3]. Second, a wealth of
evidence links various stages of cognition to evoked responses in the EEG and
MEG. However, the relative effects of phase and amplitude on evoked responses are
usually considered at individual recording sites [1]. If there are global relationships
in the way phase and amplitude interact, they may be missed when only sites with
maximum ERF amplitude are considered. Third, inter-trial coherence has become a
standard tool for understanding large-scale network interactions in the cortex [4, 5].
The present work has implications for the relationship between evoked response
measures and measures of inter-trial coherence. We show that the bulk of the
ERF amplitude variation over the scalp is due to the degree of inter-trial phase
coherence.

2 Methods

2.1 Subjects and Task

Twenty human subjects (age range 22–36 years, mean age 27.1; 12 females)
engaged in an audio-visual perceptual task, while their brain activity was recorded
via MEG. All the subjects were right-handed, had no audiological abnormalities,
and had normal or corrected-to-normal vision. Written informed consent was
obtained from all subjects prior to participation in the study. The study was approved
by the ethics committee of the University of Tübingen. The task required the subject
to choose the direction of motion of an audio-visual apparent motion stimulus. The
visual component was located on the horizontal with the distance of 15º of visual
angle at either side of the screen center. The apparent motion illusion was elicited by
presenting the stimuli for 67 ms at the one side, and then after 67 ms delay, for 67 ms
at the opposite side. The auditory stimuli were the white noise bursts presented in
such a way that the sound was spatially perceived at the position of the visual stimuli
(C15º or �15º). Subjects were instructed to press buttons in random order either by
the left or right index finger. The stimulus moved from the side indicated by the
subject and then to the other side (i.e. either ‘left to right’ or ‘right to left’; this
was the ‘predictable’ condition). In some blocks of trials the direction of stimulus
motion was randomized and not due to the subject’s choice (i.e. ‘unpredictable’
condition). We applied analyses only on the trials in which the side of first stimulus
coincided with the button pressed: all trials in the predictable and approximately
half of trials in the unpredictable condition. Further details of the experiment can be
found elsewhere [6].
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2.2 MEG Recording

Subjects were seated comfortably in a dimly-lit room. Neuromagnetic responses
were recorded in a magnetically shielded booth using a 151-sensors whole-head
gradiometer (CTF Systems Inc., Vancouver, Canada). The MEG signals were
sampled at 312.5 Hz.

2.3 Analysis

MEG data were low-pass filtered with a cut off at 39 Hz. Artifact removal and trial
selection criteria are described in detail elsewhere [6]. Source modeling revealed
three consistent dipole patterns: a lateralized motor dipole at the time of stimulus
initiation, bilateral auditory activity at around 80 ms and a lateralized visual
dipole at around 150 ms [6]. In the present analyses we focused on the former
activity.

We sought to analyse the composition of the ERF signal, considered as a spatio-
temporal pattern over all recording sites and over one cycle at the frequency of
interest e.g. 100 ms at 10 Hz. In order to see how the band-pass signal predicted
the ERF, we made a trial average of the band pass signal and correlated this with
the ERF, including values from all sites and over an entire cycle. The amount of
variance explained by this predictor signal was simply the correlation squared. The
same procedure was used to see how well the phase-only signal (as cosine of phase)
predicted the ERF.

The Fourier components, X, of the MEG signal, x, were estimated over a range
of frequencies, f, (0.5 to 32.0 Hz in Nf steps), about each sample, t, using two cycle
Morlet wavelets. MEG time-series were averaged over all trials, Nl, (for each subject
and condition),T D hxiNl and the pattern of T over sensors compared to a predictor
signal. One predictor signal was constructed by averaging the amplitude normalized
signal P D hRe.X=X/iNl . We calculated the fit of P , at frequency, f, to T over all
sensors s (NsD 151), and over one cycle c, about the centre sample, t.

R2Nt�Nf .T ; P / D �.T Nt�Nf �Nc�Ns�
hT Nt�Nf �Nc�Ns iNcU1�1�Nc�1; P Nt�Nf �Nc�Ns /2

where � denotes the correlation of two vectors, here length NsNc and U is the unitary
matrix; c 2 .t � 1=2f ; t C 1=2f /; and, Nc� 1000/3.2 f. A second predictor signal was
constructed by averaging the band-pass signalB D hRe.X/iNl ; and analogously we
calculated R2t;f .T ; B/.
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3 Results

The result of the analysis is given in Fig. 1, as a time/frequency plot of R2t;f .T ; P /

and R2t;f .T ; B/. For this experimental task, a pattern of time-locked responses on
these measures begins with a theta band component at the time of the button press,
related to the motor dipole previously characterized [6]. The audio-visual stimulus
evokes a series of events in the alpha band from around 100 ms onwards, also
consistent with previous dipole modeling [6].

Consistent with previous studies [9, 10], the amplitude pattern of the cross-trial
average is a function of both single-trial phase and single-trial amplitudes. The
pattern of trial-averaged MEG across sensors in the pre-stimulus alpha/beta signal
contained a large contribution from single trial amplitudes, seen in the R2t;f .T ; B/
plot. Indeed this effect is almost as large as the evoked portion of the plot. When this
component is compared to the pre-stimulus alpha/beta component of R2t;f .T ; P /, it

can be seen that about 30% additional explained variance in T is explained by the
band-pass compared to the phase-only signal.

By contrast, the peaks in R2t;f .T ; P / at post-stimulus latencies are considerably

larger than the R2t;f .T ; P / pre-stimulus alpha/beta component. Additionally, the

evoked peaks in R2t;f .T ; P / were of the same order as the evoked peaks in

R2t;f .T ; B/, with about 70% of the variance in the pattern of ERF amplitudes—at

Fig. 1 The relative contributions of phase and amplitude to the spatial pattern of ERFs. The first
panel shows the grand-average values of R2t;f .T ; P /, for all times and frequencies evaluated. The
values from 20 subjects, and each of four experimental conditions (‘predictable’ vs. ‘unpredictable’
and ‘left to right’ vs. ‘right to left’), were averaged together here. The second panel, likewise,
shows the grand-average values of R2t;f .T ; B/. The third column shows the difference between
these two grand-averages, and the results of pixel-wise t-tests, comparing each subject’s mean
score for the two statistics (nD 20, p< 0.05 shown in non-white). Since almost all points are
significantly different, i.e. there is only one cluster, correction for multiple comparisons was not
necessary. Throughout the event-related region of the plot (t>�100), the subjects show a small
(	8%) but significant difference in mean values of variance explained in the ERFs by the two
predictor signals. For t<�100, in the alpha/beta bands, the difference is larger (	30%)
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event-related peaks in the R2t;f .T ; P / spectrum—explained by the phase-only
signal. The single trial phase plus amplitude signal only contributed about 8%
additional explained variance to the ERFs.

While the band-pass signal contributes substantially to the pre-stimulus trial-
averaged time-series, it does not contribute the major proportion of the evoked
signal. The evoked signal, considered as a global spatio-temporal pattern, is mainly
due to cross-trial averaging of phase.

4 Discussion

The results in this paper clarify the relationship between dynamical approaches
to brain function and approaches that emphasize localized sources. Most of the
variance in the evoked components of this task is explained as the average of single-
trial dynamics with spatially uniform amplitudes, P . This component is distinct
from a signal in which amplitude declines as the inverse-square of distance from
a localized source. This raises the possibility that the ERFs have a component
that is akin to an interference pattern, where that interference pattern results from
cross-trial averaging during numerical analysis. This possibility arises when we put
together the present results with those on traveling waves in the EEG/MEG.

A growing literature relates coherent traveling waves to mental states [11, 12],
cognitive function [8, 13] and clinical deficits [14–16]. These waves are typically
of long wavelength and can traverse large distances across the EEG/MEG recording
array. They also can travel in a variety of directions during the same (i.e. stimulus
locked) task-related windows [16], and their preferred direction changes on a
developmental time-scale [15, 16]. Traveling wave components have been related to
the P2 and N2 auditory evoked potentials, as well as the P3b ERP [8, 17]. They share
common frequency and latency characteristics, as well as a shared task-dependency
[8, 16]. The results in the present study shed further light on the relationship between
evoked responses and these global phase dynamics. Phase is the main ingredient
in the global pattern of ERFs. If amplitude were the main ingredient, this would
make it more difficult to reconcile ERFs/ERPs with globally coherent traveling
waves.

When the phase dynamics have coherent motion, static ‘sources’ in the trial-
average can be understood as a kind of interference pattern. The resultant pattern of
activity has maximum amplitude over the localized brain region that is critical for
the execution of the task—and so this framework is consistent with the wealth of
data collected on specialization of cortical function. However, the present results
suggest that inter-trial measures may not directly reflect the ongoing activity
pattern. Rather, these measures reflect the consistency in timing of brain activity,
at particular sites, across trials. Localized regions with consistent timing across
trials, while conveying important information about timing, do not necessarily imply
localized sources of brain activity. This can be easily demonstrated by making
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an analogy with Moiré patterns—the component images (analogous to individual
trials) of these interference patterns do not have the same amplitude maxima as the
Moiré pattern itself (analogous to the inter-trial measure).

In conclusion, the fields generated by brain activity exist at the single trial level,
whereas repeated experimental trials are solely a convenience for the experimenter.
The subject’s brain has no direct access to the cross-trial measures. This point
is important because recent findings have shown network coupling effects via
endogenous fields in hippocampal and cortical neurons [18–21]. These findings
are consistent with a growing literature on the effects of trans-cranial stimulation
[22, 23]. In both these cases, the fields play a causal role in network activity. It is
therefore timely to uncover differences between the properties of single-trial activity
and inter-trial quantities. Here we show that single-trial phase dynamics contribute
more to the global pattern of ERF amplitudes than do single-trial amplitudes.
This result garners support for the importance of another property that cross-
trial measures often disguise (c.f. [24]), namely, coherent activity with non-zero
velocity—traveling waves. Cross-trial averages of both ERPs and traveling waves
typically have mean velocity close to zero [16, 17].
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Rhythm Matters: A Case in Attentional Blink

Chie Nakatani and Cees van Leeuwen

Abstract For processing a fast train of visual stimuli, their timing is an effective
cue. This paper reports that EEG phase of parietal activity to the timing of the stimuli
has critical importance for target detection in an Attentional Blink (AB) task. When
the phase was locked to the stimuli before and during target presentation, but shifted
backward immediately afterwards, the AB phenomenon was avoided. On the other
hand, when the phase acutely advanced after the second target presentation, the
target was missed even in the Lag 7 condition. These results suggest that the phase
shift is a potential control signal for working memory processes.

1 Introduction

When two target stimuli are embedded in a stream of nontargets, people often miss
the second target when it lags 200–500 ms from the first one. The phenomenon is
called attentional blink (AB) [1, 2]. In a typical AB task, the stimulus sequence
is presented at a constant rate of about 10 Hz. The constant rate could be utilized
as a cue to prepare the perceptual system for upcoming targets. Previous studies,
however, are not in accord with this intuition: Steady-state visual evoked potential
(ssVEP) in 10 Hz EEG did not differ in amplitude between hits and misses of the
second target [3]. However, rather than amplitude, the phase the 10-Hz activity may
be relevant to the AB. The 10-Hz phase synchrony among MEG dipoles in various
brain areas did not differ between hits and misses [4]. However, in their study, only
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phase locking between 10 Hz components of pairs of dipoles was examined (using
phase synchrony level index which was proposed in [5]), not whether, across trials,
the 10 Hz activity has a preferred phase-locking to the stimuli.

In the current study, therefore, we investigated whether there is a 10-Hz
subcomponent which is phase-locked to the stimuli and, if so, whether it is relevant
to the AB. We analyzed human EEG during an AB task to separate such ‘rhythm
keeper’ activity from target driven components.

2 Methods

Thirteen observers (11 women, 2 men) with normal/corrected-to-normal vision
participated. They were asked to observe 17–20 stimuli which were presented at
a 10 Hz rate. The stimuli were single letter or digit in white on a gray background,
except for one in blue. The blue stimulus was the target of the first task (T1).
The participants were asked to judge category (letter or digit) of T1. The second
task was to report the presence or absence of the letter ‘O’, which is the second
target (T2) (See Fig. 1). T1 precedes T2 in 100, 300 or 700 ms (T1-T2 Lags 1, 3,
or 7).

EEG was recorded using a commercial EEG recording system (EEG1100, Nihon
Kohden, Tokyo, Japan) from 19 electrodes, which were placed according to the
international 10–20 system. Horizontal and vertical EOG electrodes were also
attached. Data were digitized at 500 Hz (0.1–100 Hz analogue bandwidth).

Fig. 1 Illustration of the attentional blink task
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3 Results

3.1 Behavioral Results

T2-hit rate was the lowest in the Lag 3 (i.e., the AB phenomenon), followed by the
Lag 1 (the so-called Lag-1 sparing phenomenon [6]), and was highest in the Lag 7
condition. Thus, our results reproduce the behavioral pattern typically observed in
an AB task.

3.2 EEG Processing

The InfoMax algorithm [7] was applied to the EEG signals taking the 19 electrodes
as factors. About 17 components were obtained for each participant. Two of these
components, one spread over parietal regions and the other located in the right
temporal region, commonly appeared amongst all participants. Both components
showed peak power at 10 Hz. Another peak appeared in the theta band. We band
passed the signal around 10 Hz (9.345–10.625 Hz), and theta band (4.00–8.00 Hz).
The Hilbert transform was applied to the band-passed signals to compute instanta-
neous amplitude and phase. Amplitude and phase time series were segmented�500
and C1,300 ms from T1 onset. Note that in this segment stimuli were presented
every 100 ms. The segments were collated based on three T1-T2 lags and two T2
results (hit or miss). This yielded six trial categories. In all categories, trials with
incorrect T1 report were excluded from analyses.

3.3 10 Hz Activity

Average amplitude was computed for the 10 Hz segments in each trial category.
Grand mean amplitude, however, did not yield significant difference between hit
and miss trials in any of the lags; neither in the parietal, nor in the right temporal
component.

Similar to amplitude, mean phase angle was computed for the hit and miss trials
within each lag. Grand mean angles of the parietal component are shown in Fig. 2a.
In the Lag 1 condition, the grand mean phase advanced smoothly with respect to the
stimulus onsets across the rapid serial visual presentation (RSVP) episode. Angular
velocity slowly increased and phase was shifted about a half cycle per second.
However, the phase shift was not smooth in the Lag 3 condition. When T2 was
correctly detected (hit trials), the phase did not shift until about the 600 ms from T1
onset (300 ms from T2 onset), then angular velocity abruptly decreased. As a result,
phase was shifted about half a cycle within a 200 ms period. On the other hand,
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Fig. 2 Grand mean angles of 10 Hz activity at the onset of each stimulus in the parietal (a) and
right temporal (b) components. The angles are plotted for the hit (black dots) and miss (white dots)
trials. T1 and T2 onsets are shown in black vertical lines

when T2 was missed, the phase shift took place earlier and occurred in the opposite
direction: about 400 ms from T1 onset (100 ms from T2 onset), angular velocity
increased and advanced the phase about half a cycle within a 100 ms period. In the
Lag 7 condition, phase smoothly shifted in the hit condition, while it advanced half
a cycle about before T1 and T2 onsets in the miss trials.

The grand mean phase of the right temporal component, on the other hand
(Fig. 2b), did not indicate any such shift. Instead, the phase was more-ore-less time-
locked to the RSVP stimuli for all lags and equally for hit and miss trials.

3.4 Theta Band Activity

Average amplitude of the theta band segments did not yield any significant
difference between the T2 hit and miss trials in all lags; neither in the parietal, nor
in the right temporal component.

Grand mean phase of the theta band activity did not reveal any consistent pattern
between the T2 hit and miss trials. This was mostly because mean angles varied
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Fig. 3 Z score for the combined probability of phase uniformity. The parietal (top) and right
temporal components (bottom). The hit (solid line) and miss (broken line) trials are shown in
each lag. T1 and T2 onsets are shown by black vertical lines. Dotted line indicate z score for
Prob.(uniform) D 0.001

across individuals. To test phase locking in the theta band activity in individuals, we
took two steps: First, phase locking across trials was tested within each participant
using the Rayleigh test. The test provides the probability of instantaneous phase
being uniform (i.e. random). Second, the individual probabilities were combined
over all participants. In this way, phase locking can be assessed independently from
individual differences in the mean phase angles. Figure 3 shows the Z-score for the
combined probability in each lag for the parietal and temporal components. In the
hit trials, the phase was less uniform (i.e., less random) than that in the miss trials.
This was most clearly in evidence in the right temporal component after T1 and T2
onsets (Fig. 3b).

4 Discussion

In an Attentional Blink task, a constant rate of stimulus presentation rate might
be a useful cue for our perceptual system to synchronize to the rapid sequence of
stimuli. The current study showed that, whereas, 10-Hz activity of the right temporal
component was uniformly time locked to the stimuli, phase locking of the parietal
10-Hz brain activity to the 10-Hz stimuli had critical importance for successful
detection of T2 in the most difficult AB condition.

In the Lag 1 and 7 conditions, on the other hand, the phase of the parietal
10 Hz activity advanced smoothly with respect to the stimulus onsets across the
RSVP episode, except for the miss trials in the Lag 7 condition. Thus the phase
at onset uniquely represents each stimulus within the RSVP. Such information is
useful to control post-stimulus processing, such as working memory operations.
For example, working memory operations could be intensified when an acute phase
shift occurs. Absence of an acute phase shift in the Lag 1 condition indicates
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that, presumably, pre-working memory processes, such as stimulus selection, have
more critical effect for T2 detection than working memory operation in the Lag 1
condition, as suggested in previous studies (e.g., [8]). The phase reset even harms T2
detection in the Lag 7 condition. When T2 was missed, the phase advanced acutely.
This was the same as in the miss trials in the Lag 3 condition. Such acute phase
advance might upset working memory operations (for example, it might increase an
inter-item interference in working memory [9]). These results indicate a potential
role of the phase shift, which is a control signal for working memory operations.

Phase locking of the theta band activity in the right temporal component suggests
that working memory operations are modulated by 10 Hz activity. The relationship
between theta and 10 Hz activity is currently under investigation. The current study,
at least, present a neural candidate for a ‘rhythm keeper’ function and specifies
its role to control of post-target selection, i.e., working memory, processes in the
AB task.
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Complex Network Topology and Dynamics
in Networks Supporting Precisely-Timed
Activity Patterns

Chris Trengove, Cees van Leeuwen, and Markus Diesmann

Abstract We study the relationship between structure and activity in a system
of synfire chains with random couplings. Ongoing activity is regulated by noise
feedback, which, due to variability in the strengths of chains or couplings, creates
an activity-dependent family of effective digraphs. We find that the distribution of
activity across chains is well-correlated with the activity level at which they are
recruited into the giant out component.

1 Introduction

Synfire chains, fine-grained structures of diverging and converging feedforward
connections that link successive pools of neurons in a sequential manner and support
waves of propagating activity packets [1, 2], have been proposed as building blocks,
which can be coupled to form more complex network structures [3–5]. In large-
scale systems of chains, we will consider the effect of including a broad class of
functional recurrent connectivity on the variety of ongoing activity patterns. We are
interested in how network structure determines the distribution of ongoing activity.
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We will consider an abstract model, in which the state of the system is a set
of active pools. The pools are ordered into chains. The transmission of activity
from one pool to the next reflects wave propagation. Global activity feedback is
considered in the model as a noise source.

Couplings between synfire chains are pairwise, unidirectional, forming a sparse,
random globally recurrent network. The coupling connects a subset of pools in one
chain to a subset in the other in a one-to-one fashion. This permits a wave of activity
in the first chain to activate one in the second, with a specific temporal alignment
between the two. We will study the effect of introducing heterogeneity to either the
strengths of the chains, or the strengths of the couplings.

2 Methods

2.1 Models

We set the number of chains to ND 1,000, We specify a sigmoidal feedback function
P0 as follows:

P0 .h; J / D 	 .Jc .J � J0/� hc .h� h0//: (1)

where 	.x/ D 1= .1C exp .�x//. The function P0 gives the probability that a wave
successfully propagates over a chain of standard length and strength J, given that h
waves are present over the duration of the propagation. The units of J are arbitrary,
so without loss of generality we set JcD 1. J0 is a reference strength, and h0

represents the activity level at which wave propagation on a chain of reference
strength will be marginally stable, i.e. where P0D 0.5.

Wave propagation occurs in discrete time steps, from one pool to the next. The
probability of successful propagation per time step is given by:

P .h; J / W D P0.h; J /1=L0 ;

where L0 is the number of pools in the standard length chain. We use h0D 10,
and hcD 5 which results in a fairly sharp transition relative to h. In order to avoid
artificial wave alignment downstream of a source chain, their lengths vary with a
uniform distribution on [L0�
L/2, L0C
L/2] with L0D 20 and
LD 10.

Chains and between-chain couplings constitute, respectively, the nodes and edges
of a directed random graph G0, with a fixed out-degree of 2. We will formulate two
specific versions (Models 1 and 2)

In Model 1, chains vary in strength according to a normal distribution with mean
J� D J0 and standard deviation J	 . We set J	 D hc h	 . The parameter h	 expresses
the variation in chain strength in units of h. This means that a chain of strength
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Fig. 1 Pools are coupled to
form chains (vertical arrows);
two ways of coupling chains
used (diagonal arrows);
global feedback (not shown)
is also present

J D J0 ˙ J	will be marginally stable when h D h0 ˙ h	 . We consider 0	 h	 	 5.
Couplings between chains are strictly sequential: a link from the last pool of one
chain to the first pool of another. Their strength is the same as that of the links
within the source chain.

In Model 2, wave propagation within chains is governed by the same survival
dynamics as in Model 1, but chain strengths are uniformly fixed above the reference:
J D J0 C hch0. This means, according to Eq. (1), that propagation becomes
marginally stable at hD 2 h0. Coupling comprises a cascade of Lc weak cross-links
between two chains (see Fig. 1). We set LcD 10, which is less than the shortest
chain length. Coupling strength varies according to a normal distribution with mean
J c� D J0, and standard deviation J c	 D hch	 . We set J c� D J0 so that a coupling of
strength J c� becomes marginally effective at initiating a wave, i.e. P0.h; J c�/ D 0:5,
when hD h0. As before, 0	 h	 	 5.P0.h; Jij / represents the probability that a wave
on chain j will initiate a wave on chain i, given the former traversed all the cross-
linked pools. The source wave fails to initiate a wave on chain i if and only if it fails
at each of the cross-linked pools. Therefore Pc.h; Jij / D 1 � .1� P0.h; Jij //1=Lc is
the probability per time step that one wave activates another. If two or more waves
from different source pools converge on the same target pool simultaneously, any of
them can initiate a wave on the target chain.

2.2 Analysis

For Model 1, we consider node i to be effective at activity h if h< hth(i), where hth(i)
is the point of marginal stability of the i-th chain given by P0.hth; Ji /

Li =L0 D 0:5.
Likewise, for Model 2, an edge (i, j) is effective if h < hcth.i; j /, the latter defined
byP0.hcth; Jij / D 0:5.

Given their respective strengths, whereas in Model 1 the effectiveness of the
chains determines activity propagation, in Model 2 it is the effectiveness of
the edges. Therefore, for Model 1, we create a subgraph G(h) of G0 by removing
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all the nodes of the graph corresponding to chains which are ineffective given the
activity level. For Model 2, we create G(h) by removing all the edges which are
ineffective at that activity level. For each subgraph G(h) we determine the largest
strongly connected component, SC(G), and its out-component OC(G) [6]. These
track the emerging giant strong and out components, respectively for h between 0
and 20 at a sampling resolution of 0.1.

Each node x in G0 is characterized by a function OhSC .x/, the largest h-value for
which node x still belongs to SC, and likewise OhOC .x/ for the OC. For Models 1
and 2, we generated ten different structures; for each, we estimate A(x), the mean
number of wave activations per chain x from ten runs of 105 time steps initialized
with h waves in randomly selected pools (hD h0), discarding a 2,000 steps initial
transient.

3 Results

In both models, ongoing activity fluctuates rapidly around a mean value close to
h0 without external input for long periods of time. The first two columns of Fig. 2
depict the behavior of Model 1 for five values of h	 . The leftmost column shows
A(x) versus OhSC .x/ and OhOC .x/. Chains which more robustly belong to the largest
out-component tend to be more active. This trend is less prominent for the largest
strong component. The second column plots versus h, firstly: the number of vertices
in G(h) relative to G0 (green dot-dashed), secondly: the relative size of OC(G(h))
(red dashed), and thirdly:

P
A.x/over all x for which OhOC.x/ < h (blue, solid). The

green curve directly reflects the normal distribution of hth(x). The red curve shows,
as theoretically expected [6], the emergence of the giant OC at h � h0, where half
the nodes of G0 are in G(h), which implies the average degree of G(h0)D 1 (that
of G0 being 2). The blue curve shows that the activity is mainly concentrated on
the few chains that remain in the out-component around this point. The vertical
dotted lines indicate the grand mean of activity C/� the SD. The bounds are
remarkably independent of h	 ; the upper stays around h0. Finally, the inset shows
the cumulative activity of chains ordered by activity (lowest to highest). The striking
non-uniformity of ongoing activity increases with strength variability. The last two
columns of Fig. 2 similarly describe Model 2. (The green curve becomes the number
of edges in G(h) relative to G0 .) The critical point for emergence of the giant
component is the same but mean activity is higher, with the lower bound consistently
around h0. This may be, firstly, because chain propagation is robust even when edge
propagation is not, and secondly, because in Model 2 coupled chains are active in
parallel.

Figure 3 shows the rank correlations between A(x) and OhOC .x/ and between
A(x) and OhSC .x/ over chains in OC(G0) versus h	 for Models 1 and 2, respectively.
They are consistently high for h	 > 1, but drop towards zero as h	! 0. This is
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Fig. 2 First two columns: Model 1 for five values of chain strength variability h	 . First column:
mean number of activations per chain A(x) versus the highest h-value for which the chain belongs
to the strong component OhSC .x/ – open circles, or the out component, OhOC .x/ – filled circles.
Second column: for five network instances, number of nodes in G(h) relative to G0 (green dot-
dashed), relative size of OC(G(h)) (red dashed), cumulated average activity

P
A.x/ of all chains

x for which OhOC.x/ < h (blue, solid). Inset: normalized cumulative plot of activity versus chains
ranked by activation. Last two columns: Corresponding results for Model 2, with number of edges
in G(h) relative to G0 (green dot-dashed) (Color figure online)

because in the limit of uniform chain thresholds (hth(x)! h0), the giant component
abruptly drops from OC(G0) to ; at hD h0 rather than decreasing gradually with h.
Residual variability in hth(x) due to the variability in chain lengths leads to a small
positive correlation even at h	 D 0 in Model 1, while in Model 2 it is undefined at
h	 D 0 because hcth .i; j / is uniform. The rank correlation between hth(x) and A(x)

for Model 1, Fig. 3 is consistently below the previous, indicating that OhOC .x/ and
OhSC .x/ characterize the distribution better. Exceptions are chains of relatively low
OhOC .x/ with a high frequency of activity. These chains usually are both strong and
strongly self-coupled, forming loops on which waves can circulate robustly, despite
being isolated from the giant component.
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Fig. 3 Rank correlations between A(x) and OhSC .x/, OhOC .x/ respectively and, for Model 1,
between A(x) and hth(x), for chains x in OC(G0)

4 Discussion

The propagation of activity in our models exhibits a wandering dynamics. The ac-
tivity level (h) modulates the effective connectivity of the network: the effectiveness
of chains (Model 1) or couplings (Model 2); activity fluctuations dynamically create
a range of effective graph structures G(h) near the threshold for the emergence
of the giant components (OC(h) and GC(h)). Activity tends to concentrate on
chains that remain in the giant components at higher activity levels. Variability
in strength controls the uniformity of activity: the larger the variability the more
restricted is the percolation of activity. To serve memory functions, in future
developments combinations of wave activity may be selectively reinforced, using
dynamic coupling, giving rise to more complex topologies.
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Neural Synchrony for Expert Memory in Shogi
(Japanese Chess) Players

Hironori Nakatani and Yoko Yamaguchi

Abstract Experts in most domains show superior memory performances for
domain-specific stimuli. Psychological studies proposed that chunk-based process-
ing is a key mechanism of cognitive expertise and superior memory performances of
experts are natural consequences of chunk-based processing. A neuroimaging study
has shown that chunks are stored in the temporal lobe. On the other hand, brain
dynamics underlying chunk-based processing is poorly understood. With shogi
(Japanese chess), we investigated neural synchrony underlying working memory
of shogi players. We found that neural phase synchrony between the frontal and the
temporal areas was associated with memory retention of expert players. The result
indicates that synchronized interaction between frontal executive area and temporal
chunk area realizes chunk-based processing.

1 Introduction

Experts have domain-specific superior cognitive ability [1–3]. For example, expert
chess players can memorize a number of chess positions from real game records
[4–6] and can rapidly find superior moves [6]. Psychological studies proposed that
a key mechanism underlying cognitive expertise is chunk-based processing [7].
Chunks are long-term memory (LTM) information about stereotyped patterns of
piece positions [4, 5]. As chunks are perceptual units and are associated with chess
strategy, recognition of chunks in chess positions reduces mental load and also
retrieves moves from knowledge about chess strategy.

H. Nakatani (�) • Y. Yamaguchi
Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute,
Saitama, 351-0198, Japan
e-mail: hnakatani@brain.riken.jp; yokoy@brain.riken.jp

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (III),
DOI 10.1007/978-94-007-4792-0 44,
© Springer ScienceCBusiness Media Dordrecht 2013

325



326 H. Nakatani and Y. Yamaguchi

Recent neuroimaging studies have identified brain areas underlying superior
cognitive process of chess experts. Campitelli et al. showed that chunks are stored
in the temporal lobe [8]. With shogi (Japanese chess), Wan et al. showed that the
precuneus in the parietal lobe is responsible for perception of piece positions and the
caudate nucleus of basal ganglia is responsible for quick generation of the move [9].
On the other hand, brain dynamics underlying superior cognitive ability is poorly
understood.

We assumed that phase synchronization of brain activity between the frontal
area and the temporal area realized chunk-based processing and it, therefore,
characterized high level of expertise. Phase synchronization of neural activity has
been proposed as a mechanism to integrate neural processes that are distributed
across the brain [10, 11]. If the chunk-based processing is a key mechanism under-
lying cognitive expertise [7], phase synchronization would mediate a formation of
dynamic links between frontal executive area and temporal chunk area.

In this study, we carried out working memory experiments with shogi. As chess
studies reported that working memory performances were closely correlated with
chess expertise [4–6], brain activity underlying working memory would reflect
expert’s cognitive process. We compared phase synchronization of the electroen-
cephalogram (EEG) activity between brain areas across different levels of shogi
expertise.

2 Methods

Thirty participants with normal or corrected-to-normal vision participated in this
study. They were professional players, amateur players, and non-playing partici-
pants. Participants were classified into following four groups: professional group
(n = 12), high-ranked amateur group (n = 6), low-ranked amateur group (n = 6), and
non-playing group (n = 6). Participants gave their written informed consent. The
Research Ethics Committee of the RIKEN approved our experiments.

In our working memory experiments, each trial consisted of four periods: 3 s
of fixation period, 5 s of encoding period, 3 s of retention period, and self-paced
retrieval period. In the encoding period, a shogi position was presented visually on
a monitor. In the retrieval period, a shogi board and pieces were presented on the
monitor. Participants then reconstructed the piece positions based on their memory.
There were two stimulus conditions. One was a game condition, in which piece
positions were from game records. Shogi players recognized game positions as
chunks of pieces, not as individual pieces. The other was a random condition, in
which piece positions were created by random replacement of piece positions in the
game condition. We used 50 stimuli in the game condition and 50 stimuli in the
random condition. The stimuli were presented with randomized order.

We measured the EEG activity with 19 Ag/AgCl electrodes that were placed on
the scalp in accordance with the international 10/20 system. Reference and ground
electrodes were placed on the left ear and forehead, respectively. Electrooculogram
(EOG) was also recorded.
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In order to evaluate the synchronized brain activity between brain areas, we
used phase synchronization index (PSI). The index is a statistic for phase-locking
between two signals [11,12]. After we reduced blink and EOG-related artifacts from
EEG recordings with independent component analysis [13, 14], we calculated the
PSI. The details of the calculation were shown in [15].

3 Results

Phase synchrony spectra systematically changed according to levels of shogi
expertise (Fig. 1).

During the retention period, the professional and the high-ranked amateur groups
showed enhanced phase synchronization in the alpha band between the frontal
activity (Fz-site) and the left temporal activity (T5-site). The high-ranked amateur
and the low-ranked amateur groups showed enhanced phase synchronization in
the beta band between the frontal activity (Fz-site) and the parietal activity (Pz-
site). These results indicate that phase synchronization between the frontal area and
the temporal area characterizes high level of expertise and phase synchronization
between the frontal area and the parietal area characterizes intermediate level of
expertise.

On the other hand, during the encoding period, the low-ranked amateur and
the non-playing groups showed enhanced phase synchronization in the beta band
between the frontal activity (Fz-site) and the left temporal activity (T5-site)
without enhanced alpha band phase synchronization during the retention period.
Phase synchronization between the frontal area and the temporal area, thus, also
characterizes low level of expertise.

Interestingly, waveforms of phase synchrony spectra in the random condition
were similar those in the game condition (Fig. 1).

4 Discussion

As chunks are LTM representations about stereotyped patterns of piece positions
[4, 5], chunk-based processing [7] would temporarily activate LTM representations
to process domain-specific information. In our study, participants with high level
of shogi expertise showed enhanced phase synchronized EEG activity between the
frontal and the temporal areas during memory retention (Fig. 1). The result suggests
that the frontal executive function accessed LTM representations about chunks in
the temporal area [8] to maintain internal representations about presented piece
positions.

Waveforms of phase synchrony spectra in the random condition were similar to
those in the game condition (Fig. 1). The similar spectra suggests that similar cog-
nitive dynamics were applied for both meaningful game positions and meaningless
random positions. According to chess study, expert players did find some chunks
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Fig. 1 Waveforms of phase synchrony spectra were systematically associated with levels of shogi
expertise. Values of PSI between the Fz-site and the T5-site and between Fz-site and Pz-site in the
encoding and the retention periods were shown

even in randomized positions [16]. As stronger players have larger repertories of
chunks in LTM [7, 16, 17], they are more likely to find rare patterns in LTM than
weaker players. The effect of chunk-based processing in the random condition was
confirmed by computer simulations [17].



Neural Synchrony for Expert Memory 329

Thus, we propose that a key neural dynamics underlying chunk-based processing
is alpha band phase synchronized brain activity between the frontal and the temporal
areas.

Intermediate level of expertise were characterized by enhanced phase synchro-
nization between the frontal and the parietal areas. A fMRI study reported that
training of working memory task increased the frontal and the parietal areas [18].
Phase synchronization between the frontal and the parietal areas might reflect
some aspects of training in shogi regarding working memory function such as
manipulation of internal representation about shogi-related information.

From waveforms of phase synchrony spectra (Fig. 1), we can infer how brain
dynamics change during skill development. The frontal area first cooperates with
the parietal area at the early stage of skill development, and then it cooperates with
the temporal area when we attain high level of expertise with long-term, intensive
training.
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Neuronal Synchrony During the Planning
and Execution Period in the Prefrontal Cortex

Kazuhiro Sakamoto, Katsutoshi Yamamoto, Naohiro Saito, Kazuyuki Aihara,
Jun Tanji, and Hajime Mushiake

Abstract We analyzed synchronous firing in lateral prefrontal cortex (lPFC)
neurons while monkeys were performing a path-planning task that required them
to perform multiple related cursor movements. A synchronous group of neuronal
pairs showed enhanced synchrony at each cursor-movement step. This enhanced
synchrony, which preceded the execution period for the first cursor movement, was
significantly correlated with cursor-movement selectivity as defined by the firing
rate during the planning period. Information about the behavioral plan represented
by the firing rate may be transformed from the “planned state” into the “execution
state” by neuronal synchrony within the lPFC.
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Keywords Neuronal synchrony • Monkey • Prefrontal cortex

1 Introduction

The lateral prefrontal cortex (lPFC) is involved not only in maintaining behaviorally
relevant information internally but also in planning multiple actions that are
executed subsequently [1]. Several studies have reported that during such execution
periods, enhanced synchronous neuronal firing precedes each action (e.g. [2]).
However, the functional role of such synchrony is unclear.

We previously observed transient synchronous firing among a group of lPFC
neurons in monkeys during the planning period of a path-planning task that required
them to plan multiple cursor movements to reach a goal [3]. This synchrony seemed
to coincide with a shift from the “instructed final goal” state to the “planned
cursor movement” state as represented by the firing rate, suggesting that neuronal
synchrony is involved in a state shift in the lPFC.

In this study, we examined whether transient synchrony is observed during the
task execution period and, if so, what the behavioral relevance is, particularly its
relationship to neuronal representation of cursor movements.

2 Methods

The details of the experimental and analytical procedures are described in [1, 3, 4].

2.1 Behavioral Procedures

Two monkeys (Macaca fuscata) were trained to perform a path-planning task that
required planning multiple cursor movements, controlled with manipulanda, to
reach a goal within a maze (Fig. 1). Animals were cared for in accordance with the
Guiding Principles for the Care and Use of Laboratory Animals of the NIH and our
institution. To begin the trial, the animals were required to hold the two manipulanda
in a neutral position for 1 s (Initial Hold). Subsequently, a cursor was presented at
the center of the maze (Start Display). One second later, the position of a goal cursor
was presented for 1 s (Final Goal Display). After a delay (Delay 1 or Delay 2), the
color of the cursor was changed from green to yellow, which served as an initiation
signal (1st GO). After a 1-s hold period, the next GO signal was presented (2nd
GO). When the cursor reached the final goal position, the animal received a reward
(Reward). To dissociate arm and cursor movements, the arm-cursor assignments
were altered on completion of a block of 48 trials.

We used conventional electrophysiological techniques to obtain in vivo single-
cell recordings from the lPFC.
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Fig. 1 Temporal sequence of events in the path-planning task. Green, red and yellow squares
denote current cursor positions, the positions of the final goal and GO signals, respectively (Color
figure online)

2.2 Analysis of Single-Unit Activity

We examined the time course of firing-rate selectivity for each cursor movement
during the entire task period. First, spike counts within 100-ms time frames
were assessed using multiple regression analysis. Then, the F-values of regression
coefficient for in successive 100-ms time frames were normalized to the predicted
value of each neuron at PD 0.05 and smoothed using a sliding average for 500-ms
time frames.

To evaluate the extent to which PFC neuronal activity predicted information
associated with cursor movements within each 100-ms time frame, we calculated
the predictive information carried by the occurrence of spikes by quantifying the
decrease in entropy in the cursor directions [1].

The normalized F-values and information within a pair of neurons were averaged
and used to assess the statistical significance of the pair.
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2.3 Analysis of Neuronal Synchrony

We used the time-resolved cross-correlation method [3, 5] to assess changes in the
synchrony of neuron pairs independently of changes in the firing rate of individual
neurons by using the instantaneous firing-rate (IFR) estimate to correct for firing-
rate modulation.

A time-resolved cross-correlation (TCC) histogram was obtained by cross
correlating the spike times of two neurons of pair. Namely, this histogram is a plot
for spike timing of one neuron within ˙200 ms of when the other neuron fires.
The predictor (time-resolved cross-predictor; TCP) used to estimate false synchrony
caused by fluctuations in firing rate was estimated by cross correlating IFRs. The
IFR at each time was defined from the reciprocal of the interspike interval. Thus, the
IFR was obtained for each trial, avoiding the detection of false synchrony caused by
intertrial fluctuations. The TCP was subtracted from the TCC at each data point, and
this value was summed over the task period to create the standard cross-correlation
histogram (CCH).

The CCH was used to select significantly synchronous pairs based on the follow-
ing criteria: more than 2,000 spikes contributed to the cross-correlation estimate, the
CCH had a positive peak of more than 4.41 SDs above baseline (P<0.00001), and
the significant peak was within˙25 ms of the center of the CCH [6].

To examine synchrony in the significantly correlated pairs of spikes over time,
we first calculated raw synchrony (RS) by averaging synchrony magnitudes in the
TCC, taken from the half-width area around the peak in the CCH. Similarly, we
calculated the firing-rate-dependent synchrony (FRDS) as a reference or a predictor
for synchrony estimated from the firing rate. Then, we calculated the difference
between RS and FRDS (divided by the SD of the latter for normalization) and
plotted the values as normalized synchrony. In the following, we used the term
synchrony in place of normalized synchrony for simplicity.

3 Results

Among 456 neuronal pairs (458 neurons) recorded simultaneously, 23 pairs (45 neu-
rons) showed significant synchronous firing during the entire task period (syn-
chronous pairs). In this report, we focused on the selectivity of these pairs for the
first and second cursor movements during the planning and execution periods.

Transient synchrony seemed to follow the increase in cursor movement selectiv-
ity during the planning period. In the example pair indicated in Fig. 1a, a synchrony
peak was observed near the transition time between the planning and execution
periods (�300 ms from the first GO signal). Before this peak, information predicting
the first cursor movement, calculated from the firing rate of the neurons of the pair,
exhibited a prominent peak during the planning period. A comparable result for
information associated with the second cursor movement was obtained in another
pair indicated in Fig. 2b.
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At the population level of the synchrony pairs (nD 23), broad peaks of predictive
information about the first cursor movement were observed not only during the
execution periods but also during the planning period (Fig. 2c). This result was
supported by the plot of the probability of pairs that showed significant selectivity
for the first cursor movement (Fig. 2d). Corresponding figures for the second cursor
movement are presented in Fig. 2e and f. These results were consistent with our
previous study [1].

Enhanced synchrony at the transition time between the planning and execution
periods was also observed at the population level. Figure 2g and h indicate the
time course of the averaged synchrony and probability of significant synchrony.
A significant broad peak in synchrony was observed near the first GO signal
(�200 ms; P<0.05, binominal test). We called this broad peak “synchrony-at-
transition”. We also observed another significant broad synchrony peak during the
execution period (2,100 ms; P<0.05, binominal test) and called it “synchrony-
during-execution”.

To examine the physiological relationship between these two synchronous peaks
and the information for the first and second cursor movements, we analyzed the
correlations between the magnitude of synchrony and the predictive information in
the planning and execution periods across the population pairs (Fig. 3). The results
revealed that synchrony-at-transition was more correlated with information for the
first cursor movement than for synchrony-during-execution (Fig. 3a). In particular,
synchrony-at-transition was significantly correlated with the predictive information
during the planning period (rD 0.48, P<0.05). The correlations between the
synchronous peaks and predictive information about the second cursor movement
were quite similar (Fig. 3b).

4 Discussion

We investigated the role of synchronous firing in the lPFC as monkeys performed a
path-planning task that required multiple cursor movement steps to reach goals.
We detected two different types of neuronal synchrony, which were enhanced
transiently at different phases of the trial (Fig. 4). The first broad synchronous peak
was detected near the transition period from the planning to the execution phase
(synchrony-at-transition), and the second synchronous peak was detected during
the execution period (synchrony-during-execution). Synchrony-at -transition was
significantly correlated with predictive information about cursor movements during
the planning period. In contrast, synchrony-during-execution was not correlated
with planned actions.

Our findings suggest different functional roles for each type of synchrony.
Synchrony-at-transition may involve a state transition between simultaneous
planning and serial execution of intended actions within the lPFC. In contrast,
Synchrony-during-execution did not reflect information about planned actions and
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appeared to be incidental in nature. The physiological implications of this newly
detected synchrony-during-execution remains to be further studied.
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A Constructive Approach for Investigating
the Emergence of Role Division in Social
Interactions

Kenichi Minoya, Takaya Arita, and Takashi Omori

Abstract This paper attempts to demonstrate the emergence of role division in
a short time scale where agents dynamically determine their roles based on the
estimated intention of others. To do this, we use a Functional Parts Combination
(FPC) model, which regards the brain at a functional level as composed of a set of
functional parts and activation signals specifying selectively activated patterns. We
conduct computer simulations in which the activation signals are learned using a
hunter task as a problem to be solved by the agents. The simulation demonstrates a
scenario for bootstrapping Theory of Mind (ToM) as the emergence of the partial-
networks of functional parts in the brain based on the interactions between the
recursive levels of intentionality in ToM. It also shows that appropriate behaviors
suited for others interacting for the first time can be swiftly acquired simply by
reusing the acquired partial-networks.

1 Introduction

In social interactions human can behave cooperatively by estimating the intention
of others and determining own roles. Understanding of others as having intentional
states such as beliefs and desires is called Theory of Mind (ToM) [1]. We model a
human communication based on the mind-reading as follows: (1) humans estimate
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the intention of others from his/her behavior by simulating it based on their own
action decision process as if they were in the same situation [2]; (2) humans
interactively determine own behaviors in accordance with the estimated intention
of others. Unlike the static environment where certain rules that agents have to learn
were permanent, these processes are too dynamic to be explained by the traditional
action learning methods through a trial and error because it is necessary to cope
promptly with the change of the intention of others inits dynamic environment.

This paper attempts to demonstrate the emergence of role division in social
interactions among agents estimating the intention of others based on a Functional
Parts Combination (FPC) model [3]. The FPC model is based on the neuroscientific
fact that each cerebral cortical area has a different role and is selectively activated
depending on the task.

Several studies in agent-based computational modeling have been made on the
emergence of role division in social interactions on the basis of ToM [4, 5]. However,
functions of ToM in these studies are procedurally defined a priori. This paper
focuses on the emergence of a ToM without defining it a priori by modeling the
brain at the functional level.

2 The Model

2.1 Functional Model of the Brain

Figure 1 shows a functional model of the brain based on the FPC model [6]. There
are modules Mi in the brain, which constitute a module network. A set of modules
in the network is activated by a set of activation signals represented as a vector
of binary values 0 and 1: AD (a0, � � � , ai, � � � , ak�1), where k is the number of

Fig. 1 Functional model of the brain
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Fig. 2 The module network
used for the experiments

modules, and ai is an activation signal for module Mi. Some links in the network
are deactivated by a set of link-deactivation signals represented as a vector of binary
values 0 and 1: DD (d00, � � � , dnm, � � � , dii), where dnm is a signal of the link from
Mn to Mm. In the partial-network, parallel computation is controlled based on the
simple parallel control flow paradigm [7]. Figure 2 in Box 1 shows the module
network adopted in the experiments. By combining these modules, some strategies
based on Dennett’s intentional stance [8] could be possible as: (1) Agent at level 0
takes action based on own goal independently of the intention of others; (2) Agent
at level 1 estimates the intention of others by assuming that others would be at
level 0, and takes action based on it; (3) Agent at level 2 estimates the intention
of others by assuming that others would be at level 1, and takes action based
on it.

Box 1 The Module Network and the Functions of the Modules

M0 (state recognition): own state ss(t) and action as(t) are recognized.
M1 (state recognition): other’s state so(t) and action ao(t) are recognized.
M2 (working memory): ss(t�1) and as(t�1) are stored.
M3 (working memory): so(t�1) and ao(t�1) are stored.
M4 (likelihood estimation): likelihood l (G, t)DP (a j s, G)D exp (ˇQ (a j s,

G))/†a’exp (ˇQ (a’ j s, G)), where Q represents an evaluation value (M11)
and ˇ is a parameter called the temperature.

M5 (likelihood history): likelihood history m (G, t)Dfl (G, t), : : : , l
(G, t - HC 1)g.

M6 (cumulative log likelihood): cumulative log likelihood L (G, tjm)D
†l2m(G, t)log l.

M7 (intention estimation): intention g (G, t j m)D exp (ˇL (G,t j m))/†G’exp
(ˇL (G’, t j m)).

(continued)
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(continued)
M8 (intention formation): intention Gs (¤ Go) is formed.
M9 (action selection): action asD argmaxaP (a j ss, Gs).
M10 (action-selection function): it is the one based on soft-max reinforcement

learning.
M11 (Q-Table): it is an evaluation value acquired by reinforcement learning.
d24, d34, d88 (link-deactivation signals): d24D d88, and d24¤ d34.

The brain searches for a setx of activation and link-deactivation signals:
SolutionD (A, D) responding to the current task (or social situation). The searching
system alternates between the two modes: searching for a new Solution and
switching among the acquired Solutions, evoked by the change of environmental
nature [9]. In searching mode, it searches for a new Solution for the current (social)
situation. When a solution which forms a new partial network containing sensory
input and action output is obtained, it is registered in the Situations. The system
changes into switching mode when the evaluation keeps lower than a threshold for
a certain period of time. In switching mode, an adequate Solution continues to be
used while the evaluation is stable. However, if there are no suited solutions in the
Situations for the current environment, which means that it is a novel environment,
the system returns into searching mode. The evaluation is updated per unit time:

EpC1 D ˛e � reward C .1 � ˛e/ �Ep; (1)

where ˛e is a parameter which coordinates the update rate and reward is an
evaluation of the present partialnetwork. The threshold is also updated per unit time:

TpC1 D ˛t � T max C .1 � ˛t / � Tp; (2)

where ˛t is a parameter which coordinates the update rate and T max corresponds
to a threshold value of the model. The sensitivity to change of the environmental
nature is regulated by T max. In order to prevent the frequent mode change, Tp is
set to T min after the mode change.

2.2 Task

This paper focuses on the emergence of activation and link-deactivation signals for
forming ToM partial-networks with a specific recursion level to achieve cooperative
behavior in a hunter task. Two hunters cooperatively capture the two prey in a
20� 20 a two-dimensional grid folded to a torus in the task. Each hunter moves one
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cell per step to the left, right, up or down, or stays in the current cell according to its
own strategy, while each prey moves one cell per step stochastically. When starting
the task, all four agents are randomly located in the grid, and each hunter selects
the closer prey as an initial target. Each episode ends when each hunter captures the
different prey or the number of time steps exceeds the upper limit stepmax.

The task is solved several times using the current solution in each period.
Averaged time steps to solve the task, which is used to evaluate the solution:

reward D 100=step: (3)

The reward is shared between cooperators, and then Ep (expression (1)) and Tp

(expression (2)) are updated.

3 Experiments

3.1 Experimental Setup

We conducted simulations in which each agent learned the activation and link-
deactivation signals in parallel on the basis of tabu search [10]. First, N agents were
created, each with a randomly generated initial solution: Solution0D (s0, : : : , si,
: : : , sk�1, sk), where si (iD 0, : : : , k�1) corresponds to the activation signal ai for
module Mi, and sk represents the link-deactivation signal (d34), respectively. Each
agent solved the hunter task N – 1 times, each with a different agent in a round robin
manner. Table 1 shows the experimental setup of the experiments.

4 Results

Figure 3a shows the transition of Solutionp, reward, Ep and Tp of a hunter during
learning (7 rounds). In the following account, we call the focal hunter ‘Ken’.
Figure 3b shows the transition of those of Ken’s 7 different partners each round.

Table 1 Experimental setup

Population size: N 8 T max 2
Periodmax 1,000 T min �1
Episodemax 10 ˛e, ˛t (in searching mode) 0.02
Stepmax 500 ˛e, ˛t (in switching mode) 0.005
Neighbor size: n 13 History size: H 5
Mutatinal rate: p 0.15 Temperature: ˇ 1
Tabu tenure 7
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Fig. 3 The transition of the Solutionp (black lines), reward (pink line), Ep (blue line) and Tp

(red line). (a) A certain hunter (named ‘Ken’). (b) Ken’s partners which changed per 1,000 periods
(Color figure online)

The bars in Fig. 3a and b represent the patterns stored in Situations (Fig. 1) and those
activated at each period. We have found the emergence and adaptive switching of
partial networks for processing higher-order estimation of other’s intention in terms
of intentional stance developed by Dennett [8] as shown in Fig. 4, which shows the
networks for processing level 0, level 1 and level 2 ToM, respectively.

In the 1st round, the initial solutions of Ken and his partner that were randomly
generated were (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1) and (1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,
1, 0), respectively (see Sect. 3.1). Note that M9D 0, in other words, there were no
output (Fig. 1) in the Ken’s network while the activated patternfor level 0 ToM was
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Fig. 4 The emerged partial-networks for processing level 0, level 1 and level 2 ToM. The red
circles represent activated modules

Fig. 5 The transition of the average rewards of N agents with and without the attention system,
averaged over ten trials

already included in his partner’s network. The reward increased suddenly at around
400th period, when the solution of the Ken became (1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1,
1, 0), in other words, he acquired the network for level 0 ToM. In the second round,
Ken and his new partner behaved using level 0 ToM at first. The reward increased
at around 1050th period in parallel with the activation of Ken’s M4. It is because by
then Ken had acquired the activated pattern for level 1 ToM.

Between third and fifth rounds the reward remained stable thanks to the adaptive
interactions between the levels of ToM. However, it decreased in the early stage
in the sixth round. At that time Ken and his new partner behaved competitively
using level 0 ToM. After that, Ep of the partner became less than Tp, and the reward
increased. This is because the partner shifted into switching mode and reused the
adequate activated patterns for the current environment.

Next, we compared the performance with those without the attention system
[6] to evaluate the introduction of the mechanism for switching among the kept
Solutions in Situations. Figure 5 shows the transition of the average rewards of N
agents with and without the attention system, averaged over ten trials. It is shown
that the rewards with the system in the early stage of each round were clearly higher
than those without it. This indicates that the appropriate partial-network could be
swiftly acquired by using the attention system even when interacting a new partner.
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5 Conclusions

We constructed a functional model of the brain based on a functional parts
combination (FPC) model to investigate the emergence of the role division in social
interactions. The simulation demonstrated a scenario for emergence of role division
based on estimating the intention of others as the acquisition of the partial-networks
formed by the cooperative interactions between the recursive levels of intentionality
in ToM. It was also shown that even when interacting a new partner the appropriate
partial-network could be swiftly acquired simply by reusing the acquired partial-
networks. These results imply that efficient social behaviors were attained not only
by the individual cognitive components but also the appropriate combinations of
these modules, which has much in common with the neuroscientific facts about
autism [11]. The next step would be to investigate the acquisition of not only the
activation signals but also the connections between modules.
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Estimating Similarity Judgment Processes Based
on Neural Activities Measured by Near-Infrared
Spectroscopy (NIRS)

Yoshihiko Suzuki and Shohei Hidaka

Abstract Similarity takes a crucial role in various kinds of cognitive processes. In
the present study, we investigated the neural activities during similarity judgments
on 1,225 pairs of images using the near-infrared spectroscopy. The predictability
of similarity judgments were analyzed with a hierarchical Bayesian framework
applied on the neural activities. It revealed that the neural activities located in a
prefrontal region had a sharp increase prior to onsets of subjects’ responses. Given
the findings, we discussed about a key process, information integration of various
domains, underlying similarity judgments.

1 Introduction

Semantic judgments such as association, similarity, and categorization are funda-
mental capability that appears in any contexts. In past works, it has been empirically
studied in two approaches: One is subjective method in which it relies on common
trends in multiple subjects’ association, similarity or category judgments [1], and
the other is relatively more objective method in which brain activities measured
by advanced techniques, such as EEG, MEG, and fMRI, are analyzed in behalf
of subjective judgments [2]. In order to bridge and integrate findings in the two
empirical approaches, it is crucial to take advantage of theoretical models on
semantic cognition. In particular, here we focus on similarity judgment. Similarity
judgment has been generally accepted as a key piece of computation in theoretical
approaches (e.g., mathematical models [3] and neural network models [1]) with
massive empirical supports.
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The goal of the present study is to understand relationship among subjective
rating, neural signals, and computational models on similarity judgments. Specif-
ically, our question here is whether there exists neural basis which correlates with
similarity regardless of various kinds of stimuli. In order to answer the question,
we asked subjects to answer similarity of various pairs of images. Subjects had no
specific criterion about “similarity” –they can evaluate similarity by visual features
such as color, shape, and texture or they may also evaluate similarity of associated
properties such as monkey from a picture of a banana. Here we report a first step
of research showing that particular patterns in neural activity may reflect “similarity
computation” invariant to various kinds of visual stimuli.

2 Methods

2.1 Subjects

Ten subjects (six males and four females) were recruited from graduate students in
Japan Advanced Institute of Science and Technology in Japan. The mean age of
subjects is 26.1 (S.D. D 4.33). All the subjects were right-handed and had good
corrected or non-corrected visual acuity.

2.2 Experiment Procedure

The subjects were instructed to answer, by pressing one of five keys (“1”, “2”,
“3”, “4”, and “5”) that are mapped on scales, “very similar” to “very dissimilar”,
similarity of two images presented on the screen in one trial of the experiment. We
have two sets of mapping between keys and similarity codes, “1” as “very similar”
or “1” as “very dissimilar”, and each subject was assigned one of either randomly.
The experiment consists of 1,225 trials. In each trial, subjects were presented a
pair of two images drawn from the unique 1,225 combinations (pairs sampled from
50 categories without a pair of an identical category). The presentation order was
randomized and counterbalanced across subjects.

The time course of each trial is shown in Fig. 1. Each trial starts with presentation
of a pair of two images at left and right boxes with a beep sound, and took no
response during the first 1 s. After the first second, subject could make a response
by pressing a key in his/her own timing. During 1 s right after the subject’s response,
the blank screen was presented, and it was followed by the next trial with another
pair of images.

During the experiment, we measure the relative changes in oxy-hemoglobin
concentrations of frontal lobe using a near-infrared spectroscopy (NIRS) (ETG-
4000, the Hitachi Medical). The probes were attached with a cap on subject’s scalp
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Fig. 1 The time course of
each trial

which was located based on the International 10–20 system. The Probe 1 (3 by 5)
covered the prefrontal area, and the Probe 2 (two separate 3 by 3 sets) covered the
left and right lateral area next to the Probe 1.

2.3 Noun Categories

The 50 categories were selected from a normative list of 300 English nouns that
typical 3-year-olds have learned [4]. Specifically, 50 nouns are as follows: butterfly,
cat, fish, frog, horse, tiger, arm, eye, hand, knee, tongue, boots, gloves, jeans, shirt,
banana, egg, ice cream, milk, pizza, salt, toast, bed, chair, door, refrigerator, table,
rain, snow, stone, tree, water, camera, cup, keys, money, paper, scissors, plant,
balloon, book, doll, glue, airplane, train, car, bicycle, truck, and bird.

2.4 Images

Five images for each of 50 nouns were collected [5]. All the pictures have a still and
real object on the center (see also Fig. 1 for examples).

2.5 Sparse Regression Analysis

We employed a hierarchical Bayes model for analysis of neural signals obtained
from NIRS measurements in similarity judgments. We assume that a prototypical
pattern of neural signals over channels and time emerges when a subject judges
similarity between a given pair of stimuli. The present hierarchical Bayes model is
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inspired by the hierarchical linear regression model proposed by Nambu et al. [6].
Nambu et al. have proposed the sparse linear regression in which the regression
coefficients with non-zero values are penalized by the sparseness prior distribution
on them. In the sparse linear regression, only few parameters can be non-zeros due to
the presumed sparseness of parameters, and this may solve the over-fitting problem
which a typical NIRS experimental setting tends to have. In the present analysis,
we employed the logistic regression with the sparseness prior distribution for the
regression coefficients. The likelihood of binary responses (binomial distributions)
and the sparseness prior distribution forms the posterior distribution of parameters
which is sampled by the Monte Carlo Markov Chain.

3 Results

The average reaction time across the subjects is 1.70 s (S.D. 0.54). The similarity
judgments on 1,225 pairs (50 categories) average over the subjects were visualized
with hierarchical clustering (Fig. 2). The overall patterns were consistent to the
previous experiment with a similar procedure [5]: several superordinate categories
such as vehicles, animals, cloths, and household objects were clustered.

Fig. 2 Clustering tree of the similarity judgements
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In the experiment, the timing of similarity judgment was up to subjects’ decision.
The present experimental design allows us to analyze the temporal structure of
subject’s similarity judgments. Therefore, we applied the sparse logistic regression
model to the similarity judgment dataset in eight different conditions (2 by 4)
which have the neural signals obtained in different time intervals. In stimulus-
trigger condition, we analyzed the similarity judgments based on the neural signals
from the stimulus onset (i.e., image presentation as the trigger) to 1, 2, 3, and 4 s.
In response-trigger condition, we analyzed them based on the neural signals from
1, 2, 3, and 4 s prior to the response onset. In each condition, we evaluated four
models with different set of regression coefficients (over the interval 0–1, 2, and 4 s)
using Deviance Information Criterion (DIC; [7]). We found that, for the majority
of subjects, the model on the 1-s interval after stimulus or before response was the
best model (five (stimulus-trigger) and seven (response-trigger) out of ten subjects).
In the best models for all the subjects, the odds ratios of the correct prediction
of subjective similarity judgment from the neural signals1 were better than the
baseline model2 in which no neural signals is available for prediction. (p<0.01).
The result confirmed that the sparse logistic regression captured the neural signals
with significant predictive power for similarity judgments.

Next we analyzed the regression coefficients (averaged over subjects and the
posterior distribution) in the best model in each of stimulus-trigger and response-
trigger conditions. Figure 3 showed the topographic map of the absolute regression
coefficients of the sparse logistic regression analysis based on the neural signals in
(a) 1 s from stimulus onset and in (b) one interval to response onset. In both Fig. 3a
and b, we found a sharp peak in prefrontal area. Moreover, the peak tends to become
strong at the end of the intervals which is right before subject’s responses.

4 Discussions

In the present study, we investigated the spatio-temporal neural activities in
similarity judgments on presented paired images drawn from 50 basic categories.
The Bayesian hierarchical model has revealed that subjects’ similarity judgment
can be significantly predicted with the neural activities in the prefrontal area prior
to their decision making.

The peak was located in Inferior prefrontal region. This region is close to the
ventromedial prefrontal cortex (VM), which is supposed to take a key role in
decision making in a gambling task [8], although the NIRS is limited to capture the
neural activities in only surface areas. In the previous study, it has been considered

1The odds ratio isPcorrect =.1� Pcorrect / NPcorrect ı�1� NPcorrect � , where Pcorrect and NPcorrect are
correct prediction of the best model and the baseline model.
2The base line model has two parameters, slope and intercept, for baseline-frequency of response.
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Fig. 3 The topographic map of the average absolute coefficients in (a) 1 s from stimulus onset and
in (b) 1 s to response onset (10 Hz)

that the VM takes a crucial role in integration of a wide range of information.
It leads us to hypothesize that integration of multiple types of attributes (i.e., visual,
associative, and semantic attributes) may be crucial to the timing of decision making
in similarity judgments.

Acknowledgments This work was supported by Grant-in-Aid for Research Activity Start-up No.
22800028.

References

1. Rogers, T. T., McClelland, J. L.: Semantic Cognition: A Parallel Distributed Processing
Approach, MIT Press, Cambridge, MA (2005)

2. Kutas, M., Federmeier, K. D.: Language comprehension and the N400, Trends in Cognitive
Sciences. 4(12) (2000) 463–470

3. Nosofsky, R. M.: Attention, similarity, and the Identification-Categorization Relationship,
Journal of experimental Psychology: General. 115(1) (1986) 39–57

4. Fenson, L., Dale, P., Reznick, J. S., Bate, E., Hartung, J., Pethick, S., and Reilly, J.: MacArthur
Communicative Development Inventories. CA: Singular Publishing, San Diego, (1993)

5. Hidaka, S.: Development of the Semantic Network: From a random to a complex network, In
proceedings of The Thirty Second Annual Meeting of Cognitive Science Society (2010)



Estimating Similarity Judgment Processes 353

6. Nambu, I., Osu, R., Sato, M.A., Ando, S., Kawato, M., Naito, E.: Single-trial reconstruction
of finger-pinch forces from human motor-cortical activation measured by near-infrared spec-
troscopy (NIRS). Neuro Image. 47(2) (2009) 628–63

7. Claeskens, G., Hjort, N.L.: Model Selection and Model Averaging. Cambridge. 3(5) (2008)
8. Bechara, A., Damasio, H., Damasio, A.R.: Emotion, Decision Making and the Orbitofrontal

Cortex. Cereb. 10(3) (2000) 295–307



Autonomous Robot with Internal Topological
Representation

Pitoyo Hartono and Thomas Trappenberg

Abstract In this study, we implement the Map Initialized Perceptron (MIP), which
is a hierarchical model of neural network with a Self-organizing map in the internal
layer, as a trainable controller for autonomous robot. Our objective is to empirically
investigate the correlation between the fidelity of internal representation and the
learning ability of the robot in the physical environment. We believe that a well
organized internal representation will enable better artificial learning systems and
knowledge representation, which than can be utilized for designing better learning
mechanisms, morphologies and environments. We support this hypothesis in this
paper with some empirical experiments.

Keywords Self-organizing map • Autonomous robot • Hierarchical neural
network

1 Introduction

In recent years, many studies have been dedicated to the realizations of autonomous
robots operating in physical environments. Because of the difficulty of hand-coding
the controller of such kind of robots, machine learning methods are the natural
choices to be used for controllers. While the utilization of the machine learning
methods brings significant success and open interesting fields that bring together
machine learning, neuroscience and robotic technologies, there is one unavoidable
drawback. In the human-designed robots, the designers have good understanding
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of the behavior of the robots, while in adaptive robotics, it is often prohibitively
difficult to relate the internal characteristics and the physical functionality of the
robots. This lack of “internal plausibility” often limits the utilization of adaptively
trained robots to the critical areas, such as medical and welfare fields that should
benefit most from these technologies. Furthermore, we believe that a well organized
internal representations, as increasingly found in the brain, is essential for building
advanced systems.

In this study we implement our previously proposed model of hierarchical neural
network, namely the Map Initialized Perceptron (MIP) [1] as a controller for a robot.
MIP is a variety of Multilayered Perceptron where the hidden or internal layer is a
two dimensional Self-Organizing Map (SOM) [2]. The learning characteristic of
MIP ensures the formation of relation between the internal topology of the model
with the physical actions of the robots. In this extended abstract we presented some
of our preliminary experimental results.

2 Map Initialized Perceptron

As shown in Fig. 1, in this study, we implement MIP as a trainable controller for
a small mobile robot called e-puck [3], which is trained to acquire a strategy of
obstacle avoidance while randomly walking in a physical environment as shown in
Fig. 2. Initially, MIP is trained to form an internal map according to the conventional
learning of SOM. The data for this initial learning are the sensory values acquired by
e-puck while executing a hand-designed obstacle avoidance strategy. After the map

Fig. 1 Implementation
of MIP
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Fig. 2 Learning environment

formation phase, the robot is trained to acquire a strategy for obstacle avoidance.
In this supervised training phase, the robot acquires a sensory vector from its eight
proximity sensors at time t, X.t/ 2 R8. This input vector is then compared to all of
the code vectors which are aligned as neurons in the two-dimensional internal map
as in Eq. (1).

w.t/ D arg mini jX.t/ �W i j (1)

Here, W i 2 R8 is the i-th code vector in the internal map, while w.t/ is the index
of the code vector with the minimum distance to the input X.t/.

The next step is to calculate the output of the neurons in the map as follows.

Mj.t/ D exp.�
 ˇ̌

X.t/ �W j

ˇ̌
ˇ̌
X.t/ �W w.t/

ˇ̌C " � 1
!
/ (2)

Here, Mj.t/ is the output of the j-th neuron in the internal map and " is
empirically set constant to avoid calculation overflow.

From Eq. (2) it is obvious that the winning neuron, w.t/, produces the largest
output. Because of the topological characteristics of the internal map, it can be
expected that other neurons in the vicinity of the winner also produce large output
while neurons that are located far from the winner produce small outputs. This
indicates that similar input vectors will produce similarly unique firing patterns
in the map, while different input vectors will create different firing patterns. The
outputs of the neurons in the internal map will then be propagated to the output
layers containing two neurons to produce motor action for the robot as follows.

Ol.t/ D f .V t
l .t/ �M.t/ � �l .t//

Or.t/ D f .V t
r .t/ �M.t/ � �r .t// (3)
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Here, Ol andOr are the speed of the left motor and the speed of the right motor,
respectively. V t

l .t/; V
t
r ; �l ; �r are the vector connecting the neurons in the internal

map with the output neuron associated with the left motor, vector to the output
associated with the right motor and the threshold values of the output neurons,
respectively, while M is the vector, which elements are the outputs of the neurons
in the internal map.

In the supervised training phase, the connection weight vector V D
�
V l

V r

�
is

modified as in the conventional Delta Rule as follows.

V.tC 1/ D V.t/ � � @E.t/
@V .t/

E.t/ D 1

2
jO.t/ � T .t/j2 (4)

Here, O is a vector which components are the value of the output neurons
associated with the left motor and the one associated with the right motor, while
T is the teacher signal produced by the hand coded obstacle avoidance strategy as
depicted in Fig. 1.

As opposed to the conventional Delta Rule where the topological order of the
neurons that are forwarding their outputs to the output layer does not have any
influence, here the topological structure of the internal map plays an important role.
In this learning mechanism, the weights that are intensely modified are the ones that
are connecting the internal neurons which have large values and the output neurons.
Since the internal neurons are topologically structured, and thus the internal layer
produces a topologically clustered firing pattern, the weights modifications are also
executed in a clustered manner. This will lead to generate a strong correlation
between the localities in the internal map and the actions of the robot. This locality-
action correlation will give us a better understanding on the relation between internal
structure of the adaptive controller model and the functionality of the robot. This
“internal plausibility” potentially leads to our ability to understand the encoding
and formation of knowledge into artificial learning systems.

3 Experiments

In the experiment, we first collect sensory data by running the robot in a physical
environment with several obstacles as shown in Fig. 2. Here, we collect 5,000 input
vectors from the proximity sensors of the robot. The data are then utilized to form
an internal map with various sizes.

Figure 3 shows the Self-Organizing process of internal maps with the sizes of
4� 4 neurons, 25� 25 neurons and 40� 40 neurons over 50 training epochs, where
the vertical axis shows the average distortion between the winning neurons and the
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Fig. 3 Self-organization
of internal map

Fig. 4 Internal map (4� 4 neurons)

Fig. 5 Internal map (25� 25 neurons)

input vectors. This figure shows that internal maps with various sizes are able to
topologically organize the internal representations of sensory stimuli, but naturally
the capacity of the maps influences the distortion level.

The topographical organization of internal maps with three different sizes are
shown in Figs. 4, 5 and 6. In the respective figure, graph on the left shows the
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Fig. 6 Internal map (40� 40 neurons)

Fig. 7 Supervised training

activations of the neurons in the internal map responding to the sensory stimuli for
an internal map that is not topologically, while the right graph shows the activations
of the neurons in the internal map that was trained in 50 epochs. Neurons shown as
� indicate neurons that are activated whenever the robot is located safely far from
the obstacles. Neurons shown as � indicate neurons that are activated whenever the
robot is located dangerously close to the obstacles, while� indicate a neuron which
is activated for both conditions.

It is obvious from these figures, that there is no topological order in the untrained
map, while there are clear topological organizations in the trained internal maps.
This topological organization can be considered as an internal representation of the
physical world for the robot.

After the formation of internal map, we utilized this map as a hidden layer in
training the robot to acquire a strategy for obstacle avoidance. The training process
is shown in Fig. 7 which clearly indicates that MIP with an organized map learns
significantly better than the one without topological order. Figure 8 shows the
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Fig. 8 Activation of an
unorganized map

Fig. 9 Activation of a
topographical map

activation of the neurons in the internal map with regards to 5,000 sensory stimuli
after the termination of the supervised training process in MIP with a map with no
topological order.

It is clear that no locality pattern can be observed from this map. Figure 9 shows
the activation of the neurons in the internal map with respect to the same stimuli in
MIP with a topologically organized map. It is clear that there are dominant neurons
that form clustered activation patterns. Figures 7, 8 and 9 indicate that there is a
strong correlation between the degree of internal organization with the learning
ability of the controller. Figure 10 shows one example of the relation between
the locality of the map with the motory action of the robot. This figure shows the
activation pattern for the stimuli that caused the robot to execute “turn right” action
in the robot, with the left graph showing the activations of an unorganized map,
while the right graph shows the activations of the organized one.

A clustered pattern in the organized map shows a strong correlation between
the locality of the map and the functionality of the robot. We believe that this
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Fig. 10 Activation pattern for “Turn Right”

locality-functionality characteristic may help us to better understand the nature
of the artificial learning systems that interact with physical environment. This
understanding can potentially help us in designing better learning mechanisms,
morphologies, sensory systems, and the learning environment for this kind of
systems, especially robots.

4 Conclusions

In this study we implemented MIP as the controller for physical robot, e-puck.
From the initial results we found that there is a strong correlation between the
internal organization with the learning ability and the physical functionality of the
robot. The visual accessibility of the internal representation helps us in analyzing
and understanding the relation between the internal representations that are formed
in the map with the physical functionality of the robot. In this preliminary study
we only implement a top down control scheme where the internal representations
control the physical outputs. However, we are also interested in understanding how
the physical functionality and the partial defect in it influence the original internal
representation. This understanding will be important in designing a good learning
strategy and environment for artificial learning systems but also in understanding
re-learning strategy in the face of internal and environmental changes, conditions
that are often encountered by autonomous robots.
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SUDOKU Puzzle: The Neurodynamics
of Intelligence to Choose the Right Solution
from Many Possible Options in a Hypothetical
Reasoning

Hiroaki Wagatsuma

Abstract This report is devoted to analyzing of mental arithmetic procedures
in SUDOKU puzzles and exploring a possible hypothesis of how multiple brain
regions are coordinated when solving the puzzle in a form of neurodynamics.
We presented here an idea of integrative modeling related to the hippocampal-
amygdala-prefrontal network and the prefrontal-parietal network, which is mediated
by a coupling of theta and beta/gamma frequencies. This hypothesis may afford
a clue to recursive calculation abilities that we have due to the brain.

1 Introduction

Human intelligence is severely difficult to measure by examining the physical
organization of the brain structure, as is noted in the evolutional psychology to
differ the human mind from animals [1], and therefore theoretical researchers are
taking notice of the idea that a phenomenological modeling of the neurodynamics,
or information flow elucidates a link between the comprehensive ability exhibited
in a form of intelligence and a coordination among multiple brain functions. Non-
linear dynamics such as neural synchronizations [2] and chaotic dynamical systems
[3] are candidates as modeling and those dynamics are examined to investigate how
intelligent capabilities are emerged in the collective neural activities beyond the
stimulus-response paradigm. Recently computer power increases as overwhelming
us by the speed of arithmetic calculation, and some parallel processing methods
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3 1 2
4 1

4 2

4

32 4

31 2 31

3 1 2 4
4 2 1 3

1 3 4 2

2 4 3 1
The only solution

Fig. 1 A 4� 4 grid Sudoku
example and its only solution.
Numbers in baskets represent
options to be able to put
empty cells according to
Sudoku rules

are practically used for solving board games, such as chess and shogi, so that
the performance comes close to matching a level of semiprofessional players. A
question arises as to whether these computer algorithms of board games would
be a key to understand how the brain works in solving a complicated and high
degree-of-freedom problem so called ill-posed problem. Or, the brain process in
solving games may completely different from the computer algorithm. Interestingly,
a recent neuroimaging study [4] revealed a clear difference of activated brain regions
of professional shogi players from amateurs when solving shogi mating problems,
suggesting the existence of automatic processes of board-pattern perception and
next-move generation in the experts for serving as a high-speed, yet accurate,
decision-making process in board games. This fact indicates that information flows
and its brain usage is not unique even in solving the same problem and the usage
gives rise to differentiations of the performance how fast and accurate the subject
solves the problem. Measuring the performance in board games, analyzing the
brain process and specifying the routes if it is a cascade process are possible ways
to investigate the human intelligence in viewpoints of how we can measure the
intelligent level, improve it and treat it if there are some impairments of brain
functions.

Sudoku puzzle is a popular puzzle to enter a number from 1 to 9 in each cell
of a Sudoku grid, most frequently a 9� 9 grid made up of 3� 3 subgrids, as the
standard type. It basically contains 81 cells, nine rows and nine columns. The
game begins with numbers already printed in some cells. The player must fill in
the empty cells with the numbers 1 to 9 in a way that no digit appears twice in
the same row, column or subgrid. To be “Sudoku,” each puzzle must have one
unique solution. In mathematicians, in fact, the Sudoku grid is known to be a special
case of Latin squares, which are n� n matrices that are filled with n symbols in
the way that the same symbol never appears twice in the same row or column.
Why do people in the world arouse enthusiasm in solving the Sudoku? As Latin
squares to be a kind of Sudoku, the most simplest case is a 4� 4 grid with 2� 2
subgrids, as shown in Fig. 1. This type has Sudoku properties so that subgrids, rows
and columns must use the numbers 1 to 4 for each cell uniquely. However, in the
4� 4 grid version, we can easily get deterministic steps without any hesitations.
It is not attractive as games. On the other hand, a further complex version can be
formed as a 16� 16 grid with 4� 4 subgrids, but it is too much complicated to
be solved by ordinary human abilities. The typical 9� 9 version may fit for our
levels of intelligence and enhance motivations to solve the puzzle. Depending on



A Hypothetical Neurodynamics to Solve SUDOKU Puzzles 365

the pre-configured numbers in cells, the level of the complexity can be controlled
even in the same 9� 9 version. Some cases are deterministic, but others require
speculative and hypothetical considerations.

This report is devoted to analyzing of mental arithmetic procedures in the puzzle
and exploring a possible hypothesis of how multiple brain regions are coordinated
when solving the puzzle in a form of neurodynamics, which may afford a clue to
recursive calculation abilities that we have due to the brain.

2 A Possible Brain Process

In the first place, necessary arithmetic procedures should be overviewed. Figure 1
shows an example of the simplest version with 4� 4 grid and the only solution.
Solvers find a deterministic step, such as the empty cell in the top-left subgrid, in
which the remaining number is the only one option. In this case, solvers can find
a route, or cascade process, to solve the whole solution by following deterministic
steps to put the only one option in each step (Fig. 2). Indeed, 4� 4 Sudoku supplies
mostly trivial cases with less motivation for solving the puzzle. In 9� 9 Sudoku,
there are not only simple cases but also complex cases having routes to solve
(Fig. 3). The solution cannot be obtained deterministically and step-by-step, and the
complex case must require a speculative or hypothetical selection of the number in a
branching point. The temporal selection is verified in following steps by exhibiting
a deadlock due to a contradiction with rules, not allowed any more steps.

Secondary, a minimum set of representations and operations of numbers, as
information space and flow, should be considered. A well-known approach to solve
the Sudoku is backtracking algorithms to seek a solution by tracing routes in the tree

3 1 2
4 2 1 3

3 4 2
4

3 1 2
4 1

4 2
4

32 4

31 2 31

step1

step2

step3 rule1

rule2

rule3
Fig. 2 A procedure to solve
the Sudoku puzzle. Steps 1–3
are deterministic by following
Sudoku rules as unique in
subgrids (rule 1), rows
(rule 2) and columns (rule 3)

Fixed table (F)

Working table (W)
F W

W'

F W F

F W F W

W''

A simple case

Complex cases

Fig. 3 A possible process for
solving the puzzle. Solvers
require at least tables for
knowing the fixed
configuration without any
contradiction with rules and
for thinking temporally about
possible next steps
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Fixed table (F)

Working table (W2)

Fixed table (F)

Extended working table (EW)

Working table (W1)

a bFig. 4 (a) Recursive working
table development (RW). (b)
Extending working memory
area (EW)

of the problem space until the dead-end and going back to the nearest branching
point if it is not a solution. This is a simple recursive procedure, which is useful
in trees with a low depth. Another procedure is to extend the working table. Many
human solvers uses empty cells for writing remaining options down, checking it out
and eliminating a option if it is inconsistent with rules in the current configuration
of numbers.

The two way can be considered as recursive working table development (RW)
and extending working memory area (EW) as schematically shown in Fig. 4.
Theoretically, the RW certainly provides a solution in the problem space; however
the method cannot guarantee the completion under finite-time in combinatorial
explosion. Making a consistent table, or map, like EW provides an overview of
item relationships, which may enhance the checking speed to eliminate inconsistent
options in empty cells. Meanwhile, questions of how the table can be manipulated
and how the size is regulated to be a smallest as possible remain unsolved. For
applying of the extended table to complex cases even with hypothetical steps, a
flexibility and dynamics in management of representations and operations in the
number plate is expected to emerge from the brain research especially focusing on
dynamical process.

3 Hypothesis

We have proposed a robotic model for solving a cross maze task that is used for rat
navigation studies and for investigating the hippocampal on-going neuronal activity
in solving the maze [5]. The cognitive map of the whole environment in which
the rat explores is represented by hippocampal collective activities known as place
cells. The pattern of place cell activities is flexibly reorganized depending on the
situational changes on visual cues, the environmental shape, and task requirements.
In our previous model, we hypothesized that the decision-making process in a
branching point of the maze arms requires three minimal brain regions, which are
the hippocampus for spatial representation and storing episodic memory of past
experiences, the prefrontal cortex for determining to go according to pre-learned
rules applying to the current spatial situation (context) in the hippocampus, and the
amyglada for judgments and evaluations that mediates hippocampal and prefrontal
functions [5].
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Fig. 5 A complex case
facing a branching point in
the problem space. There are
three subgrids to have two
(minimum) options. The
solver has to proceed to the
next step without certainty in
the current stage by choosing
either one of the two options
hypothetically

In an extended model to the human intelligence to be able to solve the puzzle,
consideration of issues concerning the working memory is necessary. The working
memory refers to a brain system that provides temporary storage and manipulation
of the information for complex cognitive tasks, and it requires the simultaneous
storage and processing of information that can be divided into subcomponents: (i)
the central executive, including an attentional-controlling system, is necessary for
skills of chess, (ii) the visuospatial sketch pad, which manipulates visual images and
(iii) the phonological loop in speaking, or transformation of perceptions and mental
representations into a set of motions, which stores and rehearses action-based infor-
mation [6]. In recent evidence [7], a contribution of the prefrontal-parietal network
for mathematical reasoning within working memory is highlighted. In addition, a
review of Savant Syndrome [8] suggests a deficit of the left frontotemporal area
involving rule-based information, or logical reasoning, uncurbs the suppression of
extending of the working table, providing procedural high-speed calculation.

A theoretical prediction is that (i) a coupling between the fixed and working
tables (Fig. 3) is maintained in the prefrontal-parietal network, (ii) the parietal
representation is simply extended to a large area if the frontal regulation is absent
(Fig. 4), and (iii) a high-speed operation and well-learned skills are provided by
this network, presumably involving the basal ganglia if it reaches a automatic
level [4]. A brain process to dynamically generate hypothetical steps, or recursive
procedures, for solving a complex case such as Fig. 5 is still unclear, but we
note a significant contribution of the hippocampal map reorganization providing
the contextual information to the prefrontal cortex [5], and propose a model that
combines the prefrontal-parietal network with our previous hippocampal-amygdala-
prefrontal network. An interesting evidence [9] for bridge between the two reported
a cross-frequency coupling of theta and beta/gamma frequencies during a multi-item
working memory task by using the human subjects, supporting neural represen-
tations using phase information in oscillation. The theoretical implementation of
multi-frequency phase coding is further, yet urgent, work.
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4 Discussions

We analyzed the arithmetic procedures in SUDOKU puzzles in the viewpoint of
working memory usage, and explored possibilities of cooperative relationships
among multiple brain regions, which may be related to the hippocampal-amygdala-
prefrontal network and the prefrontal-parietal network. In EEG studies, arithmetic
operations are used for increasing of subjects’ concentration in cognitive tasks, and
some report suggests a desynchronization of alpha amplitude coinciding with an
increase in theta amplitude prior to a correct solution of Sudoku in healthy adults
[10], as a possible relation to the right temporal cortical alpha and the frontal theta
[11]. The relevance to brain activities in dreams subsequent to solving puzzles is
of interest [12] to further investigations of the relationship between the cortico-
hippocampal memory consolidation and the working memory usage.
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Heterogeneity-Induced Pulse Generators

Yasumasa Nishiura, Takashi Teramoto, and Masaaki Yadome

Abstract Heterogeneity is one of the most important and ubiquitous types of
external perturbations. We study a spontaneous pulse generating mechanism caused
by the heterogeneity of jump type. Such a pulse generator (PG) has attracted
much interest in relation to potential computational abilities of pulse waves in
physiological signal processing. Exploring the global bifurcation structure of PGs
as periodic solutions, we find firstly the conditions under which they emerge, i.e.,
the onset of PGs, secondly a candidate for the organizing center producing a variety
of PGs.

1 Introduction

Pulse wave is the main careers of information and the effect of heterogeneity in
the media is of great importance for the understanding of signaling processes in
biological and physiological systems. The role of heterogeneity in the media does
not remain a perturbative effect, in fact it influences a lot over the concerned
system and even produces a qualitatively new dynamics. It is known that hetero-
geneities produce various types of ordered patterns called heterogeneity-induced
patterns [1, 2], which sometimes work as blockers for propagation waves. There
is, however, another aspect of heterogeneity-induced dynamics, namely it creates a
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spontaneous generator of pulses without any triggers and external forces. We present
a representative example of such a pulse generator (PG) and try to clarify the
underlying mathematical mechanism from dynamical system view point. Our model
takes the following 1D three-component reaction diffusion (RD) system:

8
<

:

ut D duuxx C f .u/� k3v � k4wC k1;
�vt D dvvxx C u � v;
�wt D dwwxx C u � w;

(1)

where du; dv; dw > 0 are diffusion coefficients. We specify the nonlinearity as
f .u/ D k2u � u3, which allows us to regard (1) as a generalized version of the
FitzHugh-Nagumo equations by adding the second inhibitor w. Here we employ the
following parameters: k1 D �5:7; k2 D 2:0; k3 D 1:0; k4 D 8:5; .du; dv; dw/ D
.0:9 � 10�4; 1:0 � 10�3; 0:6 � 10�2/; � D 52; � D 1. The model (1) is a
typical example of one-activator-two-inhibitor system, which was first proposed as a
qualitative model of gas discharge phenomena [3]. The heterogeneity is introduced
to the controllable parameter k1 that corresponds to the applied voltage or external
stimulus in neural tissues.

We consider the situation of � 
 � , that is, the response of v component is much
slower than that of w. In particular, the third equation can be easily solved with
respect to w for � D 0, by using the inverse Fourier transform of F�1Œ1=1Cdwk

2� D
expŒ�jxj=pdw�=2. Substituting that into the first equation of (1), we have

8
ˆ̂<

ˆ̂:

ut D duuxx C f .u/� k3v
� k4
2�

Z 1

�1
e
� jx�yj

p

dw u.y/dy C k1;
�vt D dvvxx C u � v:

(2)

This type of integro-differential equations like (2) have been used as continuum
field models of neural activity in a population of interacting neurons [4]. The wave
behaviors observed in the neural field models were studied in connection with the
physiological functions in brain.

A precise form for the spatial heterogeneity of jump type for k1 is given by

k1 D k1L C ��.x/; �.x/ D 1

1C e��x :

The height of jump � is taken as the bifurcation parameter. The parameter � controls
the steepness of the slope around the jump point, but we fix it to be 100. Due
to the jump from k1L to k1L C �, we lose the translation invariance and constant
homogeneous state.

Figure 1 shows how the jump heterogeneity can produce traveling pulses
spontaneously without any triggers or external forces. Note that our PG is quite
different from the pulse emission phenomena reported in [5, 6] in the sense that
our PGs are robust, exist on intervals, and have variety of generating manners. On
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the other hand the pulse-emission discussed in [7] is close to ours, however its
underlying structures for the onset and generating mechanism remains completely
open. Here we report on how such a PG emerges depending on the height and try to
understand the generating mechanism from bifurcational view point.

2 Methods

The pulse generators (PGs) shown in Fig. 1 can be regarded as time-periodic
heteroclinic orbits of (1) connecting the left homogeneous state to the wave train
far right, in fact the emitted pulses eventually could form a wave train far from the
jump point. There are, however, no systematic numerical methods to detect and trace
those generalized heteroclinic orbits to our best knowledge.

We first develop a new numerical framework to detect those PGs as periodic
solutions, then trace them globally with respect to the height parameter. Global
behaviors of those branches allow us to find a candidate of organizing center which
produces a variety of PGs as discussed in the next section.

A key idea here is to compactify the problem on infinite domain to the one on a
finite interval by adopting the following pulse-sink boundary condition at the right
boundary. That is, when the emitted pulse reaches an appropriate point distanced



374 Y. Nishiura et al.

from the jump heterogeneity, then it is eliminated, i.e., that is replaced by a uniform
rest state with the timing of the pulse generating interval T . It is numerically
checked that the such an elimination does not influence the pulse behaviors near
the jump point as far as the location of right boundary is far enough.

We rewrite (1) into the following generalized form of RD systems and change
the scale as s D t=T by using the generation interval T which is unknown.

U s D T .DU xx C F .U I k1.x; �//; (3)

where U .s; x/ 2 RN , D D diag.d1; � � �dN / and F W RN � R ! RN . The
T -periodic solution satisfies the periodic boundary condition U .0; x/ D U .1; x/

for any x. Let � �
T .s; x;U .0; x// be the solution of (3) at time s with initial state

U .0; x/, then what we have to solve is the following.

˚�
T .1; x;U .0; x//� U .0; x/ D 0: (4)

The system (4) is solved by using the Newton method, in which the Jacobian matrix
can be obtained using the shooting method, i.e, we integrate numerically (3) with
respect to time imposing the pulse-sink boundary condition described above.

3 Results

Pulse generators (PGs) as shown in Fig. 1 display a variety of spatio-temporal
patterns depending on the jump height � ranging from time-periodic to even chaotic
emission of pulses. For the onset of PGs, it is closely related to the “disappearance
regime” of stable heterogeneity-induced ordered patterns, namely PGs start to
emerge in the region where all the stable patterns induced by the heterogeneity,
including standing pulses (SPs) and breather (SB), disappear. In fact such a regime
exists in between � D 0:2960 and � D 0:3025. The SPs lose their stabilities via Hopf
bifurcations and the period-doubling (PD) bifurcation occurs on the SB branch as
shown in Fig. 2 denoted by H1, H2, and PD. It is remarked here that we found a new
type of unstable standing pulse named by SP2, which turns out to be the destination
of PGs as its period goes to infinity.

By using the numerical method described in the previous section, we have
succeeded to detect the PG in between H1 and PD in Fig. 2. We trace the PG branch
as a periodic solution and find that it persists robustly as in Fig. 3 for the wide range
of � values. As � is increased or decreased, the PG branch turns back via saddle-node
(SN) bifurcations. It is numerically suggested that both arms of unstable branches
are eventually terminated at the homoclinic orbits of SP2 as the period T ! 1.
In fact each periodic orbit spends most of time around SP2 and approaches into the
homoclinic orbit as indicated in the insets of Fig. 3.

Moreover, an intensive numerical global bifurcation analysis shows that the PG
behaviors emerge almost exactly at the point where the stable SP and SB cease
to exist. Two typical types of time-periodic PG patterns are depicted in Fig. 4.
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For PG2 (resp. PG3) a generated pulse oscillates one time (resp. two times) near
the jump point, then travels to the right direction. Both PG2 and PG3 lose their
stabilities via PD bifurcations as � is decreased, while the SN bifurcations occur
when � is increased. It is worth noting that all four unstable branches of PG2 and
PG3 terminate at homoclinic bifurcations of SP2. This implies that the onset of
various types of PGs could be characterized via unfoldings of multi-homoclinic-
loop structure of SP2.
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4 Discussion

We present 1D heterogeneity-induced pulse generators arising in the three-
component RD system. The simplest jump heterogeneity is employed here and the
resulting PGs are robust against the change of the height. The traveling pulses are
produced spontaneously around the jump point and they are emitted in one direction.
The pulse-sink boundary condition allows us to reduce the PGs to periodic solutions
so that we can trace their global behaviors as the height of the jump varies. Exploring
the parameter space, we find various types of PGs, i.e., pulse-emitting manner has
a variety as in Figs. 1 and 4. Nevertheless there seems to exist a hidden organizing
center producing those PGs inspired by the common features shared among the
global behaviors of PG branches. For instance the PG branches terminate at the
same unstable stationary pattern SP2 shown in Figs. 2 and 3 when PG’s periods
tend to infinity. Also their manner of destabilization is quite similar as depicted
in Fig. 4. These observations indicate that there exists a hierarchical structure of
bifurcating branches of PGs originated in a multi-homoclinic-loop structure at SP2.
For this purpose we are currently investigating the orientabilities for homoclinic
center manifolds and searching for singularities of higher codimension in the
extended parameter space.

Acknowledgements This work was partially supported by the Grant-in-Aid for Scientific
Research under Grant No. 21120003 and B21340019.

References

1. Yuan, X., Teramoto, T., and Nishiura, Y.: Heterogeneity-induced defect bifurcation and pulse
dynamics for a three-component reaction-diffusion system. Phys. Rev. E. 75 (2007) 036220

2. Teramoto, T., Yuan, X., Bär, M., and Nishiura, Y.: Onset of unidirectional pulse propagation in
an excitable medium with asymmetric heterogeneity. Phys. Rev. E. 79 (2009) 046205

3. Schenk, C. P., Or-Guil, M., Bode, M., and Purwins, H. -G.: Interacting Pulses in Three-
Component Reaction-Diffusion Systems on Two-Dimensional Domains. Phys. Rev. Lett. 78
(1997) 3781–3784

4. Amari, S.: Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields. Biol.
Cybernetics. 27 (1997) 77–87

5. Ermentrout, G. B., and Rinzel, J.: Reflected waves in an inhomogeneous excitable medium.
SIAM J. Appl. Math. 56 (1996) 1107–1128

6. Cytrynbaum, E. N., and Lewis, T. J.: A Global bifurcation and the appearance of a one-
dimensional spiral wave in Excitable media. SIAM J. Appl. Dyn. Syst. 8 (2009) 348–370

7. Prat, A., Li, Y. -X., and Bressloff, P.: Inhomogeneity-induced bifurcation of stationary and
oscillatory pulses. Physica D. 202 (2005) 177–199



Balancing Robustness with Plasticity
Through Evolution and Learning

Kunihiko Kaneko

Abstract Biological systems are robust to external perturbations, in order to
function under noisy environment, while they should also be plastic to adapt to novel
environment. Considering slower (evolutionary) changes in faster developmental
dynamics, we show that optimal noise level is necessary for the compatibility
between the robustness and plasticity. We will also discuss relevance of the results
to learning process where robust and plastic neural dynamics are shaped under an
appropriate noise level.

1 Introduction

Biological systems in general have to adapt to a variety of environmental conditions,
whereas they have to be robust against disturbances applied into the system. For the
former, the system has to sensitively respond to changes in the external conditions.
This is plasticity. For the latter, the system should be insensitive against variation
imposed into the system. This is robustness. Now, how can a biological system
strike a balance between these two seemingly conflicting properties [1–4]?

Previously we studied the evolution of robustness, by postulating that a dynam-
ical system should generate a functional phenotype, and examining if the system
is insensitive to perturbations introduced by noise, environmental and genetic
changes [5]. Through simulations of a simple stochastic gene expression network
that undergoes mutation and selection, we showed that in order for a system
to acquire robustness, it maintains a global attraction to an attractor. We then
demonstrated that such system has structural stability also, that is robustness against
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genetic change to modify the equations of dynamical systems. The results reveal
how noise encountered during developmental process shapes system’ robustness
to stochasticity in gene expression, which in turn shapes robustness to mutation.
Furthermore we found there is a transition such that the system loses robustness as
the noise amplitude is decreased below a certain critical value. On the other hand,
for a system that achieved robustness through evolution, the variance of phenotypic
fluctuations due to noise and that due to genetic changes decrease through evolution,
keeping the proportionality between the two [6, 7]. Hence, robustness of the
phenotype increases, and the plasticity decreases through evolution. Still, in nature,
neither phenotypic fluctuations nor potentiality in evolution is vanished. How are
phenotypic fluctuations or plasticity are sustained in nature?

One possible cause for preservation of plasticity or fluctuation is the environ-
mental fluctuation. Plasticity of a biological system will be relevant to cope with the
environmental change that alters the condition for the fitness. Here, as a simple
illustration of environmental change, we carry out some numerical experiments
to switch the fitness condition, and examine how the phenotypic fluctuations are
changed accordingly. For this numerical evolution, we selected a dynamical system
so that it can adapt to a fitness conditions that vary over generations. We will show
that a system near the critical noise level in which the robustness is lost, both the
plasticity and robustness are compatible. When the external condition is changed,
the system can first adapt rapidly by phenotypic changes, and later by genetic
changes. We then discuss briefly that a certain noise level is also relevant to neural
dynamics to achieve robust learning process.

2 Model

As a specific example, we have adopted a simple model for gene expression
dynamics with a sigmoid input–output behavior [5–7], although several simulations
in the form of biological networks will give essentially the same result. In this
model, the dynamics of a given gene expression level, xi , is described by the
following:

dxi =dt D �ftanhŒˇ
MX

j>k

Jij xj � � xi g C 	�i .t/; (1)

where Jij D �1; 1; 0, and �i .t/ is a Gaussian white noise given by <

�i .t/�j .t
0/ >D ıi;j ı.t � t 0/. M is the total number of genes, and k is the number

of target genes that determine fitness.
The amplitude of noise strength is given by 	 that determines stochasticity in

gene expression. The initial condition is given by (�1, �1,. . . ,�1); i.e., all genes
are “off” – none of them are expressed. The fitness F is determined by whether the
expressions of “target” genes are matched with a prescribed pattern after a sufficient
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time. First, this fitness condition is given such that all the target genes should be “on”
(expressed), i.e., xi > 0 for i D 1; 2; ::k < M , represented by ++. . . ++. Because the
model includes a noise component, the fitness can fluctuate at each run, which leads
to a distribution in the fitness F and xi , even among individuals sharing the same
gene regulation network. For each network, we compute the average fitness F over
L runs, and also the variance of the fitness over runs. This variance Vip represents the
fluctuation of the fitness over isogenic individuals (isogenic phenotype variance).

Now, at each generation, there areN individuals with slightly different Jij . Since
there are N individuals having different gene regulation networks, the fitness F
differs by each. Among the networks, we select those with higher fitness values.
From the selected networks, Jij is “mutated,” i.e., Jij for a certain pair i; j selected
randomly with a certain fraction is changed among ˙1; 0. Each of the Ns.< N/

networks with higher F values are selected which produce N=Ns mutants. We
repeat this selection-mutation process over generations. We chose N D L D 200,
and Ns D N=4, while the conclusion to be shown below does not change as long as
these values are sufficiently large. We use ˇ D 7, � D :1, M D 64 and k D 8, and
initially chose Jij randomly with equal probability for˙1; 0.

Now we have two types of variances. Besides Vip, Vg is defined as the variance
of F over theN individuals having different genes (gene regulation networks). This
gives the variance due to genetic change. As Vg is decreased, the fitness becomes
insensitive to the genetic change, i.e. robustness to mutation is increased. On the
other hand, as Vip is decreased, robustness to noise is increased, since Vip measures
the variance due to noise in developmental process.

Previously, we showed that when the noise is beyond a certain threshold value
	c � 0:01, both Vip and Vg through evolution, as each individual achieves the
highest fitness value to match the target pattern. Hence, the evolution of robustness
to noise and mutation is achieved when the noise amplitude is larger than 	c . When
the noise level 	 is less than 	c . these two variances remain rather high. Even though
some individuals achieve the highest fitness value. Some other mutants remain to
take much lower fitness values. Robustness to mutation (and to noise) did not evolve
in this case.

3 Evolution of Plasticity and Robustness

To discuss the environmental change, we altered the fitness condition at some
generation in the following way: After evolving gene expression dynamics with
the fitness to prefer xi > 0 for the target genes i D 1; 2; : : : k.D 8/ as adopted
already, then at a certain generation we changed the fitness condition so that the
genes i D 1; 2; ::; k=2 are on and the rest are off (i.e., the fittest gene expression
pattern is ++++—-, instead of ++++++++). Here we switched the fitness after a
sufficiently large number of generations when the fittest networks were evolved
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already (i.e., with xi > 0 for target genes). By this switch, the fitness was then
decreased, but after a few dozens of generations, the networks evolved to adapt to
the new fitness condition. Again for 	 > 	c . almost all the population took the
highest fitness, implying the increase in robustness to mutation.

To see the evolution of phenotypic plasticity, we have computed the variances
of the fitness, Vip and Vg . After the switch of the fitness condition, both of them
first start to increase. During this increase, the proportionally between the two was
roughly preserved [6]. The locus of (Vip, Vg) over generations through the evolution
followed reversely the course experienced through the decrease in Vip and Vg. At
later generations, both of them decreased again following the proportionality. The
proportionality law between genetic and epigenetic variances was satisfied both in
the evolution to increase and decrease the plasticity.

Right after the switch in the fitness, gene expression levels were no longer rigidly
fixed, and can vary sensitively to the noise and mutation. With this sensitivity,
the gene expression dynamics regained plasticity, which allows for the switch of
the target genes after further generations in evolution. Then networks with higher
fitness were selected, so that the adaptation to new condition was achieved. Later,
the decrease in fluctuations progressed, to increase the robustness to noise and
mutation.

When environmental changes were continuously repeated, the decrease and
increase processes of the variances Vip and Vg were repeated. Note that it takes
more generations to adapt to a new fitness condition, if the phenotypic variances is
smaller In our model, if the noise level in development is larger, the phenotypic
variances already became small during the adaptation to tone fitness condition..
Hence in this case, it takes more generations to adapt to a new fitness condition.
On the other hand, if the noise level 	 is smaller smaller than 	c , robust evolution
does not progress. Hence for continuous environmental change, there will be an
optimal noise level both to adapt sufficiently fast to a new environment and to evolve
robustness of fitness for each environmental condition. In Fig. 1, we have plotted
the time course of the average fitness in population when the fitness condition is
switched per 20 generation. If the noise level is large, the system cannot follow the
frequent environmental change and the fitness did not increase. If the noise level is
small, the fitness increased, but if it is smaller than 	c , fitness of some individuals
remained low. Indeed, if the noise level is near 	c , the average fitness increased for
each condition. In Fig. 2, the average fitness over generations is plotted against the
noise level 	 . It shows a maximum at around 	 � 	c .

Then we have plotted the variances Vip and Vg over generations (see Fig. 3).
When 	 < 	c , Vg > Vip and both the variances remain rather large, demonstrating
that robustness did not evolved at all. For 	 > 	c , Vg < Vip and the variances remain
small. The robustness has evolved, but the system cannot adapt to an environmental
change as the variances became too small. In contrast, for 	 � 	c , Vip and Vg vary
between low and high values over generations, keeping proportionality between the
two variances with Vg slightly less than Vip.
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10 (green) and 20 (red) generations, between ++++++++ and ++++—-. This mean fitness takes a
maximum around 	c 	 0:01
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the plot is taken over 500–800 generations with changing the fitness condition as mentioned in the
caption of Fig. 1. The noise level 	 is .0001 (red), 0.009 (slightly below 	c; green) and 0.1 (blue)

4 Learning with Plasticity and Robustness

When the plasticity and robustness are compatible, the system we studied here has
two distinct time scales; fast adaptation to new environment by using the plasticity,
and slower fixation of genetic changes to stabilize the adopted phenotypes. This
embedding of fast dynamic changes into slower genetic changes is regarded as
genetic assimilation proposed by Waddington [1].

The embedding of changes of variables with faster time scales onto network
structure with a slower time scale is not restricted to the evolution of phenotypes, but
is also relevant to learning process in the brain [8]. Here faster changes in neuronal
activity are later embedded into neural network structure through slower changes
in synaptic connections. By using dynamical systems of neural activity akin to
Eq. (1), and assuming that its time scale (rate constant) depends on the “fitness”,
i.e., the degree of matching between output neural activity and the target activity
postulated by a learning task, and introducing Hebbian and anti-Hebbian changes
in the synaptic connection Jij , we studied if learning of input/output relationship is
possible under noise in neural activity dynamics. We found that an appropriate noise
level is required to achieve robust learning. Noise-induced attractor selection [9] and
shaping of dynamical systems with such attractor(s) by synaptic change support this
robust learning.
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Influence of the Endogenous Acetylcholine
on STDP Induction

Takeshi Aihara, Eriko Sugisaki, Yasuhiro Fukushima, and Minoru Tsukada

Abstract Cholinergic inputs from the medial septum are projected to pyramidal
neurons in hippocampal CA1 and release acetylcholine (ACh) from their terminals.
The cholinergic inputs are considered to be integrated with sensory inputs and
to play a crucial role in learning and memory. Meanwhile, it has been reported
that the relative timing between pre- and post-synaptic spiking determines the
direction and extent of synaptic changes in a critical temporal window, called Spike
Timing-Dependent Plasticity (STDP). The positive and negative pairing-timing of a
post-synaptic spike for pre-synaptic spikes induce long-term potentiation (LTP) and
long-term depression (LTD), respectively.

To investigate influence of muscarinic activation by cholinergic inputs on
synaptic plasticity, STDP induction-protocol was applied during the muscarinic
induction of a slow excitatory postsynaptic potential (slow EPSP) following by
a repetitive stimulation in the stratum oriens. As a result, LTP induced with
the positive timing was facilitated and LTD induced with the negative timing
was abolished by the muscarinic activation, respectively. Furthermore, interest-
ingly, LTD was switched to LTP, depending on the intensity of ACh changed by
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application of eserine, a cholinesterase inhibitor. It suggests that synaptic plasticity
is modulated depending on cholinergic inputs. The modulation of synaptic plasticity
by muscarinic activation may shows one important stage of the integration of top-
down and bottom-up information integration in hippocampal CA1 neurons.

Keywords STDP • Hippocampus • CA1 • Muscarinic receptor

1 Introduction

The cholinergic neuron projecting to hippocampus is coming from medial septum
to CA1 pyramidal neuron and interneuron via fimbria [7]. Stimulating cholinergic
neurons projecting to hippocampus release ACh and enhance LTP [6, 9]. ACh seems
to be more involved in attentional processes than in learning and memory processes
[3, 10]. While, Spike-timing dependent plasticity (STDP), one of the protocols
used to induce synaptic plasticity, is characterized by temporal coincidence of
excitatory postsynaptic potential (EPSP) induced by electrical stimulation of the
CA3-CA1 Schaffer collaterals and back-propagating action potential (BPAP) from
postsynaptic neuron firing [1, 5, 8]. Stimulation on pre synapse following BPAP of
the post neuron induces LTP, while the opposite timing induces LTD. Therefore,
STDP is a protocol that can induce both LTP and LTD by timing dependency by
changing the relative timing of spikes. As STDP is consisted of neuron firings in
coincidence, the induced synaptic plasticity is elicited under moderate condition.

Repetitive stimulation of cholinergic axons projecting to the hippocampus at
40 Hz for 0.5 s was reported to induce short (2 s) inhibitory postsynaptic potential
(IPSP) and then consequent small and long-lasting EPSP, called “slow EPSP” [4].
Shinoe et al. [11] reported that a long EPSP activated muscarinic acetylcholine
receptors (mAChR) through repetitive stimulation of cholinergic neurons and ACh
released in hippocampal slices enhanced LTP induced by tetanic stimulation. On the
other hand, it is unclear that the effects of ACh on induction of LTD. Therefore, it is
not investigated how mAChR activated by ACh influence the both induction of LTP
and LTD.

In order to evaluate synaptic plasticity with the activation of mAChR through
cholinergic inputs, the STDP protocol was applied either with slow EPSP induced
by muscarinic activation following electrical stimulation of the oriens or with an
change in ACh concentration following application of eserine, a cholinesterase
inhibitor. As a result, the effect of ACh on the plasticity induced by STDP was
shown under physiological condition. Furthermore, the effect of mACh activation
to the synaptic plasticity was investigated in detail by controlling the intensity of
ACh. The influence of muscarinic activation not only on LTP but also on LTD was
estimated using STDP protocol, and we demonstrate that synaptic plasticity in the
CA1 area is modulated by mACh activation depending on the amount of cholinergic
inputs.
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2 Methods

All procedures were approved by Tamagawa University Animal Care and Use
Committee. Hippocampal slices (400 �m thick) were prepared from Wistar rats
(2–3 weeks old) according to the standard procedure reported by Tsukada et al. [12].

Picrotoxin at 25 �M (Sigma, St. Louis, USA) was added to the aCSF in order
to block GABAA-R related response. Atropine (1 �M) and eserine (0.6, 2, 20 �M)
(Sigma, St. Louis, USA) were also added when needed. Extracellular stimulation of
50–100 �s in duration at 10 �A to Schaffer collaterals was made by stimulating
electrode (glass pipette filled with aCSF, glued to silver rod) to induce EPSPs
(Fig. 1a). The elicited EPSPs were adjusted to the amplitude of 2–4 mV as a control.
STDP protocol (modified from protocols by Nishiyama et al. [8]) was used. An
action potential during STDP protocol was induced by 2–2.5 nA current injection
to the soma (2 ms in duration at). In STDP protocols, positive timing was defined as
EPSP precedes the post-synaptic action potential (
tD 12 ms), while the opposite,

Fig. 1 Experimental procedure and stimulation pattern. (a) Schematic drawing of hippocampal
slice removed from CA3. One stimulating electrode was placed extracellulary in the Schaffer
collaterals, and the other was placed in stratum Oriens. Whole cell patch clamp was made for
current injection and recording recordings in CA1 pyramidal neurons. (b) Two STDP inducing
protocols. LTP-timing protocol (upper): a stimulation to Schaffer collaterals was applied before a
postsynaptic action potential at a positive timing (
tDC12 ms). LTD-timing protocol (lower):
Stimulation to Schaffer collaterals was applied after postsynaptic action potential at a negative
timing (
tD�22 ms). Each STDP protocol was applied at 5 Hz for 16 s. (c) A stimulation pattern
for investigation for the influence of Ach on STDP induction. A STDP protocol was applied at 10 s
after the repetitive stimulation (40 Hz for 0.5 s) to stratum Oriens
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negative timing was defined as an action potential follows EPSP (
tD�22 ms)
(Fig. 1b). Pairing stimulus was provided at 5 Hz for 16 s. To release ACh, another
stimulating electrode was placed in stratum Oriens to stimulate at 40 Hz for 0.5 s
with 80–300 �s in duration at the strength of 80 V [4, 11] (Fig. 1a, c). In order
to clarify the effect of ACh on STDP, STDP protocol was applied 10 s after the
stimulation in stratum Oriens (Fig. 1c) because the peak latency of slow EPSP
was around 10 s. EPSP (0.05Hz) was applied before and after a set of the STDP
protocol with stimulation in stratum Oriens. The magnitude of the plasticity was
defined as (averaged EPSP slopes obtained from 20 to 30 min after STDP-inducing
stimulus)/(averaged baseline EPSP slopes). ANOVA and post-hoc was used for
statistical analysis (p < 0.05).

3 Results

Slow EPSP: Repetitive stimulation in the stratum oriens induced an inhibitory post-
synaptic potential followed by a small slow EPSP that last approximately 60 s. The
slow EPSP was enhance by 2 �M eserine, a cholinesterase inhibitor, and completely
blocked by 1 �M atropine, a nonselective mAChR antagonist (Fig. 2a, b).

The effect of ACh to STDP: To investigate the effect of ACh to synaptic plasticity,
cholinergic input or eserine were applied to CA1 neurons during STDP induction. In
positive timing of STDP protocol, the magnitude of LTP was significantly enhanced
with slow EPSP or eserine. On the other hand, LTD induced by negative timing
was not seen with slow EPSP and was changed to LTP with eserine. ACh effected
synaptic plasticity to changed into the direction from depression to potentiation.
Applying both slow EPSP and eserine to lead excessive ACh effect, it did not show
LTP enhancement in the positive or negative timing, respectively (Fig. 2c, d)

4 Discussions

The cholinergic neuron projecting from the medial septum to the hippocampus
extends its axon to terminate on the pyramidal neurons and inter neurons in CA1
via the fimbria, and ACh is released from the synaptic terminals by repetitively
stimulating the axon of the cholinergic neuron [4, 7]. The present study focused on
the modulation of plasticity in CA1 pyramidal neurons by the release of ACh from
the synaptic terminals. Our results indicate that the priming effect of endogenous
ACh was mediated by mAChR and modulated STDP, both LTP and LTD, in which
LTP was facilitated and LTD was abolished by slow EPSPs, which is close to
the physiological condition of mAChR activation (Fig. 2a, b). We also found an
interesting feature of ACh as the modulating system for shifting the plasticity in the
potentiating direction (Fig. 2c, d), following the BCM rule [2]. Thus, our results
suggest that ACh may regulate learning and memory performance, indicating a new
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Fig. 2 The influence of slow EPSP on STDP Induction. (a) Slow EPSP elicited by a repetitive
stimulation. Slow EPSPs due to the excitability of the pyramidal cell were elicited by the release
of endogenous ACh following repetitive stimulation of the oriens. Representative traces show
typical examples of slow EPSPs in the absence (top) and presence of 2 �M eserine (middle),
and the presence of 1 �M atropine (bottom). Membrane potential was maintained at �53 mV.
(b) Summary of slow EPSP amplitudes. The peak amplitudes in the absence (control), presence
of eserine, and presence of atropine were measured, respectively. (c) The influence of slow EPSP
on STDP induction at positive timing (
tD 12 ms). STDP, LTP induced by LTP-timing protocol,
was enhanced by the slow EPSP. EPSP slopes in absence (open circle) and presence (filled circle)
of slow EPSP were presented in percentages, respectively. Upper EPSP traces were measured at
the time corresponding to numbers indicated in the time course of EPSP slopes. (d) Summary of
influences of slow EPSP on STDP induction at positive timing. (e) The influence of slow EPSP on
STDP induction at negative timing (
tD�22 ms). STDP, LTD induced by LTD-timing protocol,
was abolished by the slow EPSP. (f) Summary of influences of slow EPSP on STDP induction at
positive timing. *p<0.05, **p<0.01 in Student’s t-test; N.S not satisfied
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aspect of learning and memory in the hippocampus. We conclude that ACh plays
a critical role as a modulator for spatial-temporal information processing in the
hippocampus, and thus attention modulates learning and memory at cell level.
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Transition Dynamics in Spatial Choice

Hiroshi Nishida, Muneyoshi Takahashi, Jin Kinoshita, and Johan Lauwereyns

Abstract Previous research has provided abundant evidence that negative as well
as positive reinforcers can elicit operant responding in rats. Less is known, however,
about the relative impact of positive versus negative reinforcers on the dynamics
of spatial choice in a complex setting, including old and new stimuli. To study
such dynamics, we devised a behavioral paradigm consisting of an initial learning
phase, followed by a “transition test,” which included a novel stimulus. In the initial
learning phase, rats acquired an operant nose-poke response to a visual (LED) onset
at the central hole in the front wall of a Skinner box. We trained two groups of rats,
with different types of reinforcement; Group 1(appetitive learning) obtained a food
pellet as reinforcement for correct responding, whereas Group 2 (appetitive and
avoidance learning) obtained a food pellet and avoided a foot shock as reinforcement
for correct responding. Once both groups had established similar, near-perfect levels
of performance, we introduced a first transition test, in which a second visual (LED)
onset was presented simultaneously with the visual onset at the center. The rats
were free to continue responding to the central hole (with the same reinforcement
schedule for central responding as during the initial learning). However, the rats
obtained three instead of only one food pellet for responding to the peripheral hole
(Group 1 and Group 2) as well as avoiding a foot shock (Group 2). Overall, as
compared to rats in Group 1, the rats that underwent both appetitive and avoidance
learning showed more efficient transition, switching to peripheral responding. These
data cannot easily be accommodated by operant conditioning models, according
to which the rats in Group 2 should have been particularly motivated to continue
responding at the central hole. Instead, we propose that their spatial choice was
modified by a complex interaction of classic and operant learning.
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Keywords Rat • Operant learning • Reward • Punishment • Transition
dynamics

1 Introduction

As our daily life is filled with a plethora of stimuli, successful behavior requires us to
pick out and process the relevant ones (e.g., signals associated with a large amount
of reward or with the impending arrival of an aversive event). The stimulus selection
and processing allows us to compute the appropriate response (e.g., approach or
run away). The trick, of course, is to know which are the relevant stimuli, and
which the most beneficial responses. Learning may be the classic answer to the
problem, but how and when do we engage in learning? In real life, we generally
face novel stimuli or unfamiliar happenings with some frequency, yet they are
often embedded in contexts with familiar patterns, including well-learned statistical
regularities between objects and events, actions and outcomes. Thus, we can choose
to explore the new or to exploit the familiar.

Here, we aim to develop a behavioral paradigm that allows us to investigate,
in precise and systematic ways, the various factors that determine the tendency to
engage in exploration. We ask under which circumstances (in which contexts) an
animal prefers exploring an unfamiliar stimulus over exploiting a familiar stimulus.
It is well-known that both positive and negative reinforcers can shape an animal’s
behavior with respect to a particular stimulus [1, 2]. However little is known about
how the presence of such reinforcers (i.e., the potential to obtain familiar outcomes)
impacts on the dynamics of exploration in an environment with a novel (newly
introduced) stimulus.

The reaction to the uncertainty and the potential risk associated with the new
stimulus may vary as a function of the context. To approach or to avoid the novel
stimulus, then, can be thought of as a context-dependent decision-making process
[3]. Given that novel stimuli can elicit such diametrically opposed behaviors, it
is crucial to investigate the effect of context in a systematic, hypothesis-driven
manner. Particularly, we aimed to contrast a hypothesis on the basis of “motivational
significance” (compatible with traditional models of operant conditioning [4])
versus a hypothesis on the basis of “information value” (compatible with models
of operant learning that reserve a specific role for cognitive factors [5]). Consider
a situation in which a novel stimulus is presented concurrently with a familiar
stimulus of a particular motivational value (i.e., associated with a particular action
outcome). Here, the likelihood of exploring the novel stimulus might depend on the
motivational value of the familiar stimulus, such that highly valued familiar stimuli
would result in less exploratory behavior than moderately valued familiar stimuli.
We call this the “motivational significance hypothesis.”

Now consider a situation in which a novel stimulus is presented concurrently
with a familiar stimulus of a particular level of information complexity. In this case,
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the information value of new stimuli (as a potential predictor of events, or a possible
source to reduce the complexity of the situation) should be higher when the familiar
stimulus implies complex, and therefore potentially “ambiguous” associations than
when the familiar stimulus provides a clear and simple implication. By this
view, familiar stimuli with complex associations should produce more exploratory
behavior than familiar stimuli with simple implications. We refer to this proposal as
the “information value hypothesis.”

In the present study, we devised a nose-poke task for rats that puts the two
hypotheses in opposition.

2 Methods

Twenty-four experimentally naı̈ve male Sprague Dawley rats served as subjects.
Each rat was assigned to one of two groups (each with nD 12). Four identical
nine-hole nose-poke chambers (ENV-NPW-9L; Med Associates Inc.) were used to
conduct the experimental procedure.

In the initial learning phase, rats acquired an operant nose-poke response to
a visual (LED) onset at the central hole in the front wall of a Skinner box.
The duration of central illumination was gradually decreased from 60 to 5 s
according to the performance during 45 min of daily training session. We trained
two groups of rats, with different types of reinforcement; Group 1 (appetitive
learning; App-only) obtained a food pellet as reinforcement for correct responding,
whereas Group 2 (appetitive and avoidance learning; App-Av) obtained a food
pellet and avoided a 0.18 mA of scrambled foot shock as reinforcement for correct
responding.

Once both groups had established similar, near-perfect levels of performance, we
introduced a first transition test, in which a second visual (LED) onset was presented
simultaneously with the visual onset at the center. The rats were free to continue
responding to the central hole. However, the rats obtained three instead of only one
food pellet for responding to the peripheral hole (Group 1 and Group 2) as well as
avoiding a foot shock (Group 2).

To assess the effect of reinforcement context on the transition behavior, we
measured the peripheral preference rate (PPR) as follows:

PPR D N.peripheral/

N.peripheral/CN.center/

N(peripheral) denoted the number of correct peripheral choices and N(center), the
number of correct center choices. This index ranged from 0, if the rats always chose
the central hole, to 1, if their preference had completely shifted to the peripheral
option. The effect of Context and Day was assessed using two-way ANOVA, with
Day as a within-subjects variable (Fig. 1).
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Fig. 2 The 5-day dynamics of the average peripheral preference rates in the transition test

3 Results

After 30 days of training, all 24 rats (from both Group 1, App-only and Group 2,
App-Av) were able to perform more than 120 correct nose-poke responses to the
central hole when the LED was illuminated, at a correct performance rate of more
than 80% during a 45-min session. Our analyses showed similar trends for absolute
numbers of correct trials as for correct performance rates. Thus, we concentrated all
analyses on rates of responding.

In the first transition test, the average peripheral preference rate gradually
increased over the course of 5 days, both for Group 1, App-only (0.09˙ 0.10,
0.34˙ 0.28, 0.59˙ 0.36, 0.74˙ 0.29, and 0.84˙ 0.18; mean˙SD) and for
Group 2, App-Av (0.36˙ 0.33, 0.67˙ 0.35, 0.78˙ 0.37, 0.79˙ 0.37, 0.79˙ 0.37;
mean˙ SD) (Fig. 2). A two-way repeated measures ANOVA, with the factors
Context (App-only, App-Av) and Day (4–8), revealed a significant main
effect of Day (F(4, 88)D 56.09, MSED 0.03, p< 0.001) but not of Context
(F< 2). However, there was a significant interaction between Day and Context
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(F(4, 88)D 5.76, MSED 0.03, p< 0.001). Post hoc pair-wise comparisons (with
Bonferroni correction) revealed that there were statistically significant differences
between Contexts on Day 4 (p< 0.05) and Day 5 (p< 0.05). On Days 4 and 5, which
were the first and second day of the transition test 1, rats that had been trained with a
complex reinforcement schedule, involving both appetitive and avoidance learning,
were able to achieve higher peripheral responding rates (0.36 on Day 4 and 0.67
on Day 5) than rats that had been trained in the alternative context (0.09 on Day 4
and 0.34 on Day 5). This result clearly suggested that the preference shift occurred
more rapidly in Group 2, App-Av, than in Group 1, App-only.

4 Discussion

In the present study, we introduced a new behavioral paradigm to investigate the
impact of positive and negative reinforcers on the dynamics of exploratory behavior.
The rats were trained initially on a nose-poking task to an illuminated central
nose-poke hole either using positive reinforcers only (i.e., Group 1, App-only) or
using positive and negative reinforcers (i.e., Group 2, App-Av). For the subsequent
transition test, we introduced an alternative peripheral nose-poke hole in the same
experimental chamber, extending the paradigm to a free-choice task. If the rat chose
the peripheral hole, it received a larger reward than for a response at the central
hole (where the reinforcement schedule remained unchanged). We found that rats in
Group 2, App-Av, shifted their preference to the peripheral hole faster than rats in
Group 1, App-only.

The data cannot easily be accommodated by traditional operant conditioning
models [6, 7], which predicted that rats in Groups 2 should be motivated more
strongly than their counterparts to continue responding at the central hole. We
suggest that the information value hypothesis provides a better fit with the data. By
the latter view, the exploratory behavior depended on the complexity of information
present in the given context. In an ambiguous context, when the familiar stimulus
implied two different associations, the rats were more likely to explore the new
alternative than in an unambiguous context, when the familiar stimulus offered
only one straightforward association. The present data are consistent with recent
models that leave an explicit role for cognitive processing in the organization of
behavior [5, 8, 9], and agree with recent findings suggesting that context may serve
to resolve ambiguity (i.e., temporal ambiguity [10]). Indeed, several researchers
have suggested that complex settings tend to increase exploratory behavior [11, 12].
Similarly, animals often prefer variable over fixed reinforcement ratios, even when
the fixed ratio provides a better payoff [13], again connecting exploratory behavior
with complexity or uncertainty. From a cognitive perspective, such tendencies
suggest that the exploratory behavior may be driven by a need for information as
a potential source of disambiguation.

By this reading, information would serve as an intrinsic attractor, particularly in
complex or ill-understood settings. The notion that information may be desirable in
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and of itself was illustrated recently in a study by Bromberg-Martin and Hikosaka
(2009), in which monkeys chose to obtain cues that provided reliable advance
information about future events rather than cues that provided random information,
even though the information changed nothing with respect to the actual amounts
of reward that could be obtained in the experiment [14]. Apparently, the monkeys
valued the advance information. Similarly, in our current experiments, rats that were
faced with a complex setting may have been particularly responsive to the attraction
of new information that might shed light on the relationship between different
stimulus features and outcomes.

Future studies can build on the current paradigm to systematically investigate the
role of information complexity, and the role of different types of reinforcers, in the
dynamics of exploration. Arguably the principal merit of the current paradigm is
that it offers a clear and easy rat model of exploration dynamics in a way that will
be compatible with neurophysiological recording. Nose-poke paradigms for freely
moving rats are already successfully combined with large-scale neuronal ensemble
recording techniques using several tens of microelectrodes [15]. To explore the
neural mechanisms of exploration, then, we propose that the present rodent model
offers a unique opportunity to conduct experiments with a large subject sample
(e.g., recording only 5–10 daily sessions per subject, from groups of 12 or 24 rats).
Targeting rats and mice as animal models, this approach will be suitable not only for
neurophysiological recording, but also for anatomical, pharmacological and genetic
approaches, to advance our understanding of the neural mechanisms of exploration.
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Perseveration of Response Sequences
as a Mechanism Underlying
3,4-Methylenedioxymethamphetamine (MDMA
or ‘Ecstasy’) Induced Memory Impairments

David N. Harper

Abstract At doses above 3.0 mg/kg i.p. MDMA shares a number of features in
common with other drugs of abuse in terms of the specific behavioral processes that
lead to task disruption as well as an overlapping neurochemical basis. Converging
evidence suggests that much of the behavioral disruption caused by acute exposure
to MDMA emerges because of an increased tendency to perseverate with learned
response sequences even when those tendencies reduce access to reinforcement.
We believe that this behavioral feature of MDMA may be linked to increased
brain dopamine activity at sufficiently high enough doses. The current work
has theoretical implications for understanding the actual behavioral locus for the
learning and memory impairments that arise following exposure to a range of
dopamine agonist drugs.

Keywords MDMA • Perseveration • Memory • Concurrent schedule

1 Introduction

Exposure to the stimulant-based recreational drug (C/�)3,4-methylenedioxy-
methamphetamine (MDMA, or ‘Ecstasy’) is associated with impairments in a
range of conditional discrimination tasks that reflect memory function, decision
making and self-control [1–3]. Recent studies with rats using the delayed matching-
to-sample (DMTS) paradigm [4, 5] have shown that MDMA’s acute effects are
qualitatively very similar to the disruption produced by classic stimulant-type drugs
such as d-amphetamine and cocaine in terms of an overall impairment to accuracy
across all delays.
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Fig. 1 Accuracy in DMTS task divided into trials in which the response made in the immediately
preceding trial was the same (filled symbols) versus different (unfilled symbols) from the correct
response required on the current trial across doses of MDMA

However, the actual behavioral process by which MDMA alters performance
in these tasks is not clear. One interpretation of such findings has been that
overall stimulus control is impaired (i.e., rats have trouble discriminating between
response options and/or which reinforcers were associated with which stimulus-
response option). Such a possibility lies at the heart of many explanations based on
problems with attention or retention of information. This interpretation also leads
to the expectation that rats should display reduced molar sensitivity to changes in
reinforcer ratios arranged across concurrently available response alternatives .

Explanations based on impaired stimulus control are, however, hard to reconcile
with a re-analysis of the original data from a study by Harper et al. [4] which
reveals that this overall impairment is a direct result of increased susceptibility to
the confounding influence of responses made in the immediately preceding trial on
current trial performance (‘proactive interference’). For example, after choosing a
LEFT lever on Trial ‘n�1’ there was a greater tendency to respond LEFT again on
Trial ‘n’ (irrespective of whether the correct lever on the current trial was LEFT or
RIGHT); an effect which becomes more extreme at doses above 1.5 mg/kg i.p. of
MDMA (see Fig. 1).

Therefore, an alternate interpretation is that poorer discrimination arises because
there is a localized perseverative tendency in responding which effectively interferes
with appropriate responding. Experiment 1 was an attempt to elucidate the extent to
which MDMA produces response perseveration vs. impairments to stimulus control
at doses that impair DMTS task performance. Experiment 2 investigated whether
the resulting memory impairments were related to MDMA’s neurochemical actions
as a dopamine agonist.

2 Experiment 1

Experiment 1 examined the effects of acute exposure to MDMA on sensitivity to
reinforcement and response perseveration in a concurrent choice arrangement by
using Davison & Baum’s (2000) concurrent choice procedure [6]. At a molar level
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Table 1 Variable Interval
(VI) reinforcement schedules
arranged for responding
across two concurrently
available levers

Pair Left lever Right lever Reinforcer ratio

1 VI 32 s VI 480 s 15:1
2 VI 36 s VI 180 s 5:1
3 VI 60 s VI 60 s 1:1
4 VI 180 s VI 36 s 1:5
5 VI 480 s VI 32 s 1:15

Numerical values for each VI refer to average time
between the availability of successive reinforcers
(see [5] for details)

his paradigm examines the degree to which an organism (a rat in this experiment)
will allocate its responding across two response options (operant levers in the current
case) that differ in terms of the ratio of reinforcement available on each option. At
a more molecular level this paradigm allows the assessment of ‘preference pulses’
(the tendency to make a response on the same lever as the last response was made; a
preference that increases following successive reinforcers presented for responding
on that option). The expectation is that if MDMA is causing an increase in response
perseveration then rats will tend to make more responses (preference pulses) on
the lever associated with the current highest rate of reinforcement; this, in turn,
should drive an increase in overall molar sensitivity (because rats are more likely
to continue responding on the lever associated with the richest reinforcement). In
contrast, an impairment to stimulus control should result in lower overall sensitivity
to the reinforcer ratios.

2.1 Methods

Seven Norway Hooded rats were trained to respond on two levers in an operant
chamber for food reinforcement (45 mg sugar pellets delivered via a hopper) in
which the ratio of reinforcement available for responding across two concurrently
available levers varied within a 60 min session.

Each reinforcer schedule pair was presented once for 12 min in random order
within each session. Rats were administered MDMA (0–3.0 mg/kg i.p.) 15 mins
prior to a session once stable performance was achieved. Three sessions were
conducted per dose, with 2–3 washout days between drug days. Statistical analyses
were conducted using repeated-measures analyses of variance (ANOVAs) (Table 1).

2.2 Results

Overall molar-level analysis was conducted by using the Generalized Matching Law
[7]. This analysis plots changes in response ratios across the two response options
as a function of changes in the obtained reinforcer ratio for individual subjects.
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Fig. 2 Mean ratio of current response (n) being made to the ‘same’ vs. ‘opposite’ lever as the
immediately preceding response (n�1) presented as a function of number of preceding reinforcers
delivered for responding to the ‘same’ lever. Data shown for saline control vs. highest dose of
MDMA tested (3.0 mg/kg)

This analysis revealed that there was a systematic increase in sensitivity (from 0.38
to 0.57) to the reinforcer ratios as dose of MDMA increased (p < 0.01). That is,
as the dose of MDMA increased, the ratio of response allocation across the two
concurrently available choice alternatives came to more closely match the arranged
reinforce ratio across those two alternatives.

Figure 2 shows the outcome from a molecular analysis of individual responses
[5] that examined the degree to which rats made a response to the same lever as
the one they had just responded to (within the last 5 s). This analysis revealed the
expected ‘preference pulse’ effect. Specifically, rats were twice as likely to emit a
response to the same lever as they were to switch levers following a response to a
given lever (e.g., rats were twice as likely to respond LEFT followed by LEFT again
than they are LEFT followed by RIGHT). The more reinforcers gained on a given
lever in succession, the greater the preference pulse. MDMA significantly increased
this effect (p < 0.01) in a dose dependent manner.

3 Experiment 2

The proactive interference effects observed in previous studies [4, 5] and enhanced
preference pulses observed in Experiment 1 become obvious at doses between
2.0 and 3.0 mg/kg i.p. of MDMA. Interestingly, at doses less that 2.0 mg/kg
MDMA’s main neurochemical action is via an enhancement of 5-HT activity,
whereas at doses greater than 2.0 mg/kg, MDMA also results in high extracellular
levels of dopamine [8]. Therefore, one prediction is that MDMA is having its
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effects on response perseveration (and hence memory function in the DMTS
task) primarily via its enhancement of dopamine activity. Such a possibility
would also be consistent with the observed similarity in terms of the pattern of
disruption seen to DMTS performance between MDMA and drugs such as am-
phetamine and cocaine [4] which are known to have many of their behavioral effects
via dopamine [9, 10].

3.1 Methods

The same DMTS procedure used in previous studies to examine the effects of
MDMA on memory-task performance was used in the current experiment [4, 5].
After 18 rats were showing stable performance they were administered MDMA (at
a target dose of 3.0 mg/kg i.p.) on its own or in combination with the D1 antagonist
SCH23390 (0.0–0.02 mg/kg) or the D2 antagonist eticlopride (0.0–0.1 mg/kg).
Statistical analyses were conducted using ANOVAs.

3.2 Results

As seen in previous studies, MDMA at 3.0 mg/kg produced a significant overall
decrease in accuracy (p < 0.01) and an obvious increase in proactive interference
(see Fig. 3). Only the D1 antagonist SCH23390 at the 0.02 dose significantly
ameliorated this effect of MDMA (p < 0.01).

4 Discussion

Across different paradigms it appears that MDMA can induce an increase in
response perseveration (effectively returning to a previously emitted response
option). This localized tendency to repeat individual responses (in the case of the
concurrent schedule task) or sequences of responses (in the case of the DMTS and
other memory tasks [e.g. 3–5]) can account for a variety of more molar level changes
in performance. Somewhat counter-intuitively, increased responding on the more
richly reinforced lever in the concurrent schedule arrangement produces an apparent
increase in sensitivity to changes in the reinforcer ratios. This phenomenon arises
because generally rats, like other species, tend to under-match in such procedures in
control conditions (i.e., respond less extremely than the ratio of reinforcers obtained
across response options [7]). Such a finding is not easily reconciled with an account
of MDMA’s actions purely in terms of an impairment to stimulus control processes
(at least at the doses of MDMA examined in the current research).
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Fig. 3 DMTS accuracy
divided into trials in which
the response made in the
immediately preceding trial
was the same (filled symbols)
vs. different (unfilled
symbols) from the correct
response required on the
current trial for saline vs.
MDMA 3.0 mg/kg vs.
MDMA 2.0 mg administered
concurrently with SCH23390
at 0.02 mg/kg

It should be noted that although response perseveration serves as a description
of the behavioral changes observed here, the actual behavioral process by which
it arises still needs to be elucidated. Future research needs to explicitly identify
whether an MDMA-induced perseveration arises because the drug acts to increase
relative reinforcer value (i.e. organisms persist with previously reinforced responses
because the reinforcers for design so are now relatively more valuable) or whether
the underlying mechanism relates more to inflexible motor control programs
independent of reinforcement.

Although initial evidence suggests MDMA may produce the current behavioral
effects via dopamine at the D1 receptor site, a possible role played by 5-HT cannot
be dismissed, especially because of the inter-dependent nature of dopamine and
5-HT activity [10]. However, a possible role of dopamine suggests that the proposed
mechanism by which MDMA is impairing memory-task accuracy can be applied to
a wide range of other stimulant-based drugs of abuse.
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Multiple Neural Circuits in Value-Based
Decision-Making

Masamichi Sakagami

Abstract Valuation is an essential function in decision-making. To understand
the nature of the distinct neural systems used in such valuation, we performed
monkey single-unit recording experiments and a human fMRI experiment using
(1) a perceptual discrimination task with asymmetric reward, and (2) a reward
inference task. The results suggest that both the primate and human brain have, at
least, two distinct valuation systems: one in the nigro-striatal circuit (the stimulus-
based valuation system) and the other in the PFC circuit (the knowledge-based
valuation system). We propose that the stimulus-based valuation system calculates
values based on the empirical and probabilistic relation between an event and
its outcome. The knowledge-based valuation system generates values by further
extension of directly-experienced association through categorical processes and
rules, thereby enabling animals to predict the outcome of an inexperienced event.

1 Introduction

The brain is an organ able to select an appropriate behavior in an ever-changing
environment. Although a smaller brain would effectively work as a “relay machine,”
a larger brain seems able to select more appropriate behaviors among available
choices, depending on the context of the stimulus environment. Such function is
termed “decision-making.” Decision-making does not involve a single process. For
example, Rangel et al. suggested that value-based decision-making is composed
of five processes: (1) state representation, (2) valuation, (3) action selection, (4)
outcome evaluation, and (5) learning [1]. Among these, the valuation process is
critical in decision-making because the evolution of the animal brain has developed
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multiple valuation systems, and the divergence of decision-making mainly depends
on the variation of valuation systems. In this paper, we will see some evidence
bearing on the diverse contributions of cortical and subcortical neural circuits in
both the non-human and human primate brain, and also discuss the nature of the
decision-making function.

2 Methods

2.1 Perceptual Discrimination Task

We recorded brain activity during the performance of a random dot motion
discrimination task using an asymmetric reward schedule in both human fMRI
(BOLD signal) and monkey neurophysiology (single unit recording from midbrain
dopamine neuron) experiments [2, 3]. The subject was presented with random dot
motion, and required to report its motion direction (rightward or leftward). In a given
block, while one direction of motion stimuli was associated with more valuable
reward, the other direction was associated with less valuable reward. To manipulate
discrimination difficulty, several levels of coherence were used. Although small
details of the task were adapted to work well with different species, the task
structure was basically the same. Whereas the stimulus-based valuation system
shows reward prediction based on the motion stimulus itself, the knowledge-based
valuation system shows reward prediction based on the subject’s reported perceptual
discrimination. Dissociation between these two systems is discernable in error trials.

2.2 Reward Inference Task

We recorded single unit activity from the lateral PFC (LPFC) and striatum of
monkeys performing a sequential paired association task with an asymmetric
reward schedule [4]. In this task, the monkeys first learned two stimulus–stimulus
association sequences (here denoted: A1!B1!C1 and A2!B2!C2, where
A1, B1, C1, A2, B2, and C2 were six different visual stimuli), in sequential
paired association trials (SPATs). After having mastered the task, the monkeys
were taught the asymmetric reward schedule using reward instruction trials, in
which one stimulus (C1 or C2) was paired with a large reward (0.4 ml of water)
and another stimulus (C2 or C1) with a small reward (0.1 ml of water). Reward
instruction trials were followed by SPATs in one block. In the SPATs, the amount
of reward at the end of correct trials was also asymmetric: if C1 had been paired
with the large reward, and C2 with the smaller, in the reward instruction trials,
the sequence A1!B1!C1 would lead to the larger reward, while the sequence
A2!B2!C2 would lead to the smaller reward, and vice versa. Our question was
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whether the monkeys would transfer the reward information associated with C1
and C2 to the first visual stimuli, A1 and A2, in the SPATs. Stimuli A1 and A2
were not directly paired with the different amount of reward, but if the monkeys
could generate the stimulus–reward relation (C with reward amount), and stimulus–
stimulus (A!B!C) associations, we could expect them to predict reward amount
at the time of the first stimulus presentation of A1 or A2 in a SPAT, just after reward
instruction with C1 and C2.

3 Results

3.1 Perceptual Discrimination Task

Human fMRI experiment. We were able to show that the striatum (caudate nucleus)
and the medial prefrontal cortex (MPFC) are involved in distinct reward predictions.
Whereas the caudate activity shows stimulus-based reward prediction, the MPFC
activity is consistent with the knowledge-based reward prediction. The activity in the
caudate nucleus predicted reward based on the sensory input of cues (direction and
coherence of the motion stimuli), irrespective of the subjects’ perceptual decision
on the motion direction. In contrast, the MPFC seemed to use the output of
perceptual decision to predict reward, especially in the low-coherence trials, where
the sensory input of the cue stimuli was limited. These results suggest that the
striatum generates a stimulus-driven reward value based on the probabilistic relation
between stimulus input and reward, whereas the MPFC incorporates the output of
the stimulus processes (i.e., the percept), to compensate for weak sensory-dependent
prediction by the striatum.

Monkey single unit recording experiment. Midbrain dopamine neurons provide
abundant projections to the striatum [5]. In agreement with previous findings [6],
dopamine neurons responded to reward-indicative cues (i.e., direction of motion
stimuli) and showed reward-predictive activity based on the stimulus-based system
[3]. Importantly, dopamine responses in the small-reward error trials are similar
to those in the small-reward correct trials, even if perceptual decisions were in
the opposite direction, suggesting that dopaminergic responses were not consistent
with reward prediction associated with behavioral reports. Rather, dopaminergic
responses reflected reward prediction associated with actual motion stimuli. These
results suggest that dopaminergic activity reflects external stimulus-based reward
prediction, irrespective of the monkey’s report. Accordingly, dopaminergic neurons
may influence the stimulus-based striatal activity through dopaminergic projections
to the striatum.

Our results demonstrate that two distinct systems are differently involved in
reward prediction under stimulus ambiguity. The caudate activity reflected reward
prediction based on the physical properties of external stimuli in a probabilistic
manner. This is consistent with previous studies [7]. Moreover, we found that
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dopamine-reward-predictive activity was also based on the motion stimulus itself,
but not on behavioral report. Given that the striatum receives massive dopaminergic
inputs [5], these subcortical structures collaboratively provide reward prediction
on the basis of the external stimulus-based system. Unlike this subcortical circuit,
the MPFC activity was correlated with perceptual judgment on motion direction.
We observed this feature only for the lower coherence level. This suggests that
knowledge-based reward prediction by the MPFC is particularly effective when
the external stimulus is weak, or stimulus input is limited. In the context of
perceptual decision-making, a previous study has shown that the MPFC holds
predictive codes for perceptual categorization [8]. Thus, our results suggest that the
MPFC activity supplements limited stimulus information with reward prediction
based on perceptual judgment. This would entail that the coding of the MPFC is
consistent with the knowledge-based system (single unit study [9] and human fMRI
study [10]).

3.2 Reward Inference Task

Our results showed that the monkeys and LPFC neurons discriminated the large
reward condition from the small reward condition from the first SPATs [4]. In
particular, we found that a group of LPFC neurons predicted reward information
specific to a group of relevant visual stimuli that required the same behavioral
response (e.g., the A1-group including A1, B1, and C1, and the A2-group including
A2, B2, and C2). These neurons responded to each stimulus from the preferred
group in the preferred reward condition (large or small), and showed no response to
the stimuli from the non-preferred group, irrespective of the reward condition. Thus,
these neurons (category-reward neurons) likely coded both the category information
of visual stimuli (either the A1 or A2 groups), and reward information (either large
or small), simultaneously. The monkeys might group the relevant stimuli according
to intended behavior requiring the same matching response, together as a functional
category through extensive training with the paired association task. When the
monkeys learned that C1 (or C2) was paired with a large reward, category-reward
neurons combined the stimulus–reward relation and the category information to
relay the reward information to other category members, which would allow the
monkeys to predict reward on the basis of A1 (or A2) just after the reward instruction
of C1 or C2. Even in the perceptual decision task, LPFC neurons showed categorical
coding [11].

The results are consistent with the predictions from the model-based process
proposed by Daw et al., which stands on higher order computations that allow
simulations to predict outcomes using internal models [12]. Daw et al. also suggest
that the striatum codes for stimulus–outcome relations through direct experiences,
as a result of a model-free process, which is different from the prefrontal model-
based process. To investigate this difference, we simultaneously recorded neural
activity from the LPFC and striatum of the third monkey in the reward-instructed
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sequential paired association task. We found that many striatal neurons showed
reward-predictive activity to the first cue stimuli (A1 and A2), and that the activity
was independent of the visual properties of the stimuli (as in the reward neurons
studied in [4]). However, careful analysis revealed that the reward neurons in the
striatum showed different response patterns when compared to those in the LPFC.
After reward instruction with C1 and C2, the striatal neurons showed no differential
activity between the large and small reward conditions in the first SPAT. In other
words, these neurons were unable to predict the reward based on the first cue stimuli
in the first trials, but could do so from the second SPATs. The results suggest that
the striatal neurons, unlike the LPFC neurons, cannot transfer reward information
associated with C1 and C2 to the first cues, A1 and A2, in the SPATs without direct
experience. Therefore, there may be different mechanisms in the LPFC and striatum
for reward prediction. Thus, we propose that the LPFC represents the category of
a relevant stimulus as knowledge or an internal model, and predicts reward for the
stimulus based on its category membership without requiring the direct experience
of stimulus-reward associations. Furthermore, the striatum appears to predict reward
for stimuli after directly experiencing each stimulus-reward relation.

4 Discussions

Valuation is a key function in decision-making. Variety and organization of
valuation systems appear to be essential to decision-making. In this paper, we
have suggested, by showing experimental data from our laboratory, that the primate
brain has at least two distinct valuation systems that cooperate in one situation
but compete in another. One of these systems is a part of the nigro-striatal circuit
(the stimulus-based valuation system); and the other, a part of the PFC circuit
(the knowledge-based valuation system). The nigro-striatal circuit appears to
calculate values based on the empirical and probabilistic relation between an event
and the ensuing reward or punishment. On the other hand, the PFC circuit appears
to generate reward values in a more elaborate process that applies categorical
information and rules to previously experienced association in order to make
reward predictions, and thereby enabling an animal to predict the outcome of an
inexperienced event. To reach single final decision, the two valuation systems may
compete against each other in a certain occasion, but may cooperate in the other.
Although some groups have proposed ideas on how the brain integrates values
from different valuation systems [13, 14], not much is known about the relationship
between these systems.
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Towards Understanding of Neural Dynamics
in Communicating Brains

Ichiro Tsuda

Abstract We present a mathematical model to describe interacting processes of
model neural networks. A model consists of several subsystems, each of which
describes each different function. An overall dynamics of the whole model stems
from the interactions between different areas of the brain, influenced by the
incoming dynamics of the other brains. In particular, the interactions of slow and
fast dynamics through mediating dynamics can create meaning of behavior. One
of subsystems is a memory system, where new activity patterns can be learned
without destroying all memories by novelty-induced learning. This subsystem can
be applied to itinerant behaviors of searching animals such as vicarious try and error
(VTE). One of the other subsystems works as a copy-and-identification unit, which
is necessary for mimicking the others’ behaviors. This unit also provides a model of
mirror neuron systems.

1 Introduction

Communication can be characterized from various aspects. In our research project, it
is considered to be a process of creating new meaning by the verbal and/or nonverbal
interactions of individuals, and then sharing meaning, understanding the other logics
and emotions, and sympathizing with others. Each brain is originally isolated in
meaning space from others and/ or environment. In spite of this solipsism, an indi-
vidual tries to adapt to the other meaning space, interprets the signals emitted from
such a space, judges in which way one should behave and then actually behaves.
This type of adaptation belongs to instinct, and follows the evolutionary principle.
Thus, the necessity of communication stems from solipsism of each brain [1].
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The purpose of our research is to extract a fundamental dynamical system
which underlies the neural mechanism for communication, and to analyze its
dynamics. There are many important factors of communication. Among others, we
are interested in genesis of meaning, symbols and rules from dynamics, namely
“creation of new states, while keeping old states.” Consistency in meaning space
can be described in low-dimensional phase space. One can describe the transition
from an old state of consistency to its new state through chaotic itinerancy [2–7]
in high-dimensional phase space. However, in a new stage of dynamics after the
transition, an old state of consistency should be kept. This situation is prerequisite
for evolution of memory, thinking, and judgment in the communication process.
Thus evolutionary dynamics and dynamics by hetero-interactions will provide the
necessary mathematical tools for the studies of genesis of meaning and rules,
and also hybrid-harnessing systems for the studies of symbol grounding and de-
grounding and analog-digital matching. There are at least two levels of mathematical
models: a model for intra-brain mechanism for cooperation and entrainment of
brain activity by means of say, mirror-neuron systems, and a behavioral model for
cooperation via mutual understanding and role sharing.

2 Methods

The model equations which are supposed to describe an overall dynamics of a
concerned brain interacting with the other ones are as follows:

�s
dsi

dt
D G�1.

X

j

kij sj C I.x/H.ci //C eF.s; c/ (1)

�c
dci

dt
D G�2.

X

j

lij cj C I.x/H.si //C eB.s; c/ (2)

I.x/ D
nX

iD1
ai=m

i ; if x rep: .a1; a2; : : : ; an/; where ai D 0; 1; : : : ; m � 1
(3)

I.x/ D 0; otherwise
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Fig. 1 Schematic drawing of an overall dynamics of the brain which interact with other brains
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The overall dynamics consists of three special dynamics: fast, slow and mediate
dynamics, which are represented by the dynamical variables, s, c, and x, respec-
tively, and obey the dynamical laws, (1), (2), and (3), respectively (See also Fig. 1).

The dynamics proceeds in the following way. We assume Cantor coding [8–12] in
memory systems, which act here as a mediate dynamics. The external inputs come
from the other interacting brains, which are represented as sensori-motor signals.
If the memory state lies in some specific subsets of Cantor set, which means the
internal representation of some specific episode, then such a memory state mediates
the interactions between fast and slow dynamics. An order parameter emerges in
slow dynamics, thereby memory corresponding to the state s is recalled, which is
represented by a quasi-attractors such as a Milnor attractor. Then, slow dynamics
destabilizes the mediate dynamics, whereby the state changes from the previous s to
a new one, say, r, according to its own dynamics. This state change can occur, using
chaotic itinerancy or Kapitza oscillators.
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3 Results

Within the framework described in Sect. 2, we have investigated several subsystems
to clarify the mechanism of communication from nonlinear dynamical systems
viewpoint.

In communication, we have to maintain memory associated with continuation of
a specific episode, provided that recent own memories are attended and retrieved.
How can it be accomplished? We will refer to this system as a subsystem-dynamic
memory (DM).

We consider the ”-band of neural activity as the fast dynamics, through which
all kinds of sensory information are carried. The slow dynamics is here considered
as •- and ™-bands of activity, thereby the working memory, memory retrievals, and
also the process of judgment can be represented. Here, one of the main issues is ”-™
or ”-• interactions. This system will be here called a subsystem-multiple time scales
of interactions (MTSI).

In this subsystem, various interactions such as amplitude-amplitude, phase-
phase, and amplitude-phase interactions play a role in creation of information
necessary for the emergence of chaotic itinerancy in the slow system. This sub-
system also acts for deliberative decision-making [13], which may be related to the
behavioral signals like vicarious try-and-error (VTE).

It is well-known that a mirror-neuron system acts in communication.
We developed a mathematical model for a mirror-neuron system [14]. A system
called a mirror-neuron system [15], which is active for the voluntary movements,
becomes active when such voluntary movements are mimicked by others, where
several remote areas of the brain interact with each other. It has been highlighted in
neuroscience research fields, and been also investigated a detail of its mechanism
from the aspect of neuroscience. The mechanism has not, however, been clarified
so far. It is expected that a mathematical modeling can provide a promising way to
clarify the mechanism. In this circumstance of research, motivated by clarifying the
mechanism of mirror-neuron systems, we tried to extract the essence of function
of mirror-neuron systems, developed its mathematical model from the aspect of
nonlinear dynamical systems, and investigated the dynamical behaviors of the
model. This is also a subsystem within our present framework, which is here called
a subsystem-mirror-neuron system (MNS). This subsystem works within the slow
dynamics.

Our model equations are as follows (see also Fig. 2).

xnC1 D cxn C bxnx0nyn C a (8)

ynC1 D yn C dxn � bxnx0nyn (9)

x0nC1 D f .x0n; xn/ (10)



Communicating Brains 419

The evolution by “copying-and -identifying” process.
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Fig. 2 The evolution by
copying-and-identifying
process (See text)

where x is a system’s variable, x’ a mirror image of the system, x, y a coupling
strength acting for the process of identification of x’ with x, c a decay constant, a an
external supply, and n a discrete time, namely a step for evolution.

In the model, a mimicking process is supposed to be divided into two processes:
a copying and an identifying process, thereby a dynamical model for the mimicking
process is developed. We performed the dynamical systems analyses and also
conducted its computer simulations. The model shows various interesting phenom-
ena, in particular, a single dynamical orbit in a mimicking process starts to trace
various types of bifurcations including period-doubling bifurcations, saddle-node
bifurcations, and even Hopf bifurcations. After a while, such an orbit converges to a
moving fixed point and eventually to the fixed point, which is an actual and unique
fixed point of the system. This final state implies the complete success of mimicking
behaviors. In such a way, the present study is successful to represent the potential
dynamics of mirror-neuron systems, though the present model does not explicitly
contain the typical equations of neurons.

In this identification process, the system x commits or entrusts itself to understand
the other’s behaviors by making its mirror-image, x’. The feedback process is
assumed to be nonlinear via a new variable representing a feedback gain, y. One can
choose a function f, which changes the details of the bifurcations to a final state,
but does not change the final state. After itinerant behaviors appear via various
bifurcations, the system goes to a fixed point by “entrainment”, that is, x

0

n D xn
holds. However, the value of this fixed point moves because identification process
still proceeds. Finally, self-identification is established by the appearance of the true
fixed point x’D x.

4 Discussions

Deliberative decision-making has been investigated within the framework of rats’
T-maze tasks (see, for example, [16]). This has not been observed in a final stage of
learning, but observed in the process. Thus, it is plausible to think that deliberation
is necessary for understanding an environment. In this respect, deliberation occurs
also in communication as an itinerant process that is necessary for understanding
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the meaning of others’ behaviors. Thus deliberation in communication can be
considered to be a hermeneutic process [17, 18] of determining the hypotheses on
the meaning of others’ behaviors. The relationship between deliberative decision-
making and the dynamic process in communication will be studied elsewhere.
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The Organization of Neuronal Discharge
on Timescales of Milliseconds and Seconds
Is Related to the Spatial Response Properties
of Hippocampal Neurons

Eduard Kelemen and André A. Fenton

Abstract According to a widely held view, the neuronal discharge underlying
cognition is structured into temporally and functionally organized cell assemblies.
What timescale(s) this dynamic organization operates on, is an open question. We
analyze the relationship between the timing of the discharge amongst hippocampus
neurons and the information they process that is manifest in the spatial response
properties of these cells. On timescales of tens of milliseconds and seconds, we
observed that the firing of cells with similar response properties is positively
correlated, while the firing of cells with distinct response properties is uncorrelated
or negatively correlated. Our results show that neuronal discharge is organized on a
range of timescales, which may serve distinct functions.

Keywords Place cell • Hippocampus • Neural coordination • Cell assembly •
Functional grouping

Place cells are hippocampal neurons in rodents that have spatially tuned activity.
The firing rate of a place cell increases when an animal is in a particular location
of an environment – called the cell’s firing field, while in other locations of the
environment the place cell does not discharge action potentials. Accumulating
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evidence shows that hippocampal place cells process information as organized,
coordinated coalitions of cells called cell assemblies [1–3]. There has been a focus
on the temporal organization of cell assemblies at the timescale of �40 Hz gamma
oscillations, but because the mechanisms of gamma generation are believed to be
localized [4], it is doubtful that gamma oscillations can organize neural discharge
beyond small regions of tissue [5]. While it remains unknown how cell assemblies
organize in time, it is even unclear on what timescales cell assemblies operate.
Here we report our novel observations on the temporal organization of hippocampal
activity on different timescales.

Theories about information processing in the nervous system suggest that action
potentials emitted by neurons that participate in the same representation of infor-
mation should be coordinated in time [6, 7]. In the hippocampus, the field potential
oscillations with frequency of 6–12 Hz (theta rhythm) are implicated in organizing
neuronal discharge [8–11], and facilitating activity-dependent synaptic plasticity
[12–15]. We studied whether different spatial representations are organized on the
physiologically relevant timescale of the hippocampal theta rhythm.

1 Temporal Organization of Activity on the Timescale
of the Theta Rhythm

We characterized the temporal organization of hippocampal firing in an active place
avoidance task, in which a rat has to retrieve food pellets from the surface of a
circular arena, while it is avoiding a 45º shock zone [16]. Cross-correlations of
action potentials from pairs of hippocampal pyramidal cells were computed and
often showed a tendency of one cell to discharge with a characteristic time delay
after another cell (Fig. 1a). The cross-correlation for the same cell pairs was stable
across two subsequent recording sessions during the place avoidance task (Fig. 1b).

2 Cells Firing Together on the Theta Timescale Have Similar
Response Properties

We studied whether the characteristic timing of cell pair discharge was related to
the signal that the cells presumably represent. The cell pairs were divided into two
groups based on the preferred phase of modulation in the theta timescale cross-
correlogram. One group included those cells that discharged together on the same
phase of theta and the other group included cell pairs that fired separately. The
similarity between the firing fields of each cell pair was assessed by the correlation
of the individual spatial firing rate maps. We observed, that the cell pairs that
fired close together in time had more similar firing fields (t50D 2.78, p < 0.01;
Fig. 1c). This observation is consistent with the notion that cells participating in
the same representation have a stronger tendency to fire together and cells coding
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Fig. 1 Organization of place cell firing at the timescale of theta oscillations during a place
avoidance task. (a) Examples of cross-correlations for pairs of cells are shown together with spike
maps of the two cells. Spike maps show the trajectory of the rat in gray and locations of place
cell discharge in black. Strong modulation by the theta rhythm is seen for most cell pairs. Some
cells discharge close in time, as is indicated by a cross-correlation peak close to zero, other cells
discharge with a characteristic time delay. (b) The cross-correlation was typical for a cell pair and
was preserved between experimental sessions (r2 D 0.53, p< 0.001). (c) Cells firing closer together
in time have more similar firing fields. If the cross-correlation had strong theta modulation and the
preferred phase was between 0ı and 45ı the cells were classified as firing together. If the preferred
phase was between 135ı and 180ı the cells were classified as firing separately. The similarity of
firing fields was assessed by correlation of the pair of firing rate maps. The tendency of cells firing
together to have more similar firing fields was significant (t50 D 2.78, p < 0.01)

for different mental objects should have firing separated in time [2, 17]. Notice,
that in spite of this overall tendency of cells with more overlapping fields to fire
together on the theta timescale, cell pairs with similar spatial overlap could have
quite different cross-correlation plots (see top two cell pairs in the right column of
Fig. 1a). Examples like this strongly suggest that the similarity between firing fields
is not the only determinant of temporal coordination of cell activity.

Our previous study revealed that the temporal separation of activity on the
timescale of tens of milliseconds could help organize the processing of two different
categories of information [18]. In a two-frame place avoidance task the rats had
to process two sets of spatial landmarks simultaneously [16]. They were put on a
slowly rotating arena (1 rpm) and had to avoid two shock-zones. One shock zone
was stationary, defined relative to room landmarks, and the other was rotating,
defined relative to arena landmarks. Hippocampal place cells signal the rat’s
location by discharging in firing fields. During the rotation, about half the cells
preferentially signaled the rat’s location in the stationary room frame, the other half
preferentially signaled the rat’s location in the rotating arena frame. Thus for each
cell a room or arena spatial frame preference could be defined.

The cross-correlations were analyzed separately for concordant and discordant
cell pairs. Concordant cell pairs were pairs of cells that had the same spatial
frame preference. Cells with a different spatial frame preference were designated
discordant cell pairs. The cells with concordant responses were likely to fire close
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together in time. This tendency was not observed in cells with discordant responses.
These results indicate that groups of cells with the same frame preference have
discharge that is temporally coordinated on the theta timescale [18].

3 Coordination of Discharge at the Timescale of Seconds

Mental phenomena that include selective attention, motor planning, and multistable
perception of ambiguous images occur at the timescale of seconds [19, 20]. The
modulation of hippocampal activity at this timescale has been documented in prior
studies [18, 21–23]. During place avoidance on a stationary arena we analyzed cell
pairs with overlapping firing fields. Five-second intervals of data were analyzed,
which corresponds approximately to the time it takes a rat to traverse the firing field
of a place cell [24]. Intervals were only studied if both cells were expected to fire at
least one spike per second during the interval, which is above the average firing rate
of hippocampal complex-spike cells.

The first step of our analysis is trivial but preparatory. We observed that the
correlation between the firing rates of cells was positively related to the similarity
between their firing rate maps (rD 0.56, p < 0.001, Fig. 2A1). Cells with highly

Fig. 2 Characterizing temporal coordination of cell firing on the timescale of seconds. (a)
Relationship between firing rate of cells during five-second intervals and the firing field similarity.
(A1) The more similar firing fields are, the stronger the correlation in the firing of the two cells. (A2)
The same analysis as in A1 was performed using simulated data that preserved the firing rate maps
of place cells, but removed any extra-positional temporal organization of firing. (b) Covariance in
firing deviations of three example cell pairs. Cells 1 and 2 had strong positive covariance in firing
deviations, when one cell fired more than expected the other cell also had a tendency to fire more
than expected. Cells 3 and 4 had lower covariance in their firing deviations, suggesting they fired
independently and the covariance in the firing deviations of cells 5 and 6 was strongly negative,
when cell 5 fired more than expected, cell 6 fired less than expected. (c) The relationship between
covariance of firing deviations and firing field similarity. (C1) The more similar firing fields were,
the higher the covariance of the firing deviations. (C2) The same analysis as in (C1) was performed
using simulated data in which the average firing rates and firing field locations of the cells were
preserved and any extra-positional temporal organization in their discharge was removed. The
covariance in the firing deviations of cells with overlapping fields was no longer present
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overlapping firing fields will fire together more often than cells with less overlap.
A similar (even stronger) tendency was observed when the same analysis was
performed with simulated data (rD 0.76, p < 0.001). In the simulation the firing
of a cell during each time interval was determined by the inhomogeneous Poisson
process set by the rate at the current location in the firing rate map [24]. Thus the
simulation removed any fine temporal organization of discharge that was in the
recorded data while preserving the firing rate maps that were observed (Fig. 2A2).

4 Covariance of Firing Deviations in Place cell Firing

Fenton and Muller [24] demonstrated an excess variance in cell discharge during
different visits of a rat to the cell’s firing field. During one visit to the firing field
a cell can discharge many action potentials; while during a different visit with a
very similar trajectory the cell may not fire at all. The statistical structure of this
overdispersion in place cell discharge was studied by Olypher et al. [18]. We asked
whether the excess variance in place cell firing between different visits to a firing
field is related for pairs of cells, whether the activity of cells co-varies on the
timescale of the seconds it takes the rat to pass through a firing field.

We standardized the firing rates at each time interval by the average firing
rate that was characteristic for the rat’s locations during that time interval. This
standardized firing signifies how much more or less a cell fired during each time
interval compared to its expected firing based on the average firing rate at a given
location. We asked whether the deviation of firing from the expectation correlates
for a pair of cells. If one cell fired more than expected, did the other cell also
fire more than expected; and vice versa? Figure 2b shows examples of three pairs
of cells with overlapping firing fields. The scatter plots of standardized firing for
pairs of cells are shown on the bottom. Each dot on these scatter plots represents
a single five-second interval when both cells were expected to discharge at a rate
higher than 1 spike/s. We use the term ‘covariance of firing deviations’ (abbreviated
as ‘covariance’ below) to describe the correlation coefficient that characterizes the
tendency for the variability of location-specific discharge to co-vary between a pair
of cells.

We studied whether the covariance of firing deviations is related to the similarity
between representations coded for by the two cells. We observed that the covariance
in the firing deviations of neurons is positively related to the similarity between their
firing fields (rD 0.48, p< 0.001, Fig. 2C1). The relationship between the covariance
of firing deviations and firing field similarity was not present in the simulated data
(rD 0.05, pD 0.61, Fig. 2C2) that preserved the location-specific firing rate maps
but removed extra-positional temporal organization. These analyses indicate that the
relationship between the covariance in firing deviations and firing field similarity is a
result of the temporal organization of cell discharge that cannot be directly predicted
from the location-specific firing rate maps alone. It supports the notion that place cell
ensemble firing is organized in time on the timescale of seconds [23].
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Cells with similar average spatial responses tend to fire together, this was
observed on the timescale of tens of millisecond and seconds. We studied the
relationship between the correlations of cell pair discharge on these two timescales.
The time of the cross-correlation peak was related to the covariance of the cell pair’s
firing deviations (rD�0.51); the better the firing of a pair of cells is coordinated on
the theta timescale the better the firing is coordinated on the timescale of seconds.
This relationship is particularly interesting because by itself, the organization of
activity on one timescale cannot explain the organization on the other timescale. The
theta–scale organization of firing must be lost when activity is averaged over several
seconds; and the organization observed in five-second intervals should provide no
prediction about the organization on the timescale of tens of milliseconds. Dragoi
and Buzsáki [2] made a somewhat similar observation in rats running on a linear
track.

Our analyses provide evidence that the discharge amongst functionally related
groups of hippocampal cells is organized in time. We showed that the activity of
cells is organized on different timescales and that the temporal coordination of cell
discharge is related to the similarity between the response properties of the cells.
It remains an open question whether the different timescales of organization of
neuronal assemblies serve the same or different functional roles.

Acknowledgments Supported by National Science Foundation grant IOS-0725001; and NIH
grant R01MH084038-01.
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An Animal Model of Decision Making: Vicarious
Trial-and-Error in Tasks Requiring Memory
for Visual Associations or Spatial Locations

Paul A. Dudchenko, David Bett, Elizabeth Allison, Karola Kaefer,
and Emma R. Wood

Abstract To assess the neural substrates of deliberative decision-making, it is
useful to have a tractable animal model of this cognitive process. In this chapter we
describe one potential marker of deliberative decision making in rodents: the back-
and-forth head movements of the animal as it makes a decision, also referred to as
vicarious trial-and-errors (VTEs). We quantify these in a spatial reversal task and a
visual discrimination task, and observe that they exhibit different patterns in these
tasks. This result indicates that there may be at least two types of VTEs: exploratory
and deliberative.

Keywords Decision-making • Learning • Vicarious trial-and-error

1 Introduction

In the hippocampus, individual principal neurons often show firing that is tuned to a
specific location in the animal’s environment [1]. Recent work has revealed that the
firing of these neurons, referred to as place cells in the rodent, can also anticipate
future destinations at a critical junction on a maze [2], or at the start of the maze
[3]. In the former experiment, this anticipatory neural activity was related to a back-
and-forth movement of the rat’s head. Such activity may be a behavioural index of
deliberative decision-making. To substantiate this, and as a first step in assessing the
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neural substrates of decision making, we sought to identify memory tasks in which
this back-and-forth head movement could be observed.

Although the neural substrates of decision-making are of current experimental
interest, the behaviours associated with animal choice have been described in several
early studies. For example, Robert Yerkes in his 1907 work, The Dancing Mouse
[4], described a hesitant, back-and-forth movement of the mouse as it faces a choice
between two doorways. One doorway led to a chamber in which the mouse would
receive a shock, while the other led to a passageway that would take the animal to a
nest site with food. Experiencing the shock caused the mouse

: : : to hesitate before the entrances to the boxes, to run from one to the other, poking its head
into each and peering about cautiously, touching the cardboards at the entrances, apparently
smelling of them, and in every way attempting to determine which box could be entered
safely. I have at times seen a mouse run from one entrance to the other twenty times before
making its choice; now and then it would start to enter one and, when halfway in, draw back
as if it had been shocked. (pg. 130)

In rats, back-and-forth movement of the head at a decision point was described
by Meunzinger [5], Tolman [6], and others (for reviews see [7–10]). Meunzinger
termed this behaviour “vicarious trial-and-error”. Since the 1950s, vicarious trial-
and-error (VTE) has received only sporadic attention (e.g., [11–14]). The purpose
of the current experiments was to see whether VTE behaviour occurred robustly in a
visual discrimination task and in a spatial memory task, and to relate this behaviour
to learning.

2 Experiment 1: Visual Task VTEs

2.1 Method

Eight Lister Hooded rats were trained on a black-white visual discrimination task, as
illustrated in Fig. 1. The apparatus comprised of three black boxes (each 52 cm high,
49 cm wide). One box served as the start box, and it contained two doorways, one
covered with a white curtain and one with a black curtain, each leading to another

white
curtain

black curtain

food

start
box

Fig. 1 Schematic of the
visual discrimination task
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Fig. 2 Percent correct (left axis) and VTEs (right axis) during acquisition of the visual discrimi-
nation task

box. For half of the rats, a food bowl was located in the box behind the white curtain;
for the other half, the food bowl was found in the box behind the black curtain. For
each session, the positions of the black curtained box and the white curtained box
were switched.

Rats received six trials per session. After being placed in the start box, a choice
was recorded if the animal moved its head through a curtain. If the animal entered
the box containing the food (Weetos chocolate cereal loops), it was allowed to eat
for 10 s. If the rat chose the empty box, it was permitted to explore the box for 10 s,
and was then replaced in the holding bucket.

In addition to the choices made by the animals, we recorded their behaviour prior
to making a choice. Rats often oriented towards one curtain (A) and then turned to
face the other curtain (B). In agreement with Goss and Wischner [9], we counted
these A-B or B-A shifts as VTEs.

2.2 Results and Discussion

Over 20 sessions of training, the rats learned to select the curtained doorway that led
to the food (Fig. 2). In the first 12 sessions, VTE behaviour increased. Thereafter,
even though performance continued to improve, the number of VTEs decreased.

These observations were borne out statistically. Across sessions, there was a
significant increase in the percentage of responses to the correct curtain (linear trend:
F(1,7)D 9.9, p < 0.016). For VTEs, the increase followed by a decrease across
sessions approached, but did not reach, significance (F(19,114)D 1.62, pD .063).
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These results confirm the patterns of findings that Tolman [6] obtained in work
with a jumping stand. In both the current results and Tolman’s study, VTEs appeared
to increase during learning, but as the discrimination was acquired, this behaviour
became less prevalent. It is possible that, as Tolman [10] suggested, VTE behaviour
aids learning. However, the current findings only show the concomitant changes
over sessions; it remains possible that learning and VTE behaviour are independent.

3 Experiment 2: Spatial Task VTEs

Our ultimate interest is in the neural substrates of decision-making, and thus we
wished to assess VTE behaviour in a task known to require the hippocampus. To
that end, we chose a spatial reversal task which requires the hippocampus [15], and
in which hippocampal place cells show anticipatory firing [3].

Early work by Jackson [16] suggested that VTEs served different roles in
different tasks. He argued that in a visual discrimination task, like the one described
in Experiment 1, VTEs contribute to learning because both VTEs and correct
responding increase together. However, in a spatial maze task, they reflect the rat’s
uncertainty, as VTEs decrease while performance increases.

Thus, the aim of the current experiment was to see whether robust VTEs are
observed in a spatial task, and, if so, to see whether they differ from those seen in
the previous experiment.

3.1 Method

Five Lister hooded rats, different from those used in Experiment 1, were used in
this experiment. These rats were participants in a larger, ongoing experiment (to
be reported elsewhere), and thus received sham lesions. They were first trained to
find the single reward location on an elevated double-Y maze (Fig. 3). The reward,
chocolate cereal loops, was located in a bowl in one of the four terminal goal boxes.
The other three goal boxes likewise contained a bowl, but no reward.

In this initial version of the task, alleyways connected the terminal goal boxes
to the nearest choice point. The rat’s task was to move from the start box to one

food

start box

14 cm
gaps

Fig. 3 Schematic of the
spatial memory task. To
obtain food, rats had to move
from the start box to one of
the two choice points, and
then jump to one of the goal
boxes



Vicarious Trial and Error 433

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
session

pe
rc

en
t c

or
re

ct

0.0

0.5

1.0

1.5

num
ber of V

TE
s (average/trial)

VTEs

% correct

Fig. 4 Percent correct (left axis) and VTEs (right axis) during the spatial memory task

of the goal boxes. If it selected the correct box it was permitted to consume the
loops for � 10 s before being removed by the experimenter. If the animal chose an
unrewarded goal box, it was confined to the box with a wooden barrier for �10 s
before being removed by the experimenter.

Once the reward was found, the rat received nine more trials with food in the
same goal box. The food was then moved to a different goal box, and the process
was repeated. The location of the reward was changed in this way up to two times
in a daily session, and rats were trained until they chose the reinforced box on 80%
of the trials following the discovery of the reward on two consecutive days.

After this initial training, rats received sham lesions. After a recovery period, the
rats were returned to the maze. To encourage VTE behaviour, the alleyways between
the last decision point and the goal boxes were removed. Thus the rat had to make a
short jump over a 14 cm gap to get to the goal boxes. The data we present are from
the first ten sessions with these gaps.

3.2 Results

On the spatial task, rats selected the correct location readily, even from the first
session with the gaps (Fig. 4). Their performance was at or around 70% correct
across sessions, and this high level was likely due to their initial training on the task
rule prior to the introduction of the gaps. As evident in Fig. 4, performance did not
differ across sessions (F(9,36)D 1.2, pD .33).

VTE behaviour, in contrast, showed a significant decrease over sessions
(F(9,36)D 2.18, p < 0.05). We also looked at the average number of VTEs before
the animal found the rewarded goal box, and the average number of VTEs on
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trials after the rat found the goal box. As is evident in Fig. 5, the rats showed a
significantly higher number of VTEs on the trials prior to locating the rewarded
goal box compared to the trials after they’d found the food (which, for the most
part, consisted of returns to the correct goal box) (F(1,4)D 15.17, p < 0.02).

4 General Discussion

In this chapter we describe two situations in which vicarious trial-and-error
behaviour, the back and forth movement of rats at a decision point, is observed.
On a black-white visual discrimination, VTE behavior appeared to increase as the
animal acquired the discrimination, and then decreased. On the spatial memory task,
VTEing decreased across sessions. In this task, more VTEs were observed on trials
before the animal found the rewarded goal box, compared to the trials after it had
found the food.

Previous work has suggested that VTEs in a visual discrimination are associ-
ated with learning, while VTEs in a spatial task reflect the animal’s uncertainty
at a choice point [16, 17]. Our results do not clearly endorse either of these
interpretations. We found that VTEs decreased when the accuracy of performance
continued to increase (in the later sessions of the visual discrimination), but they
also decreased when performance was stable (in the spatial switching task). This
raises the possibility that VTEs are not directly related to performance, but instead
occur when aspects of the environment, like the black and white curtains, or the
gaps in the Y-maze, are unfamiliar.

In closing, we speculate animals may exhibit VTE behaviour for different reasons
at different points in the acquisition and performance of a decision task. During
acquisition, animals may exhibit exploratory VTEs, which may, nonetheless, be
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centred at decision points. These decrease as the environment and its contingencies
become familiar. Later in training, when the environment is familiar but the animal is
faced with a difficult discrimination or a change in the reinforcement contingencies,
it may exhibit deliberative VTEs, a reflection of the anticipation of alternatives.
This distinction may be supported by the greater amount of VTEing observed in
the spatial task on trials before the rat finds the food, compared to trials after it has
found the food. After identifying this location, deliberation is no longer necessary,
and the rat simply returns to the correct location repeatedly until the reward location
is changed.
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Correlated Brain Activations During Formation
of Memory for Future Plans

Jiro Okuda, Maki Suzuki, and Toshikatsu Fujii

Abstract We used functional magnetic resonance imaging (fMRI) and performed
trial-by-trial activity correlation analyses to examine behavioral significance of
regional correlations of brain activities during formation of memory for future
action plans. Activities in several brain regions during formation of future action
plans could differentiate performances of remembering the plans in a later retrieval
phase. Among these, activity in the ventromedial prefrontal area showed significant
correlations with that in the medial temporal and sensory areas according to
later performances of remembering the plans, suggesting functional significance
of activity correlations across specific brain regions during formation of robust
memory for future plans.

Keywords Prospective memory • Memory formation • Regional correlation •
Ventromedial prefrontal cortex • Medial temporal lobe

1 Introduction

Forming, maintaining, and remembering future action plans (termed collectively
as “prospective memory” [1–3]) are fundamental cognitive activities supporting
our normal daily life. Accumulating studies suggest that processes involved in this
kind of memory for future plans is supported by the functioning of multiple brain
areas including medial temporal memory systems and frontal executive systems.
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For example, functional neuroimaging studies using positron emission tomogra-
phy (PET) and functional magnetic resonance imaging (fMRI) have consistently
identified activations in lateral and medial prefrontal cortices covering Brodmann’s
area (BA) 10 [4–8], as well as that in medial temporal lobe (MTL) structures [4],
while human subjects were required to maintain and remember to perform specific
action plans during any other ongoing tasks unrelated to the plans. A more recent
study investigating formation of prospective memory has indicated that magnitude
of activations in the frontal and MTL regions during formation of memory for future
plans potentially predict later performances of remembering the plans [9]. While
these studies are useful in identifying brain systems participating in prospective
memory processes, however, a question remains about the way how these multiple
brain systems interact and communicate with each other to form, store, and later
remember the future plan.

A growing body of recent studies on brain’s functional connectivity has grad-
ually disclosed that context-dependent correlations across distinct brain areas are
related to effective functioning of our cognitive systems [10]. Taking advantage
of recent development of sophisticated signal decomposition methods applicable
to fMRI data, these studies have demonstrated, for instance, that changes in
activity correlations among regions within the frontal executive systems reflect
proactive preparation for subsequent task performances [10], or that trial-by-trial
correlations between the frontal areas and posterior sensory areas were related
to successful detection and resolution of sensori-motor conflicts during a Stroop
interference task [11]. Despite such increasing attempts in the domain of cognitive
control, however, no studies have yet examined functional significance of corre-
lation of activities across multiple brain regions supporting prospective memory
processes.

In the present study, we explored cross-areal correlations of brain activities
during formation of future action plans. Specifically, we examined whether activity
correlations across specific brain regions during the plan formation were related to
later performances of remembering the plans.

2 Methods

To examine a series of processes involved in memory for future plans under a
laboratory situation, we developed a behavioral task in which subjects were asked to
make specific action plans to visual stimuli (a planning phase) and to spontaneously
retrieve and perform the planned action after a delay (a retrieval phase). Twenty-five
healthy volunteers (13 males, mean age 23.0 years old) participated in the study
after giving informed consent.

During the planning phase, the subjects were presented with a picture (a natural
scene of flowers or animals, a manmade tools, building, or vehicles) for 4 s in each
trial, followed by a plan-for-action cue (a red question mark) on the picture for
4 s (Fig. 1a). The subjects held a joystick with their left hand, and were asked to
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Fig. 1 Schematic illustration of task procedures. (a) A sequence of one trial in a planning phase.
Subjects were presented with picture stimuli to which they determined and performed joystick
movements (left, right, up, or down; rightward for this example) in response to presentation of
a plan-for-action cue (a question mark). (b) In a retrieval phase, subjects continuously made
manmade or natural judgments about presented pictures. Upon occasional presentation of specific
pictures to which they had determined the action plan of joystick movement in the planning phase,
they had to spontaneously remember and carry out the planned joystick movement instead of the
manmade or natural judgment. The same joystick movement that the subjects had planned and
performed in the planning phase was classified as “correct”. A different movement from that of
the planning phase was classified as “incorrect”. No joystick movement to the specific picture was
classified as “miss”

determine a left-hand movement (joystick control toward the right, left, up, or down)
to each picture stimulus. As soon as they decided the movement, they carried out it
so that the experimenter could record the decided direction. The subjects were also
told to memorize an action plan of the joystick movement to the picture so that they
could remember and carry out it if they would encounter that particular picture in
later part of the experiment. A total of 24 pictures were presented.

In the retrieval phase after approximately 20-min delay, the subjects were
presented with a series of pictures about which they made manmade or natural
judgments by a button press with their right hand (Fig. 1b). In addition, they were
also asked to spontaneously retrieve and perform planned joystick movement with
their left hand upon occasional appearance of specific pictures presented in the
planning phase. The task was subject-paced without any feedback on each response.
The specific pictures were presented approximately every 28 pictures.

We classified subjects’ actions of the joystick movement into three categories:
(1) “correct”, when the subjects carried out the same movement as they planned in
the planning phase, (2) “incorrect”, when they carried out a movement that they did
not plan, and (3) “miss”, when they did not move the joystick.

We used fMRI (1.5T Siemens Sonata) to scan subjects’ brain activity during the
planning phase. In the fMRI data analyses, we adopted a trial-by-trial event-related
hemodynamic modeling procedure [12] that allowed us to estimate separate effect
size data (a statistical measure approximating magnitude of brain activations) for
each individual event in each individual trial for each individual subject. In the first
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level analysis for each individual subject, we separately modeled fMRI activations
at picture presentation (i.e., a preparation period just before plan formation) and at
the plan-for-action cue (plan formation period) on a trial-by-trial basis.

In the second level, random effect analyses treating each subject data from the
first level analyses as a random sample, we constructed a general linear model
(GLM) that consisted of contrast images corresponding to average of each later
correctly remembered, incorrectly remembered, and missed plan, separately for
picture presentation and plan formation period. In this GLM, we examined brain
regions whose activities could differentiate later correct, incorrect, and missed
retrieval of the plans by using appropriate linear contrasts across the trial categories
(e.g., later correctly remembered plans minus later missed ones). Significance level
was set P<0.001, uncorrected for multiple comparison.

After identifying the regions differentiating the three trial categories according to
the later retrieval performances, we calculated voxel-by-voxel correlation matrices
(Pearson’s correlation coefficient, r) of the effect sizes (drawn from each event-
related, single-trial contrast image in the first level analyses) across these regions,
separately for each category of later performances of remembering the plans. By
using Fisher’s r-to-z transformation, we compared correlation coefficients across the
three categories, and examined the voxel pairs that showed differential correlations
between the categories (e.g., significantly higher correlations for later correctly
remembered plans than for missed ones, P<0.05).

3 Results

Across subjects, mean percentage of the correct, incorrect, and miss responses to
specific pictures at the retrieval phase were 43.9%, 15.4%, and 40.7%, respectively.

A number of brain regions were identified whose activities during the planning
phase differed across three categories of later performances of remembering the
plans. For the plan formation period (at the time of the plan-for-action cue),
significantly greater activation for later correctly remembered plans (hereafter
described as “later-correct”) than for later missed ones (“later-miss”) was found
in the right parahippocampal gyrus (peak MNI coordinates and Z-score; xD 33,
yD�30, zD�24, ZD 3.53, Fig. 2a). This region also showed greater activation
for later incorrectly remembered plans (“later-incorrect”) than for the “later-miss”
(xD 33, yD�33, zD�24, ZD 3.20). Extensive areas covering bilateral visual
cortices showed greater activations for the “later-incorrect” than for the “later-
correct” and “later-miss”. On the other hand, activity in the ventromedial prefrontal
(subcallosal) area (xD 3, yD 15, zD�12, ZD 3.29, Fig. 2b) was significantly
decreased for the “later -incorrect” relative to the “later-miss”.

For the picture presentation period just before the plan formation, the ventro-
medial prefrontal area revealed exactly opposite activation pattern to that for the
plan formation period; greater activation for the “later-incorrect” relative to the
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Fig. 2 Brain areas whose activities during the plan formation period differentiated performances
of later remembering of the plans. (a) Right parahippocampal gyrus showing greater activations for
the later correctly remembered plans than for the later missed ones. (b) Ventromedial prefrontal
area showing decreased activity for the later incorrectly remembered plans relative to the later
missed ones

“later-miss” (xD 3, yD 12, zD�12, ZD 4.52) and “later-correct” (xD 3, yD 15,
zD�12, ZD 3.96). In a similar manner, bilateral visual cortices showed a reversed
pattern of activation to that for plan formation period; decreased activity for the
“later -incorrect” relative to the “later-miss” and “later-correct”.

Further correlation analyses revealed that activity correlation between the ven-
tromedial prefrontal and the visual areas was significantly negative for the “later-
incorrect” plans as compared to the “later-correct” ones, during both the picture
presentation and plan formation periods. We also found a significant negative cor-
relation specific to the “later-incorrect” plans between the ventromedial prefrontal
and MTL activities only during the picture presentation period.

4 Discussions

The present results revealed that activation levels in multiple brain regions including
ventromedial prefrontal, medial temporal, and sensory areas during formation of
memory for future action plans could differentiate later performances of remember-
ing the plans. In addition to this finding, the later performances of remembering
the plans were related to characteristic regional correlation patterns during the
task, suggesting possible roles of activity correlations, as well as the activation
levels themselves, in signifying successful formation of the future action plans.
In particular, activity correlation between the ventromedial prefrontal area and
other areas (the MTL and visual areas) showed differential patterns during the
course of the planning task. Therefore, multiple networks that commonly involve
the ventromedial prefrontal area may play specific roles in multiple processes
underlying formation of robust memories of future action plans.



442 J. Okuda et al.

Acknowledgments This study was supported by Grant-in-Aid for Scientific Research on Inno-
vative Areas (The study on the neural dynamics for understanding communication in terms of
complex hetero systems), MEXT, Japan.

References

1. Meacham, J.A., Singer, J.: Incentive effects in prospective remembering. J. Psychol. 97 (1977)
191–197

2. Dalla Barba, G.: Prospective memory: a ‘new’ memory system? In F. Boller, J. Grafman (Eds.),
Handbook of Neuropsychology, Amsterdam: Elsevier Science (1989) pp. 239–251

3. Brandimonte, M., Einstein, G.O., McDaniel, M.A.: Prospective Memory: Theory and Appli-
cations. Mahaw, New Jersey: Lawrence Erlbaum Associates (1996)

4. Okuda, J., Fujii, T., Yamadori, A., Kawashima, R., Tsukiura, T., Fukatsu, R., et al.: Participation
of the prefrontal cortices in prospective memory: evidence from a PET study in humans.
Neurosci. Letters 253 (1998) 127–130

5. Burgess, P.W., Quayle, A., Frith, C.D.: Brain regions involved in prospective memory as
determined by positron emission tomography. Neuropsychologia 39 (2001) 545–555

6. Burgess, P.W., Scott, S.K., Frith, C.D.: The role of the rostral frontal cortex (area 10)
in prospective memory: a lateral versus medial dissociation. Neuropsychologia 41 (2003)
906–918

7. Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Yamadori, A., Frith, C.D., Burgess, P.W.:
Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time-
and event-based prospective memory. Int. J. Psychophysiol. 64 (2007) 233–246

8. Okuda, J., Gilbert, S.J., Burgess, P.W., Frith, C.D., Simons, J.S.: Looking to the future: auto-
matic regulation of attention between current performance and future plans. Neuropsychologia
49 (2011) 2258–2271

9. Poppenk, J., Moscovitch, M., McIntosh, A.R., Ozcelik, E., Craik, F.I.M.: Encoding the future:
successful processing of intentions engages predictive brain networks. NeuroImage 49 (2010)
905–913.

10. Sakai, K., Passingham, R.E.: Prefrontal interactions reflect future task operations. Nat.
Neurosci. 6 (2003) 75–81

11. Morishima, Y., Okuda, J., Sakai, K.: Reactive mechanism of cognitive control system. Cer.
Cortex 20 (2010) 2675–2683

12. Rissman, J., Gazzaley, A., D’Esposito, M.: Measuring functional connectivity during distinct
stages of a cognitive task. NeuroImage 23 (2004) 752–763



Cognitive Modeling of Human-Robot
Interaction Estimating Other’s Internal State

Takashi Omori, Ayami Yokoyama, Kasumi Abe, and Takayuki Nagai

Abstract Various types of action decision strategy are used to realize a smooth
interaction with others. We can estimate intention of others and determine own
action accordingly, or can induce intention and actions of others’ as we intend. In
this study, a computational model of the action decision has been constructed based
on an intention estimation of others and is evaluated its effectiveness by ‘a robot-
child play’ experiment. For the model construction, the human adult behavior in the
game play with child has been analyzed.. As a result, a necessity of “Meta-strategy”
such as a choice of action decision strategy is suggested.

Keywords Mental state • Estimation • Model • Action decision • Robot-child
play

1 Introduction

Communication is a result of interaction between one’s self and others, and includes
a dynamic brain processes which includes an observation of other’s behavior as well
as an estimation of other’s intention from the observation result [1]. The analysis and
modeling of the process is important for a computational understanding of the brain
dynamics underlining communicative interaction.

In our previous study, a computational model of collaborative action decision
process between two subjective agents had been constructed. In the model, we
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assumed different strategies of Level.0, 1, 2 and Level.0* for the depth of intention
estimation, found necessity of a meta-strategy that manages a strategy change to
adapt other’s strategy, and established a method of human behavior analysis based
on the model[2]. However, it is not yet clear on how the human strategies appear in
real scenes and what information become to be the key to cause the change of the
strategies. In this study, we aim a computational modeling of more realistic human
interaction scene through a play experiment between a child and an adult.

2 Model of Action Decision Based on the Estimation
of Other’s Intention

2.1 Computational Principle of Intention Estimation

During the play with fickle children, we observe their behavior and try various inter-
action methods or plays to keep their enjoying state. In the process of activity above,
we estimate internal state of children [3] and predict effects of own action repertories
on them, then choose an action, such as praising, talking or proposing a new game, to
keep their interest. It is obvious that a model of child is necessary in order to predict
the effect of our action. But not limited to the model of child, there are plenty of
factors that affect performance of the interaction. The clarification of those factors
is a key for understanding human communication. But in real interaction scene,
the interaction between adults is too complex. So in this study, we focus on a play
between a child and an adult as we expect the process to be much simpler.

In order to understand the brain dynamics of communication in wider situations,
the computational modeling is a method. For the basic model of human-human
interaction, we assume an existence of the model of other in our mind. Current
question lies on how the model is made of use in the realistic interactive scenes?

Figure 1 shows the basic assumption of our study. We assume that every human
behavior can be described by a triad of a state of the moment s, an action a of the
moment and an internal state G, the intention or goal, of the person. When a relation
of the three parameters is expressed by a combinative probability P(s, a, G), we are

Fig. 1 Human behavior can
be expressed by a triad of
State, Action and Intention
P(s, a, G)
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able to estimate one of the parameters from other two. Thus, we can estimate other’s
intention Go when we observe a state so and an action ao of the person. This is the
computational principle of the intention estimation.

2.2 Estimation Level of Action Decision

On the other hand, we consider an intention of self Gs at first in the active strategy,
and search for an action as that can be most easily observed by the other agent
referring to the knowledge of action decision for self. Then the action is observed
by the other agent and affects its intention decision. When the other agent makes a
collaborative decision, the decided intention should be one that is also convenient
for the self agent [4]. The intention is expected to appear through the action of the
other agent.

The passive strategy and the active strategies can be classified in more detail. For
instance, the passive strategy is the one directional action decision from the others to
the self. A typical behavior we imagine will be a strategy that estimates the intention
from the others’ behavior, and decides its’ own behavior based on it. We call such an
action, decision strategy Level 1 (Lv.1). Here, the level means a depth of intention
estimation.

The passive strategy is not limited to Lv.1. Another method is that the self agent
estimates one more step deeper, such as “How the self is estimated by the others”,
and chooses its own behavior to match with the one that the other agent expected
on self. We call such an action, decision strategy Level 2 (Lv.2). Another most basic
strategy is that the self agent doesn’t consider others’ intention and just pursuits its
own goal. We call such an action decision strategy Level 0 (Lv.0).

A feature of Lv.1 and Lv.2 strategy is adapting to the other’s decision. In contrast,
the active strategy decides its own intention at first, and expects the other agent
to take Lv.1 strategy. The intention is demonstrated to the other agent explicitly,
made sure that the other estimates self intention as desired and influences the others
intention decision to induce an others’ action that is convenient to the self. We call
this action decision strategy level zero star (Lv.0*). As Lv.0* strategy expects the
others to estimate intention of self and adjust its intention, Lv.0* agent doesn’t
observe others behavior and change the intention of self. The strategy is same as
Lv.0 strategy in a sense of not estimating others’ intention. So the level of this
strategy is considered to be zero [5].

2.3 Computation for Action Decision

The action decision process of these strategies were formulated [4]. We assumed
that human intention could be described by a simultaneous occurrence probability
distribution P(a,s,G) of an action a, a state s, and an intention G. It’s natural to
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think that we have acquired the knowledge P(a,s,G) from an accumulation of past
experiences. In this paper, we do not refer to the learning of knowledge.

When the two values among these three variables are known, we can calculate a
conditional probability distribution of one remaining variable. For instance, we can
estimate the probability distribution P(Gja,s) of other’s intention from the other’s
action and the state of the moment. The same calculation applies for the estimation
of a and s by P(ajs,G) and P(sja,G) [5].

In the Lv.1 strategy, the self agent estimates the goal of the other agent PGo

by applying the observed others situation so and action ao to the goal estimation
function (1). Once the goal of the other agent is estimated, the corresponding self
goal Gs can be decided by a task requirement, or the game rule in this paper, and the
self agent decides its own action as the Eq. (2).

PGo D argmaxG P.G jao; so/ (1)

as D argmaxa P.ajss; PGs/ (2)

The Lv.2 agent assumes that the other agent is also under estimation of its
own goal using Lv.1 strategy. Estimating the others estimation can be realized by
substituting the other’s state so and action ao by its own state ss and action as in its
own goal estimation function (1) as the Eq. (3). And then, the self decides its own
action as according to the estimated goal PGs of self by others so that the self action
as is consistent to the others’ action ao. The calculation is expressed by the Eq. (4).

PGs D argmaxG P.G jas; ss/ (3)

as D argmaxa P.ajss; PGs/ (4)

On the other hand, the strategy of Lv.0 is unconscious of the others intention.
The action decision process can be expressed by the Eq. (5)

as D argmaxa P.ajss;Gs/ (5)

In contrast to the passive action decision of Lv.1 and Lv.2, the self decides its
action that expresses its intention most explicitly to the other in the strategy Lv.0*.
This requirement is realized by searching an action that maximizes a difference of
the action probability between the aiming goal and the other goals. The calculation
is expressed by the Eq. (6).

as D argmaxafargmin PG<>Gs.P.Gsjss; a/ � P. PG jss; a//g (6)

Formulation of the decision making process based on the intention estimation is
expected to be effective for an understanding of human behavior in social interaction
scenes. In the next section, the action decision strategy of human in the scene of play
between child and adult is evaluated.
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3 Human Model Construction from an Adult-Child Play
Observation

An nursery nurse more than 10 years experience was instructed to play with a child
of first sight for 30 min (Fig. 2). Six years old children, one boy and one girl, played
with her. We recorded their play by a video camera, and analyzed her action strategy
for keeping the child’s interest using our model. At first, we assumed the child taking
Lv.0 strategy and the nurse taking Lv.1 strategy. In the play process, we focused on
a dynamics of child’s mental state toward the plays, a variety of nurse’s playing and
interacting action choices, their timing, and change of the child’s mental state by
her actions.

At the beginning of the experiment, the child was strained by meeting a new
person in a new environment. After a few minutes of interactions with the nurse, the
child became relaxed and then began to focus on the games that the nurse worked
on to play together. But after a while, the child became bored of the game, and the
nurse tried to keep the attention of the child as long as possible. In order to do so,
the nurse tried various interactions to keep the attention level of the child high.

From the verbal report of the nurse while watching the video record after the
experiment, we confirmed that the nurse was conscious of having the mental model
of children. She intentionally classified the character of the child, and choose her
action by consulting her mental model of the child. In this process, she estimated
an internal state of the child from its behavior and facial expression. She applied
the estimation result and other observations to the child model, and chose the most
effective action for keeping the interest of the child.

From this result, we figured out the state flow of child’s internal state and
corresponding possible internal system model of the nurse. Figure 3 shows the
structure and signal flow of the process we estimated. This is a case that the nurse

Fig. 2 A nursery nurse
played with a child to keep
interest of the child longer
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Fig. 3 Under the child’s state observation, the nurse selected a child model and sought for a proper
action of the moment by predicting its effect to the child’s state

took Lv.1 strategy assuming the child taking Lv.0. But we observed the child taking
Lv.1 action to wait and observe the nurse’s action a couple of times, and the nurse
followed it by Lv.2 or Lv.0* strategy.

4 Playmate Robot Model

To evaluate the model from the behavior observation, we realized a robot that can
play with a child. The robot was 135 cm height, 70 kg weight [6]. We constructed an
action decision model described by a set of features and actions observed (Fig. 4).
We adopted a state transition model in which states represent degree of child’s
internal state for a play of the moment.

In Fig. 4, the state of the child’s interest changes from the initial nervous state
to the bored one through the familiarizing and enjoying state along time. This is the
basic flow of the states. But when any proper input is given by the nurse, it causes
a change of state to keep the interest. Though the child’s internal interest state can’t
be observed directly, it generates corresponding characteristic behaviors that can
be observed from outside. So, the state can be estimated by observing the child’s
behavior.

The nursery nurse observes the child’s behavior and estimates the internal state
that represents child’s degree of interest to the play. Then, the nurse decides her
action whether to keep or move the child’s state to a desirable one by consulting her
knowledge on the child. This is a kind of inverse use of a forward model.
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Fig. 4 State model of child with input and output

Fig. 5 Implemented action decision model for the robot based on the estimated interest index of
a child

Given the model of child state transition in Fig. 4 and the strategy of nurse action
decision in Fig. 3, we reconstructed a simpler model of nurse action decision in
which each of the feature observations and actions are realizable by our robot system
(Fig. 5). In the model, we used an interest value as the internal state of the child, and
we estimated the interest value from their facial expressions while they are playing
games with our robot.

For the facial expression observation, a measurement of face direction, gaze
direction and smile index using facial image processing software (OKAO VISION,
OMRON Corp.) was taken. The degree of interest is acquired by the linear sum of
these indices. The number of state was three and the action choice probability of
the robot is designed to express the nurse behavior. As a control condition in the
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following experiment, we used uniform choice of possible actions corresponding to
a game situation. The game situation is designed by the human designer of the game
and the choice timing is designated by a human operator.

5 Robot-Child Play Experiment

A play experiment between a robot and a child using the action decision model
shown in Fig. 5 was placed. Participants were 6 years old children (three boys, three
girls) and it was the first time for the participants to meet the robot. Each of the
children confronts to the robot. Mother of the child was in the room. We asked her
to do nothing and keep quiet . After 5 min of interaction practice, the child played a
card game and scissors-paper-rock game for 25 min. Four participants played for 25
min, of which two played with the nurse model robot and the other two participants
played with the control model robot, that choose its action uniformly from a set of
possible actions in each of the game situations (Fig. 6).

To evaluate the degree of children’s interest towards the game and robot, we
asked three well experienced nursery caregivers to evaluate the interest by watching
video record of the robot-child play. We also asked the caregivers to fill out
questionnaire about the change of child’s interest before and after the play. By
analyzing the reply, we found an interest to the robot used for the play increased
through the interaction with robot.

By comparing the gaze direction of children between the nurse model condition
and the control uniform condition, we found a tendency that the children who played
with the nurse model robot looked at the face of robot longer than the control
condition when the card game or the scissors-paper-rock game had finished. The
child’s interest moves on to the next phase when the game ends and he/she looks at
the robot face asking for the next play. The child’s tendency of looking robot face
expresses a child’s stance to think the robot a target of communication The stance
suggests a robot-child relation became more alike to the relation between human.

Fig. 6 Play experiment of the robot with the children
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6 Discussion

One major conclusion from a series of researches is the necessity of the strategy
to switch and manage the action decision strategies, so called “Meta strategy”.
Communication is quite a complex behavior between two or more agents. The
reason for this complexity is that the agents decide their own action goal and action
decision strategy, and they often change them without noticing the change to the
other. So, in communication with the others, we must estimate what goal the other
is aiming for, what strategy the other choice is, and what strategy we should take in
order to take proper action that fits well to the others intention. And what makes it
even more complex is that both of the agents do the same thing simultaneously and
independently.

Thus far in our study, we couldn’t find a single action decision strategy that
can solve all the possible situations of interaction, but found a set of strategies of
Lv.1, Lv.2, Lv.0 or Lv.0* that can decide action in limited situations. Therefore,
we must choose the strategies and change it dynamically depending the situation of
the moment. In our experiment, we observed change of strategy level in both of the
nurse and child behavior. And the proposed nurse model includes change of strategy
depending on the internal state of the child. So, the strategy change is suggested to
be necessary. But we haven’t clarified a condition that causes the level change. The
process that select the level is the phenomenon of meta strategy that we should
pursuit next.

7 Conclusion

In this study, a computational model of the nursery nurse action decision strategy is
proposed and the model is evaluated by implementing on a robot that can play with a
child. The robot could keep interest of the child longer when it used the nurse model
for its action decision than the control condition. From the result, we discussed
necessity of meta-strategy model that select action decision strategy depending on
the situation.

Acknowledgments This work was supported by a Grant-in-Aid for Scientific Research on
Innovative Areas ‘The study on the neural dynamics for understanding communication in terms
of complex hetero systems’ (21120010).

References

1. Makino, T., Aihara, K.: Multi-agent reinforcement learning algorithm to handle beliefs of other
agents’ policies and embedded beliefs, In Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’06), p 789–791, 2006.



452 T. Omori et al.

2. Nagata Y., ishikawa S., Omori T., and Morikawa K.: Computational Model of Cooperative
Behavior: Adaptive Regulation of Goals and Behavior, Proceeding of the Second European
Cognitive Science Conference (EuroCogSci 07), 202–207, (2007).

3. Omori T., Yokoyama A., and Okada H.: Computational modeling of human-robot interaction
based on active intention estimation, ICONIP2007, 2007.

4. Yokoyama A., Omori T., Ishikawa S., and Okada H.: Modeling of action decision process based
on intention estimation, SCIS & ISIS2008, TH-F3-1, 2008.

5. Omori T., Yokoyama A., Nagata Y., and Ishikawa S.: Computational Modeling of Action
Decision Process including Other’s Mind - A Theory toward Social Ability -, Keynote Talk,
IEEE International Conference on Intelligent Human Computer Interaction (IHCI 2010),
Allahabad, India, Jan. 16, 2010.

6. Attamimi M., Mizutani A., Nakamura T., Sugiura K., Nagai T., Iwahashi N., Okada H., Omori
T.: Learning Novel Objects Using Out-of-Vocabulary Word Segmentation and Object Extraction
for Home Assistant Robots, pp.745–750, 2010.



Symbol Communication Systems Integrate
Implicit Information in Coordination Tasks

Takeshi Konno, Junya Morita, and Takashi Hashimoto

Abstract In order to study the formation of communication systems through
interactions, we conducted an experiment in which pairs of participants attempted
to complete a coordination task through an exchange of messages composed of a set
of abstract figures. At the beginning of the interaction, there was no shared rule for
the meanings and usage of the figures as symbols. We observed that the participants
completed the coordination task by forming communication systems. We suggested
that communication systems can be developed effectively if participants have
implicit behavioral tendencies, such as using small number of symbols, meeting
at a usual place, and smooth turn taking.

1 Introduction

Humans express and share many meanings using symbols in communication.
Meanings change according to situations, contexts, and intentions even if the
symbols used are the same [1]. Much information is also expressed implicitly by
behavioral patterns, such as gaze, gestures, and turn taking. It is important to clarify
the correlation between implicit information and explicit symbol usage in order to
understand symbolic communication systems [2]. However, it is difficult to conduct
a controlled experiment that reveals this correlation because the existing symbol
system, namely, language, is so established and complex that it becomes difficult to
observe the formation process of a linguistic communication system.

Galantucci [3] conducted an experiment to observe the formation of symbol
communication systems in which participants communicated through a medium that
restricted the use of standard communication means such as utterances and letters.
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He observed that implicit information was conveyed through routine behavior
and the temporal order of messages were built into communication systems. This
indicates an advantage of the experimental approach with the design of an artificial
communication medium [4, 5]. We can observe the effects of implicit, that is, non-
linguistic, behavior on the formation of symbol communication systems under a
restricted communication medium.

However, this previous research failed to provide adequate and clear evidence
for the effectiveness of behavior that conveys implicit information on the formation
of symbol communication systems. Therefore, we designed an experiment to
analyze implicit behavior quantitatively and to verify its effectiveness with regard
to the formation of symbol communication systems. In this experiment, a pair
of participants engaged in a coordination task through an exchange of messages
composed of a set of abstract figures, where no rule regarding their usage was
shared. We expect a significant correlation between task performance and certain
behaviors to identify whether implicit information is conveyed.

2 Task

We used a coordination game that was modified from the previous study [3]
to obtain quantitative data concerning implicit behavior such as using symbols,
forming routine behavior, and the temporal structure of message exchange. The
game environment contained two agents, each controlled by two players, and 2 � 2
intercommunicating rooms (Fig. 1). The agents could not move to diagonal rooms.
The game was composed of several repeated rounds. At the beginning of each round,
the agents were randomly located in two different rooms. Each player, who was
unaware of the location of the other, aimed to bring her/his agent to the same room.
To accomplish this, each player could send a symbolic message to the other before
moving the agent.

In Galantucci’s experiment, players exchanged handwritten distorted graphics as
messages, and they could exchange the messages as many times as needed in a
round. This design makes the frequency of symbol use and the correlation between
messages and behavior unclear. In the coordination game, we assumed that implicit

Site1 Site2

A

A

B

B

Fig. 1 Experimental environment. The player controls her/his own agent using laptop computers
located at different sites. She/he coordinates with the agents to bring them into the same room
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information would be conveyed with some behavioral tendencies, such as a bias
toward using a specific set of symbols, a bias toward moving to a specific room,
and smooth turn taking. To measure the behavioral tendencies quantitatively, we
designed the following task procedure.

First, a message was created by composing two figures, such as , using six
alternatives, , , , , , and . The meanings and usage of the figures
were not shared among participants in advance.

Second, the players exchanged each message once per round. After the exchange,
they separately decided the destination of the agents’ moves, including keeping the
agents in the rooms they originally were in. The initial location and the result of the
movement of each agent were displayed on the both players’ screens at the same
time. This design connected the messages clearly with the behavior.

Finally, the messages were displayed on the partners’ screen immediately after
they were sent. Therefore, the second sender could see the first sender’s message
and manage turn taking. Temporal differences in the message exchange indicated a
degree of smooth turn taking.

3 Method

Participants: Twenty-one dyads, consisting of graduate students and university
researchers, voluntarily participated in this study. They were aged between 22
and 37 years (mean age = 25.5, SD = 3.0).

Apparatus: The dyads engaged in a coordination game from different sites using
interconnected laptop computers1 (Fig. 1).

Procedure: The experimental procedure consisted of one trial session and three
test sessions. In the trial session, the participants attempted to develop a
communication system within a time limit of 1 h. If they moved to the same
room, the players got two points or else they lost one point, but the scores did
not drop below zero. When the score reached 50 points, the trial session was
interrupted.

The test sessions were conducted subsequently. TEST1 restricted any message
exchanges. In TEST2, messages were displayed on the partners’ screens after
both the players had sent their messages. Thus, turn taking was prevented in
this test session. TEST3 was conducted under the same condition as the trial
session. From the difference in performances between TEST1 and TEST3, we
confirmed the effectiveness of symbol use. We also confirmed the effectiveness
of turn taking from the difference between TEST2 and TEST3. Each test had
12 rounds that contained all combinations of two agents’ locations. The order of
appearances were set at random.

1 Each laptop computer exchanged information through a server, using a web browser (Firefox).
The server–client system was a web application with SQL database and PHP.
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4 Results

4.1 Performances in the Trial Session

In the trial session, 14 of 21 pairs (66.7%) scored 50 points within 1 h. A number
of rounds averaged 54.8 (SD = 25.1). An average of the time was 40 min 41 s (SD =
16 min 25 s). Figure 2 shows the concordance rate of destinations of each pair in
the last 12 rounds in the trial session (mean = 0.72, SD = 0.22). We assume that
this rate reflects the performance of the communication system each pair built. We
measured the performances of the communication systems by the concordance rate
of the moves coordinated thereafter. Almost all participants successfully completed
the coordination task because the performances surpassed the expectation value of
this game, which was 0.22 (two times match in nine rounds).

4.2 Performances in the Test Session

Figure 3 indicates the average performance scores of the three tests. We conducted
a one-way within-subject analysis of variance (ANOVA) using test type as an
independent variable to assess the features of the formed communication systems2

and found the significant main effect of the task ([F.2; 19/ D 31:66; p < :01]).
Furthermore, multiple comparisons (Tukey’s HSD test) revealed significant differ-
ences between TEST1 and other test scores (p< :01), suggesting that the players
could form communication systems with effective symbol usage. We also found a
difference between TEST2 and TEST3 (p< :05), confirming that players developed
communication systems including an effective management of turn taking.
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Fig. 2 Performances
measured by the concordance
rate of the moves in the last
12 rounds in the trial session

2 Pair 5 was excluded for failure in the test session because a player of the pair unilaterally changed
the rules from the trial session.
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Fig. 3 Averages of concordance rates of the moves in the trial and test sessions. Error bars show
the standard deviation

4.3 Correlations Between Implicit Behavior and Performances

We investigated correlations between the performances of the three tests and the
behavioral indexes of the trial session to detect implicit information related to
the formation of symbol communication systems. We analyzed three behavioral
indexes: bias towards using a specific set of symbols, BSym, bias towards moving
to a specific room, BPos, and temporal differences in message exchange, TDMes.

The former two indexes were calculated by the geometric mean of two Kullback–
Leibler divergences between two probability distributions P and E.

B D
p
DKL.P1jjE/ �DKL.P2jjE/ ;

DKL.Pi jjE/ D
NX

nD1
Pi .n/ log

Pi.n/

E
; (1)

where Pi was the probability distribution of symbol use or the destination rooms
of the player i; E was the uniform distribution, and N was the number of bins
of the probability distributions.3 If the distribution P deviated from the uniform
distribution, the index would increase.

The latter index, TDMes, was calculated as follows.

TDMes D 1

Nr

NrX

rD1
jtm1.r/ � tm2.r/j; (2)

3 For the distribution of symbol use, E D 1=6; N D 6. For the distribution of destination rooms,
E D 1=4; N D 4.
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Table 1 Correlation results
of the performances with
three behavioral indexes

Index TEST1 TEST2 TEST3
BSym .005 .479� .292
BPos .620� .441O .307
TDMes �:367 �:602� �:222
Note:Op < :1I �p < :05 indicates signif-
icant correlations

where Nr denoted the number of rounds and tm denoted the time that had elapsed
since a message was sent to the partner from the beginning of the round. This index
measured temporal differences between the first and the second transmission of
messages.

We calculated Pearson’s product-moment correlations between the three indexes
and the performances in the three tests (Table 1). Consequently, first, we found
significant correlations between the performance in TEST1 and BPos. The index
indicated that the players had a bias of routine movement behavior such as moving
upward or to the left side. If the players had this bias, they would move to the same
room without an exchange of messages. Second, we found significant correlations
between the performance in TEST2 and the three behavioral indexes. Third, these
behavioral indexes did not correlate with the performance in TEST3. We discuss
these results in the next section.

5 Discussion

The three indexes, which showed the bias towards using a specific set of symbols,
the bias towards moving to a specific room, and the temporal differences in message
exchange, indicated a significant correlation with the performance in TEST2, in
which turn taking was prevented.

This result provides the basis for three general conclusions. First, the bias
toward using a specific set of symbols indicates that both the players’ messages are
composed of small number of symbols. This bias implies that the messages would
not convey excess information, thus causing a misunderstanding. Second, the index
of the bias toward moving to a specific room indicates that both the players move
to a usual place. The behavioral tendency will probably convey implicit information
to help inference in a situation where turn taking is restricted in TEST2. Finally, the
index concerning a temporal structure of messaging negatively correlated with the
performance in TEST2. This indicates the relation between immediate responses
and the formation of a symbol communication system.

Surprisingly, we could not find any correlation between the performance in
TEST3 and the three behavioral indexes. To achieve the best performance in TEST3,
participants need to divide roles in communication. For example, in the case of pair
2, one player sent a message representing her/his current position and the other
decided on a destination where both of them could meet. We need to consider the
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type of behavior that contributes to form a communication system integrating the
role-sharing strategy. The results presented in Table 1 suggest that the development
of the role-sharing strategy in communication is independent from the three implicit
behaviors we examined.

6 Conclusions

This study explored how people initiated coordination by forming communication
systems under a condition where no rule on symbol usage was shared. The results
suggest that communication systems can develop effectively if participants have
implicit behavioral tendencies, such as using small number of symbols, meeting at
the usual place, and smooth turn taking. However, these behavioral tendencies did
not contribute to the division of roles using turn taking. In the future, we will explore
factors influencing role division in communication systems.
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Intermittent Brain Motor Control Observed
in Continuous Tracking Task

Yutaka Sakaguchi

Abstract In the present study, the author analyzed the hand movement in
one-dimensional visuo-manual tracking task. When the target moved slowly or
unpredictably, the hand velocity contained many bell-shaped components lasting
several-hundred milliseconds. When the target moved fast and sinusoidally, on
the other hand, subjects seemed to adjust the movement by a unit of cycle. These
findings suggest that our brain divides temporal axis into discrete segments and
plans/adjusts motor commands for each segment. This “intermittent motor control”
may be the brain’s fundamental strategy for achieving good motor performance
with slow sensorimotor system.

1 Introduction

Brain motor control system contains many delay/lag elements in the control loop,
such as neural transmission, neural calculation and muscle activation. A fundamen-
tal question here is how our brain performs a given motor task in a real-time fashion
with such a slow system. Computational theory gave an answer of “feed-forward
control,” that is, our brain makes a motor plan in advance and executes it without
sensory feedback. The validity of this framework has been discussed mainly in
relation to reaching movement. Meanwhile, the requirement of real-time control
must be more serious in performing a continuous task (such as tracking) compared
to a ballistic task (such as reaching), because brain has to obtain task-related sensory
information, to design/adjust motor plans and to monitor the performance in a
seamless manner. How does our brain handle this situation? One possible answer
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is that brain divides the time axis into discrete segments and executes feed-forward
control in each time segment (i.e., “intermittent control”). Actually, our body
movement contains discontinuous components even in a continuous tracking task
[1–3]. The present study investigates the nature of such discontinuities in a visuo-
manual tracking task. Especially, the author aims to analyze the hand movement in
time domain while most previous analyses were done in frequency domain.

2 Method

The experimental setup was as follows. A subject sat in front of a table with his/her
chin rested on a chin rest. He/she put his/her right hand on an air-floating slider
moving along a linear rail in a front-back direction. The position of the slider was
monitored by an optical sensor and sampled by 200 Hz. The hand position was
displayed as the vertical position of a red laser spot on a front screen (2.2 m apart
from the subject head), where forward hand motion brought upward spot motion.
Hand motion was magnified two times on the screen (i.e., 10 mm hand move brought
20 mm (or 0.5ı in visual angle) spot move). On the screen, another green laser spot
(“target”) was presented whose vertical position was controlled by the experimental
program. The task was to move the right hand so that the red spot (i.e., hand) tracked
the green spot (i.e., target) as accurately as possible.

Two types of target motion were used: One was sinusoidal motion (frequency
was 0.3–1.2 Hz), and the other was pseudo-random motion where target position
was given by a linear summation of three sinusoids with different frequencies and
amplitudes.

Hand position data were fitted by fifth-order spline curves whose node interval
was 100 ms (i.e., 20 data points). Velocity, acceleration, jerk and snap were
calculated using the derivatives of the spline function. Three subjects participated in
the experiment, but the data from one subject was introduced below.

3 Results

3.1 Pseudo Random Target Motion

Figure 1 shows a typical example of hand trajectory in the pseudo-random condition.
The top panel shows the hand and target positions and their difference (i.e., tracking
error: magnified ten times), and the middle panel shows the hand and target
velocities. The bottom panel shows the hand acceleration and jerk.

Position profile of hand motion clearly shows its discontinuous behavior, in
contrast to the continuous target behavior. Error profile consists of a number
of humps with 0.3–0.7 s lengths, implying that our brain may correct hand
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Fig. 1 Typical trajectory observed in pseudo random condition

movement with a unit of several hundred milliseconds (i.e., “intermittently”). The
discontinuities were observed either around the turning points or in the mid-course
of the motion (as indicated by arrows).

Intermittent structure could be also found in the velocity profile: It consisted of
a number of bell-shaped components, suggesting that subjects might perform the
tracking task as a series of reaching-like ballistic movements.

Interestingly, the subjects sometimes stood still for a while until starting a
new movement. This can be found around 25 and 27–29 s in Fig. 1 (indicated
by hatchings), where both acceleration and jerk remained low. This “moratorium
period” can be regarded as the time while the brain is prepared for catching a clue
to identifying the nature of target motion in the next few seconds. In other words,
the brain is waiting for upcoming events which can be used for planning the next
action.

The author tried to extract the segmental structure from the trajectory data, and
found that the following method worked fairly well (a different method will be
reported elsewhere). First, onsets of bell-shaped velocity components are detected
based on the zero-crossing of acceleration and the direction (or sign) of jerk. Second,
the valleys of acceleration profile are detected by the zero-crossing of jerk and the
sign of snap. Moratorium periods are determined based on the acceleration and jerk
levels. Finally, the detected epochs are merged and adjusted manually.

The extracted segment boundaries are indicated by vertical broken lines in Fig. 1.
The left panel of Fig. 2 shows the histogram of lengths of the extracted segments.
They distributed mainly over the range of 0.2–0.8 s.
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3.2 Sinusoidal Target Motion

For sinusoidal target motions, the nature of hand motion depended largely on the
target frequency. Figure 3 shows the movement profiles in the cases of 0.3 and
1.2 Hz.

When the frequency was low (�0.5 Hz), the hand motion contained unequally-
segmented components, similar to the pseudo random case. Different from the
pseudo random case, however, bell-shaped velocity humps were superimposed on
the baseline sinusoidal curve. Thus, the segmental structure could be more clearly
observed in the acceleration profile: Whilst the target motion was sinusoidal (and
its acceleration was also sinusoidal), the acceleration of hand motion consisted of a
number of irregular humps.

When the segment boundaries were extracted by the above algorithm, the
resultant segment lengths distributed over 0.2–0.9 s (Fig. 2, center and right panels),
similar to the pseudo-random case. We should note that segment boundaries were
observed almost uniformly over all motion epochs in 0.3 Hz case, but in higher
frequency cases, they were more often observed around the turning points (Fig. 4).
This suggests that the turning points may have special meaning for brain’s motor
control. This point will be discussed later.

When the target frequency was above 1 Hz, in contrast, the hand motion became
quite rhythmic and its acceleration profile approached sinusoids (Fig. 3 lower panel).
This implies that subjects performed the task by the cycle unit, rather than faithfully
pursuing the target.

Two points should be noted here. First, when the target frequency was higher
than 1 Hz, the phase of the hand motion tended to precede that of the target
motion. Interestingly, the magnitude of phase precedence varied according to the
motion epoch and was minimized in the backward movement. Figure 5 shows the
histograms of phase difference between the target and hand motions at four epochs.
Values inside the plots indicate the average phase differences (a positive value means
that the hand preceded the target). When the target frequency was 0.3 Hz, the hand
phase tended to be behind the target phase at all epochs, implying that the hand
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basically followed the target. When the frequency was 1.2 Hz, however, the hand
phase tended to precede the target phase except for the backward movement. This
suggests that the subject might adjust the movement so that the hand phase matched
the target phase at a specific epoch.

Second, we see some valleys in the acceleration profile (indicated by arrows
in Fig. 3) though acceleration varied almost regularly. It is noteworthy that these
valleys were exclusively observed around the turning points. This indicates that the
subjects adjusted the movement around the turning points.

Therefore, these observations together suggest that our brain may segment a
continuous sinusoidal motion at/near the turning points and adjust the movement
intermittently. A possible reason why the turning points were chosen as segment
boundary is that they may be appropriate places for monitoring the target and hand
positions and for catching the timing (or rhythm) of target motion.

4 Discussions

The present study examined the nature of intermittent motor control of human brain
using a tracking task. Intermittent behavior in the tracking task itself has been
already reported by other researchers [1–3].

Miall, et al. [1] ran behavioral experiments similar to the present study (but they
used lower-frequency motion) and discussed the meaning of intermittency in human
motor control. Using frequency analysis, they showed that intermittent components
were around 0.8–1.8 Hz. This frequency range roughly coincided with the segment
lengths (0.2–1 s) obtained in the present study (Fig. 4). Furthermore, Miall, et al.
examined the amount of tracking error at the onsets of velocity humps and argued
that corrective movements were evoked when the positional error exceeded a certain
threshold (“error deadzone”). Based on these results, they proposed a view that
intermittent motor behavior was caused by nonlinear characteristics of brain control
mechanism owing to error deadzone and temporal constraints (such as feedback
delay and refractory period).

This view is quite persuasive and the author partially agrees with it. Actually,
Gawthlop, et al. [4] built a computational model of intermittent control based on the
error deadzone idea and showed that the system marked good control performance
even with a large sensory delay. However, there is an essential difference between
their view and the author’s view. The “error deadzone view” is fundamentally based
on an assumption that our brain invokes movement in order to recover the error
caused in the past. That is, it regards the intermittent movements as “corrective
reaction” to the error occurred in the past.

In contrast, the author stands on a view that the brain plans movement so as
to maximize the task performance (i.e., minimize tracking error) in the future.
Concretely, the author assumes that brain predicts the target motion in the near
future and designs an appropriate motor plans for tracing the predicted motion. This
process is driven by the visual feedback, but the point is that the visual feedback
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is mainly utilized for sensing the target/hand motions and estimating/updating their
internal models, rather than for producing corrective movements per se. Thus, the
intermittent control process may not simply depend on the amount of error: An
important factor may be what epoch (or timing) is appropriate to acquire visual
information for updating the hand and target models. This could explain why
the segment boundaries tended to be located around the turning points for high-
frequency sinusoidal targets: Presumably, our visual system can estimate target and
hand positions most accurately (because motion speed is lowest) and detect the onset
of new cycle of movement most sensitively (because motion direction is switched)
around the turning points.

Therefore, the author would like to propose that the intermittency is our brain’s
fundamental control strategy that it predicts the near future and determines the motor
plans adaptively so as to achieve a good performance with our slow sensorimotor
system. The validity of this view should be examined in the future experimental and
computational studies.
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Molecular and Neural Mechanisms
for Behavioral Choice Between Two
Conflicting Alternatives in C. elegans

Takeshi Ishihara

Abstract Animals facing conflicting sensory cues make a behavioral choice
through the integration of sensory cues. This kind of sensory processing is important
even for simple organisms. We studied the molecular and neuronal mechanisms of
such behavioral choice by using nematode C. elegans as a model organism. Our
genetic analyses revealed that the information about two conflicting sensory cues is
processed in a pair of interneurons, in which two signaling pathways regulate the
sensory integration independently.

Keywords Decision making • C. elegans • Behavior

1 Introduction

Animals sense many environmental stimuli simultaneously, and process the infor-
mation within the central nervous system to generate proper behavioral responses.
For example, animals often sense two conflicting stimuli simultaneously, and so they
have to choose one of the two stimuli to respond to. This kind of behavioral choice in
invertebrates, or decision making in vertebrates, is important for animals to adapt to
their environments. Furthermore, the proper regulation of such behavioral choice is
important to survive in continuously changing environments. Indeed, the behavioral
choice reflects the relative preference between the contradictory sensory cues [1, 2];
hence, the choice can be altered depending on an animal’s status. However, the
molecular and neuronal mechanisms underlying the behavioral choice remain to be
revealed.
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Caenorhabditis elegans has a simple nervous system with 302 neurons in adult
hermaphrodites and is well described [3]. In addition, behavioral, genetic, and
imaging analyses can be used for the study of the nervous system in C. elegans.
For example, genetic and behavioral studies revealed the mechanisms of sensory
transduction at the molecular level, and the functions of the sensory neurons at
the level of neural circuits. These studies promise C. elegans to be an ideal model
organism to study sensory processing involved in behavioral choice.

2 Behavioral Paradigm to Study Behavioral Choice

The responses of C. elegans show attraction or aversion to various kinds of
chemicals. For example, wild type animals show chemotaxis to an odorant, diacetyl
(butter flavor chemical), which is sensed by a pair of sensory neurons, AWA [4]. On
the other hand, they avoid heavy metal ions including Cu2C ion, which is sensed
in two pairs of sensory neurons, ASH and ADL [5]. To study behavioral choice
between two conflicting sensory cues, we devised an assay paradigm, which is
named “interaction assay”, by using diacetyl and Cu2C ion as sensory cues. In this
assay, animals must cross the Cu2C barrier to reach the attractive diacetyl (Fig. 1a).
For quantitative analysis, we defined an index on the basis of the percentage of
animals on the odorant side relative to the total number of animals.

In the interaction assay, the index depends on the concentration of diacetyl and
Cu2C. The chemotaxis to diacetyl is suppressed by the presence of Cu2C, whereas
the avoidance of Cu2C is suppressed by the presence of diacetyl (Fig. 1b, c). Since
Cu2C and diacetyl are sensed in distinct sensory neurons, this observation suggested
that information about Cu2C and diacetyl is integrated in the neuronal circuit.
Therefore, this interaction assay enables us to study the sensory processing involved
in the behavioral choice between diacetyl and Cu2C.

Fig. 1 (a) Interaction assay to evaluate the sensory integration in C. elegans. (b) Chemotaxis in
response to diacetyl in wild type and hen-1 with or without Cu2C [1]. (c) Avoidance in response
to Cu2C in wild type and hen-1 with or without diacetyl [1]
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3 Molecular Mechanisms for the Behavioral Choice

By using this assay, we found a mutant defective in the behavioral choice. We named
this mutant hen-1 after hesitation. The hen-1 mutant animals, compared with wild
type animals, prefer the avoidance of Cu2C to the approach response to diacetyl,
although their sensory responses to each of these stimuli are indistinguishable to
those of wild type animals. This result suggested that the hen-1 gene responsible
for the phenotype in the interaction assay is involved in the behavioral choice. To
elucidate the molecular basis of the behavioral choice, we identified the hen-1 gene
by positional cloning. The hen-1 gene encodes a secretory protein with an LDL
receptor motif A, which is involved in protein interaction and is most similar to the
Jeb protein in Drosophila.

To determine where the HEN-1 protein functions, we analyzed its expression
pattern by a specific antibody, and found that it is expressed in two types of neurons,
ASE and AIY. The expression of HEN-1 not only in ASE or AIY but in other
neurons is sufficient to restore the phenotype. This result suggested that HEN-1
functions as a secretory protein. Next, we studied when HEN-1 functions for the
behavioral choice. Accordingly, the expression of HEN-1 in the adult stage was
sufficient to rescue the phenotype, although the expression in larval stage could not
restore the phenotype. This result suggested that HEN-1 is not involved in neuronal
development but regulates the behavioral choice at the adult stage.

To elucidate the mechanisms of the regulation of the behavioral choice, we
searched a receptor for HEN-1. Since in Drosophila Jeb, which is most similar
protein to HEN-1, functions through a receptor tyrosine kinase DALK [6], we
analyzed mutants defective in SCD-2, which is an ortholog of DALK in C. elegans.
The scd-2 mutant animals showed a phenotype similar to hen-1, preferring the
avoidance of Cu2C over the approach to diacetyl. To determine whether HEN-1 and
SCD-2 function in the same genetic pathway, we made double mutants and analyzed
their behavior [7]. The scd-2;hen-1 double mutants showed the same phenotype as
each of the single mutants, suggesting that hen-1 and scd-2 function in the same
genetic pathway. Taken together, SCD-2 may be a receptor for HEN-1 to regulate the
behavioral choice. Since SCD-2 is expressed in many neurons, we examined where
SCD-2 functions. The genetic analyses revealed that SCD-2 in a pair of interneurons
AIA is sufficient for the proper regulation of the behavioral choice.

For further investigation of the molecular mechanisms, we screened another
mutant defective in the behavioral choice, and identified a mutant in which the
receptor type guanylyl cyclase GCY-28 is mutated [7]. Since gcy-28;scd-2 double
mutants showed a more severe phenotype than each of the single mutants in the
interaction assay, it appears that gcy-28 and scd-2 function in parallel pathways.

To identify neurons involved in the behavioral choice, we analyzed gcy-28
mutant expressing wild type GCY-28 in various sets of neurons, and found that the
expression of GCY-28 in AIA interneurons is also essential for the proper regulation
of behavioral choice. These results suggested that, in AIA interneurons, the two
signaling pathways regulate the sensory processing in parallel.
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4 Neural Circuit for the Behavioral Choice

Our genetic analyses revealed that the signaling pathways in the AIA interneurons
are important for the proper regulation of the behavioral choice. In C. elegans,
diacetyl is mainly sensed in a pair of sensory neurons AWA, whereas Cu2C is mainly
sensed in two pairs of sensory neurons ASH. ASH is activated by the stimulation of
Cu2C [8], whereas we found that AWA is influenced by the stimulation of diacetyl.
According to electron microscopic analyses [3], AIA neurons are connected with
AWA by gap junctions and received chemical synapses from ASH. Our analyses
suggested that this wiring diagram also supports the idea that AIA interneurons are
important for the behavioral choice.

To elucidate the function of AIA interneurons, we used two mutant ion channels
MEC-4(d) and UNC-103(gf). MEC-4(d) is a mutant epithelial sodium channel
(ENaC)/degenerin channel, which is constitutively active, and thereby the expres-
sion of MEC-4(d) in neurons causes degeneration of the neurons [9]. UNC-103(gf)
is a mutant ERG-like KC channel, which has a gain of function mutation, and
thereby the expression of UNC-103(gf) in neurons causes inactivation of the
neurons [10]. We made wild type animals expressing MEC-4(d) or UNC-103(gf)
only in the interneurons. These animals do not have functional AIA neurons.

Firstly, we examined whether these animals can normally respond to the sensory
stimuli, diacetyl and Cu2C. As shown in Fig. 2a and b, animals expressing MEC-
4(d) or UNC-103(gf) in AIA interneurons showed normal avoidance of Cu2C and
normal approach to diacetyl, suggesting that AIA interneurons are not necessary for
the behavioral response to each of the stimuli.

Next, we examined the behavioral phenotype in the interaction assay. Animals
expressing MEC-4(d) or UNC-103(gf) in AIA interneurons preferred the avoidance
of Cu2C over the approach to diacetyl, like hen-1 animals (Fig. 2c), suggesting that
AIA interneurons are crucial for the proper behavioral choice between Cu2C and
diacetyl [7].

Fig. 2 (a) Chemotaxis in response to diacetyl of animals without functional AIA interneurons [7].
(b) Avoidance response to Cu2C of animals without functional AIA interneurons [7]. (c) Animals
without functional AIA neurons prefer the avoidance of Cu2C over the approach to diacetyl [7]
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Fig. 3 (a) In wild type
animals, AIA interneurons
inhibit AIB interneurons, and
thereby the aversive response
to Cu2C is suppressed. (b) In
the mutants, AIA neurons
cannot inhibit AIB, and hence
the animals prefer the
avoidance response

Our genetic analyses revealed that the sensory processing for the behavioral
choice in C. elegans is regulated by a simple neural circuit (Fig. 3). Cu2C is sensed
by ASH sensory neurons, which make inhibitory synapses to AIA interneurons.
Diacetyl is sensed by AWA sensory neurons, which are connected with AIA
interneurons by gap junctions. ASH sensory neurons make synapses to AIB
interneurons, of which the activation induces backward movement, suggesting that
AIB is responsible for the avoidance of Cu2C. In our model, depending on the
balance of these conflicting signals from AWA and ASH/ADL, AIA interneurons
may inhibit the function of AIB through GCY-28 and HEN-1/SCD-2 pathways, and
thereby they prefer the approach response to diacetyl over the avoidance of Cu2C
(Fig. 3a). On the other hand, in gcy-28 or scd-2 mutant animals or wild-type animals
without functional AIA sensory neurons, AIA cannot inhibit AIB, and thereby AIB
stimulates the avoidance of Cu2C (Fig. 3b). Therefore, these animals may behave
in the interaction assay as if the worms sensed a higher ratio of Cu2C relative to
diacetyl than wild-type animals. To elucidate the functions of AIA interneurons, we
plan to visualize the activity of the neural circuit by Ca2C imaging.

Interneurons play an important role in the sensory processing in vertebrates and
invertebrates. This study of the sensory processing underlying behavioral choice is
important to understand the molecular and neuronal basis of behavioral choice in
invertebrates and decision making in vertebrates.
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Modulating the Phase Coherence of Neuronal
Population Oscillations in the Gamma Band

B. Sancristóbal, R. Vicente, A.J. Pons, G. Pipa, and J. Garcia-Ojalvo

Abstract Control of the phase coherence between oscillatory neuronal populations
has been proposed as a key mechanism to gate neuronal communication. Here
we investigate the emergence of phase coherence, at the level of both LFP and
MUA, between two neuronal areas that exhibit population oscillations in the
gamma band. To that end we simulate two large interacting recurrent networks of
Hodgkin-Huxley neurons. We observe that changes in the strength and topology
of inter-areal synaptic projections can effectively modulate the phase coherence at
gamma frequencies.

1 Introduction

Neurons in cortical, subcortical, and cerebellar areas have been observed to engage
in oscillatory activity at different frequency bands. In particular, upon sensory
stimulation many cortical regions exhibit oscillations at the neuronal population
level, as measured by local field potentials (LFP), in the beta (12–30 Hz) and gamma
(30–90 Hz) range [1]. While individual neurons are found to spike irregularly and
at much lower rate than the population oscillations, their action potentials can be
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precisely locked to a narrow phase of the recorded LFP. The mechanisms generating
gamma-band oscillations rely on local recurrent inhibitory networks that modulate
the excitability of neurons in a periodic manner [2]. Such fluctuating excitability
makes the spiking probability of a neuron be correlated with the global oscillation
phase [3].

Given the rhythmic susceptibility of an oscillatory area to incoming input, we
can expect the strength of interaction between coupled neuronal populations to
be modulated by their phase difference: incoming action potentials arriving at the
high excitability phase will have a higher probability of triggering a spike in the
post-synaptic neuron, in comparison with those arriving within the low excitability
window. In that way, an efficient and dynamic gating of neuronal communication
can occur by modulating the phase difference and/or the phase coherence between
oscillatory populations. This is known as the communication through coherence hy-
pothesis [4]. Experimental evidence for phase-sensitive responsiveness of neuronal
populations has been demonstrated in peripheral structures [5]. However, whether
the nervous system actively uses such mechanisms for routing and processing
information is currently a topic of intensive research.

In this work, we investigate how the phase coherence between neuronal oscil-
lations depend on the architectural properties of the coupled neuronal populations.
To that end, we have conducted extensive simulations of two interacting recurrent
networks of Hodgkin-Huxley neurons. The interaction is unidirectional, and each
network is subjected to sensory-like input that sustains a local gamma rhythm at
each population. To quantify these rhythms we use the LFP, which captures the
summed synaptic activity of the network, and the multiple-unit activity (MUA),
which measures the joint spiking behavior of a subset of neurons within the network.
In particular, we explore the frequency dependency of LFP-LFP, MUA-MUA and
MUA-LFP phase coherence, and possible mechanisms for its dynamic modulation
in terms of the coupling architecture between the populations.

2 Methods

We model two neuronal populations (representing cortical areas) each composed by
2,000 neurons, with each neuron connecting randomly with 400 other neurons of
the same area. Eighty percent of the cells in each network are excitatory. Inter-
areal connectivity is uni-directional and purely excitatory, and is defined by the
percentage of projecting cells and by a divergence factor (expressing the percentage
of cells contacted by a single long-range projecting neuron). For those long-range
connections, we assume an axonal conduction delay of 10 ms.

Each neuron is defined by its membrane potential and several channel gat-
ing variables, described by Hodgkin-Huxley equations. Excitatory and inhibitory
synaptic currents are mediated by AMPA and GABAA receptors, with an elicited
conductivity time-course of an alpha function. Rise and decay time of inhibitory
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Fig. 1 LFP (top panel) and MUA (bottom panel) power spectra for different values of the external
rate

synapses controlled the frequency of gamma oscillations. Here, we set a rise time
of 0.1 ms and a decay time of 5 ms, leading to oscillations in the range of 80–90 Hz.
Feedforward connections to each population from lower cortical or subcortical areas
is mimicked by external input. This is modeled as a non-homogeneous Poisson train
of incoming excitatory post-synaptic potentials (EPSPs). The instantaneous rate
of this input is generated by an Ornstein-Uhlenbeck process, which fits the basic
features of naturalistic stimuli driving the cortex. The non-homogeneous Poisson-
train stimulation induces low frequency activity and contributes to the 1=f power
spectral profile of the simulated LFPs (top panel of Fig. 1).

We calculate the LFP from the sum of the absolute value of the excitatory
jIAMPA C Iextj and inhibitory jIGABAj synaptic currents impinging on excitatory
(pyramidal) neurons [6]. The MUA was estimated from the spiking histogram of
a subset of 500 neurons of each population. A typical trial consisted of a 3-s
realization of the dynamics of both networks. During the first second the two
populations remained uncoupled and only driven by the same external stimulus
(inhomogeneous Poisson process, mean = 2,200 Hz, variance = 400 Hz). For the
next 2 s the two networks were simulated to interact unidirectionally accompanying
a rate increase of the external input at the projecting area. Note that concomitantly
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with the rate increase, the gamma peak of the LFP spectrum shifts to higher
frequencies. The results shown below correspond to average over 400 trials.
Power spectra and phase coherence were computed from 500 ms windows using
a multitaper estimator with a spectral concentration of˙6 Hz.

3 Results

In our simulations recurrent excitation and inhibition in each network produce a
gamma rhythm at a frequency determined mainly by the rise time of the GABAergic
synapses. The strength of the synapses can also modify the frequency content of the
LFP power spectrum, since the discharge rates of neurons vary accordingly. Slower
oscillations emerge for slower inhibitory synapses (results not shown). The power
spectra of the LFP and MUA signals are plotted in Fig. 1 for different values of
the external input rate. Lower stimulus intensities produce slower oscillations. In
addition, the bump in the gamma-band of the LFP power spectrum is relatively
broad and therefore, the associated oscillations are far from harmonic.

Before considering the effect of coupling between the two populations, we
study the relation between LFP and MUA signals from a single population. Our
results show that the LFP and the MUA activities are phase coherent across trials
(Fig. 2), which indicates that spikes in a population are phase-locked to its LFP. The
phase-coherence between MUA and LFP can be sustained for a extensive range of
frequencies (Fig. 2, top). Moreover, the phase difference between the two signals as
a function of frequency shows a linear relationship (Fig. 2, bottom). This suggest
that the relation between MUA and LFP consists of a constant temporal lag, which
is in turn translated to a bigger phase difference as the frequency increases. Indeed,
the troughs of the LFP are observed to coincide with the peaks of the MUA (Fig. 3).

When the networks are coupled, the EPSPs elicited at the receiving population
by the spikes coming from the sending population can affect the timing of action
potential generation. This, in turn, is reflected as a change of the LFP phase.
Figure 4 shows that the interacting networks also exhibit LFP-LFP, MUA-MUA
and MUA-LFP phase coherence with a preferential range in the gamma-band. In all
simulations the strength of the AMPA intra-area synapses was considered equal to
the AMPA inter-area synapses. Increasing the conductance of the AMPA intra-area
synapses increases the effect of the sending on the receiving area, and the phase
coherence increases accordingly (results not shown).

We have also studied how inter-area connectivity affects the phase coherence.
Two structural coupling parameters are considered, the convergence (percentage
of neurons in the sending area connecting to the receiving area) and divergence
(number of affected neurons in the postsynaptic area). Above a minimum conver-
gence value the phase coherence (most notably LFP-LFP) starts to increase with
increasing divergence in the beta and gamma range, around the frequency peak of
the LFP power spectrum of the projecting area (Fig. 4). If the convergence is low, on
the other hand, no phase coherence emerges regardless of the divergence (results not
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shown). There is also a transition from no phase coherence to a high coherence in a
wide range of frequencies as the connectivity is varied from weak to strong synaptic
strength (results not shown).

4 Discussion

We have built recurrent networks with sparse connectivity to investigate the
establishment and modulation of phase coherence between two neuronal popula-
tions exhibiting global oscillations, at the level of both LPF and MUA signals.
Previous experimental work has shown that MUA-MUA and MUA-LFP phase
coherence between two different visual cortical areas concentrates in the gamma
band [7]. This specificity of phase coherence may be a mechanism of controlling the
communication between areas: on the one hand the phase relation is robust to the
noise coming from different biological sources as it remains constant across trials
(phase coherence), and on the other hand this situation is only achieved in a narrow
frequency band, which can be viewed as a channel for information transmission
control. Our simulations suggest that recurrent inhibition is responsible for the
locking between MUA and LFP signals in single populations. For two coupled
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populations, the interaction between incoming EPSPs and local activity can shift
the timing of action potentials, leading to phase locking between LFP-LFP, MUA-
MUA and MUA-LFP signals.

The strength and connectivity of the inter-area synaptic projections are main
determinants of the phase-coherence. If the percentage of neurons of the sending
area (convergence) is low the phase relation between any two signals (LFP or
MUA) is random and inconsistent over trials. As the divergence increases the phase
coherence is enhanced around the frequency peak of the LFP power spectrum of the
sending area and in the beta band. These results reproduce qualitatively the behavior
of the phase coherence obtained experimentally [7]. Further research is oriented to
investigate the phase locking of reciprocally connected areas, as well as considering
the interaction between frequency mismatched oscillatory populations.
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The Phase Space of Lateral Thought

Eleonora Russo and Alessandro Treves

Abstract While others prefer to engage in deliberative decision-making, our mind
is mostly absorbed in speculative lateral thought. Can it be modeled in a precise
mathematical framework? In the attractor network putatively realized in any cortical
patch, memory representations are not artificially stored as prescribed binary
patterns of activity as in the Hopfield model, but self–organize as continuously
graded patterns induced by afferent input. Recordings in macaque indicate that
such cortical attractor networks may express retrieval dynamics over cognitively
plausible rapid time scales, shorter than those dominated by neuronal fatigue.
A cortical network comprised of many local attractor networks, and incorporating
a realistic description of adaptation dynamics, may then be captured by a Potts
model. This network model has the capacity to engage long-range associations into
sustained iterative attractor dynamics at a cortical scale, in what may be regarded as
a mathematical model of spontaneous lateral thought. We describe the phase space
of the model, which presents a number of phase transitions dependent on a set of
critical parameters, which can be related to cortical quantities.

Keywords Associative network • Adaptation • Latching dynamics

1 From Local to Global Latching

Self-organizing attractor networks may comprise the building blocks for cortical
dynamics, endowing it with the basic operations of categorization, including analog-
to-digital conversion, association and auto-association, which are then expressed as
components of distinct cognitive functions depending on the contents of the neural
codes in each region.
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Braitenberg and Schüz [1] and others have put forward the conception that
the whole cortex be regarded as a memory machine, in which self-similar local
modules of pyramidal cells, densely connected by synapses mainly on their Basal
dendrites, are also sparsely connected across modules by synapses mainly on their
Apical dendrites [2]. These A and B systems would both be associatively modifiable
with some variant of ‘Hebbian’ plasticity, endowing the modular network with the
capability to function as a two-tier associative memory [3], at the local and at
the global level. A rigid subdivision into distinct modules is not essential, but it
simplifies rendering this theoretical notion with a well-defined mathematical model.
The core idea made salient from such a perspective is that all cortical information
processing, at the local level, may be expressed through the fundamental associative
memory operation of self-organized categorization (as modeled by competitive net-
works), pattern association (as modeled by hetero-associative networks) and pattern
completion and retrieval (as modeled by auto-associative networks). A number
of studies have shown, over the years, that the quantitative description of such
fundamental operations offered by simplified abstract models, such as the Hopfield
recurrent network [4] extends without major qualitative changes to biologically
more realistic models [5]. A number of issues in the mapping between the Hopfield
model and a plausible cortical scenario have been discussed in our review paper
with Athena Akrami [6].

In a single auto-associative memory network in which the firing rate of individual
units adapts, one observes, as mentioned in [6], latching dynamics, i.e. the tendency
to jump from one attractor to the next, in a potentially indefinite sequence. Latching
occurs if either the uncorrelated, that is, non-memory state is unstable – and then
a very small random fluctuation, correlated with one of the memory patterns, can
be amplified and cue its retrieval in an unpredictable manner – or else, when the
uncorrelated state is stable and has a finite basin of attraction of its own, if the
memory patterns are however correlated with each other, so that the decaying pattern
itself cues the next one. While the first type of transition can be regarded as induced
by noise, the second type explicitly reflects the correlational structure of the stored
memories. For both types, the first units to change state in a self-reinforcing manner
are some among the inactive ones, which are activated by the latching cue [6].

Similar latching dynamics have been described for the Potts auto-associative
network introduced by Kanter [7] and later extended to include a rough model of
firing rate adaptation [8]. A Potts unit may in fact be interpreted as an effective
model of a local auto-associative network in the cortex. It reduces the local network
to a single unit of a particular type, a Potts graded response variable, which can
take graded activation values 0<	k < 1 in S different states, kD 1, : : : ,S, as well as
remain in the inactive state to a degree 	0D 1�†k	

k. Such a reduction offers the
advantage of simplifying the analysis of auto-association mechanisms by removing
local dynamics, and focusing attention on global dynamics. A global cortical activity
pattern is interpreted by the model as the composition of several active states in a
subset of the cortical patches, while the internal or local dynamics are not described,
except by means of the collective variables 	k. The complementary subset of local
networks is taken to be in the inactive state, i.e. 	0� 1. When endowed with a
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model of firing rate adaptation, the Potts network does exhibit latching dynamics
with the same types of transitions, between randomly correlated as well as between
explicitly correlated memory patterns, as seen in a model of a single cortical patch
[9]. In addition, the Potts network can exhibit “pathological” oscillations between
highly correlated patterns, what can also be observed in models of a single local
network.

2 Reduction to Potts Parameters

The retrieval capacity of a non-adapting version of the Potts model that has stored p
randomly correlated global attractors has been analyzed in detail [10], showing that
the upper limit on p is

pc � CMS
2=Œ4a ln .2S=a/� (1)

where a is the fraction of Potts units in an active state, and CM is the connectivity
among units, ie among the M modules. Since each of these connections entails a
tensor of S2 adjustable values, the storage process is equivalent to one that spans a
total of M CMS2 ‘synapses’. If each module is taken to represent a local network of
N real neurons, the total M N real neurons would receive each CLDCMS2/N long-
range synapses, on average. The number of local states S, on the other hand, can be
related to the number CS of short range synapses among real neurons, by assuming
that each local module is at most loaded close to capacity, so that [5]

S � kCS=ŒaM ln .1=aM/� (2)

where k� 0.1 and aM is the sparseness of the representation within each module.
For example, one might consider N� 105, CL�CS� 104, and S�CM� 103 for
the human cortex.

To introduce firing rate adaptation in a network in which single neuron-like
units are not represented, two distinct processes are summarily described as activity
dependent thresholds. One, driven with time constant �2 by the activation 	k of each
state, represents fatigue specifically in the neurons active in that state; the input
activation feeding into that state is then compared to that specific threshold. The
other, driven with time constant �3 by the summed activation †k	

k across states,
represents overall resource consumption at the local patch level, as well as slow
non-specific inhibition; a general activity-dependent term is then added to the fixed
(activity-independent) common threshold U of each Potts unit. Neuronal dynamics
is taken to evolve more rapidly than adaptation effects, at a characteristic time scale
�1, at which input activation are reflected into the corresponding activation values of
each state. It is at this rapid time scale that, as discussed above, attractor dynamics
take place.
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In the Potts auto-associative model, the positive feedback inherent to local
attractor dynamics is replaced by a self-reinforcing term, of strength w, with which
each activation 	k feeds into itself. What does w really stand for? In a standard
Hopfield model, the overlap m with a given memory, in the attractor state, satisfies
an equation of the type [11]

m D tanhŒ“.mC hext/� (3)

where TD 1/“ is an effective temperature, parametrizing the effects of noise or
firing irregularity, and hext is an external cue, or signal, adding to the feedback
in the direction of the retrieved memory. Also in graded response networks, the
local feedback signal enters the analog of Eq. (3) with added the external signal.
Obviously in such models the scale of the external signal is arbitrary. In the Potts
network, the total signal received by a unit in one of its states 	k is w	kCmG,
where mG is a global overlap parameter of maximum value 1. The parameter w
therefore represents the relative weight of the local over the global signal. Its value
is expected to reflect the ratio of the number of local to long distance connections
each unit receives, CS/CL, which is estimated to be of order 1 in the cortex [12].

3 Distinct Free Association Phases

When �1<<�2<�3, several different phases characterize latching dynamics [13].
If w is small (and T not too small), no latching occurs, unless the inactive state of
each Potts unit is artificially made unstable by low or even negative thresholds, in
which case latching is among uncorrelated states. As w grows, the network enters
a narrow phase of phasic latching, in which it latches for only a few transitions,
between correlated memories, followed by a tonic phase in which it latches until the
generic thresholds prevent further transitions, hence for a time of order �3. If w is
even larger, latching can be sustained for an indefinitely long time, as the generic
thresholds become ineffective to stop it. Several other parameters affect latching
duration, and in particular a higher memory load leads to longer latching.

As for a local auto-associative network, each latching transition in the global
Potts network is initiated by the self-reinforcing activation of some of the units
previously in the quiescent state [9]. It can be shown that these units are those with
the lowest threshold to be activated into the next global pattern, and their activation
triggers a cascade of positive feedback that culminates into the “flip” into another
attractor state – although in practice the transition can be much messier than a clean
flip, as Fig. 1 illustrates. There is a limit, however, to how much the self-coupling
w facilitates latching: when it crosses a further critical value, which depends on the
temperature T, it stabilizes indefinitely any attractor state irrespective of adaptation,
and the network is stuck (to the right of the blue curve in Fig. 2). Latching then
occurs between the red and the blue curves, and indefinite latching to the right of
the dashed curve in Fig. 2.
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Fig. 1 Latching dynamics in the Potts network

Fig. 2 Schematic Potts latching phase diagram, in the w-T plane, for uncorrelated patterns.
Latching does not start above a critical temperature that grows rapidly with the self-coupling w
(red curve). Beyond a lower critical temperature, latching goes on indefinitely (dashed curve).
When the self-coupling is too strong, however (to the right of the blue curve) attractor states are
stable, as firing rate adaptation fails to destabilize them. The data points are the results of numerical
simulations, while the red and blue curves are derived semi-analytically [13] and the dashed curve
is just to guide the eye (Color figure online)

4 The Role of Correlations

Crucially, the distance between the red and the blue curves grows with the mean
variance 
2 in the interference, at retrieval, due to other stored patterns [13]. With
randomly generated, and on average uncorrelated, patterns, 
2� pa/(CMS2); when
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instead patterns are generated with a multifactorial algorithm intended to reproduce
plausible correlations among semantic representations [8]


2 � p2S�2� (4)

with ” >1 (and sometimes the power law in Eq. (4) has to be replaced by an
exponential). This implies that for any value of the effective temperature TD 1/“,
to be beyond the dashed curve in Fig. 2 and hence to show indefinite latching, the
network needs to have stored more patterns than a critical value pl, which is roughly
independent of CM and scales supra-linearly with S.

This result, to be reported in full elsewhere, revises what had been extrapolated
from early numerical simulations of the Potts network [8], and suggests the
following scenario for the evolution of the cortical parameters underlying free
associations and the capacity to sustain indefinite latching dynamics. Expansion
in body weight and, particularly in humans, in pyramidal cell numbers [14] is
accompanied by a much more moderate expansion in the cortical connectivity
parameters CS and CL [15] which allows a parallel gradual increase in the number
of distinct attractor states in a cortical patch, S, and, through CM, in the number
of global attractor states p, still compatible with associative memory operations
[1, 5], ie p < pc. When p crosses the lower critical latching value pl, the correlations
naturally arising from semantic data storage endow the cortex, which continues to
operate as an associative memory machine, with the capacity for lateral thought.
Such a scenario has to be corroborated by further analysis and ultimately to be
submitted to experimental falsification.
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Learning and Decisions as Functional States
of Cortical Circuits

José M. Delgado-Garcı́a, Raudel Sánchez-Campusano, and Agnès Gruart

Abstract The complexity of brain functions can only be approached by a multidis-
ciplinary and complementary approach. The availability of genetically manipulated
mammals (mostly mice) and of sophisticated electrophysiological techniques,
susceptible of being applied in behaving animals during the acquisition of different
learning paradigms, has largely facilitated this approach. Our group has studied
for years the contribution of hippocampal, motor, premotor, and prefrontal circuits
to different types of associative and non associative learning paradigms. For this,
we have recorded activity-dependent changes in strength in cortical and subcortical
synapses during the acquisition process. Until now, we have studied the contribution
of many different neurotransmitters and related receptors in selected transgenic and
knock-out animals, as well as using in vivo si-RNA injection procedures. The main
output of our studies is that learning is the result of the activity of wide cortical and
subcortical circuits activating particular functional properties of involved synaptic
nodes. Collected data indicate that many synaptic sites within cortical circuits
modulate their synaptic strength across the successive stages of the acquisition
of new motor and cognitive abilities. In addition, in this paper we elucidated the
theoretical prediction of the relationships among different synaptic-learning states
and the comparison between learning and performance.

Keywords Mice • Hippocampus • Associative learning • Classical condition-
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1 Introduction

The study of neuronal mechanisms underlying learning and memory processes has
been approached traditionally with the help of molecular, histological, in vitro elec-
trophysiological procedures and other limited neurophysiological approaches [1].
Beside their evident advantages, those technical procedures use to generate pro-
found alterations of the nervous system. In this regard, learning and related cognitive
and motor processes should be studied at live, – i.e., at the very moment in which
learning is taking place.

In addition, if we consider that the neuron is the basic functional element
characterizing the nervous tissue, we would need to know the specific functional
properties of each neural type present in a given neural circuit and its contribution,
moment to moment, to the global process of learning, forgetting and remembering.
Thus, each neuronal type in this circuit should play a specific role that can only
be determined by the use of experimental models allowing its study in the best
physiological conditions and during the acquisition of new motor or cognitive
abilities [2–4]. We have developed the basic technology for the study of activity-
dependent changes in synaptic strength at a given relay site [2].

In this paper, we have extended this information to many different synapses
at the hippocampal and prefrontal circuits (see Fig. 1) during the acquisition and
storage of associative and non-associative learning tasks in alert behaving wild-type
mice.

Fig. 1 Main synaptic
pathways at the hippocampus,
indicating input and output
physiological connections.
The synapses included in this
study are indicated in red
color with their
corresponding numbers (e.g.,
1, 2, 3, : : : , 9) (Color figure
online)
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2 Methods

Animals were prepared for the chronic recording of the electromyographic ac-
tivity of orbicularis oculi muscle and of synaptic activity from the indicated
neural synaptic sites (see Fig. 1). Animals were trained with a pavlovian training
protocol (i.e., a classical eyeblink conditioning). The simultaneous recording of
synaptic activities at different neural sites offers a still unknown picture of the
specific functional states taking place at hippocampal and prefrontal circuits during
the actual acquisition process. Synaptic relay sites included in this study were
further characterised with the help of input/output curves, double-pulse tests,
and by the experimental induction of long-term potentiation (LTP) or depression
(LTD) [2, 4].

We used here mathematical tools developed in our laboratory to obtain the state
functions characterizing the acquisition of new motor and/or cognitive skills [5]. For
a specific behavioral/conditioning learning task, we can propose a synaptic-learning
states matrix of the type:

8
<̂

:̂

SNss;1Œt; x.t/� : : : SNss;NsyŒt; x.t/�
:::

: : :
:::

S 1;1Œt; x.t/� : : : S 1;NsyŒt; x.t/�

9
>=

>;
"

i D 1; : : : ;Nss .sessions/Ij D 1; : : : ;Nsy .synapses/

S i;j Œt; x.t/� 7! Synaptic� learning states function

The states function comprised i x j components, each of which characterized
the average of the synaptic strengths (taken trials by trials from ith session of
all the experimental subjects) that were denoted here by the variable x.t/. The
functional vector of the synaptic state (the rows in the matrix representation) is
analogous to a precise picture of a specific pathway (e.g., the polysynaptic pathways
at hippocampus – inputs and outputs connections) while the animal learns the task.
A mathematical formulation of this state functions is the following:

S i;j Œt; x.t/� D
i�1X

kD1
�i�k;j .t/ S i�k;j Œt; x.t/�

C
j�1X

nD1

iX

kD1
�k;n.t/ Sk;nŒt; x.t/�C �t

The first term to the right of the above equation represents the relations among
the state S i;j Œ t; x.t/ � and the previous learning states of the same synapse
S i�k;j Œ t; x.t/ � using the weight function �i�k;j .t/. The second term to the
right characterizes the functional couplings among the state S i;j Œ t; x.t/ � and the
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previous synaptic-learning states Sk;n Œ t; x.t/ � by means of the weight function
�k;n.t/. The time-dependent weights functions determine the strength (strong or
weak) and type (linear or nonlinear) of interdependences among states as well as the
timing-causality (time delays and correlation code) relationships among them (for
details see [5]). The parameter � t (the prediction error) estimates the uncertainties
associated with the model and depends on the past values of all the synaptic-learning
states (see the above equation). The programs/scripts used here were developed by
one of us (R.S.-C.) with the help of MATLAB routines.

3 Results

In a study from our laboratory [2] we have shown that hippocampal synapses
(specifically the CA3!CA1 synapse) changes in strength during the acquisition
of an associative learning task – namely, the classical conditioning of eyelid
responses. This learning-dependent change in synaptic strength was shown to be
linearly related with the learning curve indicating a direct relationship between the
acquisition of a new motor ability and the underlying synaptic plastic change. In
the past few months we have been checking if all synapses in hippocampal and
prefrontal circuits behave in the same way, that is, if all of them present similar
changes in strength during this type of associative task. As illustrated in Fig. 2, the
DG!CA3 behaves in a quite different way presenting a complex evolution across
the successive conditioning sessions. Thus, it was clear that each synapse in those
cortical circuits contributes in a different way to the acquisition process.

As illustrated in Fig. 3, the functional complexity of cortical circuits during
a simple type of associative learning becomes evident. The analytical and rep-
resentational approaches (see the above equation and Fig. 3) enables a better
determination and definition of functional states involved in the acquisition of
new motor and cognitive abilities [5]. A precise vector (corresponding to a given
functional state) will eventually be defined in quantitative terms describing the
situation of multiple synapses – i.e., neurally generated kinetic commands (e.g.,
the synaptic strengths) and the level of the expression of learned responses –
i.e., the kinematic (e.g., the eyelid biomechanical and electrical muscle activities)
for a given training session. In the present study, the time-dependent weights
functions allowed us to determine, in quantitative terms, the relationships among
the different synaptic-learning states (e.g., the mathematical differences among the
mean values of the color intensities in Fig. 3) – i.e., the quantitative and qualitative
characterization of the changes in synaptic strength. The proposed experimental
design also allows the incorporation of further kinetic and kinematic variables, with
the sole condition that the same experimental conditioning situation is reproduced.
Finally, this experimental approach will allow comparison between learning and
performance in different experimental situations. In a recent study [5] we present a
meta-analysis revealing future directions for the understanding of functional states
during motor and cognitive learning.
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Fig. 2 An example of the
quantitative analysis for
changes in synaptic strength
taking place in the dentate
gyrus (DG)!CA3 synapse
during the acquisition of a
classical eyeblink
conditioning. (a) The typical
learning curve calculated
from the orbicularis oculi
muscle activity. Animals were
classically conditioned using
a short tone as a conditioned
stimulus and an electrical
shock applied to the
trigeminal nerve as an
unconditioned stimulus. (b)
The dynamic evolution of the
synaptic strength
(DG!CA3 synapse) during
this associative learning
process. Note that this
synapse presents a complex
polynomial evolution across
the sessions (Color figure
online)

4 Discussion

We hope that the present experimental approach will help to offer, for the very
first time, a complete and quantifiable picture of synaptic events taking place in
cortical circuits directly involved in the acquisition, storage, and retrieval of different
types of associative and non-associative learning tasks. Indeed, our experimental
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Fig. 3 A color map representation of the dynamic evolution of field excitatory postsynaptic poten-
tials (fEPSP) collected across classical eyeblink conditioning sessions from alert behaving mice.
Selected synapses were: perforant pathway (PP)! dentate gyrus (DG); DG!CA3; PP!CA3;
CA3!CA1; thalamic reuniens nucleus (REU)!CA1; contralateral CA3 (CA3c)!CA1;
PP!CA1; CA1! subiculum (SUB); and CA1! prefrontal cortices (PF). The selected synapses
are indicated with the corresponding numbers (e.g., 1, 2, 3, : : : , 9). At the diagram are illustrated
activity-dependent changes in synaptic strength taking place at the indicated synapses across
the successive habituation (nD 2), conditioning (nD 10), and extinction (nD 5) sessions. The
evolution of evoked conditioned eyelid responses (CR) is illustrated at the right diagram. Note
that some synapses increased in learning-dependent strength across training (i.e., PP!DG,
CA3!CA1), other did not present any significant change in this type of associative learning
(PP!CA1), and finally, others decreased in their synaptic strength (CA1! PF) (see the
quantitative color bar to the right of each panel) (Taken from Fernández-Guizán, A., Sánchez-
Campusano, R., Gruart, A., and Delgado-Garcı́a, J.M., in preparation) (Color figure online)

approach is susceptible of being used in different types of associative learning as
instrumental [1] and classical conditioning [2], as well in other types of learning as
spatial orientation [3], object recognition [4], etc. The main output of these types of
study will be the precise definition of the functional state of large cortical synaptic
circuits during the very moment at which learning is taking place. In this regard,
we expect that a specific map (as the one illustrated in Fig. 3 for classical eyeblink
conditioning – delay paradigm) will be offered in the near future for the different
types of learning tasks.

In order to better understand the contribution of the cortical system to learning
and memory processes, the same experimental protocols could also be applied to
genetically manipulated mice or in animals receiving selective injections of si-RNA
and other molecular approaches. Our laboratory is presently actively involved in
these types of approaches.
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Causal Effects for Prediction and Deliberative
Decision Making of Embodied Systems

Nihat Ay and Keyan Zahedi

Abstract This article deals with the causal structure of an agent’s sensori-motor
loop and its relation to deliberative decision making. Of particular interest are causal
effects that can be identified from an agent-centric perspective based on in situ
observations. Within this identification, an optimal world model of the agent plays
a central role. Its optimality is characterized in terms of prediction quality.

1 Introduction

Evaluating different possibilities and deliberatively choosing among them is an
important ability in humans and animals. In order to be intentional, such a choice has
to be based on knowledge about causal consequences of individual brain dynamics.
Within dynamical systems theory, a plausible model to describe switching between
different dynamics is based on chaotic attractors [2]. However, in this framework
the study of causality remains a challenge. In this paper, we address causal effects
in the sensori-motor loop (SML) within a coarse-grained level of description where
transitions are modelled in terms of stochastic maps.

We use the formalism of Bayesian networks to study the causal relations in the
SML (see previous work [3] and [1] in this context). A Bayesian network consists of
two components, a directed acyclic graph 
 and a set of stochastic maps describing
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Fig. 1 Causal diagram of the
sensori-motor loop

the individual mechanisms of the nodes in the graph. More precisely, 
 is assumed
to have no directed cycles (see Fig. 1 as an example). Given a node Y with state set
Y , we write X WD pa.Y / for the set of nodes Xi with an edge from Xi to Y . The
mechanism of Y is formalized in terms of a stochastic map � W X � Y ! Œ0; 1�,
.x; y/ 7! �.xIy/, where X denotes the state set ofX . The stochasticity of � refers
to
P

y �.xIy/ D 1 for all x.
The Fig. 1 shows the general causal diagram for the SML, where Wt ; St ; Ct ; At

denote the world, sensor, controller (memory), and action at some time t . We denote
their state sets by W ;S ;C ;A , respectively. The stochastic maps ˛, ˇ, ', and �
describe the mechanisms that are involved in the sensori-motor dynamics. Here, '
and � are intrinsic to the agent. They are assumed to be modifiable in terms of
a learning process. The mechanisms ˛ and ˇ are extrinsic and encode the agent’s
embodiment which sets constraints for the agent’s learning (for details, see [3, 5]).

Pearl [4] proposes the concept of intervention to capture causal relationships
between random variables in a given Bayesian network. We will show that the
formalization of the SML allows to determine causal relations solely observational
without any experimental intervention, although its derivation is based on the
concept of intervention (see Sect. 2). In this identification of causal effects, the
optimal world model plays a central role. It is given as the conditional probability
p.sjc; a/ of observing the next sensor state s as a result of the current controller
state c and the current action a of the agent.

2 Causal Effects in the Sensori-Motor Loop

Figure 1 illustrates the causal structure of the SML. This representation has been
used in [1, 3].

Pearl’s formalism [4] allows to define and study causal effects in the SML, for
instance the effect of actions on sensor inputs. Here, a fundamental understanding
is that in order to reveal causal effects one has to test the system in experimental
situations (ex situ). In this context, intervention is an operation that serves as an
important building block in corresponding experiments. However, it is not always
possible for an agent to perform an intervention. Therefore, it is important to
know whether a particular causal effect can be identified purely based on in situ
observations of the agent. In the proposition below, we list three causal effects in
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Fig. 3 Left: Reduced causal diagram for one time step. Right: Causal diagram with world model �

the SML that are identifiable by the agent without actual intervention. In order to
be more precise, we have a closer look at the causal diagram of the transition from
time t � 1 to t .

Here, as shown in Fig. 2, we consider the future sensor value of only one time step
and summarize the past process by a variableHt�1. We focus on the resulting causal
diagram of Fig. 3 (left-hand side). The joint distribution in the reduced diagram is
given as

p.h; c; a;w; s/ D p.h/'.hI c/�.cI a/˛.h; aIw/ˇ.wI s/: (1)

Given such a factorization of the joint distribution, one can define the inter-
vention in a subset, which is referred to as do-operation. It is simply given by
the corresponding truncation of the product, which formalizes the idea that the
mechanisms of the intervened variables are changed from outside. As an illustration,
we consider the product (1) and set the value A to a, that is we do a. The result of
this conditioning is given as

p.h; c;w; sjdo.a// D p.h/'.hI c/˛.h; aIw/ˇ.wI s/:

Summing over the variables h; c;w, for example, gives us the probability of
observing s after having set a. The corresponding stochastic map is referred to as
the causal effect of A on S :

p.s j do.a// D
X

h;c;w

p.h; c;w; s j do.a//:
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Note that, in general, we do not have p.s j do.a// D p.s j a/, which is an
important property of causal effects. Applying the described procedure, one can
compute various other causal effects. The following question plays a central role in
Pearl’s causality theory: Is it possible for an observer, such as an autonomous agent
considered in this paper, to reveal a causal effect based on observations only? At
first sight, this so-called identifiability problem appears meaningless, because causal
effects are based on the concept of intervention. However, having some structural
information sometimes allows to identify causal effects from observational data.

The following causal effects can be identified by the agent without any actual
intervention.

Proposition 1. Let the joint distribution (1) be strictly positive. Then the following
equalities hold:

(a) p.s j do.a/; c/ WD p.s; c j do.a//
p.c j do.a// D p.s j c; a/

(b) p.s j do.a// D
X

c

p.s j c; a/ p.c/

(c) p.s j do.c// D
X

a

p.a j c/
X

c0

p.s j c0; a/ p.c0/.

The proof of Proposition 1 is given in the appendix. In all three causal effects of
this proposition, the conditional distribution p.s j c; a/ turns out to be essential as
building block for the identification of the causal effects. Note that in the strictly
positive case, according to Proposition 1 (a), it is not dependent on the agent’s policy.
In the next section, this distribution will be studied in more detail.

3 World Model and Prediction

The causal effects of Proposition 1 involve the conditional distribution p.s j c; a/.
In this section we derive an interpretation of this conditional distribution as optimal
world model that allows for the best possible prediction. In order to do so, we extend
the causal diagram of Fig. 3 by a world model � which assigns a probability of
observing s as a result of the action a in the context of the internal state c, formally
� W �C �A ��S ! Œ0; 1�. The world model is a model of the agent’s expectation,
which can be used for a prediction eS of the next sensor input S . We obtain the
diagram of Fig. 3 (right-hand side).

The distribution ofeS given C is derived as

ep.sjc/ WD ProbfeS D s jC D cg
D
X

a0

�.cI a0/ �.c; a0I s/:
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(Here, Prob stands for probability.) In order to measure the quality of the world
model � , we use the entropic distance, also known as KL divergence, between
ep.sjc/ and ˇ.wI s/:

D.ˇ kep/ WD
X

c;w

p.c;w/
X

s

ˇ.wI s/ ln
ˇ.wI s/
ep.sjc/ :

The following proposition identifies the conditional probability p.sjc; a/ as best
world model in terms of this deviation measure.

Proposition 2. If a world model b� satisfies b�.c; aI s/ D p.sjc; a/ whenever
p.c; a/ > 0 then it minimizes the distance D.ˇ kep/:

inf
�

X

c;w

p.c;w/
X

s

ˇ.wI s/ ln
ˇ.wI s/P

a0 �.cI a0/ �.c; a0I s/

D
X

c;w

p.c;w/
X

s

ˇ.wI s/ ln
ˇ.wI s/P

a0 �.cI a0/ p.sjc; a0/
:

This implies that the minimal distance coincides with the conditional mutual
information I.W IS jC/.
The proof of Proposition 2 is a straightforward application of the Lagrange
multiplier method.

4 Deliberative Actions

In the previous sections, we referred to a reactive interpretation of actions (see [4],
p. 108). The corresponding reactive policy � assigns an action a to the agent’s state
c, formalized in terms of a stochastic map � W C �A ! Œ0; 1�, .c; a/ 7! �.cI a/.
In order to have a deliberative interpretation of a given policy, we decompose the
internal state c into a memory state m and a goal state g, that is c D .m; g/ and
C D M � G . We assume that the goal variable G only depends on the memory
variableM , which leads to the causal diagram of Fig. 4.

S

W

AH

π

M G

Fig. 4 Causal diagram with
goal map  and deliberative
policy �
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The map  models the process of choosing a goal. Studying intentionality, we
hypothesize that the causal effect p.s j do.g// of the goal g on the sensor input
s plays an important role. A simple calculation, similar to the one in the proof of
Proposition 1(b), yields

p.s j do.g//
D
X

m

p.s jm; g/ p.m/

D
X

m

X

a

p.s jm; a/ �.m; gI a/ p.m/:

In particular, the causal effect of the goal variable G on the sensor variable S is
identifiable. This implies that intentionality is identifiable through M;G;A; S , a
conceptually interesting observation. Note, however, that this is only valid in the
case of strict positivity of the underlying distribution.

Acknowledgements Both authors thank Ralf Der, Daniel Polani, and Bastian Steudel for valuable
discussions on causal effects in the sensori-motor loop. This work has been supported by the Santa
Fe Institute.

Appendix

Proof of Proposition 1:

(a) p.h; c;w; s j do.a//
D p.h/ '.hI c/ ˛.h; aIw/ ˇ.wI s/:

This implies

p.s; c j do.a//
D
X

h;w

p.h/ '.hI c/ ˛.h; aIw/ ˇ.wI s/

p.c j do.a//
D
X

s

X

h;w

p.h/ '.hI c/ ˛.h; aIw/ ˇ.wI s/

D p.c/



Causal Effects for Prediction and Deliberative Decision Making of Embodied Systems 505

p.s j do.a/; c/

D p.s; c j do.a//
p.c j do.a//

D
X

h;w

p.h/

p.c/
'.hI c/ ˛.h; aIw/ ˇ.wI s/

D
X

h;w

p.h j c/ p.w j h; a/ p.s jw/

D
X

h;w

p.h j c; a/ p.w j h; a; c/ p.s jw; h; a; c/

.conditional independence, see diagram in Fig. 3/

D p.s j a; c/:

The second and third equations of the proposition follow from the general theory
(see [4], Theorem 3.2.2 (Adjustment for Direct Causes, and Theorem 3.3.4
(Front-Door Adjustment)). For completeness, we prove them directly.

(b) p.s j do.a//
D
X

h;c;w

p.h; c;w; s j do.a//

D
X

h;c;w

p.h/ '.hI c/ �.cI a/
p.ajc/ ˛.h; aIw/ ˇ.wI s/

D
X

h;c;w

p.h; c; a;w; s/

p.c; a/
p.c/

D
X

c

p.sjc; a/ p.c/:

(c) p.s j do.c//
D
X

h;a;w

p.h; a;w; s j do.c//

D
X

a

�.cI a/
X

h;w

p.h/ ˛.h; aIw/ ˇ.wI s/

D
X

a

p.ajc/
X

h;w

 
X

c0

p.c0/ p.hjc0/
!

�p.wjh; a/ p.sjw/
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D
X

a

p.ajc/
X

c0

p.c0/

�
X

h;w

p.hjc0/ p.wjh; a/ p.sjw/

D
X

a

p.ajc/
X

c0

p.c0/

�
X

h;w

p.hjc0; a/ p.wjh; a; c0/ p.sjw/

D
X

a

p.ajc/
X

c0

p.c0/ p.sjc0; a/: �
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Ongoing Global Phase Pattern and Visual
Signal Detection

Daisuke Shimaoka, Keiichi Kitajo, Kunihiko Kaneko, and Yoko Yamaguchi

Abstract When a stimulus is present on the threshold, it appears that we perceive
it by chance. Previous electroencephalogram (EEG) studies have reported that
the prestimulus phase and amplitude of alpha band activity at a single channel were
correlated with visual perception. However, these factors cannot explain a major
portion of fluctuations in perception. We hypothesized that another activity in the
prestimulus period should predict the success/failure of perception. This would be
phase coherence across cortical areas. We conducted a simple visual discrimination
task in which subjects reported whether they had perceived a tiny flash of light by
pressing one of two keys. We calculated inter-trial coherence (ITC) of the alpha
band phase for the hit and miss trials, respectively. We found that the peak ITC
times between hit and miss trials were 250–400 ms apart. These results imply that
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spontaneous formation of coherent alpha band activity and its timing are crucial in
the processing of visual perception. These results suggest the importance of neural
dynamics in the form of coherent alpha band activities in the frontal and occipital
regions for the processing of visual perception.

1 Introduction

When an external stimulus is present on the threshold, it appears that we perceive it
by chance. This fluctuation of perception has been assumed to derive from intrinsic
neuronal noise. Recent experimental studies have revealed that such neuronal noise
indeed possessed spatio-temporal organization instead of what had been originally
assumed (called spontaneous or prestimulus activity). In addition, it has been
revealed that fluctuation of prestimulus activity is associated with the processing
of external stimuli [1]. In particular, previous electroencephalogram (EEG) studies
reported that the prestimulus phase [2–4] and/or amplitude [5–7] of alpha band
activity at a single channel were correlated with visual perception. However, when
we assume that deterministic dynamics lead to perception, not only do amplitude
and/or phase at a particular time prior to stimulus appear, their timing may also
differ. We then hypothesized that timing of coherence provides crucial clues to
determine whether subjects saw the light (hit trials) or not (miss trials). In this study,
we conducted a simple visual discrimination task in which subjects reported whether
they perceived a tiny flash of light by pressing one of two keys. We focused on the
timing of respective prestimulus phase coherence for the hit and miss trials.

2 Methods

2.1 Subjects

Ten volunteers performed a discrimination task in which subjects reported whether
they had perceived a flash by pressing one of two keys in 80 trials in 15 blocks.
One participant was excluded from analysis due to excessive eye movements
throughout the experiment. Another subject was excluded because of unstable
behavioral performance. All participants had normal or corrected-to-normal vision.
The RIKEN research ethics committee approved the study, and the experiment was
undertaken with written informed consent.

2.2 Stimuli and Behavioral Task

Visual stimuli were presented on a gray background on a 150-Hz cathode ray tube
monitor (FlexScan, Eizo, Japan). Subjects were instructed to pay covert attention
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to the site indicated by peripheral markers (7ı visual angles to the right of the
fixation point), where the target flash (0.7ı in size) might appear. The target was
presented in 80% of the trials (the remaining 15% were flash-absent “catch” trials
and 5% were trials with a high-luminance flash that subjects could easily perceive).
The flash onset was randomly drawn from 2,200 to 2,500 ms after the onset of
central fixation. The flash intensity for each subject was controlled with a staircase
procedure so that the detection rate of the flash matched 50%. During the task,
64-channel scalp EEG signals and 4-ch electro-oculography (EOG) signals were
recorded with a BrainAmp MR plus amplifier (Brain Products, Germany), and eye
movement was recorded with a video-based eye-tracker (EyeLink CL, SR Research,
Canada).

2.3 Data Analysis

EEG signals were first high-pass filtered at 1 Hz to correct linear trend. Then, the
EEG record from 2,000 ms before to 500 ms after the flash was extracted as a record
of a single trial. To remove artifacts derived from eye blinks, we excluded trials that
contained EEG signals exceeding ˙100 �V or horizontal EOG signals exceeding
˙150 �V. To remove artifacts derived from myoelectric signals, we also excluded
trials that included EEG signals deviating in a �100–C25 dB range at 20–40 Hz.
In addition, using the data from the video-based eye-tracker, we excluded trials in
which the eye position on the display deviated more than 2.5ı of visual angles.
EEG signals were decomposed into instantaneous phase ('(t)) and amplitude at
10 Hz using wavelet transformation, where a Morlet wavelet of three cycles was
used as the mother wavelet. We obtained inter-trial coherence (ITC) to quantify
phase coherence across trials. ITC is defined as:

ITC.t/ D 1

N

ˇ̌
ˇ̌
ˇ

NX

kD1
e�i'k.t/

ˇ̌
ˇ̌
ˇ ;

where N indicates the number of trials for each subject and perception condition.
'k(t) indicates the instantaneous phase at the k-th channel at time t. ITCD 1
indicates perfect phase coherence across trials, whereas ITCD 0 indicates that the
phases are completely randomized over trials.

To study region specificity of the phase coherence, we classified the recording
channels into four groups according to their locations on the scalp, namely, left
frontal (Fp1, AF3, AF7, F1, F3, F5, F7, FC1, FC3, FC5, FT7), right frontal (Fp2,
AF4, AF8, F2, F4, F6, F8, FC2, FC4, FC6, FT8), left occipital (CP1, CP3, CP5,
TP7, P1, P3, P5, P7, PO3, PO7, O1, O9), and right occipital (CP2, CP4, CP6, TP8,
P2, P4, P6, P8, PO4, PO8, O2, O10). A two-tailed t-test was conducted for each
time step and group, where one sample was drawn from one channel in one group.
This test examined whether ITC in one condition significantly deviated from that in
another condition.
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3 Results

3.1 Difference in ITC Peak Time Between Hit and Miss Trials

A study by Busch et al. [2] reported that the alpha band prestimulus phase was
contrary in hit and miss conditions within 400–0 ms before the target presentation.
We thereby investigated the ITC in this time range. Figure 1 indicates how different
the ITC of hit and miss trials are at each time step as obtained from the data of
two representative subjects. In one subject (Fig. 1a), significant ITC time for hit
trials alternated with that for miss trials by 250 ms in the left frontal region. This
alteration was more obvious in the result from the other subject (Fig. 1b). Here, the
alteration was observed in all four regions. We also found that the peak time of the

Fig. 1 Difference in
prestimulus ITC between hit
and miss trials. The recording
channels are divided into four
groups according to their
location on the scalp. Using
one sample as a datum from
one channel, a t-test statistic
is calculated for each group at
each time. Y-axis indicates
p-value that is transformed
from a corresponding t-value.
Black line indicates the
p-value of whether the ITC
distribution in the hit
condition is larger than that in
the miss condition. Gray line
indicates the p-value of
whether the ITC distribution
in the miss condition is larger
than that in the hit condition.
The bars above each figure
indicate the period where
p-values are within p<0.05
(Bonferroni corrected) (a) hit:
107 trials, miss: 99 trials,
(b) hit: 178 trials, miss: 187
trials
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prestimulus ITC nearest to target onset was for the hit condition in the left frontal
region in six of eight subjects, although the peak times between subjects were not
consistent.

3.2 Cross Correlation Between ITC of Hit and Miss Trials

Does this alteration of ITC appear only near the onset of the target, or hold for much
longer? To verify this, we calculated the cross-correlation between the time courses
of hit trial ITC and that of miss trials from 1,500 to 0 ms before target onset. We
found that all the eight subjects exhibited significant negative correlation in the left
occipital region (Spearman rank correlation, p <0.05), whereas four of them also
exhibited significant negative correlation in the left frontal region. Only two subjects
exhibited significant negative correlation in the right frontal and occipital regions.
These results indicate that ITC alteration of the hit and miss trials was maintained
for at least 1,500 ms, mainly in the left occipital region.

4 Discussion

Busch et al. [2] reported that the prestimulus alpha band phase was correlated with
perception. The study was based on the assumption that the coherent timing for hit
and miss trials was identical (200 ms before the stimulus). In our study, however, the
timing of ITC right before the target stimulus was associated with whether subjects
perceived the flash. This means that the (absolute) phase of a particular timing plays
a key role in whether we perceive the flash or not. In this sense, our findings are an
extension of the previous report. Prediction of behavioral performance based on the
timing of phase information remains to be explored.

Our cross-correlation analysis suggests that the alteration of peak ITC time could
be observed for a long time before the target stimulus. One possible interpretation
of this result is that an unknown coupling exists between the alpha band oscillation
phase and that of a slower oscillation, such as theta and delta oscillations. It has
occasionally been reported that coherent phase activity (mainly in gamma band)
appears intermittently [8–10]. The findings of these studies and our results may be
comparable in that coherent phase activity appeared intermittently in a few 100-ms
intervals. Thus, there might be a common principle governing these processes. The
relationship between our findings and that of prestimulus alpha band phase and
amplitude previously reported should be investigated in a future study. In particular,
it will be important to study the phase coherence in the frontal region, where
significant prestimulus phase effects on perception were observed by Busch et al.
[2]. Single-trial-based analysis will also be required to better predict perception and
clarify the mechanism of prestimulus activity on perception.
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Prestimulus oscillations predict visual perception performance between and within subjects.,
Neuroimage 37 (2007)1465–1473.

8. S. Doesburg, K. Kitajo and L. Ward, Increased gamma-band synchrony precedes switching of
conscious perceptual objects in binocular rivalry., Neuroreport 16 (2005)1139–1142.

9. H. Nakatani and C. van Leeuwen, Transient synchrony of distant brain areas and perceptual
switching in ambiguous figures., Biol Cybern 94 (2006) 445–457.

10. E. Rodriguez, N. George, J. Lachaux, J. Martinerie, B. Renault and F. Varela, Perception’s
shadow: Long-distance synchronization of human brain activity., Nature 397 (1999) 430–433.



Model on Visualization and Analysis
for Peripheral Drift Illusion

Keiichiro Inagaki and Shiro Usui

Abstract The peripheral drift illusion yields rotating motion on our peripheral
vision. It has been reported that the order of four different luminance regions is
essential for this illusion (black, blue (dark gray), yellow (light-gray), and white).
Moreover, it has been suggested that luminance or contrast dependent latency of
V1/MT direction selective cells contributes on induction of the rotating illusory
motion. In the present work, we modeled V1 and MT as a retinotopic map of those
direction selective cells and investigated whether the illusory rotating motions in
peripheral drift illusion can be reproduced. In our simulation, the illusory rotating
motions are represented in the transition of neuronal responses in both V1 and MT
when the responses are visualized in contrast domain, but not in luminance domain,
suggesting that the contrast is key information for induction of the rotating motion
in the peripheral drift illusion.

Keywords Illusory motion • Primary visual cortex • Middle temporal • Model
simulation

1 Introduction

Most people perceive an impressive illusory motion in the static image called
peripheral drift illusion (e.g. Fraser and Wilcox [8], Rotating snake [12]). The
peripheral drift illusion composed of luminance defined patterns with four different
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adjacent luminance patches: black, blue (dark gray), white, and yellow (light gray);
where illusory rotating motion is perceived in this order. Recently these illusory
images are regarded as an art and attract a great deal of interest [15]. In contrast, the
scientific studies for perception of the illusion were minority [1, 2, 6, 7, 12, 13, 16].
So far, several lines of evidence have been proposed for the perceptual mechanism
of the peripheral drift illusion. Faubert and Herbert have suggested that the apparent
motion was induced by difference latency among different luminance [7]. Kitaoka
and Ashida have also proposed that the order of the four different luminance regions
is essential for the illusion perception [12]. Namely, the illusory rotating motion
depends on the fact that contrast of black and white are higher than blue (dark gray)
and yellow (light gray), and the apparent motion was produced from high contrast
to low contrast. In fact, contrast dependent latency of the neuronal responses was
reported in bipolar cell [3], amacrine cell [4], and retinal ganglion cell [5]. Moreover,
Conway et al. have experimentally revealed contrast dependent difference of the
neuronal response in V1 and MT by using stimuli involved with the rotating snake,
and found that the peak responses of V1 and MT direction selective cells for white
or black bars were earlier than that for blue (dark gray) and yellow (light gray) [6].
Backus and Oruç have reported that the rotating snake and the Fraser and Wilcox
illusion result from contrast or luminance adaptation [1]. They proposed that fast
and slow changes over time in the neuronal representation of contrast or luminance
gradually deform the representation of stimulus image. Thus, the contrast dependent
latency was thought to be related with the peripheral drift illusion; however, how this
contributes on the induction of illusion is still unknown.

In the present work, we modeled V1 and MT as a retinotopic map using those
direction selective cells [6] for visualization of the peripheral drift illusion, and
analyzed its perceptual mechanisms. In our simulation, the rotating motions were
represented in the transition of neuronal responses in both V1 and MT when the
responses were visualized in contrast domain, but not in luminance domain. This
suggests that contrast is a key information for reproducing the rotating motion in
the peripheral drift illusion.

2 Methods

2.1 The Model of V1/MT

Both V1 and MT models were constructed as retinotopic maps consisted of 133,225
(365� 365) direction selective cells each (Fig. 1). The temporal response of V1 and
MT direction selective cells for each luminance input (black, dark gray, light gray,
and white) was modeled by the following equation.

F.s/ D X.s/ �G.s/
D X.s/ � g � e��s=.˛s2 C ˇs C �/ (1)
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Fig. 1 Retinotopic model of V1 or MT. The model configured from 133,225 (365� 365) direction
selective cells of V1 or MT. In each model, an external image was directly projected onto the cells,
and the response of each cell was computed as impulse response for the luminance (contrast)
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Fig. 2 Neuronal response of V1 direction selective cell for the four types of luminance input
(black, dark gray, light gray, and white): experimental data [12] (a) and the model response
parameterized for luminance (b) and for contrast (c). In each panel, solid line indicates response
for black or white, and dashed line indicates response for dark gray or light gray

where, s denotes Laplace operator, and X.s/ is the Laplace transform of absolute
value of difference between luminance and gray (jIin�Igrayj/Igray). � denotes delay
time of a neuronal response. The parameter ˛, ˇ, � , and g were estimated by fitting
the model output to temporal response of V1 or MT reported by Conway et al.
[6], while � was globally searched between 40 and 65 ms in 1 ms steps. Parameter
estimation was carried out in MATLAB. After determined the model parameter,
response of the model was parameterized for either luminance or contrast (Figs. 2,
and 3) for visualization. In the parameterization for the luminance (Figs. 2, and 3b),
the model output was normalized to take a range from 0.0 (black) to 1.0 (white). For
the contrast (Figs. 2, and 3c), low and high contrast were defined to be negative and
positive value, respectively, and the model output was normalized (0 (gray) to 1.0
(white) or �1.0 (black)).
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Fig. 3 Neuronal response of MT direction selective cell for the four types of luminance input. The
format is the same as Fig. 2

3 Results

We used the rotating snake and control stimulus (Fig. 4) as the model input, where
the order of color unit (black-blue-white-yellow) was arranged in the same direction
for the former, but reversed between every unit for the later.

In agreement with experimental study [12], similar rotating motions were
observed as the transition of neuronal responses in both the V1 and the MT model
were visualized in contrast domain. On the other hand, opposite directional rotating
motion was found in both model responses when visualized in luminance domain.
For the control stimulus, no rotating motion was observed for both contrast and
luminance.

To quantify the reproduced motion, we analyzed the transition of the neuronal
response of V1 and MT using optical flow. The optical flows were calculated every
five pixel using Lucas-Kanade algorithm [14]. Note that the counter clockwise flows
correspond to direction of rotating illusion.

Figure 5 illustrates an example of the optical flows (indicated by red lines) in MT
neuronal response for the rotating snake (a) and the control stimulus (b).

The counter clockwise flows were mostly found in the peripheral region of
V1 (data not shown) and MT when those responses were visualized in contrast
domain (Fig. 5a). For the control stimulus, the flows for both clockwise and counter
clockwise rotation were detected (Fig. 5b), thus canceling the perception of rotating
motions.

The number of clockwise and counter clockwise flows is summarized in Table 1.
When the neuronal responses were visualized in contrast domain, almost all detected
flows in both V1 and MT were counter clockwise for the rotating snake. For the
control stimulus, the number of the counter clockwise flows was smaller than the
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Fig. 4 Rotating snake (left)
and control (right) stimulus.
Color unit defined by black,
blue, white, and yellow is
repeated every unit for the
rotating snake while it is
reversed every unit for the
control (Color figure online)

Fig. 5 Simulation of the MT responses for the rotating snake (a) and the control stimulus (b). The
model response was visualized in contrast domain. Right image shows enlarged image of green
region in left image. Red lines and white boxes indicate detected optical flows and those starting
points (Color figure online)

Table 1 Summary of detected optical flow

Percentage of detected flow

Condition Stimulus Clockwise
Counter clockwise
(rotating motion)

V1 Luminance Rotating snake 99.7% 0.3%
Control 60.4% 39.6%

MT Rotating snake 75.6% 24.4%
Control 59.9% 40.1%

V1 Contrast Rotating snake 1.6% 98.4%
Control 64.6% 35.4%

MT Rotating snake 0.2% 99.7%
Control 62.4% 37.6%
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clockwise one in both V1 and MT. When the neuronal response was visualized in
luminance domain, mostly clockwise flows were detected in both V1 and MT for
the rotating snake.

4 Discussions and Conclusion

In the present study, we modeled the V1 and MT direction selective cells based
on those single unit data [6], and constructed the retinotopic map of both cells.
In agreement with experimental study [12], similar rotating motion was observed in
both the V1 and the MT model in which the neuronal responses were parameterized
in contrast domain. By analyzing the V1 and MT response transition by optical
flow, the flows accompanied with the rotating illusory motion were represented
peripherally in those maps for the rotating snake, while the flows countervailing
the perception of rotating illusion were observed in the control stimulus. The results
indicated that the signal source for the perception of rotating snake were represented
in both V1 and MT, and suggested that the contrast is a key signal to drive an illusory
motions in the peripheral drift illusion as reported by previous studies [1, 6, 12].

Several lines of evidence indicated the involvement of fixation instability
(microsaccades and drift) for the generation of rotating illusion [1, 16]. Recently,
we have developed the model that can generate the fixation instability [9] and will
integrate the present model to evaluate the contribution of fixation instability on
the induction of illusory rotating motions. Furthermore, we recently put forward to
aid in uncovering various neuronal mechanisms on our vision including those for
attention, illusion, and subconscious perception [10, 11, 17]. In future studies, we
will integrate the present model on the whole visual system model and analyze the
perceptual mechanisms of the peripheral drift illusion.
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Differentiation Through Symbolic
Communication

Takuma Torii and Takashi Hashimoto

Abstract We explore the manner in which a neuro-symbolic hybrid system differ-
entiates through symbolic communication. The hybrid system consists of a recurrent
neural network and a rewriting rule system. It is shown that the differentiation comes
from the asymmetric structure of the symbol system, i.e., usage of different rules
in deriving and accepting the same symbolic message. The dynamics of symbolic
communication depends on the phase space structure of the neural system. The
asymmetric structure is realized by generalization, and it must be ubiquitous in
adaptive symbol systems such as human language.

1 Introduction

In human communication, a symbolic message is often differently understood by
different people. It is often speculated that this difference in understanding stems
from their physical, neural, and experiential differences. This speculation raises the
following question: can the differentiation of systems be possible from completely
identical physical and neural systems? Further, for such cases, if it is the case, what
is the mechanism of differentiation?

Kaneko and Yomo [1] studied cell differentiation from the dynamical viewpoint.
They showed that very similar cells can be differentiated after cell division due
to chaotic dynamics. In contrast to their focus on the chaotic nature of cells, we
concentrate on the symbolic nature of human communication, where a sequence of
symbols referring to something are interchanged.
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2 Model

We construct a model of symbolic communication between two agents, a speaker
and a hearer (see [2] for details). Each agent p/q consists of a symbol system S and
a neural system N. The symbol system S is a rewriting rule system consisting of
a set of rules mapping expressions e and internal representations r . The rules are
generalized by rule-generalization algorithms. The neural system N is a recurrent
artificial neural network.

Communication is defined as the interchange of expressions e between the
speaker and the hearer. The internal process of the agents consists of three phases:
(1) Acceptance: The symbol system S transforms an expression eA received from
the other agent (the speaker) into an internal representation rA; (2) Sensemaking:
The neural system N converts the internal representation rA into a new internal
representation rD; (3) Derivation: The symbol system S transforms the new internal
representation rD into an expression eD to be sent to the other agent. Since the
symbol system S cannot always map between expressions e and representations r ,
two additional processes are required: (1) Instruction: When the acceptance fails,
the speaker communicates to the hearer the speaker’s internal representation rA by
some other means, e.g., pointing to an object to which rA refers. (2) Invention:
When the derivation fails, an expression eD is randomly produced. We call the
internal process from acceptance to derivation a turn. The actual communication
between two agents is a series of turns (Fig. 1).

2.1 Symbol System

A symbolic rule “k = r $ e” is a mapping between a representation r and an
expression e, discriminated by a label k, where both r and e are sequences of
characters (examples are shown in Fig. 3). The rule can contain labeled variables,
which will be substituted by another rule discriminated by the same label in the
acceptance and derivation processes. Rules can be learned with generalizations (see
[2]), which are operations involving the creation of a generalized rule by replacing
different or common parts of two rules with a labeled variable. In this model,
the rules are chosen on predefined priorities and not in a probabilistic manner.
Thus, differentiation cannot occur due to rule selection. Two types of characters
are assigned to e and r , respectively.

Fig. 1 Model of symbolic
communication
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2.2 Neural System

The neural network consists of sets of 2 input, 2 output, and 6 hidden neurons
denoted by I, O, and H, respectively. The numbers of input and output neurons
are determined by the method of converting a character sequence r into an input
to the neural system.1 In this model, we adopt the winner-take-all coding scheme,
and there are two different types of characters. The i -th neuronal state yti at time
t .D f1; 2; : : : ; T g/ changes according to the equation

ytC1i D
X

j

wtj i z
t
j C ˛I ti C ˇOt

i ;

where wij .D Œ�8; 8�/ denotes a constant connection weight from the j -th to i -th
neuron, zj .D Œ0; 1�/ indicates the firing rate of the j -th neuron updated by zj D
1=.1 C exp.�yj //, Oi2I .D Œ�1; 1�/ denotes linear transformation of an output
zl2O .D Œ0; 1�/ of the other agent’s neural network, and Ii2I denotes the input to the
i -th neuron from the symbol system determined by the equation

I ki D
(
Rik if 1 	 k 	 jr j
0 otherwise

:

In accordance with the winner-take-all coding, each character is represented as
a sequence of binary values. Thus, Rik .D f�1; 1g/ is the i -th binary value of the
k-th character of a representation r . The terms ˛ .D 8:0/ and ˇ .D 8:0/ represent
constant parameters.

The agents interchange a total of U (= 1,000) expressions in simulation. The
neural networks are updated T .D 100/ times for every turn u .D f1; 2; : : : ; U g/,
in which the speaker and the hearer process rA and rD , respectively. The term
� .D f1; 2; : : : ; T U g/ hereafter denotes the time after t updates in the u-th turn.

3 Results

The neural systems are identical initially; these identical systems include not only
wij but also yi and zi . Due to the reduced size of the present model, generalization
in the symbol system usually stops when the symbol system is be able to transform
any representations produced by the coupled neural system.

1We decided on the number of hidden neurons by examination of the smallest system with chaotic
behavior.
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Fig. 2 The neuronal dynamics of hidden neurons and the representations formed (rp/rq). Their
neural systems transit the two alternative attractors (period-six) driven by the inputs Rik given
every T .D 100/ steps

S / bxN ↔ AxN (1)
S / axN ↔ AxN (2)

N / b ↔ B (3)

Fig. 3 An example of a symbol system with DA-asymmetry. ‘S’ and ‘N’ are labels, ‘x’ is a
variable, ‘a’ and ‘b’ are characters for representation r , ‘A’ and ‘B’ are those for expression e

Figure 2 shows a converged periodic time-evolution of symbolic communication
where differentiation in neural dynamics is observed. The agents evolve to exhibit
different dynamics although they start as completely identical systems.

The differentiation only happens when the agents’ identical symbol systems
have different paths of rule substitution in the derivation and acceptance processes
of an expression. We call this property “derivation-acceptance asymmetry” (DA-
asymmetry). If the agents have this property, the agents have different representa-
tions for the same expression.

Figure 3 is an example of a symbol system with DA-asymmetry. An agent
with the symbol system in Fig. 3 performs the derivation from the representation
rD D‘ b b ’ to the expression eD D‘ A B ’ by substituting rule (3) into the variable
xN in rule (1). On the other hand, the agent can possibly accept the received
expression eD D‘ A B ’ via two paths of acceptance, namely, as the representation
rA D‘ b b ’ by substituting rule (3) into rule (1) and rA D‘ a b ’ using rule (2)
instead of (1). Actually, in the present model, a path is selected deterministically
based on predefined priorities without multiple possibilities. It is noteworthy that
the agent may use different paths in derivation and acceptance under any rule
selection strategy. This is the case of differentiation, where the speaker and the
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Fig. 4 Four coupling attractors of the coupled neural system, corresponding to Figs. 2 and 5. A
coupling attractor is a pair of individual attractors (e.g., ‘+’) in the figures on the left and right

hearer processing identical symbol systems may have different representations for
the same expressions, so that their neural systems receive different inputs, thereby
causing differences in the dynamics of their neural systems.

Generalization of a rewriting rule system usually causes DA-asymmetry. Further,
it can be brought about by invention when an expression that is randomly produced
falls into the same rule system as an existing rules.

As described in Sect. 2, two neural systems of both agents are coupled via their
inputs and outputs. We call the attractor of the coupled dynamical system of the
two neural systems a coupling attractor. In contrast, an attractor of a neural system
is called an individual attractor. Here, the two neural systems are coupled with
each other as dynamical systems; however, they are separated as distinct individual
agents.

There are three types of coupling attractors for neural systems of identical
weights:

1. On the same individual attractor with the same phase;

2. On the same individual attractor with different phases;

3. On different individual attractors.

The types 2 and 3 are regarded as differentiated.
The phase space structure of a neural system determines the possible types

of coupling attractors to which the neural systems converge after the symbol
systems attain different representations for the same expressions. Figure 4 shows
the coupling attractors corresponding to Fig. 2. There are four kinds of coupling
attractors; all of them occur due to the various combinations of the couplings of the
different individual attractors. In this case, there are only type 3 coupling attractors,
and the neural systems inevitably differentiate if the symbol systems form different
representations. On the other hand, neural systems never differentiate when there are
only type 1 coupling attractors even if the symbol systems attain DA-asymmetry.
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Fig. 5 Neuronal dynamics after the convergence of symbolic communication. The neural systems
used are identical to those in Fig. 2

The symbol system and neural system mutually regulate each other. Figure 5
shows a converged time-evolution of symbolic communication in which the neural
systems have coupling attractors identical to those shown in Fig. 2; these coupling
attractors are shown in Fig. 4. In Figs. 2 and 5, it is observed that different symbol
systems develop with identical neural systems. The different symbol systems
produce different expressions/representations; consequently, the neural systems
transit through different types of attractors in different ways. The representations rD

to be input to the symbol systems are formed based on the dynamics of individual
attractors. Consequently, the symbol system regulates the pattern of attractor
transitions, and the neural system regulates the pattern of interchanging expressions.
Symbolic communication is an interaction between the mutual regulation systems.

4 Discussion

The asymmetry between forms and meanings, which is a type of derivation-
acceptance asymmetry, is inevitable because of the difference between the car-
dinalities of forms and meanings. In our model, DA-asymmetry is attained by
generalization learning and word invention. Therefore, the mechanism of differenti-
ation that we showed in this study must be ubiquitous in any system whose sub-part
deals with symbols; in particular, this is true in an adaptive symbol system that
performs generalization or invention.

Since we have focused on the mechanism of differentiation that relies on
a symbol system, we have introduced a few unusual settings in our model.
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Fig. 6 An example of type 3 with chaotic-chaotic coupling. The figures on the left and right show
the individual attractors of each agent, respectively. One coupling attractor is drawn from several
attractors

We introduced a fixed order in the rule selection in the symbol system. If we use
probabilistic or dynamic selection, as in the general model of a formal language
system, differentiation will be more frequent. We did not introduce supervised
learning in the neural system using the other agent’s output as teacher signals; this
is different from usual communication models. Although agents in such supervised
learning models are likely to be identical as coupling attractors, the agent as an
individual system may be differentiated.

In the present model, the dynamics of neural networks in differentiated systems
can be chaotic, as shown in Fig. 6. This indicates that neuro-symbolic hetero systems
may show not only differentiation by symbol system but also by sensitivity under
initial conditions [1]. Furthermore, the hetero system may develop through mutual
regulation, or positive feedback, between the neuronal chaotic dynamics and the
symbolic DA-asymmetry if we introduce learning in the neural systems.

The mechanism of differentiation in our model can be seen as that of self-other
differentiation. The key idea in the theory of self-other differentiation [3] is that one
comes to recognizes the ‘self’ from the viewpoint of ‘other’ after identifying the
other with the self. Our model of symbolic communication before differentiation
can be regarded as reflective dialogue since the two agents are completely identical.
The ‘self’ and the ‘other’ could differentiate through DA-asymmetry; consequently,
the ‘other’ stands as one producing different interpretations of expressions from the
‘self.’

5 Conclusion

We showed that it is possible for identical symbol systems and neural systems
to differentiate in symbolic communication. The differentiation comes from the
asymmetric structure of the symbol system, i.e., different rules in the derivation
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and acceptance of the same symbolic expression. The dynamics of symbolic
communication depend on the types of the attractors of the neural system as a
coupled dynamical system. The asymmetric structure that is brought about by
generalization learning must be ubiquitous in adaptive symbol system (human
language may be considered as a typical example).
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Theoretical Analysis of Phase Resetting
on Matsuoka Oscillators

Kazuki Nakada, Yasuomi D. Sato, and Kiyotoshi Matsuoka

Abstract In this paper, we consider functional roles of phase resetting of the
piecewise linear oscillator model known as the Matsuoka oscillator, which widely
applied in the field of robotics, particularly, in the design of central pattern generator
(CPG) units for controlling robotic rhythmic motion. The oscillator can be regarded
as a fast-slow system composed of a fast membrane potential dynamics and a slow
recovery dynamics. Firstly, we show phase response curves (PRCs) for both the
dynamics based on the phase reduction approach, and plausibility of phase resetting
through the slow dynamics as well as the fast dynamics during periodic motion.
Secondly, we show plausibility of feedback inputs to the slow dynamics rather than
the fast dynamics by using a singular perturbation approach. Our results will bridge
the gap among theoretical analysis, design principle, and practical and efficient
implementation for applications in robotics and biomedical engineering.
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1 Introduction

During the past quarter century, from the findings in neuroscience [1,2], a piecewise
linear oscillator model known as the Matsuoka oscillator [3–5], has been studied in
diverse research fields including robotics [6–10]. The oscillator model is composed
of a fast membrane potential dynamics and a slow recovery dynamics [3–5].

From a biological point of view, its inhibitory interconnection is consistent with
the conceptual model of half-center oscillators [1] that constitute the central pattern
generator (CPG), which is a central nervous system responsible for generating
rhythmic movements of animals [1, 2]. Based on the perspective, such a network
configuration has been widely used in the design of CPG units for controlling
robotic rhythmic motion [6–10] because of the scalability to stationary inputs and
robust entrainment properties to periodic inputs.

In previous works, several theoretical approaches have been proposed for
analyzing such entrainment properties: (1) the linear stability analysis [3, 4], (2)
the describing function method [11], and (3) the harmonic balance method [5].
These works were carried out only in the cases for stationary or periodic inputs
with the harmonic order. Little is known on the effects of timing of perturbation on
the dynamics, despite of the significance of the perturbation as inputs, which play a
key role in phase resetting during periodic motion including walking [12–14].

In the past, dealing with interactions through the fast dynamics of the Matsuoka
oscillator has been assumed naturally, and thus systems with interactions through
the slow recovery dynamics have not been well studied. In contrast, Sato et al.
implies rather more plausibility of the interaction through the recovery dynamics
in the oscillator by using a singular perturbation approach [17].

In this study, we consider plausibility of phase resetting through the slow
recovery dynamics as well as the fast membrane potential dynamics by using the
phase reduction method [15]. Based on the results, we demonstrate specific features
of phase response properties of the oscillator. Finally, we will discuss its possible
functional roles of the phase resetting through both the dynamics of the oscillator
on controlling rhythmic motion.

2 Model

Let us begin with by explaining coupled piecewise linear oscillators known as the
Matsuoka oscillator, which is given by the general form:

dX .i/

dt
D F .i/.X .i//C �G .i/.X .Ni//; .i D 1; 2/; (1)

where Ni represents a counterpart of the i -th unit andX .i/ D .V .i/
1 ;W

.i/
1 ; V

.i/
2 ;W

.i/
2 / 2

<4 the state vector. We assume that the coupling strength � is weak. The baseline
vector field F .i/.X .i//:
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F .i/.X .i// D

0

BBBBBBBBB@

�V .i/
1 C s � bW .i/

1 � ag.V .i/
2 /

.�W .i/
1 C g.V .i/

2 //=P

�V .i/
2 C s � bW .i/

2 � ag.V .i/
1 /

.�W .i/
2 C g.V .i/

1 //=P

1

CCCCCCCCCA

; (2)

where the nonlinear transfer function is given by g.x/ � max.0; x � �/, V and
W represent the fast membrane potential dynamics and slow recovery dynamics,
respectively, � a certain threshold, and P the time scale parameter.

We can consider both the cases of the V - and W -couplings for the coupling
vector G .i/.X .i// as in our previous works [16]. We focus on the dynamics of the
oscillator as a fast-slow system with the time scale parameter P :

dX

dt
D F .X ; P /; (3)

as a specific case in the following simulations.

3 Previous Approaches

Let us briefly summarize theoretical and practical approaches for studies on the
Matsuoka oscillator in previous works.

3.1 Theoretical Approaches

We here briefly review at least three conventional theoretical approaches proposed
for analyzing the entrainment properties of the Matsuoka oscillator:

1. The linear stability analysis on the sustained oscillations in mutually inhibitory
networks, in which the necessary and sufficient conditions for a stable sustained
oscillation have been proven [3, 4],

2. The describing function method to determine an optimal parameter set for
generating a required periodic motion in a plant control system, in which
feedback inputs are approximately represented as sinusoidal signals [11],

3. The harmonic balance method, in which both the frequency and amplitude of
the oscillation are approximately calculated as the functions of the coupling
parameters and the time constants [5].
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These approaches provide valuable information to determine the parameters of
the oscillators for controlling physical systems including feedback loops. In fact,
we can estimate the entrainment frequency of the systems in addition to the natural
frequency and amplitude of the oscillation.

3.2 Practical Approaches

We review practical approaches for controlling robotic rhythmic movements using
the Matsuoka oscillator as CPG units. For instance, Taga et al. have used a CPG
model in simulating for biped locomotion [6], and Taga proposed the concept of the
global entrainment, which emerges as a limit cycle through interactions among, a
CPG system, a physical system, and an environment. Based on the concept, Kimura
et al. designed CPG-based controllers for quadruped robot locomotion on rough
terrain [7]. Williamson applied a CPG unit for controlling rhythmic arm movements
of a humanoid robot [8]. Kotosaka and Schall built a drumming robot with a
CPG controller unit [9]. Berthouze implemented a CPG controller for humanoid
robots [10].

These works have proven the effectiveness of the global entrainment in control-
ling robotic rhythmic motion. The results imply the advantages of the Matsuoka os-
cillator for practical implementation of the global entrainment on robotic platform.

4 Our Approaches

The previous theoretical works were carried out only in the cases for stationary
or periodic inputs with the harmonic order. Still little is known on the effects of
timing of perturbation as inputs to systems with the Matsuoka oscillators. However,
perturbation as feedback with impact is naturally apparent at the ground contact
and plane impact in controlling practical robotic platforms [8–10] In addition, the
perturbation as feedback at the ground contact is related with phase resetting for
stable walking [12–14].

From the standpoint, we here clarify the effects of perturbation as inputs on phase
resetting based on the phase reduction method. We further show plausibility of the
perturbation inputs to the slow recovery dynamics rather than the fast membrane
potential dynamics based on the results from the singular perturbation method [17].

5 Results

Firstly, by using the phase reduction method, we computed phase response curves
(PRCs) for the fast and slow dynamics of the Matsuoka oscillator, as shown in Fig. 1.
We found that the PRCs of the Matsuoka model are qualitatively similar to those of
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Fig. 1 Phase response properties of the Matsuoka oscillator, where left and right figures represent
phase response curves with regard to the fast and slow dynamics, respectively. We here set the
parameters as: a D 2:0, b D 2:5, s D 2:0, and � D 0:0, and set the time scale parameter as:
P D 12:5, 25:0, 50:0, 100:0, and 200
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Fig. 2 Phase response properties of the FitzHugh Nagumo model, where left and right figures
represent phase response curves with regard to the fast and slow dynamics, respectively [16]. We
here used the standard parameter set, and set the time scale parameter as: P D 12:5, 25:0, 50:0,
100:0, and 200 for comparison with Fig. 1

the FitzHugh-Nagumo (FHN) model, as shown in Fig. 1, which are quite different
from those of the Morris-Lecar (ML) model [16]. In particular, with increasing
the time scale parameter P , the PRCs of the both models become qualitatively
equivalent.

These results may indicate different functional roles in timing of perturbation
inputs to the fast and slow dynamics. In fact, such specific features of the PRCs
are reasonable for regulating phase advance and delay in the phase resetting control
during periodic motion [12–14].

To support this, we have previously proven that the Matsuoka oscillator is close to
the specific type of integrate-and-fire model, taking limit of the time scale parameter,
using the singular perturbation approach [17]. This shows the plausibility of inputs
to the slow recovery dynamics rather than the fast dynamics (Fig. 2).
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6 Conclusions

In this paper, we have investigated the effects of perturbation inputs to both the
dynamics of the Matsuoka oscillator by using the phase reduction method. We
computed the phase response curves of the oscillator, and discussed the plausibility
of phase resetting through both the dynamics.

Our research viewpoint will bridge the gap among theoretical analysis, design
principle, and practical and efficient implementation for the phase resetting control
in robotics and biomedical engineering. We are going to apply our approach to
designing and controlling on practical platforms.
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“Memories as Bifurcations”: A Simple Model

Tomoki Kurikawa and Kunihiko Kaneko

Abstract In this paper, we propose a simple neural network on the basis of the
“memories as bifurcations,” by extending construction of synaptic connection by
Hopfield. In the scheme of “memories as bifurcations,” an input is given as a
bifurcation parameter, while in the traditional neural network models it is given
as an initial state. By analyzing this model, we find that memory capacity defined as
ability that distinguishes the target pattern to be recalled from others in the presence
of a given input is �0:7N and that the spontaneous activity in the absence of the
inputs exhibits periodic or chaotic oscillation where the activity approaches and
departs from some of targets.

1 Introduction

In traditional neuroscience, one has focused on responses to stimuli for under-
standing function of the brain: By measuring response neural activities to sensory
stimuli and cognitive task by various methods, e.g., functional magnetic resonance
imaging (fMRI), electroencephalogram (EEG) and magnetoencephalogram (MEG),
regions of executing the corresponding function have been identified. In this scheme,
the spontaneous activity in the absence of stimuli has been ignored as noise.
In most of neural network studies[1–3], furthermore, a memory of input-output
mapping is considered to be included in one of the attractors in neural dynamical
systems, depending on the initial neural state specified by an input, where the
spontaneous activity is not taken into account seriously. Recent studies [4–7],
however, revealed that the spontaneous activity is not simple noise, but has some
spatio-temporal pattern. Furthermore, it is revealed that these spontaneous activities
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show same structure similar to the response activities. We have proposed [8] a novel
memory scheme in which the change in the flow structure of neural dynamics
upon application of an input is represented as bifurcation of the neural activity
state, in contrast to the traditional studies where the input is represented as the
initial condition of the neural dynamics. In this paper, we study a simple model
on this picture of “memories as bifurcations,” by modifying from Hopfield-type
neural network, and analyze the relation between the evoked dynamics (the response
activities) and the spontaneous dynamics. We find that memory capacity is �0:7N
and that the spontaneous activity is formed so that it comes closer to target patterns
in time, while a fixed-point attractor matching a given target pattern is generated in
the presence of the corresponding input.

2 Models

We design a recurrent neural network in which input and output pattern (I/O)
mappings are embedded on the basis of “memories as bifurcations.” In other words,
we design a dynamical system in which an attractor matching the target output
pattern is generated in the presence of the corresponding input. For implementing
such system, we modify the Hopfield-type neural network [3]. We consider a
recurrent neural network model with N neurons and all-to-all connections Jij ,
and generate an ensemble of M mappings of input pattern (termed as ��.� D
1; 2; : : : ;M /) and target pattern (termed as ��.� D 1; 2; : : : ;M /) which are N -
dimensional vectors whose components are set at �1 or 1 randomly. Synaptic
connection Jij which represents a connection from the j -th neuron to the i -th
neuron is generated by

Jij D
MX

�D1
.�
�
i � ��i /.��j C ��j /=N: (1)

In our model, the synaptic connections are composed of the target and the
input patterns, while in the original Hopfield neural network, the connections are
composed of the only target patterns. The i -th neuronal activity xi evolves by the
equation

Pxi D tanh .ˇ.
X

j¤i
Jij xj C ˛��i //� xi : (2)

We can find that behavior of this model satisfies the perspective of “memories as
bifurcations” by the following simple discussion; When the neural activity x is near
a target pattern �	 , the term of the input current through the synaptic connection in
Eq. 2,

P
j¤i Jij xj , is estimated as follows:
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X

j¤i
Jij xj D

X

�

.�
�
i � ��i /.ı�	 C .2 � ı��/O.1=

p
N// (3)

D .�	i � �	i /CO.
p
.M=N//; (4)

here, we use that �� and �� are assumed to be uncorrelated and that the two N -
dimensional uncorrelated vectors satisfy

P
j �

�
j �

�
j =N D ı��C.1�ı��/O.1=

p
N/.

Therefore, in the presence of the external input �� (˛ D 1:0) and with M

much smaller than N , it is expected that neural activity pattern near the target ��

corresponding to the imposed input is a fixed point and the other targets ��.� ¤ �/
are not fixed points. In the following part, we set N D 100; ˇ D 4:0.

3 Results

First, we show that in this model I/O mappings are embedded on the basis of
“memories as bifurcations”, i.e., in the presence of a input, the corresponding target
pattern is generated as a stable fixed point. In Fig. 1, typical dynamics in the presence
and absence of a input is plotted by measuring overlap of the neural activity with the
first target, that with the first input, and that with the second target. We can find that
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Fig. 1 Example of the dynamics in the presence and absence of the input. Overlap of the neural
activity with the 1st target pattern (gray full line) and the 2nd target pattern (black full line), as
well as that with the 1st input (black dotted line). These overlaps are plotted in the absence of the
input (up to time 45) and the presence of the 1st input (up to time 85) and of the 2nd input. We set
M D 5
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Fig. 2 (a) Frequency of each type of attractor of the evoked dynamics plotted. Fixed point, cycle
and chaotic attractor are represented as black full, gray full and black dotted lines respectively. To
discriminate each type, we measured the first Lyapunov exponent of the evoked dynamics in the
presence of each of five different input, sampled over 100 networks. (b) The overlaps between the
neural activity in the evoked dynamics and the target corresponding to the injected input (black full
line) and the input (gray full line) are plotted as a function of M

the activity converges to a pattern that is matched almost completely with the first
target in the presence of the first input (45 < t < 85 in Fig. 1) and then converges to
another pattern matched with the second target in the presence of the second input
(85 < t < 120 in Fig. 1). In the contrast, in the absence of the input, the activity
converges to a pattern that are matched neither with the first nor the second target.
Overlap between the activity and another target is not high in the absence of the
input (data not shown here).

Next, we analyze the dynamical system in the presence of the input statisti-
cally. As a result, we find that the fixed-point attractor that is matched with the
corresponding target is generated in small M (Fig. 2). Overlap between the neural
activity and the target pattern corresponding to the injected input is very high, i.e.,
the neural activity is almost matched with the target pattern. The basin for this fixed
point attractor is very large and from almost all initial points the neural dynamics
converges to it. As M is larger, the type of attractor changes from the fixed point to
a limit cycle or chaotic one, and the overlap decreases rapidly (Fig. 2). However, the
overlap between the output dynamics and the corresponding target is larger than that
between the output and another pattern and that between the output and the input
pattern, so that the corresponding target is distinguishable by measuring the overlap.
As M is further increased, the overlap of the neural activity with the corresponding
target decreases to the level of the overlap with a different pattern or the input. At
M � 0:7N , the overlap of the neural activity with the corresponding target and that
with the input crosses over, where we can no longer distinguish the corresponding
target by measuring the overlap (Fig. 2).

Here, we analyze how the evoked dynamics changes depending on the parameters
ˇ and N . When ˇ is changed, the type of the attractors is changed significantly,
however, the overlaps are changed a little. In the case of small M , as ˇ is larger,
the frequency of fixed point attractors decreases and those of limit cycle and chaotic
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Fig. 4 Dependence of the type of attractors and the overlap of the evoked dynamics on the number
of embedded I/O mappings. The frequencies of each type of the spontaneous attractors, fixed point
(black full line), limit cycle (gray full line) and chaotic attractors (black dotted line) as a function
of the number of the mappings are plotted in (a) in the same say as that in Fig. 2. (b) The maximum
(black full line) and average (gray full line) overlaps with the target are plotted. The overlap with
the input are plotted as black dotted line

attractor increase. The oscillation of the limit cycle and chaotic attractor bifurcated
through ˇ larger is around the original fixed point and its amplitude remains rather
small. Thus, the target pattern is well retrieved so that the abovementioned capacity
is little changed by changing ˇ. Then, we study the dependence of the capacity on
the number of the neuronsN . In Fig. 3, curves of the overlap with the injected input
pattern and that with the corresponding target pattern are plotted. Here, the curves
are plotted as a function of M=N , the number of the embedded mappings scaled
by that of the neurons. We can find that these curves converge to a curve with N
increased, so that the cross over points MC=N of the curves of the overlap of the
input and that of the target with each N are scarcely different (MC=N � 0:7). As a
result, the memory capacity is estimated as �0:7N from the cross over point.

Finally, we analyze the spontaneous dynamics in the absence of the input (Fig. 4).
We find that the spontaneous activity has a single or a few fixed-point attractors in
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small M , while chaotic attractors are dominated in large M . Spontaneous neural
activity of the chaotic and limit cycle attractors in the absence of inputs repeats
approach and departure from the some targets, while the attractors in the presence of
an input take the trajectories stretched along the direction only of the corresponding
target. In fact, the overlap between the spontaneous activity and the target averaged
over all targets takes a larger value than that between the activity and the input and
that between the activity and the random pattern.

4 Conclusion

To understand relationship between the memories of I/O mapping and “memories as
bifurcations”, we introduced a simple Hopfiled-type neural network. In this paper,
we analyzed the neural dynamics in the absence and presence of the input. For
small M , a fixed point attractor matched with the corresponding target is generated
in the presence of the input. The frequency of the networks in which the fixed point
attractor is generated decreases asM is increased and, at the same time, the overlap
of the neural activity with the target decreases. On the other hand, the overlap with
the input increases. Memory capacity is defined as the cross over point between
these two curves, where the target pattern is no longer distinguished from another
pattern by measuring the neural activity under input. From this point, memory
capacity is estimated at Mc � 0:7N . In the absence of the input, high frequency
of networks generates the chaotic attractors. Considering that the overlap with the
target is higher than the overlap against the other pattern, it is shown that theses
spontaneous neural activity itinerates over some of targets selectively, by exploiting
chaotic dynamics.
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Biologically Inspired Closed-Loop Model
of Precision Grip Lifting Task

Ankur Gupta, Manikanta Avinash, Deepa Kandaswamy, Muthu Kumar,
Suresh Devasahayam, K. Srinivasa Babu, and V. Srinivasa Chakravarthy

Abstract We study precision grip performance (PGP) in human subjects with wide
intrinsic variation in skin friction (�). Two types of subjects (with high and low
friction) are considered. Furthermore, change in PGP is studied under transiently
varied conditions of � (dry and wet). The experimental study is also supported by
a computational model of PGP involving a nonlinear, closed-loop control scheme.
Models of human PGP often deal with performance at a single � value. However,
studies on the effect of intrinsic friction (IF) as opposed to transient changes in
friction on PGP are nearly non-existent, which forms the motivation for the present
study.
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1 Introduction

Napier (1956) first defined precision grip as gripping an object between index
finger and thumb [1]. Experiments based on grip force alone are incapable of
explaining the motor control since the process is entirely feed-forward. To overcome
this limitation and to understand the role of feedback control, grip-lift tasks were
designed [2, 3]. A successful lift requires planning [4], motor command execution
and fine motor control of the involved muscles [2, 5] for force production. Before an
initial contact with the object, an internal model is formed based on visual estimate
of the object’s weight [5, 6], size [7], surface curvature [8] and friction [9]. Post
internal model generation, an appropriate motor command in the form of lift force
(FL) and grip force (FG) is generated to lift the object. A successful lift is only
possible when the FG is sufficiently large to prevent the object from slipping [10]
and the FL is more than the weight of the object. During lift, FG is kept sufficiently
large to prevent accidental slips from internal (accelerations in arm motion) [11]
and external [12] (random perturbation in load) perturbations. In a prehensile grip,
friction plays a prominent role in coupling the hand to the object [3, 13]. FL and
FG translate into frictional force, which in turn lifts the object. In case of a faulty
internal model, the error signal generated are used to correct the on-going lift [14]
and to update the internal model [15].

Now let us examine the role of the IF in PGP. Studies on friction and PGP are
limited to experiments involving FG generation with a fixed � [9, 10]. Thus, these
studies fail to account for the role of IF.

Recent study by Muthukumar et al. (manuscript submitted) [16] suggest that
subjects with different IF follow different strategies for FG generation. In subjects
with low IF, steady state grip force (SGF) exceeds peak grip force (PGF), whereas
in subjects with high IF SGF<PGF [16].

In the proposed model, classical PID controllers and friction-based plant model
are used for FG and FL generation. FG binds the hand to the object and FL is
required for lifting the object. The effect of transiently varying friction (reducing
friction by wetting fingers) on PGP and its role in the strategies involved in grip
force generation is studied. Thus four cases emerge: (1) high IF, dry condition, (2)
high IF, wet condition, (3) low IF, dry condition, (4) low IF, wet condition. Results
suggest that the model is able to reproduce the FG profiles of the experimental data
for SGF with < 1% error for �hd (high IF, dry condition); < 18% for �hw (high IF,
wet condition) and < 2% for �ld (low IF, dry condition); < 5% for �lw (low IF, wet
condition).

2 Materials and Methods

Subjects and procedure: The study was conducted on 16 healthy right-handed
subjects (12 male, 4 female) with mean age 33˙ 5.95 years, Range 26–50 years).
Subjects washed their hands with soap and water. The hands were air dried until
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Fig. 1 (a) Free body diagram showing forces acting on hand and object, (b) the overview of the
model for grip force and lift force generation

visible traces of water were absent. Subjects sat on a chair in a comfortable position
with their forearm flexed in the anterior direction. Subject was required to lift his/her
hand off the touch pad, grip and lift the object to a height of 12 cm and allow it to
slip after holding the object in stable FG for 6 s (which was verbally conveyed to the
subject). Slip force is the FG at which the object slips out of the grip. The data was
acquired at 1 KHz in LABVIEW 8 and analysed in MATLAB 7. Six consecutive
trials were carried out for a load force of 1.274 N in both dry and wet condition.
Wet condition was achieved by immersing the finger in water for 2 s between trials
and performing the task immediately. Standard load force – slip force ratio [9] was
used to determine � for each trial. An average of six trials was used to determine
�hd, �hw, �ld and �lw. The subjects were classified as high IF when �dry> 0.75
and low IF when �dry< 0.75. Informed written consent of the subject was obtained
before the study.

Test object: The device comprised of an object (0.117 Kg) with a load cell (having
four strain gauges) mounted on a steel plate for measuring the grip force. Object has
a provision of manually loading it from the top. The object was loaded from the top
to make the total mass of the object .Mo/ 0.130 Kg.

Model: The free-body diagram for individual components (object and hand) is
shown in Fig. 1a. The model (Fig. 1b) consists of a nonlinear controller and a
nonlinear plant in closed loop configuration. The controller generates FG and FL,
which interact with the object due to friction.

The net forces acting on the object and hand are
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Fo D Ff C Fn �Mog (1)

Fh D FL � Ff �Mhg (2)

Where, FoD net force acting on object tangential to object’s surface; FfD frictional
force; FnD force normal to the table surface; MoDmass of the object; MhDmass
of the hand/finger; FhD net force acting on hand tangential to object’s surface;
FLD lift force.

The assumptions for the model are gD 9.8 m/s2 and MhDMo/10. Fnoslip (3) is
the frictional force required to have no slip. Whereas, Fslip (4) is the frictional force
(assumed to follow a nonlinear square law) expressed as a function of FG.

Fnoslip D MoMh

Mo CMh



	
FL

Mh

C Fn

Mo



(3)

Fslip D 2�F 2
G (4)

Ff and Fn are given in Eqs. (5) and (6)

Ff D
�
Fnoslip; if Fnoslip < Fslip

Fslip; else
(5)

Fn D
�
Mog � Ff ; if Xo D 0 ^Mog > Ff

0; else
(6)

Here, X is the position and PX represent the velocity (Fig. 2).
The controller consists of two modules which are two PID controllers, one each

for FG and FL. The errors for FL and FG are given in Eqs. (7) and (8). When EL (EG)
is substituted for E on the right side of Eq. (9), we obtain FL (FG) on the left.

EL D Xref � Xo (7)

EG D . PXh � PXo/2 (8)

F D KpE CKI

Z t

0

E.�/d� CKD

dE

dt
(9)

Here XrefD reference position to which the object is lifted (0.12 m);
XhD position of hand; XoD position of object; PXhD hand velocity; PXoD object
velocity; KP, KI and KD are proportional, integral and derivative gains respectively.

The controller was optimised for dry condition while keeping the FL fixed and
varying FG . Stochastic gradient ascent algorithm [17] and genetic algorithm [18]
were used for determining the optimal controller parameters. The fitness function
.F/ was defined as
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Fig. 2 Single trial experimental grip force profiles for (a) high IF subject, (b) low IF subject

F D jPGFM � PGFE j
PGFE

C jSGFM � SGFE j
SGFE

C jdisj (10)

Here, subscript M and E denote the model and experimental values respectively
and dis denotes the distance between the hand and the object.

The wet condition was simulated by fixing the optimal PID parameters for dry
case and changing � to the experimentally determined wet � value.

3 Results

Experimental data: The PGF is defined as the point of maximum slope in first
500 ms of lift and the SGF is the average grip force exerted between 3,500 ms and
4,500 ms after the lift onset. For a high IF subject PGF>SGF, whereas an opposite
trend was seen in the low IF subjects. Slip force for �hd, FslipD 0.73 N & for �hw,
FslipD 1.19 N and �ld, FslipD 1.19 N & �lw, FslipD 1.60 N. The safety margin
employed was �hd, FslipD 0.25 N & �hw, Fslip D 0.63 N and �ld, FslipD 0.99 N
& �lw, Fslip D 1.45 N. The ratio PGF/SGF for �hd D 2.64 & �hw D 1.45 and
�ldD 0.71 & �lw D 0.83.

PGFdry/PGFwet ratio for high IF subject was 0.98 and for low IF subject it is 0.68.
SGFdry//SGFwet ratio for high IF subject was 0.54 and for low IF subject it is 0.79.

Simulation: Simulation results (Fig. 3) for the dry case were obtained by using
the optimal controller parameters for a given � and the wet case was simulated by
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Fig. 3 Simulated single trial 0 to 500 ms grip force profile for (a) high IF subject, (b) low IF
subject. Inset shows 3-s long profile of the corresponding plot

Table 1 Comparison of
experimental and model PGF
and SGF for 1 high IF and 1
low IF subject

Experimental (N) Model (N) Error (%)

� PGF SGF PGF SGF PGF SGF

�hd D 1.2 2.58 0.97 2.57 0.98 0.39 0.51
�hw D 0.45 2.64 1.82 3.28 1.50 24.24 17.58
�ld D 0.45 1.54 2.18 1.40 2.14 19.09 1.83
�lw D 0.25 2.28 2.75 1.87 2.87 17.98 4.36

changing� with the controller parameters remaining unaltered. The simulation was
carried out for both the high IF and low IF cases. A comparison is drawn between
the experimental and simulated data in Table 1.

PGFdry/PGFwet ratio for high IF case was 0.78 and for low IF case it is 0.65.
SGFdry/SGFwet ratio for high IF case was 0.75 and for low IF case was it is 0.75.
The safety margin employed for dry and wet cases were 0.25 N and 0.31 N for high
IF case and 0.95 N and 1.27 N for low IF case.

4 Discussions

The grip force profiles obtained for high and low friction subjects were in accor-
dance of the findings of Muthukumar et al., (submitted) [17]. The strategy employed
for FG generation (SGF> PGF or PGF> SGF) remains unaltered with the change
in �. This result suggests that the internal model formed is not updated when �
is changed from dry to wet condition. The safety margin employed increases with
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decrease in IF; this may be because of an increase in slip probability in case of
smaller �.

Simulation studies suggest that the subject does not re-train for a changing�. The
closeness of the experimental and model data supports the plausibility of the model.
In future, we propose to extend the present study to precision grip performance in
Parkinson’s patients.

Acknowledgments The authors acknowledge support of the Department of Biotechnology, India.
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A Communicative Model: Can We Interpret
Neural Dynamics of Understanding?

Yongtao Li and Ichiro Tsuda

Abstract In this paper, a communicative model with two nonequilibrium neural
networks is proposed to emulate the dynamical process of how we can understand
each other. A novelty-induced learning process is introduced to realize memory
transmission between heterogeneous neural network models. The simulation results
suggest that the communicative model could subserve to interpret the underlying
neural mechanism of understanding.

1 Introduction

Communication with the surroundings is an instinctive ability for animals to survive
adaptively in ever-changing environmental circumstances. However, how we can
understand each other is still an open question because it is quite difficult to deal
with the highly complicated spatiotemporal dynamics which is emerging in neural
systems while communicative behaviours occur.

In the present study, we are concerned about whether or not we can con-
struct a communicative model to investigate the underlying neural mechanism of
communicative behaviors. Specially, it is expected that more knowledge about
the relation between mutual understanding and neural dynamics can be obtained.
Recent experiments of mirror neurons has suggested that mirror neurons could be
involved in mutual understanding [1]. In particular, recent experiments in fMRI have
shown “resonate” firing phenomenon in communicators when one guesser saw a
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gesture of a gesturer [2] and synchronous firing in communicating brains when one
listener has understood a story from a speaker [3]. These findings have brought
us an important implication that similar spatiotemporal dynamics could emerge in
heterogeneous brains when two people understood each other.

Motivated by the above findings, let us consider a typical communication
scenario.

There are two interactive individuals who are named as agent A and agent B,
respectively. A is introducing new things to B who has no a prior knowledge about
the things. Finally, agent B must learn the state of A so as to understand A.

In this case, the dynamics emerging in the brain of agent B can be supposed
to be a learning process such that the transition from the “I do not know” state to
the “I know” state can occur. In the earlier Freeman’s works, he shows that chaotic
activities work as a novelty filter, namely, an “I do not know” state [4]. Remarkably,
various experiments and theories have suggested that chaos is crucial to learning in
brain [4, 5]. Therefore, we here take the following working hypotheses.

1. Attractor dynamics is emerging in the brain of agent A due to the requirement
for memory retrieval of the concerned things.

2. Chaotic dynamics is emerging in the brain of agent B as B has no prior
knowledge about the thing.

3. After agent B learned such things, attractor dynamics similar to those of agent A
is emerging in the brain of agent B because the memories in A about the things
have been transmitted into the brain of agent B.

In order to clarify the truth and false of these working hypotheses, we propose a
preliminary idea to emulate the process of memory transmission that two neural
networks with different memories learn each other through a communicating
process between them. From the viewpoint of dynamic brain, which emphasizes
the important functional roles of complex dynamics emerging in brain, we propose
a communicative model consisting of two nonequilibrium neural networks [5, 6]
which satisfy two characteristic properties of communicative process. First, each
nonequilibrium neural network performs a dynamic process in which a successive
memory retrieval can be obtained. Second, novelty-induced learning algorithm is
introduced so that selective learning can be implemented into the two networks.
We hypothesize a scenario in which one can understand another by memory
transmission. The results of simulation show that unidirectional and bidirectional
memory transmission can be implemented successfully.

2 Communicative Model

A nonequilibrium neural network model adopted here is shown in Fig. 1 which is
based on the model proposed by Tsuda [5, 6]. The network consists of two kinds of
probabilistic neurons:N pyramidal neurons (denoted by S ) and N stellate neurons
(denoted by R), which are the most important types of neurons in neocortical
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Fig. 1 A nonequilibrium neural network model

columns. All pyramidal neurons are supposed to form a fully interconnected
recurrent neural network, whereas each stellate neuron is supposed to receive input
from all pyramidal neurons and send output to only one corresponding pyramidal
neuron. We assume that memories are only embedded in synaptic connections
between pyramidal neurons. Each memory is a N dimensional vector consisting
of firing states of pyramidal neurons, each of which is encoded into two values C1
(when firing) or �1 (when non-firing). The state of each neuron has analog values
from �1.0 toC1.0. The neural dynamics of each neuron is defined as follows.

Si.t C 1/ D f p

0

@
NX

jD1
Wij Sj .t/C diRi .t/ � ıi˚i .t/

1

A ; (1)

Ri.t C 1/ D f p

0

@
NX

jD1
ej Sj .t/

1

A ; (2)

where ˚.t/ D x.t1/; t1 D maxt>sfsjx.s/ D x.s � 1/g, where x.t/ is given by

x.t/ D
NX

jD1
Wij Sj .t/;

and the activation functions of pyramidal neurons Si and those of stellate neurons
Ri are independently determined by the following probabilistic law.
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y.t C 1/ D f p.x/ D
(

tanh.�x/ with probability p

y.t/ with probability 1-p,

where the parameter � describes the steepness of the function. The results of our
simulation show that larger � is easier to produce a dynamic associative process in
the network. We have employed a larger � D 10.

2.1 Embedded Memories

M memories are initially embedded in the network by the following well-known
Hebbian algorithm,

Wij .0/ D
MX

�D1
�
.�/
i �

.�/
j ; (3)

where 1 	 i; j 	 N and N dimensional vector �� (1 	 � 	 M ) denotes the �-th
memory of M embedded memories.

In contrast to the typical Hopfield neural network, the nonequilibrium neural
network includes two subsystems that can lead the system either to convergent
dynamics or to divergent dynamics. First, recurrent connections Wij of pyramidal
neurons S.t/ enable the network to perform attractor dynamics like a Hopfield
network, whereas the presence of the feedback �i.t/ leads the network to be
unstable. The feedback �i .t/ originates from the temporal states of pyramidal
neurons and works only when pyramidal neurons reach a steady state, namely,
S.t/ D S.t � 1/. Thus, the network shows a successive retrieval of embedded
memories instead of a gradually converging dynamics.

2.2 Dynamics Measure

Since evolutionary dynamics of the nonequilibrium neural network show a succes-
sive retrieval of embedded memories, a direction cosine as an appropriate dynamics
measure is required, which is defined as follows.

D�.t/ D S .t/ � ��
k S .t/ k � k �� k ; (4)

where memories f��g .1 	 � 	 M/ are equivalent to the coordinates of state
pattern S .t/ in the state space, and D�.t/ is a temporal variable with values from
�1:0 to C1:0. While D�.t/ of S .t/ is �1:0 or C1:0, a memory or its negative
pattern is retrieved. We identify these two patterns. By virtue of this measure, we
can clearly trace the dynamical processes of the nonequilibrium neural network.
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2.3 Novelty-Induced Learning

Since many experiments imply that novelty can enhance memory and learning [7],
novelty-induced learning is introduced into our communicative model. When one
network in our model is showing a steady state which can be regarded as a memory
retrieval, the steady pattern is applied to the other network that will learn based on
the novelty of the input pattern. Mathematically, the novelty of one incoming pattern
relative to an existing memory can be estimated by its direction cosine to the extent
of which one pattern mismatches the memory. If a message is sent by a sender at
time � , the message as one incoming pattern is denoted by S I .�/. At the same time,
the receiver has M memories �˛ .1 	 ˛ 	 M/. Then, the novelty measure H.�/
for the incoming pattern is defined by

H.�/ D max f1 � F˛.�/j1 	 ˛ 	M g (5)

F ˛.�/ D
ˇ̌
ˇ̌
ˇ

S I .�/ � �˛
k S I .�/ k � k �˛ k

ˇ̌
ˇ̌
ˇ ; (6)

Note that H.�/ 	 1:0. By means of the novelty measure H.�/, we replace the
Hebbian learning rule by the following modified one, which we call a novelty-
induced learning.

Wij .t C 1/ D Wij .t/C
Wij .t/ (7)


Wij .t/ D �Si .t/Sj .t/H.t/ (8)

When the incoming pattern is quite novel, the novelty measure H.t/ gives
a value approximating 1:0 so that the learning rate is kept. On the other hand,
when the incoming pattern is not too novel, the novelty measure gives a value
approximating 0:0, which can weaken the learning rate. In particular, H.t/ D 0:0

means that the receiver has learned the incoming pattern, so the learning process
is terminated. Using this novelty-induced learning rule, a selective learning process
can be implemented in our model.

3 Results and Discussions

By means of the novelty-induced learning, we have investigated two typical
examples as metaphor scenarios where communicative behaviors occur. First, only
unidirectional learning is introduced, namely, one network is regarded as a sender
and the other as a receiver. Second, bidirectional learning means that the two
networks learn each other in an interactive way. By virtue of the method of dynamics
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Fig. 2 Unidirectional and bidirectional learning. (a) Unidirectional. (b) Bidirectional
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Fig. 3 Basin visiting measure of dynamical trajectories of unidirectional (a) and bidirectional
learning (b)

measure proposed above, we can trace the changes of dynamical behaviors in
the two networks. Corresponding to unidirectional and bidirectional learning, two
examples are shown in Fig. 2a, b where the upper two figures correspond to SA.t/

and the lower two figures, SB.t/. Comparing the second and third column of Fig. 2a,
we can find that, after some time learning, some memories of agent A are retrieved
by agent B , but agent A has no memories of agent B , as means that agent B is only
learning agent A in an unidirectional way. Obviously, bidirectional learning results
in interactive memory retrieval of agent A and agent B , which is shown in Fig. 2b.

Interestingly, when the two networks have learned each other, a new “landscape”
gradually formed in the phase space but maintain the old “landscape” which is
formed by old memories. This is confirmed by a statistical investigation of basin
visiting measure, which is used to estimate the visiting distribution of a dynamical
trajectory in phase space. Corresponding to two scenarios in Figs. 2 and 3a, b show
the changes of basins of SA.t/ and SB.t/, respectively. In these figures, different
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types of color are used to mark different basins, such as A (red) and B (green).
The basins of learned memories are filled, but self basins are blank. In the case of
unidirectional learning, the dynamical trajectory of SB.t/ has passed through not
only private basins, but also the basins corresponding to embedded memories in
system A. Furthermore, the dynamical trajectories of both SA.t/ and SB.t/ have
passed through the whole basins corresponding to all embedded memories in two
systems by bidirectional learning.

4 Conclusions

A communicative model with two nonequilibrium neural networks is proposed to
emulate the dynamical process of how we can understand each other. The model
is quite simple, but successful memory transmission has brought us an important
implication that it is likely to construct a neural model to interpret the underlying
neural mechanism of understanding.
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Mechanisms for Generating Intermittency
During Manual Tracking Task

Tetsumasa Asano, Jun Izawa, and Yutaka Sakaguchi

Abstract Intermittent velocity peaks of movement trajectory are commonly
observed when subjects perform manual tracking task. However, the underlying
mechanism of such intermittency has not been revealed yet. Focusing on the
process of updating the internal target of movement, we proposed a computational
model of “motor intermittency” in which a choice between two internal models,
“dynamic target model” and “stable target model” might generate intermittent
update of target, causing intermittency in the sequence of motor commands. To
examine this model, we ran a behavioral experiment using a simple manual tracking
task. In the experiment, we tested how the uncertainty of the prior knowledge of the
target speed affected the nature of intermittency. The results showed that properties
of intermittency were modulated by prior uncertainty of the target speed, which
suggests that the brain might use a stochastic computational process to generate
“motor intermittency”.

1 Introduction

To achieve the task in ever-changing environment, our brain must plan and generate
motor commands in limited time. As appreciated from that it takes some time
(latency) from obtaining the motion cue to beginning the movement, it takes
little time for calculating motor command. Moreover, there is a few tens of
milliseconds time delay until muscle produces contractive force after receiving
motor command. Therefore, the brain must decision and generate appropriate
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movement in appropriate timing under the nervous and musculoskeletal system
having time lag. Then these restrictions in physical or information processing should
compose computational principle.

For instance, feed-forward control play more important role than feedback
control in fast reaching movements [1, 2]. These computational principles should be
more precise in continuous tasks which is hard on time restriction (i.e. the subject
must generate motor command continuously in response to the variable object) like
tracking movements than sporadic tasks like reaching movements. For example, in
the task of tracking a slowly moving target by the arm or the finger, the velocity
profile of hand position commonly shows peaks [3–8]. Many ideas are discussed
as cause of this “intermittency”: Time delay of visual feedback and noise, etc. If
these movement properties found in continuous tasks could be due to computational
principle of motor planning and control, the movement mechanism in the brain
could be revealed by focusing to the mechanism of intermittency.

On the other hand, many of computation principles of motor control in the
brain proposed by previous works were attending to smoothness of the movement
trajectory especially in reaching movement. For example, Wolpert et al. focused
on signal dependent noise (SDN) included in motor command, and proposed that
the criterion by minimizing the effect of SDN is a factor of which generates
movement smoothness [2, 9]. In the present model, the internal target was updated
by minimum variance estimation, on the assumption that the internal target to
generate motor command must be updated intermittently even though the target is
moving continuously.

As described later, our model predicts that the property of the movement
intermittency changed by the uncertainty of target movement. To examine this
prediction, we performed behavioral experiment of manual tracking task. In the
following, first, we present a motor control model on manual tracking task.

2 Model

2.1 Model Structure

The scheme of our model which generates movement intermittency during a
tracking movement is shown in Fig. 1. Proposed motor control system is composed
of (1) two internal models on target motion and a decision making mechanism
for switching these models, (2) the mechanism which estimates hand position in
tracking movement and (3) the feedback controller that generates motor command
for tracking the target.

Motor command u was generated by following equation using hand position and
target position (gathered into state variable Ox):

ut D Lt Oxt
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External CNSFig. 1 Model structure

where subscript t is a time. In the following discussion, we focus on the mechanism
of estimating the target position assuming that hand state is estimated appropriately
due to internal model for hand dynamics, somatosensory feedback and visual
feedback.

The process of updating target representation in the brain (T*) is composed of
two models, (1) updating target position Tt by measurement yt and (2) maintaining
conventional Tt

*, in addition to the process of doing decision making whether the
target might be updated or not.

2.2 Updating Target Position in Uniform Motion

In the ballistic movements as reaching movements, once target representation is set
up in the brain as P (with the exception of anomalous case as double step task)
keep on T*DP. In this paper, we assume that target representation is not kept
but updated repeatedly. Additionally, we assume that target position is represented
with a probabilistic model. Furthermore, we assume that the subject established
the model for a motion of target position through experience of manual tracking
tasks.

Here, the probability distribution of target position at t� 1 is given by
P(Tt�1jYt�1). Where Yt�1 is the set of measurements of target position until
time t� 1. When the transition probability of target position is described as
P(Tt jTt�1;QD) (QD: noise). The probability distribution of target position at one
time step later is shown as follows:

P.T t jYt�1/ D
Z
P.Tt�1jYt�1/P.T t jTt�1IQD/dTt�1 � � � .1/
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Then if the visual information of target position is received at time t,
probability distribution integrated the transition model and visual information is
P.T t jYt/ D P.Tt jYt�1/h.yt jTt IR/=P.yt /:

Where h(yt jTt; R) is observation model or likelihood and R is observation
noise. The brain estimates the target position as the updated expected value of T:
E[(Tt jYt)]. According to this model, the estimation of target position is updated
continuously and smoothly during movement.

As another possibility, there is a way that internal target position is updated
intermittently and updated position is maintained a certain time.

Consequently, we suggest that the brain has two models: “the model that target
position is updated” and “the model that target position is maintained”, and switches
target representation between these models by using decision making mechanism.
In the model that target position T* is maintained, internal representation of target
position is not changed spatially over time, but updated by the following formula:

T �
t D T �

t�1 C nS .nS � N.0; 	2Sv//:

Hereby, the uncertainty of target position increases with time. When above-
mentioned procedure is shown as the update equation of probability part

P.T �
t / D

Z
P.T �

t�1/P.T �
t jT �

t�1IQS/dTt�1:

In our model, Tt
* updates to Tt

* when the ratio of posterior probability of these
two target representations exceed a certain threshold � ,

P.T t jYt/=P.T �
t / > �:

2.3 Numerical Simulation

Figure 2 shows the numerical simulation result. The target reaches xD 0 at time
100 steps, and moves to the position xD 0.096 at a constant speed. simulation was
on two different variances of internal noise for dynamic model (	S <	L). Each
probability distribution is assumed to be normally distributed. These conditions
are the same as the behavioral experiment described later. Vibration component
(in period 0.5–2 s) is seen in velocity waveform, and the frequency of target updating
depends on the uncertainty of target motion (Fig. 2a). Figure 2b shows velocity
power spectra. The power between 1–2 Hz was larger when the uncertainty of
target motion was larger. In the case that target velocity changed at start position
(add˙ 0.9; also see Sec. 3 for the detail), difference in hand velocities between
increased and depressed target velocity could be regarded as the response in terms
of target velocity perturbation (Fig. 2c). The uncertainty of target motion affects a
peak of the response.
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Fig. 2 Result of numerical simulation (�D 12.0, 	D 0.0001). Initial values of standard devia-
tions of internal target position for dynamic model and for stable model are 0.003 and 0.0001,
respectively. Standard deviation of observation noise is 0.003. (a) Time variations of target
representation and hand velocity. (b) Velocity power spectra. (c) Response of velocity difference

3 Experiments

According to our model, the timing of updating the internal target of movement
T* was determined by the transition of the variance in target representation
(distribution). To verify this, we examined the effects of the velocity variance (i.e.,
uncertainty) in visually presented target motion on motor intermittency.

3.1 Method

Nine subjects participated in this experiment. Experimental procedures were
approved by the local review board and all subjects signed a consent form. The
experimental apparatus is shown in Fig. 3. The subjects were asked to keep their
chin on the pedestal and to seat in front of the table. The subjects were asked to
keep their right hand on the slider and asked to control it in back and forth direction.
The air pressure floated the slider to avoid the frictional force and the PSD camera
measured their hand position with 200 Hz in the refresh rate. The target position
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Fig. 3 Experimental
apparatus
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Fig. 4 Task assignments

and the cursor indicating subjects’ hand were projected on the vertical screen by
green and red laser spots. The target moved 18 cm (4.7ı in visual angle), and this
was 9.6 cm in the hand coordinate system.

Figure 4 shows task assignments. After the subjects positioned the cursor at
the start position, three consecutive beeps were provided to subjects. The target
was appeared at the bottom side of the start position and started to move upward.
When the target crossed the start position, subjects initiated to track the target.
The visual information of the target provided before it crossed the start position
was called ‘prior information’. In order to control uncertainty about target motion,
the target speeds were randomly selected from three possibilities [Slow (3.6 cm/s),
Medium (6.3 cm/s), and Fast (9.0 cm/s)]. Furthermore, we controlled the variance of
visual noise injected in the prior information so that it changed every trial randomly
from three different standard deviations: 	S

2, 	M
2, 	L

2 (	S <	M <	L). Thus, the
subjects estimated the speed of the moving target taking advantage of the prior
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Fig. 5 Experimental results. (a) Typical orbital of hand position and velocity in the target visible
condition. (b) Frequency analysis of hand velocity. (c) Velocity difference between the cases that
the target speed was increased and decreased at the start point

information. Furthermore, in some trials, the target was turned off after the target
crossed the start point so that the subjects had to achieve the task without visual
feedback of the target and simply based on the prior information. In addition, in
60% of all trials, the target speed after start point was equal to average of prior
information, and in 40% of trials, was added˙ 0.9 cm/s to prior information.

3.2 Result

Figure 5a shows a typical orbital of hand position and velocity in case when target
was visible. As seen from this figure, hand trajectory changed discontinuously, and
meticulous vibration component (in period 0.5–2 s) was seen in velocity waveform.

Figure 5b shows the power spectral density in range of 0–5 Hz. Strong spectral
component can be found at 0.5–2.0 Hz. In addition, the magnitude of the power
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spectral density depended on the velocity variance of prior information. This means
that vibration components were affected by probabilistic information about target
motion obtained before movement start.

Figure 5c shows the subjects’ response in terms of target velocity perturbation.
The magnitude of the velocity variance in prior information significantly affected
the peak of brain’s response.

4 Discussion and Conclusion

In previous computational models of motor control, computation principles of motor
control in a brain was considered to generate smooth movement as the result of
the optimization based on minimum variance estimation of movement-related states
(e.g., hand position) and minimization of valiance of task-related variables (e.g.,
endpoint and viapoint). On the other hand, intermittency can be observed in hand
movements when the hand speed is slow and constant. This behavior seemingly
contradicts above computational principle, but we established that intermittency in
tracking movement could be explained by assuming the decision making process
using the posterior probability ratio of the minimum variance estimate contributed
by two different target transition models. It was revealed that the intermittency in
motion is not due to only the delay in visual feedback [5] and noise [6] but also
characteristics of the motor control in the brain. In addition, it was revealed that the
response to target speed variation changed by the uncertainty of prior information.
This shows that updating the estimated position of the target is probabilistic, and
our model supports that.
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Multi-dynamics Learning Algorithm
Based on SOM2

Satoshi Matsushita, Takashi Ohkubo, and Tetsuo Furukawa

Abstract The purpose of this work is to develop a learning algorithm for multiple
dynamical systems, which is referred to as the Multi-Dynamics Learning Algorithm
(MDLA). The MDLA is necessary when one develops robots which learn various
motion patterns, and which act adaptively depending on the context or the environ-
ment. The MDLA is also expected to be the theoretical abstraction of the dynamics
learning ability of human or animal. In this paper, it is shown that the MDLA can
be realized by employing the higher-rank of self-organizing map, namely, SOMn.

1 Introduction

Human learns a vast number of action patterns during the development, and we
can execute the acquired actions adaptively depending on the context and the
environment. This ability, which is provided by the brain, is also required when
engineers design autonomous intelligent robots. The purpose of this work is to
develop such a learning algorithm that enables us to deal with a group of dynamical
systems. Here let us refer the algorithm as Multi-Dynamics Learning Algorithm
(MDLA). The MDLA is expected to have the abilities to learn, represent, estimate,
quantize, interpolate, and classify a class of dynamics. The destination of this work
is to discover the theoretical principle of MDLAs as well as the implementations
of the algorithms. In this presentation we focus on an implementation of MDLA by
using higher-rank of self-organizing map, namely SOMn [1, 2].
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2 What Is MDLA?

First of all, let us clarify what we expect from the Multi-Dynamics Learning
Algorithm. Suppose that we have a set of N dynamical systems represented by
N difference equations zn.t C 1/ D f .zn.t/I �n/ or differential equations Pzn.t/ D
f .zn.t/I �n/. Here zn.t/ is the state variable, while �n is the parameter vector which
determines the n-th dynamics. The dynamics dealt with by the MDLA is assumed
to be altered continuously when �n is changed continuously. It is further supposed
that the dynamics set ffn.z/g and the parameter set f�ng are unknown, whereas a
part of the state variable z.t/ is assumed to be observable. Thus z.t/ consists of the
observable part x.t/ and unobservable part y.t/, such as z D .x.t/; y.t// (Fig. 1).
Therefore N time sequences X.t/ D fx1.t/; : : : ; xN .t/g are available to use for
training of MDLA.

With this framework, the MDLA is expected to have the following abilities.

1. The MDLA estimates the dynamics which generated the given sequences X D
fxn.t/g. It means that MDLA needs to estimate both ffn.z/g and the latent
variable fyn.t/g.

2. The MDLA measures the distances or similarities between the estimated dynam-
ics. It also means the MDLA can sort, classify and quantize the given dynamics
if it is needed.

3. By giving an intermediate � , the MDLA represents the intermediate dynamics
between given sequences.

4. If a new sequence xnew.t/ is observed after training, the MDLA identifies the
corresponding parameter �new of the sequence, and classifies the dynamics.

3 Naive Algorithm

For this purpose, modular network architectures have often been adopted tradition-
ally. One of the representative one is MOdular Selection And Identification for
Control (MOSAIC) [3]. Sometimes SOM is combined with the modular network

Observable
Variable

Latent
Variable

Internal
Signal

Fig. 1 Thime-series
generation model in the
framework for learning of
multiple dynamics
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[4–6]. An alternative architecture is Jordan’s plan unit or its modifications, such as
the Parametric Bias (PB) methods [7,8]. The common principle of these methods is
that the best matching module or the best matching parameter is most responsible for
each dynamics, and the network is trained by mixing the given sequences according
to the responsibility.

Unfortunately it has been shown that such naive algorithms are effective only
in some simple cases, in which the distance between two dynamics can be defined
as [2, 9],

L2.f1; f2/ ,
Z
kf1.x; y/� f2.x; y/k2 p.x; y/ dxdy (1)

Here x and y are the observable and the latent state variables, and f1, f2 represents
the function of the differential/difference equations. To apply this distance measure,
the probability density function (PDF) p.x; y/ should be equal to both dynamics,
but it is uncommon in many realistic cases. To make the situation worse, the
probability density of the latent variable y.t/ is underspecified, because there is
always arbitrariness of the scale and the bias of y. Therefore such naive algorithm
based on the mixture learning is not appropriate for the task (Fig. 2). Thus we need
another strategy to develop the MDLA which works in more generalized situations.

4 Theory for Natural Algorithm

To solve the arbitrariness problem of the latent variable y.t/, let us employ the
embbeded representation.

Qxn.t/ , .xn.t/; xn.t � 1/; : : : ; xn.t � LC 1// (2)

Since Qx.t/ means a short trajectory for the period of T , Qxn distributes differently for
each sequence and forms a individual subspace. Thus we obtain N subspaces from
N observed sequences. If the subspaces are linear, then they can be represented by
the autoregressive (AR) model. Here we assume that these subspaces are nonlinear
for generality. It means that our task becomes to identify, classify and interpolate a
set of nonlinear manifolds. In such situation, the dynamics is represented by

Qxn.t C 1/ D Qfn.Qxn.t//: (3)

It is worth noting that these manifolds are all isomorphic. If they are not isomorphic,
then those dynamics are heterogeneous, and no comparison between dynamics can
be made.

Now let us introduce the concepts of intrinsic variable and intrinsic dynamics.
The intrinsic variable � indicating the position in each manifold, while the intrinsic
dynamics can be represented as

�.t C 1/ D f .�.t//: (4)
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Fig. 2 Single RNN is trained by two time-series of Henon map with different parameters, a D 1:4

and a D 1:0. The gray surface of each panel represents the dynamics expressed by the RNN,
while the black surface represents the desired dynamics when an intermediate parameter is used,
i.e., a D 1:2. (a) The result of the naive algorithm. (b) The result of the natural algorithm

The intrinsic variable � should be carefully determined so that the intrinsic dynamics
are common for all given sequences. Thus the maps from the intrinsic space to the
observed embedded space depends on the sequences so that

Qxn D gn.�/ D g.�; �n/: (5)
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Under this formulation, the distance measure between two dynamics is defined by

L2.g1; g2/ ,
Z
kg.�I�1/ � g.�I�2/k2 p.�/d�: (6)

To measure the distance, we have to estimate both gn.�/ and �n.t/ for Qxn.t/. It is
worth noting that the estimation of �1 and �2 should be made simultaneously so that
the same value of � means the same intrinsic state. Therefore the essence of this
task is to estimate the homotopy g.�; �/ from a family of dataset. The higher-rank
of self-organizing map SOMn is designed for this purpose. In this case, the 2nd rank
of SOM, i.e., SOM2 is most suited algorithm [1].

5 Natural Algorithm

To solve this problem, the following three steps are necessary. (1) Estimating
each nonlinear manifold Mn, which consists of the dataset QXn D fQxn.t/g. (2)
Homologizing the estimated manifolds so that the intrinsic variable � becomes
common for all dynamics. (3) Comparing between homologized manifolds, and
sorting, interpolating and quantizing them. These tasks cannot be made by one-
pass process, and we need to solve them iteratively. The higher-rank SOM (SOMn)
is developed for the very purpose. The second rank of SOM, i.e., SOM2 has a
hierarchical structure consisting of the 1st SOMs and the 2nd SOM. The task of
the 1st SOMs is to model a set of manifolds, while 2nd SOM models the relation
between the maps organized by the 1st SOMs (Fig. 3).

The algorithm is described as follows [1]. First, each manifold Mn is estimated
by the 1st SOM.

Mn.�/ WD S1stŒ QXn;Mn.� � 1/� (7)

Here the symbol S is the SOM operator, which means a single step of SOM
algorithm. � is the calculation step, andMn.� � 1/ is used as the initial condition of
the estimation. In SOM2 Mn.�/ is represented by a tensor, and it can be dealt with
as an ordinary vector. Second, the meta-mapQ is estimated by the 2nd SOM.

Q.�/ WD S2ndŒfMn.�/g;Q.� � 1/� (8)

The 2nd SOM homologizes the given manifold set by making interpolation. As the
result, the intrinsic variable � are gradually aligned for all dynamics.

As the result, the 2nd SOM organizes a map of the manifolds. Then finally, the
winner unit of the 2nd SOM is copied back to the corresponding 1st SOM.

Mn.�/ WD q�
n.�/ (9)
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Fig. 3 A map of weather dynamics organized by a SOM2. Weather trajectories during 1 week for
153 cities are indicated in the winner node

Here q�
n is the winner unit ofMn within the units of the 2nd SOM. The third step is

essentially important, because the homologized manifolds become the initial state
of the next iteration.

6 Simulation and Result

To examine this algorithm, the SOM2 based algorithm was applied to the weather
data observed at 153 cities in Japan. In the weather dynamic case, the intrinsic
variable � means the essential representation of the weather state which usually
features the pressure pattern and so on. In this simulation we assumed that the
observation dates are unknown, and thus it was impossible to compare the weather
data of the same day between different cities.
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The result is shown in Fig. 2. In the organized map, the cities belonging to
the similar weather classes are located nearer and the entire map represents the
continuous representation of weather features of the cities. Unlike the ordinary
Kohonen’s SOM, each nodal unit of SOM2 represents a self-organizing map of the
1st SOMs. Thus we can see a single dynamics in each unit of the SOM2, while a map
of dynamics can be seen in the entire SOM2. In Fig. 2, weather trajectorie during
1 week of 153 cities are also indicated in the corresponding (i.e. the winner) unit.

7 Discussion

In this presentation, we proposed a novel method of self-organizing map of a set
of dynamics based on SOM2. It should be stressed that SOM is not essential in the
algorithm, and one can replace SOM by other type of subspace learning algorithms.
The most essential point of the algorithm is the hierarchical estimation of the 1st
and the 2nd levels, and the simultaneous estimation of the intrinsic variable and the
map from the intrinsic space to the observed data space. Homologizing between
different dataset is not easy, and one-pass naive algorithm is only effective in simple
and lucky cases.

Theoretical viewpoint, several issues are expected to be clarified further. First,
the algorithmic structure of SOM2 should be described in terms of probabilistic
learning such like Bayesian theory. Second, the concepts of the intrinsic dynamics
and the intrinsic variable should be more clarified in terms of dynamics. Third, the
issue of the metrics of dynamics is important but still remained.
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Saccade Dynamics in Error Trials During
Visual Search

Atsushi Fujimoto, Satoshi Nishida, and Tadashi Ogawa

Abstract We recorded behavioral properties of a monkey performing visual search
task and analyzed erroneous trials by classifying them into three error types
depending on the saccade trajectory. In spite of common motor requirements and
feedbacks, we observed distinctly different patterns in the reaction times and the
peak eye velocity. These results suggest different causes and neuronal substrates
underlying different error types.

1 Introduction

We sometimes make mistakes, even when we make a well-learned response
following instructions. This phenomenon has been commonly observed in animal
studies. A visual search task is a simple task and it is widely used in animal studies.
Nevertheless, animal subjects sometimes make error responses, even after they have
been well trained and they fully recognized a task sequence [1, 2].

Although the reasons that cause erroneous responses may differ from trial to trial
(e.g. memory loss, failure in motor planning, and lack of attention or motivation),
few studies separately analyzed erroneous responses depending on the cause of
them. The purpose of the present study was to classify erroneous responses into
subgroups depending on the cause that elicits erroneous responses and to elucidate
the response-property differences among the different types of erroneous responses.

Here, we required a monkey to perform a visual search task and analyzed sac-
cadic eye movements obtained from the erroneous trials. By classifying erroneous
trials into three types depending on the trajectory of the first saccade in visual search,
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we demonstrated that the response properties substantially differed among the three
types of erroneous responses, implicating different causes underlying different types
of erroneous responses.

2 Methods

Data were collected from one female Japanese monkey (Macaca fusucata) weighing
7.0 kg. A head holder and a scleral search coil were surgically implanted before
the experiments. All animal care procedures and experimental protocols were in
accordance with the National Institutes of Health Guidelines for the Care and Use
of Laboratory Animals (1996) and were approved by the Animal Care and Use
Committee of Kyoto University.

The monkey was trained to perform a target-tracking visual search task (Fig. 1).
Eye movements during experimental sessions were measured using the electromag-
netic search coil technique. Each trial began with the appearance of a fixation point
and the monkey was required to fixate on that spot within a square window of
˙ 1.5–1.7 deg. After fixation for 1,200–1,500 ms, an array of six colored elements
(red, orange, yellow, green, blue, and magenta) appeared in a circle around the
fixation point. The color order of an array was randomly changed from trial to trial.
After fixation for an additional 600–1,000 ms, the fixation point disappeared (Go
signal) and the monkey was required to make a saccade to one of the elements. One
color was defined in advance as the behaviorally relevant target. Immediately after
saccade onset, the array stimulus disappeared. If the monkey made a single saccade
landing inside a square window of ˙2 deg centered on the target, another fixation
point appeared at the target position. After fixation to this point for 600 ms, the
monkey received a juice reward accompanied by a high-pitched tone, indicating a
successful trial.

If the monkey made a saccade to a non-target-color element or to another location
outside the target window, the trial was terminated and only a low-pitched tone
was delivered, indicating an erroneous trial. If the gaze position deviated from the
fixation window before the Go signal, the trial was immediately aborted without
reward or sound feedback. The trial was also aborted if the saccade reaction time
was too short (<130 ms) because that saccade may have been initiated before the
Go signal.

Fig. 1 Target-tracking visual search task
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The target color remained the same within a block of 20–40 successful trials, and
then changed unexpectedly. This task design required the monkey to find the target
color on the corresponding block by trial and error and then repetitively select the
relevant color in the subsequent trials within the block. In this study, we focused on
only the trials following the first successful trial after a color change. On these trials,
the monkey presumably recognized the relevant color of the block and could select
it in a stereotypical manner.

To characterize the behavioral response properties during the task, we calculated
the success rate and two kinds of reaction times. The success rate was calculated
as the ratio of the number of the successful trial to the summed number of the
successful and erroneous trials. The reaction time of the fixational eye movements
toward the fixation point (RTFP) was defined as the interval between the fixation
point appearance and the time at which the gaze position shifted into the central eye
window. The RTFP was set to 800 ms when the RTFP was larger than 800 ms, and
set to 0 ms when the gaze position already located in the central eye window before
the appearance of the fixation point. Saccadic reaction time (SRT) was defined as the
interval between the fixation point disappearance and saccade initiation. The peak
eye velocity (PEV) was defined as the maximum eye velocity during the first saccade
following Go signal. Trials in which it was lower than 180 deg/s were excluded from
data analysis (0.7%). For the statistical comparisons, the median value of RTFP and
SRT and the mean value of PEV were calculated for each session, then the average
and standard deviation (SD) were calculated across all sessions for each result state.

3 Results

The data obtained from 504 blocks (39 sessions) were used in all of the following
analyses. On average, the monkey performed 12.9˙ 3.4 (mean˙ SD) blocks in
each session. The average number of the erroneous trials (trial-and-error searches)
before first successful trial after a color change was 5.0˙ 1.1 trials. Once the
monkey accidentally made a saccade to the target color of the currently-executing
block (first successful trial), the success rate immediately increased and then
kept at a high-performance level (82.9˙ 4.8%), indicating that the monkey fully
recognized the relevant target color and selected a color element depending on
the knowledge about it (knowledge-based searches). In the current study we only
analyzed the trials following the first successful trial after a color change.

We classified erroneous trials into three types depending on the landing point of
the first saccade (Fig. 2). The most frequent erroneous type (62.7%) was ‘Distracter-
selected’ type, in which the monkey selected a non-target stimulus with a single
saccade. Secondary one (18.3%) was ‘Non-selected’ type, in which the first saccade
did not reach any of the color elements. Third one (17.7%) was ‘Target-selected’
type, in which the monkey successfully selected the target element but failed to
keep the post-saccade fixation until the reward delivery.
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Fig. 2 Three types of erroneous saccade responses. The target (solid circle) and distracters
(dashed circles) are shown. Arrows indicate schematic saccade trajectories

Fig. 3 Error-type-dependent differences in RTFP (a) and SRT (b). Asterisks over the bars indicate
statistical significances (rank-sum test, **p< 0.01; *p< 0.05; N.S., p> 0.05)

We first compared the RTFP values among the three error types and the success-
ful trials (Fig. 3a). We found that there was no significant difference in the RTFP
values across the three erroneous types (distracter-selected, 164.4˙ 81.2 ms; non-
selected, 152.2˙ 98.5 ms; target-selected, 181.1˙ 122.7 ms; one-way ANOVA,
pD 0.46, FD 0.77). In addition, the RTFP values in the three erroneous types were
not significantly different from that in the successful trials (164.4˙ 77.7 ms) (rank-
sum test, p> 0.05). Thus, RTFP was not linked with the erroneous type and the
result state (successful or erroneous trials).

We next compared the SRT values among the three error types and the
successful trials. We found significant differences among the three error types
(distracter-selected, 165.7˙ 8.7 ms; non-selected, 170.8˙ 18.7 ms; target-selected,
179.5˙ 16.1 ms; one-way ANOVA, p< 0.001, FD 8.2). The SRT values in both
the distracter-selected and non-selected error types were significantly shorter than
that in the successful trials (176.1˙ 7.0 ms; rank-sum test, p< 0.01, distracter-
selected vs. success; p< 0.05, non-selected vs. success). But there was no significant
difference between the target selected error type and successful trials (rank-sum test,
p> 0.05).

Finally, we compared the PEV of the first saccade after Go signal among the
erroneous and successful trials. Because the saccade amplitude affects the PEV, we
used only the trials with saccade amplitude was within 6–7ı. There were significant
differences among three error types (distracter-selected, 381˙ 19.0 deg/s;



Saccade Dynamics in Error Trials During Visual Search 579

non-selected, 348˙ 21.5 deg/s; target-selected, 313˙ 38.5 deg/s; one-way
ANOVA, p< 0.001, FD 58.9). The PEV was significantly larger in the distracter-
selected erroneous trials and in the non-selected erroneous trials than in the suc-
cessful trials (312˙ 24.3 deg/s) (rank-sum test, p< 0.01). It was also significantly
different between the distracter-selected and non-selected types (p< 0.01). Thus,
the non-selected type erroneous trials had fastest PEV among three error types.

Taking together, the SRT and the PEV values in the distracter-selected and non-
selected erroneous trials significantly differed from those in the successful trials.
In contrast, there was no such difference between the target-selected-erroneous and
successful trials.

4 Discussions

In this study, we compared the behavioral response profiles (RTFP, SRT, and PEV)
among the different-type erroneous (distracter-selected, non-selected and target-
selected error types) and successful trials when a monkey performed a visual search
task. We found that changes in the response profiles between the erroneous and
successful trials were not the same but instead largely varied depending on the
error type.

Previous studies reported that RTFP could reflect the motivational state of
an animal subject on the individual trials [3, 4]. Okada et al. (2009) gave the
different amount of reward after successful responses. The magnitude of reward was
instructed in advance by the shape of the fixation point so that the monkey could
expect that. The mean RTFP value increased on the trials in which the monkey
anticipated a large reward, whereas it decreased when the monkey anticipated a
small reward [3]. Although it is expected that internal motivation may differ between
the successful and erroneous trials, we found that RTFP did not depend on either
the error type or the result state (Fig. 3a). Thus, there may be no difference in
motivational state among different result state, or if any, they were not reflected
in RTFP in our visual search task.

The present study demonstrated that reaction times in the target-selected erro-
neous trials did not significantly differ from that in the successful trials. (Fig. 3). In
this type of erroneous trials, visual saccade selection processes may be adequately
advanced, and the monkey only failed to maintain post-saccade fixation until reward
delivery. Therefore, in the following discussion, we mainly focused on neural
mechanisms that produce erroneous saccades in the distracter-selected and non-
selected error types.

SRT in the distracter-selected and non-selected error types were significantly
shorter than that in the successful trials (Fig. 3b). Previous studies suggested that an
unusual neuronal pathway resulted in short SRT and erroneous response. Yoshida
et al. (2008) investigated saccade profiles in the monkey with unilateral lesion in the
primary visual cortex. They reported shortened SRT and compensative activation
of the superior colliculus (SC) when the monkeys made a saccade to the affected
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Fig. 4 Error-type-dependent
differences in the peak eye
velocity

visual field [5], suggesting that the amount of the time to generate a saccade might
be shortened due to shortcutting in the processing through the neocortex. However,
because SC neurons are poorly selective for stimulus features [6], such a by-passed
process might elicit incorrect responses in visual search in which the target was
defined with stimulus features. Gold et al. (2007) suggested that the accumulation
of sensory evidence in the lateral intra-parietal area (LIP) is crucial to execute a
correct response [7, 8]. Imperfect accumulation of the sensory evidence may elicit
an immature saccade with short SRT and result in an erroneous response. Taking
together, the present finding that the SRT values in the distracter-selected and non-
selected erroneous trials significantly decreased suggest that the accumulation of
sensory evidence may be insufficient in the distracter selected and non-selected
erroneous trials compared to the target-selected erroneous and successful trials in
this study.

The PEV was significantly higher in the distracter-selected erroneous trials
and in the non-selected erroneous trials compared to that in the successful trials.
Moreover, distracter-selected type was faster than the non-selected type (Fig. 4).
Previous studies reported that the saccadic peak velocity varies depending on the
task conditions. Van, Gelder et al. (1997) trained monkeys to perform both visually-
triggered and memory-guided saccade tasks and found that the peak velocity in
saccadic eye movements decreased in the memory-guided saccade task [9]. The
existence of a visual stimulus at the location of a saccade end point may facilitate
the saccade initiation processes in a stimulus-driven manner and generate a faster
saccade in a visually-triggered saccade task. In contrast, in the lack of the visual
guidance, such stimulus-driven facilitation cannot work and generate a slower
saccade in a memory-guided saccade task. Based on the expansion of this view, we
infer that the relatively slower saccadic eye velocity in the non-selected erroneous
trials observed in this study may be due to the lack of stimulus-driven facilitation,
because the monkey shifted gaze to the blank region (no stimulus at the saccade end
point) in this type of erroneous trials.
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In a memory-guided saccade task, the information about the target position
should be maintained in working memory and the motor plan should be made
under the top-down control. The fact that the PEV of a memory-guided (top-down
control) saccade is slower than that of a visually-triggered saccade suggest that
the emergence of top-down control has an effect so that the eye velocity becomes
slower. In other words, if the saccade initiation process is only based on stimulus-
driven manner and free from any top-down control, the saccade eye velocity could
be faster. In the present study, we found that the PEV was significantly higher in
the distracter-selected erroneous trials than that in the successful trials. We think
that less top-down control (reflective) may produce a faster saccade observed in this
type of erroneous trials.

Thus, the lack of the top-down control presumably elicits a fast erroneous
saccade (distracter-selected erroneous type), whereas the lack of stimulus-driven
facilitation causes a slow and miss-localized saccade (non-selected erroneous type).
The emergence of the markedly different types of erroneous saccades suggests the
importance of the balance of top-down control and stimulus-driven facilitation in
producing a correct saccade response during visual search.
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Design and Dynamics of Active-Touch Sensory
Model

Tatsuo Yanagita

Abstract An active sensory system is designed using the Markov chain Monte
Carlo (MCMC) method. The system is a feedback circuit comprising four parts:
receptors, sensory, motor, and internal neurons. The neurons are modeled using
excitable cellular automata. The neural connections between them are determined
by the MCMC method so as to minimize a given sensing error. Several modes of
sensing motions have been found depending on the optimization level, and a logical
interpretation of an optimized neural network is obtained.

1 Introduction

In general, haptic (touch) perception entails the exploration and recognition of
object surfaces through active touch. Numerous studies have been conducted in
this regard [1–4]. Perception via active sensing is more effective than perception
vis passive sensing [1, 4]. Our objective is to determine how such an effective
sensing can be achieved by sensing environment patterns via input neurons and
computing motor outputs using neural networks. From a mathematical point of
view, finding similarities among algorithms for the different types of touch is an
interesting task. For this purpose, first, we design a mathematical model of an
active sensory system. Then we optimize the neural networks using the Markov
chain Monte Carlo (MCMC) technique, and we analyze the types of logic that can
embedded in the optimized neural networks.
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2 Models and Methods

The system considered herein is a neural feedback circuit with several components,
i.e., sensory neurons, motor neurons, interneurons, and receptors, as shown in Fig. 1.
The output signals of sensor neurons are activated by receptors and transmitted to
motor neurons via interneurons. The excitation of motor neurons induces the motion
of the receptor part, and stimuli to these receptors change as a result of this motion.
Thus, the system is a feedback circuit between the input signals to the receptors and
the self-generated sensing motion controlled by the neural network.

For simplicity, we use an excitable cellular automaton (ECA) as a model neuron,
i.e., the excitable neuron has n states si 2 f0; � � � ; ng; .i D 1; � � � ; N /, si D 0 is
the resting state; si D 1 corresponds to excitation, and the remaining states si D
2; : : : ; n � 1 are refractory states. When the sum of the input signals to the i�th
neuron exceeds a threshold, it goes from state si D 0 to 1. Time is discrete and the
dynamics, after excitation, are deterministic: if si D 1, in the next time step, its state
changes to si D 2 and so on until the state si D n � 1 leads to the si D 0 resting
state. Thus, the element is a cyclic cellular automaton.

In the following, we consider an ensemble of ECA neurons N D fNS [NL [
NR [NI g, where NS denots sensor neurons, which receive signals from receptors,
NL and NR denote motor neurons, which control the left and right motions of
the receptor part, respectively, and NI denotes interneurons. The sensorimotor
system contains a feedback loop between the signals from the receptors and the
autonomously generated sensing motion.

x
g(x)

Fig. 1 Schematic figure of
mathematical model for
active touch sensory system.
Sensory neurons,
interneurons, motor neurons,
and receptors are represented
by triangles, circles,
diamonds, and inverted
triangles, respectively
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When a sensory neuron i connects to a set of receptors Ri , it receives the
following inputs from Ri depending on the positions at which the receptors are
located, i.e., the signal to the sensory neuron i from the receptors is

I ri D
X

j2Ri

g.xj /;

where g.�/ is a given function that determines the profile of an object, and xj is the
position of receptor j . We assume that all the receptors are attached to a single base
at equal intervals, and thus, the positions of the receptors are

xk D X C ıx.k � 1/� .Nr � 1/ıx
2

; .k D 1; : : : ; Nr/;

where Nr is the number of receptors, ıx is the interval between receptors, and X
is the position of the center of the base. The neuron i receives the following input
signal from the connected neurons and receptors,

Ii D
X

j

wj;i ı1;snj C I ri ; (1)

where w D fwi;j g is the connection matrix between the neurons. ıi;j is Kronecker’s
delta. If i D j , ıi;j D 1; otherwise, ıi;j D 0.

In this paper, we consider the one-dimensional motion of the receptor part.
The governing equations of motion obey the following Newtonian dynamics with
external forces f ,

M
d2X

dt2
D f .NL;NR/ exp.�j Pxj=vmax/; (2)

where f .X ;Y/ is external force acting on the receptor part, which is controlled
by motor neurons NL and NR, vmax denotes the maximum speed, and M is the
total mass of the receptor part. For simplicity, we set f .X ;Y/ D #X � #Y , where
#X denotes the number of firing neurons in X , i.e., #X D P

i2X ısi ;1; thus, the
sensing motion is controlled by the difference in the number of firing neurons of NL

and NR.
An artisan can grind and polish a designed structure elaborately, e.g., telescope

lenses and perfectly flat mirrors are polished manually by a skilled craftsmen. They
can actively detect the slightest roughness and polished it off. On this basis, we
assign the following task. The time-averaged signals from the receptors

Q D
NrX

iD1

1

T

TX

tD0
g.xi .t//dt; (3)
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i.e., the sensorimotor system tries to detect a tiny hollow in a given surface profile
g.x/ by self-generated sensing motion, where T is the time interval in haptic
perception. For this purpose, we employ a MCMC method to design a neural
network, which has been previously applied to dynamical systems [5]. In the actual
implementation, we use the replica exchange Monte Carlo (REMC) algorithm,
which provides an efficient method to investigate systems with rugged free-energy
landscapes, specifically at low temperatures (see [5] for details).

3 Numerics

For each Monte Carlo step, since we have to estimate Q by time evolution of the
model equation, systems with the number of neurons N D 4; 8; 16 are investigated
in this paper. Initially, the center of the receptor part is X D 0, for all the neurons,
si D 0; .i D 0; 1; : : : ; N /, and a random matrix is used as the initial wi;j . The
interval between the receptors is ıx D 0:2. The total number of links between the
neurons is fixed at L. For time averaging, intervals of length T D 200 and 500
were typically used. The results did not significantly depend on T when sufficiently
large values of T were taken. Using Q, networks w were sampled by the REMC
optimization method. Simultaneously, the evolution of K replicas with inverse
temperatures ˇm D ıˇ � m; m D 0; 1; : : : ; K � 1; was performed (with K D 16

and ıˇ D 10). For display and statistical analysis, sampling was carried out every
50 mcs after a transient of 5,000 mcs has been undertaken. In the following, we
consider g.x/ D exp.�x2/ and g.x/ D cos2.2�x/ as profile of objects.

First, we consider a trivial task, i.e., g.x/ D exp.�x2/. In this case, the best
strategy to sense the tiny hollow is that the receptor part should try to get away
from the original position X D 0, as quickly as possible. In fact, such motion is
observed in optimized neural networks. Here, we use “optimizing” in the following
sense. Many networks are sampled by the aforementioned algorithm, and their
performances are dependent on ˇ, i.e., replicas with larger ˇ usually sample better
networks. We divide all the sampled networks into K sets, fwgk D fwjQk <

Q.w/ < Qk�1g .k D 0; 1; : : : ; K � 1/, where Qk D Qmin C .Qmax�Qmin/k

K
,

and Qmin and Qmax are the minimum and maximum performances for sampled
networks, respectively. Decreasing the index k, the mean performance of the set
fwgk increases. We regard these sets as different optimized levels, and the set fwg0
denotes optimized networks.

The best sensing motion can be realized in fwg0 by a simple network structure, as
shown in Fig. 2(a-ii). Because there is no uncertainty regarding the initial condition
of the system, only a symmetry-breaking connection from a sensory neuron to a
motor neuron is required to induce such unidirectional motion. In fact, as shown
in Fig. 2(a-ii), unidirectional motion can be realized by this simple asymmetrical
neuronal connection.

When we set the profile g.x/ D cos2.2�x/, it is obvious that such a unidirec-
tional motion cannot give the best performance. One may expect that it is difficult for
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Fig. 2 Typical realization of sensing motion. Left: The position of the center of the receptor part
X as a function of time. The broken lines indicate the positions at which the external stimulus
g.x/ D cos2.2�x/ takes minimal values. Right: The corresponding networks. The numbers on
the top of the figures show the Q value. (a) Nr D 1; L D 4 (b) Nr D 2; L D 10, and the other
parameters are N D 4 and M D 1

the system with only one receptor to generate any motion except for unidimensional
motion, and it cannot perform the task. In fact, the system with Nr D 1 exhibits
only unidirectional motion if the number of neurons is small.

When we increase the number of receptors, several types of autonomous
sensing motions are founds, i.e., unidirectional, periodic, damping, aperiodic, and
convergent motions, depending on the optimization level (typical styles are shown
in Fig. 3). These modes can be interpreted as follows. The periodic sensing motion
shown in Fig. 3a is a result of the simple logical connection between a sensory
neuron and a motor neuron as follows. Signals from the left (right) side receptor
excite the motor neurons NR(NL) through sensor and internal neurons, and this
circuit causes oscillatory sensing motion.

The convergent motion to the position of the hollow Ox D arg minx g.x/ appears
in such a way that after generating left (right) motion, this motion is counterbalanced
by generating forces resulting from the excitations of the opposite motor neurons
when the receptor part is in the vicinity of the minimum point (see Fig. 3c). This
means that there exists a delay circuit in the network; however, we cannot determine
the explicit logical interpretation in the network. It may seen that the convergent
motion is one of the “best” sensing motions minimizingQ. However, this mode can
be seen as an “over-fitting” in the sense that the optimized network does not give
good performance when we change the object’s profile in time. In fact, when the pro-
file varies stepwise as g.x; t/ D cosŒ2�.x �
.t//�; x.t/ D 0:5P3

iD1 ‚.t � ti /,
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a

b

c

d

Fig. 3 Typical styles of
sensing motion depending on
Q level. (a) Oscillatory mode
.Q 	 0:3/ (b) Dumping
mode .Q 	 0:09/ (c) Over
dumped mode .Q 	 0:01/

(d) Network that generates
over dumped mode (c). The
parameters are Nr D 4;

N D 8, and L D 40

where ‚.�/ is the Heaviside function, the convergent sensing motion does not
appear. Thus, this mode is a “good” strategy for a given (well-known) static object,
however, it is not robust against time variation of an object.

As the number of receptors and neurons increases, more complex sensing
motions are realized, e.g., dumping motions and aperiodic oscillatory motions
emerge. Typically, these motions are realized with the intermediate Q levels, as
shown in Fig. 3b. Furthermore, in contrast to convergent motion, the dumping
and aperiodic motions are robust against the time variation of an object, and the
performances of the designed system is stable for many types of given objects.

4 Summary and Discussion

We designed an active-touch sensory system equipped with an excitable cellular
automaton network. Considering an artisan’s polishing skills, which are known to
be actively acquired, we assigned the task of detection of a tiny hollow on a surface
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defined by a given profile function g.x/. To design a neural network that perform
the task, we used the Markov chain Monte Carlo method.

Many styles of sensing motions of the receptor part emerged depending on the
optimized levels, and the number of neurons and receptors. For small networks, we
could identify the algorithm/logic of the sensorimotor system by a direct comparison
with the neural network; however, exploration of such a relationship may require
statistical analysis for larger networks. Since it is difficult, in general, to derive
logic/algorithm from a dynamical system, even if it is a small network consisting
of simple dynamical elements presented in this study, we may have to reconsider
how to understand a functional dynamical system. The interpretation of a dynamical
system via logic/algorithm may be inadequate for understanding the system.

It is also interesting to elucidate how dumping and aperiodic motions are
produced by designed neural network, e.g., how the time scales of dumping and
fluctuation are reflected by the neural networks. Since we detected aperiodic sensing
motion for larger neural networks, it is important to consider the role of fluctuation
and chaos in sensing.
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Human Object Recognition Based on Internal
Models of the Human Hand

Masazumi Katayama and Tatsuya Kurisu

Abstract In this study, we have assumed that tools to use by hand are recognized
based on the internal model of the hand. In the first step to validate the hypoth-
esis, we investigated whether internal model influences the size that participants
recognize as the tool. In the experiments, by repeatedly grasping while looking an
object and a geometrically transformed hand shape that were displayed on a monitor,
each participant acquired the internal model that corresponds to the transformation
hand shape. By the measurement experiments after the training, we found that the
cognitive judgment of the size was affected by the geometrical transformation of
the hand shape. This result indicates that the internal model is closely related to the
object recognition.

1 Introduction

When you feel a thirst, you can immediately find a drinking cup even from
the complicated environment, although there are many kinds of cups. Here, we
emphasize that such a cognitive process closely relates to sensorimotor experiences
for object manipulation of tools. For example, the size that we look like a drinking
cup may depend on the size of our own hand because a larger object of a cylinder
type looks like a vase. Thus, object recognition for graspable tools may be closely
related to the size of the human hand. From this point of view, in this study, we have
made a hypothesis that we search and recognize tools such as a drinking cup by
using an internal model of the human hand [1, 2]. According to this hypothesis, by
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using the internal model, we can easily recognize a drinking cup by judging whether
we can grasp and manipulate the object or not, although various kinds of memories
such as a declarative memory for tools are also important.

In this study, for the first step to evaluate the biological plausibility of the
hypothesis, we built an experimental paradigm to learn internal models of the human
hand and then we investigate a relationship between the internal models and object
recognition.

2 Methods

As shown in Fig. 1, we built a experimental system in a dark room that constructed
by using a hand-shape measurement device (CyberGlove, Immersion Corp.), a
three dimensional motion measurement device (OPTOTRAK3020, Northern Dig-
ital, Inc.), a mirror, a display (U2711, DELL), an experimental chair using an
ergonomically designed car seat (Keiper Recaro GmbH and Co), a 4-point seat
belt to fix participant’s body, and a chin rest to fix participant’s head. Infrared
light-emitting diodes (IR LED markers) were attached to each fingertip in order to
accurately measure the fingertip positions by OPTOTRAK at 200 Hz. Hand shape
of the right hand of each participant was also measured by CyberGlove (22 joint-
angles) at 120 Hz and the hand shape were displayed on the display. Before the
experiments, a right hand and a forearm were displayed on a monitor and then we
calibrated the position, size and hand shape of the displayed hand in order that each
participant looks like own hand.

IR LED Marker

OPTOTRAK

Chin rest

E
rg

o
n

o
m

ic
 c

ar
 s

ea
t

Display

Mirror

in dark room

CyberGlove

Fig. 1 Experimental
environment
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Fig. 2 Geometrically-transformed hand shapes displayed on a monitor. Both of HS2 are the same
hand shape, size and position as each participant’s hand. (a) HS1 is the case of shorter finger length
and HS3–HS5 are the longer cases. (b) HS1 is the case of narrow grip aperture and HS3–HS5 are
the wider cases. For all the hand shapes in each of (a) and (b), the participant’s hand shape is the
same as HS2

Fig. 3 Displayed image on
an monitor. Grasping task to
train the internal model that
corresponds to the
geometrical transformation of
the displayed hand shape. (a)
Precision grasp task. (b)
Power grasp task

In the experiments, the hand shape of participant’s hand was geometrically
transformed and the transformed hand shape was displayed on a monitor. We used
two kinds of the transformation for finger length and joint angle. For finger length,
the geometrical transformation was to change the length of each first link of the
thumb and the index finger. There are five hand shape types from HS1 to HS5: 0.6,
1.0, 1.4, 1.8 and 2.2 times, as shown in Fig. 2a. For joint angle, the transformation
was to shift angle of each first joint of the two fingers. There are also five hand
shape types from HS1 to HS5: �5, 0, 5, 10 and 15 degrees, as shown in Fig. 2b.
Eight participants joined the experiments (eight male, right-handed, aged 21–26)
and were divided into two groups for the finger-length condition and the joint-
angle condition. In each group, cognitive judgment for tool size was examined after
learning a grasping task described in the below. The learning and measurements for
each hand shape type were executed in the order of HS2, HS1, HS4, HS3 and HS5
on different days (Fig. 3).
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Fig. 4 Examples of the
displayed objects

2.1 Learning Phase of the Internal Model

A right hand and a forearm were displayed on a monitor and moreover two small
circles were also displayed as shown in Fig. 4. The displayed hand and forearm
could be moved in synchronization with participant’s hand-movement measured by
CyberGlove. In order to train the internal model, participants repeatedly executed
the grasping task that positioned each fingertip to each small circle and the positions
of two circles were randomly changed every trial. Whether the learning had finished
was judged after each set (one set was 20 trials). If the learning had not finished then
participant executed trials of one set. When the learning had finished, it is indicated
that participants trained a new internal model that corresponded to the transformed
hand shape.

2.2 Measurement Phase of the Cognitive Judgment

After they completely trained the grasping task for each hand shape type, we
examined cognitive judgment of tool size. For the measurement phase, the hand
and forearm were not displayed and an object (cylinder) was only displayed as
shown in Fig. 4. We used 11 objects of different diameters: the diameters were 24,
38, 52, 66, 80, 94, 108, 122 and 136 mm. The aspect ratio of the diameter and the
height of the objects was constant. Only one object (cylinder) was selected and
displayed on a monitor at each trial. Participant answered whether they recognized
the displayed object as a drinking cup or not: When they recognized as a drinking
cup, they answered “Yes”. The measurements were 20 trials for each object size (the
total were 180 trials).

3 Results

The results of cognitive judgment for object size were shown in Fig. 5. The
probabilities of “Yes” for the displayed objects in each hand shape type were
almost distributed as a normal distribution. For each hand shape type, the object
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Fig. 5 Averaged results of cognitive judgment for all participants. Participants answered “Yes”
when they looked like a drinking cup. The values when the probability is 0.5 express cognitive
thresholds. (a) Finger length. (b) Joint angle

widths at two intersection points that the probability is 0.5 are the lower and upper
thresholds for object recognition. These thresholds are shown in Fig. 6. Both of the
lower and upper thresholds for each hand shape type increase in almost proportion
to the amount of change of grip aperture of the transformed hand shape. These
thresholds for each condition were significantly different except the combinations
of the lower values of HS1 and HS2 in the finger length condition and the values
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Fig. 6 Averaged thresholds
for all participants. The object
size between the lower and
upper thresholds for each
hand shape type are
recognized as a drinking cup.
The vertical line for each plot
expresses the standard
deviation. (a) Finger length.
(b) Joint angle

of HS3 and HS4 in the joint angle condition (p < 0:05, Turkey-kramer method).
These results show that when cylinders of width from the lower threshold to the
upper threshold were displayed, participants recognized as a drinking cup. Table 1
shows the ratio between changes in cognitive judgment and changes in grip aperture
of the transformed hand shape. These values of the ratios are almost 1 although the
values are smaller than 1. Thus, these results show that the ranges that participants
recognize as a drinking cup increase in almost proportion to the amount of change
of grip aperture of the transformed hand shape.
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Table 1 Ratio between changes in cognitive judgment and changes in
grip aperture of the transformed hand shape. Change in grip aperture,
�C , was an amount of change from the grip aperture of HS2. Change in
cognitive judgment,�G, was also an amount of change from the threshold
of HS2. The ratio is�C=�G. The threshold is an average of the lower and
upper values. The lower column is the standard deviation

HS1 HS3 HS4 HS5 Average

Ratio 0.94 0.95 0.88 0.89 0.92
Std. 0.06 0.08 0.07 0.14 0.08

4 Discussion

In this research, we found that the sizes that we recognize as a drinking cup
depend on the geometrical transformation of the displayed hand shape. These results
indicate that we recognize the displayed object (cylinder) as a drinking cup by using
the trained internal model of the geometrically transformed hand.

In our experimental paradigm, some of the readers may have a question that
the internal models were not learned. In our previous experiments, however, we
ascertained that the learning effect of the right hand did not translate to the left
hand [2]. Moreover, we have reported that the learning effect does not influence the
image memory of a familiar cup used in daily life [2]. Those results indicate that
the internal models that correspond to the transformed hand shapes were acquired
by using the experimental paradigm we built.

In previous psychological studies, from the viewpoint of the affordance theory
[3], some researchers have supposed that observation of tools used by the hand
activates an internal simulation of action such as grasping because observation of an
tool activates it’s related action [4–6] and action-related brain areas [7]. In order to
perform such an internal simulation for action, the human hand should be internally
represented in the brain, that is the internal model. One of the possible reasons to
explain that in this study the trained internal model of the transformed hand shape
affect cognitive judgment for object size, is to perform the internal simulation using
the internal model. Thus, our results also indicate an internal simulation of action in
cognitive process of graspable tools, using the internal model of the human hand.

Acknowledgements This research was partially supported by MEXT, KAKENHI (20500235).
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Estimation of Children’s Interest Dynamics
While Communicating with Robots

Takayuki Shimotomai, Kasumi Abe, Ayami Yokoyama, Takayuki Nagai,
and Takashi Omori

Abstract The purpose of this study is to develop a communicative robot that
estimates other’s mental state, and to elucidate a computational principle of brain
dynamics that realizes a mental level interaction. As the first step for the perspective,
we had constructed robots that can observe and estimate child’s internal states,
such as boring or enjoying. As the experiment, we observed a child playing a card
game with a robot that we had developed, and talking with the robot. After the
experiments, the children’s mental states were evaluated by other participants by
watching videos. The results showed high correlation with an index calculated by
a face recognition system in the robot. This result suggests that it is possible for
the robot to recognize human interest and to make an action inducing human-like
interaction.

1 Introduction

An important point to build a communicative robot is to consider dynamic inter-
action. The important aspect in this study is to find the best way for evaluation of
dynamic interest change on communication in face-to-face dialog. Recently robotic
technologies are on the verge of becoming possible to talk and interact with humans.
In fact, there are growing evidences on how human interacts with robots [1, 2].
From a psychological view, Tanaka et al. [1] observed interaction of children and
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a robot. They showed a correlation between interaction strategies and children’s
interactive actions. From an engineering view, Castellano et al. [2] developed chess
player system with emotional face interface and observed interaction during playing
chess with children.

The purpose of this study is to develop a communicative robot that estimates
other’s mental state and to elucidate a computational principle of brain dynamics
that realizes a mental level interaction. As the first step, we had constructed
robots that can observe and estimate child’s internal mental states, such as boring,
enjoying.

In the experiment, we observed children playing a card game and talking with
robots. To estimate the internal ‘interest’ dynamics of the children, we used an
observed face expression sequence, and evaluated the result by comparing it with
the estimation by human adults. And we proposed a rating model for child’s interest
and evaluated the model.

2 Model and System

We have developed a humanoid robot system [3, 4]. The robot has verbal interface
and two arms, vision system such as two cameras like human eyes, and a 3D sensor
(SR4000, Mesa Imaging AG, Zurlich). The robot system uses the Scale-Invariant
Feature Transform (SIFT) based vision system for the object detection [4], and a
face recognition system (OkaoVision, OMRON Corp., JAPAN). The experimental
sessions were recorded by a camera in the robot system for analysis after the
experiments (Fig. 1).

Fig. 1 Face recognition for direction (lower) and smiling value (upper): white rectangles means
recognized face area, and black bars means recognized nose position and face angle
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Fig. 2 A child playing card
game with the robot

The robot can talk and play a card game ‘concentration’ (Fig. 2). We aimed
finding a child’s behavioral index that represents the child’s internal states for their
emotion or interest, and its dynamics.

In the game, the player knows the game state and decides their own actions. In
order to construct the mental model, we precisely observed the child’s behavior, and
compared robot’s observation and human evaluation for the child’s states during the
card game.

3 Methods

Participants were two kindergarten children (a 6 years old boy and a 5 years old
girl). Each child talked (talking session) and played the concentration game with
the robot (game session). The robot behaved autonomously and the assistant did not
operate the robot during the experiment.

In the game session, at first, cards were flipped and arrayed on the table by the
assistant. The child or robot then finds pairs from the flipped cards. On the robot’s
turn, the robot points at one of the cards and the assistant turns it up.

In the talking session, a human who is not the assistant operated the robot from
a distant place that the child could not see. The session consisted of three phases,
PHASE1, 2 and 3. In PHASE1 the robot talked according to a pre-programming
without any interactions. In PHASE2 the robot talked with the child using a
chatterbot algorithm that is a simple one of the natural language processing systems.
The algorithm uses keywords included in what the counterpart said. In PHASE3, the
human typed what the robot should talk in real time. PHASE2 and PHASE3 have
an interaction between the robot and child, but not in PHASE1.
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The index of child’s interest is defined as a linear sum of the face direction
toward the robot and the smiling value (Fig. 1). To evaluate the degree of interest
during the play, adult participants rated the child’s interest. By watching the video
the participants scaled the child’s interest using 2-point or 5-point rating.

Since PHASE3 is the most interactive and the PHASE1 is the least, we
hypothesize that the child’s interest increases according to PHASE 1–3.

4 Results

4.1 2-Point Rating

The adult participants evaluated the child’s internal interest by 2-point scale (Figs. 3
and 4 lower). The index of interest f(t) from the robot (Figs. 3 and 4 upper) was
calculated as follow:

f .t/ D ˇhh.t/C ˇss.t/ (1)

Here, t is a discrete time variable corresponding to each of the video frame, h.t/
is the face direction, s.t/ is the smiling value and ˇh; ˇs are coefficients. The
robot index showed the 92% agreement between the smiling value and that of
human. Examples of index for a session is shown in Fig. 3 for the talking session
and Fig. 4 for the game session. This supports the validity of the interest rating
methods. But an explicit difference for talking algorithm was not observed. As the
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Fig. 3 Human and robot evaluation of interest in the game session (boy): robot estimation (upper)
and human evaluation (lower)
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Fig. 4 Human and robot evaluation of interest in the game session (girl): robot estimation (upper)
and human evaluation (lower)

furthermore analysis, we performed 5-point rating for the videos because the 2-point
rating analysis was too simple to analyze the dynamics of interest for human robot
interaction.

4.2 Interest Dynamics

The participants scaled 5-point rating while watching videos of each child talking
with the robot in the experiment (Fig. 5). First, we assumed an interest value u.t/ for
each time t during the rating process. The observed scores yj .t/ of j -th participants
is defined as discrete probabilistic variables in time frame t ,

yj .t/ D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

2 .aj;3 < u.t//

1 .aj;2 < u.t/ < aj;3/

0 .aj;1 < u.t/ < aj;2/

�1 .aj;0 < u.t/ < aj;1/

�2 .u.t/ < aj;0/;

(2)

where aj;i means the threshold variables of j -th participants. In the rating process,
we considered that thresholds could differ for inter/intra participants. We assumed
that the threshold aj;i was estimated as probabilistic variables.
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Fig. 5 The rating data example of subject 1 (15 fps)
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Fig. 6 An estimated interest line during talking with the robot (1.5 fps)

We used the ordered probit model to estimate the child’s interest sequence. In
this formulation, we describe the interest uj .t/ is a value with a Gaussian noise of
variance 	.t/.

uj .t/ D ˛x.t/C � (3)

where x.t/ is a continuous hidden variables representing child’s internal interest,
and ˛ is a scaling parameter, which was set to 1 in this estimation. This assumes
that a human rating process should includes fluctuation.

x.t/ � x.t � 1/ � N.0; �2/.8t/ (4)

To prevent divergence, aj;i has a restriction as follow:

aj;i � N.0; ˛2/

The interest value x.t/, variance 	.t/ and threshold aj;i were estimated by the
Bayesian estimation method, called Markov Chain Monte Carlo (MCMC). The
video sampling rate was 15 frame per second (fps), and in the estimation we
performed down-sampling to 1.5 [fps]. First, the estimated interest line is shown in
Fig. 6. We used the maximum a posterior probability (MAP) estimation calculated
by the Metropolis-Hasting method.
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Fig. 7 The change in slope
of interest line: This is a
box-and-whisker plot about
slope value. The boxes mean
lower and higher quartiles
and the center lines mean
median

A trend of interest x.t/was calculated in each phase as shown in Fig. 7. The slope
coefficients of PHASE1 showed significantly low value than others. The median and
quartile values were calculated by sampling data obtained by MCMC.

5 Discussion

In the result, the strategy used in PHASE1 depressed interest x.t/ as we predicted.
According to the estimated interest line, other strategies succeeded at maintaining
the interest in spite of the previous depression. We predicted that the interest trend in
PHASE3 should be larger than others. The interval of the conversation in PHASE3
was significantly longer than PHASE1. We suppose this long interval might have
the wrong effect on the interaction.

These results shows that interactive talking algorithms have an important role for
child’s interest dynamics while talking with the robot. The result also suggests that it
is possible for the robot to recognize human interest from visual features as human
do. Our next step will be developing a strategy planner that decides robot action,
such as praising or talking to child, and to keep up child’s interest by consulting a
child interest dynamics model.

Tanaka et al. [1] also showed the correlation between haptic sensor data and
evaluation through the video. Our result is consistent with the result.
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6 Conclusion

In this study, we developed the robot which plays with children, and evaluated
change in child’s interests by the statistical method. Using the model estimation
method, we found a significant difference between communication algorithms,
suggesting effectiveness of our experimental paradigm.
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Robotic Motion Coach: Effect of Motion
Emphasis and Verbal Expression for Imitation
Learning

Tetsunari Inamura and Keisuke Okuno

Abstract In this paper, a robotic motion coaching system that coaches human
beings is proposed. The purpose of this robotic system is to have subjects imitate and
learn imitation target motions effectively and well. By applying the Mimesis model,
we integrated qualitative and quantitative evaluation of player’s imitated motion
patterns, as well as introduced a method to synthesize emphatic motion patterns and
to integrate verbal attention that corresponds to the degree of emphasis. Series of
experiment, coaching how to perform forehand-tennis-swing, showed the feasibility
of the proposing method and confirmed that emphatic motions with verbal attention
improved the imitation learning of motion patterns.

1 Introduction

To develop effective and intelligent human-robot interaction systems that use whole
body gestures and verbal expressions, verbal expression and gesture expression
should be strongly connected according to given tasks and current situation. Ad-
ditionally not only fixed expressions but also modification of the expressions such
as emphasis of motions and changing speech words is also an important function to
achieve tasks smoothly according to reaction from users. Analysis of the connection
between gestures and speech act often discussed in the field of psychology; however
synthesis and emphasis of gestures and speech from engineering point of view is
not discussed well. Since synthesis of motion and speech also requires recognition
of current situation such as reaction of users, we therefore should integrate (1)
recognition of reaction, (2) planning to achieve tasks, (3) synthesis and emphasis
of motions and speech, and (4) keeping interaction loop consists of (1)–(3).
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In this paper, we focus on a robotic system that coaches human beings how
to modify their motions to discuss the above issue. The robotic coaching system
should include all of the four elements. (1) recognition of reaction: The robot should
evaluate humans’ performance and analyze similarities and differences between the
performance and target. (2) planning to achieve tasks: The robot should let the
human subject to make better performance based on feedback consists of motion
and speech expressions. (3) synthesis and emphasis of motion and speech: The robot
should modify and emphasize motion demonstrations and speech expressions based
on the result of (1)’s analysis. (4) The robot repeats above three processes not to let
the subjects tired and bored.

With regard to researches on binding of motion patterns and verbal expressions
in imitation learning frameworks, there are researches of systematic binding taking
advantage of interaction, such as [1, 2]. However, these do not consider how they
could be used for establishing a continuous loop of interaction between robots and
human beings.

We think a common problem not being considered in above related works is
that the four required elements were separated. Since each element is complex, we
propose a simple framework to integrate those elements that uses sole parameter
to connect all of the processes. In motion coaching tasks, considerable factors can
be evaluated by scalar parameter such as similarity of performed motion between
target motion, degree of emphasis of motion, variety of verbal expression using
adverb for feedback. In this paper, we propose a method to evaluate and control
those factors. Furthermore we show feasibility and effectiveness of robotics motion
coaching systems based on the proposed method through experiments of real sports
training tasks for beginners.

2 Method

2.1 Abstract of Motions as Parameter

To abstract motion patterns, continuous Hidden Markov Models(HMM) with left-
to-right model are used. HMM consists of a set of parameter � D fQ;A;Bg, where
Q D fq1; :::; qN g is a finite set of states, A D faij g is a state transition probability
matrix from i -th state qi to j -th state qj , and B D fbi g is set of output probabilities
of joint angle �Œt �, at the state qi when time is t . HMM abstracts motion patterns
M D Œ�1; :::;�n�T , where � i are time series joint angles, of humans and humanoid
robots. To parameterize motion patterns, distance between two motions is measured
by calculation of distance between two HMMs based on Bhattacharyya Distance.
The distances among motion patterns introduce a phase space structure that indicate
relationship among the motion patterns. It is called as the proto-symbol space [3]
that convert a motion pattern into a static point in the phase space. Each motion
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Fig. 1 Example relationship between the weight ˛, adverbially expression and synthesis motion

pattern, that is static point, can be identified by a base motion (base point) and scalar
parameter which indicates distance from base motion (base point).

Since let x a position vector of a motion pattern in the proto-symbol space, the
phase space can interpolate/extrapolate any motion patterns with

xs D cixi C cj xj ; (1)

where ci ; cj are weight coefficients. Addition of vectors are translated into inter-
polation/extrapolation of HMMs; then a motion pattern is reproduced from the
synthesized HMM[4]. Using this function, the robot easily convert any motion
patterns into parameters such as ci ; and convert the parameters into motion pattern
without consideration of heterogeneous time length of each motions.

2.2 Flow of the Coaching with Emphatic Motions and
Adverbially Expressions

In the robotic motion coaching system, motion pattern performed by both of the
robot and the user are abstracted by the position vector in the proto-symbol space.
The robot performs emphatic motion to make effective coaching according to
observation result of the user’s performance as shown in Fig. 1.

The experiment of the motion coaching task was executed as follow (As depicted
in Fig. 2).
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Fig. 2 Flow of the motion coaching

1. The coach (an agent in a virtual environment in this paper) demonstrates a motion
pattern �c as an imitation target motion.

2. The human player watches the motion �c and imitates it.
3. The coach observes the player’s imitated motion �p and converts it to a static

point xp .
4. If the xp is not close to xt , then it is interpreted that the player’s imitated motion

is imperfect. The coach calculate the missing elements in the imperfect imitation
of the player by xt � xp .

5. The coach calculate the external dividing point xs by adding the missing
elements (xt � xp) to the target motion (xt ), using

xs D .1C ˛/xt � ˛xp (2)

where ˛ is a weight coefficient for extrapolation.
6. �c is generated from the xc . Use the point xs as the xc , which corresponds to the

re-demonstration motion pattern �c for the next trial.

Repeat a loop 1–6 as needed. One loop is considered as one trial in the experiment.
As it is depicted in Fig. 1, this weight coefficient ˛ corresponds to the degree of

emphasis of the synthesis motion. In addition, we can assign different adverbially
expression to the weight coefficients such as “a little more” to ˛ D 1:5, “more” to
˛ D 2:0, and “much more” to ˛ D 2:5.

In this way, with one parameter ˛, it is possible to control both degree of
emphasis of synthesized motion and choice of adverbially expression. In this paper,
we focus on the effectiveness of emphasis of synthesized motion and inquiry about
the presence of adverbially expression as the first step.
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3 Experiment

We conducted series of experiments, in which a forehand tennis swing was coached
to males by the robotic system. All of the subjects were beginners of the tennis,
never played before. The proposed method and the flow of the coaching system
explained in the previous section was used with conditions below.

3.1 Experiment Conditions

The coaching agent demonstrates motion pattern �t as the imitation target motion
and it was displayed on a large screen. The given instruction to subjects was “please
imitate this”. Five swings were used to abstract each player’s swing to HMM at
each trials.

In the experiment, 13 subjects attended the motion coaching test. The adver-
bially expressions such as “more like this” were used. Following four kinds of
experimental cases were performed to evaluate how the emphatic motion and the
adverbially expression contributed. All the subjects attended to the all cases with
counter balanced order.

Case 1: The coaching agent repeated demonstrating imitation target motion �t
only, In other words, coached using motions with ˛ D 0:0 and no adverbially
expression was used.

Case 2: Coached using motions with ˛ D 0:0 and adverbially expression.
Case 3: The coaching agent re-demonstrated with emphatic motion patterns �s

synthesized by the proposed method. In other words, coached using motions with
˛ D 2:0 and no adverbially expression.

Case 4: Coached using motions with ˛ D 2:0 and adverbially expression.

The cases are summarized in Table 1. The order of conducting each experimental
cases were randomly shuffled for each subjects.

3.2 Result

To evaluate the results, the following measures were used. Average ratio of error in
imitation at l-th trial is:

NRl D
Pm

iD1
dil
di1

m
; (3)

Table 1 Cases in
Experiment 2

– ˛ D 0:0 ˛ D 2:0

Without verbal exp. Case 1 Case 3
With verbal exp. Case 2 Case 4
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Fig. 3 Average ratio of imitation error: NRl in Eq. (3)

Table 2 One-tailed T-test with NRl in Eq. (3) for Exp.2

– 2nd trial 3rd trial 4th trial

Case 1 vs. Case 2 0:0025�� 0:0012�� 0:00091��

Case 1 vs. Case 3 0:000042�� 0:000024�� 0:0000079��

Case 1 vs. Case 4 0:000095�� 0:000067�� 0:000031��

Case 2 vs. Case 4 0:061C 0:084C 0:061C

Case 3 vs. Case 4 0:41 0:43 0:48

Note: ��(p < 0:01), C(p < 0:10)

where m is the number of subjects (m D 13) and dij is distance between the
target motion and the j -th trial of the i -th subject. If the imitation error is smaller
compared to the initial trial in the same case, the NRl will be less than 1:0. If the
imitation error is larger compared to the initial trial in the same case, the NRl will be
more than 1:0. When imitation is almost perfect, NRl approaches to zero.

From Fig. 3 and Table 2, it would be able to say that emphatic motions
contributed somehow to improve the motion learning of the players. However, we
would not able to say if the adverbially expression contributed or not. It is because
that between case 2 and case 4, p is 0:05 < p < 0:10, and no significant difference
found between case 3 and case 4.

4 Conclusion and Discussion

To develop effective and intelligent human-robot interaction systems that use whole
body gestures and verbal expressions, verbal expression and gesture expression
should be strongly connected according to given tasks and current situation.
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To discuss the open problem, we developed and focused on a motion coaching
robot that coaches human being to modify insufficient motions. We integrated (1)
recognition of reaction, (2) planning to achieve tasks, (3) synthesis and emphasis of
motions w/ and w/o speech, and (4) keeping interaction loop consists of (1)–(3). The
common problem not being considered in existing works was that the four required
elements were separated. Thus, we proposed a method to evaluate and control – (1)
similarity of performed motion between target motion, (2) degree of emphasis of
motion, and (3) presence of verbal expression using adverb for feedback – by one
scalar parameter.

We have also proposed estimation of others’ sensorimotor pattern based on
imitation and verbal communication based on the Mimesis model [5]. Estimation of
the user’s sensor pattern and getting feedback for the user are important functions to
realize sophisticated coaching system. We plan to integrate the Mimesis model and
the proposed method in this paper to construct a whole system that estimate other’s
inner state, generate suitable motion performance and verbal utterance, based on
the Mimesis model which is inspired by mirror neuron systems. Additionally, we
also plan to analyze coaching behavior of real sports trainers to extract coaching
skill. This skill would be represented by relation between usage of emphatic
motion/verbal expression and distance between beginner’s performance and the
target motion that is a certain type of communication. Another advantage of the
proposed method is being able to be exploited in such an analysis.
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Synthetic Approach to Understanding
Meta-level Cognition of Predictability
in Generating Cooperative Behavior

Jun Namikawa, Ryunosuke Nishimoto, Hiroaki Arie, and Jun Tani

Abstract We propose that “predictability” is a meta-level cognitive function that
accounts for cooperative behaviors and describe this from a dynamical systems
perspective based on a neuro-robotic experiment. In order to bring about cooperative
behaviors among individuals, individuals should attempt to predict the behavior
of their partners by making internal models of them. However, the behaviors of
partners are often unpredictable because individuals possess free will to generate
their own independent actions. Thus, acquiring internal models which attempt to
completely predict the actions of others seems to be intractable. In the current study
we suggest that, when learning internal models for interacting with the partners,
cooperative agents should maintain predictability monitoring mechanisms by which
attention is oriented more toward predictable segments in spatio-temporal sensory
input space.

1 Introduction

This study represents an attempt to understand the nature of cooperative behaviors
in terms of abstract models of perceptual inference and learning. The concept
of cooperative behavior has been widely investigated in the fields of distributed
intelligence [1–4] and social psychology [5, 6]. Except for interactions among
individuals having no internal states, the individuals should make internal models of
them in order to predict behaviors of partners. However, acquiring internal models
to be able to completely predict behaviors of others seems to be intractable because
individuals are capable of generating voluntary actions. An important point is that
when achieving cooperative behaviors, an individual only needs to predict the
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behaviors of their partner that relate to their own actions. Therefore, we propose an
artificial neural network model possessing predictability monitoring mechanisms by
which they can focus on predictable segments in spatio-temporal input sequences.
We hope to show that predictability as the meta-level cognition is indispensable in
achieving cooperative behaviors.

In addition, we try to describe that the problems of how attention works can
be resolved using exactly the same principle. Attention, defined broadly as the
cognitive process in which processing resources are allocated to one aspect by
ignoring other things, is a ubiquitous feature in information processing [7–10].
For example, learning performance of a mixture of RNN experts was improved
by adding a mechanism by which each expert network selectively concentrates on
a primitive pattern in spatio-temporal time series [11]. It has been suggested that
attention can be understood as inferring the level of precision during hierarchical
perception in a Bayesian fashion [12]. We pursue these attempts to understand
attention in terms of dynamical systems perspective.

The work in the current paper is related to temporal sequence learning problems
for artificial neural networks. Artificial neural networks have been widely applied
to learning problems for various kinds of temporal sequences [13–17]. However,
in spite of the considerable accounts carried out since the mid-1980s, it has been
thought that neural networks could not be scaled so as to be capable of learning
complex sequence patterns, especially when the sequence patterns to be learned
contain long-term dependencies. This is due to the fact that the error signal cannot be
propagated effectively in long time windows of sequences using the gradient descent
method, because of the potential nonlinearity of the neural dynamics [17]. This
paper will claim that the predictability monitoring mechanism improves learning
performance because it avoids the unreasonable interference of the error signal
corresponding to unpredictable parts in spatio-temporal sequences.

2 Methods

This section explains an artificial neural network model together with how the model
is applied to a specific robotic experiment. The network received two different
modality inputs, proprioceptive somato-sensory input and vision input. These
different modality sensations came together in the network to generate predictions of
the future states. The next visuo-proprioceptive states which were predicted from the
current states were used to control the robot. In addition, the network also predicted
the prediction errors between visuo-proprioceptive inputs and predicted values, as
“prediction of prediction errors”. The dynamics of the network is described by the
following differential equation:

� Pu.t/ D �u.t/CW u
˝ Ox.t � �/; f .u.t//˛C Iu; (1)

x.t/ D f .W xf .u.t//C Ix/; (2)

v.t/ D g.W vf .u.t//C Iv/; (3)
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where u is membrane potential of internal context neurons (in experiments the
number of neurons is 50), Ox is sensory-motor input, x is sensory-motor output, v
is variance as described below, and � is the feedback time delay of the controlled
robot. The functions f and g denote component-wise application of tanh and exp,
respectively. ha;bi denotes the concatenation of vectors a and b.

To perform given tasks of cooperative behaviors, the network learned to predict
sensory feedback for the next time step through training processes. The network was
trained by means of supervised learning using teaching sequences obtained using the
robots. The training of the network is defined as maximizing (or integrating over)
the likelihood P as follows:

P D
Y

t

Y

i

1
p
2�vi .t/

exp
�
� .xi .t/ � Oxi .t//

2

2vi .t/



; (4)

where xi .t/ and vi .t/ are generated by the network, and Oxi .t/ is training data
representing visuo-proprioception.A notable point in this scheme is that the network
generates the prediction of prediction error as the variance vector v. Since the
variance vi .t/ works to be a weighting factor for the mean square error .xi .t/ �
Oxi .t//2 [11], the network is able to control the importance of sensations via the
variances and, as such, this control might play a role of the “attention”. Maximizing
P is achieved using the back propagation through time (BPTT) method [15].

3 Results

Two small humanoid robots, A and B, interact with each other in a physical
environment. In cooperative mode, robot B will periodically move the object it holds
and robot A must attempt to track it with its hand. Robot B will enter uncooperative
mode 50% of the time and will randomly move the object, in defiance of its partner.
The task for robot A is to learn at which times it is possible to cooperate with robot B
and to so when feasible. In the experiment, robot B is controlled by the experimenter
and robot A is controlled by the neural network.

Three experiments were carried out, each consisting of a training and a testing
phase. During training, the switching of robot B’s cooperative/uncooperative be-
haviors was either deterministic or random, depending on the experiment. During
testing, the switching of robot B’s behavior was deterministic for all experiments.

In experiment 1, during training and testing, robot B switched its behavior in a
deterministic fashion. Figure 1 displays an example of network dynamics during
testing, where robot A learned to predict robot B’s behaviors that changed from
cooperative to uncooperative actions in a deterministic manner. Through training,
the robots were able to reproduce the object manipulation cooperatively, and
they also generated uncooperative actions. It can be seen here that the variance
corresponding to the vision sensor increased when the partner moved the object
randomly.
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Fig. 1 Example of behavior sequence generated by a trained network. The network learned
behaviors in which cooperative actions and uncooperative actions are switched in a deterministic
manner. In the case of sensory-motor, 2 out of a total of 8 dimensions were plotted (vision: vertical
axis of object position captured by the vision sensor, motor: left arm pronation). In variance, two
lines corresponding to the relative sensory-motor were depicted. In context, first 8 neural units
were plotted (a total of dimensions is 50)

In experiment 2, robot B switched its cooperative/uncooperative behaviors ran-
domly during training. Figure 2 depicts robot A’s network dynamics during testing
when robot B switched its behaviors deterministically. Although, the variance plot
initially appears to show the correct switching between cooperative/uncooperative
modes, ultimately robot A always migrates towards an uncooperative behavior.

The difference between these experiments is attributed to the difference of
predictability in behaviors during training. In the case of Fig. 1, switching between
cooperative/uncooperative behaviors is periodic, and so the network was able to
attend to this temporal cue even though ignoring sensations of the uncooperative
behavior. In experiment 2, there was no temporal cue available during training,
therefore during testing the network could not exploit this during the absence of
predictable input. Thus, if some cues which indicate change of partner’s behaviors
are presented, the network will be able to generate both cooperative/uncooperative
actions.
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Fig. 2 This figure uses the same format as Fig. 1 but shows the result when coopera-
tive/uncooperative actions are switched randomly in training

In experiment 3, again robot B switched its cooperative/uncooperative behaviors
randomly during training but this time an additional cue was added to indicate the
switching to cooperative behavior. The cue took the form of a key press from the
experimenter. Figure 3 shows the network dynamics of robot A during deterministic
testing containing both sensory-motor and cue inputs.

In this case, the trained network was able to switch from uncooperative behaviors
to cooperative one by means of cueing. However, even though the timing of the cue
was not predictable, the network could recognize when robot B is in uncooperative
mode and activities of variance were initiated before cueing in Fig. 4. It can be
inferred that the trained robot A prepared mentally for the coming cue by predicting
prediction errors.

4 Conclusion

As shown by the robotics experiments, cooperative/uncooperative behaviors of the
robots appeared to be controlled by the variances, the so-called “prediction of
prediction errors”. The results revealed that the predictability in terms of “prediction
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Fig. 3 This figure uses the same format as Figs. 1 and 2 but reports the result when both sensory-
motor and cue are presented simultaneously

Fig. 4 This figure demonstrates how networks generate variances corresponding to unpredictable
inputs

of prediction errors” enables the attention of agents to be focused on predictable
parts in the sensory sequences through learning of prediction models for partners’
actions. It is also suggested that “prediction of prediction errors” as the meta-level
cognition is indispensable in achieving autonomous mechanisms of joint attention
in cooperative behaviors.



Synthetic Approach to Understanding Meta-level Cognition of Predictability... 621

Acknowledgments The present study was supported in part by a Grant-in-Aid for Scientific Re-
search on Innovative Areas “The study on the neural dynamics for understanding communication
in terms of complex hetero systems” from the Japanese Ministry of Education, Culture, Sports,
Science and Technology.

References

1. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH
Comp. Graph. 21(4) (1987) 25–34

2. Asada, M., Uchibe, E., Hosoda, K.: Cooperative behavior acquisition for mobile robots in
dynamically changing real worlds via vision-based reinforcement learning and development.
Artif. Intell. 110(2) (1999) 275–292

3. Yamaguchi, H.: A cooperative hunting behavior by mobile-robot troops. Int. J. Robot. Res.
18(9) (1999) 931

4. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30(1–
2) (2000) 85–101

5. Brothers, L.: The social brain: a project for integrating primate behavior and neurophysiology
in a new domain. Concept Neurosci. 1 (1990) 27–51

6. Frith, U., Frith, C.: The social brain: allowing humans to boldly go where no other species has
been. Philos. T. Roy. Soc. B 365(1537) (2010) 165–175

7. Posner, M.I.: Orienting of attention. Q. J. Exp. Psychol. 32(1) (1980) 3–25
8. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychol. 12(1)

(1980) 97–136
9. Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychol. Rev. 96(3)

(1989) 433
10. Spratling, M.W.: Predictive coding as a model of biased competition in visual attention. Vision

Res. 48(12) (2008) 1391–1408
11. Namikawa, J., Tani, J.: A model for learning to segment temporal sequences, utilizing a mixture

of RNN experts together with adaptive variance. Neural Netw. 21(10) (2008) 1466–1475
12. Feldman, H., Friston, K.J.: Attention, uncertainty, and free-energy. Frontiers in Human

Neurosci. 4 (2010)
13. Jordan, M.I.: Indeterminate motor skill learning problems. Attention and Performance XIII

(1989)
14. Elman, J.L.: Finding structure in time. Cognitive Sci. 14(2) (1990) 179–211
15. Rumelhart, D.E.: Learning internal representations by error propagation. DTIC Document

(1985)
16. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in

wireless communication. Science 304(5667) (2004) 78
17. Schmidhuber, J., Gers, F., Eck, D.: Learning nonregular languages: A comparison of simple

recurrent networks and LSTM. Neural Comput. 14(9) (2002) 2039–2041



Neural Correlates of Cognitive Dissonance
and Decision Conflict

Keise Izuma, Madoka Matsumoto, Kou Murayama, Kazuyuki Samejima,
Sadato Norihiro, and Kenji Matsumoto

Abstract Research in social psychology has shown that after making a difficult
choice between two equally preferred items, individuals come to reduce their
preferences for the item they rejected. This phenomenon was explained as “cog-
nitive dissonance,” an uncomfortable feeling induced by simultaneously holding
two or more contradictory cognitions (e.g., “I like it” and “I rejected it”). While
previous neuroimaging studies indicated that the anterior cingulate cortex (ACC)
was involved in cognitive dissonance, it is not known whether the ACC area involved
in a type of complex conflict of cognitive dissonance overlaps with areas involved
in other types of conflict (i.e., decision-conflict). Our results suggest that the ACC
area involved in cognitive dissonance reliably overlapped with areas which were
positively correlated with subjects’ trial-by-trial reaction times during a binary
choice task, suggesting that the same ACC area is involved in cognitive dissonance
and decision conflict.

K. Izuma (�) • M. Matsumoto • K. Samejima • K. Matsumoto
Brain Science Institute, Tamagawa University, 6-1-1, Tamagawa-gakuen, Machida,
Tokyo 194-8610, Japan
e-mail: izuma@caltech.edu

K. Murayama
Department of Psychology, University of Munich, Leopoldstrasse 13 (PF 67),
Munich 80802, Germany

S. Norihiro
Division of Cerebral Integration, Department of Cerebral Research, National Institute
for Physiological Sciences (NIPS), 38 Myodaiji-cho, Okazaki, Aichi 444-8585, Japan

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (III),
DOI 10.1007/978-94-007-4792-0 83,
© Springer ScienceCBusiness Media Dordrecht 2013

623



624 K. Izuma et al.

1 Introduction

According to modern economic theories, actions simply reflect an individual’s
preferences, whereas a psychological phenomenon called “cognitive dissonance”
claims that actions can also create preference [1]. For more than five decades, social
psychological studies have repeatedly shown that rejecting individual’s favorite
item, such as music CD and poster, reduces his/her preference for it [2–4]. This
phenomenon is explained by cognitive dissonance theory [5] which states that
holding two or more contradictory cognitions simultaneously (e.g., “I like the item”
and “I rejected it”) causes a psychological discomfort called “cognitive dissonance,”
and individuals are motivated to reduce it by changing their original preferences.

While the cognitive dissonance theory is one of the most influential and
extensively-studied theories in social psychology [6], only a few studies investigated
neural mechanisms underlying this phenomenon. Harmon-Jones [7] argued that
since it has been shown that the anterior cingulate cortex (ACC) is involved in
monitoring the presence of response conflict [8, 9] and that dorsal ACC (dACC)
activity increases when behavior conflicts with self-concept [10], higher-level
conflict such as cognitive dissonance might also engage the ACC. Consistent with
the prediction, two recent studies using functional magnetic resonance imaging
(fMRI) converged to show that the ACC is involved in cognitive dissonance [11, 12].
However, it remains unclear whether the same ACC area plays a role both in
cognitive dissonance and other types of conflict.

The present study aims to investigate whether the area in the ACC involved
in higher cognitive conflict of cognitive dissonance overlaps with areas involved
in decision-conflict (i.e., conflict related to choice between equally desirable
options) [13].

2 Methods

The current study involved an analysis of the same data set as that collected in our
previous study [11]. Twenty subjects underwent fMRI scanning while they followed
the experimental procedure called a “free-choice paradigm” [2]. Subjects performed
following three tasks inside the fMRI scanner: (1) Preference task 1, (2) Choice
task, and (3) Preference task 2. After these tasks, subjects also performed the Post-
Experimental Choice task outside the scanner. This last task was intended to control
the effect of “preference revealed by choices” [14].

In the two Preference tasks, subjects were presented with food items one by one
(e.g., chocolate, snack, etc) and asked to rate their preference for each item. In the
Choice task, subjects were asked to make a choice between two food items. Pairs
of foods varied systematically so that choices were sometimes made between two
equally liked items (Self-Difficult trials), and other times between one liked item
and one disliked item (Self-Easy trials). In still other trials, choices were made
randomly by a computer (Computer trials). During the second Preference task,
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subjects were also presented with decisions they had made during the Choice task
(e.g., “You chose it” or “You rejected it”). According to cognitive dissonance theory
[5], subjects’ perceived cognitive dissonance should be higher when their past
decisions contradict with their preferences (e.g., rejecting favorite foods, choosing
unfavorite foods).

Decision conflict-related brain areas were defined as the areas whose activities
were significantly positively correlated with subjects’ reaction times (RTs) during
the Choice task. The previous research consistently showed that the degree of
decision conflict are reflected in subjects’ RTs in the binary choice task (i.e., the
closer two options in value, the longer RTs) [15, 16]. Furthermore, Knutson and
his colleagues showed that the ACC activity was actually positively correlated with
RTs during the financial decision task [17], and in another study [18], the same ACC
area was correlated with the index of conflict as well as RTs during the buying and
selling decision task. Only the data from the choice task were estimated by a general
linear model (GLM). The model included following three regressors; (1) Self trials,
(2) Self trials modulated by reaction time, and (3) Computer trials. See [11] for more
details about methods.

3 Results

We first found that consistent with cognitive dissonance theory, subjects’ self-
reported preferences decreased after they rejected their favorite foods, and the same
pattern was also observed as the change in the activity of the ventral striatum, areas
which codes subjects’ preference (Fig. 1, cyan; see [11] for more details about
results of preference change in self-report as well as brain activities).

Fig. 1 The ventral striatum
(cyan) activity was
significantly reduced from the
first to the second Preference
tasks for the items subjects
initially liked but rejected
during the Choice task. The
dACC (red) was positively
correlated with cognitive
dissonance (Color figure
online)
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Fig. 2 A sagittal slice (left panel) and a coronal slice (right panel) showing areas correlated with
the degree of cognitive dissonance during Preference task 2 (magenta), areas correlated with RTs
during Self trials of the Choice task (green), and their overlap (yellow). A statistical threshold was
set at p< 0.001 (uncorrected) (Color figure online)

Our data also showed that the dACC (Fig.1, red) was significantly positively
correlated with the degree of cognitive dissonance on trial-by-trial basis (see [11]
for more fMRI results and how we quantified the degree of cognitive dissonance in
each trial). It should be noted that subjects’ trial-by-trial RTs during the Preference
tasks were also included in the GLM, and thus, it is highly unlikely that the dACC
activity just reflected the level of response or decision conflict.

In the present paper, we next addressed whether the ACC area involved in
cognitive dissonance overlaps with the area related to decision conflict. RT data
for the Choice task revealed that RTs for both the Self-Difficult and Self-Easy trials
were significantly longer than those in the Computer trials (vs. the Self-Difficult
condition, t(19)D 12.80, p< 0.001; vs. the Self-Easy condition, t(19)D 16.63,
p< 0.001), indicating that the higher decision conflict in the Self-Difficult condition,
During the Self trials, subjects took significantly longer to choose when two
alternatives were close in preference (Self-Difficult trial) than when they were far
apart (Self-Easy trial; t(19)D 3.74, pD 0.001, see [11]).

We next estimated the fMRI data from the Choice task with RTs as a parametric
modulator to identify decision conflict related brain regions. As predicted, the dACC
showed the significant positive correlation with RTs during the Self trials (both Self-
Easy and Self-Difficult trials) in the Choice task (p< 0.001, uncorrected). Other
areas positively correlated with RTs included anterior insula, dorsolateral prefrontal
cortex (DLPFC), thalamus, and left primary motor cortex (precentral gyrus), and
these results are largely consistent with the previous report [18]. Then, it was
found that the dACC area correlated with RTs during Self trials of the Choice task
overlapped with the area correlated with cognitive dissonance during the Preference
task 2 (Fig. 2, yellow), suggesting that the dACC area involved in relatively simple
decision conflict also plays an important role in the more complex conflict of
cognitive dissonance. Other areas showing the same overlap included only bilateral
DLPFC (see Fig. 2) and left superior parietal lobule.
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4 Discussions

Although previous fMRI studies have reported that the ACC is involved in cognitive
dissonance, the present study extended them and further showed that within the
dACC, the area correlated with cognitive dissonance largely overlapped with the
area correlated with the degree of decision conflict during the binary choice task.
This result indicates that while Festinger [5] distinguished between pre-decisional
conflict and post-decisional dissonance, they are represented in the same brain area.
That is, the same dACC area plays a pivotal role in not only decision conflict,
but a complex cognitive conflict such as cognitive dissonance, which supports the
hypothesis by Harmon-Jones [7].

The overlapped area in dACC identified in the present study seems to correspond
to the area involved in processing various types of negative outcome (pain, monetary
loss, response error, response conflict) as reported in a recent meta-analysis [19].
However, it should be tested further in the future research how the dACC area
involved in cognitive dissonance is related to areas involved in error detection, pain
recognition and response conflict. Furthermore, it should be noted that as seen in
Fig. 2, our data also showed decision conflict related dACC area extends more
posteriorly, whereas cognitive dissonance related dACC extends to anteriorly. Then,
it would be interesting to see whether there is any functional specialization within
the ACC region for these different types of conflicts, and if so whether there is any
individual difference in such specialization.

Acknowledgments This study was supported by a Grant-in-Aid for JSPS Fellows to K. Izuma,
a Grand-in-Aid for Scientific Research on Innovative areas #22120515 to K. Matsumoto and
Tamagawa University Global COE grant from the MEXT, Japan.

References

1. Ariely D., Norton M.I. How actions create–not just reveal–preferences. Trends Cogn Sci 12
(2008) 13–16.

2. Brehm J.W. Post-decision changes in the desirability of choice alternatives. J Abnorm Soc
Psychol 52 (1956) 384–389.

3. Gerard H.B., White G.L. Post-decisional reevaluation of choice alternatives. Pers Soc Psychol
B 9 (1983) 365–369.

4. Shultz T.R., Leveille E., Lepper M.R. Free choice and cognitive dissonance revisited: Choosing
“lesser evilts” versus “greater goods”. Pers Soc Psychol B 25 (1999) 40–48.

5. Festinger L. A Theory of Cognitive Dissonance. Stanford: Stanford University Press. (1957).
6. Harmon-Jones E., Mills J. Cognitive dissonance: Progress on a pivotal theory in social

psychology. Washington DC: Braum-Brumfield. (1999).
7. Harmon-Jones E. Contributions from research on anger and cognitive dissonance to under-

standing the motivational functions of asymmetrical frontal brain activity. Biol Psychol 67
(2004) 51–76.

8. Botvinick M., Nystrom L.E., Fissell K., Carter C.S., Cohen J.D. Conflict monitoring versus
selection-for-action in anterior cingulate cortex. Nature 402 (1999) 179–181.



628 K. Izuma et al.

9. Carter C.S., Braver T.S., Barch D.M., Botvinick M.M., Noll D., Cohen J.D. Anterior cingulate
cortex, error detection, and the online monitoring of performance. Science 280 (1998) 747–749.

10. Amodio D.M., Harmon-Jones E., Devine P.G., Curtin J.J., Hartley S.L., Covert A.E. Neural
signals for the detection of unintentional race bias. Psychol Sci 15 (2004) 88–93.

11. Izuma K., Matsumoto M., Murayama K., Samejima K., Sadato N., Matsumoto K. Neural
correlates of cognitive dissonance and choice-induced preference change. Proc Natl Acad Sci
U S A 107 (2010) 22014–22019.

12. van Veen V., Krug M.K., Schooler J.W., Carter C.S. Neural activity predicts attitude change in
cognitive dissonance. Nat Neurosci 12 (2009) 1469–1474.

13. Pochon J.B., Riis J., Sanfey A.G., Nystrom L.E., Cohen J.D. Functional imaging of decision
conflict. J Neurosci 28 (2008) 3468–3473.

14. Chen M.K., Risen J.L. How choice affects and reflects preferences: revisiting the free-choice
paradigm. J Pers Soc Psychol 99 (2010) 573–594.

15. Lebreton M., Jorge S., Michel V., Thirion B., Pessiglione M. An automatic valuation system in
the human brain: evidence from functional neuroimaging. Neuron 64 (2009) 431–439.

16. Tom S.M., Fox C.R., Trepel C., Poldrack R.A. The neural basis of loss aversion in decision-
making under risk. Science 315 (2007) 515–518.

17. Kuhnen C.M., Knutson B. The neural basis of financial risk taking. Neuron 47 (2005) 763–770.
18. Knutson B., Wimmer G.E., Rick S., Hollon N.G., Prelec D., Loewenstein G. Neural

antecedents of the endowment effect. Neuron 58 (2008) 814–822.
19. Shackman A.J., Salomons T.V., Slagter H.A., Fox A.S., Winter J.J., Davidson R.J. The

integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev
Neurosci 12 (2011) 154–167.



Cantor Coding of Song Sequence
in the Bengalese Finch HVC

Jun Nishikawa and Kazuo Okanoya

Abstract Cantor coding has been theoretically proposed as an excellent way
to encode sequential information in the brain. Empirical verification has been
successfully given for the dynamical nature of the Cantor coding in experiments
using hippocampal slice preparations. However, because these studies adopted
artificial electrical stimulation for inputs, it remains unanswered as to whether brain
really uses this coding scheme. In this study, we examined the Cantor coding in
vivo in HVC (a song nucleus) of Bengalese finches, as the HVC is responsible
for processing complex sequence of song syllables. We recorded multiple single-
unit responses to acoustic stimuli that were composed of randomized sequences of
syllables. Analyses of neuronal activities revealed that auditory responses of single
HVC neurons coded sequences of multiple syllables (3 or more), suggestive of the
hierarchical dependency that is a necessary condition of the Cantor coding. Further
studies will shed light on how the Cantor coding could be implemented in biological
system.
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1 Introduction

How the brain encodes complex sequential signals is one of the important topics
in neuroscience. For an example, sophisticated communication by language in
human being is based on the abilities for cognition, processing, and generation of
complex sound sequence. One possible mechanism could be Cantor coding, which
is an excellent way to encode sequential information into the brain proposed by
theorists [1]. Recently, this dynamical encoding scheme was verified experimentally
in the hippocampus slice preparation [2, 3]. However, obtained results have not
been reached whether the brain really utilizes it or not, because they used artificial
electrical stimulations as input elements with the in vitro experiment.

Bengalese finches, one of songbirds, might be great help for in vivo experimental
verification of Cantor coding. Because they have a complex learned vocalization
which is composed of various sound elements with a typical sequential rule, and
utilize it for courtship behavior from male to female birds [4]. In addition, they have
a specialized brain area (song system) for song production, learning, and cognition
[5]. Especially, in the brain nucleus HVC (equivalent to cortex in mammals [6]),
there are neurons selectively respond to typical song element sequence [7]. It means
that HVC are responsive for sequential information processing.

In the present study, we analyze the trajectories constructed from multiple single-
unit recording from HVC in the Bengalese finch driven by random sequence
stimulus of song elements, and try to verify the Cantor coding in vivo using
biologically plausible stimuli.

2 Methods

Six adult Bengalese finches (>180 days post-hatch) were used in this study. All
experimental procedures were performed according to established animal care
protocols approved by the animal care and use committee at RIKEN.

Undirected songs were recorded in a quiet soundproof box using a microphone
and amplifier connected to a computer with a sampling rate of 44.1 kHz and 16-bit
resolution. We calculated sonograms from the recorded song using sound analysis
software (SASLab Pro; Avisoft, Berlin, Germany). A birdsong consists of a series
of discrete song elements with silent intervals among them. Song elements were
divided into distinct types by visual inspection of the spectro-temporal structure
of each sonogram. Then, we constructed a random sequence of all song elements
(random sequence stimulus) in pre-recorded subject’s song (Fig. 1).

Before electrophysiological recording sessions, birds were anesthetized with
4–7 doses of 10% urethane (40 �l per dose) at 20-min intervals. The birds were
restrained in a custom-made chamber on a stereotaxic device (Narishige, Tokyo,
Japan). The birds were fixed with ear-bars and a beak-holder that positioned the
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Fig. 1 Schematic diagram of the present study. Random sequence stimuli were constructed from
each song elements which is previously recorded from each subject. We try to verify Cantor coding
in vivo to record neural activities from the Bengalese finch HVC to the random sequence stimuli

beak tip at an angle of 45ı below the horizontal plane. The head was treated with
Xylocaine gel and the feathers and skin were removed. A custom-made three-point
fixation device was attached to the rostral part of the skull surface with dental
cement. Small holes were made in the skull just above the HVC. Finally, the dura
was removed, and a high-density silicon electrode (8� 4D 32-ch; NeuroNexus,
Dallas, USA) were set on the surface.

The stereotaxic device with anesthetized birds was moved into an electromag-
netically shielded sound-attenuation box for neural recording. The ear-bars were
removed before making physiological recordings. The electrodes were lowered
into the brain using a micro-positioner (SM-25; Narishige, Tokyo, Japan), and
extracellular signals from HVC were recorded. The signals from the electrodes
were amplified (gain 1,000–2,000) and filtered (100 Hz-10 kHz bandpass) using
an extracellular multi-unit recording system (MAP system; Plexon, Dallas, USA).
The data were digitized at 40 kHz with 16-bit resolution using associated software
RASPUTIN. During neural recording, random sequence stimuli or other sound
stimuli were presented at a peak sound pressure of 70 dB.

We calculated the time course of average firing rate of each neuron, and analyzed
its sequential dependency from the perspectives of Cantor coding.
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Fig. 2 A typical auditory response of random song element sequence in the Bengalese finch HVC
in anesthetized condition. Each color of traces is averaged firing rate trace with same present input.
There is the evidence of long-term dependency with at least three elements, which is the necessary
condition of Cantor coding

3 Results

We recorded auditory responses in multiple single-units from six urethane anes-
thetized adult Bengalese finches HVC using 32-ch high-density silicon electrodes.
In average, we obtained 10–30 single units simultaneously from one recording
session. We analyzed these data from the perspective of Cantor coding.

We calculated average firing rate in each present input from the obtained data as
shown in Fig. 2. There are oscillatory traces with about 0.25 s cycle, which is the
cycle of sound element (� 0.05 s) plus inter-stimulus interval (0.20 s). Therefore,
each peak is the result of auditory response of each sound element. It is natural that
we can observe large difference in the responses to present inputs according to each
color. In addition of that, we can observe clear difference in the responses to next
inputs according to each color. This dependency was also valid in the responses to
the inputs 2-steps later. These results revealed the long-term dependency of song
sequence in HVC.

4 Discussions

In summary, we showed that the long-term dependency in auditory responses in
the Bengalese finch HVC at least three time steps. This hierarchical dependency
is one of the necessary conditions of Cantor coding. Therefore, the present study
have an important meaning to have a first step to verify Cantor coding in vivo with
biologically plausible input units.

However, we couldn’t complete the experimental verification, because we
haven’t show the fractal set in the neural dynamics in HVC. For that purpose,
we have to analyze its spatial clustering property with hierarchical structure and
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self-similarity in the neural phase space. Some useful index, “spatial clustering
index” and “self-similarity index” will be helpful for the future study [2]. Linear
discriminant analysis (LDA) will also help us for further analysis [8].

In the analysis in this study, we only calculate the average firing rate in each
individual cell. However, Kuroda et al. reported the performance of Cantor coding
in CA1 hippocampal slice experiment is remarkably improved at population level
[3]. Therefore, we should analyze the dynamics in multi-dimensional phase space
with multiple single-unit data set as well as single unit based analysis. After these
analyses have done, we will try to compare each sequential rule to the clustering
configuration in the corresponding fractal set in neural phase space. These analyses
will be shed light on the biological plausibility of Cantor coding.

Although we analyzed auditory responses in the anesthetized birds, these results
still give an insight to understand the sequential processing during singing. Because
singing-related and hearing-related activities in songbird HVC is identical in some
cases, known as auditory-vocal mirror neurons [9]. In general, Cantor coding have
infinite hierarchy to represent long sequences, because this coding is implemented
on the continuous multi-dimensional neural phase space. We expect that this feature
has considerable advantage to represent flexible sequence compared to the coding
with higher-order Markov chain.
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Inhibitory Network Dependency in Cantor
Coding

Yasuhiro Fukushima, Yoshikazu Isomura, Yutaka Yamaguti, Shigeru Kuroda,
Ichiro Tsuda, and Minoru Tsukada

Abstract Cantor coding provides an information coding scheme for temporal
sequences of events. In this paper, we analyzed a inhibitory network dependency
in Cantor coding from hippocampal CA1 neurons of rat acute slice preparation by
using GABAA receptor blocker (gabazine). After gabazine application, clustering
index was lower under subthreshold condition and higher at suprathreshold condi-
tion. Our results suggest the tendency that inhibitory network enlarges the difference
between responses under sub- and supra-threshold conditions.

1 Introduction

Contextual information is thought to be temporarily stored in the hippocampus in the
form of short-term memory. It is important for the investigation of memory systems
to clarify how information is coded and represented in hippocampal network. There
are roughly three areas in hippocampus: dentate gyrus, CA3, and CA1. Input from
entorhinal cortex is sent to dentate gyrus. Dentate gyrus is connected through
a circuit with CA3 to CA1. CA3 area is characterized by a distinct biological
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neural network, which has a recurrent (feedback) connection. On this subject,
Nakazawa et al. [1] have reported that after knocking out feedback in CA3 of
mice using genetic techniques, an extremely large number of cues were required
to accomplish one action. According to these observations, it can be hypothesized
that the hippocampal CA3 network forms a context of time sequence, while CA1
maps the spatio-temporal context to its synaptic weight space [2–5]. In the CA1
area of the hippocampus, the magnitude of LTP depends not only on the frequency
of applied stimuli, but also on time sequences [2, 6, 7]. However, experimentally,
the coding property of spatial clustering and its self-similarity has been less reported
in the sequence of input–output relation in hippocampal CA3-CA1 system.

Theoretically, Tsuda predicted the possibility of Cantor coding in CA3-CA1
network [8–10]. Cantor coding provides an information coding scheme for temporal
sequences of events. It forms a hierarchical structure in state space of neural
dynamics. In this model, it is assumed that the CA3 state is wondering around quasi-
attractors, each of which represents a single episodic event, and that CA3 outputs a
temporal sequence of events, which should be encoded in CA1 network, especially
in temporal dimensions. Input-dependent distribution of CA1 state is hierarchically
clustered in the vector space.

In order to show the physiological evidence for Cantor coding, we have been
reported some papers. Our previous study showed the Cantor coding-like property
in rat hippocampal CA1 pyramidal neurons, where the clustering property was
dependent on the size of EPSP and NMDA-type glutamate receptor [11]. Further-
more, the relation between input pattern and recorded responses was proved to be
described as iterated function systems, which provides a direct evidence of the
presence of Cantor coding, and also the coding quality was drastically improved
by a newly invented virtual reconstruction method using data from plural neurons
[12]. In addition, in order to clarify the detailed property of Cantor coding, we
showed that the performance of Cantor coding sensitivity is dependent on interval
of input sequence theoretically by using two-compartment modeled neurons [13]
and physiologically in pyramidal CA1 neurons (in preparation).

There are many kinds of inhibitory neurons in hippocampus [14]. Many previous
study showed the importance of inhibitory network on control for pyramidal
neurons in hippocampal CA1 area. GABAergic interneurons and their inhibitory
synapses play a major role in oscillatory patterns [15]. In relation to temporal
coding, inhibitory network in CA1 changes the timing sensitivity in spike timing
dependent plasticity of hippocampal CA1 system [16]. However, inhibitory network
dependency of Cantor coding for sequential input is not clear. In this study, we
estimated GABAergic control dependency of Cantor coding in hippocampal CA1.
Our previous study showed that the performance of Cantor coding is best when
interval of input sequence is 30 ms. The time course of GABAA receptor response
is more similar to those of GABAB receptor, so we first applied GABAA blocker to
CA1 neurons.
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2 Methods

Acute rat slice preparation including hippocampal CA1 area was made and electrical
stimulation was applied pyramidal neurons in CA1 as in our previous study [12].
Two stimulating electrodes were set to the Schaffer collaterals, proximal and
distal sites to the soma (Fig. 1). The four input spatial patterns were as follows:
(1) electrical stimulation through both electrodes (“11”), (2) electrical stimulation
through one electrode (“10”), (3) electrical stimulation through the other electrode
(“01”), and (4) no electrical stimulation (“00”). Successive ten electrical pulses
(33 Hz), randomly selected from one of four patterns, was applied at 10 s intervals
for 20 min. Membrane potentials from soma were recorded by patch clamp methods.

Five minutes after adding gabazine (antagonist for GABAA receptor) to the bath
solution, membrane potentials were recorded by electrical stimulation with same
input sequence.

To evaluate the accuracy of cantor coding with/without inhibitory network,
the following two measures were used as in our previous study [11]. A “spatial
clustering index” indicates how well the distribution of responses is clustered by the
patterns of electrical stimulation. A “self-similarity index” indicates a measure of
hierarchical self-similarity in time-history.

(1) Spatial clustering index

First, each response was classified into four groups (Gij (ijD 11, 10, 01, 00))
with regard to the spatial input pattern. The mean amplitude of each group was
calculated and defined as the “weighted-center” of each group (W00, W01, W10,
and W11, cross in Fig. 2). The difference between an amplitude (Vij, i, jD 0 or 1,
where ij is stimulus pattern) and “weighted-center” except its own value (W00, W01,
W10, W11) was defined as distances (D00, D01, D10, D11).

Fig. 1 Experimental
procedure

Fig. 2 How to calculate
clustering index. Spatial
clustering index get large
when the counting number
(i.e. overlapping of cluster) is
large
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If the shortest distance (Dmin) when Vij was given belonged to the identical group
(Gij) of its own input pattern (ij), the “cluster point” (Cij) was assigned a zero
(CijDCijC 0; Fig. 2 left). If not, the “cluster point” was assigned one (CijDCijC 1;
Fig. 2 right). This procedure was applied to all values of Vij. The cluster points
were normalized by the number of responses belonging to Gij and divided by 0.75.
“Spatial clustering index” was defined as the averaged value from four patterns.
The value ranged from 0 (non-overlapping state; the highest performance) to 1
(randomly overlapping; no effect).

(2) Self-similarity index

A self-similarity index indicates a measure of hierarchical self-similarity between
time-history steps (#; i.e. the effect after # input pattern). The four weighted centers
(W00, W01, W10, and W11) for each time-history step of the spatial input pattern
forms an observed pattern in amplitudes. The self-similarity measure (PN) is the
necessary number of neighboring permutations to get a target-ordered pattern to
correspond with the standard pattern (the ordered pattern of 1st time history step).
The self-similarity index is obtained by normalizing the measure PN for the chance
level (3). The value ranged from 0 (same order) through 1 (random order) to 2
(completely opposite order).

3 Results

First, we calculated the spatial clustering index. Under subthreshold conditions,
spatial clustering index after gabazine application was smaller than before at history
#3, and did not show significant difference at history #1 and #2 (Fig. 3, left). Under
suprathreshold conditions, spatial clustering index was larger than before at history
#1 and #2, and did not show significant difference at history #3 (Fig. 3, right). These
results suggest the tendency that inhibitory network enlarges the difference of spatial
clustering property between under sub- and supra-threshold conditions.

In self similarity index, gabazine dependency was not observed between under
sub- and supra-threshold conditions (Fig. 4).

4 Discussions

In general, inhibitory network suppresses the EPSP size and decrease the ratio
of action potential induction. If the property of inhibitory network in CA1 is
simply shifting the condition from suprathreshold to subthreshold, spatial clus-
tering index under suprathreshold condition show no difference between before
and after gabazine treatment and spatial clustering index after gabazine treat-
ment under subthreshold is similar to those under suprathreshold conditions.
However, in our results, spatial clustering index under suprathreshold condition
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Fig. 4 Self-similarity index with/without gabazine

after gabazine treatment was larger than before. These results show that the role
of inhibitory network does not simply decrease the size of EPSP and ratio of
action potential induction. Our previous results show that the difference between
under sub- and supra-threshold conditions were mainly dependent on NMDA type
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glutamate receptor [11]. Both NMDA-receptor and GABAergic synapse enlarges
the difference of Cantor coding performance between under sub- and supra-
threshold conditions, but the mechanism was different between them.
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Sequential Memory Retention by Stabilization
of Cell Assemblies

Timothee Leleu and Kazuyuki Aihara

Abstract The concept of Hebbian cell assemblies is exploited to illustrate how
sequential memory robust to noise and lags between inputs can be formed in analog
neural networks. The processing of a sequence is modeled by a succession of shifts
between stable attractors induced by the symbols of the sequence. The learning is
unsupervised and achieved after a single presentation of the stimuli, by creating the
succession of attractors. Analyses and simulations of the dynamics enable a better
understanding of the effects of generalized Hebbian learning. The conditions under
which these assemblies can form and retain sequential memory are clarified.

1 Introduction

Sequence learning is probably a fundamental issue in the global understanding
of cognition, and remains highly controversial. A multitude of models have been
proposed for the past 50 years. Perhaps the first attempt was initiated with Hebb’s
assumptions [7], stating that the encoding of memories is assured by cell assemblies,
i.e. groups of neurons exhibiting higher activity. Early models of this persistent
activity, known as auto-associative models [8], have then been applied to sequence
learning [12]. In these, successive items are chained by associations (typically
using a correlation rule) occurring at a slower time scale, so that sequences can
be replayed.

The concept of time in neural networks has also been widely spread by Elman’s
simple recurrent network [5], and several supervised learning rules such as back-
propagation through-time [18], in which the memory of past symbols is encoded in
the phase space of the neural system. In these cases, each successive symbol shifts
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the dynamics in the phase space, allowing dynamical computation. These models
introduced the idea to use the dynamics in the phase space to account for complex
computation [16].

To allow more realistic dynamics, the framework of reservoir computing, such
as liquid-state machines [13] and echo-state networks [10], proposed that the
preservation of the separation of trajectories due to inputs would be sufficient to
achieve computation, if a reader mechanism could decode instantaneous states.
Lastly, it has been argued that neural dynamics could be better modeled by transient
trajectories, itinerant between Milnor attractors [20].

All these models have in common that sequence learning should integrate two
time scales: a rapid time scale of neural dynamics, and a slower one during which
each symbol is retained active in memory, long enough to be temporally overlapped
with the next input.

Simultaneously to these developments, Hebb’s assumptions were partially chal-
lenged, after the discovery of STDP [3], and development of spiking neuron models.
STDP has notably been applied to sequence acquisition in a hierarchical model [11].
Effects which cannot be described with the firing rates only may be at the basis of
sequence processing, and may capture more biologically relevant mechanisms of
sequence acquisition [6]. Nevertheless the analysis of the effects of STDP remains
difficult [14], and it is unclear whether or not increasing model complexity will
help in the understanding of sequence processing. This is particularly true when
analyzing cognition at the macroscopic scale (EEG and MEG recordings), where
Hebb’s hypothesis of assemblies processing seems plausible [17].

There are probably the very large differences in scales (milliseconds for STDP
[14], to seconds for neural recordings (during language tasks [17])), and a lack of
precision in the definition of Hebbian assemblies [4] which make the development
of a unifying model difficult. Understanding how information separated from more
than seconds to ten of seconds can combine to generate sequential memory may
require a mesoscopic level viewpoint.

We extend our models of rate-based networks with the recent developments
in Hebbian cell assemblies, LTP/LTD1 and dynamical systems theory to provide
an intermediate level viewpoint. In this framework, the mathematical analysis of
effects of Hebbian learning is more tractable. We assume the central role of cell
assemblies, and show with a very simplified model how a realistic learning rule can
self-organize the neural connectivity to allow the creation of successive attractors.
During sequence processing, neural dynamics remain in these attractors during a
slower time scale, until the next input is fed to the network. We describe how
these assemblies can interact and eventually combine, via Hebbian-like learning
rules, in order to produce a realistic, robust and scalable mechanism for sequence
learning.

1LTP: long-term potentiation, LTD: long-term depression.
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2 Model

For the current analysis, a model of neurons which can exhibit chaotic dynamics is
exploited [1]. The dynamics ofM neurons are described by the following equations:

yi .nC 1/ D Fi .y.n//; (1)

Fi .y.n// D kyi .n/C Vi .n/ � ˛xi .n/C �i C ai ; (2)

Vi.n/ D
X

i¤j
!ij .m/xj .n/; (3)

xj .n/ D f .yj .n//; (4)

where yi is the internal state of the neuron i , y the vector of internal states, Vi .n/
the local interaction term, !ij .m/ the connection weight from neuron j to i , ˛ > 0
the refractoriness, �i the threshold, xi the activity of neuron i , f the activation
function, and ai the external inputs. The map f used here is the cumulative
distribution function of the standard normal law. Finally, the activity of the neuron
i is xi .n/ D f .yi .n//.

The weights !ij .m/ are updated via a learning rule, acting on a slower time scale
m. Each time-unit m is subdivided into N intervals, each representing the faster
time-unit n. The following generalized learning is considered, taking into account
both LTP/LTD:

!ij .mC 1/ D !ij .m/C �

M
sgn.mi .m//h.mj .m//; (5)

mi.m/ D 1

N

NX

nD0
xi .n/ � di ; (6)

where di is the threshold for LTP/LTD, h the Heaviside step function, and sgn the
sign function. When neurons i and j are both firing strongly in average, then the
change is positive (long-term potentiation). When j is firing, but not i , it is negative
(long-term depression). It is equal to zero otherwise. Moreover, a saturation level
sj for weights !ij is assumed to be

ˇ̌
!ij
ˇ̌
< sj . Similar rules, modeling LTP/LTD

[2, 9], and using a longer time scale for the change in synaptic efficacy [19] exist in
the literature.

3 Proposed Mechanism

In line with reservoir computing, we propose that the separation of trajectories
after each input symbol is sufficient to encode a sequence. However, the dynamics
between each symbol is supposed persistent, i.e. each intermediate state encoding
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Fig. 1 Dynamics of sequence processing with time. Units in gray are active. Inputs can excite
(arrow with C) or inhibit (arrow with �) each unit. (a) Baseline state, all units are silent. (b)
Effect of the first input. Populations i and u are active. (c) The assembly composed of i and u
acquires persistent activity with Hebbian learning. (d) Effect of the second input. Population i is
inhibited and n is active. Population u is unaffected by the second input. (e) This assembly acquires
stable firing by Hebbian learning

for a symbol is an attractor, and learning occurs with LTP and LTD. Each attractor
encoding a retrospective activity must be unique, in order to respect the separation
of trajectories. Contrarily to chained auto-associative models, each attractor is not
associated with the following one. The transition between attractors is achieved by
the effect of the external inputs (see Fig. 1).

The changes in weights depend on the history of activities. To simplify further
the analysis, we consider only the populations i and u of Fig. 1, without loss of
generality. During the first input, both populations are firing. Thus, the synaptic
efficacies between these are strengthen by LTP, and they can sustain their activity
by reverberation (see Fig. 2, left). The second input inhibits the population i, and
therefore LTD reduces the synaptic efficacies from population u to i (see Fig. 2,
right). The weights, from population u to itself, are strengthen by LTP. Other
connections remain unchanged.

By modeling these two populations by simply two neurons connected to each
other, by means of a mean field approximation, the dynamical analysis of the
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Fig. 2 Change in synaptic efficacies during learning. (left) After the first input, all connections
have stronger synaptic efficacies. (right) After the second input, connections from populations u to
i have reduced synaptic efficacies

resulting system can be studied. For certain values of synaptic efficacies, the case
described in Fig. 3 can occur. The steady states of the two variables system fyi ; yug,
corresponding to the internal states of populations i and u respectively, noted
yi D Fi .yi ; yu/ and yu D Fu.yi ; yu/, show that there are five fixed points, three
stable and two unstable. Their basins of attraction (Fig. 3, bottom) show that this
system can process sequences as described previously in Fig. 1.

4 Results

We consider the activity of the two populations i and u during the recognition of
a sequence of two symbols. In Fig. 4, the learned sequence has unique successive
attractors for each symbol.
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Fig. 3 Dynamical analysis of the two populations. (top) Steady states of the system fyi ; yug
intersect in five locations. Three are stable fixed points, two unstable. (bottom) The basins of
attraction of the stable fixed points are described: (1) when populations i and u are excited,
they retain this state, (2) if population i is then inhibited, it remains in this state. This dynamic
corresponds to the recognition of the sequence

5 Conclusion

After successive inputs, due to the hysteresis effect described above, the changes
in weights can depend on the history of inputs, and maintain the dynamics in
successive stable dynamical regimes. Because of this dynamical stability, the time
lag between successive inputs is not a sensitive parameter, and the retention of
information is robust to noise.
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Fig. 4 Trajectory of the activities x of the populations i and u during sequence recognition

A mechanism similar to Fig. 1 has been experimentally observed in vivo [15].
During sequential motor actions in the prefrontal cortex of monkeys, a parallel
activation of the encoding units first occurs. Subsequent events inhibit all neurons
except those encoding for the current step in the sequence.
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Statistical Estimation of Non-uniform
Distribution of Dendritic Membrane Properties

Toshiaki Omori, Toru Aonishi, and Masato Okada

Abstract We propose a statistical method for estimating the spatial distribution
of membrane properties that are non-uniformly distributed over dendrites from
partially observable noisy data. We employed the Bayesian statistical approach to
extract the hidden but substantial information about the distribution of membrane
properties over the dendrites. Simulated data showed that the proposed method can
simultaneously estimate the distribution of membrane properties and the distribution
of membrane potentials, even from partially observable noisy data.

1 Introduction

Experimental findings such as dendritic spikes and back-propagating action poten-
tials suggest that dendrites contribute more to neural computation than previously
thought [1–3]. Since information arriving at a dendrite tends to differ in a spatially
segregated manner [4], the heterogeneity of the dendritic membrane properties
determines how different kinds of information are processed in neural systems
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[4–6]. However, it is unclear how the membrane properties are distributed over a
dendrite due to the difficulty in performing direct measurement; observable data in
imaging experiments has a low spatial resolution and is noisy.

To overcome this difficulty, we propose a method for statistically estimating the
non-uniform membrane properties. Based on Bayesian statistics, we derive an algo-
rithm to simultaneously extract the spatial distribution of membrane properties and
the spatiotemporal distribution of membrane potentials from partially observable
noisy data.

2 Methods

We developed a method for estimating the non-uniform distribution of the mem-
brane properties over a dendrite (Fig. 1). Since dendrites are partially observable, we
first need to estimate the distribution of membrane potentials fvx;tg over the dendrite.
We developed a distributed constant-type Kalman filter (DCKF) from a multi-
compartment model, which estimate the distribution of membrane potential over
the dendrite fvx;tg from partially observable noisy data fyx;t g. Next, we employed an
EM algorithm to estimate the distribution of the membrane properties‚ that govern
dendritic spatiotemporal dynamics but are a hidden feature of dendrites. Using the
derived DCKF and the EM algorithm, we simultaneously extract the distribution of
membrane potentials fvx;t g and membrane properties ‚ from partially observable
noisy data.

2.1 State Space Model for Dendrite

We first derive the DCKF from a differential equation governing the spatiotemporal
dynamics of dendrites. The spatiotemporal dynamics of the true membrane poten-
tials over a dendrite, v.x; t/, obeys the following cable equation [2]:

@v

@t
D QD @2v

@x2
C Qf .v.x; t/; x/C Qu.x; t/C Q	s.x; t/; (1)

membrane 

potential
observable data

{ }vx,t
{ }yx,t

low resolution,
noisy data

membrane 
properties

Θ
?

d
is

ta
n

c
e

observation

estimation

Fig. 1 Illustration of method for statistically and simultaneously estimating non-uniform distri-
bution of membrane properties ‚ and membrane potentials fvx;t g from partially observable noisy
data fyx;t g
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Fig. 2 Distributed constant-type Kalman filter (DCKF) for dendrites. (left) Dendritic structure
with complex morphology, (center) multi-compartment model, (right) the derived DCKF. An open
circle shows true membrane potential vx;t , whereas a filled circle shows partially observable noisy
data yx;t

where QD expresses an intracellular resistance, Qf is a membrane current, Qu is an
input current, and Q	s is a white Gaussian noise with variance Q	2. By discretizing
this differential equation, we obtain the system model:

vx;tC1 D D.vx�1;t � 2vx;t C vxC1;t /C fx.vx;t /
C ux;t C 	sx;t : (2)

As illustrated in Fig. 2, dendrites are described as distributed constant-type circuit;
the true membrane potentials, vx;tC1 at position x and time tC1 (Fig. 2, open circle)
depend not on all compartments but on neighboring compartmentsx�1, x, and xC1
for the preceding time t . By formulating the system model using this property, we
can reduce calculations in Kalman filter. The system model is expressed by using
probabilistic model P.vx;tC1jvx�1;t ; vx;t ; vxC1;t ; ux;t / as

P.vx;tC1jvx�1;t ; vx;t ; vxC1;t ; ux;t /

/ exp

�
� 1

2	2

	
vx;tC1 �D.vx�1;t � 2vx;t C vxC1;t /

�fx.vx;t / � ux;t


2�
: (3)

In this study, we put fx.vx;t / D axvx;t C bx D .�t Qax C 1/vx;t C�t Qbx .
The observable data yx;t (Fig. 2, filled circles) are assumed to be partially

observable, and are set to be the sum of the true membrane potential vx;t and noise
� as

yx;t D cvx;t C �sx;t ; (4)

where sx;t is a white Gaussian noise and c and � are constants. The observation
model is expressed by using the following probabilistic model:

P.yx;t jvx;t / / exp

�
� .yx;t � cvx;t /2

2�2

�
: (5)
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2.2 Estimation of Membrane Potential

We derive a framework to extract the distribution of membrane potentials fvx;tg
over the dendrite from the partially observable noisy data fyx;t g. By considering the
probabilistic path (Fig. 2, right), we see that the membrane potential at position x
depends on the membrane potentials of neighboring position x � 1, x and x C 1 at
one preceding time. Using Bayes’ theorem, we obtain the recursive relation among
posterior distributions P.vx;t jyx;t / as

P.vx;tC1jyx;tC1/

/ P.yx;tC1jvx;tC1/
Z
dvx�1;t dvx;tdvxC1;t

�P.vx;tC1jvx�1;t ; vx;t ; vxC1;t ; ux;t /
�P.vx�1;t jyx�1;t /P.vx;t jyx;t /P.vxC1;t jyxC1;t /: (6)

Substituting the system model (Eq. (3)) and the observation model (Eq. (5)) into
Eq. (6), we derive a recursion equation for an average of membrane potential vx;t as

vx;tC1 D D.vx�1;t C vxC1;t /C .ax � 2D/vx;t
C ux;t C bx CGx;tC1.yx;tC1 � Oyx;tC1/; (7)

where Gx;tC1 is a Kalman gain, and Oyx;tC1 is a predicted value for observation
expressed by

Oyx;tC1 D cŒD.vx�1;t C vxC1;t /C .ax � 2D/vx;t
C ux;t C bx�: (8)

We can derive a recursion equation for the variance of membrane potential in a
similar way.

2.3 Estimation of Membrane Properties

Here, we estimate hyperparameters ‚ D fax; bx; c;D; 	; �g by using the EM
algorithm. The EM algorithm is an iterative method consisting of the E-step and
the M-step [7]. In the E-step, we calculate the following Q function:

Q.‚j‚n/ D hlogL.fvx;tg; fyx;tgj‚/i ; (9)

where L.fvx;tg; fyx;tgj‚/ is expressed using the system model and observation
model, as
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L.fvx;t g; fyx;tgj‚/
D
Y

x;t

P.yx;tC1jvx;tC1/P.vx;tC1jvx�1;t ; vx;t ; vxC1;t /: (10)

The Q function is expressed by the average hvx;t i and correlation hvx;tC1vxCi;ti .i D
�1; 0; 1/. In the M-step, we find the hyperparameters that maximize the Q function.

‚nC1 D arg max
‚
Q.‚j‚n/ (11)

The hyperparameters ‚ are estimated by performing the E step and the M step
alternatively.

The estimation using the proposed method is performed in two steps. First, we
estimate the membrane potential: using the DCKF, we derive the average hvx;ti and
correlation hvx;tvxCi;tC1i. Second, we estimate the membrane properties: we obtain
the hyperparameters‚ that maximize the Q function using hvx;ti and hvx;tvxCi;tC1i.
We perform these two steps alternatively until the estimated distribution converges.
Through this procedure, the mathematical model assimilates the observable data.

3 Results

To evaluate the effectiveness of the proposed method, we investigated using
simulated data whether the hidden feature of dendrite, namely, the distribution of
membrane properties ‚ can be estimated from the partially observable noisy data
fyx;tg. We used simulated data from a multi-compartment model with 11 compart-
ments (Fig. 3a). External input was assumed to be injected to compartment 1.

We first assumed that the distribution of membrane properties was uniform. Here,
we estimated a distribution of membrane potentials over the dendrite fvx;tg from
partially observable noisy data fyx;t g. Figure 3b shows the estimation result using
observable data at every other point (x D 1; 3; 5; � � � ; 11). We found that the dis-
tribution of membrane potentials fvx;tg were successfully estimated. We also found
that the distribution fvx;tg could be estimated when observable data was obtained
at every two and every three points (data not shown). This demonstrates that the
proposed method is effective for low spatial resolution data such as the imaging
data. We also showed that six kinds of hyperparameters ‚ D fax; bx; c;D; 	; �g
were simultaneously and accurately estimated from partially observable data [data
not shown].

Next, we assumed that the distribution of membrane properties was non-
uniform and that membrane resistance Qa�1x (closely related to ax) obeyed a sigmoid
function [6]:

Qa�1x D R1 C
R0 � R1

1C expŒ�ˇ.x � �/� ; (12)
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Fig. 3 Estimation result. (a) Multi-compartment model, (b) Estimation of membrane potentials
fvx;t g from partially observable noisy data fyx;t g. This example shows an estimation result from
data with low spatial resolution. (c) Estimation of non-uniform membrane property fQa�1x g from
partially observable data fyx;t g. Using partially observable data, the non-uniform distribution of
membrane properties was accurately estimated even when a uniform distribution was used as the
initial distribution

where R0 and R1 are constants and ˇ and � determine the steepness and the
threshold, respectively. Using partially observable noisy data shown in Fig. 3c
(center), we estimated the distribution of membrane properties as shown in Fig. 3c
(right). We found that the estimated distribution of membrane properties was similar
to a true distribution, even when a uniform distribution was used as the initial
distribution. The estimated distribution of membrane potentials was also similar to
the true distribution of membrane potentials. These results demonstrate that the non-
uniform dendritic membrane properties and membrane potentials over the dendrite
can be estimated even from partially observable noisy data.

4 Discussion

We proposed a method for statistically estimating the non-uniform distribution
of dendritic membrane properties. We showed using simulated data that the non-
uniform membrane properties over the dendrite can be estimated from partially
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observable noisy data. This suggests that our method would be effective for
estimation of non-uniform membrane properties from voltage imaging data.

Previous studies by using simulations with compartment models [5, 6] estimated
the distribution of membrane resistance in hippocampal CA1 pyramidal neurons
from voltage imaging data. We leave a statistical estimation of membrane properties
by using the proposed method from volgate imaging data as one of future works.
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Context-Dependent Call Variation in the Male
Bengalese Finch

Midori Osada and Tetsu Okumura

Abstract The Bengalese finches live in group and emit several types of calls (such
as alarm, distance, distress, begging, and courtship calls). These calls are frequently
observed, and these may have an important role in social interactions. This study
was performed to elucidate in detail the functions of calls of Bengalese finches. We
observed the calling behavior of male birds presented movies of other male and
female birds with and without their calls. We also evaluated the influence of other
conspecific birds’ calls on male calling behavior. Detailed sound analysis shows that
several types of calls were produced by males. Our data also suggested that males
have an ability to discriminate between other individuals, and that they are able to
produce different types of calls in a context-dependent manner.

1 Introduction

Many avian species are known to produce long and complicated songs; their calls,
in comparison, are shorter, acoustically less complex, and monosyllabic. All bird
species, however, have a repertoire of calls that are produced in a context-dependent
manner [1]. Bird’s calls have the following functions: predator alarm [2, 3],
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announcement and exchange of food, signaling of aggression, and maintenance of
social interactions [4]. Understanding the brain mechanisms underlying adaptation
to a social context requires a multidisciplinary approach. To make a beginning with
such an approach we asked the following 2 questions in this study: How many
types of calls are present in the male Bengalese finch’s call repertoire? If several
types of calls are present, does the male Bengalese finch produce them in a context-
dependent manner? To address these questions, we observed the vocal behavior of
male birds presented movies of other male and female birds with and without their
calls. We also evaluated the influence of other birds’ calls on their vocal behavior.

2 Methods

2.1 Subjects and Recordings of Vocalizations

This study used one female and three male Bengalese finches, aged over 180 days.
The birds were supplied by a local pet shop and did not have any experi-
mental history. Birds were kept under a fixed 13:11 h light-dark cycle and
given ad libitum access to food and water. Of these, two male birds (Bird
1 and Bird 2) were used as subjects. They were housed in a breeding cage
(width� depth� heightD 30� 15� 20 cm) and isolated in a sound-attenuated box
for at least 30 days. They were allowed to move freely within the cage, and
all their daytime vocalizations (calls and songs) were recorded on a hard disk
drive. A microphone (ECM-MS957, Sony), microphone amplifier (AT-MA2, audio-
technica), computer, and digital recording software (Avisoft-Recorder, Avisoft
Bioacoustics, Berlin) were used for these recordings. The other two birds, one male
and one female, were used for shooting auditory and visual stimuli.

2.2 Stimulus and Experimental Procedures

Four sets of 30-min movies of conspecific male and female birds were captured with
and without vocal behavior using a high-resolution digital video camera (HDR-
CX170, Sony). The recordings were shown to the caged birds on an LCD (TFT)
monitor that was placed in the sound-attenuated box [5]. These movies were of both
a female and a male, with and without calls. The size of the birds displayed on the
monitors was set equal to the size of real birds.

These 30-min movies of other birds were presented once per hour during nine
consecutive hours each day during a total of 3 days, and no movies or sounds
were presented during inter-trial-intervals (ITI) those last 30 min. The first 5 min
of vocalizations of the caged birds directly after playback started were analyzed,
because vigorous behavioral change was observed consistently during these periods.
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These auditory and visual stimulations and audio recordings were performed during
3 days for all five conditions (four movies and ITI [no movie, no call]).

The numbers of songs and calls produced were counted, and the phonetic
parameters (sound pressure level, first and second formant frequency, and duration)
of all calls were analyzed using sound analysis software (Avisoft-SAS Lab Pro.
Avisoft Bioacoustics). The recorded calls were plotted on Formant 1 (F1) vs.
Formant 2 (F2) plots (Fig. 2). For these formant analyses, we applied linear
predictive coding (LPC).

3 Results

3.1 Call Repertoire and Context-Based Call Production

As seen in Fig. 1, six call types (A–F) were emitted by Bird 1. In the F1 vs. F2 plots
of bird 1’s calls (Fig. 2), most of the analyzed calls could be classified into 6 major
clusters (A–F in Fig. 2). Calls belonging to the same cluster showed similar acoustic
features on the spectrogram, and could be distinguished from calls in other clusters
sound. However, border of the clusters B and C could not be defined clearly in our
preliminary cluster analysis (K-means and EM clustering). Observed difference in
acoustic feature may be attributed to difference in expiratory pressure pattern.

The calls in each cluster were produced in different context-dependent distribu-
tions. For example, call “B” was produced frequently when a male was presented
to the bird, whereas call “F” was produced primarily when a female was presented
(See histogram insets in Fig. 2). These kinds of differential distributions were also
observed for Bird 2.

The pie charts in Fig. 3 show the frequency distributions of each call of
Bird 1 (A–F) under four stimulus conditions and ITI (no movie, no call). These

Fig. 1 Waveforms (upper
rows) and sound
spectrograms (lower rows) of
Bird 1’s calls (A–F). Calls
“A” to “F” correspond to
clusters “A” to “F” in Fig. 2,
respectively
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Fig. 2 F1-F2 plot of calls. The 8,557 calls plotted here were emitted by Bird 1 in the first 5 min of
each of 5 conditions (movies of females with and without calls, movies of males with and without
calls, ITI: The total analyzed duration of each condition was 135 min). A–F are the call clusters.
The inset histograms show the conditions under which the calls in these clusters were produced

Fig. 3 Frequency distribution of each call (A–F) under five stimulus conditions. A–F indicate
frequencies of calls A–F in Fig. 1, respectively
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distributions of produced calls differ according to stimulus conditions. For example,
calls F were emitted with higher frequencies when the subject bird was presented
with movies of a female, rather than a male. Notable deviations were observed in
comparison to female presentation with and without calls. When a movie of a female
with its call was presented to Bird 1, a lower frequency of call E was observed. In
contrast, the percentage of call C diminished when a female movie without call was
presented to the bird.

3.2 Number, Average Duration, and Sound Pressure Level
of Songs and Calls Produced Under Each Condition

The average numbers of songs by Bird 1 and Bird 2 produced in 1 h when presented
with the movie of the female bird (♀) without call stimulus were 21.3 and 47
times/h, respectively. These were much higher frequencies than those produced
when presented with the movie of a female with call stimulus (6.4 [Bird 1] and
28 [Bird 2] times/h). In contrast, as seen in Fig. 4, the number of calls produced
when presented with the movie of a female without the call stimulus (776 [Bird 1]
and 152 [Bird 2] times/h) were less than half those produced when presented with
the movie of a female with the call stimulus (1,718 [Bird 1] and 977 [Bird 2]
times/h). Taken together, besides the ITI periods, the song occurrence ratio in
birds’ vocal behavior (#songs/[#songsC #calls]) was maximum when the birds were
presented with movies of a conspecific female bird without call stimulus, and the
call occurrence probability was maximum when the birds were presented with a
female bird with call stimulus. In addition, the average sound pressure levels and
call durations were higher when the subject birds were presented with movies of
female birds, than when presented with movies of male birds (data not shown).

4 Discussion

Bengalese finches have sufficient visual [6, 7] and auditory [8–10] capacity to be
used for discrimination of other conspecific individuals. Most previous research
applied operant conditioning techniques. Such techniques have certain advantages
in the evaluation of an animal’s capability to discriminate between various types of
stimuli. However, when researchers want to elucidate spontaneous animal responses
in a natural social context, intensive observation of spontaneous behavior under
various conditions could be a good alternative. The present study shows that male
Bengalese finches altered their pattern of calling behavior in response to different
types of auditory and visual stimuli of other conspecific individuals without any
rewards and punishments. We established here that our experimental setup can be
used to switch the mode of a bird’s vocal behavior according to social context in a
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Fig. 4 Number of calls/h under five kinds of stimulus conditions. These numbers are the average
number of calls/h of Bird 1. It was calculated based on the average number of calls in the first
5 min of each stimulus condition

more natural manner. In addition, present results also suggest that male Bengalese
finches are able to discriminate between male and female by their appearance.
These abilities of gender estimation and context discerning are fundamentals of
their social behavior including mating. We next intend to elucidate the dynamic
brain mechanisms that underlie context-based vocal behavior by using this setup.

Acknowledgments The authors thank Mr. T. Otsuka and Mr. Y. Yamazaki for their technical
assistance. We also thank an anonymous reviewer for helpful comments. This study was supported
by a Grant-in-Aid for Scientific Research on Innovative Areas “Neural creativity for communi-
cation (No.4103)” (22120516) of MEXT, Japan and Brainscience Grant on Creativity from NPO
Neurocreative Laboratory to T.O.

References

1. Marlar, P. et al. (ed.): Nature’s music. The science of birdsong. Elsevier, Amsterdam (2004)
132–177

2. Griesser, M.: Referential calls signal predator behavior in a group-living bird species.
Cur. Biol. 18 (2008) 69–73

3. Suzuki, T.: Parental alarm calls warn nestlings about different predatory threats. Cur. Biol. 21
(issue 1) (2011), R15–R16

4. Freeberg TM. & Harvey EM.: Group Size and Social Interactions Are Associated With
Calling Behavior in Carolina Chickadees (Poecile carolinensis). J. Comp. Psychol. 122 (2008)
312–318

5. Ikebuchi, M. & Okanoya, K.: Male zebra finches and Bengalese finches emit directed songs to
the video images of conspecific Females Projected onto a TFT display. Zool. Sci. 16 (1999),
63–70

6. Watanabe, S. and Jian, T.: Visual and Auditory Cues in conspecific discrimination learning in
Bengalese Finches. J. Ethol. 11 (1993), 111–116



Context-Dependent Call Variation 663

7. Watanabe, S., Yamashita, M., & Wakita, M. Discrimination of video image of conspecific
individuals in Bengalese finches. J. Ethol. 11, (1993) 67–72

8. Okanoya, O. and Kimura T.: Acoustical and perceptual structure of sexually dimorphic distance
calls in Bengalese finches (Lonchura striata domestica). J. Comp Psychol. 107 (1993) 386–394

9. Okanoya, K., Tsumaki, S., & Honda, E. (2000). Perception of temporal properties in self-
generated songs by Bengalese finches (Lonchura striata var. domestica). J. Comp Psychol.
114, 239–245.

10. Ikebuchi, M., & Okanoya, K. (2000). Limited auditory memory for conspecific songs in a
non-territorial songbird. Neuroreport. 27, 3915–3919



Capturing the Global Behavior of Dynamical
Systems with Conley-Morse Graphs

Zin Arai, Hiroshi Kokubu, and Ippei Obayashi

Abstract We present a computational machinery for describing and capturing the
global qualitative behavior of dynamical systems (Arai et al. SIAM J Appl Dyn
Syst 8:757–789, 2009). Given a dynamical system, by subdividing the phase space
into a finite number of blocks, we construct a directed graph which represents
the topological behavior of the system. Then we apply fast graph algorithms for
the automatic analysis of the dynamics. In particular, the dynamics can be easily
decomposed into recurrent and gradient-like parts which allows further analysis of
asymptotic dynamics. The automatization of this process allows one to scan large
sets of parameters of a given dynamical system to determine changes in dynamics
automatically and to search for “interesting” regions of parameters worth further
attention. We also discuss an application of the method to time series analysis.

The method presented in Sects. 1–4 below is given in [1] for the first time, which
is based on and combines a number of theoretical results as well as computational
software packages developed earlier. For the details, see the original paper [1].

1 Conley-Morse Decompositions

Throughout the paper, we assume that the system is given by a family of continuous
maps

f WRn � R
d 3 .x; �/ 7! f�.x/ 2 R

n:
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We are interested in the analysis of global dynamics generated by f as the parameter
� is varied over Rd . In most situations, only some bounded regions R � R

n and
� � R

d have physical meaning for the analyzed model. If both R and � are
rectangular regions then one can easily introduce finite rectangular grids H and
L in both of them.

A Morse decomposition of a dynamical system is a finite collection of disjoint
isolated invariant sets S1; : : : ; Sn (called Morse sets) with strict partial ordering �
on the index set f1; : : : ; ng such that for every x in the phase space there exist indices
i � j such that the ˛- and !-limit sets of x is contained in Sj and Si , respectively.
A Morse decomposition can be represented in terms of a directed graphG D .V;E/
where V D fS1; : : : ; Sng and .Si ; Sj / 2 E iff j � i . This graph is called a Morse
graph. If each Morse set is assigned its Conley index [3, 4] then such a structure
is called a Conley-Morse decomposition, and the corresponding graph is called a
Conley-Morse graph [1].

Note that a Morse decomposition ofX is not unique. In particular, if i; j are such
indices that i � j but there is no other index k such that i � k � j then one can
create a coarser Morse decomposition by replacing Si and Sj with Si[Sj[C.i; j /,
where C.i; j / denotes the union of the images of all the complete orbits such that
�.t/! Si and �.�t/! Sj as t !1.

2 Graph Representation

Given a formula for f� and some grid H in the region R � R
n, for each parameter

set L 2 L one can use the interval arithmetic directly to compute a combinatorial
representation FLWH ( H for f�, which then will be represented by a directed
graph G D .V;E/ where V D H and .v;w/ 2 E iff w 2 F.v/. It turns out
that the analysis of the graph G can easily provide meaningful information on the
asymptotic dynamics of f� represented by FL. For example, each combinatorial
invariant set defined as a set S � H for which S � F.S/ \ F�1.S/ covers an
isolated invariant set with respect to f�. More precisely, if S is a combinatorial
invariant set then jSj is an isolating neighborhood, and if S is an isolated invariant
set with respect to f� for some � 2 L then its minimal cover S is a combinatorial
invariant set. Another example is a combinatorial attractor defined as a set A �
H such that F.A/ � A which covers a real attractor for f�. In fact, if A is a
combinatorial attractor then jAj is an isolating neighborhood whose invariant part
A WD InvjAj is stable in the sense of Conley, that is, every positive semitrajectory
starting in some open neighborhood of A tends to A. In particular, if there exist
two combinatorial attractors for FL then this implies the existence of two disjoint
attraction basins for f� for every � 2 L. See [2] for detail.

Extensive analysis of the dynamics can be obtained by computing the strongly
connected components ofG. It is known that all the strongly connected components
of G form isolating neighborhoods for the union of all the chain recurrent sets of
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the dynamical system, and thus can serve as a combinatorial Morse decomposition
fMi W i D 1; : : : ; kg, for some k > 0, which represents a family of isolating
neighborhoods jMi j. The sets Mi are called combinatorial Morse sets. A partial
order � between the computed combinatorial Morse sets can be determined by the
analysis of paths in G connecting those sets.

3 Continuation and Bifurcations

If two adjacent sets of parameters L1;L2 � �, with L1 \ L2 6D ;, are considered,
and the combinatorial Morse decompositions computed forL1 andL2 are equivalent
then we talk about continuation of combinatorial Morse decompositions. More
precisely, let .M1

1; : : : ;M1
k1
;�1/ be a combinatorial Morse decomposition for FL1

and let .M2
1; : : : ;M2

k2
;�2/ be a combinatorial Morse decomposition for FL2 . We

say that these decompositions are equivalent if k WD k1 D k2 and there exists a
bijection b of the set f1; : : : ; kg onto itself such that M1

i \M2
j 6D ; iff j D b.i/,

and b does not violate the order defined by the relations �1 and �2, that is, for no
i; j one has i �1 j and b.j / �2 b.i/.

This definition provides a very weak kind of continuation; it is, in fact, the
continuation of isolating neighborhoods in the sense of Conley (see [3]). In
particular, the lack of continuation suggests a substantial change in dynamics. It
implies such a change only if one ignores spurious Morse sets in the comparison of
combinatorial Morse decompositions. One can use the Conley index to determine
which combinatorial Morse sets are not spurious, and the lack of continuation
between those sets with nontrivial Conley indices implies that a bifurcation is taking
place. The type of bifurcation can be determined to certain extent by analyzing
failures of continuation; for example, a bifurcation that resembles the saddle-node
bifurcation at the scale of isolating neighborhoods can be detected as a series of
two failures of continuation: first, a combinatorial Morse set with a trivial index
appears from nothing, and second, this set splits into two combinatorial Morse
sets with non-trivial indices, one corresponding to a stable fixed point or periodic
orbit, and the other one corresponding to an unstable fixed point or periodic orbit,
respectively.

4 Applications

The practicality of the method is illustrated in [1] with the application to the
2-dimensional non-linear Leslie population model f WR2 � R

4 ! R
2, which is

given by

f .x; yI �1; �2; �; p/ D
�
.�1x C �2y/ e��.xCy/; px

�
:
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Fig. 1 Morse decomposition
for �1 D �2 D 32:0

Fig. 2 Conley-Morse graph
for �1 D �2 D 32:0

The numerical studies in [5] indicate that this system exhibits a wide variety of
different dynamical behavior, and thus is considered a meaningful test for the
usefulness of our method. In particular, the coexistence of multiple chaotic attractor,
a very important behavior from a practical point of view, is observed for some
parameter values [5]. However, the computation in [5] is done only for a limited
set of parameters and therefore, we would like to ask when this coexistence happens
for a larger parameter region.

The parameter � is just a rescaling factor, so it is arbitrarily set to 0:1, as in [5].
The parameter p is fixed to 0:7, also the same as in [5].

By applying our method to the nonlinear Leslie model with �1 D �2 D 32:0, we
obtain Figs. 1 and 2. Figure 1 shows resulting three Morse sets: the fixed point at
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Fig. 3 “Bifurcation” diagram

the origin, the oval-shaped region in the middle and the largest one surrounding oval
one. Figure 2 is the Conley-Morse graph. The numbers inside the vertices carry the
information of Conley indexes of associated Morse sets. From this graph, we can
read the coarse gradient behavior of the dynamics: the origin and the oval invariant
set are relative repellers and there exist connecting orbits from these repellers to the
attractor.

The result of the continuation analysis of the previous section is illustrated
in Fig. 3. For simplicity, the parameter space .�1; �2/ 2 Œ10; 35�2 is subdivided
into 64 � 64 equal squares here. The bounded region R in the phase space is
subdivided into 4096 � 4096 rectangles of the same size and a combinatorial
Conley-Morse decomposition is computed for each parameter box using this grid.
In the picture, adjacent boxes in the parameter space .�1; �2/ with equivalent Morse
decompositions are plotted in the same shade of gray and white squares correspond
to parameter boxes for which no continuation could be found to any adjacent box.
The transitive reduction of the Morse graph is illustrated for some regions; a square
indicates an attractor, a filled circle corresponds to a Morse set with a nontrivial
Conley index, and a hollow circle indicates a Morse set with the trivial Conley
index . From the figure, we can easily identify the parameter region with multiple
attractors. We want to emphasize here that this computation is fully automatic and
no a priori knowledge is required. Therefore our method can also be applied for
higher dimensional problems where it is difficult to answer the number of attractors
from simple numerics.

One can interactively explore computational results explained in this section at
the project web site http://chomp.rutgers.edu/database/.

5 Time Series Analysis

In practical applications, the data of the system of our interest is often provided
as a time series coming from experiments. In this section, we thus present some
preliminary computations towards the application of Conley-Morse graph method
to time series analysis.

http://chomp.rutgers.edu/database/
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Fig. 4 From a time series of
length 30� 2,000

We remark that in real experiments, the size of the data is always finite. Therefore
even if we know that the system is driven by a continuous dynamical system, its
behavior can not be entirely reconstructed from the data. Hence, our goal would
be to reconstruct a coarse-grained system as close to the original one as possible.
Since the Conley-Morse graph method explained in previous sections involves a
procedure of coarsening, namely, fixing a grid-size on the phase space and ignoring
the behavior of the system smaller than this grid size, it is natural to apply this
method to time series analysis.

For this purpose, we need to notice that due to practical restrictions on experi-
ments, a time series is usually not fully distributed on the phase space or attractors
of the system. That is, the information of the system may be missing on significantly
large parts of the phase space. And furthermore, a times series may contain unknown
experimental noise. Therefore, we muse discuss the robustness of the Conley-Morse
graph computation under the existence of noise and deficits.

Figure 4 illustrates the result of a Morse decomposition for a time series of
length 30� 2,000 (the data of 2,000 orbits of length 30) generated by the non-linear
Leslie model with �1 D �2 D 32:0. Compared with Morse sets in Fig. 1 where we
constructed them directly from the dynamics, we find that Morse sets reconstructed
here from the time series miss some parts while their rough geometric shapes are
similar.

Figure 5 is the same as Fig. 4, but for a time series of length 30� 500. Notice
that although the size of the series is one-fourth of the first figure, we still have a
qualitatively similar decomposition of the invariant set.

Figure 6 shows the Morse decomposition obtained for a noisy time series. The
parameter of the system is the same as before, but here we put Gaussian noise of
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Fig. 5 From a time series of
length 30� 500

Fig. 6 From a noisy time
series

standard deviation 0.15. Notice that the shape of Morse sets now blurs to some
extent but still keeps the essential structure of the original decomposition.

These computations advocate a vague kind of robustness of Conley-Morse
graph and possible application to times series analysis. To obtain mathematically
meaningful results, we need a more detailed study on it taking the dependency
of Conley-Morse graph on noise and deficits into account. This will be discussed
elsewhere.
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A Heuristic Model of Intra-brain
Communications Using Chaos in Artificial
Neuron Systems

Yu Arai, Ryota Mori, Fuyuki Aoto, and Shigetoshi Nara

Abstract To show a functional role of chaos in brain, a heuristic model to consider
mechanisms of intra-brain communications is proposed. The key idea is to use chaos
in firing pattern dynamics of artificial neuron networks as propagation medium
of pulse signals. The two kinds of networks, one consisting of tow-state neuron
model, and the other, pseudo-neuron device model using opto-electronic technology,
are employed to evaluate signal transport characteristics by calculating correlation
functions between sending elements and receiving elements of pulse signals.

1 Introduction

Rapid progress in studying biological information and control processing,
particularly brain functions, suggests that they might be based on novel dynamical
mechanisms which result in excellent functioning of brain [1–4]. Associated with
these ideas, the other new approaches, for example, “neural network processing”,
“self-organization” and so on, have been appearing in the last few decades. In
these approaches, complex dynamics including chaos in systems with large but
finite degrees of freedom are considered from the viewpoint that they would
play important roles in complex functioning and controlling of biological systems
including brain. Particularly, Nara and Davis have been considering, “What is the
role of chaos in functioning or controlling?”, in other words, “Can we show that
chaos works effectively as a dynamic machine under various environments?” [5].
Along these ideas, in their functional experiments, chaotic dynamics was applied
to solving a memory search task or an image synthesis task set in ill-posed context
[5]. Furthermore, the idea has been extended to challenging applications of chaotic
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dynamics to control. Chaotic dynamics in a recurrent neural network model was
applied to control tasks, for example, a task in which an object solves a two-
dimensional maze to catch a target [6, 7], or to capture a target moving along
different trajectories [8]. From the results of computer experiments, we concluded
that chaotic dynamics could be useful not only in solving ill-posed problems but
also in controlling systems with many degrees of freedom.

In this paper, we develop this idea to show phenomena of synchronization of
firing patterns between far distant neurons, which are observed in physiological-,
fMRI-, and EEG-experiments on brains, associated with advanced functioning (for
example, see [9]). The important point of the observed synchronization phenomenon
is that there does not appear to be any strongly correlated activity in the intermediate
neurons located between the synchronized neurons. We consider that intermediate
neurons may be chaotic. In our work, the key idea is to use chaos in firing pattern
dynamics of artificial neuron networks as propagation medium of neuron signals.
So, to show a functional role of chaos in intra-brain communications, two kinds
of heuristic model are proposed. One is a recurrent neural network consisting
of tow-state neuron model, and the other is a network consisting of pseudo-
neuron device model to be made using opto-electronic technology. To evaluate
signal transport characteristics, correlation functions between sending elements and
receiving elements of pulse signals are calculated and they exhibit that chaos can
work as a transport medium of pulse signals which is robust to local defects of
neurons.

2 A Recurrent Neural Network Model

Employing a two-state neuron model, let us consider a recurrent neural network
shown in Fig. 1 and define the updating rule of firing patterns (state vectors) as

xi .t C 1/ D sgn
hPN

j wij xj .t/ � �i
i
; where fxi D ˙1ji D 1�N g and sgn.u/ D

1.�1/I u � 0.u < 0/. fwij ji; j D 1�N g is a synaptic strength matrix and can
be determined so as to embed intended patterns as attractors (memories) in state
updating. �i is threshold and is taken to be 0 without loss of generality. N is the
number of neurons and is 400 or 900 in the present paper. The embedded patterns
in our computer experiments are shown in Fig. 2.

3 Pseudo Neuron Device

In our previous works [10,11] SEED Device (Fig. 3) DSEED (Dynamic Self Electro-
optic Effect Device) (Fig. 4) was proposed, where the device consist of seriesly
coupled pin diode (p-type semiconductor, �10 nm intrinsic semiconductor layer
made from multi-quantum wells (abbreviated as i), and n-type semiconductor)
(Fig. 5). As shown in Fig. 10, when incident light with having appropriately chosen
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Fig. 1 A recurrent neural network model

Fig. 2 Propagation of fired
block pattern in a recurrent
neural network model (The
initial five patterns in a cycle
attractor consisting of 30
patterns)

power (Pin) and wave length (frequency !), with feedback light from lower device
as well, is given, pulse oscillation of photo-current occurs in the circuit, as shown
in Fig. 6.

The rate equations of the photocarrier densities fnij ji; j D 1 � pN g about
both the upper device and the lower device indicated by the suffixes u and l are

written as follows,
dn

u.l/
i;j

dt
D � n

u.l/
i;j

�u.l/
C ˛u.l/.PinCmlnli;jC.�mun

u
i;j //�u.l/

f!�!u.l/Cˇu.l/.Vu.l/��u.l/Ru.l/n
u.l/
i;j /g2C.�u.l/=2/2

, where

the detailed discussion was given in our previous works [12]. Hereafter, the position
index f.i; j /j i; j D 1 � pN g in two dimensional configuration will be replaced
fi j i D 1 � N g in one dimensional rearranged configuration without explicit
noting.
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Fig. 3 Single SEED

Fig. 4 Serially connected
SEEDs with feedback

4 Small World Network and Signal Propagation via Chaos

In connecting between elements in our network model (400 or 900 elements), we
employed the Barabasi-Albert (BA) connections that is one of the small world
network models, where it has both scale free and small world properties, but does not
have cluster property [13]. The connections are shown in Fig. 7, where each element
is put on circle array configuration and connections are represented by lines. Blue
color represents sending elements and connecting lines from them and red color
represents receiving elements and connecting lines from them (Fig. 8).

In the case of the coupled two state neuron network with the given synaptic
connection strength fwij g that is determined so as to embed cycle attractor(s), the
definite connections are put vanished except the connections resulting from BA
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Fig. 5 Stationary solutions
of D-SEED. Note that there
exists light power region
which gives only unstable
fixed point

Fig. 6 Pulse oscillation
(limit cycle) around unstable
fixed point

connecting processes, and then the updated patterns show chaotic dynamics (Fig. 9).
In this paper, let us give weight to the results of DSEED-experiments, and the
results of the two-state neural network with small world property will be reported
elsewhere.

In the case of DSEED network, we introduce diffusive coupling of photocarrier
densities between elements with BA connections. Time developments of this
network also show chaotic dynamics when we solve the set of coupled 2 �
.400 or 900/ rate equations by numerical methods starting from arbitrarily given
initial conditions. Let us consider the case, N D 900, and set a group for sending
elements to emit pulse signals and a group for receiving elements of them, where the
both group contain a certain number of elements about one order of magnitude less
than N . Discarding the detailed explanation about the selecting method, actually
chosen numbers of elements are 37 for sending elements and 20 for receiving
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Fig. 7 Small world network
made by BA method

Fig. 8 Averaged minimum path length vs. the total number of elements. Note that it is well
represented by 	logN

elements, which are shown in Figs. 7 and 10. It should be noted that there is no
direct connection between the sending elements and the receiving elements in the
present case, and the averaged minimum path length between sending elements and
receiving elements is 4.52.
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Fig. 9 A snap shot of firing
pattern in our binary neuron
network model

Fig. 10 A snap shot of
network pattern in gray scale

5 Results

To compare mutual correlations with the sending elements, we have chosen the
five elements having the averaged minimum path length, 2.81, 3.89, 4.38, 4.51, and
5.59, respectively. So, in this choice, receiving elements are located at about middle
(averaged) distance from sending elements. We choose 0.210 mW of the incident
light power for the both sending and receiving elements because this light power
leads the elements to synchronizing when there is no external disturbance. To all of
the other elements, the incident light power is kept to be 0.155 mW, which results
in chaos. When the receiving elements are exposed to chaos generated by the other
elements via diffusive coupling terms,D

P
l .nl � ni /, and under the condition that

the sending elements do not emit pulse signals, then the receiving elements are
also in chaotic state. To evaluate these dynamical properties more accurately, it is
appropriate to calculate correlation functions defined as
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Fig. 11 Auto correlation of
sending and receiving
elements in the case of no
signal from sending elements

fni nj .�/ D
1

T

TP
tD1
fni .t/ � Nni g

˚
nj .t C �/� Nnj

�

s
1

T

TP
tD1
fni .t/ � Nni g2

s
1

T

TP
tD1

˚
nj .t/ � Nnj

�2
(1)

Nni D 1

T

TX

tD1
ni .t/; Nnj D 1

T

TX

tD1
nj .t/; (2)

where ni .t/ is photo-carrier density of the i -th elements (either upper or lower).
The result of calculation about an auto correlation function of the sending elements
indicates that they are synchronizing according to a cooperative effect between
them. Now, under the condition that the sending elements are not connected to the
outer elements, so pulses are not emitted to the network, the result of calculation
about an auto correlation function of receiving elements shown in Fig. 11 (left)
indicates a power law decaying depending on time shift � . It means that the dynamic
state is surely chaos but weak dynamical characteristics remains even in chaos. The
mutual correlation functions between the sending elements and the other elements
including the receiving elements are calculated and they indicate that there are no
correlation between them.

On the other hand, once pulses from the sending elements are emitted to the outer
elements, the autocorrelation function of the receiving elements and the mutual
correlation between the receiving elements and the sending elements drastically
change as shown in Figs. 12–14.
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Fig. 12 Auto correlation of
sending and receiving
elements with existence of
pulse signals from sending
elements

Fig. 13 Correlation between
sending and receiving
elements in the case of no
signal from sending elements
and with signal. Note that
correlation increases from
	0.02 to 	0.6

First, the autocorrelation function indicates that the receiving element is almost
synchronizing because the power law decaying vanishes and a stationary oscillatory
behavior is kept depending on time shift � . Second, about the mutual correlation
function between the receiving elements and the sending elements, the amplitude
becomes more than one order of magnitude bigger than the case with no influence
via the sending elements. The mutual correlations between the other elements and
the sending elements increases, however, it should be noted that the increasing about
the receiving element exceeds that of the other elements having the same averaged
minimum path length to the sending elements. This means that the receiving
elements sensitively respond to small signal fragments from the sending elements
via chaos, and the fragments stimulate synchronization of the receiving elements.
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Fig. 14 Correlation between
sending and chaos elements
under the existence of
sending signals

6 Conclusion

1. Without emitting of pulse signals from the sending elements to the surrounding
ones, the receiving elements are in chaos under the strong influence of chaotic
driving from surrounding elements.

2. Once pulse signals are emitted from the sending elements, then the receiving
elements synchronize with the sending elements stimulated by arrived very small
fragments of synchronous pulses from the sending elements propagated through
the sea of chaos.
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Transitory Memory Retrieval in the Neural
Networks Composed of Pinsky-Rinzel
Model Neurons

Hiromichi Tsukada, Yutaka Yamaguti, Hiroshi Fujii, and Ichiro Tsuda

Abstract It has been proposed an abstract memory model of cortex that the
recurrent network with inhibitory interneurons shows the successive retrieval of
memories. It has not, however, been clarified whether such behavior appears in
the realistic network model with the Hodgkin-Huxley type of neuron. By using the
realistic model that consists of excitatory neurons and inhibitory interneurons, we
here show that the successive retrieval of memories is also observed in the network
of biologically-plausible model neurons.

Biologically, there is evidence for the involvement of acetylcholine (ACh) in
attentional modulation and cholinergic projection decreases IPSPs in pyramidal
neurons in layer 2/3 of the cerebral cortex.

Our simulation result shows that the coupling strength of inhibitory interneurons
is very crucial for controlling the states of memory retrieval; all firing state, memory
completion state and successive memory retrieval state. The field potential of the
network in each state of memory retrieval has a specific frequency band. In this
paper, we discuss the effects of the coupling strengths of inhibitory interneurons,
the states of memory retrieval and the characteristics of frequency band in relation
to the neurophysiological experimental data.
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1 Introduction

In the layer 2/3 of the cerebral cortex, pyramidal cells are reciprocally connected
by recurrent connections and GABAergic neurons are locally connected to the
pyramidal cells. Such an abstract network model has the ability to retrieve memories
from incomplete sets of cues, which is a pattern completion in memory systems.
It has been proposed an abstract model that the recurrent network with inhibitory
interneurons shows a successive retrieval of memory [1, 2]. It has not, however,
been clarified whether such behavior appears in realistic network with the Hodgkin-
Huxley type of neuron.

Biologically, inhibitory interneurons in the cortex have been assumed to provide
stability to the pyramidal cell activity by feedback and feedforward inhibitions.
The firing pattern of pyramidal cells is modulated and coordinated by a diverse
population of GABAergic interneurons [3, 4]. In addition, there is evidence for
the involvement of acetylcholine (ACh) in attentional modulation in cortical areas
[5]. The activation of muscarinic receptors reduces the release of GABA, hence
decreases IPSPs in pyramidal neurons in layer 2/3 of cerebral cortex [6, 7]. On
the other hand, the cortical input from the basal forebrain corticopetal cholinergic
projection induces cortical gamma-frequency activity [8–10]. The direct application
of muscarinic cholinergic agonists induces gamma oscillations in both hippocampal
and neocortical slices [11, 12]. It is not yet clear how cholinergic modulation
contributes to the genesis of gamma rhythms, and what is a role of gamma rhythms
in attentional processing.

In this work, we propose such a realistic model of memory dynamics and
investigate the effects of the coupling strength of inhibitory interneurons, the state
of memory retrieval and the characteristic of frequency band.

2 Methods

The network model studied in this paper consists of a population of pyramidal cells
and GABAergic fast-spiking interneurons.

We employ a two-compartment model for pyramidal cells proposed by Pinsky
and Rinzel [13]. It consists of a somatic and a dendritic compartment comprising
different active ion-currents and synaptic inputs. The soma compartment has
two voltage-dependent currents, the fast sodium current INa and the delayed
rectifier potassium current IK-DR. The dendritic compartment has three voltage-
dependent current, which are calcium current ICa, Ca-activated potassium current
IK-C and potassium after-hyperpolarization current IK-AHP. The compartments were
electrically connected via conductance gc. The interneuron model consists of a
single compartment with a sodium current INa and a potassium current IK [14].
Interneurons project via GABAA synapses to pyramidal cells, and the pyramidal
cells project via AMPA synapses to other pyramidal cells forming recurrent network
and also project via AMPA synapses to interneurons. We did not include NMDA or
GABAB receptors in the present model. The network architecture is shown in Fig. 1.
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Fig. 1 A schematic diagram of Pinsky-Rinzel neuron (left) and network architecture (right)

The spatial memory patterns are embedded to the recurrent excitatory synaptic
connections by Hebbian learning and Poisson spike trains are included in this model
as a background noise.

3 Results

The performance of memory retrieval was estimated for the coupling strength gIE

of inhibitory neurons to the pyramidal neurons. Figure 2 shows spike trains of
pyramidal neurons when the coupling strength gIE is varied. We can classify the
state of memory retrieval depending on the coupling strength gIE. Without inhibition
the firing activity of pyramidal cells in the network are enhanced by recurrent
connections (Fig. 2a). In the case that gIE is weaker, the spike trains of pyramidal
neurons behave as an associative memory (Fig. 2b). In the case that gIE is stronger,
the spike trains of pyramidal neurons show transitory behavior (Fig. 2c). We
calculate the direction cosine (DC) between stored memory and retrieval memory,
which is shown in Fig. 2. Each state of memory retrieval is named as following state
I–III.

The orbit of memory retrieval is shown in Fig. 3. The result implies that the
dynamics of memory retrieval changes to the transitory behavior with an increase in
the connection strength gIE.

We estimate the stability of memory retrieval when incomplete sets of cues are
input in this system. The performance of memory retrieval in state II and state III
are shown Fig. 4. Horizontal axis represents Hamming distance between an input
pattern and a stored memory pattern. The result in the case of state II indicates that
when the input pattern is different from the stored memory pattern by several bits,
the memory retrieval is completed such as an associative memory. This indicates
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Fig. 2 Spike rastergram of pyramidal neurons (top) and DC (bottom). (a) The case of zero-
coupling strength between excitatory neurons and inhibitory interneurons. (b) The case of weak
coupling. (c) The case of strong coupling. Different memory retrieval is indicated by different color
in DC (Color figure online)

Fig. 3 Direction Cosine of state II and state III. (a) Trajectories of DC. (b) Frequency distribution
of the DC trajectory. (c) Trajectories of DC (state III)

the presence of attractors. The memory retrieval depends on the initial condition
and the basin structure of embedded memory looks very complicated. In the case of
state III, the state of memory retrieval becomes temporarily unstable. These results
indicate that the landscape of basin is varied by the strength of gIE.

We examine the power spectrum of each process of memory retrieval. The fre-
quency bands of each state are shown in Fig. 5. The peak frequency is shifted from
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Fig. 4 The success rate of memory retrieval in state II and state III. The success rate calculated
from direction cosine
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Fig. 5 (a) Power spectrum of soma potentials of pyramidal neurons. The y-axis denotes the
coupling strength gIE, and the x-axis frequency (Hz). (b) Typical power spectrum for each state
is shown. gIE D 0.14(upper frame), gIE D 0.2(middle frame), gIE D 0.02(lower frame)
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high frequency range to low frequency range with an increase of the connection
strength gIE. Figure 5 shows that the characteristic of power spectrum is also related
with each state of memory retrieval. When the memory retrieval is completed (state
II), the activity with the gamma band frequency (30–100 Hz) appears. The parameter
gIE is increased more (state III), the peak frequencies are switched from the gamma
band to the theta band (4–12 Hz). The frequencies converge to around 10 Hz when
the parameter gIE is much stronger. The state of memory retrieval is crossly related
to the frequency band.

4 Discussions

The successive retrieval of memories is observed in the network of biologically-
plausible model neurons. The coupling strength of inhibitory interneurons is very
crucial for controlling the retrieval of memories.

In the biological sense, there is ample evidence for the involvement of acetyl-
choline (ACh) in attentional modulation. The activation of muscarinic receptors
reduces the release of GABA, hence decreases IPSPs in pyramidal neurons in
layer 2/3 of the cerebral cortex. These effects indicate that acetylcholine projection
reduces the coupling strength of inhibitory neurons gIE. Our simulation results imply
that when gIE is reduced, the state of memory retrieval is changed, and the frequency
bands also shift to the gamma band from theta or alpha band.
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Dynamic Information Processing in the Frontal
Association Areas of Monkeys During
Hypothesis Testing Behavior

Norihiko Kawaguchi, Kazuhiro Sakamoto, Yoshito Furusawa, Naohiro Saito,
Jun Tanji, and Hajime Mushiake

Abstract Top-down visual search is based on subjective knowledge about the
target, which is updated with behavioral consequences. To establish whether the
frontal association areas (FAAs) are involved in the knowledge-based visual search,
we introduced a new oculomotor task requiring monkeys to search for a valid pair
of targets among four visual stimuli where the valid pair of targets changed without
instruction. This result indicated that the FAA neurons of the monkeys showed a
gradual shift of representation when the valid pair was changed. Our result suggests
that the FAAs are involved in dynamically updating subjective knowledge of the
search for targets based on behavioral consequences.

1 Introduction

Visual searching is believed to be a combination of the bottom-up and top-down
cognitive processes [1, 2]. In everyday life, especially when the visual salience of
objects is not a reliable cue for searching a target, we often conduct visual searches
based on our previous knowledge of the target. When we expected to find the
target, we maintain our previous knowledge.But when our search fails, we need
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to update our knowledge of the targets and search continually until the target is
found. Therefore, it is plausible to consider a serial searching process as a series of
hypothesis-testing behaviors. This top-down searching often manifests as sequential
eye movements.

The frontal association areas (FAAs) are considered to be neural substrates for
the control of visual searching process because they are involved in controlling
actions in various contexts and monitoring behavioral outcomes [3–7]. FAAs are
also anatomically connected with higher-order motor areas [7, 8]. To investigate the
neural mechanisms underlying the knowledge-based searching process, we intro-
duced an oculomotor target pair search task, and studied how the FAA neurons are
involved in this task.

2 Methods

2.1 Behavioral Procedures

Three Japanese monkeys (Macaca fuscata) were trained to perform an oculomotor
target pair search task (Fig. 1). The monkeys were required to select two stimuli
from four identical visual stimuli (white dots: top left [TL], bottom left [BL], top
right [TR], bottom right [BR]) by making a saccade to, and fixating on, each of
the two stimuli, alternately. We defined four pairs, each consisting of two adjacent
stimuli as follows: pair L (TL and BL), pair R (TR and BR), pair T (TR and TL),
and pair B (BR and BL). The trial event sequences are illustrated in Fig.1a. Each
trial began with the appearance of a central fixation point on the display. When the
monkey had fixated on this fixation point, it turned red. After 500 ms, it turned
green. After a further 500 ms of fixation, four stimuli were presented at 8.5ı of
visual angle from the fixation point. Following a further 500 ms after the four stimuli
presentation, the fixation point disappeared, serving as a go signal for the monkey
to make a saccade to one of the four stimuli. The monkey had to maintain fixation
on the stimulus for 1,000 ms and at this point the stimulus turned green if it was
valid (correct trial). In the correct trials, 500 ms after the stimulus turned green, the
four stimuli disappeared, and a reward was given. Following a saccade to an invalid
stimulus (error trial), the four stimuli were turned off and the trial was aborted, and
the same trial repeated. Once a trial was completed, the cycle was repeated and
the monkey had to fixate on the central fixation point again. After predetermined
number of correct trials (6 or 10 trials), the valid pair was switched to a new pair
without explicit instruction in a pseudorandom manner (Fig. 1b). Eye positions and
movements were monitored with an infrared corneal reflection monitoring system.
We recorded neuronal activities from the bilateral frontal association areas from
two monkeys. We used conventional electrophysiological techniques using single
electrodes and multiple electrode arrays.
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Fig. 1 (a) Temporal sequence of events in the task. (b) A series of behaviors across a shift from
one pair (pair B) to another (pair R)

2.2 Data Analysis

To examine changes in firing rates (FR) associated with task events, we defined
seven behavioral periods related to the events (central fixation point on, fixation
point color change, stimuli on, Go signal, target point color change, stimuli off,
reward), and calculated firing rates for 500 ms after each event. To determine
the selectivity for the behavioral periods, we carried out one-way analysis of
variance (ANOVA) using factors of the behavioral periods, followed by post-hoc
pairwise comparison using the Bonferroni test. If the neural activities in at least one
behavioral period were significantly different from other intervals (p< 0.01), we
classified the neurons as task-related.

To assess how the parameters were related to neuronal activity, we performed
multiple linear regression analysis using the following equations:

FR D ˛0 C ˛1 � .current pair/ C ˛2 � .previous pair/

FR D ˇ0 C ˇ1 � .current target/ C ˇ2 � .previous target/

FR is the firing rate calculated from the number of spikes within a 100 ms time
frame, ’0 and “0 are the intercepts, ’1 and “1 are the coefficients for the current
pair or targets, and ’2 and “2 are the coefficients for the previous pair or targets. The
categorical factors for the targets were TL, TR, BL, and BR, and the factors for pairs
were T, B, L, and R. The F values derived from the regression coefficients were
normalized by dividing them by the F values of the significance level (p< 0.01).
If the normalized F value for pair or target of a neuron was significant during
consecutive two bins, the neuron was regarded as pair- or target-related.
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To quantify the selectivity for the current or previous pair and targets, we
calculated the selectivity index of FAAs. The Pair index (PI) was defined as
(Pc – Pp)/(PcC Pp), where Pc and Pp were the normalized F values for the
current and previous pairs derived from regression analysis using the first formula,
respectively. The Target index (TI) was defined as (Tc – Tp)/(TcCTp), where Tc
and Tp were the normalized F values for the current and previous targets derived
from regression analysis using the second formula, respectively. F values were
calculated using the corresponding bin-by-bin data using 100 ms time windows,
and the mean indices were calculated using the overall average of each trial (Fig. 4).

3 Results

3.1 Behavioral Analysis

The two monkeys performed the oculomotor target pair search task with success
rates of more than 90% after two valid targets were found. (Monkey G: 95%,
Monkey K: 91%.) The two monkeys showed a similar series of eye movements after
a valid pair was shifted (Fig. 1b). The oculomotor search patterns were classified
into three types and time courses were plotted (Fig. 2). When the monkey made
saccades alternately to a previous pair of targets in consecutive trials, we classified
the movements as a “previous pair” pattern. When the monkey made saccades
alternately to the current pair of targets, we defined the movements as a “current
pair” pattern. The remaining search patterns were classified as “other” patterns. In
the first trial after a valid pair was shifted, the monkey tried to search the previous
pair of targets, and received an error signal. In the second trial, the monkey often

Fig. 2 Oculomotor search
pattern. After a pair shift, the
monkey changed the search
pattern in order to search a
new valid pair and found it
within four trials
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made a saccade to the target diagonal to the target chosen in the first trial in order
to search a new valid target. In the third trial, the monkey often tried to search the
adjacent target, and half of the targets were included in the current pair. Within four
trials after the pair was shifted, the monkey usually found the current valid pair of
targets. This behavioral analysis suggests that the monkeys were able to efficiently
update their knowledge about valid pairs of targets based on the consequences of
actions.

3.2 Neuronal Analysis

We obtained 504 neurons from the two monkeys. Among 254 task-related neurons,
we analyzed how the neuronal activities reflected the current pair and targets.
The regression analysis revealed that 101 neurons were pair-related, 54 neurons
were target-related, and 75 neurons were both pair- and target-related. Among the
task-related neurons, an illustrative example is shown in Fig. 3a, where a neuron
exhibited activity preferentially for the saccades to targets belonging to pair B. The
neuron showed sustained activity after the saccade to the target BR and preceding
the saccadic eye movement to the target BL. For the remaining pair, this neuron
showed weak activity for pair L and pair T and moderate activity for pair R, and
these were termed non-preferred pairs.

We analyzed whether the previous information about the pair and targets after
a valid pair was shifted. Figure 3b shows the changed in pair-selective activity
change after the valid pair was shifted from the preferred pair B to the non-preferred
pair R. In the first trial, the monkey made a saccade to BR and the neuron showed
distinct activity after the stimuli was turned off. Interestingly, in the second trial,
the monkey made a saccade to the target diagonal to the previous target, and the
neuron showed distinct activity again preceding the saccade to target TL although
this target belonged to the non-preferred pair. This suggests that the information of
the previous pair (pair B) and target (target BL) was maintained even after the pair
had changed.

To examine quantitatively how the previous and current information were
represented in the frontal association areas, we calculated the PI and TI (Fig. 4).
In the first and second trials, both PI and TI were both negative, indicating that the
neuron reflected the knowledge of the previous pair and targets more than the current
one. Interestingly, in the second trial, the neuronal activity and selecting behavior
were often dissociated. However, the PI and TI turned positive in later trials (trials
3–6), indicating that the neuronal activity reflects knowledge about the current pair
and targets. These results demonstrate that the neural representation shows a gradual
shift from the previous to current knowledge about the valid pair and target.
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Fig. 3 (a) An example of the neurons with selectivity of pair and target. (b) The activity changes
of the neuron before and after the shift of target-pair
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4 Discussions

We found that the monkeys were able to search valid pairs of targets based on
the consequences of their actions in the oculomotor target pair search task. The
FAA neurons represented the information about the previous and current pair in the
course of the task. Moreover, after a pair was shifted, the neural representation of
the knowledge about the task condition changed dynamically from the previous to
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the current. These results were consistent with the view that the FAAs are involved
in the higher-order control of actions [9–11].

Based on our findings, we interpreted the function of the FAAs from the
viewpoint of hypothesis-testing behavior (Fig. 5). We assumed FAA neurons hold
a subjective possibility of the current hypothesis relating to the current valid pair.
Immediately after a valid pair was shifted, the FAAs still maintained the subjective
possibility of the previous hypothesis. However, when the monkey received an
error signal in the first trial, the subjective possibility of the previous hypothesis
decreased. At the same time, possibilities of various other hypotheses transiently
increased (Fig. 5). After a couple of trials of active searches, the subjective
probability of a new hypothesis reached the level of acceptance, and the previous
hypothesis was replaced by the new hypothesis. Thus, the FAAs are involved in
the knowledge-based searching process by dynamically updating the subjective
probability of the current status of knowledge.
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Simple Dynamical Models to Understand
the Mechanisms of Drug Addiction

Takashi Tateno

Abstract Drug addiction is a chronically relapsing disorder characterized by a
compulsion to seek and take a drug despite harmful consequences. We have
developed a model to examine the molecular, neuropharmacological, and neuro-
circuitry changes that meditate the transition from controlled drug use to the loss
of behavioral control over drug seeking and taking. The neurotransmitter dopamine
(DA) is thought to play a central role in drug addiction. The mesolimbic DA system
provides the neural basis of the rewarding effects of certain drugs. In addition,
an opponent process or allostasis contributes to the persistence of drug addiction.
Here, we propose a model of drug addiction consisting of an opponent process, DA-
gated learning, and an action selection module. The results indicate that interplay
between DA-gated learning and the opponent process plays a significant role in the
development of addictive behaviors.

Keywords Action selection modeling • Dopamine • Opponent process •
Reinforcement learning

1 Introduction

Drug addiction is a chronically relapsing disorder characterized by a compulsion to
seek and take a drug despite harmful consequences. Understanding drug addiction
requires evaluation of the dynamics of molecular, neuropharmacological, and neuro-
circuitry changes that meditate the transition from controlled drug use to the loss of
behavioral control over drug seeking and taking. DA-gated learning and an opponent
process may play significant roles in the development of addictive behaviors [1].
DA-dependent reinforcement learning, however, does not always account for the
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persistence of addictive behaviors [2], whereas the opponent process theory does
not provide a computational mechanism for how addiction is acquired [3]. Hedonic,
positive affective, or negative affective emotional states were hypothesized to be
modulated automatically by the central nervous system with mechanisms that
reduce the intensity of the emotional state. Counteradaptation hypotheses have long
been proposed to explain tolerance and withdrawal and the motivational changes
associated with the transition to addiction [1]. Counteradaptive processes such
as the opponent process that are part of the normal homeostatic limitation of
reward function are hypothesized to fail to return to the normal homeostatic range
and thus produce the reward deficits that are prominent in addiction. Moreover,
although models of each process have been individually proposed, few studies have
integrated the two concepts; reinforcement learning and opponent processes [4]. In
this paper, we propose a relatively simple computational model incorporating both
processes. The model of action selection includes effects of various receptors—
e.g., nicotinic acetylcholine receptors (nAChRs)—on a dopaminergic neuronal
population and learning. In particular, we have focused on slow adaptation in the
opponent process as addictive behaviors are acquired. The results provide insights
into the mechanisms that drive the development of addiction.

2 Methods

2.1 Allostasis

To simulate the opponent process of activity in a dopaminergic neuronal population,
we developed the model shown in Fig. 1A. Although our approach was based
on a modeling concept proposed by Gutkin et al. [3] and has three similar
components—namely, the acute response, upregulation, and adaptation—many of
the mathematical details are different. In particular, a long-term adaptation process
was incorporated into the model as the third process (Fig. 1Bd), an approach that
was not directly considered in the previous model [4]. The adaptation process plays
a key role in the switch between persistence and amelioration of addictive behaviors
in the model (see “Results”).

2.2 Action Selection

We used the simple network shown in Fig. 2 as an action selection model. The model
is based on the example proposed by Gurney et al. [5]. The principle substructures
of the basal ganglia (BG) include the striatum (STR), the subthalamic nucleus
(STN), the internal and external globus pallidus (GPi and GPe), and the substantia
nigra pars reticulata and compacta (SNr and SNc). In addition, the model includes
the cortex and thalamus, which have bidirectional and autoregressive connections,
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Fig. 1 Allostasis model. (A)
Block diagram of the three
components with different
time scales. (B) Drug
injection (a, black rectangles)
produced characteristic
responses in the output from
the total system (b), the
upregulation process (c), and
the adaptation process (d)

Fig. 2 A simple network model for action selection. Two identical networks (Networks 1 and 2)
are interconnected by projections from the STN to the GPi/SNr
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respectively (Fig. 2). The components of Networks 1 and 2 are all represented
by single state variables and the evolution of the variables over time is described
using five differential equations (see “Appendix”). The main projection from the
BG to the thalamus is inhibitory (filled circles in Fig. 2), whereas the connections
from the cortex to the BG (STR and STN) are excitatory projections (arrows).
When performing the action selection (i.e., taking drugs or not), two symmetrical
substructures are interconnected from one side of the STN to the other side of
the GPi/SNr. We hypothesized that the thalamocortical and corticostriatal loops
cause recurring excitation in the behavioral choice circuit. Moreover, the resetting
following each trial may reflect rapid clearing of the motor/cognitive command
representation from the cortical working memory store. When each component
(x1

(i), iD 1, 2) corresponding to the cortex converged to a fixed point with a high
value (e.g., x1

(i)D ai; iD 1,2) from a randomly selected set of initial parameters,
the state of the cortex is defined as active; otherwise, the state is defined as passive
(e.g., x1

(i)D pi; pi< ai; iD 1,2). Furthermore, if (x1
(1), x1

(2))D (a1, p2), the selected
action is taking drugs, whereas, otherwise, not taking drugs is selected.

2.3 DA Signaling and DA-Gated Learning

In this study, a simple first-order model was used to represent DA population
activity. Neuronal activity in the substructure is described by the firing rate xDA

for [0, 1].

dxDA

dt
D ��DAxDA C fDA

�X
i
Ai .t/; R.t/



(1)

where fDA is a sigmoid input–output function that is described by the following
relationship:

fDA

�X
i
Ai .t/; R.t/



D 0:5 �

�
1C tanh

�
R.t/

X
i
Ai .t/ � �DA




(2)

Here, Ai(t) is the effect of an action i on the dopaminergic signal and the selection
of�1 (aversive), 0 (no selection), orC1 (appetitive). R(t) reflects receptor activation
in response to a drug with a gain modulatory effect on xDA. Additionally, �DA is
the threshold level for the dopaminergic neurons. Plasticity is modeled as changes
in the synaptic weights (w1 and w2) from the cortex to the STR. Therefore, for
learning during action selection, the dynamics of the excitatory weights is given by
the following equations for iD 1, 2 and j¤ i:

dwi
dt
D ��w

�
wi � w.i/0




CK .< xDA >;< R >/H .xDA � �DA/U
�ˇ̌
ˇx.i/1 � x.i/e

ˇ̌
ˇ < �.i/C




�K .< xDA >;< R >/H .xDA � �DA/U
�ˇ̌
ˇx.j /1 � x.j /e

ˇ̌
ˇ < �.j /C



(3)
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In Eq. (3), �w and w0 are both constants and the factor K is a smooth increasing
function of short-period averages of the phasic dopaminergic activity xDA and
activation R of certain receptors (e.g., nAChRs). xe

(j) (jD 1,2) represents equilibrium
points of x1

(j), and �DA and �C
(j) (jD 1, 2) are the threshold for dopaminergic activity

and the results of action selection, respectively. H(x) is 0 when x is negative and
is equal to the x otherwise. U(x< y) is 1 when x< y is satisfied and is equal to
0 otherwise. The weight wi increases when xDA is above the threshold and the
conditions for x1

(i) are satisfied. In contrast, the weight wi decreased when both xDA

and x1
(i) are not satisfied. Therefore, one of the weights increases while the other

decreases, if both x1
(i) and xDA are over the threshold and the condition is detected

in one of the networks. No phasic DA activity causes the weights decrease to the
initial level (w0).

In the following simulation, two conditions were considered: chronic use or self-
administration of a drug in the presence and absence of the opponent process.
For chronic drug use, the model ran continuously and action selection was not
performed, while drug was applied externally. In contrast, for self-administration
of a drug, a single trial consisted of 100�200 self-administration sessions with
action selection. To calculate response probabilities, we averaged 200 trials for
initial conditions distributed normally around XD (x1

(1), x1
(2))D (0.95, 0.95) with

standard deviations (¢1
(1), ¢1

(2))D (0.1, 0.1) in the cortical blocks of the network
(for more details, see “Results”). After one session, the action selection module was
reset to the initial conditions.

3 Results

3.1 Allostasis Model

In the allostasis model, we simulated long-lasting drug effects in dopaminergic
neurons (Fig. 1B). Each time the drug was delivered (Fig. 1Ba), a fast transient
decayed to a sustained level. After drug delivery stopped, the DA response
decreased, producing a putative signature of withdrawal. The mean response level
for each drug administration shifted downward owing to negative feedback from the
adaptation process.

3.2 Action Selection Model

During action selection, behavioral choices derived from the network result from
symmetry breaking (Fig. 3), and neural activity reflecting one action plan wins over
the others because of strong competitive interactions. In the model, fixed points
correspond to single action selection. Before analyzing the entire network model,
we examined bifurcation of individual parameters (w1 or w2) in the individual
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Fig. 3 Attraction domains of the action selection model for different values of w1 and w2. For
initial points (x1

(1), x1
(2)) located in each region, state points converged to the same fixed points

(white circles). (A), (w1, w2)D (0.505, 0.505); (B), (w1, w2)D (0.577, 0.433)

subnetworks (Network 1 or 2). The subsystem had only one stable fixed point
before the saddle-node bifurcation point at w0

(i)D 0.505 (iD 1,2). Thereafter, each
subsystem has two stable fixed points (x1

(i)D ai, iD 1,2) and one unstable one
(x1

(i)D pi, pi< ai, iD 1,2). After combining the two subnetworks, the maximum
number of stable fixed points increased from two to four. For the same two
substructures, however, the number decreased to three because the symmetrical
weights changed in opposite directions (Eq. 3). When the cortical state was
represented by XD (x1

(1), x1
(2)), these fixed points were denoted by X1

*, X2
*, and

X3
*. For the initial condition X0D (x1

(1)(tD 0) and x1
(2)(tD 0)) at time tD 0, the

attraction domains for the fixed points X1
*, X2

*, and X3
* are respectively named

Regions 1, 2 and 3. The attraction domains for two sets of parameter values—wi

(iD 1,2)—are illustrated in Fig. 3.

3.3 The Combined Model

First, for each trial under the control conditions (no drug), the action selection
network has three steady states (XDXi

*, iD 1,2,3), which correspond to one of
three decisions: taking the drug (XDX1

*), not taking the drug (X2
*), and no

decision (X3
*). The probabilities of taking or not taking the drug were nearly equal

(45.7˙ 4.5% vs. 46.3˙ 5.1% for nD 100 trials). Under chronic drug administra-
tion, the average level of dopaminergic neural activity (xDA) increased to C1 and
saturated after 50 sessions (Fig. 4Ab). Similarly, the weight w1 from the cortex to
the striatum in Network 1 saturated after 50 sessions (w1� 1.1). After a period of
drug administration, xDA gradually decreased to a consistent level. Second, for self-
administration of the drug with no opponent process, the selected action rapidly
moved to taking the drug (Fig. 4Bb). The initial period of chronic administration (5,
10, 20, and 50 sessions) had little effect on changes in decision making, although the
slope of the initial phase was different. Third, under self-administration conditions
with the opponent process, the adaptation time parameters affected the persistence
of drug seeking. As the adaptation parameter decreased, action selection fluctuated
and the average level decreased.
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Fig. 4 Simulated
dopaminergic activity and
self-administration of a drug.
(A) Dopaminergic activity
was simulated for four
different periods (5, 20, 50, or
80 sessions) of chronic drug
administration. (B) For the
self-administration condition
with no opponent process, the
probability of taking the drug
in a session vs. the number of
sessions is shown for four
initial periods (5, 20, 50, or
80 sessions) of external drug
application. (C) The plots are
as described for B, but with a
different opponent adaptation
time constant (� D 5, 20, 40,
or 200 sessions)
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4 Discussion

To examine the mechanisms of drug addiction, we created a computational model
of drug-induced neuroadaptation and DA-gated learning for striatocortical action
selection. The model can mimic short-term drug effects and accelerate behavioral
motor activation, such that the preferentially selected actions reflect addiction
(Fig. 4B). In addition, the model showed that interplay between action selection
and the slow opponent process cement drug-related behaviors despite reduced DA
responses. In this model, the decay rate of the probability of taking the drug was
slower than that of the dopaminergic activity (Fig. 4C). After learning and a shift in
the attraction domain to the case shown in Fig. 3B, self-administration of the drug
continued and became difficult to extinction. The model, however, is based on a
number of assumptions about the effects on single cells and larger networks. Thus,
our approach requires additional testing and experimental data for validation.

Acknowledgments This work was supported by Funding Program for Next Generation World-
Leading Researchers (NEXT program), PRESTO, JST, and a Grant-in-Aid for Scientific Research
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A.1 Appendix

A.1.1 Introduction

To construct a drug addiction model, we propose four simple parts as the compo-
nents: (1) an opponent-process (allostasis) model, (2) an action selection model,
(3) a DA signaling model, and (4) a population activity model of DA neurons. The
four models are all described by ordinary differential equations and the details of
the opponent process and action selection models are written in the following two
sections.

A.1.2 Opponent Process

For the opponent-process model, three state variables (x1, x2, x3) of the fast, slow,
and very slow processes are respectively described by the following equations:

�1
dx1

dt
D �ˇ1.x2/x1 C ˛1.dt ; x3/.1� x1/ (1a)

�2
dx2

dt
D �ˇ2x2 C ˛2.dt ; x1/.1� x2/ (1b)

�3
dx3

dt
D �ˇ3x3 C dt (1c)
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Table A.1 Opponent-
process model parameters

Parameters Values

� 1 0.2
� 2 10
� 3 5, 20, 40, or 100
ˇ2 2.0
ˇ3 0.1
a1 1.7
a2 2.0
b1 1.3
b2 0.9
�1 1.2
�2 0.9
c1 2.0
e1 6.0
�1 0.35

where � i (iD 1, 2, 3) are time constant, ˇi (iD 2, 3) are decay constant, and dt is
time-varying drug input to the system. The functions ˛i (iD 1, 2,) and ˇ1 in Eqs.
(1a-c) are all sigmoid functions and written by

˛i .d; x/ D ai

2
Œ1C tanh .bi .d C x � �i //� (1d)

and

ˇ1.x/ D c1

2
Œ1C tanh .e1.x � �1//� (1e)

The parameter �3 determines adaptation of the very slow process. All parameters
are listed in Table A.1.

A.1.3 Action Selection

For the action selection model, two substructures are described by two identical
sets of five differential equations. For the five state variables (x1, : : : , x5) corre-
sponding to activity levels of the five brain regions in Network 1, the equations are
described as

dx1

dt
D ��1x1 C a11x1 C a41f1.x4/ (2a)

dx2

dt
D ��2x2 C w1f2.x1/ (2b)
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Table A.2 Action-selection
model parameters

Parameters Values

�1 1.0
�2 1.0
�3 5.0
�4 1.0
a11 0.1
a13 2.0
a14 1.0
a23 1.0
a34 2.0
a41 1.0
a44 0.1
b1 0.2
b2 0.2
w1 0.505 (initial value)
w2 0.505 (initial value)
	 i (iD 1, : : : ,6) 0.1

dx3

dt
D ��3x3 C a13f3.x1/� a23f4.x2/C b2g.y5/ (2c)

dx4

dt
D ��4x4 C a44x4 C a14f5.x1/ � a34f6.x3/ (2d)

dx5

dt
D dx1

dt
(2e)

where aij (i, jD 1, : : : ,4), wi (iD 1, 2), and bi (iD 1, 2) are all constant values and
the values are listed in Table A.2.

The functions fi(x) and g(x) are sigmoid functions and are written by

fi .x/ D 0:5.tanh.2	i .x � 0:6//C 1/ (2f)

g.x/ D 0:5.tanh.x � 0:6/C 1/ (2g)

The variable x5 is different from x1 only in an initial value. Similarly, For
Network 2, the equations are described as

dy1

dt
D ��1y1 C a11y1 C a41f1.y4/ (3a)

dy2

dt
D ��2y2 C w2f2.y1/ (3b)
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dy3

dt
D ��3y3 C a13f3.y1/� a23f4.y2/C b1g.x5/ (3c)

dy4

dt
D ��4y4 C a44y4 C a14f5.y1/ � a34f6.y3/ (3d)

dy5

dt
D dy1

dt
(3e)

When performing the action selection (i.e., taking drugs or not), two symmetrical
substructures are interconnected from one side of the STN to the other side of
the GPi/SNr. We hypothesized that the thalamocortical and corticostriatal loops
cause recurring excitation in the behavioral choice circuit. Moreover, the resetting
following each trial may reflect rapid clearing of the motor/cognitive command
representation from the cortical working memory store. When each component
(x1

(i), iD 1, 2) corresponding to the cortex converged to a fixed point with a high
value (e.g., x1

(i)D ai; iD 1,2) from a randomly selected set of initial parameters, the
state of the cortex is defined as active; otherwise, the state is defined as passive (e.g.,
x1

(i)D pi; pi< ai; iD 1,2). Furthermore, if (x1
(1), x1

(2))D (a1, p2), the selected action
is taking drugs, whereas, otherwise, not taking drugs is selected.

To calculate response probabilities, we averaged 200 trials for initial conditions
distributed normally around XD (x1

(1), x1
(2))D (0.95, 0.95) with standard deviations

(¢1
(1), ¢1

(2))D (0.1, 0.1) in the cortical blocks of the network (for more details, see
“Results”). After one session, the action selection module was reset to the initial
conditions.
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Toward an Animal Model of Spatial
Hemineglect: Preliminary Investigation

Masatoshi Yoshida

Abstract In this paper, I summarized current findings about brain regions responsi-
ble for spatial hemineglect in human patients and about studies that intend to induce
spatial hemineglect in macaque monkeys. To establish an animal model of spatial
hemineglect, the fibers that connect the posterior parietal cortex and the prefrontal
cortex was transected in one macaque monkey. A histological analysis showed that
the site of the lesion was as intended, centered on the second branch of the superior
longitudinal fasciculus (SLFII). There was no damage in the internal capsule, the
damage of which will induce motor deficits. By combining with computational
models, I expect that an animal model of spatial hemineglect will be established
in the future experiments.

1 Introduction

Spatial hemineglect is a cognitive deficit in which the patients have difficulty in
responding to the space contralateral to the brain damage and is caused mainly by
damage in the right cerebral cortex [1].

Growing evidence suggests that spatial hemineglect is a deficit in the brain
network including parietal and frontal cortex [2] (Fig. 1). For example, analysis of
the hemineglect patients without hemianopia indicates that the center of the damage
was the white matter beneath the brain area such as temporoparietal junction (TPJ)
and the superior temporal gurus [3]. Direct electrical microstimulation of the SLFII
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Fig. 1 Neural network that is
proposed to be involved in
spatial hemineglect in human.
FEF, frontal eye field; IPS,
intraparietal sulcus; VFC,
ventral frontal cortex; TPJ,
temporoparietal junction;
SLFII, the second branch of
the superior longitudinal
fasciculus

Fig. 2 Target lesion site in
the brain of a macaque
monkey. Left, lateral view of
the right brain. Right, coronal
view of the brain. Grey
portion: the second branch of
the superior longitudinal
fasciculus (SLFII)

fibers of the patients during awake craniotomy induces similar symptoms to those of
spatial hemineglect [4]. A functional MRI study revealed that disconnection of FEF
and IPS was associated with lowered functional connectivity of the ventral frontal
cortex (VFC) and the temporoparietal junction (TPJ) (Fig. 1) [5].

Despite of clinical significance, an animal model of spatial hemineglect is not
established yet. An animal model of hemineglect has to satisfy the following
behavioral criteria. (1) Sustained deficits in localizing or detecting sensory stimuli
have to be observed. (2) The deficit cannot be simply explained by sensory loss.
(3) The deficit cannot be simply explained by motor deficits. Here I concentrate on
studies using macaque monkeys, which have similar visual systems with those of
human. Ablation or pharmacological inactivation of the posterior parietal cortex or
the prefrontal cortex alone in macaque monkeys is not sufficient to cause behavior
similar to spatial hemineglect [6, 7]. Combined ablation of the posterior parietal
cortex or the prefrontal cortex leads to a deficit in visually guided saccades but the
deficit recovers within 1 week [6]. One exception is a study published in 15 years
ago, using monkeys with transection of the SLFII, in which showed sustained
deficits in a memory-based symbol search task [8]. However, the study did not
describe details such as the time course of the deficit and did not record eye and head
movements, which is necessary to establish an animal model of spatial hemineglect.

As a first step of an ongoing project to establish an animal model of spatial
hemineglect, I made a lesion in a monkey’s brain to disconnect the prefrontal cortex
and the posterior parietal cortex (Fig. 2).
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2 Methods

All experimental procedures were performed in accordance with the National
Institutes of Health Guidelines for the Care and Use of Laboratory Animals and
approved by the Committee for Animal Experiment at National Institute of Natural
Sciences.

Surgery. Under anesthesia, a craniotomy was made on the right parietal cortex
in one Japanese monkey (Macaca fuscata). The dura was flapped to expose the
parietal cortex (Fig. 3). A part of the right inferior parietal lobule was removed by
aspiration with a small-gauge metal suction tube [9–12] to expose the white matter
at the fundus of the intraparietal sulcus (IPS). The white matter was sectioned by
aspiration, along the line of the IPS and towards the lateral ventricle, until the lateral
ventricle appeared [8] (Fig. 4).

Fig. 3 Surgery. Before the
lesion. CS, central sulcus;
IPS, intraparietal sulcus; LF,
lateral fissure; LS, lunate
sulcus. Orientation: top,
medial; right, anterior

Fig. 4 Surgery. After the
lesion. See Fig. 3 for
abbreviations
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Histology. After the surgery, the animal was killed with Nembutal (100 mg/kg) and
perfused with 4% paraformaldehyde via the arterial line. The brain was cut into
coronal slices (50 um thickness) and was processed for Nissl stain to identify the
site of the lesion.

3 Results

The surgery: The surgery was completed without fatal bleeding or other problems
(Fig. 4). This is important to note because numerous blood vessels run around the
lesion site, including the veins on the ventral lip of the IPS and the branches of the
middle cerebral artery around the lateral fissure (Fig. 3), the damage of which causes
spatial hemineglect in human patients after stroke.

The site of the lesion: The lesion was centered on the white matter between the
lateral ventricle and the fundus of the IPS (Fig. 5). Anatomically the fibers damaged
by the lesion are estimated to be the superior longitudinal fasciculus (SLF II), which
connects the prefrontal cortex and the posterior parietal cortex. On the other hand,
neighboring brain structures were kept intact. For example, the internal capsule,
which contains the fibers projecting from the primary motor cortex to the spinal
cord and thus is indispensable for limb and body movements, was undamaged.

Fig. 5 Histological sections of the lesioned brain. CS, central sulcus; IPS, intraparietal sulcus; LF,
lateral fissure; LV, lateral ventricle
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4 Discussions

In this study, I established the method of making lesioned monkeys to test for
spatial hemineglect. What kind of behavioral results will be expected by the lesion?
Because both the early visual cortex and the internal capsule are spared, visual
deficits and motor deficits will be less likely to occur, which is the behavioral criteria
(2) and (3) in Introduction. According to the previous report [8], the lesion is likely
to induce visual neglect (criteria 1). The question is whether the deficits will be
transient or sustained and visual or multimodal. By combining with a computational
model for bottom-up attention and free-viewing experiments, which proved to be
effective for evaluating attention in monkeys with blindsight [13], I expect that an
animal model of spatial hemineglect will be established by the future experiments.
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Prestimulus Neural Oscillations Contribute
to Recollection and Familiarity

Florence Kleberg, Keiichi Kitajo, Masahiro Kawasaki, and Yoko Yamaguchi

Abstract Humans may experience qualitatively different memory retrieval when
recognizing a previously encountered stimulus, such as recollection and familiarity.
We present evidence for differences in theta and alpha oscillation amplitude during
encoding and during the preparatory period before encoding of the later recognized
stimulus. Additionally, fronto-posterior phase locking in theta frequency was
increased right before encoding recollection. We suggest that oscillatory activity
and coordination during the prestimulus period may already influence the qualitative
nature of stimulus encoding in memory.

F. Kleberg (�)
RIKEN Brain Science Institute (BSI), Saitama, Japan

Department of Systems Science, Graduate School of Engineering, University of Tokyo,
Tokyo, Japan
e-mail: kleberg@brain.riken.jp

K. Kitajo
RIKEN Brain Science Institute (BSI), Saitama, Japan

PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan

Rhythm-based Brain Computation Unit, RIKEN BSI-TOYOTA Collaboration Center,
Saitama, Japan

M. Kawasaki
RIKEN Brain Science Institute (BSI), Saitama, Japan

Rhythm-based Brain Computation Unit, RIKEN BSI-TOYOTA Collaboration Center,
Saitama, Japan

Y. Yamaguchi
Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute,
Wako City, Japan

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (III),
DOI 10.1007/978-94-007-4792-0 95,
© Springer ScienceCBusiness Media Dordrecht 2013

717



718 F. Kleberg et al.

1 Introduction

When judging whether an item has been encountered before, one may experience
recollecting the episodic context in which it was first encountered, or one may
simply know that it has been encountered before, but nothing about when or where.
These phenomena are termed recollection and familiarity, respectively [18]. There
is mounting evidence that these subjective experiences may result from two distinct
retrieval mechanisms in human recognition memory. The differences are already
apparent in psychophysical paradigms. For instance, if subjects are instructed
to make speeded responses, recollection at retrieval is significantly diminished,
while familiarity is spared [11]. Retrieval by recollection does seem to include
associative memory, whereas retrieval by familiarity does not [33]. Additionally,
BOLD responses in fMRI studies have shown that medial temporal lobe and
prefrontal areas are engaged in encoding of familiarity and recollection, respectively
[14], and within the MTL, additional distinctions have been shown [4, 6], as well as
in the parietal cortex [34]. However, some studies show that both retrieval processes
are at least partly supported by the same structures [10, 15].

Both recollection and familiarity are associated with different event-related
potential (ERP) responses during memory encoding and retrieval [8, 30]. A recent
ERP study additionally suggests that parietal areas may be specifically involved in
signaling the subjective memory experience [1].

Although numerous behavioural, fMRI or ERP recording-based studies have
tackled the issue of familiarity and recollection, the operational role of oscillatory
synchrony remains largely uninvestigated. In EEG recordings, we have access to the
high temporal-resolution oscillations that are spatial averages of the brain’s internal
signals between neurons and between neuronal groups. Changes in amplitude of
these oscillations at a recording site indicate either local changes in neuronal
firing rates or changes in synchronization within a local area, while analyses
targeting ‘phase locking’ can show synchronization, or desynchronization, between
oscillations at distant recording sites. This ‘locking’ of oscillations may be important
for providing a window for communication between neuronal groups [32], as it
can be regulated at a shorter timescale than anatomical changes [9]. It has been
shown that neural synchrony plays a likely functional role in human cognition, for
instance in the binding of visual features in a coherent percept [27] and in working
memory maintenance [24]. Indeed, particular neural oscillatory states may support
various cognitive processes, even during the prestimulus period [19]. Importantly,
prestimulus brain states are shown to influence the evoked response after stimulus
onset [3]. In turn, evoked [23] and induced [28] oscillations in memory tasks are
associated with memory processing. In other words, from these findings we may
hypothesize that the state of prestimulus synchrony is decisive at least in part for
successful memory processing, and that this is achieved by prestimulus oscillations
preparing or increasing the oscillations operating during stimulus perception or
encoding.
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Theta oscillations (in the range of 4–7 Hz in humans) are believed to be
involved in executing task-driven goals by long-range synchronization [16]. In
human recognition memory, theta oscillations regulate memory by phase-lock on a
single neuron level [20, 22] and scalp-recorded theta is involved in working memory
load management [12, 24] and encoding of recognition memory tasks [20]. Alpha
oscillations (8–12 Hz) are also involved in working memory processes, possibly for
local memory module execution and retrieval [13, 25], although they may play a
role of inhibiting task-irrelevant processing [26].

We therefore investigated the role of alpha and theta oscillations in the pres-
timulus period and the stimulus presentation period, during the ‘encoding stage’
of a memory task, and in particular their relation to subsequent familiarity and
recollection.

2 Method

Recognition memory was assessed with a two-alternative forced-choice paradigm,
in which participants (nD 11) were required to encode and retrieve abstract
kaleidoscope-like images (Fig. 1; [30, 31]). We chose abstract images over word
stimuli because they can create new familiarity and recollection experiences, which
are not as much associated with a participant’s well established verbal memory as
word stimuli. Abstract images also allow us to assess the purely perceptual side of
recognition memory and limit interference from verbal rehearsal, such as in natural
scene recognition paradigms, which cannot readily be controlled in the paradigm.

Participants perceived a sequence of kaleidoscopic stimuli and fixation crosses
while fixating the centre of the screen. Each kaleidoscopic stimulus was presented
for 2,000 ms. A mental arithmetic task was performed after the sequence to
prevent bridging of encoding and retrieval by active rehearsal in working memory.

Fig. 1 Task design.
Participants fixated the screen
centre while viewing a
sequence of abstract images,
after which they performed a
brief distracter task. During
retrieval, participants selected
either of the images as being
‘old’, and reported on their
subjective recognition
experience [5]. The abstract
images were presented for
2,000 ms
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Participants retrieved item memory by selecting the previously seen image from
a pair of images shown in a sequence. Importantly, after each retrieval trial,
participants reported their subjective recognition experience by selecting one answer
out of “Remember”, “Know”, and “Don’t Know (guess)” where the first two choices
refer to recollection and familiarity, respectively [29]. The two-stimulus retrieval
stage was repeated ten times to account for all non-buffer stimuli from the encoding
phase. Participants performed 16 blocks with each ten trials, yielding a total of 160
trials per participant.

During encoding and retrieval of the images, scalp EEG was recorded with 60
cap-embedded electrode channels with a temporal resolution of 500 Hz. Artifacts
related to ocular movements were removed with Second Order Blind Identification
(SOBI) type Blind Source Separation, in MATLAB EEGLab [7]. Epochs that still
contained artifacts after the SOBI were manually rejected. The raw signal was
filtered with a FIR band-pass filter for 2-45 Hz. Frequency amplitude and frequency
phase were estimated with the Hilbert Transform method. The phase was then used
to compute the phase-locking value (or PLV: [17]) per frequency, timepoint and
channel (Eq. 1).

PLVf;t D N�1
ˇ̌
ˇ̌
ˇ

NX

nD1
ei.�1.fn;tn/��2.fn;tn//

ˇ̌
ˇ̌
ˇ

Eq. 1: The PLV value is a measure for the consistency of phase difference in
frequency f at any timepoint t for the channel pair 1 and 2, across N trials. If the
phase difference is similar across trials, the PLV approaches the value 1, however
if the phase difference is variable across trials, the PLV approaches 0.

We did not use the prestimulus period (1,000 ms) as a baseline to normalize
activity after image onset, as this period may contain important information about
how different brain states lead to variations in memory processing. If used as a base-
line for normalization, activity in the prestimulus period vanishes from our results.
Therefore, the results shown here do not represent event-related synchronization
(ERS). Instead, we normalized amplitude and PLV by computing a common mean
and standard deviation for “Remember” and “Know” trials put together.

To then find significant differences in z-values between the conditions of
familiarity and recollection, we performed a non-parametric permutation test [5]
with ’ D 0.05, and controlled for multiple comparisons with the False Discovery
Rate procedure [2].

3 Results

Behavioural results suggest that participants had above chance performance overall
(78.8%˙ 7, p< 0.05), as well as above chance performance on “Know” trials
(81.1%˙ 11, p< 0.05) and “Remember” trials (96.2%˙ 07, p< 0.025). Accuracy
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Fig. 2 Prestimulus differences in 2–12 Hz power at frontal channel FCz between Remember
and Know trials. The scalp graph shows the location of the channel in the scalp cap. Time-
frequency plots show the average z-values for Remember (top) and Know (bottom) encoding trials
at FCz from �1,000 ms prestimulus to 2,000 ms after stimulus onset, for frequencies 2–12 Hz.
The black rectangles delineate the increases in power for “Remember” compared to “Know” after
the permutation test. Because of multiple comparisons we cannot assume that all of these areas are
significantly different. Statistically significant points must however lie within these areas. The black
dots indicate the time of stimulus onset

on “Don’t Know” trials was not different from chance (59.6%˙ 09, p> 0.25).
These results suggest that participants could, on average, accurately encode and
retrieve the items in familiarity and recollection trials.

We then compared the “Remember” and “Know” trials during encoding with
stimuli that were later associated with a correct response at retrieval, to investigate
the subsequent memory effects. We found that the slow oscillation (3 Hz) and theta
(6 Hz) amplitude before stimulus onset was higher for subsequent “Remember”
stimuli than for subsequent “Know” stimuli, at the midfrontal channel FCz (Fig. 2,
permutation test result; Fig. 3, statistical significance). Another prestimulus increase
for Remember could be seen at occipital channel PO7, in 4 Hz (Fig. 4, permutation
test result; Fig. 5, statistical significance).

No significant decreases in power were found for Remember compared to Know
trials in the prestimulus period.
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Fig. 3 Prestimulus
differences in 3 and 6 Hz
power at frontal channel FCz
between Remember and
Know trials. The scalp graph
shows the location of the
channel in the scalp cap.
Time-frequency plots show
the average z-values for
Remember (top) and Know
(bottom) encoding trials at
FCz from �1,000 ms
prestimulus to 2,000 ms after
stimulus onset, for
frequencies 2–12 Hz. The
black rectangles delineate the
statistically significant
increase in power for
“Remember” compared to
“Know”, after correcting for
multiple comparisons by
FDR. The black dots indicate
the time of stimulus onset

Fig. 4 Pre- and poststimulus
differences in 4 and 7–11 Hz
power at frontal channel FCz.
The scalp graph shows the
location of the channel in the
scalp cap. Time-frequency
plots show the average
z-values for Remember (top)
and Know (bottom) encoding
trials at PO7 from �1,000 ms
prestimulus to 2,000 ms after
stimulus onset, for
frequencies 2–12 Hz. The
black rectangles delineate the
increases in power for
“Remember” compared to
“Know” after the permutation
test. Because of multiple
comparisons we cannot
assume that all of these areas
are significantly different.
The black dots indicate the
time of stimulus onset
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Fig. 5 Pre- and poststimulus increases in theta and alpha range power at occipital channel PO7,
for “Remember” and “Know” trials. The scalp graph shows the location of the channel in the scalp
cap. Time-frequency plots show the average z-values for frequencies 2–12 Hz for Remember (top)
and Know (bottom) encoding trials at PO7 from �1,000 ms prestimulus to 2,000 ms after stimulus
onset. The black rectangles delineate the statistically significant increase in power for “Remember”
compared to “Know” trials, after correcting for multiple comparisons. At this channel, increases
for Remember are evident before stimulus onset in the 4 Hz range, and after stimulus onset in the
9 Hz range. The black dots indicate the time of stimulus onset

We performed a PLV analysis to investigate the synchronization in the 3–6 Hz
frequency range, and showed that there is significantly higher PLV for Remember
compared to Know trials in the 4 Hz range between channels FCz and PO7 (Fig. 6).
This effect appears approximately �550 ms before stimulus onset.

After stimulus onset, the Remember trials during encoding were characterized by
poststimulus increases in higher frequencies compared to the Know trials, notably
at occipital channel PO7 (Figs. 4 and 5), occipital channel PO8, and lateral-parietal
channel C3 in 7–8 Hz, respectively.

We investigated the PLV values between channels PO7, PO8 and C3 in the
7–11 Hz frequency range,, and found a significantly higher PLV for Remember
compared to Know trials between PO8 and C3 in 10 Hz around 300 ms after
stimulus onset, and a later increase again for Remember compared to Know between
C3 and PO7, in 9 Hz around 500 ms after stimulus onset (figures not shown).
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Fig. 6 Scalp distributions of average raw 4 Hz amplitude in �V, for Remember trials (top) and
know trials (bottom), with a significant difference in phase-locking between channels FCz and
PO7, in 4 Hz, occurring around �550 ms before stimulus onset. This significance is found after
correction by FDR. The difference indicates a higher PLV for Remember (black line) compared to
Know trials (dark gray line). Centres of increased raw amplitude can clearly be seen around the
two channel locations

4 Discussion

We showed that qualitatively different brain states in the prestimulus period and
the period during stimulus presentation are associated with subsequently different
subjective memory experiences. Importantly, we showed that alpha and theta range
oscillations in widespread cortical areas may support the encoding of an item
that is later recollected with context as opposed to an item that is later judged
familiar. Theta oscillations appear before stimulus onset and may be supporting
later increase in alpha, possibly for enhanced processing of the visual stimulus or
binding contextual elements into one episode.

Depending on the attentional state of the subject the network may be receptive
to encoding the episode in the moment, or it may be merely receptive to increased
localized processing for a single stimulus. These theta oscillations may be indicative
of this attentional state. It will be of great interest to next investigate (1) the
trial-predictive power of the current findings, (2) cross-frequency coupling between
theta and alpha, and (3) whether the fluctuating theta-state and its subsequent
metamemory type is under voluntary control.
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Contribution of the Cholinergic Innervation
to Early Memory Development in the Neonate
Para-Hippocampal System

Alexandre Pitti and Yasuo Kuniyoshi

Abstract Newborns present impressive developmental changes during the first
year in almost all domains marked by memory categorization and variability. We
propose that one important actor of this developmental shift is the gradual influence
of the cholinergic system in the cortico-hippocampal circuits. Based on neurolog-
ical observations and developmental studies, we model how the neuromodulator
acetylcholine could be gradually released in the hippocampal system from the fetal
period till the first year to support the detection of novel signals and the encoding
of memories. By doing so, we suggest that the cholinergic system realizes the
functional reorganization of the cortico-hippocampal system as a working memory
for novelty.

1 Introduction

Among the principal neuromodulators, acetylcholine (ACh) plays a particular role
during brain development for the acquisition of cognitive capabilities. During early
postnatal development, ACh regulates critical aspects of maturation and plasticity
of the neocortex, hippocampus and cerebellum for memory and learning [2–4]. For
instance, converging evidences attribute a developmental and cognitive role to ACh
that may involve changes to the hippocampal cholinergic system [5, 6], although
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the mechanism by which choline influences learning and memory remains unclear.
In this paper, we propose that ACh operates as a kind of “order parameter” for
memory development to reorganize functionally the cortico-hippocampal system
into a working memory for novelty.

The cholinergic system is composed of two chemical families with different
genes expressions that have high affinity either with nicotine or muscarine via
nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors
(mAChRs). Current researches in pharmacology focus their attention especially on
nAChRs because of its high sensitivity with nicotine which can exert neurotoxic
effects on development [7]. This is particularly detrimental because innervation of
nicotinic receptors nAChRs in the cerebral cortex and hippocampus is very early
and rapid as it falls within the first 6 months of life [1, 7, 8].

In contrast, the binding of muscarinic acetylcholine receptors mAChRs tends to
rise significantly after birth till the first year and particularly within the entorhinal
cortex, the gating pathway to hippocampus, to reach 80% density relative to the
childhood period [1, 8]. The role of mAChRs differs from nAChRs’ one but they
are both equally important since mAChRs regulate the maturing entorhinal system
to detect and to support the encoding of novel signals into the hippocampus [9].
Taken together, these findings suggest that understanding the innervation timeline
of the cholinergic system into the different brain regions, and particularly in the
hippocampal region, can provide us a better comprehension of the developmental
changes occurring during the first year.

From a cognitive viewpoint, the cholinergic system is known to regulate the
balance between memory storage and renewal depending on its concentration
level and the brain regions where it is released [10]. In the cerebral cortex, ACh
modulates the synaptic plasticity by enhancing long-term potentiation depending
on its concentrate rate [11]. In the hippocampal system, ACh acts as a working
memory for novel information [4,9]; high concentration level of ACh sets the circuit
dynamics for attention and encoding of new memory whereas low level of ACh
regulates the consolidation of older memories [12]. More precisely, mAChRs are
involved in the persistent firing of individual entorhinal neurons for the maintenance
of novel information [13–15] and nAChRs are involved in synaptic plasticity of the
hippocampal cells for learning memory patterns.

Interestingly, the period of cholinergic maturation in the hippocampal system
coincides with the period when infants enrich their motor repertoire with novel
actions [16], categorize novel objects into new classes [17, 18], shift from an
egocentric representation of space to an allocentric one [19] which are all fea-
tures attributed to hippocampal processing. Furthermore, this chronology of the
hippocampal changes agrees with Nelson’s proposal that the operative brain does
not come ‘online’ until the second half of the first year when the hippocampus is
fully functional [20].

We can hypothesize therefore that the cholinergic system plays the key role
to activate the learning capabilities of the hippocampal system rapidly (through
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a b
Developmental Scenario for Early Memory and Attention

Fig. 1 Structural and functional changes in the hippocampal system and its contribution for early
development of memory and attention. Graph (a) describes the evolution of the cholinergic levels
in the entorhinal cortex (EC) and in the hippocampus (CA3 and CA1) during the first year; adapted
from [1]. Figure (b) presents how the maturation of the cholinergic system would activate the
functioning of the hippocampal structure. During the period (i), ACh in EC is not active enough to
detect and support novel signals, HP works as an associative memory. When ACh is active during
the period (ii), entorhinal neurons can detect and sustain novel signals, while HP favorishes their
learning. HP works then as a discrete memory

fast nAChRs binding) while augmenting slowly the filtering capabilities of the
entorhinal system for novelty detection (through slow mAChRs binding), see Fig. 1.

The paper is organized as follows. In the first part we define the para-
hippocampal networks associated with the neuromodulatory mechanism of
acetylcholine. The good balance between the cholinergic rules controls the overall
stability and plasticity of the system; i.e., to maintain the hippocampal signals and/or
to sustain the novel ones coming from the entorhinal system. It follows that, without
ACh, the cortico-hippocampal system behaves as a classical associative memory
that extracts the statistical features from the inputs whereas the gradual activation
of ACh changes the cortico-hippocampal system into a self-organizing discrete map
that rewards the novel signals over the familiar patterns. The new system acquires
then the emerging functionalities of a working memory which can deal with novelty
by categorizing the novel patterns and by maintaining them active during encoding.
We suggest that this feature could support a mechanism for delayed-response
tasks to novel stimuli located in the hippocampus [9], complementary to those
located in the prefrontal cortex, also based on ACh [21]. Moreover, since
hippocampal theta waves have been observed during the Piagetian A-not-B error
experiment [22, 23] , which is a delayed-response task for novel stimuli that has
served also as a touchstone for many theories of cognitive development [24–26],
we propose to examine this experience in the light of the cholinergic activation in
this area.
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2 Neuromodulators and Neural Circuits

We describe in this section the models defined for the hippocampus and the entorhi-
nal cortex with their respective networks architecture and regulatory mechanisms.
The EC network consists of uncoupled, bistable neurons and feeds forward to the
HP network, which is fully recurrent and receives an oscillating current in the theta
band.

2.1 Stellate Cells of Entorhinal Neurons

In contrast with the most common types of neurons in the neo-cortex, the stellate
cells of entorhinal neurons possess some specific internal currents, cholinergic-
dependent, which permit them to sustain long-lasting bursting even if inputs fade
away [27]. Moreover, the entorhinal neurons possess very few recurrent connections
so that the entorhinal cortex can be modeled as a segregated network of isolated
neurons with no synaptic connections between them. According to Hasselmo, it is
the muscarinic cholinergic receptors that enable persistent spiking to continue after
the sample stimulus [4, 9]. We formalize them with the neuron model proposed
by Izhikevich [28] which is a resonator cell whose bursting frequency increases
depending on the input current I :

�
C v0 D k.v � vr /.v � vt /� uC I
u0 D ab.v � vr / � u

(1)

where I is the external input bound in the interval [0; 2,000�A], v represents the
membrane potential of the neuron and u represents a membrane recovery variable
(cf., [28, 29]); v0 and u0 their temporal derivate. The voltage threshold level vt is set
to �45mV and the resetting voltage level Vr to �60mV. We set also the constants
C D 2;000 and k D 0:75. The after-spike resetting is done with

if v � Cvpeak ; then

�
v c

u uC d: (2)

with vpeak D 30mV. The variables set fa; b; c; d g defines the neurons attributes
.aI b/ D .0:01I 15:0/ and .cI d/ D .�50I 200/.

2.2 Hippocampal Neurons

The hippocampal neurons are defined with the model proposed by Colliaux [30]
that realizes a up- and down-states where up-states are associated with firings and
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down-states with silences. Up- and down-states occur at each theta cycle – which
is the natural rhythm of the hippocampal neurons between 6 and 10 Hz – and the
up-state firings trigger in advance or in retard to it, before and after the peak.

The phasic (temporal) information from all the neurons represent then one
memory pattern. Theta oscillations are modelled by the two variables, S and �,
such that an oscillation component cos� produces the intrinsic oscillation of the
membrane potential S for which the phase � depends on its level of depolarization.
In a network of N units, the state of the cell i is defined by fSi ; �i g 2 < � Œ0; 2�Œ,
for .i 2 Œ1; N �/ and evolves according to the dynamics:

(
S 0
i D �Si C 1

N

PN
jD1 wij R.Sj /C 
 .�i /C Ii

�0
i D ! C .ˇ ��.Si // sin�i

(3)

with wij , the synaptic weight between cells i and j. R.Sj / is the spike density
of the cell j and Ii represents the driving stimulus which enables to selectively
activate a cell. In the second equation, ! and ˇ are respectively the frequency and
the stabilization coefficient of the internal oscillation.

The spike density is defined by a sigmoid function:

R.x/ D 1

2
.tanh.g.x � 0:5//C 1/: (4)

The coupling between the two equations, 
 and � appear as follows:

�

 .�i / D 	.cos�i � cos�0/
�.Si/ D �Si (5)

where � and 	 modulates the coupling between the internal oscillation and the
membrane potential, and �0 is the equilibrium phase obtained when all cells are
silent .Si D 0/; i.e., �0 D arcsin.�!=ˇ/. We used the following parameters in our
experiments: ! D 1, ˇ D 1:2 and g D 10. Accordingly, cos�0 � �0:55. �, 	 are
adjusted respectively to 1 and 0:96, and external voltages I are normalized below
0:1 to not saturate the hippocampal dynamics.

The coupling to the entorhinal system is done as follows. The entorhinal neurons
receive the membrane voltage S from their respective hippocampal neurons,
which is originally comprised between (�0:5V; 1:5V) and renormalized to [0 mA;
2,000 mA], such that any up-state oscillation entrains the entorhinal neuron to
increase its firing rate.

The system behaves as follows. For a hippocampal network of eighty units
(N D 80) regrouped into ten clusters with initial synaptic weights, the system
transits freely from one pattern to another without external inputs, see the raster plot
in Fig. 2; same conditions as in [30]. The small perturbations pull up one pattern
(up-state) and pull down the others (down state) at each theta cycle. Under these
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Fig. 2 Raster plot of the hippocampal dynamics without external drive. The network dynamics
stabilize or switch from one cluster to another at each theta cycle

conditions, the coupled system has an interesting stability-plasticity trade-off as
it can recall rapidly its already learnt patterns but cannot maintain easily the
new ones.

2.3 Hebbian Learning

Memory patterns in the hippocampal system are associated with the respective up-
state of the active cells, see Fig. 2. The robustness of one particular neural pattern
depends then on the strength of the neurons’ synaptic weights. The regulation
of these weights are done by aHebb-like rule that strengthens the links of two
contingent neurons i and j by a small fraction �w (long-term potentiation)
computed by

�w D �Ii Ij ; (6)

with learning rate � D 10�5. The weights’ updating rule is then:

wij .t C 1/ D wij .t/C�w: (7)

The hippocampal system behaves as a classical associative memory which
follows the probability distribution of the imposed external inputs.
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2.4 Cholinergic Neuromodulation

Acetylcholine levels control the balance between memory storage and memory
update at both the cellular and the circuits levels [9]. In the hippocampus, nAChRs
modulate the synapses’ plasticity at the circuit level whereas mAChRs modulate the
neurons firing at the cells level in the entorhinal cortex: on the one hand, when a
novel input is exposed, high cholinergic levels make the entorhinal cells to generate
spikes and favor hippocampal plasticity; i.e., plasticity to afferent input, on the
other hand, when a familiar input is exposed, low cholinergic levels do not affect
the entorhinal cells and reinforce the hippocampal network; i.e., robustness against
afferent input.

The concentration level of ACh can be defined then as the relative novelty
index of one input pattern I to the embedded hippocampal patterns. The novelty
distance can be computed from the hippocampal weights w of dimension N2

(wi;j 2 Œ1; : : : ; N � � Œ1; : : : ; N �). For an input I of N elements (Ii2Œ1;:::;N �), the
novelty index ACh level is defined as:

ACh level D 1 � 1

N.N � 1/
X

i

X

j

Ii :wij ; for i ¤ j: (8)

with ACh level comprised between Œ0; 1� for which a low value corresponds to a
familiar pattern and a high value corresponds to a novel one.

Its action on the networks is as follows. In the entorhinal network, input
currents are sustained for any concentration rates above a specified level
novelty threshold. One simple rule to relate the entorhinal neurons’
resonance to ACh level is:

if ACh level > novelty threshold, then
sustain input current intensity I .

This condition applies for the first time the input is above the threshold
and its value stays fixed during the whole period when ACh level >

novelty threshold. In the hippocampal network, the plasticity of the
hippocampal weights is adjusted proportionally to ACh level which functions as
a variable learning rate [31]. The updating rule in Eq. 7 is changed in:

wij .t C 1/ D wij .t/C ACh level�w: (9)

To understand better the effect of neuromodulation on the networks, we conduct
a priming task experiment when the EC-HP networks are exposed to a novel input,
see Fig. 3. We recall that HP and EC have 80 units each with intra-map connections
for HP (not for EC) and unidirectional connections from EC units to their respective
HP units.
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a

b

Fig. 3 Effect of cholinergic activation on the hippocampal and entorhinal dynamics after presen-
tation of a novel input. The exposure of a novel input (red line) rises ACh level to its highest value
(blue crosses in a), which contributes to sustain the dynamics in both networks and to enhance its
learning. While the pattern is being learnt, ACh level slowly decreases as a counter-effect

The presentation of a novel input to the entorhinal cortex at t D 186:25 s (see
Fig. 3b) automatically rises ACh level to a high value (see the blue crosses in
Fig. 3a). It has for net effect to keep the entorhinal neurons firing for several seconds
and to enhance the hippocampal encoding of the novel memory with respect to
Eq. 9, see the black line in Fig. 3a. Therefore, the more novel a pattern is, the
higherACh level (ascending phase). In return, the hippocampus strengthens more
its synaptic links to the novel pattern, which makes it less novel and reduces
accordingly <�w> and ACh level (descending phase). In other words, the
cholinergic system plays the role of a ‘retainer’ for novel signals that can be used
further for attentional tasks.
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3 Simulations

3.1 Developmental Timeline of Cholinergic Innervation

In this section, we simulate the progressive cholinergic innervation of the hippocam-
pal system. On the one hand, muscarinic binding in the entorhinal cortex, which is
responsible for sustaining novel signals, is slow to mature and reaches its highest
level at 1 year-old period [1].

On the other hand, nicotinic binding in the hippocampus, which is responsible for
the reinforcement learning of older memories, is very fast to mature as it drastically
falls with age during the fetal and post-natal period [1, 32]. We model the gradual
mAChRs binding in EC with the variable activation ratio that augments
continuously within the range Œ0; 1�: activ: ratio D 0 corresponds to the fetal
period when there is no muscarinic binding and activ: ratio D 1 corresponds
to the period when the infant reaches its first year and when the hippocampus is
fully operational.

To simplify our experimental setup, the maturational parameter activ: ratio
augments linearly with a step of 10�4 per iteration (1ms), starting at the sim-
ulation time t D 50 s. The variables ACh level and novelty threshold
are weighted to activ: ratio so that they reach progressively their maxi-
mal value when activation ratio D 1. As a rule, the initial level of
novelty threshold is set to 0:85 to filter as much as possible novel signals
in the beginning of the simulation whereas its value is decreased progressively
to allow more novel signals to pass. We impose this ad hoc rule in order to
replicate the functional acceleration observed during cholinergic innervation in
brain development.

The equations set for the cholinergic activation is then:

8
<

:

ACh level.t C 1/ D activ ratio � ACh level.t/
novelty threshold.t C 1/ D

activ ratio � .0:85 � 0:25activ ratio/;

(10)

where activ: ratio stands for activation ratio. We present in Fig. 4 the
results of this developmental scenario when the hippocampal system is exposed to
random inputs, starting at t D 50 s, when activ: ratio increases linearly to 1.

Figure 4a plots the weights modification < �w > averaged over all the weights
at each time step, Fig. 4b plots the evolution of ACh level during cholinergic
activation and Fig. 4c displays the overall complexity inside the hippocampal
network computed from the synaptic weight matrix. The complexity measure C.w/
of the system’s weight matrix w is defined as the difference between the integration
level I.w/ considered as a whole and the average integration for small subsets
within, following [33]: CN .w/ D Pn

kD1Œ.k=n/I.w/ � hI.wkj /i�: Low complexity
levels reflect a randomly or a uniformly organized network with low memory
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Fig. 4 Weight modification
for Hebbian learning with
gradual activation of ACh
modulation starting at
t D 50 s resp. (a) and (b).
Complexity measures
computed from the
connection matrix of the
hippocampal network relative
to cholinergic activation
rate (c)

capacity whereas high complexity levels reflect functional connectivity within the
network and higher memory capacity.

The situation before ACh activation, when activ: ratio D 0 (t < 50 s),
corresponds to the case described in Sect. 2.3 when the learning system encodes
continuously the external inputs and converges to its probabilistic distribution.
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The weights rapidly stabilize themselves within a minimal fluctuation regime
and the system behaves as a classical associative memory. The complexity level
decreases continuously indicating that the hippocampus continuously adapts its
structure to the novel inputs while it forgets at the same time the older memories
(poor stability/plasticity ratio).

This situation drastically changes at t D 50 s when the binding process begins to
start. Here, the variable ACh level starts to oscillate between low and high states
with bigger amplitudes as activ: ratio augments: the learning system becomes
more and more sensitive to the inputs’ novelty and scaffolds its memory capacity
by embedding one at a time a novel input : a phase transition is at work within the
neural dynamics. The ascending phases (i.e., the crests) correspond to the encoding
periods and the descending phases (i.e., the troughs) correspond to the continued
encoding of established CA3/CA1 patterns.

Moreover, this capability produces within the system some new emergent
functionalities. For instance, since the new patterns do not overlap with the old
memories, the hippocampal system tends to be sparsely organized, which rise in
fine its complexity level. In other words, it enables the hippocampal system to
categorize on the fly new memories while preserving the old ones. The result is
the emergence of a ‘working memory for novelty’ – i.e., a memory that can support
the detection and the learning of novel and non-novel patterns – that scaffolds over
time the memory organization.

3.2 AB Experiment

The experiment in the previous section described how the good balance between the
cholinergic rules permits to control the overall stability and plasticity of the system
in order to maintain hippocampal signals or to sustain the entorhinal signals.

This is particularly critical during the first year when infants exploit these
attentional skills for cognitive processing. For instance, the development of a
working memory for novelty endows the infant to succeed delayed-response
tasks, which are also correlated with high theta rhythm [23]. Besides, there is
substantial evidences that cholinergic innervation is a necessary component for the
development of such a working memory since ACh levels in the hippocampus and
cerebral cortex correlate also to behavioral performance in spatial attention and
memory [6, 15, 34–36]. Based on these evidences, we propose that the hippocampal
cholinergic system plays an important functional role for succeeding the Piagetian
A-not-B task [22], along the prefrontal cortex. We envision therefore the prefrontal
cortex to be complementary to the hippocampus in this task and not to be the most
important as it is prevailed in most developmental theories [25, 37–39].

The classic Piagetian A-not-B error witnesses the developmental changes occur-
ring during the first year, see Fig. 5. A tantalizing object is presented to an infant and
put in a box at a location A hidden from his sight for several trials, then the object is
lastly set at a new location B . A peculiar mistake occurs for infants of 7–8 months
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A-not-B task

A B

movement parameter

Fig. 5 A-not-B experiment with a protocol similar to [42]. The localized peaks of activation in the
neural system respect the spatial topology of the environment such that location A is represented
by neurons of low-ranked indices and location B by those of high rank

of age which is to perseverate searching at the A location when a delay to reach
is imposed. For 10–12 months old infants, the error however disappears and most
infants succeed to reach the object at its correct location independently to the delay-
interval duration. Hence, the presence of the delay is critical to exhibit the error [40]
whereas the error still persists even when the object is not hidden at all [41].

Our experimental protocol is similar to the one proposed by [42] where the
spatial coordinates along a unidimensional space are assimilated to the topology
of the neurons indices, see Fig. 5: low-ranked indices neurons are associated to the
location A in the left-side and the high-ranked indices neurons are associated to
locationB in the right-side. We employ the same neural circuits used in the previous
sections (each network is composed of 80 units) and initialize its weights probability
distribution corresponding to the location A only – i.e., we skip the learning phase.
The neurons with lower indices comprised in the interval between Œ5; : : : ; 35� are
set with the weights distribution w D 0:05 and the other weight coefficents are set
to zero. We present the behavior of the cortico-hippocampal system before and after
cholinergic innervation when a novel pattern B is presented for a short period of
time, see Fig. 6. Figure 6a displays the raster plot of a weakly innerved network and
Fig. 6b displays the raster plot of a matured network.

For the case of a weak cholinergic activation in Fig. 6a, which corresponds to
the situation described in Sects. 2.3 and 2.4 for activation ratio < 0:22,
the network does not get easily perturbed by novel inputs and it remains mostly
insensitive to external exposure; the system has a strong stability-versus-plasticity
ratio. As a result, the hippocampal system stays only for one theta cycle at the B
pattern presented at t D 25 s but then perseveres to the learnt pattern A, even if the
pattern B was exposed for several tens of milliseconds. The neural system displays
the properties of a reinforcement learning system without attentional mechanism
which strongly bias the familiar patterns against the new ones. In contrast, the
cholinergic activation of the hippocampal ensemble detects and holds the novel
pattern B in regard to the embedded memory A and even if the former has exposed
for a very short period, see Fig. 6b.

The dual mechanism of ACh can permit then to sustain inputs dynamically
without interference and competition between memories. We speculate that its
nonlinear effect on the maturing hippocampus could be one factor contributing to
the U-shaped curve of development discovered with the A-not-B error, showing
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Fig. 6 A-not-B task before
and after cholinergic
activation, resp. (a) and (b).
Without cholinergic
neuromodulation, the short
exposure of an object placed
at a novel location B for
several hundreds of
milliseconds does not
influence the dynamics of the
entorhino-hippocampal
system whereas the novel
pattern is sustained for several
seconds for the situation with
cholinergic activation

increases in perseveration before showing decreases [43]. ACh allows the cortico-
hippocampal system to encode and manipulate flexibly discrete patterns during
environmental changes which are then as much categories for the cortical maps to
learn progressively the overall structure, see Fig. 7.

4 Conclusion

In this paper, we proposed to model the cholinergic system innervation in the
hippocampal system and its influence for learning, attention and memory develop-
ment. Acetylcholine is involved in the structural and functional adjustments of the
hippocampus, transforming it into an attentional system; i.e., a working memory for
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a b cnovelty detection and
fast learning

long-term consolidation routine, circuits and
conditioned response

Fig. 7 Cognitive architecture for memory retention, transfer and consolidation

novel information. Under its action, the entorhinal cortex sustains and facilitates
the learning of novel stimuli relative to the old patterns already present in the
hippocampus. We show in our experiments how this dual mechanism may generate
simply some emergent properties necessary for cognitive development. For instance,
it limits the interference between memories which has for effect to scaffold the
memory organization and to discretize the memory space into separated categories
in the same time.

Moreover, our cholinergic hypothesis may give some partial answers to the
paradoxes that pose the hippocampus and other subcortical structures that appear
to function at birth but show some evidence of slow development and/or functional
reorganization. Here, we propose that the neurotransmitter acetylcholine may play
the role of a “catalyst” that activates the functional organization of the cortico-
hippocampal system (i.e., detecting and holding stimuli, preserving and acquiring
memories).

Although ACh is generally known to regulate the structural maturation of the
central nervous system [2] – e.g., the growth, differentiation, and plasticity of the
neurons – the precise timing of cholinergic innervation to the cortex appears to be
crucial also for the normal development of cognitive functions. Its action is even
broader since ACh has been identified for mediating the propagation of slow waves
of electrical activity in the developing neocortex [3, 44], which are associated with
long-term memory and categorization performances [17,18]. In our model, we show
how theta waves could slowly shape the neocortical maps into coherent patterns
(rhythmical theta/gamma activity). Hence, the modeling of the cholinergic system
in the para-hippocampal system is not only critical for understanding development
during the first year [1] but also for understanding memory transfer, attention
processes and retrieval task [4].

Since acetylcholine is highly associated with hippocampal performances and
that hippocampal theta ryhthm is involved in spatial processing [6] and in working
memory tasks such as the Piagetian A-not-B task [23], any serious developmental
theories should be considered in the light of it.
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Unintentional Synchronization of Behavior
in Japanese Monkeys

Yasuo Nagasaka, Zenas C. Chao, Naomi Hasegawa, Tomonori Notoya,
and Naotaka Fujii

Abstract The human studies in perception and action in social context revealed
that social interaction facilitated behavioral synchronization. To understand brain
mechanisms for the synchronization in details, studies in animal model are required.
However, little is known about the behavioral synchronization in animals. Here we
examined an unintentionally synchronized behavior in monkeys. The unintentional
synchronization was quantified by changes in button-pressing behavior while two
monkeys were seated facing each other. Different experimental conditions were
applied to explore interferences of visual information on the speed and the timing
of the button-pressing. The changes in behavior were observed when the subject
was paired with another monkey, suggesting that social bonds play an important
role in synchronization through visuo-motor or auditory-motor coupling to other’s
behaviors.

1 Introduction

In social environment, one has to coordinate his or her actions with another in
order to establish smooth joint actions. Several studies demonstrated that humans
intended to coordinate their actions by predicting others’ knowledge and action
goals, and by understanding environmental constraints [1]. However, in some cases,
the coordination has to be achieved rapidly, where intentional coordination might
be unsuitable or impossible, and spontaneous coordination might take place.

Several human studies demonstrated that socially or visually coupled dyad
showed spontaneous synchronization in moving a finger, swinging pendulum,
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stepping, rocking chair, and facial expressions [2–6]. Those studies suggested that
the synchronized behaviors were the results of unintentional cognitive functions,
which might be facilitated by social bonds.

Coordination of actions was also found in non-human social animals, such as
flash synchronization of fireflies, movement of shoaling fish, and flying of flocking
birds [7–9]. However, most of animal studies were field studies and did not focus
on whether the animal changed the behavior on purpose (intentionally) or not
(unintentionally). There are a few studies under laboratory setting focused on
spontaneous entrainment, however, all of them focused on contagious yawning in
animals [10–12]. It is still unclear whether animals show unintentional behavioral
changes during voluntary action. Furthermore, animal model is required for further
understanding of brain mechanisms underlying coordination, which has not been
established yet.

In the present study, we first explored whether monkeys show unintentional
synchronization in social environment during a rhythmic behavior: button-pressing
action. Furthermore, we examined the importance of visual cues to create corre-
sponding social bond that could lead to unintentional synchronization.

2 Methods

Subjects and materials: Three male Japanese monkeys (Macaca fuscata; monkeys
B, C, and T) participated in the present study. These monkeys did not have kinship
or any preceding interaction consolidating social rank among them. The monkey
was seated in a primate chair with his head, chest, and arms free. Through infrared-
refrectable markers on a custom jacket, the subject’s shoulders, elbows, and wrists
positions were recorded by a motion capture system (Vicon Motion Systems, CA,
USA) with 120 Hz sampling rate. In each experiment, two monkeys were seated
across the table (60 cm diameter) facing each other, each with a button box placed
in front of him. The box had two buttons, with LEDs inside, aligned horizontally
separated with a distance of 50 cm. Six video cameras were used for recording
the whole experimental environment. The experimental session was controlled by
iMac (Apple Inc., Cupertino, CA, USA) and was programmed with MATLAB
(MathWorks Inc., Natick, MA, USA) using the Psychophysics Toolbox extensions
[13]. All procedures were approved in advance by the RIKEN Animal Committee
(H20-2-307).

Solo condition: Each monkey was trained individually to press the two buttons
alternately. At the outset of each trial, both buttons were illuminated and the monkey
could start pressing button from either side. When an illuminated button was
pressed, a short note was presented followed by an immediate turnoff of the LED.
A trial was considered as successful when a criterion was achieved: a randomly
assigned number of pressing (from 30 to 36, MD 33) was achieved without pausing
for more than 5 s. At the end of each trial, both LEDs were turned off. The following



Unintentional Synchronization of Behavior in Japanese Monkeys 747

Fig. 1 Schematics of
experimental conditions

trial was started after an inter-trial-interval (ITI; 5 to 10s randomly assigned). After
each successful trial, a chime was presented, and the monkey was rewarded with a
small piece of apple or nuts during the ITI. After ten consecutive successful trials,
the motion capture system and a video recorder were used to record the monkey’s
button-pressing behavior (Fig. 1, Solo).

No-Wall condition: Two of the three monkeys were seated facing each other
while performing the button-pressing task (Fig. 1, No-Wall). The procedure was
the same as in Solo condition, except that the trial was considered successful when
(1) both monkeys satisfied the criteria, and (2) the monkey reached the criterion
earlier continued pressing until another monkey reached his.

Wall condition: In order to investigate effects of the visual of another on the
individual’s button-pressing behavior, a board was placed between two monkeys
(Fig. 1, Wall).

In a daily session, three test blocks were conducted. Each block consisted of ten
trials in No-Wall condition and 10 trials in Wall conditions, conducted in a random
order. A total of 300 trials in five sessions was obtained for each monkey pair.

Quantification of behavioral synchronization: We defined that behavioral syn-
chronization occurred when the timings of button-pressings between paired mon-
keys were time-locked. Assume the series of button-pressing timings for monkeys
B and C in a single trial were bDfb1, b2, : : : bNg and cDfc1, c2, : : : cMg,
respectively, where N and M represent the corresponding numbers of total button-
pressings. Then all the possible delays between b and c could be represented by:

Delaysb�c D fbn � �cmjn D 1; 2; : : : N Im D 1; 2; : : :M g

In order to identify delays that occurred more frequently than by chance, we
compared Delaysb-c to its shuffled version. Each bn in b was replaced by b’n, a
randomly selected value within the interval of [(bn-1C bn)/2 (bnC bnC1)/2]. This
is equivalent to adding a jitter, a value between (bn-1 - bn)/2 and (bnC1 - bn)/2, to
bn. By repeating this process for all elements in b and c, a shuffled set b’Dfb’1,
b’2, : : : b’Ng was created, and the corresponding delays, Delaysb’-c, were measured.
This process was repeated 100 times. Then the histogram of Delaysb-c (Horg), and
the histograms of 100 different Delaysb’-c (Hsh1, Hsh2, : : : Hsh100) were created by
200 ms window with 20 ms step. The significant differences in histograms, i.e. Horg

vs. fHsh1, Hsh2, : : : , Hsh100g, indicated the delays that occurred more frequently than
by chance (time-locked), which further implied that synchronization occurred.
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3 Results

By comparing the button-pressing behavior between when the monkey was alone
(Solo) and when the monkey was paired with another (Wall and No-Wall), we
evaluated whether behavioral synchronization occurred.

3.1 Difference in Speed of Button-Pressing Between
Alone and Paired Conditions

For each monkey, significant differences in speed of button-pressing were found
between Solo and Wall conditions (p< 0.05, Wilcoxon signed-rank test), and
between Solo and No-Wall conditions (p< 0.05). For monkeys B and C, the speed
of button-pressing in Wall and No-Wall conditions was significantly slower than the
speed in Solo condition. For monkey T, the speed of button-pressing in Wall and No-
Wall conditions was significantly faster than the speed in Solo condition (Fig. 2).
Furthermore, for monkey C, the speed of button-pressing in No-Wall condition
was significantly slower than in Wall condition when paired with monkeys B or T
(p< 0.05, Wilcoxon signed-rank test). For monkey T, the speed of button-pressing in
No-Wall condition was significantly slower than in Wall condition when paired with
monkey C (p< 0.05) but not with monkey B (Fig. 2). For monkey B, no significant
difference in speed was found between No-Wall and Wall conditions when paired
with either monkey C or T. Those results indicated that the speed of button-pressing
was affected by the visual of the paired monkey’s behavior. Also, the influence of
the visual was partner-dependent.

Fig. 2 The change of speed in button-pressing. One representative example (monkey T) of the
speed of button-pressing in Solo condition and paired with monkeys B or C in each experimental
condition. C: outlier. See text for details of statistical difference between conditions
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Fig. 3 Quantification of behavioral synchronization between monkeys B and T. (a) One represen-
tative example of Horg and Hsh in monkey B calculated by aligning the button-pressing of monkey
T in No-Wall condition; the blue line represents Horg and the red line represents Hsh. (b) The
difference of histograms between Horg and Hsh. (c): The difference of histograms between Horg and
Hsh. for the same monkeys in Wall condition. *p< 0.01, Wilcoxon signed-rank test (one-tailed)

3.2 Synchronization in Button-Pressing

To explore the synchronization of button-pressing behavior in paired monkeys, a
histogram created from the original data (Horg) was compared with histograms
created from the shuffled data (fHsh1, Hsh2, : : : , Hsh100g) (Fig. 3a). If the timings of
button-pressings in the original data contain specific temporal structures, then those
structures are likely destroyed in the shuffled data (see Methods). Thus, the values
significantly greater in Horg than in fHsh1, Hsh2, : : : , Hsh100g represent the time-
locked delays in the timings of button-pressings in the original data. Time-locked
delays were found in all pairs of monkeys in No-Wall condition (p< 0.01, Wilcoxon
signed-rank test, one-tailed). A representative example between Monkeys B and T
in No-Wall condition is shown in Fig. 3b, where time-locked delays at �120 and
-20 ms were found. This indicated that Monkey B pushed a button before Monkey
T more frequently with 20 or 120 ms delays.

Those results indicated that the timing of button-pressing was time-locked with a
monkey was paired with another. Furthermore, no significant time-locked delay was
found in all pairs of monkeys when visuals of partners were absent (Wall condition,
Fig. 3c). Those results further suggested that visuals of the partner played a crucial
role in synchronization in button-pressing behavior.

4 Discussions

In summary, we found that the speed of button-pressing in monkeys was affected
by social bonds, which were partner-dependent. Furthermore, the synchronization
of button-pressing occurred when social bonds were formed.



750 Y. Nagasaka et al.

To ensure the synchronization was induced by unintentional factors, instead of
intentional factors, such as learning, we trained each monkey separately. During
training, the monkeys were never differentially reinforced to change the speed
of button-pressing. Furthermore, when the monkeys were paired, food rewards
were presented to both monkeys at the same time when the monkeys reached the
criteria (see Methods). This procedure was unlikely to reinforce competition for
food, change of speed, nor synchronization. Therefore, the change of the monkeys’
behavior was, at least, not due to learning process. Furthermore, the monkeys did
not need to synchronize their behavior with another to get food; the synchronization
of behavior in the present study was fruitless for the monkeys. For this reason, the
monkeys were likely to coordinate their behavior unintentionally, not intentionally.
To our knowledge, this is the first demonstration of unintentional synchronized
voluntary behavior in non-human animals under laboratory settings.

We further demonstrated that the synchronization could be disrupted by the
absence of visual cues. Other information, such as auditory cues, might also involve
in creating social bonds that lead to the observed synchronization. However, the
effect of the sound was not investigated in the present study. In Wall condition,
the monkey could not see the partner, but could hear the sound corresponding to
button-pressing of the partner. We showed that the sound cue affected the speed of
button-pressing in Wall condition (Fig. 2), however, the sound did not induce the
synchronization (Fig. 3). Therefore, the sound might have a little effect for forming
social bonds, but it was not enough for causing synchronization.

During synchronization, a subject’s behavior was affected not only by his
partner’s behavior, but also his own previous behavior. That is, changes in the
subject’s behavior could affect his partner’s behavior, which would be perceived
and then consequently affect the subject’s own behavior. In order to dissociate this
complex feedback and to understand how coordination could occur in a one-way
manner, our future plan is to investigate synchronization when a monkey is paired
with a virtual monkey (video-recorded monkey).

The brain areas responsible for the unintentional behavioral synchronization
remain undiscovered. In monkey studies, “mirror system”, including the ventral
premotor cortex and the rostral region of the inferior parietal lobule, was activated
during the monkey’s performing an action and also during the monkey’s observing
the same action [14]. Therefore, it is likely that those areas also involve in the
unintentional coordination of actions. Our future plan is to record neural activities
in multiple brain areas in the subjects presented in this work, and to identify neural
correlates underlying the unintentional behavioral synchronization.
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Effects of Medial Amygdala Lesions upon Social
Behaviour in Mice

Yu Wang, Yuki Takayanagi, and Tatsushi Onaka

Abstract The medial amygdala has been suggested to be involved in social
behaviour. However, detailed roles of the medial amygdala in the control of social
behaviour remain unknown in mice. Here, we examined effects of excitotoxic
destruction of the medial amygdala upon social behaviours in mice. Mice whose
medial amygdala was lesioned showed no biting behaviour towards intact young
intruder mice and showed less direct contact behaviour. The present data are
consistent with a view that the medial amygdala is essential for social behaviour
in mice.

1 Introduction

The amygdala has been suggested to be involved in social behaviour [1]. The
amygdala is activated during social behavior. Lesions of the amygdala have been
shown to affect social behaviour. Activation of the amygdala affects social behavior.
Amygdala-lesioned monkeys have been shown to become less aggressive and
to initiate more affiliative behaviors towards unfamiliar partners than do control
animals [2]. Amygdalectomized animals have been shown to be associated with
hypersexuality and impaired maternal behaviours.

Studies with patients have also suggested involvement of the amygdala in the
control of social behavior. Patients with bilateral damages [3, 4] to the amygdala
display inappropriate social behaviours or show deficits in making social judgement
of trustworthiness from faces of unfamiliar people [5]. Damage to the amygdala has
also been shown to yield deficits in recognition of facial expression with negative
emotional signals, such as fear. The amygdala is activated during evaluation of
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faces with negative emotions [6]. All these data suggest that the amygdala plays
an important role in the cognitive evaluation of facial expression in humans.

The amygdala has also been implicated in the generation of the defensive
behaviors such as freezing and avoidance behaviours towards potentially dangerous
stimuli. Amygdala-lesioned animals showed less fearful behaviours. Lesioned
monkeys blunt fear and avoidance of snakes. Social behaviors are largely affected
by emotions, and thus impaired social behaviors observed in lesioned animals might
have been due to the changes in emotions following amygdala lesions.

The amygdala contains several sub nuclei, including medial amygdala, central
amygdala and basolateral amygdala. Anatomical studies have shown that there are
three major functional systems associated with the amygdala [7]; the olfactory
systems, autonomic system and fronto-temporal cortices-system associated with
basolateral amygdala nuclei. The olfactory system plays a pivotal role in the control
of social behavior in rodents. Olfactory information enters into the medial amygdala.
It is thus possible the medial amygdala plays an important role in social behavior in
rodents.

In fact, a variety of social stimuli activate the medial amygdala [8, 9]. Laboratory
rats or hamsters with lesions of the medial amygdala show impairment in copulation
[10], maternal behavior [11] and aggression [12, 13]. Axon-sparing lesions of the
medial amygdala decrease male parental behavior in the highly social prairie vole.
In male prairie voles, lesions of the medial amygdala decrease affiliative behaviors
towards pups [14].

However, detailed roles of the medial amygdala in the control of social behaviour
in mice remain unknown. Here, we examined effects of excitotoxic destruction of
the medial amygdala upon social behaviours in mice.

2 Methods

Adult male mice (C57BL6J) were used. Mice at the age of 9 weeks were
anaesthetized with Avertin (tribromoethanol 250 mg/kg bw) and positioned in
a stereotaxic frame. N-methyl-D-aspartate (NMDA) solution or the vehicle was
microinjected via cannulae into both sides of the medial amygdala in order to
destroy neuronal cell bodies in the medial amygdala. NMDA solution (1.6 �g) at a
volume of 0.08 �l was infused at following two points bilaterally: 0.8 mm caudal
to bregma,˙2.6 mm lateral to the midline and 5.4 mm below the skull and 1.4 mm
caudal to bregma, ˙2.6 mm lateral to the midline and 5.4 mm below the skull.
More than two weeks after the injections, mice were examined for social behaviour.
Injection sites were verified histochemically after completion of experiments.

In a social behaviour test with an intact young male, one intact young male
mouse (3 weeks old) was introduced into the home cage of the resident mouse (14–
16 weeks old) that had been injected with NMDA or the vehicle into the medial
amygdala. Behaviour towards the young mice during 4-min test was recorded [15].

In another series of experiments with a social behaviour test, two NMDA-treated
mice or two vehicle-treated mice were placed together in a cage (29� 18� 12 cm)
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and their behaviours were video-monitored. Social behaviors in the social inter-
action test were hand-scored [16]. Behaviors were recorded on digital video and
social behaviors of two mice were observed during the first 5 min following
placement of the two mice into the test cage. Total duration of social behaviors
(approaching, following, anogenital sniffing, nose-to-nose sniffing, crawling over
and under, grooming each other, sleeping together, and fighting) were counted.
Behaviour of the two mice was also recorded with a system that automatically
analyzes behaviour in home cages [16, 17]. The system consisted of a cage and
a filtered cage top containing an infrared video camera and infrared light emitting
diodes. Images from each cage were captured at a rate of one frame per second.
Social interaction was measured by counting the number of particles in each frame;
two particles indicated that the mice were not in contact with each other, and one
particle indicated that mice were in contact with each other. The percentages of time
spent for direct contact behavior during a period (15:30-16:30) 270 min following
placement of the tow mice into the test cage were calculated. Total locomotor
activity of the paired mice was also measured.

Data were presented as means˙SEM, and were analyzed using a Mann–Whitney
U test.

3 Results

3.1 Medial Amygdale Lesions

Injections of NMDA solution into the medial amygdala destroyed cell bodies of the
medial amygdala.

3.2 Social Behaviours Towards Intact Young Mice After
Medial Amygdala Lesions

Vehicle-treated resident mice showed aggressive behavior towards young male
intruders (Fig. 1). On the other hand, no medial amygdala-lesioned resident mice
showed aggressive behaviour. Lesioned animals showed mounting behaviours to-
wards young male intruders, while no control animals showed mounting behaviour.

3.3 A Social Behaviour Test with the Identically Treated Mouse

Social behaviours observed between pairs of lesioned mice or those of control
animals were analyzed for the first 5 min of the first encounter. Lesioned mice spent
more time for social behaviours than did the control mice.
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In the light period, vehicle-treated mice spent majority of time staying still in
contact with each other. On the other hand, the NMDA-treated mice spent less time
in contact with each other (Fig. 2). There was no significant difference in locomotor
activity between sham and lesioned animals during 15:30-19:30 (Fig. 3).

4 Discussions

In the present studies, medial amygdala lesion reduced aggressive behaviour
towards young intruders, consistent with previous data that amygdala-lesioned
animals show reduced aggressiveness, and further suggest involvement of the
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medial amygdala in aggression in mice. In the present data, amygdala-lesioned
animals showed increased social behavior such as ‘following’ behaviour. However,
direct contact behavior was significantly reduced in lesioned animals, suggesting
that involvement of the medial amygdala in social behaviours is dependent upon
social behavior observed. All these data are consistent with a view that the medial
amygdala is essential for social behaviour in mice.
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Theta-Burst Stimulation Induces Long-Term
Potentiation During Beta Oscillation, but Not
During Epileptic Discharges, in Rat
Hippocampal Slices

Motoshi Nishimura and Kiyohisa Natsume

Abstract Rats exhibit several physiological rhythms—™, “, and ” rhythms, sharp
waves, and ripples—that are related to memory processing. They also exhibit
pathological epileptic discharges, and these discharges suppress memory processes.
What is the difference between rhythms and discharges? The ™, “, and ” rhythms
are reproduced in hippocampal slices. Long-term potentiation (LTP) was easily
induced during the generation of carbachol-induced “ oscillations, whereas it was
suppressed during the generation of gabazine-induced epileptic discharges. These
results suggest there is a difference in the mechanism of LTP induction between
physiological “ oscillations and the pathological rhythm of epileptic discharges.
Synaptic plasticity is necessary for induction of the rhythm. It is therefore suggested
that synaptic plasticity is not supported during epileptic discharges whereas it can
be occurred during the physiological rhythm. This difference could differentiate the
memory processes of the two rhythms in vivo.

1 Introduction

The rat hippocampus has several rhythms: ™, “, and ” rhythms, sharp waves, and
ripples. Theta and gamma rhythms are related to spatial learning in the rat [1].
The beta rhythm is related to odor discrimination learning [2], as well as spatial
learning. Sharp waves and ripples relate to the consolidation of associative memory
[3]. These rhythms are related to the memory process, and they are referred to as
physiological rhythms [4]. The rat hippocampus often also exhibits a pathological
rhythm, such as epileptic discharges. During epileptic discharges, the memory
process is suppressed, and the discharges induce amnesia [5]. Synaptic plasticity is a
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basic phenomenon underlying the learning process. The results described above, on
the relationship between learning and physiological rhythms, suggest that during the
generation of these physiological rhythms, synaptic plasticity (for example, long-
term potentiation [LTP]) is induced; on the other hand, pathological rhythms (for
example, epileptic discharges) correlate with the suppression of LTP.

The ™, “, and ” rhythms and epileptic discharges are reproduced in an in
vitro system by using the cholinergic agent carbachol and the GABAA receptor
antagonist SR95531 (gabazine) [6–9]. We showed differences in synaptic plasticity
between the physiological rhythm and the pathological rhythm using carbachol-
induced “ oscillations (CIBO) and gabazine-induced epileptic discharges (GIED)
in rat hippocampal slices. One of the authors previously reported that LTP is better
facilitated during the generation of carbachol-induced ™ activity, more so than the
rest of CIBO [10]. Whether LTP is induced during the other rhythms has not yet
been studied. We therefore applied LTP induction stimuli at several phases of the
CIBO and GIED rhythms.

2 Method

The present data were obtained from 406 hippocampal slices (thickness, 450 �m)
from 140 male Wistar rats, aged 3–5 weeks. The experiments were carried out in
compliance with the Guide for the Care and Use of Laboratory Animals at the
Graduate School of Life Science and Systems Engineering of the Kyushu Institute
of Technology. The rats were anaesthetized by diethyl ether and decapitated. The
brains were rapidly removed and placed in ice cold artificial cerebrospinal fluid
(ACSF) of the following composition: 124 mM NaCl, 5 mM KCl, 1.25 mM
NaH2PO4, 2 mM MgSO4, 2 mM CaCl2, 26 mM NaHCO3, and 10 mM glucose,
which was saturated with 95% O2/5% CO2.

Transverse hippocampal slices were prepared using a microslicer (ZERO-1;
Dosaka Co., Kyoto, Japan). The slices were transferred to a holding chamber
containing continuously oxygenated ACSF, and incubated for recovery for at least
1 h in ACSF at 33ıC. For electrophysiological recordings, the slices were transferred
to an interface recording chamber, where they were continuously perfused with
ACSF (1.5 ml/min) and bubbled with 95% O2/5% CO2 at 33ıC. CIBO and GIED
were induced by the application of carbachol and gabazine to the hippocampal
slices, respectively. The rhythmic phenomena were recorded from the stratum
pyramidale of CA3 by using a glass pipette (2 M NaCl; 1–2 M�). In the LTP
experiment, Schaffer collaterals were stimulated using the concentric stimulation
electrode antidromically, and population excitatory postsynaptic potentials (pEPSP)
were measured at the recurrent CA3 synapse and at the synapse between Schaffer
collaterals and CA1 pyramidal cells, using the glass pipette (internal solution 2 M
NaCl; 1–2 M�), at the stratum radiatum in CA3 and CA1 (A and C in Fig. 1).
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Fig. 1 Stereo microscope photograph of a hippocampal slice, indicating the sites of the electrodes.
Sites where the recording electrodes (A and C) and the stimulation electrode (B) were placed are
shown. The pEPSP and the rhythmic phenomena, CIBO and GIED, were recorded at sites A and
C. pEPSPs at 40 min were compared to those at �1 min by using Student’s t-test

0°
15°

180°
330°

0°

60° 180° 330°

Fig. 2 The stimulation phase
of TBS is defined by the time
of onset of the stimulation in
the interburst interval of
CIBO (above) and GIED
(below). Scale bars indicate
2 mV and 10 s

Theta-burst stimulation (TBS), consisting of five bursts separated by 200 ms, was
used to induce LTP. Each burst consisted of five rectangular current pulses (0.1 ms
in duration) at 100 Hz.

CIBO was induced in an intermittent burst form with an interburst interval of
20–30 s. GIED occurred with a regular interval of 10–20 s. TBS was delivered in
several phases of the interval, during the burst or discharges (0ı phase), just after
CIBO (60ı in CIBO, and 15ı in GIED), during the resting period of CIBO or GIED
(180ı), and just before CIBO or GIED (330ı) (Fig. 2). In the case of CIBO, the 0ı
phase was positioned 3 s after the beginning of CIBO.

3 Results

When TBS was delivered at the 0ı phase during CIBO, the slope of the pEPSP
significantly increased, and this increased slope was maintained for at least 40 min
at the CA3 recurrent synapse (CA3 in Fig. 3); LTP was thus induced. At the CA1
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40 min after TBS (post) are
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Fig. 4 The synaptic changes
by TBS at the 0ı phase of
GIED. LTP was induced at
neither CA3 nor CA1. CA1
data were obtained from four
slices. The scale bars indicate
2 mV and 10 ms

synapse, TBS induced only short-term potentiation, and did not have any long-term
effect (CA1 in Fig. 3). On the other hand, LTP was not induced when TBS was
performed at the 0ı phase during GIED, at either the CA3 or CA1 synapse (Fig. 4).
TBS induced LTP in all phases of CIBO at the CA3 recurrent synapse (Table 1).
The potentiation at phases of 180ı and 330ı was particularly significant. At the
CA1 synapse, TBS induced significant LTP in phases of 180ı and 330ı. In GIED,
LTP was not induced in any phase at the CA3 synapse; LTD was induced only at
phases of 330ı (Table 1).
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Table 1 The synaptic
changes induced by TBS in
several phases of CIBO and
GIED

0ı 15ı or 60ı 180ı 330ı

CIBO CA3 LTP** LTP* LTP** LTP**

CA1 – – LTP** LTP*

GIED CA3 – – – LTP**

CA1 – – LTP* LTP**

The table indicates LTP, LTD, or no change (�). pEPSPs
at 40 min after TBS were compared with those at 1 min
before TBS. LTP was induced at all phases of CIBO,
and LTD was induced in the 330ı phases of GIED at the
CA3 recurrent synapse. LTP was only induced in the late
phases (180ı and 330ı) of CIBO and GIED at the CA1
synapse. (*p< 0.05; **p< 0.01)

4 Discussion

LTP was easily induced during CIBO, whereas it was not induced in GIED at
the CA3 synapse. At the CA1 synapse, LTP was induced during both CIBO and
GIED in the late stimulation phases (180ı and 330ı), and the magnitude of LTP
induced during CIBO was greater than that induced during GIED (data not shown).
These results suggest the presence of a difference in the mechanism by which LTP
is induced between the conditions of physiological “ oscillation and pathological
epileptic discharges.

CIBO is generated in CA3, and GIED may be generated in CA3 or CA1 [11].
The CA3 recurrent synapse is required for the generation of epileptic discharges
[12]. In the generation of GIED, synaptic potentiation of the CA3 recurrent synapse
could be induced [13]. It is therefore suggested that there is no potential for synaptic
plasticity in GIED, and LTP cannot be induced. On the other hand, there is room for
synaptic plasticity in CIBO, and plasticity can be induced during the oscillation.
This differentiates the physiological rhythms and the pathological rhythm, and also
differentiates the mechanism of the memory process during the two rhythms in vivo.
A clear difference in CA3 LTP induction was observed between CIBO and GIED.
CA3 plays a significant role in the memory process, and the results obtained here
are consistent with this.

In addition, in the 180ı and 330ı phases of CIBO, a greater magnitude of LTP
could be induced at the CA3 and CA1 synapses; however, in the 60ı phases, the
magnitude was smaller. Therefore, LTP was suppressed at this refractory stage, and
possibly others, during CIBO.

The ease with which LTP was induced depended on the phase of the generation
of CIBO. CIBO was generated intermittently with an interval of 20–30 s. A slow
rhythm, the period of which underlies the generation of CIBO, is present. The slow
rhythm that induces the generation of CIBO may control how the induction of LTP
in CA3 and CA1 is facilitated; however, further study is needed to confirm this.
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Integration of Hetero Inputs to Guinea Pig
Auditory Cortex Established by Fear
Conditioning

Yoshinori Ide, Muneyoshi Takahashi, Johan Lauwereyns, Minoru Tsukada,
and Takeshi Aihara

Abstract The present study used an optical imaging paradigm to investigate plastic
changes in the auditory cortex induced by fear conditioning, in which a sound
(Conditioned Stimulus, CS) was paired with an electric foot-shock (Unconditioned
Stimulus, US). We report that, after conditioning, auditory information could be
retrieved on the basis of an electric foot-shock alone. Before conditioning, the
auditory cortex showed no response to a foot-shock presented in the absence of
sound. In contrast, after conditioning, the mere presentation of a foot-shock without
any sound succeeded in eliciting activity in the auditory cortex. Additionally, the
magnitude of the optical response in the auditory cortex correlated with variation in
the electrocardiogram. The area activated in the auditory cortex, in response to the
electric foot-shock, also showed a considerable correspondence to that elicited by
the CS sound. These results suggest that integration of different sensory modalities
in the auditory cortex was established by fear conditioning.

1 Introduction

Sensory cortices are defined by responses to physical stimuli in specific modali-
ties. Recently, however, human neuroimaging studies have shown auditory cortex
activation without sound. Little is known about how the brain produces such
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activity. Here we study this topic with an entirely different paradigm, based on fear
conditioning, using optical imaging with a voltage-sensitive dye [1] in the guinea pig
auditory cortex. Our data show that foot shocks, through conditioning, can activate
the auditory cortex in the absence of sound.

The traditional view that auditory cortex neurons are only activated by sound
stimuli required revision when functional magnetic resonance imaging in humans
showed blood flow changes in auditory cortex during silence [2–4]. It was con-
firmed that mental imagery [2] and stimulus expectancy [3] create virtual acoustic
representations, which may be responsible for the perception of sounds that are
physically absent, as when subjects report hearing a familiar song continue even if
the music has stopped. The latter finding was obtained when subjects were given
no specific instructions, suggesting that the phenomenon had an obligatory aspect
[4]. We reasoned that if auditory cortex activation can occur autonomously as a
consequence of over learning (e.g., a familiar song), then similar results might
be obtained with nonhuman animals in a conditioning paradigm. To investigate
effects of conditioning on auditory cortex activity, we used a fear-conditioning
paradigm in guinea pigs, pairing pure tones with foot shocks. Fear conditioning
and other behavioral and pharmacological paradigms have induced plasticity in
various aspects of mammalian auditory cortical representations, but the possibility
of signals in the absence of sound, elicited through auditory fear conditioning,
remained unexplored.

In this work, to investigate whether auditory information could be retrieved by
electric foot-shock after the conditioning or not, the auditory response to a foot-
shock was investigated in three groups: normal conditioning, sham conditioning,
and naı̈ve.

2 Methods

The experiments were performed in accordance with the guidelines of the Animal
Experiments Committee of Tamagawa University. Nineteen guinea pigs of 250–
450 g, 3–6 weeks old females were used as experimental subjects. Three groups
(normal conditioning, sham conditioning and naı̈ve) were prepared. Six guinea pigs
in each normal/sham conditioning group were fear-conditioned while they were
awake in the test cage, through a grid shock floor. Fear conditioning was carried
out by using a pure tone (CS) and an electric foot-shock (US). The normal/sham
conditioning protocols is shown in Fig.1. After the conditioning, the animals were
anesthetized and underwent surgery for optical recording. The auditory cortex
was stained for 40–60 min with a voltage-sensitive dye, RH795 (0.125 mg/ml,
dissolved in saline; molecular Probes). While a pure-tone (duration: 5 s, frequency:
4–16 kHz, acoustic pressure: 65 dB SPL) was presented to the right ear or an electric
shock (duration: 0.5 s, current intensity: 0.5–1.5 mA) was applied to hind legs,
response from the left auditory cortex was recorded. 100� 100 ch MOS imaging
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1-3 min 1-3 min 1-3 min 1-3 min
30 Trials30 Trials

30 Trials
2-6 min

Normal Conditioning

Sham Conditioning

CS PhaseUS Phase

Pure tone (5 sec)Pure tone (5 sec)

Foot-shock (0.5 sec)

Fig. 1 Normal and sham
conditioning protocol

device (MiCAM ULTIMA-L, Brainvision Inc., Tokyo) was used for recording the
fluorescent signals from the cortex. The wavelengths of excitation and emission
were 540˙ 30 nm and > 600 nm, respectively.

3 Results

Figure 2 shows the comparison of the 
RR value measured before and after
normal/sham conditioning under anesthesia, where
RR is the variation of the R-R
interval in the electrocardiogram (ECG). There was a significant difference between
pre and post in the normal conditioning group (P< 0.01), suggesting that the guinea
pigs in the normal conditioning group were fear conditioned. On the other hand,
there was no significant difference between pre and post in the sham conditioning
group. Moreover, there was also a significant difference between normal and sham
conditioning groups after the conditioning (P< 0.05).

Next, the neural responses in the auditory cortex to electric foot-shocks alone
were investigated. Figure 3a shows the optical responses to foot-shock alone in the
three groups. The neural responses in the auditory cortex could be clearly observed
in both the normal and the sham conditioning groups, but no response could be
observed in the naı̈ve group. Figure 3b shows the time course of the optical response
to foot-shock alone in the three groups. No response was observed in the naı̈ve
group, whereas responses were observed in both the normal and sham conditioning
groups. ECG data show that the guinea pigs of the sham conditioning group were not
statistically significantly conditioned. However there was a tendency of a difference
between pre and post conditioning, implying that some level of conditioning might
have occurred. The time course of the normal tone response (gray line) shows a
peak onset latency of approximately 40 ms and an offset latency of approximately
100 ms. However, the time course of the neural responses in the auditory cortex to
electric foot-shock alone (black lines) shows an onset latency of 120 ms and a very
long duration of over 500 ms, suggesting that the time course of the optical response
to electric foot-shock was very different from that of the responses to pure tones.
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In order to confirm the correlation between the 
RR and the optical response,
we calculated correlation coefficient. The correlation coefficient R amounted to
�0.68, P< 0.01, implying that there was a significant negative correlation between
the 
RR and the optical responses. Next, the areas of the cortical responses to the
CS sounds and the electric foot-shocks were compared. As shown in Fig. 4a, there
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seemed to be a correlation between the shape and location of the activated area
in response to the CS sound and electric foot-shock, although there was a large
difference in time scale. In order to compare quantitatively, the normalized cross-
correlation between the activated area in response to the CS/non-CS sounds and that
to the electric foot-shock was calculated. The normalized cross-correlation R was
defined as:

R D

NP
jD 1

MP
iD 1

�
fi;j � f

� �
gi;j � g

�

s
NP

jD 1

MP
iD 1

�
fi;j � f

�2
s

NP
jD 1

MP
iD 1

�
gi;j � g

�2
;

where fi,j and gi,j are the (i, j) th element of the matrix F and G. The matrix F and G
represent 100� 100 ch optical imaging data in response to electric foot-shock and
CS/non-CS tone stimuli, respectively. Thus, N, MD 100 in the above formula. In
the matrix F and G, the numerical values of fi,j and gi,j were converted into 0 or
1 from the real optical imaging data 
F/F (%) according to the following rule: fi,j

and gi,jD 0 when 
F/F 	 3SD, and fi,j and gi,jD 1 when 
F/F> 3SD (standard
deviation) of the baseline. f and g are mean value of fi,j and gi,j, respectively.
Figure 4b shows that the activated area in response to electric foot-shock statistically
significantly had a larger cross-correlation value for tone response to the CS sound
compared to the non-CS sounds.
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4 Discussions

It has been reported that neural circuits involving the medial geniculate body, the
amygdala, the basal forebrain (BF) and the auditory cortex are very important
for fear conditioning using sound and foot-shock, and that the plastic changes in
the auditory cortex are induced by acetylcholine (ACh) released from the basal
forebrain to the cortex during conditioning [5]. ACh affects pyramidal neurons
and promotes plastic changes in the auditory cortex [6]. We propose the following
hypothesis about neural mechanisms of auditory fear conditioning. Figure 5 shows a
schematic diagram of the hypothesized neural circuit including the auditory cortex,
the thalamus, the amygdala and the basal forebrain based on Weinberger’s model
[7]. First, CS (tone) information is directly transferred to the auditory cortex by way
of MGv (the ventral subdivision of the medial geniculate body) in the thalamus, such
that pyramidal neurons in layers II and III produce EPSP (normal tone response).
Next, US (foot-shock) information is transferred to the amygdala by way of MGm
in thalamus, and ACh is released from BF to the auditory cortex. As a result, LTP
and/or LTP-like plastic changes occur in MGm (the magnocellular subdivision of
the medial geniculate body) and in the pyramidal neurons in layers II and III of the
auditory cortex, where EPSP is induced in response to CS. Then, after conditioning,
when US alone is presented, learning-dependent increase in ACh release from BF
occurs and US information is transferred to the auditory cortex by way of MGm,
eliciting EPSP in the pyramidal neurons where LTP and/or LTP-like plastic changes
were induced by conditioning. This, in turn, would result in the emergence of the
neural responses in the auditory cortex to a foot-shock alone, and might explain

auditory cortex 

MGm

thalamus

ACh
I

II/III

V/VI

IV

4kHz 8kHz12kHz16kHz

amygdala

CR

basal
forebrain

iso-frequency band in tonotopy

Pyramidal neuron

Pyramidal neuron with LTP/LTP-like plastic change

EPSP elicited in pyramidal neuron

Release of ACh

MGv MGm

CS (12kHz) US (shock)

amygdala

CR

basal
forebrain

MGv

Fig. 5 A neural model of
CS-specific tuning plasticity
in the primary auditory cortex
according to associative
learning
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the correlation between the auditory activated area in response to CS sound and
US foot-shock. We conclude that integration of different sensory modalities in the
auditory cortex was established by fear conditioning.
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The Theta Cycle and Spike Timing During
Fixation in Rat Hippocampal CA1

Muneyoshi Takahashi, Yoshio Sakurai, Yoshikazu Isomura, Minoru Tsukada,
and Johan Lauwereyns

Abstract In this paper, we report the first evidence that the spikes of CA1 neurons
shift approximately half of the theta cycle: The shift occurs from the positive peak of
the cycle recorded in the CA1 cell layer at the beginning of fixation, to the negative
trough at the end of fixation. This happens during a one-second period of immobile
fixation, while the rat is fully alert and waits for the next event. It is known that
the strongest input from entorhinal cortex occurs at the positive peak of the CA1
cell layer theta, whereas the strongest input from CA3 is associated with the trough
of the theta. We hypothesize that CA1 pyramidal cells perform a function as an
adaptive filter between entorhinal cortex and CA3, propagating relevant information
depending on task requirements.

1 Introduction

The theta rhythm in hippocampus is thought to play an important role in learning and
memory. Many rodent studies have focused on the hippocampal theta rhythm that
can be observed during translational movements (i.e., Type 1 theta [1].) However,
less is known about the function of the theta rhythm during alert immobility
(i.e., Type 2 theta [1].) Several studies pointed out that the hippocampus involves
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intensive information processing during the delay period when the subject stays
immobile while being fully alert [2]. Therefore, to understand the neural basis of
learning and memory it is essential to elucidate the hippocampal mechanisms during
this period.

During the period of active exploration, hippocampal place cells exhibit a
phenomenon called “theta phase precession,” firing spikes late in the ongoing theta
cycle when a rat first enters the place field of the cell, but firing spikes earlier
in the theta cycle as the rat progresses through the field [3, [4]. Some theoretical
studies claimed an importance of this phenomenon to the hippocampal information
processing [4–8]. Here we investigated the relationship between the theta rhythm
in the local field potentials (LFPs) and the spike timing of the CA1 area during
immobile fixation when Type 2 theta oscillation can be observed [9].

2 Methods

Four male adult Wistar/ST rats were trained to perform a delayed (memory-guided)
spatial alternation task using a nose-poking paradigm (Fig. 1) [9, 10]. A hyperdrive
assembly with 14 tetrodes was chronically implanted on the right CA1 (AP
�3.6 mm, ML 2.2 mm) of each animal. We recorded CA1 neural activity (multi-unit
activity and LFPs) with position tracking (Cheetah 160 Data Acquisition System,
Neuralynx Inc., Bozeman, MT, USA) during task behavior (60 min sessions) on
several days.

"RIGHT-TO-LEFT" Trial

"LEFT-TO-RIGHT" Trial

fixation: 1 sec; delay: 1.5 sec
reward: 25 mg pellet; ITI: 10 sec

start
fixation

delay

reward

reward
choice

ITI

choice

Fig. 1 Experimental design of the memory-guided spatial alternation task. The sequence shown
on top represents a RIGHT-TO-LEFT trial; the one below represents a LEFT-TO-RIGHT trial.
Open half circles indicate illuminated nose-poke holes whereas filled ones indicate the light is out
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Multi-unit activity was spike-sorted by standard methods [11, 12]. Well-isolated
putative pyramidal neurons were used for further analyses. Neurons whose activity
during fixation was significantly higher than the average firing rate throughout the
session were considered to be “fixation-related.” The differential firing rate of these
neurons between RIGHT-TO-LEFT (RL) and LEFT-TO-RIGHT (LR) trials during
fixation (i.e., sequence dependency) was statistically evaluated by Mann–Whitney
U-test (’D 0.05). Firing characteristics of fixation-related units were categorized in
several types using the following indices:

Ipre D fr.PRE/

fr.PRE/C fr.FIX/

Ipost D fr.POST/

fr.POST/C fr.FIX/

Where fr(X) denotes the firing rate during period X, PRE denotes the pre-fixation
period (1 s before), FIX denotes the fixation period, POST denotes the post-fixation
period (1 s after) [11]. We focused on the “fixation only type” (Ipre< 0.5 AND
Ipost< 0.5) in the present study (i.e., “fixation unit”).

LFPs were filtered offline to extract their theta-band rhythms (6–10 Hz). The
instantaneous filtered LFP phase was calculated by Hilbert transformation. Fixation
units that showed more than 100 spikes in total during the fixation periods in a single
recording session were selected, and the circular correlation between the LFP phase
(recorded from the corresponding tetrode) and spike timing during fixation was
statistically evaluated (p< 0.05) [13]. Data from all significant sequence-dependent
fixation units in this analysis were merged and we conducted a population analysis
to elucidate the general trends of CA1 activity during alert immobility.

3 Results

We recorded 248 putative CA1 pyramidal neurons from a total of 18 task sessions.
Forty neurons showed fixation-specific increase in their firing (i.e., fixation units)
and 28 of these showed sequence dependency, meaning the firing rate during fixation
was statistically different between RL and LR trial sequences. We further analyzed
24 of these, which showed more than 100 spikes in total during the fixation periods
in a single session. Sixteen (66%) showed a significant circular correlation between
spike-timing and the ongoing theta cycle during fixation.

First, we investigated the relationship between spike timing and spiking phase
of the theta cycle on a trial-by-trial basis (Fig. 2) and confirmed the theta phase
precession-like phase shift occurred during fixation in several trials. Interestingly,
there seemed to be a consistent trend such that the spikes mainly occurred at the
positive peaks of the theta cycles recorded around the CA1 cell layer at the
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single trial. The shaded duration (grey) indicates 1 s of fixation

beginning of the fixation period whereas they shifted and occurred at the negative
trough at the end of fixation.

To investigate this profile more systematically, we next drew histograms of the
2-D colored map of spike timing versus spiking phase for each neuron during a
single recording session. Several examples are shown in Fig. 3. The relationships
between spike timing and spiking phase differed from neuron to neuron and
depended on the trial sequence. However, in many cases, we confirmed a trend such
that the spikes mainly occurred at the positive peaks of the theta cycles (0ı in the
figure) at the beginning of the fixation period whereas they shifted and occurred at
the negative trough (�180ı) at the end of fixation.

Finally, for these cells, we drew population histograms of the 2-D colored map
of spike timing versus spiking phase (Fig. 4a) and the mean values for each 0.1 s
bin (Fig. 4b). Again, the data clearly showed the phase shift trend described above.
This trend was more prominent for the “preferred-sequence” trials, in which the cell
showed the highest firing rate.

4 Discussion

Several recent studies showed that a theta phase precession can be observed while
the subject is located in the same position but continuing the movements (e.g., a
running wheel [14], a head-fixed treadmill [15]) or during a transitional stage in
jumping or dropping to avoid foot shocks that included a certain freezing period
[16]. In contrast to these reports, we found theta phase precession-like activity
during an immobile fixation period while the rat is fully alert and waits for the
next event (i.e., under Type 2 theta). However, the properties of the phenomenon
were quite different from those reported in previous studies that concentrated
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on mobile periods. First, the phase shift advanced only half of the theta cycle.
Yamaguchi et al. (2002) pointed out that the theta phase precession during mobile
periods consists of two independent components and each of them covers either
the first or the second 180ı of precession [17]. This theoretical prediction is now
confirmed by several lines of empirical evidence [18, 19]. Our results also support
this perspective, suggesting that the phase precession cannot advance more than
half of a theta cycle (i.e., 180ı). Second, the initial spike timings were highly phase-
locked to the positive peaks of the theta cycle. This indicates that the variation of the
initial spiking phase in the traditional phase precession observed during translational
movement might be modulated by physical factors such as variance of movement
velocity, sensory inputs, and so forth.

An important question is why the theta phase shift occurs during fixation in
memory-guided spatial alternation. What could be the functional significance of
this phenomenon for the information processing in hippocampal CA1? It is known
that two major, mutually exclusive streams of input reach CA1: from entorhinal
cortex (EC) and from CA3, corresponding to the peak and trough of the theta cycle
[7]. Thus, CA1 spikes at different LFP phases may propagate different types of
information toward downstream structures for further processing. According to this
perspective, the theta phase shift during fixation should always advance 180ı (i.e.,
from EC to CA3) regardless of the fixation duration. Future studies should verify the
hypothesis that CA1 performs a function as an adaptive filter between EC and CA3,
passing on relevant information from EC to CA3 depending on task requirements.
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Reactivation Hypothesis in Episodic Memory:
From the Findings of Neuroimaging Studies

Aya Ueno, Jiro Okuda, and Toshikatsu Fujii

Abstract Memory traces of an event include various types of information about the
content of the event and the circumstances under which the individual experienced
it. How these various types of information are stored and later retrieved, however, is
poorly understood. The reactivation hypothesis postulates that retrieval of specific
event information reactivates cortical regions that were active during the encoding of
the information, with the aid of binding functions in the medial temporal lobe (MTL)
structures. In this paper, we describe our two PET studies on reactivation hypothesis,
and then review previous neuroimaging studies relevant to this hypothesis.

1 Introduction

Episodic memory is memory that allows one to remember past events in one’s life
[1]. It is widely accepted that memory traces of an event include various types of
information about the content of the event and about the circumstances in which
the individual experienced the event [2] [3, 4]. However, how these various types
of information are stored and later retrieved is poorly understood. One hypoth-
esis postulates that retrieval of a specific event information reactivates cortical
regions that were active during the encoding of the information [5] (the cortical
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Fig. 1 Reactivation hypothesis

reinstatement hypothesis), with the aid of binding functions of the medial temporal
lobe (MTL) structures [6]. In this paper, by the “reactivation” hypothesis, we refer
to the reactivation of both cortical regions and the MTL structures (see Fig. 1). To
date, however, only a relatively small number of neuroimaging studies have directly
assessed whether the neural activity elicited during encoding is reactivated during
retrieval of the encoded information.
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2 Our Two Studies on Reactivation Hypothesis

We used positron emission tomography (PET) to identify brain regions related to
the encoding and retrieval of two different types of visual information (i.e., color
and motion).

In Study 1 [7], subjects were asked to encode colored (red or green) and
achromatic random shapes. At subsequent testing, subjects were presented with
only achromatic shapes, which had been presented with or without colors during
encoding, and were engaged in retrieval tasks of shapes and colors. Overlapping
activity was found in the MTL and occipital lobe (the lingual and inferior occipital
gyri) in the right hemisphere during the encoding and retrieval of meaningless
shapes with color information compared with those without color information
(Fig. 2a).

Fig. 2 Brain activations in our two PET studies. (a) Brain activations common to the encoding
and retrieval of color information: the right lingual gyrus (18, �88, �6), the right inferior occipital
gyrus (34, �88, �16), and the right parahippocampal gyrus (18, �22, �16). (b) Brain activations
common to the encoding and retrieval of motion information: the right middle temporal gyrus (46,
�58, 2) and the left hippocampus (�34, �12, �14)
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In Study 2 [8], subjects were asked to encode moving (turning around to the right
or the left) and static random shapes. At subsequent testing, subjects were presented
with only static shapes, which had been presented with or without motion during
encoding, and were engaged in retrieval tasks of shapes and motion. Overlapping
activity was found in the left MTL and the right middle temporal gyrus (V5/human
MTC) during the encoding and retrieval of shapes with motion compared with those
without motion (Fig. 2b).

These two studies demonstrated that, regardless of the type of the information,
both the MTL and the higher-order visual cortex were consistently reactivated.
These results indicate that memory contents are stored in the relevant cortices of
the brain, and medial temporal lobe (MTL) structures bind these constituents to
each other and to event-specific contextual information. Thus, these findings seem
to support the view that the retrieval of specific event information is associated with
reactivation of both the MTL structures and the regions involved in encoding the
information (i.e., the reactivation hypothesis).

3 Previous Neuroimaging Studies Relevant
to the Reactivation Hypothesis

We found five PET studies, including our two studies, and 12 fMRI studies relevant
to the reactivation hypothesis. Several studies employed blocked experimental
designs (Ueno et al. [7], Ueno et al. [8], Nyberg et al. [9], Nyberg et al. [10],
Persson and Nyberg [11], Vaidya et al. [12]). The results of these studies have shown
cortical reinstatement effects, but the blocked designs of these studies leave open the
possibility that the material-specific retrieval effects reflect the attempt to retrieve
targeted memories, rather than the consequence of successful retrieval.

Some other studies employed event-related design with fMRI (Wheeler et al.
[13], Wheeler et al. [14], Wheeler and Buckner [15], Khader et al. [16], Wheeler
and Buckner [17], Gottfried et al. [18], Kahn et al. [19], Woodruff et al. [20],
Johnson and Rugg [21], Johnson et al. [22], Vannini et al. [23]). However, only four
studies have directly assessed whether the neural activity elicited during encoding is
reactivated during retrieval of the encoded information. The remaining seven studies
reported brain activity only during the retrieval phase.

Another contaminating factor is a repeated encoding procedure in several studies
including ours. Most of the studies asked subjects to learn associations between
plural components of stimuli. The difficulty in associative learning requires the
repeated encoding in several studies. This multiple encoding procedure makes it
impossible to determine whether memories assessed are episodic or semantic in
nature.

As for the brain activations reported in the studies that assessed both encoding
and retrieval phases, some of the sensory-processing brain regions (i.e., posterior
association cortices) activated during encoding are reactivated during retrieval.
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The findings with regard to MTL are, however, inconsistent with each other; five
studies have reported MTL reactivation (Ueno et al. [7], Ueno et al. [8], Nyberg
et al. [9], Johnson et al. [22], Vannini et al. [23]), but the others have not (Nyberg
et al. [10], Persson and Nyberg [11], Vaidya et al. [12], Wheeler et al. [13], Johnson
and Rugg [21]). We do not know the precise reason for this inconsistency, but one
possible explanation is that these studies differed from one another in terms of ex-
perimental paradigms such as the stimuli and tasks involved. Therefore, in the future
studies, it is worthwhile investigating what circumstances lead to overlapping acti-
vation in the MTL and other association cortices during both encoding and retrieval.
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of complex hetero systems), MEXT, Japan.
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Model-Based Analysis of Functional
Connectivity During Associative Learning
in Schizophrenia

Mihály Bányai, Vaibhav Diwadkar, and Péter Érdi

Abstract Schizophrenia is often regarded as a set of symptoms caused by impair-
ments in the cognitive control in macro-networks of the brain. To investigate this
hypothesis, an fMRI study involving an associative learning task was conducted
with schizophrenia patients and controls. A set of generative models of the
BOLD signal generation were defined to describe the interaction of five brain
regions (Primary Visual Cortex, Superior Parietal and Inferior Temporal Cortex,
Hippocampus and Dorsal Prefrontal Cortex) and the experimental conditions. The
models were fitted to the data using Bayesian model inversion. The comparison
of different model connectivity structures lead to the finding that in schizophrenia,
there are significant impairments in the prefrontal control of hippocampal memory
formation in patients.

1 Introduction

Schizophrenia is a complex disorder with diverse related impairments in the
central nervous system. Specifically, altered interaction of prefrontal cortex and
hippocampus is hypothesized to be a central aspect of its pathophysiology [1]. Here
we investigated impaired functional macro-network interactions in schizophrenia
by applying Dynamic Causal Modelling (DCM) [2] to the analyses of fMRI data
collected during an object-location paired-associate learning paradigm [6]. The aim
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of modeling interactions of brain areas using DCM is to characterize: (a) the
intrinsic connectivity of the network and (b) the contextual modulation of the
intrinsic connections by psychological aspects of the task.

1.1 Associative Learning: Behavioral Task and Data

We adopted a paired-associate learning paradigm in which subjects are required
to learning arbitrary associations between locations (in space) and objects (with
unique identities). The two kinds of memoranda (“where” and “what”) are processed
by the two components, i.e. spatial (dorsal) and object (ventral), of the forward
visual pathway [3]. It is assumed that these information streams converge in the
hippocampus, with potential supervisory inputs from the prefrontal cortex. Through
the repeated alternation between learning and retrieval epochs using a block design,
we were able to capture learning dynamics in controls and patients over time
(see Fig. 1).

2 Methods

2.1 Dynamic Causal Modelling

DCM provides a complete phenomenological model framework for the analysis
of fMRI data. For a detailed description see [2]. The model structure consists of
two components: a neural state equation and a hemodynamic model. The neural
component describes the time evolution of the neural state variables, x, which refer
to the neural activity of the brain areas. This is a bilinear formula of the state
variables themselves and the input variables, u, which are the conditions defined
by the experiment (Eq. 1). The connectivity parameters of the neural model are the
elements of the three matrices, �n D fA;B;C g. A contains the intrinsic coupling
parameters, the causal effects of the areas on each other,B contains the modulatory
parameters, the effects of the inputs on the intrinsic connections, andC contains the
direct effects of the inputs on the areas.

Px D
 
AC

NX

iD1
ujB

j

!
x C Cu (1)

y D �.x; �h/ (2)

The hemodynamic component describes the nonlinear mapping from the neural
activity to the fMRI signal, y, actually measured in the brain areas (Eq. 2). For
the details of the hemodynamic model see [4]. We need to estimate the values of
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Fig. 1 Top: structure of the experimental paradigm is depicted with two examples of associations
presented during encoding/consolidation (“bed” and “book”) and examples of those locations cued
during recall/retrieval. Bottom: learning dynamics in the associative memory task in controls and
schizophrenia patients over time. The data provide evidence of generally asymptotic learning in
both groups, with reduced learning rates in patients compared to controls

the parameter set, � D f�h; �ng best fitting to measurement data. One possible
procedure to do so is the Bayesian maximum a posteriori (MAP) estimation
technique defined by Eq. 3, where M denotes the specific connectivity pattern of
the model.

p.� j y;M/ D p.y j �;M/p.� jM/

p.y jM/
(3)
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Fig. 2 Schematic diagram of
a generative DCM of an fMRI
study

For all probability distributions in (3), we assume that both the prior (p.� jM/)
and posterior (p.� j y;M/) distributions are Gaussians, and the MAP estimation is
defined as the mean of the posterior distribution. To compare models with different
connectivity patterns, we can set the prior probability of having certain connections
is a certain model to zero (Fig. 2).

2.2 Comparison of Models

We can compare models with different connectivity patterns in a Bayesian way by
estimating their model evidence:

p.y jM/ D
Z
p.y j �;M/p.� jM/d� (4)

The model evidence is the probability of obtaining the actual measurement
conditioned on the model form, integrated on the whole parameter space of the
model. The computation of the evidence is usually not feasible, so we approximate
it by a variational Bayesian method. To obtain the expected posterior probabilities
of all models in a model set, we assume a hierarchical model of data generation.
We can invert this model using a variational Bayesian method that requires only
the estimates of the log-evidences for each subject-model pair. This way we obtain
the expected posterior probability of each model regarding the subject group. For a
complete description of the comparison method see [5].
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Fig. 3 The model space for
varying intrinsic connections.
Connections marked by
dashed line are varied

Table 1 Posterior model probabilities for the patient ant control
groups

No. Additional connections SCZ HC

1 None 0.099 0.079
2 PFC!HPC 0.145 0.106
3 HPC!IT 0.099 0.079
4 HPC!IT, PFC!HPC 0.172 0.101
5 HPC!SP 0.158 0.081
6 HPC!SP, PFC!HPC 0.095 0.116
7 HPC!SP, HPC!IT 0.136 0.081
8 HPC!SP, HPC!IT, PFC!HPC 0.095 0.357

2.3 Model Definitions

A set of causal models of fMRI signal generation (with the mathematical structure
described above) were defined to evaluate connections between five regions material
to the task (Primary Visual Cortex (V1), Superior Parietal (SP) and Inferior
Temporal Cortex (IT), Hippocampus (HPC) and Dorsal Prefrontal Cortex (PFC)).
To model the information processing in the associative learning task, we assumed
the presence of two streams connecting the five brain regions. The “forward” or
“data” stream propagates sensory information at different levels of processing from
the low-level sensory areas towards high-level cognitive areas. The “backward” or
“control” stream propagates control signals from the high-level areas towards the
lower-level ones. In this paper we examine impairments in cognitive control, so the
focus of the investigations is the control stream.

Multiple models were evaluated by varying hypothesis-related intrinsic connec-
tions between regions, while fixing other connections (A matrix). We included the
intrinsic connections of the data stream to all models. Based on the hypothetical
control stream we defined three additional connections that may extend the basic
model in different combinations. The eight possible combinations of these connec-
tions constitute the model class. All possible intrinsic connections are visualized in
Fig. 3 and described in Table 1.
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3 Results

3.1 Model Selection

The results show that in the control group (HC) there is a clear winner for the
intrinsic connection patterns, the model that contains the full control stream. In
the schizophrenia group (SCZ), there is no clear winner, there are several more
probable models, and the differences are smaller between model probabilities. It
can also be seen that while the winning model in the HC group contains all the
connections defined, while the most probable models in the SCZ group lack more
or less connections. This result implies that the information processing network of
schizophrenia patients is fundamentally different than the one of controls. Results
are shown in Table 1. However, the model selection does not provide the specific
pathways being impaired, so the parameter level analysis is also necessary.

3.2 Effective Connectivities

In the next step of the analysis, we give a more detailed quantitative characterization
of the results. At the parameter level, we look for significant differences in the
effective connectivity in the models fit to the data of the two subject groups,
assuming fixed model structure. To do so, we selected a reference model for
comparison by running the model selection for all subjects, no distinction by group.

The winning model is the one containing all hypothesized connections. The
means and standard deviations of the intrinsic coupling and modulatory parameters
are depicted in Fig. 4.

The significant differences between groups are in the strength of intrinsic
connections between prefrontal cortex and hippocampus and between hippocampus
and inferior temporal cortex. All these connections are weakened in the SCZ
group, supporting the hypothesis about impaired effective connectivity in the control

Fig. 4 Average connectivity
parameters for HC and SCZ
(dark) groups. The significant
differences are in the
prefronto-hippocampal and
hippocampo-inferior
temporal pathways
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stream in schizophrenia. Both these connections are playing important roles in the
cognitive control of the associative memory formation. Furthermore, we see the
reduced effects of Time on these causal links meaning reduced excitatory contextual
modulation by learning. This can be seen as reduced task-related plasticity of a
pathway in the illness.

4 Discussion

Learning impairments have been considered good markers of hippocampal impair-
ment in schizophrenia [7], and computational models of hippocampal function have
been applied to study this cognitive impairment in the disorder [6, 8]. However, the
basis of these impairments in terms of network interactions has not been known.
Our results (the first based on in vivo fMRI data) provide evidence of impaired
frontal inputs to the hippocampus, and reduced learning related plasticity of fronto-
hippocampal coupling in the disorder.
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Neuronal Activity in the Prefrontal Cortex
During Performance of a Dual Task Consisting
of a Main- and An Interrupting-Task

Atsushi Miyazaki, Toshi Nakajima, Keisetsu Shima, and Hajime Mushiake

Abstract To investigate the neuronal mechanism of multi-tasking, we recorded
neuronal activity in the prefrontal cortex (PFC) and the dorsal premotor cortex
(PMd) while monkeys performed a dual task consisting of a main-task and an
interruption. We found PFC neurons responded selectively to either the interruption
or resumption to the main-task. PMd neurons showed sustained activity related to
preparation for the main-task. Accordingly, we hypothesized a model in which the
PFC controls a dual task by providing biasing signals to downstream systems.

1 Introduction

In order to cope in a dynamically changing environment, we often manage interrup-
tions even while performing certain main-tasks. Obviously, multi-task performance
requires not only a system to select action in response to immediate sensory input
but also an executive system that controls behavior to obtain a certain behavioral
goal. The prefrontal cortex (PFC) has been known to be crucially involved in
executive control of behavior [1, 2]. Human clinical studies have demonstrated
that frontal lesion, including the PFC, causes impairment of dual task performance
[3]. Neurophysiological studies have revealed that single-neuron activity in the
PFC reflects behavioral goals [4], rules to select action [5], the category of visual
objects and the category of behavioral sequences [6, 7]. In contrast, the dorsal
premotor cortex (PMd) has been implicated in rule-based action selection and
motor preparation and execution [8]. However, how these areas are involved in
multi-tasking is poorly understood on the single-neuron level. To address the
neuronal mechanism of multi-tasking, we trained monkeys to perform a dual task;

A. Miyazaki (�) • T. Nakajima • K. Shima • H. Mushiake
Department of Physiology, Tohoku University School of Medicine, 2-1, Seiryo-cho Aoba-ku,
Sendai, Miyagi 980-8575, Japan
e-mail: a-miyazaki@med.tohoku.ac.jp

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (III),
DOI 10.1007/978-94-007-4792-0 104,
© Springer ScienceCBusiness Media Dordrecht 2012

795



796 A. Miyazaki et al.

while the animals repeated a memorized motor sequence, an interrupting signal
instructed the animals to perform a separate movement, independent of the motor
sequence. The animals were required to reproduce the original motor sequence after
the interruption. We recorded neuronal activity in the PFC and PMd while they
performed the dual task.

2 Methods

We used two monkeys (Macaca fuscata, 6.5 and 5.8 kg), cared for in accordance
with the Guidelines for Institutional Animal Care and Use published by our institute.
We trained these monkeys to perform a dual task consisting of a main- and an
interrupting-task. During the experiment, each animal sat in a primate chair, facing
a computer display.

Experimental sessions were divided into blocks of six consecutive trials. Fig. 1a
illustrates time course of an example experimental block. The temporal structure
of the block was as follows: (1) Main-task with visual guidance: the animals
had to perform a sequence of two movements (main sequence) in response to
colored cues presented one after the other with an intervening delay. The red,
blue, yellow or green cues indicated either of four movements shown in Fig. 1b.
The animals had to memorize the particular main sequence while performing
it twice. (2) Main-task before interruption: the memorized main sequence was
repeated for two trials. (3) Interrupting-task: the animals had to execute a movement

Fig. 1 Behavioral task. (a) Temporal sequence of behavioral events. (b) Four possible movements.
(c) A schematic drawing of a behavioral task
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(interrupting movement) indicated by a colored cue, branching from the main-task.
The relationship between colored cues and movements was the same as (1). (4)
Main-task after interruption (resumption trial) the animals were required to recall
and perform the main sequence once without visual guidance. A new main sequence
with an interruption combination was selected pseudorandomly and alternated for
each block. Fig. 1c illustrates cardinal processes for performance of the dual task:
(a) branching from the main- to the interrupting-task, (b) covert maintenance of
the information for the main-task during the interruption, and (c) resumption to the
main-task after interruption.

We recorded neuronal activity in the PFC and PMd of both monkeys. In this
report, we focus our analysis on neuronal activity related to the interruption and
resumption to the main task. If neuronal activity was significantly stronger in
the interrupting task than in the initial trial of the main-task where the main
sequence was instructed (one-tailed t-test, P< 0.05), the activity was classified as
interruption-selective. Similarly, if neuronal activity became significantly stronger
in the main-task after interruption (i.e., resumption trials) than before the interrup-
tion (one-tailed t-test, P< 0.05), the activity was classified as resumption-selective.
We computed the index for the aforementioned selectivity with the following
formula: �log10(P value).

3 Results

For both monkeys, the correct rates in the interrupting-task and main-task after
interruption were> 98% and> 80%, respectively. We recorded activity of 270
PFC neurons and 214 PMd neurons in two monkeys. Of these, 131 PFC and
104 PMd neurons were classified as interruption-selective, whereas 102 PFC and
62 PMd neurons were found to be resumption-selective.

Interruption selective activity in the PFC: We found PFC neurons exhibiting
distinct cue response in the interrupting-task, not in the main-task. An example
neuron is shown in Fig. 2a, b. We divided a trial period into consecutive 250-
ms periods and estimated interruption selectivity for each period. For this neuron,
interruption selectivity was the strongest at the early-cue period (Fig. 2c).

Interruption related activity in the PMd: Unlike PFC neurons, a typical PMd
neuron exhibited sustained precue activity in the interrupting-task. The activity
ceased after cue onset (Fig. 2d, e). Accordingly, interruption selectivity of this
neuron was significantly high before cue presentation but diminished in the early-
cue period (Fig. 2f).

Comparison of interruption-related activity in the PFC and PMd: We performed a
population analysis of interruption-selective neurons (Fig. 3). During the trial-start
and precue periods, interruption selective neurons were found more frequently in
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Resumption selectivity of the neuron. (d) The fractions of resumption-selective neurons in the PFC
and PMd. The other display formats are the same as in Fig. 2, 3

the PMd than in the PFC. This relationship reversed after cue presentation. The
fraction in the PFC peaked at the early-cue period and decreased thereafter, whereas
the fraction in the PMd continuously decreased.

Resumption selective activity in the PFC: Activity of PFC neurons tends to be
enhanced after an interruption. We found that a neuron became continuously active
during motor preparation in the main-task after interruption (Fig. 4a, b). Resumption
selectivity of this neuron was significant throughout the analytic periods (Fig. 4c).
Population analysis revealed gradual increment of resumption selective neurons in
the PFC until the onset of the 1st movement (Fig. 4d). The opposite trend was
observed in the PMd.

4 Discussions

We found interruption- or resumption-selective activity in the PFC and PMd
while monkeys performed a dual task. PFC neurons preferentially responded to
interrupting cues (Fig. 2) and showed enhanced activity on motor initiation after an
interruption (Fig. 4). PMd neurons showed sustained activity until cue presentation;
thereafter, activity decreased (Fig. 3).
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Fig. 5 A model of the Interrupting processes. SAS: supervisory attentional system. M: main-task
module. I: interrupting-task module. Thick arrows indicate biasing signals

The dual task we used in the present study involves two components: task-
switching and multi-tasking. Previous studies have demonstrated that the PFC is
implicated in task-switching [9, 10] and multi-tasking [11, 12]. However, little is
known of neuronal activity during a dual task, which requires concurrent processing
of a main-task and a sub-task. Our data suggest that the PFC is involved in branching
into two concurrent processes (i.e., performance of the interrupting-task and covert
maintenance of the main-task) and resumption.

Here, we hypothesize a model of the interrupting process in the PFC. This
model is composed of modules for the main-task and the interrupting-task, under
control of the supervisory attentional system (SAS). The SAS, originally proposed
by Norman and Shallice, contains the general programming or planning systems that
can operate on schemas in every domain [13]. Biasing signals from the SAS play
a key role in this model. Initially, the main-task module simply outputs memory-
guided behavior responding to triggered signals (Fig. 5a). When the main-task
was interrupted, the biasing signals simultaneously activated the interrupting-task
module and suspended the main-task module while information for the main-
task was covertly maintained (Fig. 5b). After the interruption, the biasing signals
inactivated the interrupting-task module and reactivated the main-task module,
retrieving information for the main-task (Fig. 5c).
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Functional Analysis of the Hippocampus
Using Opto-fMRI

Yoshihumi Abe, Masaki Sekino, Yugo Fukazawa, Hiromu Yawo,
Hiroyuki Ohsaki, and Tatsuhiro Hisatsune

Abstract A new technique ‘opto-fMRI’ combined optogenetics and fMRI (func-
tional magnetic resonance imaging) was born in 2010. We investigated hippocampal
network and activity using opto-fMRI. We stimulated the dentate gyrus expressing
channelrhodopsin2 (ChR2) by optic light. As a result, we observed activation of the
CA3 region and in the hippocampus. In this paper, we succeeded in measuring opto-
fMRI BOLD (blood oxygenation level-dependent) signals of the hippocampus.

1 Introduction

In recent years the technique of optogenetics has been thoroughly developed. By
inducing the expression of light-gated cation channel channelrhodopsin2 (ChR2)
in neuronal cells, we can operate the activity of neurons by using light. ChR2 has
become an important tool in neuroscience.
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It is well known that functional magnetic resonance imaging (fMRI) based on the
blood oxygenation level-dependent (BOLD) signal can be used to measuring brain
activity and neural network.

In recent papers, optogenetics and fMRI were combined [1, 2]. This new
technique was called opto-fMRI (ofMRI). The response of brain stimulated by the
light to neuronal cells expressing ChR2 can be measured by fMRI. Opto-fMRI was
enabled to observe the entire brain activity and network noninvasively. This allows
us to perform two experiments. One was to investigate neuronal networks. The other
was to investigate the function of neurons.

As reports until now, Lee et al. demonstrated opto-fMRI and reported a BOLD
response in the thalamus during local primary motor cortex (M1) stimulation
[1]. Also, Desai et al. reported the same in the sensory cortex [2]. Both reports
investigated the networks of cerebral cortex.

Our study focused on the hippocampal network. The hippocampus plays impor-
tant role in neurogenesis and memory formation. Knowing the hippocampal network
has contributed to understanding how memory is formed and where memory is
accumulated. Also, this knowledge has contributed to the studies of dementia and
amnesia in memory impairment disorders.

It is well known that the stimulation from the entorhinal cortex (EC) inputs into
the dentate gyrus (DG) in the hippocampus and the signals from the DG are sent to
the CA3 and CA1 regions [3, 4].

In this study, we investigated how the dentate gyrus of the hippocampus responds
when it is stimulated by light. Also, we confirmed whether the response of
hippocampus by opto-fMRI was similar to already-known hippocampal network.

2 Methods

Animal. Transgenic rats used in our study were Wistar-Thy-1.2 promoter-ChR2-
Venus rats (12–13 weeks old) [5]. To perform opto-fMRI, animals were anesthetized
with an alpha-chloralose (80 mg/kg) i.p. injection. All experiments were carried out
in accordance with animal experimentation protocols approved by the Animal Care
and Use Committee of the University of Tokyo, Japan.

fMRI. fMRI scans were conducted with 4.7 T MRI scanner (Varian technologies).
We obtained BOLD fMRI data using fast low-angle shot (FLASH) sequence with
the following parameters: trD 156.2 ms, teD 15 ms, flip angleD 20 deg, field
of viewD 30� 30 mm, acquisition matrixD 128� 128, slice thicknessD 1.5 mm,
slice numberD 6. Structural images were obtained by spin echo (SE) sequence using
the following parameters: trD 3,000 ms, teD 80 ms, field of viewD 30� 30 mm,
acquisition matrixD 128� 128, slice thicknessD 1.5 mm, slice numberD 20. We
also obtained structural images by diffusion weighted image (DWI) with fol-
lowing parameters: trD 3,000 ms, teD 50 ms,b valueD 1,496 s/mm2, field of
viewD 30� 30 mm, acquisition matrixD 128� 128, slice thicknessD 1.0 mm.
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Optical stimulation. A nonmagnetic cannule was inserted through craniotomy into
the dentate gyrus (DG:�1.5 mm AP, �3.3 mm ML, �2.8 mm DV) of animals
subjected to fMRI. We performed 10 Hz, 10 ms pulsewidth stimulation with 473 nm
light (Shanghai Laser). Optical fibers were used with the optical fiber output power
level at about 10 mW.

Analysis of fMRI data. We used spm5 software (Welcome Trust Center Neuroimag-
ing) for pre-processing, including slice realignment, spatial normalization, and
smoothing. Statistical analysis was also conducted using spm5. We determined the
brain regions displaying significant BOLD changes by student’s t-test. For making
T-contrast images, we analyzed regions showing significant activation (p< 0.05,
p< 0.01, uncorrected) [6].

Immunochemistry. Animals were perfused by 4% paraformaldehyde (PFA) after
being subjected to fMRI. The brains were removed, post-fixed overnight with 4%
PFA at 4ıC, and placed in 30% sucrose in phosphate-buffered saline (PBS) for
3 day at 4ıC and then frozen at �80ıC. The frozen brains were sliced using a
cryostat (MICROM, Walldorf) into 40-�m-thick coronal sections. Sections were
washed in TBS and stained with DAPI (Sigma, 1/1000). Then, the sections were
coverslipped in ImmuMount (Shandon, Pittsburgh). Stained sections were examined
using confocal laser scanning microscopy (TCS SP2; Leica, Mannheim). Obtained
image data were processed using image processing software (LCS; Leica).

3 Results

We examined the expression of ChR2-Venus in the transgenic rat brain. We
identified the expression in the dentate gyrus (DG) and hilus of the hippocampus
(Fig. 1a). Also, ChR2-Venus was expressed in the granule cells of granule cell layer
(GCL) (Fig. 2b).

Fig. 1 Expression of ChR2-Venus in the hippocampus. (a) Expression of ChR2-Venus in dentate
gyrus (DG) and hilus of the hippocampus. green : ChR2-Venus, blue: DAPI (nucleus), scale
barD 50 �m. (b) The expression of ChR2-Venus in granule cell layer (GCL). Scale barD 10 �m
(Color figure online)
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Fig. 2 Response of the hippocampus after light stimulation at DG. A significant BOLD signal
change of the hippocampus after light stimulation at DG was observed. Above: light stimulated
(p< 0.05, nD 12), middle : light stimulated (p< 0.01, nD 12), below : the optic fiber was inserted
to the DG but light was not stimulated (p< 0.01, nD 4). Distance from the bregma is shown
as numbers below the figure. The each sections were constituted of 1.5 mm thickness and had
˙0.75 mm thickness as the center in the below number. For example, the section of �3.3 mm
from the bregma was constituted of the thickness from �3.96 to �2.64 mm. The black spot is the
tip of the optic fiber. Color bar is t-value (Color figure online)

Next, we performed opto-fMRI in the DG of the hippocampus. FMRI BOLD data
were obtained by fast low-angle shot (FLASH) sequence. As structural images, we
used T2 weighted image (T2WI) by spin echo (SE) sequence and diffusion weighted
image (DWI). We confirmed where the location of the canule in the DG using the
structural images obtained T2WI. FMRI data was analyzed statistically by spm5.
Analyzed data was overlaid on the structural image by DWI and we identified the
activated region after light stimulating at DG. As a result, we observed activation of
the CA3 region in the hippocampus, when the DG was stimulated by light (Fig. 2).
In another region, we observed the activation region in cerebral cortex (visual cortex,
somatosensory cortex, and motor cortex), thalamus, and CPu (caudate putamen)
(Fig. 2a). We indicate that the thalamus was stimulated by the light of the optic
fiber, and the signals from the thalamus were sent to cerebral cortex, because it is
under hippocampus and expressed ChR2. Also, we indicate that the signals of the
cerebral cortex from the thalamus were projected to CPu.

4 Discussions

In the studies until now, optogenetics and fMRI have been fitted together. We used
opto-fMRI and investigated the activity and networks of the hippocampus. As a
result, we observed activation of the CA3 region in the hippocampus.

In already-known networks of the hippocampus, the perforant path from the
entorhinal cortex (EC) extends to the molecular layer of hippocampus and project
to the granule cells of GCL. The granule cells activated by EC pass through mossy
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fibers of the granule cells to send the signals to CA3 pyramidal cells [7]. The CA3
pyramidal cells extend the axon called ‘Schaffer collateral’ to CA1 pyramidal cells
and project to the region of CA1. The signal of the CA1 pyramidal cells are returned
again to EC. Also, the axons of the CA3 pyramidal cells have the property of
excitatory feedback to enhance the signals of the CA3 region.

In our study, after the DG was stimulated by light, the region of CA3 was the most
activated area. The result indicates that the signals from DG were sent to the region
of CA3, and the CA3 pyramidal cells were activated and enhanced by excitatory
feedback. In a part of the CA1 region, a little activation was observed. It indicates
that the region of CA1 was projected by the activated region of CA3, or directly
activated by light due to being located above the DG.

In this study, we succeeded in measuring opto-fMRI BOLD signals of hip-
pocampus. We suggest that this technique is very valuable for measuring the
brain activity and network. However, the hippocampal activity is suppressed under
anesthesia condition. Therefore, we will need to perform opto-fMRI without the use
of anesthesia in order to prevent the reduction of hippocampal activity.

Acknowledgments We thank Drs. Tsurugizawa and Yahata for technical assistance with spm5.
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Modulation of Cortico–Hippocampal
EEG Synchronization with Visual Flicker:
A Theoretical Study

Naoyuki Sato

Abstract Visual flicker is known to induce electroencephalography (EEG) at the
frequency of the flicker. An induced EEG on the scalp reflects neural synchro-
nization of a number of brain regions, thus it can be expected that visual flicker
can be used to probe the synchronization network of multiple regions. In this
study, a neural network model is proposed to analyze EEG synchronization in the
cortico–hippocampal network in relationship to the flicker. According to results,
it is predicted that the flicker phase–locking to the frontal EEG on the scalp can
modulate EEG synchronization in the cortico–hippocampal network.

1 Introduction

Visual flicker is known to induce a scalp electroencephalogram (EEG) at the
frequency of the flicker [1]. Interestingly, the power of the induced EEG is not fixed
but, rather, it depends on the functional state of the subject, such as attention [2] or
binocular fusion [3]. This indicates that the connectivity of cortical regions in terms
of neural oscillation changes according to the task demands. Thus the visual flicker
is expected to be a probe for the functional synchronization network of multiple
brain regions.

The dynamics of flicker–induced EEG have been studied with models using
nonlinear oscillators [1] of which activity can be phase–locked to periodic inputs
in a few oscillation cycles. Unlike neurophysiologically based models [4–6], the
description of the nonlinear oscillators does not directly correspond with parameters
of real neural networks. However, it has an advantage in qualitatively describing
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EEG properties by using a small number of parameters. The description of nonlinear
oscillators can be used to evaluate the influence of visual flicker on the network of
multiple brain regions, such as the cortico–hippocampal network.

In this study, a computational model of the cortico–hippocampal network is
proposed to evaluate the ability of visual flicker to of the synchronization network of
multiple brain regions. Since it is known that both theta–band (4–8 Hz) EEG power
on the scalp [7] and theta–band EEG coherence in the medial temporal lobe [8] are
associated with successful memory encoding, we focused on theta–band dynamics
in the cortico–hippocampal network.

2 Model

Neural synchronization between brain regions activating at the upper theta band
(8 Hz) is modeled. The EEG of each region is modeled by a population of nonlinear
oscillators that are assumed to be spontaneously activated in the theta band. Each of
the oscillators in a region is inhibitory connected each other and receives the same
input from other regions. Next, the population activity shows larger amplitudes for
larger inputs in the theta band. The dynamics of the oscillators is described by a
phase variable as used in a network model of the hippocampus [9]. EEG of the k-th
region,Ek.t/, is given by

Ek.t/ D
NX

iD1
cos�ki (1)

with

1

!

d�ki
dt
D 1 � .CF Ik.t/C Cw

MX

lD1
wklE

l

� CIEk C Ceei .t// sin �ki (2)

where �ki is phase of the i -th oscillator in the k-th region, Ik.t/ is input of the
flicker, ei .t/ is a perturbation, wkl is the connection strength from the l-th to the
k-th region where

PM
lD1 wkl is given to be proportional to the size of each of the

cortical regions, and other capital letters denote constants.
In computational experiments, these network structures are used to compare

the network dynamics with experimental data. First, a single region is used to
evaluate the temporal response of the region to the flicker input. The constants,
CF ;CI ; and Ce are determined to show facilitation phenomena during the receipt
of flicker input where the EEG power saturates in a half of second [1, 2]. Second,
a network consisting of sequentially connected regions is evaluated where flicker
input is introduced to one of the network terminals. The constant Cw is determined
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to propagate the induced EEG along the connected regions without divergence of
the activation in the network. Finally, a cortico–hippocampal network consisting of
35 regions (M D 35) with 337 pathways based on anatomical structure [10] is
analyzed. The flicker is given to the V1 region and the transmission of the induced
EEG is evaluated in relation to the state of the cortico–hippocampal network.

3 Results

3.1 Facilitation of Induced EEG

Figure 1a shows a result of the EEG in a single region. During the introduction
of flicker, the amplitude of the EEG gradually increases and saturates over several
oscillation cycles. This is in agreement with experimental phenomena [1, 2]. When
the global inhibition .CI / is smaller, the timescale of the induced EEG becomes
larger. Without flicker input, as shown in Fig. 1b, the amplitude of the EEG shows a
waxing and waning pattern that appears similar to the result of neurophysiological
model of EEG [4].

3.2 Transmission of Induced EEG

Figure 2a shows the network structure where flicker input is introduced to Region 1
(R1). Figure 2b shows temporal development of induced EEG power in each region.
The induced EEG power appears quickly decrease in relationship to the distance of
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Fig. 1 Temporal evolution of EEG of a single region. (a) Flicker–induced EEG. Dotted line
indicates a flicker–induced EEG in the case of smaller value of global inhibition, CI . (b)
Spontaneous EEG pattern
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each region with R1, as also shown in Fig. 2c. In the case of a larger connection
strength .Cw/, the induced EEG sustains longer after the offset of the flicker. Such a
long duration of induced EEG does not correspond with experimental observations,
thus the connection weights between regions were determined to be sufficiently
weak in the following experiments.

3.3 EEG Synchronization in Cortico–Hippocampal Network

Figure 3 shows results of induced EEG in the cortico–hippocampal network for
three flicker conditions. First, in the case of the introduction of flicker to the V1
region, the induced EEG widely propagates over visual areas and those amplitudes
steeply decrease in relationship to the distance of each region with V1 (gray plot
in Fig. 3). Such dominance of V1 region in the induced EEG is consistent with the
results of source estimation of induced MEG signals [11].

Second, in the case of the introduction of flicker to the entorhinal cortex (ER)
that models memory–dependent theta enhancement in the hippocampus, the induced
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EEG propagates in a limited region in the medial temporal lobe (white plot in Fig. 3).
This could agree with evidence from cats where the oscillation of regions in the
medial temporal lobe are closer than those of the neocortex [12].

Third, in the case of the introduction of a synchronous flicker to the V1 and
the entorhinal cortex, the resultant induced EEG appears stronger than those of the
cases above mentioned. In this case, induce EEG in the regions between V1 and
the entorhinal cortex, such as BA46, TF, TH, STP and BA7a, increases. When the
induced EEG on the scalp is calculated based on scalp electrode locations with
cortical regions [13], these increases of induced EEG power dominantly appear at
the frontal and parietal regions on the scalp as shown in Fig. 4a.

What timing of visual flicker can enhance cortico–hippocampal EEG synchro-
nization? By applying asynchronous flicker to V1 and the entorhinal cortex, we
evaluated the relationship between induced EEG power and the timing of the flicker
to V1. Figure 4b shows our results dealing the induced EEG power as a function of
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the flicker’s phase with the frontal EEG (at F3/F4 electrode). It shows that the flicker
at a specific phase with the frontal EEG can effectively induce the frontal EEG. This
prediction can be easily evaluated by using scalp EEG experiments as a verification
of the current model.

4 Discussions

Visual flicker is considered to dominantly induce EEG in the primary visual cortex
[2], while its effect on the other cortices is still under discussion [3,11]. The current
study showed that the primary visual cortex is a dominant source of the induced
EEG on the scalp and the other regions can be also sources under a specific temporal
relationship between EEG in these regions and the flicker (Fig. 4b). Such effects can
produce an index of EEG synchronization in the network of multiple brain regions.
However, it is necessary to further evaluate the ambiguity of the mapping from
cortical EEG to scalp EEG during flicker.

Theta synchronization in the hippocampus is theoretically necessary for encod-
ing of the spatio–temporal pattern of behavioral input [9]. During the encoding of
the complex environment in the hippocampus, the neocortex is also considered to
cooperate with the hippocampus through theta synchronization [14,15]. The current
study predicts that the specific relationship between scalp EEG and the flicker can
modulate EEG synchronization in cortico–hippocampal network.
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Transition of Firing Patterns in a CA1
Pyramidal Neuron Model

Dan Ma, Shenquan Liu, and Lei Wang

Abstract This paper considered a one-compartment and conductance-based model
of CA1 pyramidal neuron. The InterSpike Interval(ISI) bifurcation diagrams
were employed to demonstrate the transition modes of different firing patterns.
The numerical results show that period-doubling and period-adding bifurcation
phenomenon are exist in pyramidal cells in CA1 region.

1 Introduction

Pyramidal neurons are a type of neuron found in areas of the brain including
cerebral cortex, the hippocampus, and in the amygdala. The intrinsic discharge
mode of individual cortical pyramidal cells varies along a spectrum of “burstiness”
from regular firing evoked by depolarization of the neuron to spontaneous bursting
unprovoked by any extrinsic stimuli [1, 2]. And a large body of evidence indicates
that the propensity of a neuron to burst depends on a large number of internal
and external factors, such as the type of ions channel, the ions concentration, the
activation of ions channel, depolarizing currents and membrane capacitanceetc.

Literatures about pyramidal neuron models and its behaviors are very rich, such
as: Durstewitz et al. analyzed the irregular spiking in prefrontal cortex pyramidal
neurons [3], Saraga et al. studied the spiking in the rodent hippocampus regulated
by inhibitory synaptic plasticity [4], Royeck et al. made a good analysis of NaV1.6
sodium channels in action potential initiation of CA1 pyramidal neurons [5].
Nowadays, except for a larger number of neural electrophysiological experiments,
there are many literatures which numerically simulated and analyzed the theoret-
ical neuron models. Rinzel and Terman got abundant of firing patterns and the
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transmission modes between different neuron models [6, 7]. Izhikevich used the
fast and slow bifurcation analysis to classify the various patterns of action potential
bursting in detail [8]. The bifurcation patterns of neuronal firing sequences are also
interested by other literatures.

With the aid of InterSpike Intervals(ISI) bifurcation diagram, we give a detailed
analysis of the variety of firing patterns in this model, and make a further analysis
of period bifurcation phenomenon in the transitions of different firing patterns. The
simulation results show the complex firing behaviors in CA1 pyramidal cells.

2 Model and Method

The somatic, single-compartment model was represented by coupled differential
equations according to the Hodgkin-Huxley-type scheme [9]. The model here was
constructed in two stages. In the first stage, we introduced only the ionic currents
that are involved in firing dynamics in zero [Ca2C]o, at which it is simpler to
analyze. In the second state, we added voltage-gated Ca2C and Ca2C�activated
KC currents, to explore their influence on bursting behavior. In this article we only
discuss the property of zero [Ca2C]o.

The model includes the currents that are known to exist in the soma and proximal
dendrites: the transient sodium current (INa) and the delayed rectifier potassium
current (IKdr ) that generate spikes, and the muscarinic-sensitive potassium current
(IM ) that contributes the slow variable necessary for bursting [10, 11]. A model
with these three currents only is the minimal model that allows bursting. We added
the persistent sodium current (INaP ) because we wanted to focus on its contribution
to bursting [1]. The A-type potassium current (IA) and the leak current (IL) are
included as well. The kinetics equations and parameters are listed in Table 1. The
cell model for zero [Ca2C]o has five dynamical variables: V; h; n; b and z.

Table 1 Kinetics equations and parameters for the zero [Ca2C]o model

Current,
variable Kinetics/Time Constant, ms Parameters

INa; m m D m
1

.V / �m D �30mV; 	m D 10:5mV

INa; h dh=dt D �k Œh1.V /� h� =�k .V /

�k.V / D 0:1C 0:75

� f1C exp Œ� .V � �k2/ =	k2 �g�1
�k D �45mV; 	k D �7mV
�k2 D �40:5mV; 	k2 D �6mV;

�k D 1

INaP ; p p D p
1

.V / �p D �45mV; 	p D 3mV
IK dr ; n dn=dt D �n Œn1.V /� n� =�n .V /

�n.V / D 0:1C 0:5

� f1C exp Œ� .V � �n2/ =	n2 �g�1
�n D �35mV; 	n D 10mV

�n2 D �27mV; 	n2 D �15mV;
�n D 1

IA; a a D a
1

.V / �a D �50mV; 	a D 20mV

IA; b db=dt D Œb
1

.V /� b� =�b ;�b D 15 �b D �80mV; 	b D �6mV
IM ; z dz=dt D Œz

1

.V /� z� =�z ; �z D 75 �z D �39mV; 	z D 5mV
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The current balance equation is:

C
dV

dt
D �IL � INa � INaP � IKdr � IA � IM C Iapp (1)

where C D 1�F
ı
cm2; gL D 0:05ms

ı
cm2; VL D 70mV; and Iapp is the applied

current. The ionic currents are:

INa.V; h/ D gNam13.V /h.V � VNa/;
IKdr .V; n/ D gKdrn4.V � VK/;
Im.V; z/ D gM z.V � VK/; IA D gAa13.V /b.V � VK/
INaP .V / D gNaP p1.V /.V � VNa/; IL D gL.V � VL/

The activation and inactivation curves x1.V / are determined by the equation
x1.V / D f1C expŒ�.V � �x/ =	x �g�1.

Where x D m; h; p; n; a; b; z:

3 Simulation Results and Analysis

3.1 The Influence of Membrane Capacitance and
External Stimulus

Since neuron membranes are composed of double- membrane phospholipid, the
thickness and cytoplasm component are similar, so difference of C for different
neurons is not large, but the little distinction always exists as to a variety of neurons.
Thus in this section we give an analysis of the influence of C to the generation
and conduction of neural action potential sequences and obtains various bifurcation
patterns in the model. See Fig. 1a, b for details.

External stimulus is an important factor which can influence neuronal firing
activities obviously. See Fig. 1c for more information.

From diagram a� b we can see that with the increasing of C, the firing pattern
of CA1 pyramidal neuron changes from period firing modes to period complex
bursting, and the spikes in the bursting are increasing too. The firing sequences show
a clear period adding phenomenon. In diagram b, with the increasing of C from 0.7
to 1.2, ISIs sequence changes from period-1 firing doubling to period-2 bursting,
continues after another period doubling bifurcation turns into period-4 bursting, then
turns into period-3 bursting through a complex region, after that turns into period
adding bifurcation phenomenon.
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Fig. 1 Firing patterns in the model. (a) Under the stimulation of Iapp D 1:0nA, period adding
firing sequences of membrane potential from period-1 to 5 for CD 0.8, 0.9, 0.93, 0.95, 1.0 and
1.05 respectively. (b) Corresponds to diagram a, the bifurcation diagram of C vs. ISIs. (c) The
bifurcation diagram of Iapp vs. ISIs, the diagram on the top right corner is the enlargement of
diagram c

From the analysis of diagram c, we know that with the decreasing of dc stimulus
from 2 to 0.4, the ISIs sequence of this neuron model change from period-1 firing
doubling to period-2 bursting, continue after two period doubling bifurcations reach
to period-8 bursting, then turn into period-3 bursting through a complex region.
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3.2 The Influence of the Transient Sodium Current

In the description of the classical HH model, the change of sodium ion conductance
and potassium ion conductance are determined by three variables: m, h and n,
where the change of m and h determine the amplitude of sodium ion current, and
the change of n determine the amplitude of potassium ion current. The change
speed of these variables determine ion channel current’s amplitude at different time,
and then influence the firing pattern of action potential, so the perturbation of ion
channel variable is critical in the activities of neuron. In this part, we make a simple
discussion about the variables m, h of the transient sodium current. See Fig. 2a, b, c
for details.

At present, there is still a lot of literature in which the influence of ions channel
conductance and ions equilibrium potential to neuron activity were investigated.
In this section, by changing the ion conductance and ion equilibrium potential of
transient sodium current, rich bursting patterns and the bifurcation phenomenon in
the switching between different patterns of firing are obtained. See Fig. 2d.

From the above figures we can get several bifurcation patterns in neuronal action
potential ISIs. In diagram a� b, the sequences of action potential ISIs show a
clear bifurcation phenomenon with the perturbation of ion channel variable m. Both
diagram a and b contain a clear period doubling phenomenon, a clear period adding
phenomenon and a clear inverse period doubling phenomenon. In diagram c, we
can see the period doubling bifurcation and period adding bifurcation clearly. So
we know only a little change of the perturbation variables m and h of the transient
sodium current can change the firing modes of CA1 pyramidal neuron easily. And
the ISIs sequences have good bifurcations. Diagram d shows the influence of the
ion conductance of transient sodium current to neuron activity. With the decreasing
of gNa from 58 to 46, the ISIs sequence of this neuron model appears three period
doubling bifurcations, and then turns into a complex region.

The numerical results above show that the perturbation variables and ion
conductance of transient sodium current have great influence on neuronal activities
(action potential). These rich bursting patterns and the switching between different
patterns of firing tell us that transient sodium current is very important in the
generation of the rich bursting.

4 Discussions

From the analysis of simulation results in this paper we can find that the firing modes
in zero [Ca2C]o model of CA1 pyramidal neuron are very rich. And it allowed us to
use a single-compartment model to analyze the underlying mechanism of bursting.
The model results above tell us that the CA1 pyramidal neuron can show a variety
of firing patterns when the electrophysiology parameters vary in a certain region,
not only periodic spiking but also various bursting patterns. The ISI bifurcation
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Fig. 2 Bifurcation diagrams
of neuronal action potential
ISIs. (a) ISIs vs. �m. (b) ISIs
vs. 	m. (c) ISIs vs. �
(�h D �n). (d) ISIs vs. gNa

phenomenon we drew can show more intuitive results of how these firing patterns
change from one pattern to another, the period doubling phenomenon and the period
adding phenomenon contained in the ISI bifurcation diagrams tell us the intrinsic
properties of corresponding parameters on the spiking transition modes and firing
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patterns in the CA1 pyramidal neuron. In fact many others parameters in this model
can affect the fire patterns transition, such as the delayed rectifier potassium current,
A-type potassium current and A-type potassium current et al and all these currents
change demonstrate the basic rule of neuron codes.
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The Effects of Leakage Conductance on Firing
Properties in a Compartment Neuron Model

Lei Wang and Shenquan Liu

Abstract Leakage current is a critical factor which can balance ions flow across
channels in neuron. In this study, a simple case is considered about the influence
of leakage conductance gL on neuronal firing activities in a two compartment
model, the detailed analysis includes two aspects: (1). the values of gL in the
two compartments are equal, (2). the values of gL in the two compartments are
not equal. With computer simulation, it is found that numerical results obtained
from the variation of gL in somatic compartment and dendritic compartment show
much difference, simulation results obtained from variation of gL in dendritic
compartment have much similarity with results got in case (1) when gL varies, while
the variation of gL in soma gives some difference with the case in (1). In the final
the changing of membrane capacitance to the potential spike is also discussed here.
All these results may give us a general rule of neuronal firing properties.

1 Introduction

As to neuronal intrinsic properties, such as their bio- chemistry, the distribution of
ion channels, and cell morphology contribute to the electrical responses of neurons
[1, 2]. The influence of ion channels on neuronal firing properties has been subject to
intensive research due to their physiological significance and dynamical complexity
[3, 4], while the leakage current which plays the central role of balancing ions flow
across channels in neuron is well worth studied [5].

Literatures on the study of leakage conductance are rich. Schreiber et al. studied
the effect of leakage conductance on spiking reliability of cortical neurons for
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suprathreshold rhythmic inputs [6]. Wang et al. analyzed the hopf bifurcation
induced by leakage conductance in Hodgkin-Huxley model [7], and Yin et al.
presented a bifurcation analysis with the change of parameter potassium leakage
current in a thalamic relay neuron model [8]. In the present paper, we explore
the influence of leakage conductance gL on firing activities in a two-compartment
pyramidal neuron, various firing patterns are obtained with the change of gL, with
the aid of InterSpike Intervals (ISI) bifurcation diagram, it is found that the transition
between different firing patterns with parameter gL shows an apparent periodic
bifurcation phenomenon, by considering two cases about the value of gL in somatic
compartment (gLs) and dendritic compartment (gLd), similarity is found between
gL and gLd, while difference is observed between gL and gLs. Simulation results
presented here can not only illustrate the important role of gL in the generating,
conducting and switching of various neuronal action potential patterns, but also give
the transition modes from which we can see how these firing patterns change from
one to another.

2 Model and Method

The model we investigated in this paper is a two compartment model of pyramidal
neuron [9], the schematic diagram of this neuron is shown in Fig. 1, in the diagram,
the ionic currents in each compartment are given. The somatic compartment
includes only the channels necessary for spike generation (NaC and KC) while the
dendritic compartment includes a slow potassium and a persistent sodium current.

The model description of this pyramidal neuron is the following equations.

Cm
dVs

dt
D �INa � IK � ILs � gc

p
.Vs � Vd /C Isoma

Cm
dVd

dt
D �INaP � IKS � ILd � gc

1 � p .Vd � Vs/C Idendrite

where Isoma and Idendrite are current injections to the compartment. The voltage
dependent conductances are described using standard Hodgkin-Huxley formalism,
detailed expressions and parameters can be found in [9].

Fig. 1 Two-compartment
model of cortical pyramidal
neuron [9]
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Simulations were performed using MATLAB software, and the fourth-order
Runge–Kutta algorithm was employed to calculate the values of membrane potential
with time step being 0.01 ms. We only inject direct current into the dendritic
compartment, and investigated the somatic action potential in this study.

3 Simulation Results and Analysis

In the model description, we have noticed that the value of gL can influence leakage
current IL so as to impact on neuronal firing activities. For the important role of
gL in neuronal action potential generation and propagation, next, we give detailed
analysis about the influence of gL on neuronal firing patterns under two aspects,
which are presented in Sects. 3.1 and 3.2, with computer simulation, a variety of
firing patterns are obtained when gL varies in a certain region, and the transition of
these patterns show a clear periodic bifurcation phenomenon with the change of gL.

3.1 The Case gLs D gLd

In this section, we assume the values of gL in the two compartments are equal, that
is gLsD gLdD gL, the detailed simulation results are demonstrated in Fig. 2.

From Fig. 2a1–a9 we can see that the cell has a clear period-adding firing
phenomenon, with the decrease of gL from 0.4 to 0, the cell period-adding bifurcates
from period-1 spiking to period-2 bursting, and then period-adding bifurcates to
period-3 bursting, this period-adding bifurcation phenomenon lasts until the period
number reaches eight and then bifurcates back to period-1 bursting in this parameter
region. Figure 2b can show an obvious period-adding bifurcation phenomenon
between different firing patterns, while in Fig. 2c the transition rule of firing
patterns shows much difference with Fig. 2b when CmD 0.5, this may give us some
new insights into the role of Cm which can be given attention in further studies.
Simulation results shown in Fig. 2 can provide us an apparent variation rule on how
gL impacts on neuronal burst firing sequences.

3.2 The Case gLs ¤ gLd

In this section, we consider the value of gL in somatic and dendritic compartment
are different which means gLs¤ gLd, detailed simulation results are demonstrated in
Figs. 3 and 4.

(1) Variation of gLd when gLsD 0.18.
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Fig. 2 Periodic firing sequences and ISI bifurcation diagrams in pyramidal neuron. (a1–a9) are
periodic firing sequences with the decrease of gL, the value of gL is 0.38, 0.3, 0.28, 0.23, 0.2,
0.17, 0.14, 0.11 and 0.05, time scale:500–1,000(ms). (b) Bifurcation diagram of ISI with gL. (c)
Bifurcation diagram of ISI with gL when Cm D 0.5

We can see from Fig. 3a1–a9 that the cell can also show a clear period-adding
firing phenomenon, with the decrease of gLd from 0.4 to 0, the cell period adding
bifurcates from period-1 spiking to period-2 bursting, and then period-adding
bifurcates to period-3 bursting, this period adding bifurcation phenomenon lasts
until the period number reaches eight and then bifurcates back to period-1 bursting
in this parameter region, we can find it easily that this transition rule is much similar
with the one demonstrated in Fig. 2.

(2) Variation of gLs when gLdD 0.18.
Figure 4a1–a6 gives us an apparent appearance on the period-adding phe-

nomenon with the decrease of gLs from 1.5 to 0, but by observing Fig. 4b, c we
can find that the bifurcation diagrams are very different with the ones demonstrated
in Figs. 2b and 3b if gLs varies in the region similar as Figs. 2b and 3b, then
the question is arisen that why the change of gL in dendritic compartment can
induce a bifurcation patterns similar with Fig. 2b, while the variation of gL in
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Fig. 3 Periodic firing sequences and ISI bifurcation diagrams in pyramidal neuron. (a1–a9) are
periodic firing sequences with the decrease of gLd, the value of gLd is 0.4, 0.35, 0.3, 0.25, 0.2,
0.15, 0.13, 0.1 and 0.05, time scale:500–1,000(ms). (b) Bifurcation diagram of ISI with gLd. (c)
Bifurcation diagram of ISI with gLd when Cm D 0.5

somatic compartment show so much difference with Fig. 2b. The reason may be
that burst firing is usually induced in neuronal dendrites, intracellular recordings on
hippocampal CA1 pyramidal cells shown that burst firing is more likely elicited in
dendrites than soma [10]. In this model the crucial rule in bursting generation are
the ionic currents located in dendritic compartment, so the change of gLd can have
great impacts on burst firing patterns and the influence on their transitions is vital,
while the change of gLs can not change the bursting shapes or firing patterns greatly,
so the bifurcation diagram in Fig. 4c varies little when comparing with Figs. 2c
and 3c.

In fact, many factors can influence the spike activity of neuron and their
bifurcation diagram always appears from period-adding to chaotic phenomena. If
we consider the changing of capacity of soma and dendrite, we can get the model
results in the following Sect. 3.3.
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Fig. 4 Periodic firing sequences and ISI bifurcation diagrams in pyramidal neuron. (a1–a6) are
periodic firing sequences with the decrease of gLs, the value of gLs is 1.5, 1.0, 0.8, 0.5, 0.3 and 0.1,
time scale: 500–1,000(ms). (b) Bifurcation diagram of ISI with gLs. (c) Bifurcation diagram of ISI
with gLs when Cm D 0.5

3.3 Variation of Cm

In this section, we assume the values of Cm in the two compartments are equal, the
detailed simulation results are demonstrated in Fig. 5.

We can see from Fig. 5a1–a6 that the cell has a clear period-adding firing
phenomenon, with the increase of Cm from 0.1 to 1.2, the cell period-adding
bifurcates from period-1 spiking to period-2 bursting, and then period-adding
bifurcates to period-3 bursting, this period-adding bifurcation phenomenon lasts
until the period number reaches seven in this parameter region. Figure 5b can show
an obvious period-adding bifurcation phenomenon between different firing patterns.
These simulation results can give us an apparent variation rule on how Cm impacts
on neuronal firing sequences in this neuron.

4 Discussions

By determining the exact mechanisms of neuronal leakage current impacts on
firing properties of neuron, one can gain insights into the influence of leakage
conductance on firing behavior and the nature of transition between them. These
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Fig. 5 Periodic firing sequences and ISI bifurcation diagram in pyramidal neuron. (a1–a6) are
periodic firing sequences with the increase of Cm, the value of Cm is 0.3, 0.5, 0.6, 0.8, 1.0 and 1.2,
time scale: 500–1,000(ms). (b) Bifurcation diagram of ISI with membrane capacitance Cm

understanding can facilitate the studying of leakage current in neuron models and
neuron networks. In this paper, we give a detailed analysis of the impacts caused
by leakage conductance in a two-compartment pyramidal neuron and obtain several
theoretical results:

(1) Various firing patterns can be obtained when gL varies, and transition of these
patterns can show a clear period-adding bifurcation phenomenon with the
variation of gL.

(2) From the detailed analysis of gL in two aspects,

we find that the change of gL in dendritic compartment in the second aspect can
give the similar results with the one in the first aspect, while the variation of gL in
somatic compartment in the second aspect have much difference with the one in the
first aspect.

As in the present paper, we have mainly discussed the role of leakage conduc-
tance gL on neuronal firing properties, for the parameter gL we have discussed has
electrophysiology significance, so the simulation results we get are meaningful and
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instructive. Other parameters such as: membrane capacitance, external stimulus, and
environmental temperature et al., which can be given full attention in the future
studying of this neuron model.
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Numerical Analysis of Parkinson’s Disease
in a Basal Ganglia Network Model

Xiaofeng Xie, Shenquan Liu, Xuemiao Pan, and Lei Wang

Abstract The paper constructed a network of basal ganglia and considered the
normal state, Parkinson Disease (PD) state and Deep Brain Stimulation (DBS)
therapy in this basal ganglia (BG) model. The membrane potential of neurons in BG
are obtained with the help of Winnerless Competition (WLC) model. The indexes
of EI (Error Index) and phase plane are used in normal state, PD state and DBS
therapy state respectively to show the validity of the DBS therapy. In the end, we add
the receptor and effector to this network to discuss the neural network information
processing of BG and explore what effect that different kinds of connectivity
strength between the cortical neurons bring to the network information processing.

1 Introduction

Parkinson’s disease is a common disease in basal ganglia, although a number of
experiments are carried on the neuroprotective treatment of Parkinson’s disease in
these years, and some positive results are obtained in basic research [1]. While in
neuroscience, only clinical tests are not enough to cure the disease efficiently, it
needs some researches on theoretical side to supplement the shortage of clinical
trial, mathematical model is one of the main theoretical analysis method. Studies
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on neuronal network have last for long times, many neuron models have been
analyzed, such as: Hodgkin-Huxley (HH) model, Chay model, and Hindmarsh-
Rose (HR) model which are useful models. In recent years, Rabinovich has put
forward a network model which can simulate the response of olfactory neural
systems named as WLC model [2], and model study of PD can also use this
method. Alejandro Pascual [3] proposed that HH model can be used to analyze
the DBS therapy that is applied to PD patients. They all study the processing of
DBS therapy with simulation in mathematical models, and give theoretical analysis
from the mechanisms of Subthalamic nucleus (STN) high frequency simulation in
PD patients. For the treatments method of DBS, selection of targets is usually very
important, generally there are three kinds of targets: STN, the internal segment of
the globus pallidus (GPi), and ventral intermediate (VIM), so in clinical trial, target
is selected after doing some testes in PD patients. There are two pathways, direct
pathway and indirect pathway. Through these two ways, BG can modulate people’s
action and balance the relationship between these two pathways precisely [4].

2 Method/Models

According to the study of Frank MJ [4] about decision-making model in neurolog-
ical conditions, we have constructed a basal ganglia network model which contains
thalamus, cerebral cortex, and basal ganglia. See the following network model we
constructed for more details. There are four kinds of nerve nuclei are included by the
basal ganglia: (1) striatum, it is main receiver which receives the information from
thalamus, cerebral cortex and the brainstem and it includes two kinds of receptors,
D1 receptor and D2 receptor; (2) substantia nigra, it includes substantia nigra pars
compacta (SNc), substantia nigra pars recitulata. The Dopamine Neurons to make
up the Substantia nigra pars compacta and products the dopamine to modulate the
striatum; (3) Internal globus pallidus and external globus pallidus, as we know,
they are connected to the substantia nigra pars recitulata in functions. And ”-
aminobutyric acid (GABA) is neurotransmitter both in internal globus pallidus and
substantia nigra pars recitulata (SNr); (4) STN, as we find, it is connection with
substantia and globus pallidus from the anatomy. We constructed the frontal cortex
and thalamus as external construction connected with the basal ganglia to build a
network (Fig. 1).

There are three kinds of effect from Dopamine: excitatory, inhibitory and modu-
latory for the D1 and D2 receptors. As computational model, we consider Dopamine
from the SNc excites synaptically driven direct pathways via D1 receptors and
inhibits indirect pathways activity via D2 receptors [4].
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Fig. 1 (a) The basal ganglia network from the Frank MJ [4] research. (b) The basal ganglia
network we constructed. One STN cell activates five GPi cells and five GPe cells. One GPe cell
inhibits five STN cells. The else connection are one to one. Input cortex direct activate output
cortex to ensure the network enough strong output signal

3 Numerical Analysis of Model Results

3.1 Analysis the Discharge of Parkinson’s disease

Physically, the PD definition is no dopamine or little dopamine from SNc lead to the
basal ganglia out of order. In mathematical model, we give a definition for the PD
that no or little stimulus on SNc. And the DBS therapy is giving high frequency
stimulus on corresponding target spots without giving SNc additional stimulus.
According to this definition, we can get the four discharge graph of normal people,
PD patient, STN-DBS patient and GPi-DBS patient through mathematical model
calculation.

In Fig. 2a, by giving the input cortex nerve nucleus group a 0.3cos(0.15 t)
sine-signal electrical stimulus, we can get normal people’s discharge graph of BG
network. Figure 2b doesn’t give signal stimulus to SNc, simulating no dopamine
from SNc. Obviously, there are many neurons present resting phenomenon, such as
GPi, STN, striatum, while Thalamus and GPe present full discharge phenomenon.
By giving high frequency square wave stimulus to STN and GPi, simulating the
DBS therapy, like (c) and (d), the BG network will produce cluster discharge again,
especially the Thalamus and Striatum.
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Fig. 2 Four types of discharge graph (normal PD STN-DBS and GPi-DBS state). (a) is the firing
pattern of normal state in the BG network. The order is Input and Output cortex, D1 and D2, STN,
GPe, GPi thalamus and SNc. The same with (b), (c), (d)

3.2 Analysis for the Index

3.2.1 Analysis of PD Using Index EI

According to the research [3], they proposed the Error Index from the research of
signal degradation. The signal degradation can be show by the number of the peak in
the discharge. There are three type of peak area: normal peak area, incomplete peak
area and lost peak area. We define the 90–100% value of maximum peak amplitude
as the normal peak area (Mzc); the 20–90% value of maximum peak amplitude as
the incomplete peak area (Mcq); the rest as the lost peak area(Mss). So we concluded
the value of EI index:

EI D Mcq=Mzc

Calculation of the EI for normal person, PD patient and the DBS patient is shown
in the following Fig. 3:
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Fig. 3 Four types of EI index in the different input situation, the amplitude of input signal (A)
changes from 0 to 1 and calculate the corresponding EI index

In Fig. 3, the PD patient EI index is above the normal person EI index. After
the DBS treatment, give the high frequency stimulation to the STN or GPi for PD
patient, the PD patient EI index decrease and close to the normal person EI index.
The PD patient appears the state of hand and foot unsteady and fidget due to the
signal from the basal ganglia to the output cortex neurons lost some information.
In the discharge, it means that the number of incomplete peak increases and the
number of normal peak decreases, the EI index becomes larger. The abnormal
signal degradation lead to the PD patient cannot effectively control action by
themselves.

3.2.2 Analysis of PD Using Phase Diagram Index

We propose the phase diagram index to explain the mechanism of signal degradation
by choose the GPi-thalamus neuron channel. The GPi neuron is the efferent neuron
of basal ganglia and the channel which signal had to pass. It also can describe to the
condition of the transmission channel.

In Fig. 4, the normal phase diagram is bigger than the PD phase diagram in
the x-coordinate’s span. After the STN DBS treatment and GPi DBS treatment,
the x-coordinate’s span becomes large and close to the normal phase diagram.
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Fig. 4 Four type of phase diagram index in the GPi-thalamus channel. x-coordinate is potential of
GPi neuron and y-coordinate is potential of thalamus neuron

The lack of the Dopamine from the SNc leads to the GPi-thalamus channel shows
the problem about the functional barriers. The signal from basal ganglia lost in the
channel.

4 Discussion

4.1 Network Expansion

As illustrated in Fig. 5, we expand the BG network, add the input cell and output
cell to the cerebral cortex, which representing the receptor and effector. According to
Jim Houk’s research about Motor cortex-Basal Ganglia-Cerebellum Circuit [5], the
connection between input cell and input cortex is excitatory, so it is with Thalamus.
And the connection between output cell and output cortex is excitatory, while it is
inhibitory with Thalamus.
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Fig. 5 The expanded network connection though adding the input cell and output cell to the
cerebral cortex, which representing the receptor and effector

4.2 Discuss the Connectivity Strength

Inferring from the principle of signal superposition, after signal entering the input
cortex, there are two routes to flow: one is directly from input cortex to output
cortex; the other one is from input cortex to BG and then to output cortex. The
linking strength directly from input cortex to output cortex is related to the BG
adjustment effect. When the strength increases, the signal transmission is mainly
from cortex, weakening the BG adjustment effect.

From the Fig. 6a, we can find that when there is no link between input cortex
and output cortex, the output signal is hazy without clear cluster discharge. Under
this situation, the output signal comes from BG without directly transmitted signal
from input cortex. Increase the linking strength, clear cluster discharge appears in
the output cortex and the output signal is superposition of two routes of signal. The
output signal frequency is the same, but the amplitude of each peak changes, so as
other neurons of BG.

5 Conclusions

By means of WLC model, we have constructed a network model of BG, through the
comparison of three states: PD state, normal state and DBS therapy state, several
PD patients’ features in BG are concluded:

(1) Five-neuron system of BG network can respond to five different stimulus and
simulate five neuron pathways, indicating connections among them.

(2) Cortex and GPi are mainly neurons for information output. Cortes is the output
nucleus group of BG network and GPi is the output nucleus group of BG. They
often remain active and have rich information.
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Fig. 6 The results of changing linking strength between the input cortex and output cortex. It is
reflected by the Connection value in the WLC model

(3) With different input, the discharge of SNc remains the same. But if we give
the SNc stimulus which can change from weakly to strong, then the obvious
branches phenomenon will appears and there is only one branch point.

Finally, expanding the network is good for analysis of the BG information
processing procedure. By adding the receptor and effector to the BG network,
we can get the discharge of the receptor and effector and finally learn the whole
procedure of BG network information processing. And to discuss the linking
strength between the input and output cortex.
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