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Preface

Five decades of brain research have led to the emergence of a new field, spanning
the entire spectrum of cognition from synaptic dynamics to social interactions,
and which integrates nonlinear neurodynamics operating simultaneously at and
across various scales. A new kind of scientist is emerging, schooled in multiple
academic disciplines, comfortable in working with data from different levels, and
conversant with the mathematical and computational tools that are essential to cross
the boundaries of these disciplines.

Cognition, in its essence, is dynamic and multilayered, and the pursuit of new
clues inevitably leads us from one layer to the next, both reductionist and holistic.
A new trend in the study of cognition from the point of view of neurodynamics has
emerged as a result of the rapidly evolving developments of the activity within the
field of Nonlinear Dynamics and Cognitive Science.

In order to promote the integration of Cognitive Science and Neurodynamics as
a whole, the International Conference on Cognitive Neurodynamics has been held
biannually since 2007 under the support of the editorial board meeting of Cognitive
Neurodynamics (Springer). The first conference, ICCN2007, was held in Shanghai,
and the second, ICCN2009, in Hangzhou, also in China.

And this was the third ICCN, at The Hilton Niseko Village, Hokkaido, Japan,
from June 9-13, 2011. Due to the tragedies of the Great East Earthquake and ensu-
ing tsunami in Japan, many people had difficulty in attending, so we are very grateful
for the efforts of those who nonetheless helped to make ICCN2011 a success.
There were 161 participants from 17 countries, 6 plenary talks by Prof. Leslie Kay,
Prof. Robert Kozma, Prof. Soo-Young Lee, Prof. Hajime Mushiake, Prof. Noriko
Osumi, and Prof. Peter Robinson, 130 papers, and invited lectures by 3 renowned re-
searchers, Prof. Shun-ichi Amari, Prof. Minoru Tsukada, and Prof. Walter Freeman.

The conference ranged from a microscopic model of the neural impulse to a
macroscopic model of the sleeping rhythm. Key sessions were: Neuronal Impulse,
Patterns and Bifurcation, Integrative and Multi-level Approaches for Cognitive
Neurodynamics, Model Complexity in Neural Network Phenomena, Toward
Understanding of Intelligence: Collaboration between Neuroscience and Robotics,
Spatiotemporal Network Dynamics, Shaping Embodied Neurodynamics through
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Interaction, Mathematical and Statistical Aspects of Neurodynamics, Dynamic
Patterns of Neural Activity in Human Information Processing, and Neural Basis of
Biological Timing. We express our sincere appreciation to all the session organizers.
We also appreciate the session presenters who maintained discussions throughout
the sessions and at the poster presentations.

Another highlight was the young researcher session in which we asked young
researchers to discuss and create a tentative collaboration plan which was then
evaluated by the senior researchers. The young researchers learned much from
the suggestions of the senior people. We also wish to acknowledge the Dynamic
Brain Forum (DBF), co-organized with ICCN2011, and in particular, Prof. Jan
Lauwerence for his organization of DBF sessions.

Historically, DBF was the “Origin of Brain Dynamics Study”, the core research
field of ICCN. DBF was initiated by the Japanese “Gang of Five” who were
focused on nonlinear dynamics and their activity led to related work in Cognitive
Neurodynamics in China which finally resulted in ICCN2007. So, ICCN owes
much to DBF for their research field concept establishment, and ICCN2011 was
happy to have coordinated with DBF2011. The next ICCN2013 will be held
in Sigtuna, Sweden, by Prof. Hans Lijenstrom (Swedish Univ. of Agricultural
Science). We look forward to sharing fresh topics and ideas both among the people
who originally gathered at Niseko and with all other attendees.

We would also like to express our gratitude to the supporting organizations,
Grant-in-Aid for Scientific Research on Innovative Areas “The study on the neural
dynamics for understanding communication in terms of complex hetero systems
(No0.4103)” of MEXT Japan, RIKEN BSI, and Tamagawa University Global COE
Program “Origins of the Mind”; for financial support from SCAT, sponsorship
by Springer, FIRST project and Budapest Seminar, and co-sponsorship by JNNS,
INNS and CNS. We hope all the supporting activity will continue to foment the
development of this fast-moving and exciting scientific field.

Yoko Yamaguchi
Takashi Omori
Ichiro Tsuda
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Part I
Global Scope of Cognitive Neurodynamic
Systems



Artificial Cognitive Systems with Active
Learning and Situation Awareness Capabilities

Soo-Young Lee

1 Introduction

From 1998 to 2008 we had developed Artificial Brain inspired by brain information
processing mechanism, which had successfully demonstrated lower-level secretarial
functions [1]. From 2009 we are now extending this approach toward higher
cognitive functions for intelligent agents, i.e., Artificial Cognitive System (ACS).

The essential functions of ACS for intelligent agents are proper decision making
and following action (behavior). The decision making is based on situation
awareness, which is also based on knowledge representation and accumulation.
These five modules will be developed based on computational models of proactive
knowledge development and self identity. Eventually both hardware and software
will be developed.

The research will utilize relevant previous researches for audio-visual perception
as well as cognitive science, and extend into computational models and HW/SW
systems.

However, the cognitive scientific knowledge is not good enough due to poor
temporal and spatial resolutions. Among available non-invasive techniques, fMRI
provides about 1 mm?® spatial resolution with 1 s temporal resolution, while EEG
and MEG provide 1 ms temporal resolution with 1 cm resolution. Although there
exist many attempts to combine fMRI and EEG/MEG for cognitive modeling, it
is beyond current status-of-art technologies to measure brain signals with enough
spatial and temporal resolutions.

In this position paper we propose to combine fMRI and EEG experiments,
and the missing links will be filled-in from engineering knowledge, especially

S.-Y. Lee ()

Department of Electrical Engineering and Brain Science Research Center,
Korea Advanced Institute of Science and Technology, Daejeon, South Korea
e-mail: sylee@kaist.ac.kr

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (I1), 3
DOI 10.1007/978-94-007-4792-0_1,
© Springer Science+Business Media Dordrecht 2013
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the information theory. In Sect. 2 we present the higher cognitive functions to be
implemented for our intelligent agents, i.e., Artificial Cognitive System (ACS), and
the multidisciplinary multimodal approach will be presented in Sect. 3.

2 Atrtificial Cognitive Systems

The ACS will be based on our previous works on Artificial Brain and its secretarial
developments, called OfficeMate, and then further extended with additional func-
tions.

The Artificial Brain was developed through Korean Brain Neuroinformatics
Research Program from 1998 to 2008. It was a joint effort of researchers from
many different disciplines including neuroscience, cognitive science, electrical
engineering, and computer science, and about 35 professors and 70 professors from
many Korean universities were involved in the program.

The Korean Brain Neuroinformatics Research Program had two goals, i.e., to
understand information processing mechanisms in biological brains and to develop
intelligent machines with human-like functions based on the mechanism. In 2008 we
had developed an integrated hardware and software platform, i.e., Artificial Brain.
With two microphones, two cameras (or retina chips), and one speaker, the Artificial
Brain looks like a human head, and has the functions of vision, auditory, cognition,
and behaviour. Also, with this platform, we had developed a testbed application,
i.e., “artificial secretary” alias OfficeMate, which might reduce the working time of
human secretary by a half.

As shown in Fig. 1, the information processing functions in the Artificial Brain
consist of four modules. Among five human sensory processes the vision and

Vision Inference

Selective
I Aftention ‘] \Action
Vision |l Feature [, [Recognition/ Decision/ 5| Cooperative
Sensor Extraction Tracking Planning Scheduling
Multi-sensor |¢ Motor
: Fusion Controls
Acoustic Feature Recognition/
Sensor Extraction | ™| Tracking T
Selective J Tactile/Offac
Attention tory/Taste
Sensors
Speech Iy

Fig. 1 Functional modules of Artificial Brain
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Knowledge
Representatiory
Accumulation

ProActive Situation

Model st Eness xg’ig’g Environment
(people, robot,
Self-Identity Decision Touch car, house, etc.)
Model Making Networks
Action/
Behavior

Fig. 2 Basic concept of Artificial Cognitive Systems

the auditory modules provide the richest information, and complex information
processing is performed. All the sensory information is integrated in the inference
module, which provides learning, memory, and decision-making functions. The
last module, action module, generates signals for required sensory motor controls.
Although there may be many feedback pathways in biological brains, feed-forward
signal pathways are mainly depicted here for simplicity.

The Artificial Brain may trained to work for specific applications, and the
OfficeMate was our choice of the application test-bed. Similar to office secretaries
the OfficeMate would help users for office jobs such as scheduling, telephone
calls, data search, and document preparation. The OfficeMate should be able to
localize sound in normal office environment, rotate the head and cameras for visual
attention and speech enhancement. Then it would segment and recognize the face.
The lip reading would provide additional information for robust speech recognition
in noisy environment, and both visual and audio features would be used for the
recognition and representation of “machine emotion.” The OfficeMate would use
natural speech for communications with the human users, while electronic data
communication may be used between OfficeMates. Some role of secretarial jobs
had been demonstrated.

We are now further extending the approach toward higher cognitive functions
for intelligent agents, i.e., Artificial Cognitive Systems (ACSs). As shown in Fig. 2,
based on the computational models of proactive knowledge development (PKD) and
self-identity (SI), we would like to build functional modules for Knowledge Rep-
resentation & Accumulation, Situation Awareness, Decision Making, and Human
Behavior. The developed ACS will be tested against the new Turing Test for the
situation awareness.

Models of Proactive Knowledge Development: The model of self-developing
knowledge development will include active learning by asking proper questions
based on the estimation of itself and environment.

Models of Self-Identity and Emotion: The model of self-identity and emotion
will be developed based on recurrent neural network, of which internal hidden state
represents one self-identity or emotion.
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Fig. 3 Neural network model of Artificial Cognitive Systems

Knowledge Representation and Accumulation: Basic units of knowledge, i.e.,
features, and hierarchical network architecture based on the features will be
developed for knowledge accumulation from bilateral interaction with environment
(people, other robots, internet).

Situation Awareness: Recognition algorithm of unknown environment and situ-
ation will be developed based on (common) knowledge, previous experience, and
self-identity.

Decision Making: The model of decision making based on situation, user models,
and its own internal states will be developed.

Human Behavior: Action models will be developed for facial expression, hand
motion, and speeches.

Artificial Systems Development: Hardware and software development. Figure 3
shows the neural network model of ACS.

New Turing tests: The Test problems will consist of several video clips, and the
performance of the ACSs will be compared against those of human with several
levels of cognitive ability.

As a simple demonstration, the developed personality-based agent model was
applied to the Prisoners’ Dilemma problems, and demonstrated the personality may
be evolved by the interaction with other agents, i.e., the opponent of the Prisoners’
Dilemma game. Actually to make its own decision the Agent tries to estimate
the opponent’s behavior, and different personality evolves for different opponent.
In a society of many adaptive Agents they interact each other throughout many
generations, and may co-evolve to different societies. In our experiments the society
usually evolves cooperative or competing society of homogeneous Agents. In the
cooperative society each Agent converges to a personality with mutual benefits,
while it converges to egoist personality in the competing society.
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The network architecture of ACS in Fig. 3 has internal state clusters to model
the self-identity. The output (action) is a function of the internal states as well as
audio-visual inputs. Also, the output makes change of the internal states.

Although audio and visual pathways are separated in brain anatomy, as demon-
strated by McGurk effect [2] audio-visual interaction occurs in human perception.
The hierarchical knowledge clusters perform this audio-visual interaction as well as
their interaction with action and internal states. It is also important to have hierarchy
for easy knowledge addition and deletion.

3 Multi-modal Multi-disciplinary Approach

For the development of ACS we need mathematical models of higher cognitive
functions, which may not be available at this moment. Therefore, in addition to
utilizing existing knowledge, we are conducting our own cognitive experiments.
Figure 4 shows how we would like to come up with mathematical models of
higher cognitive functions in metaphor. When ten blind men are trying to figure our
an elephant, each man just knows one small part of the elephant. As shown in the
upper-left corner, the collection of knowledge does not do much good. Provided the
relative locations of ten blind men were known in the upper-right corner, one may
obtain some vague idea on an element. Then, one tried to utilize domain knowledge
to extract something useful from the vague idea. In this case one may utilize the fact

- - - Relationship - D
-

Knowledge
l (Information

Theory)

Spatial — ‘
[

Temporal

Relationshop _ —‘H

Fig. 4 Combining multimodal data from cognitive neuroscience and engineering knowledge from
information technology for mathematical models of higher cognitive functions
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that any edge is likely to be extended, and the result in the lower-right shows clear
picture of an elephant. If one adds temporal dynamics, it will become much clearer
and even distinguishes legs and noise. The figure shows usefulness of combining
multimodal data for both high temporal and spatial resolutions while the missing
links are filled in by domain information theory.

4 Conclusion

For the intelligent agents we propose to learn from brain information processing
mechanism. Although the cognitive neuroscience dose not yet provide enough
knowledge to build mathematical models of higher cognitive functions such as
situation awareness and self-identity, we can utilize multimodal measurements such
as fMRI with higher spatial resolution and EEG for higher temporal resolution. The
still-existing missing links will be filled-in from engineering knowledge such as
information theory.
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Dynamic Neuronal Representation
in the Prefrontal Cortex

Hajime Mushiake, Keisetsu Shima, Kazuhiro Sakamoto, Yuichi Katori,
and Kazuyuki Aihara

Abstract The present paper investigated the neural mechanisms underlying
dynamic neural representation in the prefrontal cortex (PFC), which is thought
to play a crucial role in flexible cognitive behavior. Neural representation is discrete
or continuous according to the information to be encoded. The multistable attractor
model is a plausible theory of flexible control of representation. Attractor states are
dependent on functional connectivity in which neuronal subpopulations actively
communicate with one another at any particular moment in time. We discussed new
optogenetics tools to manipulate the state of local circuits to investigate dynamical
neural function.
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1 Introduction

The brain interacts with the world through the body and creates representations
of the internal state of the body and external state of the environment to cope
with the ever-changing world in a flexible manner. Recent studies have revealed
that the prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior
by adaptively encoding various aspects of goal-directed behavior through cross-
modal and cross-temporal integration according to a given behavioral context [1-4].
Adaptive representation depends on functional connectivity in which neuronal
subpopulations constantly communicate with one another. Thus, it is important to
understand the mechanisms underlying the dynamic processing of neural activity in
local PFC circuits.

We investigated the neural mechanisms underlying flexible performance during
cognitive tasks in non-human primates by analyzing the neuronal dataset using a
representation-level approach to determine the information encoded by each neuron
and a dynamic-system approach to describe the neural system as a state defined by
a set of variables mapped in the state space over time [5—7]. The physiological vari-
ables measured included field potential, spiking activity, membrane potentials, and
other quantitative physiological parameters. The representation-level and dynamic-
system approaches are not mutually exclusive and represent two sides of the
coin. We examined the neural mechanisms underlying flexible cognitive control by
reviewing recent findings on representational and dynamic approaches. Moreover,
we discuss the need for innovative research tools to study dynamic neural states in
vivo. Optogenetics, a promising new tool, allowed us to manipulate the state of local
circuits with high space—time resolution.

2 Dynamic Representation of Information

Neurons in the PFC are thought to be involved in an executive function by
dynamically processing neural representations to cope with future demands in a
prospective manner. Accumulating evidence indicates that prefrontal neurons not
only hold external and internal information in a working memory but also transform
online information from one type of behaviorally relevant information to another in
a flexible manner [8—14]. These studies have suggested the existence of two types
of representation: discrete and continuous. Our previous studies investigating PFC
involvement in flexible mapping between goals and actions provide an example of
dynamic representational changes in discrete information. Monkeys were trained to
perform a path-planning task that required the use of two manipulanda to move
the cursor from an initial position in a maze displayed on the computer screen
to reach a given goal [10, 11, 14]. The goal was one of four peripheral positions
in the maze that could be reached by various combinations of cursor movements.
Several PFC neurons exhibited initial selectivity for the final goal and subsequent
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selectivity for the immediate goal of the first action during the preparatory period
[10, 11]. We also observed neuronal activity representing the first, second, and third
steps of future actions during the late preparation period [14]. Three examples of
PFC neuronal activity associated with the first, second, and third steps of the path-
planning task are shown in Fig. 1. Each neuron exhibited a distinct response only
for the preferred future action. Furthermore, many of these neurons were reactivated
during the execution period of each step. Therefore planned future actions were
represented in a parallel manner in advance and serially executed with stepwise re-
activation of the PFC neurons.

Behavioral tasks requiring an association between different types of discrete
representations often involve a transition between different classes of representation.
For example, stimulus—-response association task involves the transition between
representations of sensory domain and motor domain.

In a recent paper [15], we described continuous representation with a graded
magnitude of neural activity. Interval timing of an action is a continuous vari-
able, but a particular interval is often specified in a discrete manner. The pre-
supplementary motor area (pre-SMA) is located in the medial frontal cortex and
is closely connected with the prefrontal areas. To investigate pre-SMA-encoded
interval timing, we trained animals to perform a time-production task that required
them to determine a hold time of three different intervals before initiating a key-
release movement in response to three color cues on the computer screen. We found
two types of responses in the pre-SMA: a ‘time-specific’ response that reflected
the retrieval of a specific interval of time in response to a visual cue and a ‘time-
graded’ response that exhibited decay or build-up changes in activity depending on
the length of the interval (Fig. 2).

The time-specific discrete responses and time-graded continuous parametric
responses contributed equally to the generation of interval timing. Continuous
and discrete representations also appear to play a crucial role in decision-making.
Gold and Shadlen [16] claimed that the neural process underlying decision making
requires a continuous process of evidence accumulation and a binary decision by
filtering continuous magnitude data with adjustable thresholds in their work using
perceptual decision-making tasks. Furthermore, a study that compared two vibration
frequencies in the frontal cortex during a decision-making task reported integration
of discrete and parametric neural presentations [9].
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3 Representations as Attractor States

Theoretically, the working memory-related persistent neuronal activity commonly
observed in the PFC is thought to be an attractor state in that relatively small
amounts of variation in this state lead it back to the same state [6, 17, 18].
Multiple attractors consist of ensembles of neurons with resting and active states
such that a memory state can be represented by one state of attractors. This
formulation is plausible insofar as a state of local circuits is dynamically stable
in time. However, in real-time situations in the face of various behavioral demands,
neural representations in one dimension at one epoch must be dynamically linked
with different-dimensional representations at the next epoch to cope with various
internal and external changes. Representations can be switched by reorganizing
attractor states according to short-term changes in synaptic efficacy such as synaptic
facilitation or depression. In this way, attractor states allow a neural system to
work within different characteristic frames of reference corresponding to different
types of representations. In our preliminary studies, we observed neural model-
based dynamic multiple-attractor states that reproduce representational changes
from goals to actions in the PFC. In this model, information in one modality is
encoded by multiple attractor states of a neural population. When the attractor state
is transformed into another state by short-term changes in synaptic efficacy, an
overlapping but different cluster of neurons encodes information in that modality.
Thus, the multi-dimensional information is represented as a different configuration
of neurons, and short-term synaptic changes in local circuits contribute to maintain
or shift attractor states in local circuits (i.e., synapsembles [19]). We believe
dynamically reorganizable multi-attractor model can be applicable to flexible repre-
sentational changes across multi-dimensional information observed in the PFC.
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4 Local Circuits Underlying Dynamic Representation

Attractor states are maintained and modulated at different hierarchical levels in local
neural circuits [17, 20]. (1) The intrinsic regenerative dynamics of single neurons
involves positive feedback between membrane depolarization/spike discharges and
active inward currents that can produce persistent activity outlasting a transient input
current pulse. (2) Excitatory and inhibitory balance within inputs to dendrites of a
single neuron and/or within a local circuit play an important role in the maintenance
or switching of attractor states working within excitatory recurrent collaterals. (3)
Cortico—cortical interactions contribute to the coordination of attractors by biasing
weights of information flows within interconnected target areas. (4) Neurons in
the various cortical areas are interlinked through multiple semi-open loops such
as the thalamo—cortical loop, cortico—basal ganglia, and cortico—cerebellar loop.
These loops may contribute to the selection, maintenance, and suppression of
attractor states. Furthermore, changes in one hierarchical level may influence neural
states in other levels. Contingent phenomena caused by an ensemble of neurons,
such as oscillation of local field potentials, synchronous activities, and fluctuations
in neuronal activities within local circuits, may influence the maintenance or
reorganization of neural states. Until recently, the study of dynamic attractor
states within cortical circuits has been difficult because an appropriate method to
manipulate the state of local circuits with high resolution of space and time was not
was available.

5 Optogenetics as a New Tool to Manipulate Local Circuits

Optogenetics, a promising new tool for the assessment of neural states, uses
a combination of genetic and optical methods to control targeted neurons by
inducing inward or outward currents across stimulated membranes [21]. Recently,
channelrhodopsin-2 (ChR2)-mediated photo stimulation of neurons has been used to
investigate the state of neural networks in vivo. Preliminary results using transgenic
rats expressing ChR2 in neurons demonstrated that optogenetic injection of the
patterned oscillatory currents (opto-current clamp) caused state changes in local
circuits [22]. Optically induced perturbation of local circuits are a useful method to
study the mechanisms underlying attractor-state reorganization at the mesoscopic
level.

6 Discussion and Conclusions

Transiently active ensembles of neurons dynamically represent relevant information
in the cortical association areas including the prefrontal cortex. We classified
representations into two types according to whether the information to be encoded
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was a discrete (binary) or continuous (parametric) representation. Dynamic changes
in representation are thought to reflect a multiple-attractor state, which is dependent
on rapidly changing functional connectivity in the cell assembly. According to this
idea, it is very important to intervene and evaluate the state of local circuits in vivo
experiments of animals with high time and space resolution. Recent progress in bio-
opto engineering including optogenetics has allowed us to optically manipulate the
state of local circuits in the cortex while simultaneously electrically monitoring their
activity. Innovative bio-optical methods for neuroscience will open new avenues for
understanding neural dynamics.
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Timing at Multiple Scales in Olfactory
Perception

Leslie M. Kay

Abstract Olfactory perception spans multiple time scales, from sub-millisecond
and millisecond generation and timing of action potentials to developmental time. In
this paper I review recent research addressing the mesoscopic scale and interactions
with events that occur on longer time scales. Oscillatory local field potential
frequency and coherence patterns can be modulated by behavioral state, sniffing
patterns, intentional processes, learning, and circadian changes in gene expression.
The olfactory system also shows species-selective interactions with development
and expression of seasonality related to reproductive status, immune response and
affective state. Causal interactions at different temporal scales represent the rule
rather than the exception in this system.

Keywords Temporal scale ¢ Olfactory bulb ¢ Oscillation * Local field potential

1 Introduction

The olfactory system uses timing information at several different scales, from
milliseconds to weeks, and we now see that these scales have the potential to interact
in ways that set up the possibility for complex dynamical effects. The interactions
occur across processes and mechanisms, from gene expression to sensory perception
to affective state. We track these effects primarily through electrophysiology and
surgical and behavioral manipulations. Mesoscopic neural processing of odor
information is represented by temporal information at the millisecond to hundreds of

L.M. Kay (2)

Department of Psychology, Institute for Mind and Biology, The University of Chicago,
Chicago, IL 60637, USA

e-mail: lkay @uchicago.edu

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (II), 17
DOI 10.1007/978-94-007-4792-0_3,
© Springer Science+Business Media Dordrecht 2013



18 L.M. Kay

milliseconds scale, from gamma oscillations of the local field potential (40—100 Hz)
to inhalations and sniffs (2—12 Hz). However, if we expand our scope to include
several longer time scales, the picture is more complex and more interesting.

When we view the many scales which can interact in this system, we begin to
identify a set of control and order parameters that may influence and be influenced
by mesoscopic activity [1, 2]. The processes encompassed by these parameters
range from attentional changes in neuromodulator levels to gene expression patterns
associated with sexual development and seasonal responsiveness. These parameters
occupy temporal scales from milliseconds to months or even years, and time
becomes a source of complexity.

2 Temporal Processing Scales

Mesoscopic activity is best represented by the local field potential (LFP). This
signal shows the cooperative activity of hundreds to thousands of neurons. Because
the LFP is the local population coherence, this signal represents what downstream
neurons are likely to receive. The coherent signal is what best survives any pathway
that disperses activity, referred to by Freeman as the ‘brain laundry’ [2]. Three
oscillatory bands dominate the LFP spectrum in the olfactory system, the gamma,
beta (~20 Hz) and theta (2-12 Hz) bands. Each of these bands represents different
aspects of olfactory behavior and relies on different circuits [3].

Gamma oscillations represent local firing precision of neurons in the olfactory
bulb (OB) and the insect antennal lobe, the analog of the vertebrate OB [2, 4]. When
downstream neurons in the piriform cortex (PC) or the insect mushroom body are
viewed as feature detectors, we see that mesoscale activity translates downward to
affect the probability of a single spike in downstream neurons. Neurons in the PC
are sensitive to a few spikes arriving in a brief (~5-10 ms) time window. Mushroom
body neurons fire when specific antennal lobe neurons are activated in tight temporal
precision. Gamma oscillations and mitral cell precision are local events and are
enhanced when central input to the OB is removed.

We and others have proposed that olfactory system beta oscillations serve to
couple areas for distributed processing and may also facilitate the transfer of
information from the OB to the PC and hippocampus [5-8]. In contrast to gamma
oscillations, beta oscillations rely on central input to the OB; when this input
is removed, beta oscillations disappear [9]. We presume that these oscillations
represent coordinated firing of neurons within and across multiple areas, since they
appear in multiple areas as the result of associative learning or sensitization.

Theta oscillations and the sensorimotor act of sniffing overlap in the OB. In
this structure, and to a lesser extent in the PC, theta oscillations represent rodents’
respiratory behavior. Interactions between scales are apparent when rats and rabbits
change their sniff frequencies. During high frequency sniffing gamma oscillations
often decrease in periodicity, indicating less global precision in the underlying mitral
cell population [10, 11]. Glomerular activation patterns in the input layer of the
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olfactory bulb are also affected by the type of sniff [12]. These data suggest that
mesoscopic changes effected by the type of sniff an animal takes can influence lower
level activity on the scale of a few milliseconds.

There is more detail in the form of temporal structure of odorant mixtures as they
diffuse through the mucosal layer and bind to olfactory receptors. Human subjects
are sensitive to this timing information [13], and rats also appear to be (J Dink and
LM Kay, unpublished observations).

While we are accustomed to think of mesoscopic phenomena as representing
collective activity at lower levels, processes at much longer timescales affect
mesoscopic activity in often complex ways. I divide these into several categories
based on their temporal scales: (1) seconds to minutes, (2) minutes to hours,
(3) hours to days, and (4) seasonal and developmental timeframes.

On the scale of seconds to minutes, there are a growing number of studies that
address the relationships between behavioral state and LFP signal characteristics.
Most obvious are the changes that occur within a single behavioral trial, as a subject
moves from one behavioral epoch to the next [10]. Rats are trained to a sequence of
behavioral state changes that over time adopt relatively high precision. For instance,
trained rats produce a stereotyped sampling duration, in our hands ~550 ms, to
accomplish a binary odor discrimination at >90% performance levels in either a
go/no-go or 2-alternative choice paradigm. Operant responses are also on the order
of 500 ms [14]. LFP statistics change along with these behavioral epochs with some
features apparently dependent on the task [3].

Arousal states can affect coupling and information flow within the olfactory
system. Urethane anesthesia produces sleep-like slow- and fast-wave states. Slow-
wave states are accompanied by increased low frequency (<15 Hz) coherence
between the PC and limbic structures, such as the hippocampus and amygdala.
Information flow in this state proceeds from the hippocampus toward the periphery.
During fast-wave states the PC has greater coherence with the OB, and information
flow is from the periphery towards the hippocampus, as it is in waking states
[5, 6, 15]. Coupling strength thus oscillates on the scale of seconds to many minutes,
and this slow coupling and decoupling interacts with the direction and fidelity of
information transfer.

Slow monotonic changes in neuromodulator levels or other processes associated
with attention or affective state can gradually change mesoscopic features, such as
the power of gamma oscillations during discrimination of high-overlap odors [16].
However, because neuromodulator release can be regulated on the order of hundreds
of milliseconds [17], this parameter change could provide more complexity than can
be predicted from a simple monotonic rise or slow periodicity.

On the scale of minutes to hours, spanning into days, we begin to see long term
changes in connection strength and gene expression that can affect the circuit that
produces mesoscopic activity. It is not until rats have reached criterion performance
on a task (often over many days) that beta oscillations in the OB exceed baseline
levels [7]. However, once a rat has learned one discrimination and transfers that
knowledge to a second odor set, beta oscillation coherence between the OB and both
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the dorsal and ventral hippocampus remains elevated, even when beta oscillations
in the OB are at baseline levels [8]. Beta coherence between the two hippocampal
subfields remains at baseline levels until the rat reaches criterion performance on the
new odor set. At this point coherence between the dorsal and ventral hippocampus
is again elevated.

Studies which address the ways in which rodents learn the rules of olfactory
behavior and transfer them to new stimulus sets show that once rule learning is
established, the properties of LTP and LTD in both the PC and the hippocampus are
altered, as are patterns of gene expression that support these changes in connectivity
[18,19].

Circadian time influences processes that may present at the mesoscopic scale.
PER gene expression modifies OB neuron excitability and shows entrainable circa-
dian rhythms that persist independent of the suprachiasmatic nucleus [20, 21]. These
rhythmic forces are likely to affect mesoscopic activity, perception and behavior.

Seasonal and developmental time. Olfactory bulbectomy (complete removal of
both olfactory bulbs) clearly affects odor perception, but bulbectomy also influences
affective state independent from loss of the sense of smell. Bulbectomy is a robust
model for unipolar depression. It produces behavior in rats that is reminiscent
of depression-linked anxiety, and the animals respond to chronic, but not acute,
treatment with anti-depressants, as do humans [22]. Olfactory bulbectomy also has
species-specific effects on reproductive responses to changes in day length. Seasonal
reproductive responsiveness, normally absent in rats, is released when rats are bul-
bectomized prepubertally [23]. Syrian hamsters, which do show seasonal changes
in reproductive status, lose this seasonality after bulbectomy [24]. Bulbectomy has
no gonadal effects on seasonally reproductive Siberian hamsters, but they do present
changes in immune response to seasonal cues [25, 26]. We have recently shown that
day length modulates the depressive effects of bulbectomy in laboratory rats and that
postpubertal bulbectomy does not release the seasonal reproductive response [27].
These results together show that second order neural pathways from the olfactory
system to the suprachiasmatic nucleus can modulate developmental, immunological
and affective processes, and that the timing of this manipulation is crucial to the
constellation of effects and varies across species.

3 Conclusion

Interactions between temporal scales are ubiquitous in the olfactory system, from
millisecond to seasonal and even developmental time. Each of these processes
might be viewed as control parameters that can be manipulated by various physical
methods, such as neurotransmitter levels, day length, time of day, sniffing rate, etc.
Each can eventually be understood at a mechanistic level. How might we then use
this information to understand perceptual awareness in intact brains?
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We are used to thinking of processes that occur on longer timescales as
having approximately monotonic effects on mesoscopic and perceptual processing.
However, actual effects can be much more complex and produce emergent order
parameters that drive perception, hierarchical processing, flexible learning of new
goals, and even higher order processes such as self-autonomy [28, 29]. By examin-
ing interactions among temporal scales we will enable a description that relies on
complex dynamics related to perception, and it is here that we may make the leap
from coding-based sensory information to describing an individual’s awareness and
understanding.

Acknowledgments LMK received funding for this work from the NIDCD (R01-007995) and an
Institute for Mind and Biology Seed Grant.

References

1. Haken, H., The Science and Structure of Synergetics. 1984, New York: Van Nostrand Reinhold
Company. 255.

2. Freeman, W.J., Characteristics of the synchronization of brain activity imposed by finite
conduction velocities of axons. International Journal of Bifurcation and Chaos, 2000. 10(10):
2307-2322.

3. Kay, L.M., J. Beshel, J. Brea, C. Martin, D. Rojas-Libano, and N. Kopell, Olfactory
oscillations: the what, how and what for. Trends in Neurosciences, 2009. 32(4): 207-214.

4. Kay, L.M. and M. Stopfer, Information processing in the olfactory systems of insects and
vertebrates. Seminars in Cell & Developmental Biology, 2006. 17(4): 433-442.

5. Gourévitch, B., L.M. Kay, and C. Martin, Directional coupling from the olfactory bulb to the
hippocampus during a go/no-go odor discrimination task. Journal of Neurophysiology, 2010.
103(5): 2633-2641.

6. Kay, L.M. and J. Beshel, A beta oscillation network in the rat olfactory system during
a 2-alternative choice odor discrimination task. Journal of Neurophysiology, 2010. 104(2):
829-839.

7. Martin, C., R. Gervais, E. Hugues, B. Messaoudi, and N. Ravel, Learning modulation of odor-
induced oscillatory responses in the rat olfactory bulb: A correlate of odor recognition? Journal
of Neuroscience, 2004. 24(2): 389-397.

8. Martin, C., J. Beshel, and L.M. Kay, An olfacto-hippocampal network is dynamically involved
in odor-discrimination learning. Journal of Neurophysiology, 2007. 98(4): 2196-2205.

9. Martin, C., R. Gervais, B. Messaoudi, and N. Ravel, Learning-induced oscillatory activities
correlated to odour recognition: a network activity. European Journal of Neuroscience, 2006.
23: 1801-1810.

10. Kay, L.M., Two species of gamma oscillations in the olfactory bulb: dependence on behavioral
state and synaptic interactions. Journal of Integrative Neuroscience, 2003. 2(1): 31-44.

11. Kay, L.M., A challenge to chaotic itinerancy from brain dynamics. Chaos, 2003. 13(3):
1057-1066.

12. Verhagen, J.V., D.W. Wesson, T.I. Netoff, J.A. White, and M. Wachowiak, Sniffing controls
an adaptive filter of sensory input to the olfactory bulb. Nature Neuroscience, 2007. 10(5):
631-639.

13. Laing, D.G., A. Eddy, G.W. Francis, and L. Stephens, Evidence for the temporal processing of
odor mixtures in humans. Brain Research, 1994. 651(1-2): 317-28.



22

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

L.M. Kay

Frederick, D.E., D. Rojas-Libano, M. Scott, and L.M. Kay, Rat behavior in go/no-go and two-
alternative choice odor discrimination: differences and similarities. Behavioral Neuroscience,
2011. 125(4): 588-603.

Wilson, D.A. and X. Yan, Sleep-like states modulate functional connectivity in the rat olfactory
system. Journal of Neurophysiology, 2010. 104(6): 3231-3239.

Beshel, J., N. Kopell, and L.M. Kay, Olfactory bulb gamma oscillations are enhanced with task
demands. Journal of Neuroscience, 2007. 27(31): 8358-8365.

Sarter, M., V. Parikh, and W.M. Howe, Phasic acetylcholine release and the volume transmis-
sion hypothesis: time to move on. Nature Reviews Neuroscience, 2009. 10(5): 383-U86.
Cohen, Y., I. Reuveni, E. Barkai, and M. Maroun, Olfactory learning-induced long-lasting
enhancement of descending and ascending synaptic transmission to the piriform cortex.
Journal of Neuroscience, 2008. 28(26): 6664—6669.

Quinlan, E.M., D. Lebel, I. Brosh, and E. Barkai, A molecular mechanism for stabilization of
learning-induced synaptic modifications. Neuron, 2004. 41(2): 185-192.

Granados-Fuentes, D., A. Tseng, and E.D. Herzog, A circadian clock in the olfactory bulb
controls olfactory responsivity. Journal of Neuroscience, 2006. 26(47): 12219-12225.
Abraham, U., J.L. Prior, D. Granados-Fuentes, D.R. Piwnica-Worms, and E.D. Herzog,
Independent circadian oscillations of period1 in specific brain areas in vivo and in vitro. Journal
of Neuroscience, 2005. 25(38): 8620-8626.

Kelly, J.P., A.S. Wrynn, and B.E. Leonard, The olfactory bulbectomized rat as a model of
depression: An update. Pharmacology & Therapeutics, 1997. 74(3): 299-316.

Nelson, R.J. and 1. Zucker, Photoperiodic control of reproduction in olfactory-bulbectomized
rats. Neuroendocrinology, 1981. 32(5): 266-71.

Clancy, A.N., B.D. Goldman, A. Bartke, and F. Macrides, Reproductive effects of olfactory
bulbectomy in the Syrian hamster. Biol Reprod, 1986. 35(5): 1202-9.

Prendergast, B.J., J. Galang, L.M. Kay, and L.M. Pyter, Influence of the olfactory bulbs on
blood leukocytes and behavioral responses to infection in Siberian hamsters. Brain Research,
2009. 1268: 48-57.

Prendergast, B.J., L.M. Pyter, J. Galang, and L.M. Kay, Reproductive responses to photoperiod
persist in olfactory bulbectomized Siberian hamsters (Phodopus sungorus). Behavioural Brain
Research, 2009. 198(1): 159-164.

Tacopina, S., H. Lee, L. Pyter, B.J. Prendergast, and L.M. Kay, Interaction between day length
and anxiety measures in olfactory-bulbectomized Wistar rats. Society for Neuroscience Annual
Meeting, 2011. Washington DC.

Yamashita, Y. and J. Tani, Emergence of functional hierarchy in a multiple timescale neural
network model: a humanoid robot experiment. PLoS Computational Biology, 2008. 4(11):
€1000220.

Tani, J., Autonomy of self at criticality: the perspective from synthetic neuro-robotics. Adaptive
Behavior, 2009. 17(5): 421-443.



Structure, Stability, Dynamics, and Geometry
in Brain Networks

Peter A. Robinson

Abstract The role of physical and geometrical constraints in determining structure
of brain networks is outlined. It is shown that requirements imposed by dynamics,
stability, and network geometry strongly constrain possible networks to structures
that strongly resemble those found in real brains.

1 Introduction

Observed brain networks exhibit complex patterns of anatomical interconnections
and functional dynamics. Brain networks are subject to a range of competing
constraints that limit the range of possible network architectures. These constraints
include long-recognized limitations on physical volume, speed of processing,
path length, and metabolic load [1]. More recently recognized constraints include
requirements that networks must be dynamically stable with respect to epilepsy-
like disruptions of activity [2], but must remain in an “edge of chaos” state of
near-marginal stability to enable complex behavior and rapid functional adaptability
[3]. Moreover, this level of dynamical stability must be maintained as functional
and/or anatomical connections are made and broken on time scales spanning task
performance, information processing, development, and evolution [3], a criterion
that echoes Simon’s observations on the advantages of modularity in complex
systems [4].

The above considerations imply that only certain types of theoretically
possible networks can actually be relevant to the real brain. More abstract
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information-theoretic criteria such as maximizing complexity or mutual information
may be relevant in quantifying complex behavior [1], but must ultimately arise from
physical principles.

This paper briefly reviews how principles such as a requirement of stability
against seizures, and geometric constraints imposed by the two-dimensional (2D)
cortical geometry, strongly limit the types of brain architectures that are possible.
Neural field theory (NFT) [5] provides a useful means of testing network stability
properties [3,6-8] and this paper concentrates on this approach.

2 Models

Connectivities between different brain regions (or nodes) are typically expressed in
terms of brain connection matrices (CMs) that usually have 50-1,000 nodes, each
representing 108~10° neurons. The structure of such CMs and their corresponding
networks is most often studied by examining quantities such as clustering, degree
distribution, and other graph-theoretic measures, without direct reference to the
physical properties of the actual brain from which the CM has been abstracted.
Alternatively, network architectures—e.g., regular, random, small-world, modular,
hierarchical, as illustrated in Fig. l—are hypothesized and their network properties
are compared with those of observed brain structures to find the best match.

Fig. 1 Schematic connection matrices (CMs) of networks with neural populations labeling rows
and columns, and white entries for a connection between a given row and column [2]. (a) Regular
network. (b) Random network. (¢) Small world network. (d) Hierarchical network shaded to show
density of connections. (e) Exemplar hierarchical network. (f) Cat cortical CM (Adapted from [9])
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A number of studies have examined the dynamics of activity in brain networks.
Early investigations mostly assumed or enforced stability of dynamics, but recent
work has examined the roles of network structure in stability [2,3,6-8]. For example,
the ability of hierarchical networks (HNs) to restrict spread of seizure-like activity
has been examined by using a simplified spreading model [2]. Here, we focus on
the problem of what network architectures can exist under requirements that their
dynamics be stable under the changing circumstances found in real brains.

Many approaches exist to studying brain network dynamics, most directly by
simply connecting large numbers of model (e.g., integrate-and-fire) neurons accord-
ing a specific CM. However, to represent the extremely large numbers of neurons
represented by each node of an observed CM it is more practical to endow each node
with physiology based neural population dynamics, embodying their average behav-
ior. These nodes are then linked according to the CM of interest to study network
dynamics and stability. Here we focus on recent approaches based on NFT [3, 6-8].

The model focused on here incorporates the synaptodendritic dynamics that
result in the soma potential, the resulting average firing rate, and the consequent
field of outgoing pulses ¢ (¢) that propagates between nodes with a damping rate
y that reflects the finite average time taken to reach axonal terminals. In the limit
nodes are close enough to treat as a continuum this model has been extensively
used to investigate the corticothalamic system, producing excellent agreement with
a wide range of other neural activity phenomena [5].

To analyze brain networks we assume there are no spatial dependences within a
given population (i.e., node), which is assumed to comprise identical neurons, with
a soma voltage response time 1/« to incoming spikes. Linear perturbations of the
neural field ¢,, for each population a about its steady state are then described in
Fourier space by Gray and Robinson [6]

D(@)¢u(@) = Y Gappp(®), ()
b

D(w) = (1 —iw/a)*(1 —iw/y)*, 2

where o is the angular frequency, G, is the connection gain (the number of action
potentials produced in a per action potential from b); if G, > 0, the connection is
excitatory and if G, < 0 it is inhibitory. Only cases with G,, = g = constant are
considered here.
Letting G = [G4] = gC be the matrix of gains, where C is the CM, (1) can be
written
A(w)®(w) =0, (3)

where A = G — D, @ is a column vector of the ¢,, D = D(w)I, and I is the
identity matrix. Equation (3) describes the linear dynamics of a network of neural
populations with no external input and thus determines its stability via the solutions

o of the dispersion relation
detA(w) = 0. “4)
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The set of solutions of (4) is termed the dispersion spectrum. In the complex w plane
the boundary between stable and unstable regions is the real axis, and networks with
dispersion solutions at this boundary are marginally stable. The solution w; with
the largest imaginary part Imo is least stable and determines the network’s overall
stability. We term this the dominant solution. Setting A = D(w), the dispersion
relation is

det (G —AI) =0, 5)

whose solutions @ are obtained by solving
A—D(w) =0, (6)

for each eigenvalue A of G. The set of eigenvalues is the spectrum of the network,
denoted Sp(G). If all A in Sp(G) have corresponding @ with Im(w) < 0, the network
is stable. However, if there is any A corresponding to Im(w) > 0, it is unstable. The
eigenvalue A; corresponding to w, is the least stable and is termed the dominant
eigenvalue. For v; < «, one can make the approximation

o =i(ygh —1). (N

3 Results

In this section we show how physical conditions constrain network architectures. We
first test various proposed cortical network architectures for the dynamical stability
of their activity and find constraints on network parameters. For example, the regular
network in Fig. 1a has gA; = kg and hence is stable only for kg < 1, where k is
the number of neighbors to which each node is connected—i.e., the degree. For the
random network in Fig. 1b, we find gA; =~ npg and hence that the criterion for a
high probability of stability Ps is npg < 1 where n is the number of nodes and p is
the probability of a connection between a randomly chosen pair of nodes. Figure 2a
illustrates this criterion for various n, p, and g, with the transition from high to low
P; sharpening as n increases [6]. Random networks always become unstable as n
increases if local properties remain the same [10]. Figure 2b shows the spectrum of
a marginally stable random network, with w; = 0.

Real brain networks are highly clustered (i.e., there are disproportionately many
short-range connections), but have short mean path length L between nodes.
Regular brain networks have high clustering C and large L, with the reverse for
random networks. Small world (SW) networks have been proposed to circumvent
these problems. The CM of such networks, shown in Fig. 1c, can be constructed by
severing a small fraction p of the connections of a regular network and randomly
rewiring them between other pairs of nodes. This introduces a few long-range
connections that dramatically reduce L but leave C high. Figure 3 shows L and
C vs. p, demonstrating an intermediate SW regime with large C and small L.
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Fig. 2 Stability of random excitatory networks (Adapted from [6]). (a) Probability of stability P
of vs. npg. (b) Dispersion spectrum for npg = 1
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For p « 1, the stability of SW networks is chiefly determined by the regular
backbone. The network becomes approximately random if np ~ 1, in which case
A1 increases with 7.

We have examined constraints on C and L in networks of specified structure,
but real brains undergo evolution (increase of size, complexity), development
(growth, neural pruning), learning (formation of connections), and information
processing (transient connections). The dynamical reconnectability requirement that
the network remain stable under all these processes imposes additional constraints
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Fig. 4 Principal CM eigenvalue A; vs. n for random (triangles), SW (pluses), regular (circles),
and hierarchical (dots) networks [3]

on structure [3]. Moreover, networks must have a number of connections n. that
increases only in proportion to n to keep wiring to a constant fraction of brain
volume [3]. To enable dynamic reconnection, networks must also be able to be
combined or divided without appreciably changing their architecture, stability, or
the strength of more than a small fraction f of connections, ideally with f — 0
as n — oo [3]. These conditions enable the evolutionary, developmental, and
functional reorganizations required and reflect the principle that complex structures
are most efficiently assembled from working substructures [4].

It was recently found [3] that a modular hierarchical network (HN) can satisfy
dynamical reconnectability constraints while still maintaining high C and low L.
Such a network’s connectivity probability is shown in Fig. 1d, which exhibits a
hierarchical fall-off in blocks successively further from the diagonal; a specific
realization drawn from this distribution is shown in Fig. le [3, 11]. Figure 4 shows
that the resulting A; remains near-constant as n increases, so stability is unchanged
[3], and networks can remain in a marginally stable “edge of chaos” state of complex
dynamics.

The cortex is approximately a 2D sheet and is highly uniform in its anatomical
structure. This might appear to contradict findings of structure in CMs; however,
most cortical connections are short-range, thereby inducing geometric modularity
that can be disguised by the CM representation if nodes are not indexed appro-
priately. For example, indexing a 2D regular network in a spatial raster pattern
yields the CM in Fig. 5a, whereas if close nodes maintain close indexes, the CM
in Fig. 5b results [8]. Remarkably, this shows a structure very similar to the HN and
cat CMs in Fig. le, f, even though no explicit network modularity or hierarchy is
present [8]. This network satisfies the dynamical reconnectivity criteria, has high
C and (because it is 2D) low L. Moreover, with suitable choice of parameters,
quantitative measures of these quantities and modularity closely match those of the
cat cortex [8].
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Fig. 5 2D regular network a b
CMs [8]. (a) With raster h )
labeling. (b) With
geometrically close nodes
having closer labels than
in (a)

4 Discussion

Structural, dynamic, and geometric constraints together imply that only certain types
of networks can be relevant to the real brain, without invoking abstract criteria
such as maximization of complexity or mutual information in network activity.
CMs of suitably constrained networks closely resemble observed ones, suggesting
that physical constraints strongly limit the allowable types of brain networks.
One possible architecture is that of a modular hierarchical network, which has
small-world properties and can robustly maintain dynamics near marginal stability.
Regular 2D networks with a preponderance of short range connections can also
satisfy the physical constraints discussed—a result that may resolve the apparent
contradiction between the appearance of modularity in CMs and the high degree of
uniformity in cortical architecture.
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Mathematical Theory of Neural Networks:
A Personal and Historical Survey

Shun-ichi Amari

Abstract Mathematical neuroscience has become an important discipline of neu-
roscience, although it has not yet been fully established. We state historical remarks
on the progress of mathematical neuroscience from the personal viewpoint. We also
show some formulations of mathematical neuroscience with historical comments.
We conclude with long-standing unsolved problems.

Keywords Mathematical neuroscience e Statistical neurodynamics ¢ Neural
field ¢ Learning and memory

1 Introduction

Since theoretical approaches to dynamics of neural networks has a long history,
it is difficult to give a full survey. Instead, I show here a personal perspective,
summarizing my own researches for nearly a half century. There have been the
rise and fall of theoretical approaches, but I am glad to say that computational and
mathematical neuroscience has gradually been established itself as an important
discipline of brain science.

One may ask why mathematical neuroscience is necessary and what it is. The
brain has been created through the long history of evolution, so that it looks
indeed a very complex system having no definite design principles. However,
there must be fundamental principles that guarantee the capability of information
processing by using a large number of neural elements through parallel dynamical
interactions and learning. The nature has found these principles through random
searches of evolution, so that the brain uses them in a very complicated style,
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not well designed. This means that it is difficult to find the principles only by
accumulating experimental findings. We need pierce theoretical eyes, especially
mathematical theories to discover the principles, where simplified abstract models of
neural networks would be used. We can then construct more realistic models based
on these principles, where computational neuroscience plays an important role.

Historical Remarks on Mathematical Neuroscience

Prehistory: There were a number of important researches before the 1950s. One
may mention such big names as Rashevsky, Wiener, Rosenblueth, and Ashby among
many others.

Old period: The perceptron introduced by Rosenblatt was epoch-making, by
initiating study on brain-inspired learning machines and lots of works followed.
Caianiello also contributed dynamical aspects of learning by proposing the adiabatic
method. Zeeman proposed the topology of the brain, where homology theory
was used. Based on these intriguing works, there emerged lots of mathematical
researches in America (W. Freeman, M. Arbib, S. Grossberg), in Europe (J. Cowan,
Ch. Von der Malsburg, T. Kohonen) and in Japan (K. Fukushima, K. Nakano, S.
Amari). We should not forget Russian activities (L.I. Rozonoer, Y.Z. Tsypkin and
others), which were isolated from the western world.

It was this period that a number of mathematical theories and models were
established. They include statistical neurodynamics, neural field theory, learning
theory, associative memory and neural self-organization.

Strum-und-drang: It was a big surprise to me that a new trend called the
connectionism emerged in the early 1980s. The connectionism appealed researchers
with the slogan ‘parallel distributed processing (PDP)’, and welcomed from a wide
range of science and engineering community. Not only brain scientists but cognitive
scientists, physicists, engineering scientists, etc. joined enthusiastically to the new
trend, and it was said that this would generate industries of scale of billions of
dollars. Although this dream did not realize, its scientific impact was extraordinarily
strong.

The old theories were rediscovered again together with lots of newly developed
theories and models. This trend successfully connected different methods and fields
of research, searching for miracle of the brain, in particular how distributed and
parallel computation works together with learning.

Contemporary research: After the boom, lots of deeper researches are going on
today both in the direction of understanding the mechanism of the brain and in
the direction of engineering applications. In particular, it is widely recognized that
computational neuroscience is a very important part of brain science. Integration of
robotics and neuroscience is another important aspect. I am glad to see that the term
‘mathematical neuroscience’ has become popular now.
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Topics of Mathematical Neuroscience

1. Dynamics of neuron pools, neural oscillators and statistical neurodynamics
Given a pool of neurons, its dynamics may be written as

f% = —u +Zwij(p{uj(t)}+si_hs ey
where u; is the (average) membrane potential of neuron i, w;; is the connection
weight from neuron j to neuron i, ¢ is a sigmoidal function, s; the external input
and 4 is threshold. This is called the Hopfield network, but it was used in Amari
[7], (discrete-time version in [3]), Wilson and Cowan, 1972, etc. There are rich
dynamic aspects covered by this simple model, such as multi-stability, oscillation
and chaos.

When the connection weights are randomly assigned subject to a probability
law, we may investigate dynamical behaviors common to all such networks.
This approach is called statistical neurodynamics. When a network consists of a
number different neuron pools, for example, pools of excitatory and inhibitory
neurons, by introducing macroscopic variables U,(f) of average membrane
potential for pool «, statistical neurodynamics derives the macroscopic equation

dU,
tT(t) = —U,(t) + Z Wep W {U,g(t)}
+ S, — H, (2)
where
Xo =WV (Uy) (3)

is the activity level (firing rate) of pool ¢, and studies the dynamical properties.

When the network consists of excitatory neurons and inhibitory neurons,
we may consider two types of macro-variables U, and U;. The dynamical
behavior is multi-stable or oscillatory, depending of the parameters. The neural
oscillation of this type was first demonstrated by Amari (discrete-time dynamics,
[3] and continuous time, Amari [7]). Wilson and Cowan, 1972 proposed a similar
equation, so that it is now call the Wilson-Cowan neural oscillator.

Chaotic behaviors and oscillations are very important. Sompolinski is the first
who demonstrated the chaotic behaviors in a random network of asymmetric
connection. Aihara demonstrated the role of chaotic behavior in decision systems
and associative recall dynamics. Tsuda postulated that such chaotic dynamics
constitutes a fundamental principle of the brain.

Yamaguchi is one of the first who remarked the importance of neural
oscillations in information processing. She analyzed the role of the phase in the
hippocampus. Now it is a hottest topic in brain science to integrate information
in various areas of the brain.
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2. Dynamics of neural fields
Neurons are arranged in the cerebrum as a multilayer 2-dimensional neural field.
Its dynamics was proposed by Wilson and Cowan, 1973. Amari [4] followed
their idea to give a rigorous mathematical analysis of the dynamics and its
stability. Ermentrout applied the field theory to explain hallucination. Now
dynamics of neural field is one of hot topics, applied to explain working memory,
psychological phenomena and robotics navigation.
The equation is written as

Wt 1)
TT =-U,(&,1)
+ 3 [ (- v
B
{Us (8',1)} dE' + Su(E.1) — . )

Here £ is a (two-dimensional) coordinates of the field.
3. Associative memory
A prototype model of dynamics of associative memory was proposed in 1972 by
a number of researchers. The model rediscovered by Hopfield, the so called the
Hopfield model, is exactly the same as that proposed and analyzed by Amari [8].
He also proposed the association mechanism of a sequence of patterns by using
an asymmetric connection matrix.

It is a great achievement of Hopfield who proposed the concept of capacity,
which was analyzed by physicists, using the replica method. The dynamics of
recall was analyzed by Amari and Maginu [13], showing a very complex basins
of attraction. This was generalized by Okada to a higher-order theory. J. Hawkins
considers this type of association mechanism a fundamental principle of the brain
and proposed to construct a brain-inspired machine.

The prototype associative memory model is too simple to explain the mem-
ory mechanism of the real brain. However, it inspired the physiological and
molecular-biological study of the hippocampus.

4. Learning and self-organization, reinforcement learning
A general theory of classic synaptic learning was proposed by Amari [6]. This
includes associative, supervised and unsupervised learning. It includes the PCA
mechanism, which later rediscovered by Oja. The self-organization of feature
extraction was shown possible through the balance of inhibitory and excitatory
synapses. This was the same as the BCM mechanism proposed later except for
the interpretation (sliding threshold or enhancement of inhibition).

The self-organization of neuron pools and neural fields was proposed by
von der Malsburg and Willshaw and Malsburg. Their models and theories were
epoch-making. Amari and Takeuchi [10] applied it to show the dynamics of self-
organizing neural fields. Based on these prior research, Kohonen proposed the
SOM model.
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The classic theory does not cover the following new research topics. Rein-
forcement learning is an old topic of research, but its neural version was proposed
by Barto and Sutton. Since then, it is a hot topic of research both in brain science,
where basal ganglia and dopamine neurons play a role, and robotics learning.

Beyond the rate firing resume, information processing by neuronal spikes has
been remarked, since this gives more detailed description of neural activities,
and synchronization of spikes are hot topic. See Diesmann et al for the classic
dynamical analysis of propagation and formation of neural synchrony. A learning
mechanism called STDP is also a hot topic of research, where it generates
automatically inhibitory effect of synapses, giving richer phenomena.

5. Statistical analysis of neuronal spikes
Neurons are believed to generates spikes not deterministically but rather stochas-
tically due to various fluctuations. Spikes of neurons are correlated spatially and
temporally. There are extensive studies of statistical analysis of neuronal spikes.

Consider a joint probability distributions of spikes of n neurons p (x1,--- , x,),
where each x; takes 0 or 1 depending on the non-existence or existence of a
spike.

Neuronal spikes are correlated. Usually only pairwise correlations are taken
into account, but higher-order correlations such as intrinsic triplewise correla-
tions exist. In order to elucidate their roles, it is useful to consider the set S of
all such probability distributions. This forms an (2" — 1)-dimensional manifold.
Since S is an exponential family, we can introduce a dually flat coordinate
systems together with a Riemannian metric. The firing rate coordinate system
is dually flat, and its dual represents higher-order interactions. Since these two
coordinate systems are blockwise dually orthogonal, we can decompose (joint)
firing rates and (higher-order) correlations orthogonally.

6. Machine learning
The perceptron is a learning machine proposed by Rosenblatt. The learning
algorithm of its multilayer version, called the multilayer perceptron, was pro-
posed by Amari [2], and then rediscovered many researchers, in particular by
connectionists, and has become popular under the name of the error backprop-
agation learning algorithm. Although it is used in many applications, there are
difficulties: slow convergence and local minima.

In order to overcome the local minima problem, the support vector machine
is used and become popular with the kernel method. Another approach is the
boosting method where weak learners are integrated to give a good performance.
Information geometry is used in its theoretical analysis.

The dynamics of learning in multilayer perceptron was studied in [2] (the
results are later rediscovered by Heskes and Kappen). It was shown by statistical
physical method that the retardation of learning (called the plateau phenomena)
is given rise to by the symmetrical structure of the machine, where the symmetry
breaking is required. This is the cause of the retardation.

It was shown that symmetry causes singularities in the manifold of per-
ceptrons where learning trajectories are embedded. The Fisher information
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degenerates at the singularities. Amari [18] proposed a new learning method
called the natural gradient, which avoids the difficulty of slow convergence. The
dynamical behavior learning near singularities are studied in detail.

Unsolved Problems

We mentioned some long-standing mathematical problems which have not yet been
solved in the oral presentation.
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Memory Information Representation
in the Hippocampus

Minoru Tsukada

Abstract The hippocampal network consists of three types of synapses that form
a circuit. A spatiotemporal signal serves as the input to the hippocampus and is
transmitted through a synapse in the dentate gyrus (DG) to the CA3, then through
another synapse to the CA1. There also exists a simultaneous input which directly
connects to the CA1.

Keywords Hebb learning rule e Spatio-temporal learning rule (non-Hebb) e
Dendritic-soma system

1 Long Term Potentiation (LTP), Depression (LTD)
and Hebbian Type Learning Rule

Hebb [15] formulated the idea that modification is strengthened only if the pre-
and post-synaptic elements are activated simultaneously. Experimentally, long term
potentiation (LTP) and long term depression (LTD) are generally considered to be
the cellular basis of learning and memory. Recently, a series of experiments provided
direct empirical evidence of Hebb’s proposal [5, 8-11, 20, 21, 25, 36]. These
reports indicated that synaptic modification can be induced by repetitive pairing
of EPSP and back-propagating action potentials (BAPs). The influence of location
dependency of synaptic modification along dendritic trees was examined in the CA1
area of rat hippocampal slices. A pair of electrical pulses was used to stimulate the
Schaffer-commissural collaterals (SC) and stratum oriens (SO). Then we estimated
the profile of LTP and LTD at a layer specific location from the proximal to distal
region of the SR.
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These instances of LTP and LTD showed a globally symmetric window of spike
timing similar to a “Mexican hat function.” We tested the location dependence of
synaptic modification along dendritic trees. A symmetric window was obtained at
the proximal region of the SR where GABAergic interneurons are projected, while
an asymmetric window was obtained at the distal region of the SR where there is no
projection of GABAgic interneurons.

2 Spatio-Temporal Learning Rule (Non Hebbian)

The spatiotemporal learning rule (STLR), proposed as a non-Hebbian type by
Tsukada et al. [32], Tsukada and Pan [33] consisted of two defining factors: (a)
cooperative plasticity without a postsynaptic spike and (b) temporal summation.

Neurophysiological evidence of “temporal summation” was obtained by apply-
ing temporal stimuli to Schaffer collaterals of CA3 [1-3, 31, 32]. Cooperative
plasticity by using two stimulus electrodes to stimulate the Schaffer-commissural
collaterals (SC) [34]. The functional connection/disconnection depends on the
input-input timing dependent LTP (cooperative plasticity) [12]. This is different
from the Hebbian learning rule, which requires coactivity of pre- and post-cell.
However, the magnitude LTP is also influenced by BAPs. From these experimental
results, it can be concluded that the two learning rules, STLR and HEBB, coexist in
single pyramidal neurons of the hippocampal CA1 area.

3 The Functional Differences Between STLR and HEBB

The two rules are applied to a single-layered feed-forward network with random
connections and their abilities to separate spatiotemporal patterns are compared with
those of other rules, including the Hebbian learning rule and its extended rules [33].
The differentiation of output-patterns represented in learned networks was analyzed
by their Hamming distances.

HEBB produced the same output pattern, with a Hamming distance of zero,
for all of the different spatiotemporal input patterns. This proves that the Hebbian
learning rule cannot discriminate among different spatiotemporal input patterns. The
spatiotemporal learning rule had the highest efficiency in discriminating among
spatiotemporal pattern sequences. The novel features of this learning rule were
induction of cooperative plasticity without a postsynaptic spike and the time history
of its input sequences. According to the Hebbian rule, connections strengthen only
if the pre- and post-synaptic elements are activated simultaneously, and thus, the
Hebbian rule tends to map all of the spatio-temporal input patterns with identical
firing rates into one output pattern. HEBB has a natural tendency to attract analogous
firing patterns into a representative one, put simply, “pattern completion.” In
contrast, the spatio-temporal rule produces different output patterns depending on
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each individual input pattern. From this, the spatiotemporal learning rule has a high
ability in pattern separation, while the Hebbian rule has a high ability in pattern
completion.

4 Interaction of Both Rules in a Dendrites-Soma System

The neuron can learn both the input context and its value function by top-down
information, i.e. input contexts can be characterized by the top-down information.

Acetylcholine dependent plasticity. The role of soma spiking in relation to
top-down information raises a number of interesting computational predictions.
Hippocampal theta is one of the candidates of top-down information which is driven
by the brain area, “the medial septum/the horizontal limbs of the diagonal band
(MS/DB)” [6]. During active waking, acetylcholine from MS/DB input makes theta
rhythms in CA3 and CAl through interneurons. Synaptic modification by theta
rhythms constricts the input window of neural information to theta band frequency
[13, 14]. During quiet waking or slow-wave sleep, theta band constraints emerged
owing to the low concentration of acetylcholine. The theta stimulation of adult rat
hippocampal synapses induces LTP [29]. On the other hand, pyramidal neurons in
CAL area directly receive acetylcholine input from MS/DB . Acetylcholine input
carries top-down modulation (motivational and/or attention) to the CA1l neuron.
Direct acetylcholine application increased the amplitude of the BAP [26, 30], and
increased the efficacy of LTP [24]. In conclusion, the regulation of the state of CA1
neurons by acetylcholine input reflects top-down modulation related to the value
function of episodic memory by direct and indirect ways.

Noradrenergic dependent plasticity. Another candidate of extrinsic modulation
is noradrenaline. Noradrenergic input carries emotional and/or arousal information
[27]. The hippocampus receives a major noradrenergic input from the locus ceruleus
(LC). Concurrent with acetylcholine input, noradrenergic input contributes to a
synergistic effect at the same synapses [35], and enhances the synaptic process of
learning [23]. Including noradrenaline, such neuromodulator molecules as serotonin
and histamine may alter neuronal throughput and BAPs (so-called “meta-plasticity”)
in such a way that these transmitters diffuse broadly.

Multi-functional synapse [17]. CAl pyramidal neurons receive three inputs from
different sources of information. The first one is sensory events as bottom-up
through a gamma window [7], and the information is consolidated in synaptic
weight space by using STLR. The second is the contexts as top-down signals
through theta window [4, 22, 28], and modify the sensory information by using Heb-
bian learning rule. The third is neuromodulator (i.e. dopamine [16], acetylcholine,
noradrenarine, etc.) inputs which relates to reward, attention, emotion, and controls
the bias of its synaptic plasticity.
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5 Conclusion

We have shown, experimentally, that both STLR and HEBB coexist in single
pyramidal cells of the hippocampal CAl area [18, 19]. Based on these facts, a
theoretical neuron model was proposed that consolidates both local (bottom-up)
and global (top-down) information into its synaptic weight space. The proposed
model presented a computational framework for understanding the sophisticated
context-sensitive mechanisms in the hippocampal CA1 neurons, depending on the
value of novelty (dopamine dependent plasticity), motivational or attentional values
through the theta rhythm (acetylcholine dependent plasticity), and emotional or
arousal information (noradrenergic dependent plasticity).
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Part I1
Neuronal Impulse Patterns, Bifurcations
and Model Complexity



Functional Significance of Rall’s Power of Three
Halves Law in Cortical Nonpyramidal Cells

Yoshiyuki Kubota, Masaki Nomura, Fuyuki Karube, and Yasuo Kawaguchi

Abstract Neurons receive thousands of synaptic inputs onto their dendrites and
soma, and spatially and temporally integrate these inputs to produce appropriate
output in the form of action potentials generated in axons. The morphology of
dendrites can influence the integration of synaptic input, as well as affect the
pattern of action potentials. Using computer simulations of three different model
neuron subtypes with different dendritic dimension of the same branching pattern
identical to the authentic cortical interneuron in the rat frontal cortex: Martinotti
cell, fast spiking basket cell, double bouquet cell, and large-basket cell, we found
the functional significance of Rall’s power of three halves law at the dendritic
bifurcation point. It may facilitate even distribution of somatic depolarization into
all compartments of the dendritic tree, and it may contribute equal signal conduction
from soma to all dendritic branches.
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1 Introduction

Dendrite of neuron is a complex structure with many bifurcations and receives
thousands of synaptic inputs. It spatially and temporally integrates these inputs to
produce appropriate output in the form of action potentials generated in axons [1-4].
The morphology of dendrites can influence the integration of synaptic input, as well
as affect the pattern of action potentials [5-7].

We analyzed dendritic trees in four morphologically distinct interneuron sub-
types present in the rat frontal cortex: Martinotti (MA) cell, fast spiking (FS)
basket cell, double bouquet (DB) cell, and large-basket (LB) cell, using three-
dimensional reconstructions from light and electron microscopic observations, and
found three conserved principles [8]. The first: cross-sectional area at any given
point within a dendrite is proportional to the summed length of distally located
dendrites beyond it. The second: total cross-sectional area is conserved at dendritic
bifurcation points and also the Rall’s so called “three-halves power law” is right
in dendrite bifurcations of these cortical cells. The third: dendritic cross-sections
become more ellipsoidal at proximal locations, resulting in a conservation of the
surface to volume ratio throughout the dendritic tree. Computer simulations using
passive model cells found how these topological features compensate for distance
dependent filtering of somatic EPSPs, while facilitating the even distribution of
somatic depolarization into all compartments of the dendritic tree.

We hypothesize the Rall’s power of three-halves law [9] is a functional key
structure for the equilibrated signal flow mechanism of the dendritic arborization.
We made two kinds of computational passive model cells, which faithfully represent
morphology of the real nonpyramidal cells, with active channels in soma and axon
initial segment to activate spike to investigate the functional role of the law using
NEURON simulator [10]. We also found that spike depolarization in soma distribute
more evenly in the model cells which faithfully represent Rall’s power of three
halves law.

2 Methods

Using an in vitro slice preparation containing the neocortex of juvenile rats p19—
p23, we made whole-cell recordings to fill nonpyramidal cells with biocytin. After
fixation, the morphologies of these neurons were recovered by DAB staining and
reconstructed with Neurolucida. We selected four interneurons representing each of
four nonpyramidal cell subtypes: a regular spiking nonpyramidal (RSNP) MA cell,
a fast spiking FS cell, an RSNP DB cell, and a burst spiking nonpyramidal BSNP
LB cell (Fig. 1). Neurons selected had at least a few complete dendritic trees not
severed during slice preparation. Slices containing these neurons were re-sectioned
into ultra-thin (90 nm) sections for 3-dimensional reconstruction of their dendritic
structures [11]. Each subtype had stereotypical morphological properties of axonal
and dendritic arborization that were previously described [12, 13].
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Martinotti FS basket Double bouquet Large basket

TIVH

Fig. 1 Dendrite structures of neocortical cells representing four nonpyramidal neuron subtypes.
Dendrites and soma of the Martinotti, FS basket, double bouquet and large basket cell. The property
of their dendritic dimension was morphologically analyzed by the light and electron microscopic
observations

All the simulation studies were done in NEURON platform [10]. The real
morphology model neurons faithfully represented the present morphological results
of the nonpyramidal cells, which follow the Rall’s power of 3/2 laws. Each model
incorporates no active ion channels but passive leak channel. (Membrane resistance:
25,000 Qcm?, intracellular resistance: 200 cm, membrane capacity: 100 F/cm?,
equilibrium potential: 158 mV (MA cell), =72 mV (FS cell), =62 mV (DB cell) and
—63 mV (LB cell)) [9]. To explore transmission of back-propagation of action po-
tential, Nav1.2, Nav1.6 and Kv channels are introduced in the axon initial segment
and the soma. Channel densities are distributed in the same way as described [14].

We also made the other type of model neurons in each nonpyramidal cell
subtypes: “Conductance mismatch model cell A and B”, which has branching points
do not follow the Rall’s power of three halves law. We modified diameters of thicker
daughter dendrites at the branching point being half of their originals i.e. cross
sectional area became quarter size in type A model. We made the diameter of smaller
daughter dendrite 1.5 times larger than the original size i.e. cross sectional area be-
come 2.25 times larger than the original, and the diameter of larger daughter dendrite
half of the original size in type B model. The conductance mismatch model cells
broke the Rall’s power of three halves law at the bifurcation points to some extent.

3 Results

The functional significance of the Rall’s power of three halves law was studied
by computational passive models of reconstructed neuron morphologies (real-
morphology model) and morphologies modified to eliminate branch point
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Fig. 2 Back propagated depolarization peak of three type of Martinotti cell model. (a) Plot of
peak depolarization of dendritic compartments in response to a generated spike at soma in the real
morphology model cells. The back-propagated current is evenly distributed in primary dendrites,
and their associated trees. (b) Plot of peak depolarization of dendritic compartments in response to
a generated spike at soma in the conductance mismatch model cell type A. The back-propagated
current is rather variously distributed in different branches. (c¢) Plot of peak depolarization of
dendritic compartments in response to a generated spike at soma in the conductance mismatch
model cell type B. The back-propagated current is more variously distributed in different branches
than the type A model cell

conductance matching (conductance-mismatch model) of four nonpyramidal cell
subtypes (Fig. 2, see Sect. 2). We examined passive attenuation of somatically
generated spike depolarization in computational models.

Firstly we compared the variability of back-propagated depolarization to differ-
ent dendritic branches among the three Martinotti model cell subtypes. The somatic
spike generated more even depolarization of dendritic branches in neurons with
morphologically authentic branch points and consistently limited variation in peak
depolarization irrespective of distance from the soma (Fig. 2a), while models with
conductance mismatched branch points exhibited highly variable depolarization
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Fig. 3 Dendritic branch points are optimized for the uniform distribution of somatic voltage into
the dendritic tree. (a) Plot of peak depolarization of dendritic compartments in response to a
generated spike at soma in the real morphology model cells. The back-propagated current is evenly
distributed in different branches. Primary dendrites, and their associated trees, are color coded as
the dendrogram in c. (b) Plot of peak depolarization of dendritic compartments in response to a
generated spike at soma in the conductance mismatch model cells. The back-propagated current is
rather variously distributed in different branches. (¢) Dendrogram of the model cells

of dendritic branches, with the magnitude of variability increasing with distance
from the soma (Fig. 2b, c¢). Conductance mismatch model type B showed higher
variability at the middle and distal range in the distance from soma than the type A
(Fig. 2b, c). To quantify this relationship, we calculated the conductance matching
index by dividing the summed dendritic /¢ x a of the two daughter branches by
the 4/c X a of the parent dendrite [8], where ‘c’ is circumference and ‘a’ is cross
sectional area of the dendrite (Table 1). The matching index of the type B model
cell is similar to the real morphology model cell and the standard deviation is higher
than the type A and real morphology model, therefore we chose type B for the
further comparison of back propagated depolarization peak analysis with the real
morphology model of the four subtypes. The similar results were observed in the
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other neuron model subtypes, as well (Fig. 3). It indicated that the Rall’s power
of three halves law is an important structure for the even distribution of the back-
propagated depolarization of somatic spike.

4 Discussions

We made three different type of model cell of four nonpyramidal cell subtypes
to investigate the role of Rall’s power of 3/2 law and found that the law is a
key structure to establish even distribution of somatic spike depolarization into
different dendritic branches. The conductance mismatch models showed less even
distribution of the depolarization than the real morphology model cell. It implicated
that somatic depolarizing potential back propagation differently affect the different
branches and it might change the firing pattern from the real morphology model
cell, although further investigation is necessary.

We also believe that some model neurons may not respect the dendritic dimen-
sion of the real neuron [15]. We can make realistic membrane property and firing
pattern of the model cell that resemble with the real neuron with adjustment of the
active channel distribution and density appropriately. If the dendritic dimension of
the models cell would be authentic, then the adjustment of the channel distribution
should be easier and they could be similar to the real neuron. We can estimate
the channel distribution of the real cell with referring them of the authentic model
neuron.
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A Computational Study of the Role
of the Sub-thalamic Nucleus in Behavioral
Switching During Saccadic Movements

Rengaswamy Maithreye and V. Srinivasa Chakravarthy

Abstract In this work, we have modeled the role of the STN-GPe during the
switch from automatic to voluntary movement using the control of saccadic eye
movement as an example. We show that our network model of the basal ganglia
is able to reproduce some experimental results and suggests a novel role for the
STN-GPe network as a source of exploration in the function of the basal ganglia.
This is particularly relevant to the Reinforcement Learning driven view of the BG,
where the explorer is a necessary component of the Reinforcement Learning (RL)
apparatus.

1 Introduction

The basal ganglia (BG) are a set of seven deep brain nuclei which are thought to
play an important role in decision making and action selection [1, 2]. There are two
important and alternate pathways through which information can flow in the BG-
the direct pathway (DP) and the indirect pathway (IP). These pathways are gated by
the neuromodulator dopamine (DA), which is a key player in the function of the BG.
The DP is selected in conditions of high DA and leads to a ‘Go’ response whereas
the IP is selected in conditions of low DA and leads to a ‘No-Go’ response [3].

The RL framework has been extensively used to model the function of the BG,
with the discovery that DA corresponds to the difference between the expected and
actual reward [4]. The difference, called temporal difference or TD error is the basis
for learning in the RL framework [5]. The RL framework involves an actor, which
performs actions, a critic, which computes the value of performing an action and an
explorer which enables the exploration of alternate actions. Subsequently, the dorsal
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striatum has been associated with the computation of the value of each state, thus
functioning as a critic while both ventral striatum and motor cortex is thought to
be analogous to the actor [6, 7]. However, no sub-cortical substrate for the explorer
has been proposed. The explorer is an essential component of the RL machinery
since it generates the alternatives that are required for learning to take place. We
hypothesized that the Sub-Thalamic Nucleus (STN) is a good candidate for the role
of the explorer in the BG since it possesses the complex activity required for this
role [8]. Also, lesions of the STN are shown to lead to an increase in perseverative
behavior where the animal repeats previously rewarding actions even after they
cease to be rewarding [9].

Recent work [10] has shown that the STN is a crucial link in the BG, especially
during the switch from automatic to voluntary movements. During such a switch, a
control signal to stop ongoing movement is thought to be sent via the hyperdirect
link from cortex to STN, subsequent to which a new movement may be initiated.
Interestingly, this work shows the presence of different types of STN neurons, (ac-
tive only during switching to voluntary movement), some of which stop movement
while others initiate new movement, lending support to our hypothesis that the STN
can function as a source of exploration.

We have created a model of the BG with explicit representations of the striatum,
the STN, the GPe and the SNr. We used this model to study the switch from
automatic to voluntary movement using the same experimental set up as in [10], but
without considering the hyperdirect pathway. We show that using only the direct
and indirect pathways of response, we can match some of the reported experimental
results, including the presence of ‘switch’ neurons which are active only during the
switch from automatic to voluntary response.

2 Methods

A schematic version of the model is shown in Fig. 1. The task is to saccade to
one of two targets whose color matches the cue color, which can change randomly
[10].While the cue color remains unchanged (non-switch trials), an automatic
response would be sufficient whereas when the cue color changes (switch trials),
voluntary control is required. The number of non-switch trials before a switch
occurs can be varied. In our model, the input (i.e. the scene) consists of one red
and one green dot whose position can alternate randomly. The cue can be either red
or green and is supplied to the striatum, along with the red and green components
of the input (called red and green feature maps- Rmap and Gmap respectively) via
cortico-striatal and cue-striatal weights, both of which are trainable. The striatum,
functions as the ‘critic’ and computes the value of the scene as a function of the
previous reward. It is represented as comprising of DP and IP neurons, represented
by separate CANNSs of 1 x 20 neurons each [11]. The motor cortex (not represented
explicitly) is considered to be the ‘actor’ which executes the saccade. The temporal
difference (TD) error which is the average difference in the value between the
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Fig. 1 Schematic

. Scene Feature maps
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Target of next saccade

current and previous scenes represents the dopamine (DA) signal, produced in
response to a signal from the striatum by the Substantia Nigra pars compacta (SNc,
not modeled). The magnitude of the DA signal is thought to select between the direct
(DP) and indirect (IP) pathways by controlling the response from these neurons
[3]. The response of the DP striatal neurons is directly passed on to the Substantia
Nigra pars reticulata (SNr) whereas the response of the IP striatum is passed on to
the Globus pallidus externa (GPe), which interacts with the Sub-Thalamic nucleus
(STN) to produce an output. The STN-GPe network is modeled as an activator—
inhibitor network of 20 x 20 neurons each, which possess lateral connections and
reciprocal connections between STN and GPe. The firing rates of the STN and GPe
neurons is assumed to be a function of DA such that these neurons are maximally
active at low DA levels and their activity decreases with increasing DA [12]. The
output of the STN-GPe network is summed and then passed on the SNr, again
modeled as 1x 20 layer of neurons. The signals from DP and IP are integrated
in the SNr and sent to the Superior Colliculus (SC) where competition between
signals directing movement to different locations is resolved, the saliency map is
computed and the co-ordinates of the next saccade are determined as the location
where the signal crosses a saliency threshold. When the cue color is unchanged, the
DP is chosen and STN activity is low, whereas when cue color changes, DA levels
decrease leading to activation of the IP and an increase in the firing rate of the STN
and GPe neurons. STN neurons send a noisy signal to the SC, which functions to
direct the saccade to a different location, thereby leading to exploration.

3 Results

We start out by examining the success rates in the switch and non-switch trials.

Success rates: Non-switch trials were 100% successful whereas the error rates in
switch trials was 30% (Fig. 3a, blue curve). As the number of non-switch trials
before a switch trial increased (3—10), the error rates also increased (from 16%
to 40%).
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Fig. 2 Dynamics of the STN during (a) non-switch (high DA) and (b) switch trials (low DA).
Here the X and Y axes represent the neuron positions while the color coding represents activity
level with white representing maximum and black representing minimum activity

Time taken for switch and non-switch saccades: Switch trials (106 steps) took
longer than non-switch trials (68 steps) (Fig. 3a, red curve). The wrong switch trials
(112 steps) took slightly longer on average than the correct switch trials (104 steps).
Here, the number of steps corresponds to the number of iterations required to cross
saliency threshold.

Influence of DA on behavior of STN-GPe network: Since we were interested in the
role of the STN in the functioning of the basal ganglia, we studied at the effect of
DA levels on STN activity. Specifically, we looked at the STN response to high and
low levels of DA. As can be seen from Fig. 2, at high levels of DA i.e. in non-switch
trials, the STN network shows a nearly uniform low level of activity, as expected
because of the low firing rate of STN neurons. At low levels of DA i.e. during the
switch trials, much more complex activity is seen in the STN with a small region
of intense activity as can be seen from Fig. 2b. Thus, we can see that different STN
neurons behave differently.

We analyzed the activity of STN neurons in switch and non-switch trials and
found that (i) the activity of the STN becomes more desynchronized in switch trials
(average correlation between the neurons is 0.97 in case of non-switch trials as
compared to an average correlation of 0.87 in the switch trials.) (Fig. 3b, ¢) and
(ii) There is a small sub-population (20% of the 400 STN neurons) that shows
distinctive activity as compared to the other neurons during the switch trials alone
(Fig. 3c, red traces). These neurons are analogous to the ‘switch’ neurons reported
in [10]. The activities of all the STN neurons during switch and non-switch trials are
shown in Fig. 3b and ¢ from which the distinct activity of the switch neurons (red
curves, Fig. 3c) can be seen clearly.

4 Discussion

The role of the STN in the basal ganglia has been debated much in the past. It
has been proposed variously that the STN functions to delay decisions till correct
information is available[12] or alternately that it functions to carry a specific stop
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Fig. 3 (a) Error rates (blue) and reaction time (red) in switch and non-switch trials. STN activity
during (b) non-switch and (c¢) switch trials. Activity of all the neurons is shown

signal during switching from automatic to voluntary responses [10]. Here, we
propose an alternative view of STN function, where it acts as a source of exploration
or noise in the BG. We show through our model that such a view is also compatible
with experimental evidence. Using our model, we are able to match the success rates
in and also show the presence of specialized switch neurons in the STN. The time
of occurrence of correct and incorrect switch trials is the main factor that does not
match with experimental results. It is likely that the hyperdirect pathway, which is
not included in the current version of the model, is necessary to achieve this effect.
Future studies would include this pathway as well.
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Spiking Neural Network Ink Drop Spread,
Spike-IDS

Mohsen Firouzi, Saeed Bagheri Shouraki, and Mohammad Ghomi Rostami

Abstract ALM is an adaptive recursive fuzzy learning algorithm which is inspired
by some behavioral features of human brain functionality. This algorithm is fairly
compatible with reductionism concept in philosophy of mind in which a complex
system is representing as combination of partial simpler knowledge or superposition
of sub-causes effects. This algorithm utilizes a fuzzy knowledge extraction engine
which is called Ink Drop Spread in brief IDS. IDS is inspired by non-exact
operation paradigm in brain, whether in hardware level or inference layer. It enables
fine grained tunable knowledge extraction mechanism from information which is
captured by sensory level of ALM. In this article we propose a spiking neural model
for ALM where the partial knowledge that is extracted by IDS, can be captured and
stored in the form of Hebbian type Spike-Time Dependent Synaptic Plasticity as is
the case in the brain.

1 Introduction

Today according to some biological evidences, we know that information processing
in biological neural networks is being performed in the form of spike time dependent
temporal coding that is called spike coding. This computation paradigm enables
fast temporal and spatial processing simultaneously and prepares powerful networks
with considerably less neurons and interconnects in comparison with conventional
rate coding ANNSs [1].

Besides micro-level neurophysiological findings of brain machine, some clinical
researches have been done to study the black box of human mind through another
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point of view. Due to some evidences, human intelligence deals with real world
phenomena with qualitative non-exact concepts which is generated by non-exact
distributed hardware structure, that is mentioned as brain [2]. Moreover it appears
that human brain confronts with real world complex problems by breaking down
them into simpler and more comprehensible concepts the way that consumes less
energy to acquire information and obtain knowledge. Then these fine grained partial
knowledge could be refined and they are integrated by an inference process to make
decision and recognition [3].

ALM was developed based on this set of hypotheses with the purpose of human
brain learning simulation [3]. ALM is an adaptive recursive fuzzy algorithm which
tries to express a Multi-Input Multi-Output (MIMO) system as a fuzzy combination
of some simpler Single-Input Single-Output (SISO) sub-systems. This viewpoint of
ALM to human learning process is compatible with some reductionism concepts in
philosophy of mind in which a complex system is supposed as sum of its parts. In
other words this fact can be represented more specifically in causal reductionism,
which implies that the causes acting on the whole are simply the sum of the effects
of the individual causalities of the parts [4]. This integrative approach has been used
in some related works such as CAM Brain Machine which has been proposed by De
Garis [5].

In this work we propose a spiking neural model for ALM. This Hybrid Model
comprises single layer feed-forward multi-synaptic spiking neural structures in
which partial knowledge can be extracted and stored through synaptic plasticity
of SRM neurons. These partial knowledge are unified by fuzzy inference layer
eventually to make decision surface. This work is a good reminder to need for
unification of brain studies in different attitudes.

In next section IDS is explained in more detail, in Sect. 3 proposed model is
presented and finally in Sect. 4 some evaluation results are reported.

2 Ink Drop Spread, IDS

As we discussed before in ALM a MIMO system is broken down into simpler SISO
systems. Each SISO system is interpreted as x;—y; grid plane which is called IDS
unit and consists of projected data points corresponding to specific interval domains
of another input variables. Figure 1 shows a simple 2-input single-output ALM with
two partitions for each variable domain. As we can see in Fig. | ALM can be
represented in three layer: input layer, where input pattern variable is distributed
in IDS units in correspondence with membership of another variables to fuzzy
intervals. Modeling layer as most important layer of ALM in which IDS operator
operates on IDS units to extract partial knowledge. IDS is like a Gaussian Ink Drop
with radius R which spreads around each projected data points in order to extract
two important features in partial knowledge space: Narrow trajectory (¥ in Fig. 1)
which describes input-output characteristic of IDS units and Spread value (o in
Fig. 1) which shows importance degree and effectiveness of partial knowledge in



Spiking Neural Network Ink Drop Spread, Spike-IDS 61

Input Layer Modeling Layer Inference Layer
IDS Units
Ay Sn‘lall f0(X2)> A21(X2) Br1 w11
Agy: Bl,‘! Ay Az
X1 —] . or
X2
[312 ¥i12
Ay Small [ar(X)< an(xi)
Au: Blg .’%1] i ‘.'3“2 or _“y
X2
X1 a1 w21
or
Learning
Y — ; B2z w22
a(X1). an2(X1). az(X2). az(x2) ‘[

Fig. 1 Structure of 2-input 1-output ALM

overall system. This effectiveness is related reversely with Spread value. Finally
these features are consolidated by fuzzy inference layer of algorithm to make overall
input-output modeling surface. Mathematical implementation of Narrow and Spread
is described as follow:

G =p)® OG- p)’
Ad(x,y)=e 022.R> xe 022.R> | \/(x — o)+ =p)*<R (1)

Where Ad(x,y) is ink intensity in point (x,y) of IDS plane, (p;,pz) is the point
of ink drop and R is Ink radius. Narrow path and Spread are described as (2), (3)
respectively:

il Iij X Yij
Y(x) =" )
Jj=1 '

Where n is IDS grid plane resolution, I;; denotes as Ink intensity for each y; values
corresponding to x;.

o(x) = max{y|d(x,y) > 0} —min{y|d(x, y) > 0} 3)
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Fig. 2 A simple IDS plane,
after applying IDS

In Fig. 2 a simple IDS unit after IDS operation is presented. Also extracted
narrow trajectory and spread value is shown. In inference layer of ALM, a Fuzzy
inference unit applies narrow and spread values to generate a rule base in order
to integrating partial knowledge and extract knowledge expertness existing in data
samples. In the case of N-input with m; partitions for ith input variable, the number
of combination rules and IDS units corresponding to ith input which is denoted by
[; and total number of rules, L is as follows:

N
=11, L me @)

N N N
L= Zizl li = Zi=l l_[k=l,9éi e )

Also the kth rule of ith input variable, Ry (k=1, 2, ..., [;)
can be described as:

Rk : ifx1 S Alj] N Xy € Aij AN...ANXi—] € Ai—ljifl/\

Xi+1 EA,'+1J'I.+1/\.../\)CN EANjN thenY:glf,-k (6)
Where 1 <j; <my, the overall output of model is obtained by (7):

Y is /311\1111 or ... lgiklpik or ... or ﬂNlNlIlNlN (7)
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3 Spiking Neural Network IDS, Spike-IDS

3.1 Network Architecture

Network architecture of this work which is shown in Fig. 3 comprises multiple
delayed synaptic terminals which is imitated by multiple synaptic gap in biolog-
ical neurons. Each sub-synapse has specific arranged delay and synaptic weight.
Membrane potential that is called internal state variable for a post-synaptic neuron j
with m sub-synapse for each connection can be expressed as:

X0 = Yy Do e =1 = dh) ©)
e(t) = ZeI=) (10)

Where &(¢) is simplified model of biological Excitatory Post-Synaptic Potential,
t; is firing time of pre-synaptic neuron i, d* is fixed delay for kth sub-synapse which
is arranged from zero (d* = {0,1, ...,m—1}) and wk; j stands for synaptic weight of
kth sub-synapse of i,j connection. Besides I'; is set of pre-synaptic neurons which
are connected to post-synaptic neuron j. When internal state variable, x;, exceeds
from threshold voltage, ¥, neuron j fired in #. this model of neuron is called as
Spike Response Model in brief SRM [6].

w

."I{ﬁ" . v

wie(t—(,+d™)) &

Fig. 3 General architecture : :
of Splke ANN which is used EEssEssssEEssspEESssEEEEE s s
in this work
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Fig. 4 Gaussian receptive fields for eight neurons encoding and delays for 0.3 as input

3.2 Information Coding

Proposed coding is a kind of population delay coding [7] which is inspired by non-
exact spatial coding of IDS operator. In this coding scheme analog input or output
variables are encoded with graded overlapping Gaussian receptive field profiles.
Receptive fields capture spatial content of input variable in spike time delay format
and store output features in RBF-like output neurons with same coding. Each input
and output neuron stands for each receptive field with specific center and width.

In Fig. 4 overlapping Gaussian receptive fields for eight neurons are shown.
Normalized firing times of related neurons for analog value of 0.3 is shown in Fig. 5.
Neurons related to receptive fields which fire in more than 0.9 ms are supposed to be
silent neurons and never to be fired. Center and Width of Gaussian receptive fields
for n profiles are set as follows:

23 -3) 1

Taw-y YT we-2 a
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3.3 Learning Algorithm

The learning algorithm is based on reinforcement Hebbian learning algorithm. It is
demonstrated that there is a temporal reinforcement learning process in biological
neuronal systems [1, 7]. When a neuron is stimulated artificially by extracellular
electrode pulse train in way that enforced to be fired, EPSP which is made by a single
spike stimulus from same connection gap has been strengthen in comparison with
before pulse train stimulus and spike generation. This Hebbian type reinforcement
plasticity mechanism is known as STDP in precise temporal coding [8]. These
biological findings demonstrate that pre-synaptic neurons which contribute in firing
of a post-synaptic neuron should be rewarded. Therefore to implement STDP like
mechanism, a learning window which is defined as a function of time difference
between firing times of #; and ¢; is proposed. This time window controls updating
the weights based on this time difference as bellow (At,jk =ti—t+ dby:

AW;} = nL(Ati];‘)aWinit =0, 0<w<3 (12)

v2

(Ar1—8)?
L(A)=(1 =1 — =]
(A1) = (1+b)e b« 2in(b/b+ 1)

13)

This function reinforces synapses between neurons i, j with rate n if At; jk <v
and depress synaptic weight if At; jk > v. Figure 6 presents learning window. It is
noticeable that because of time constant t in EPSP (10), the firing of neuron i
contributes in firing of neuron j not exactly after distribution of spike. Therefore
learning window should be shifted slightly to achieve this consideration. In Fig. 6 §
denotes this shifting and usually sets to —t value. Parameter v indicates reward
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neighborhood and b determines penalty depth. Also silent neurons should be
penalized. So Aw;; for weights between silent input neurons and fired output neuron
is set to —n.

3.4 Narrow and Spread Extraction

General overview of learning steps is as follow: Initial value for WX sets to
zero; regarding to single-input single-output structure of IDS units, input and
output domain is encoded by receptive profiles; according to learning window
the synaptic weights are updated in accordance with input-output firing times. In
another viewpoint, proposed learning algorithm is a coding from Ink intensity in
IDS plane into spike firing time in SNNs which enables tunable non-exact view to
crisp data such as IDS. This learning algorithm implements overlapping Ink Drops
which strengthens each other by successive weight updating for neighboring data
points. Also in this learning method firing time of output neurons means to activation
degree of related sensing profile. So by consolidating output firing times like COG
Defuzzification, Narrow can be implemented in modeling phase. Also by thanks
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of spatial arrangement of neurons, difference of receptive field centers for last and
first fired output neurons stands for Spread value similar to IDS spread and narrow
extraction method. Mathematical form of aforementioned mechanism is as:

Z;‘n=01 1Y
YL T

Where m, is number of output receptive fields, 7; is firing time of stimulated
output neuron i and C; is related receptive field center, Cj, and Cpyy, are centers of
receptive fields related to last and first fired output neurons and { and o stand for
Spike-IDS extracted narrow and spread values in modeling phase.

‘&(xin) = 5'()6,‘;1) = Clas: — Cﬁm‘ (14)

4 Evaluation Results

To evaluate proposed structure with IDS we choose a non-linear function approx-
imation problem (two-input single-output system modeling) which is used as a
benchmark in related works [9].

. 2 : 2
yox) = \/z<%“)) 3, 13)

2

Where 1 <x;,x; <10, also in order to verify the model accuracy, the error was
measured using the fraction of variance unexplained (FVU) [9]:

2
Yo ) —y() 8
Fvu = L F=a/L ) (16)
shoe-r 0T );y(xk

Where x; is Ith input vector (I =1,2,..,L), y"\_denotes the output of a constructed
model. The FVU value is calculated from 2,500 points at regular intervals over the
input domains. Table 1 shows mean value of FVU error over ten random learning
data sets with different set-size and partition numbers for proposed approach and
IDS. Spike-IDS consists 15 input and 25 output neurons with 12 sub-synapse
and learning parameters are experimentally set as: t=3, b=0.2, § =—3, v=25,
y =1.4,n1=0.3, 9 = 10 mv with epoch number 15. Resolution of IDS units is set
to 256 and IDS radius is set to medium size, equal to 9 [9]. It is illustrated from
Table 1 that Spike-IDS has good ability to model subjected system as well as IDS.
Also it seems in the case of deficiency of knowledge, when learning set size is small,
smaller partitioning that means less granularity, causes better performance and vice
versa.
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Table 1 FVU error of system modeling for Spike-IDS approach in comparison
with IDS with medium Ink Drop size (9) over different training set number and
different partition number
Training set size
Number of partitions  IDS vs. spike-IDS 100 250 400 550
5 IDS 0.171  0.068 0.043 0.039
Spike-IDS 0.095 0.089 0.061 0.055
8 IDS 0.256  0.059 0.034 0.022
Spike-IDS 0.153  0.057 0.051 0.025
12 IDS 0.35 0.083  0.036 0.021
Spike-IDS 0221 0.046 0.042 0.023
Conclusion
novel Spike type artificial neural model of ALM learning algorithm is proposed in

which IDS knowledge extraction mechanism is implemented by temporal synaptic
plasticity of SRM neurons. This Hybrid algorithm is inspired by some integrative
approach of behavioral and some structural features of human brain activity. The
results show that Spike-IDS can extract human knowledge expertness as well as
IDS.

References

. Thorpe, S., Delorme, A., Van Rullen, R., “Spike based strategies for rapid processing”, Neural

Networks, vol. 14 (6-7), (2001) 715-726.

. Fields H.L., Martin, J.B., “Pain: Pathophysiology and management”, Harrisons’s principles of

internal medicine, 13" edition, McGraw-Hill, (1994)

. Shouraki, S.B., Honda, N., “Recursive fuzzy modeling based on fuzzy interpolation”, Journal of

Advanced Computational Intelligence, Vol.3, No.2, (1999), 114-125.

. Polkinghorne, J.C., “Belief in God in an Age of Science”, Yale Univ Press, New Haven, (1998),
Chapter 3.
. de Garis, H., Korkin, M., Fehr, G.,” The CAM-brain machine (CBM): an FPGA based tool for

evolving a 75 million neuron artificial brain to control a lifesized kitten robot”, Autonomous
Robots, Vol. 10, Issue 3, (2001), 235-249.

. Gerstner, W., Kistler, W.M., “Spiking Neuron Models” The Cambridge University Press,

Cambridge, 1st edition, (2002) chapter 10.

. Bohte, S.M, La Poutre, H., and Kok, J.N., “Unsupervised clustering with spiking neurons by

sparse temporal coding and multilayer rbf networks”. Neural Networks, IEEE Transactions on,
Vol 13 No 2, (2002), 426-435.

. Bi, G.Q., Poo, M.M, “Synaptic modification in cultured hippocampal neurons: dependence on

spike timing, synaptic strength, and postsynaptic cell type”, Journal of Neuroscience, No.18,
(1998), 10464-10472.

. Firouzi, M., Shouraki, S.B., Tabandeh, M., Mousavi, S.H.R, “A novel pipeline architecture

of Replacing Ink Drop Spread”, Second Word Congress on Nature and Biologically Inspired
Computing, Kitakyushu, Japan, (2010), 127-133.



A Biophysical Model of Neuro-Glial-Vascular
Interactions

Bankim S. Chander and V. Srinivasa Chakravarthy

Abstract Functional neuroimaging techniques measure hemodynamic response as
an indirect indicator of neuronal activity. These imaging techniques consider only
forward pathway (neuron — astrocyte — vessel) and often the effect of metabolic
feedback on neural activity is ignored. To understand brain’s computation, we
propose a biophysical model of neuro-glial-vascular interaction forming a func-
tional loop. This model describes key biochemical signaling pathways involved in
astrocyte mediated neuro vascular coupling using a series of first order nonlinear
differential equations.

Keywords Neuron e Astrocyte » Vessels ¢ Cerebral circulation ¢ Neurovascular
interactions

1 Introduction

Unlike other cells, neurons convey “hunger” signals to the vascular network via an
intervening layer of glial cells (astrocytes); vessels dilate and release glucose which
fuels neuronal firing. Modeling neurovascular interaction has particular application
in quantitative interpretation of Functional Magnetic Resonance Imaging (fMRI)
which measures blood oxygenation level dependent (BOLD) signal as an indicator
of neuronal activity. However, such models focus on the forward branch of this loop
(neuron— astrocyte — vessels), whereas for a reliable, quantitative understanding
of neurovascular interactions, it is necessary to study the entire loop consisting
of neurons-astrocytes-vessels. Neuronal firing causes release of neurotransmitter
which triggers release of vasodilator by astrocytes. Vasodilators released from
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Fig. 1 Schematic of biophysical signaling pathways

astrocytic endfeet cause blood vessels to dilate and release glucose into the intersti-
tium, part of which is taken up by the astrocytic endfeet. Glucose is converted into
lactate in the astrocyte and transported into the neuron. Glucose from the interstitium
and lactate (produced from glucose) from astrocyte are converted into ATP in the
neuron. Neuronal ATP is used to drive the Na-K pumps, which maintain ionic
gradients necessary for neuronal firing (Fig. 1). Using the model described below
we have attempted to study the effect of metabolic feedback on neuronal activity.

2 Model

The modeling components are designed as follows: Hodgkin-Huxley (HH) model is
used as neuron model; astrocyte model is from [1]; the model for metabolic feedback
is from [2]. Glial K* buffering and Na-K ATPase pump activity is incorporated to
compensate for changes in ion concentration across the membrane due to neural
firing [3]; the model for synaptic glutamate release is taken from [4]. The model
describes the events in the neurovascular loop as follows. On application of an
external current, the neuron generates action potentials (APs), which cause quantal
release of glutamate. The glutamate flux is given by the number of glutamate
molecules (n) times the reaction flux of exocytosis. The latter is equal to the number
of releasable vesicles (N,,;) multiplied by exocytosis rate constant (P, *I¢,), where
P, is release probability of the vesicles and /¢, is calcium current associated with
each action potential. N, is the product of two factors: the dimensionless ratio
of releasable vesicles (R,.;) and the sum of empty and releasable vesicles (V).
Synaptic clearance of glutamate occurs with time constant 7.
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H

Synaptic glutamate triggers Inositol trisphosphate (IP3)-mediated Ca’>* transient
in astrocyte which generates Epoxyeicosatrienoic Acid (EET). This leads to hyper-
polarization of smooth muscle which causes relaxation and consequent vasodilation.
Dynamics of [IP3], [Ca?t] and [EET] in astrocyte is described by a set of three
simultaneous non-linear differential equations [1].

oI P3|

e rpG* — kgeg[I P3] (2)
diCc 2+
% = ﬁcyt (J1P3 - qump + Jleak) 3)
d[EET] _ 2+ 2+ [EET]
T = VEET xramp ([C(l ] [Ca ]min) 2m (4)

where rh* and kg, are constants, G* is the ratio of activated G-protein due to
synaptic glutamate to total G-protein. Jip3, Jpump and Jieqr are the rates of Ca**
concentration change due to release through IP; receptor channels, pump uptake
into the ER, and leak from the ER respectively; ., is a constant factor describing
Ca*t buffering. Vggr is a constant production rate of EET and [Ca?F Imin is the
minimum [Ca’"] for EET required for production. The clearance of EET is given
by the subtraction term in the Eq. (4). Smooth muscle membrane potential (V,,)
is described as a nonlinear function of [EET] and change in vessel radius (r) is
assumed to be linearly related to smooth membrane potential.

1
Vi =5 = 80— em ©)
Vmax - Vm
= Vmin max — Tmin) | T, +, 6
' : * (r : ) I:Vmax - Vmin:| ( )

where 7, and 1,4, refers to minimum and maximum vessel radius corresponding to
constricted and dilated state respectively. V,,;,, and V,,, refer to minimum and max-
imum smooth muscle membrane potential corresponding to relaxed and contracted
state respectively. Vessel dilation facilitates glucose release into interstitium. The
model of metabolic flux [2, 5] is based on experimentally determined glucose and
lactate transporter concentration values, glucose and lactate kinetics in endothelium,
neuron and astrocyte. Glucose is metabolized in astrocyte to produce pyruvate
and lactate. Lactate is transported to neuron via interstitium and is metabolized to
ATP, which fuels Na-K pump required for maintaining ionic gradients. The pump
dynamics are described as



72 B.S. Chander and V.S. Chakravarthy

Kmg\ ™ Kmyg \ ™ Karp \ ™'
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where pump activity (A,,,;) is a function of potassium ion concentration outside the
neuron ([KT],); sodium ion concentration inside the neuron ([Na™];) and cytosolic

ATP concentration. Ks7p, Kmg and Kmy, are constants [3]. Sodium (Iy,) and
potassium (Ig) currents as functions of pump activity are

Iy = _Z*Imax*Apump (8)

Ing = 3*Imax*Apump (9)

where [, is the maximum pump current. The rate of ion accumulation [3] across
membrane due to net current of a particular ion is expressed as

d[iOl’l]i _ IZ(i()n)*S

= 10

dt F*V; (10)
d[ion]a IZ(i()n)*S

=— 11

dt F*V, (i

G

where, subscripts ‘i’ and ‘o’ refer to internal and external respectively. S is the
surface area of the neuron and V; and V, is the intracellular and extracellular volume
respectively. The delicate balance between the pump current and ion channel current
determines the net ion transfer across the neuronal membrane. To sustain neuronal
firing the pump current must nullify the channel current and thereby maintain the
ionic gradient across the membrane.

3 Results

On application of stimulus current beyond a threshold, the neuron exhibits firing.
Only when there is a sufficient glial K buffer capacity firing is continuous.

Variation in neuronal membrane potential and synaptic glutamate concentration
follow the same pattern as shown in Figs. 2 and 3 respectively. Glutamate pulses
cause release of EET by astrocyte.

A delay of 1 s is observed in release of EET (Fig. 4) after activation of mGIuR
by synaptic glutamate. Vessel dilation (Fig. 5) occurs instantly on EET release by
astrocyte.

Vessel dilation (Fig. 5) improves glucose and lactate flux into the interstitium.
Glucose and lactate reserve of neuron and astrocyte is exhausted within 1 s after
onset of neuronal firing. On vessel dilation, glucose and lactate is instantly available
for astrocyte (Fig. 6) and neuron (Fig. 7).
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Fig. 6 Variation of glucose
(Glc) and lactate (Lac)
concentration in astrocyte

Fig. 7 Variation of glucose
(Glc) and lactate (Lac)
concentration in neuron

Fig. 8 Variation in
membrane potential, Ey, and
Ex when vessel is constricted
to 10 um
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Lactate is oxidized via Tricarboxylic Acid (TCA) cycle to generate ATP which
is used for maintaining ionic gradient across neuronal membrane. For subthreshold
stimulation and low initial [ATP], bursting or firing with initial pause is observed.

Neurovascular interactions under pathological conditions like blocked glutamate
transmission or constricted vessels are also studied, which show reduction in
duration of neuronal firing and amplitude of APs when compared with normal

operation (Fig. 8).
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4 Discussions

The proposed model can be scaled up to network level to explore role of “metabolic
plasticity” (activity dependent variation in astrocyte-vessel interaction) in neurovas-
cular interactions. The model suggests that brain’s computations may be more
comprehensively understood in terms of neuro-glial-vascular dynamics and not in
terms of neural firing alone.
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Model Complexity in the Study of Neural
Network Phenomena

Claus C. Hilgetag, Marc-Thorsten Hiitt, and Changsong Zhou

Abstract In this paper, we explore features of neural network dynamics that were
identified in simulation approaches with highly complex models (representing large
populations of coupled oscillators) on the one hand, or basic discrete excitable
models, on the other. Both types of modeling approaches could produce features
such as irregular sustained network activity or modular functional connectivity. This
observation poses the question, what are the essential model features that lead to
characteristic phenomena of neural network dynamics?

1 Introduction

The increasing affordability of computer power has produced a recent trend in neural
network modeling towards large-scale and supercomputational approaches, taking
into account detailed biophysical properties of the individual network elements
(neurons or neuronal populations). However, there are a number of network
phenomena that can also be replicated with much simpler models. For example,
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modularity of functional connectivity has been observed in models ranging in
complexity from large populations of coupled oscillators [1] to networks formed
by discrete excitable nodes [2].

These observations pose the question: How intricate does a neural model have
to be in order to produce a particular network phenomenon, such as irregular
sustained activity, bursting, neural avalanches or slow-frequency coupling of high-
frequency oscillators? What are the minimal models for these phenomena, what
features (e.g., noise, delays, heterogeneity of connections) do they need to include?
While analytical answers for most of these questions may be still out of reach, we
seek an improved practical understanding of essential parameters and constraints
for neural network modeling.

2 Methods

We explored two kinds of neural node models of different complexity: a detailed,
continuous model of coupled populations of FitzHugh-Nagumo oscillators (CO), as
in [1], or alternatively, discrete excitable (DE) nodes with few categorical states
(susceptible, active, refractory) operating in discretized time [2]. The choice of
these models was motivated by the desire to explore the global network dynamics
produced by a popular continuous model on the one hand and a basic, minimal
dynamic model on the other. We used these models to investigate the relation
between network topology and global dynamics for different benchmark networks
(random, scale-free, modular networks) as well as biological neural networks,
such as the large-scale connections among more than 50 cat cortical areas [3]. In
the case of the DE model, the correlations were expressed through the dynamic
modularity Qgy,, which computes the alignment between the topological and
functional groupings of network nodes according to different features, such as
topological modularity (TM) or centrality (CN). Qy,, was determined as a function
of the rate of spontaneous node excitations f, which may be interpreted in terms of
high or low levels of background activity or noise in the system.

3 Results

Despite greatly disparate model complexity, both kinds of models were capable
of producing intricate, sustained dynamics at the network level, see Fig. 1. Both
models also produced modular dynamics that corresponded to the modular network
connectivity, see Fig. 2. The dominance of the modular topology of the cat cortical
network was reflected in a distinct increase of Oy, for the TM-dependent correlation
for high levels of spontaneous node activity f, while distance from central hub
nodes appeared to play only a marginal role. Other networks, however, such as
the cellular network of C. elegans displayed a strong dependency on the distance
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Fig. 1 CO and DE models for exploring neural network topology. (a) Mean field activity produced
by the large-scale coupled oscillator (CO) model, based on coupled populations of Fitzhugh-
Nagumo oscillators [1]. Weak global coupling results in patterns of irregular multi-frequency
activity. (b) Mean activity produced by a basic discrete excitable (DE) model [2]. Intermediate
ranges of stochastic refractory periods result in sustained irregular activity (red trace). Thus, both
modeling approaches, despite great differences in their complexity, may produce intricate network
dynamics that can be used to probe network topology

to central nodes for a wide range of f [2]. Similarly to the exploration of cat
cortical connectivity by the DE model, the CO model showed a close alignment of
the modular functional connectivity with the underlying structural modularity. This
alignment is demonstrated in Fig. 2 through the correspondence between anatomical
connections (small black dots) and functional connections (blue circles) of cat
cortical areas.

4 Discussion and Conclusions

It is currently unclear how much detail and model complexity at the node level are
required in order to explore essential phenomena of global network dynamics, such
as irregular multi-frequency activity and modular functional connectivity. While
it has been suggested that the appropriate tuning of features such as coupling,
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Fig. 2 Neural network dynamics in two models of the cerebral cortical network of the cat brain.
Large-scale connectivity data of the cat have been used previously to explore relationships between
the topology and dynamics of neural networks. (a) Lateral view of the cat cerebral cortex, depicting
cortical areas at the mesoscopic scale (Adapted from [4]). (b) Modular connectivity of the cat
cortical network. Cluster analysis of 892 structural interconnections among 55 cat cortical areas [3]
revealed four principal modules. These modules predominantly contain visual, auditory, sensory-
motor and frontal-limbic areas, demonstrating the alignment of connectivity with functional
modalities in the brain ([5]; Adapted from [6]). (¢) Dynamic exploration of the cat cortical network
by a minimal model of discrete excitable nodes and correlation of the resulting co-activation
patterns to topological features, such as distance from a central hub node (CN) or grouping by
topological modules (TM). (d) Correlation between structural and functional connectivity of the
cat cortical network explored by a supercomputational model in which areas were represented as
large populations of coupled oscillators (Adapted from [1])

delay and noise in continuous models is essential for producing realistic network
dynamics [7], even simpler models may be sufficient for studying the principle
relations between network topology and dynamics. In future work, we face the
challenge of developing suitable approaches for more precisely scaling model
complexity and for defining a transition between discrete and continuous models
in order to compare them more directly.
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From Spiking Neurons to Neural Fields:
Bridging the Gap to Achieve Faster Simulations
of Neural Systems

Peter A. Robinson and Jong Won Kim

Abstract Representing the neural activity in terms of spikes or rates are
complementary approaches to computing neuronal dynamics. Likewise, commu-
nication between neurons via individual pairwise links or via smoothed fields are
complementary approaches to modeling information transfer. Here it is shown that
many intermediate and hybrid approaches exist, which enable different aspects of
the dynamics to be probed and permit faster computation in many circumstances.

1 Introduction

There are two well-known limiting perspectives on how to model large neural
systems. One is to simulate large numbers of individual spiking neurons in
neural networks, where each model neuron has dynamics with some degree of
physiological realism, and multiple neurons interact with one another via spikes [1].
In the opposite limit, neural firing rates are followed and neural properties and states
are locally averaged over many neurons to obtain neural field equations for activity
that propagates through neural tissue approximated as a continuum [2]. These limits
are analogous to molecular and continuum approaches to materials, where neither
limit gives the whole story and each uncovers some of the dynamics—i.e., they are
complementary, not mutually exclusive [3,4].

Spiking neural networks are most directly linked to the basic biophysics, but
are extremely computationally intensive to simulate [5] and produce amounts of
output so large as to make interpretation problematic [6]. On the other hand, neural
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field theory omits more biophysical details, but is advantageous for uncovering
multiscale and emergent phenomena, such as brain oscillations and criticality [2].
These points highlight the importance of understanding the relationships between
these limiting cases, including areas of overlap, which phenomena are accounted for
most naturally and tractably by which level(s) of description, and how to simulate
realistic systems most efficiently.

By re-examining the assumptions and approximations of rate-based vs. spiking-
neuron theories, and pairwise vs. field-based interactions, it is shown that interme-
diate and hybrid possibilities exist. These include faster means of computing with
spikes, ways to infer spiking properties from field theories, and improved ways to
treat spike propagation using fields.

2 Models

2.1 Neuronal Dynamics

Spiking neuron models represent the most commonly considered way of approach-
ing neural dynamics. These models range from biophysical conductance-based
models, to idealized ones, such as integrate-and-fire models [5]. These types of mod-
els incorporate an input current, which can come from other neurons (see below),
or from an artificial external source. If this current charges the soma sufficiently to
exceed the firing threshold potential, the neuron will produce an action potential, or
spike. Thus, many such models incorporate conductance equations that track various
ion currents in and out of each cell, and the resulting changes of soma potential V.
Such equations must be integrated with a sub-millisecond timestep §¢ throughout
when dealing with networks of coupled neurons; typically §¢ 0.1 ms.

One type of approximate spiking neuron model treats each neuron as a phase
oscillator that produces one spike per cycle. Such models track the smoothly varying
phase, rather than V, and one spike is produced each time the phase advances by
27 [1]. In many phase oscillator models, all spikes are assumed to be identical and
the dynamical equations can be integrated with much larger time steps At (typically
over 1 ms) than if every spike had to be temporally resolved [7].

In some cases, what is of interest is the spike rate Q, rather than spike
timings. It has recently been shown that many types of spiking dynamics can be
approximated using Q, rather than fast variables such as V' [3]. Together with
the phase interpretation above, this has enabled physiologically based spiking and
bursting dynamics to be closely approximated while integrating using time steps
At, or longer if Q only changes slowly [3].

Another way the dynamics can be simplified, and time steps extended, is by
noting that spikes received by downstream neurons are subject to low-pass filtering
by synaptic and dendritic dynamics, and by the effects of soma charging, giving a
frequency cutoff of around ~20 Hz for typical parameters [8,9]. This means that fine
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structure in individual spikes has little effect on spike dynamics downstream. Hence,
because the low-pass filtering is approximately linear [9], it is mathematically
possible to move it to a point before axonal propagation [10, 11]. One can then
adopt neuronal dynamics that generate prebroadened spikes, using longer time steps
(~At). These spikes then interact with subsequent neurons without further synaptic
or dendritic broadening, yielding dynamics identical to the original system. A key
advantage of using prebroadened spikes is that axonal signals also need only be
resolved on the scale At.

The types of neuronal dynamics discussed above are shown schematically in
Fig. 1, some parts of which are discussed in Sect.2.2. Overall, the ability to use
simplified systems of equations with coarser time resolution in numerical integration
can lead to speedups of up to 2-3 orders of magnitude relative to tracking individual
spikes using conductance-based models: 10- to 100-fold from larger timesteps, and
up to 10-fold, or even more, from simplification of the dynamical equations [5]. The
maximum timestep may be further limited by the resolution required for specific
applications.

2.2 Neuronal Communication

The simplest way to couple multiple neurons to study large-scale system dynamics
is to track spikes via links between all relevant pairs of neurons. However, for N
neurons this involves up to N? axonal links, in which signals must be resolved at
the same timescale as individual neurons.

An alternative method of communicating between individual neurons is sug-
gested by the particle-in-cell (PIC) method of plasma physics [12]. Instead of using
N? pairwise interactions, we make the approximation that the interaction between
two neurons depends only upon their spatial locations and spike timings. In this
case, all neurons can be viewed as contributing to a field ¢ that carries spike profiles.
These spikes can be sharp, broadened, of the phase oscillator type, or can be replaced
by a spike rate in the case the neurons’ dynamics are rate-based. The field ¢ is then
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propagated by solving its field equation (e.g., a damped wave equation). It then
serves as the input to other neurons. Normally, ¢ conveys dynamical quantities in
the form used in the internal dynamics of the model neurons. The advantage of this
“neuron in cell” (NIC) method is that specification of the field can involve far fewer
points than neurons. Hence, neural communication can be simulated much faster
than via pairwise interactions. For example, N neurons interacting via field defined
on P < N points can be simulated in a time of order N rather than order N 2 with
fields carrying spikes or rates.

A further approximation is to take the multiple neurons represented by a given
grid point and examine not their individual dynamics, but the mean rate-based
dynamics of this whole group. This yields a population network model, in which
populations at different locations interact [13]. Communication between these
populations can then be calculated in a pairwise fashion in a time of order P2, at a
time resolution of order A¢.

If the P neural populations are viewed as representing neurons in a single
spatially continuous structure, such as the cortex, one can index them by position
rather than via discrete labels. One then obtains a continuous neural field theory
(NFT) of their averaged dynamics [2, 8]. This enables the dynamics of the entire
system to be tracked in a time of order P, where P is large enough to resolve the
linear scales of activity phenomena of interest. In the limit that the spatial structure
of activity is not required, one can set P = 1 to obtain a neural mass theory (NMT)
[2, 14], where the entire population of neurons is treated as a single point mass. For
NMT to hold, time lags for signals to cross the system must be much less than the
shortest phenomena of interest. Neural mass theories can be simulated in a time
independent of N and P.

The above approaches to neural communications are shown schematically in
Fig. 1.

3 Results

Relative runtimes of the above approaches to dynamics and communication con-
stitute some of the key results, as described in Sect.2. These are summarized in
Table 1, which shows the runtime scalings to simulate networks consisting of a
single type of neuron using the various methods. Scalings obtained from numerical
implementations of several of these methods are illustrated in Fig. 2, which confirms
the relative dependences on N and P.

Figure 3 shows some examples of computations carried out with the methods
discussed here. It compares individual bursting neuron dynamics calculated via
rate-based variables with those calculated via conductance-based equations. It is
seen that there is a close parallel between both types of simulations. Indeed, if one
integrates the total phase advance over each burst and divides by 27, we predict
3 spikes per burst, exactly the number seen in the spike-based approach [3]. This
demonstrates that phase- or rate-based approaches can yield accurate results for
spike timings, even though they do not represent spikes explicitly.
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Table 1 Scalings of runtimes
for simulations of N neurons

87
Method Runtime
C N2/8t
PO N2%/At
PB N2/At
Rate N2?/At
CNIC N/ét
PO NIC N/At
PB NIC N/At
Rate N/At
Population network P2/ At
NFT P/At
NMT 1/At
First four lines are for pairwise-coupled
spiking models with C conductance, PO
phase oscillator, PB prebroadened spikes,

§t =~ 0.1 ms, At =~ few ms. Next three lines are
for communication via fields on P < N grid
points. Last three lines are for populations. Finer
steps may be needed to resolve phenomena or
satisfy the Courant condition
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Fig. 3 Bursting neuron dynamics (Adapted from [3]). (a) From conductance-based equations.

(b) From rate-based equations



88 P.A. Robinson and J.W. Kim

100
80| , 15
s -
= 60 =
; b 210
a0t ° he.
© 5
20
0 —; 0
a d

V (V)
(0]

08 1 12 14 186 08 1 12 14 16
t(s) t(s)

Fig. 4 Examples of system dynamics for N = 100, pairwise connected spiking neurons vs. NIC
(N = 100 and P = 20). Resting neurons are triggered via a strong input current at the center at
t = 1.0s and firing propagates outward. Input current of (a) pairwise connected spiking neurons,
(b) NIC. Firing patterns at the points denoted by dotted horizontal lines in (a) and (b) for (c)
pairwise connected neurons, and (d) NIC

Figure 4 shows some preliminary results the networks of interacting neurons
simulated with spiking-neuron and NIC methods, parameters otherwise being the
same. We see that systems-level spreading of activity is very similar, as are the
single-neuron firing patterns.

4 Discussion

A sequence of hybrid and intermediate approaches to brain modeling is introduced
that combine features of spiking-neuron and neural-field approaches in various ways
that balance the degree of physiological detail against speed of computation. It is
shown that these can dramatically speed computations involving large ensembles
of interacting neurons (see Fig.1). These new methods provide alternatives that
can be used to explore the boundary between the discrete and continuum limits
to determine which systems-dynamic effects depend on which aspects of the neural
dynamics and/or communication are retained. Mathematical details will be provided
in a forthcoming work [7].
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Multi-population Network Models
of the Cortical Microcircuit

Tobias C. Potjans and Markus Diesmann

Abstract In this paper, we investigate a data-based multi-population extension of
the balanced random network model (BRN) (Amit DJ and Brunel N, Cereb Cortex
7:237-252, 1997; van Vreeswijk C and Sompolinsky H, Science 274:1724-1726,
1996). We observe that the findings based on the mono-layered network model,
especially regarding the asynchronous irregular activity state, largely generalize to
the multi-population model (MPM). In addition, the increased complexity of the
network structure yields cell-type specific activity features which we relate to other
data-based microcircuit models as well as to experimental data. We argue that the
specificity of the connectivity between cell types is crucial to achieve consistency
of simulated and in vivo activity.
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1 Introduction

Fifteen years ago, Amit and Brunel [1] and van Vreeswijk and Sompolinsky
[2] simultaneously developed the BRN, employing the balance of excitation and
inhibition to understand the dynamics of membrane potentials and asynchronous
irregular spiking activity. However, it has been recently demonstrated that the
spiking activity obtained by juxta-cellular recordings in awake animals is cell-
type specific, see e.g. [3]. Although the mono-layered BRN continues to make
important contributions to the understanding of experimentally observed cortical
network dynamics it is indispensable to extent this model (see Fig. 1) to incorporate
the multi-layered nature of the cortical microcircuit and to provide a link between
the experimentally observed network structure and activity.

Here, we investigate, firstly, in how far the mono-layered models generalize to a
data-based MPM [4]. Secondly, we analyze the relationship of the simulated cell-
type specific activity and experimental data as well as other existing MPMs covering
a broad range of neuronal description levels. We focus on the activity of layer 2/3
(L2/3) excitatory neurons that have been reported to exhibit spontaneous firing rates
of less than 1 Hz.

2 Methods

We employ full-scale simulations of a spiking MPM of the cortical microcircuit
comprising around 80,000 integrate-and-fire neurons and 0.3 billion synapses
(Fig. 1b). We distinguish eight populations, corresponding to four excitatory and
four inhibitory cell types in the cortical layers 2/3, 4, 5 and 6. The cell-type
specific connectivity of the model is captured in an integrated connectivity map
[4] which is predominantly based on existing anatomical [5] and physiological
[6] connectivity maps. Furthermore, the integrated map introduces inter-layer
connections specifically targeting interneurons which have been reported in studies
based on multiple recordings and photostimulation in brain slices as well as electron
microscope anatomy but which are elusive in light-microscope anatomy. All other
parameters are determined in analogy to the BRN [1].

Fig.1 (a) BRN[1,2]

consisting of excitatory, E, e—’ Ce:oD e—’
and inhibitory, /, populations

with external input, X, and (b)

its multi-population

extension [5]
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The presented simulation results consider changes in the relative inhibitory
synaptic strength g = —J;/J. and in the external inputs. The rate of Poissonian
background spikes a single neuron receives is the product of the background rate
Vpg, modified for Fig. 2, and the number of background synapses Ny, modified for
the gray shaded bars shown in Fig. 3 [4].

Simulations are carried out using the NEST simulation tool (www.nest-initiative.
org). We investigate the dependence of the activity state of the network on the
balance of excitation and inhibition and the external input. We quantify the network
state as irregular if the mean coefficient of variation of the interspike intervals of
individual neurons in a population is between 0.7 and 1.2 and as asynchronous if
the Fano Factor of the population firing rate (binned in 3 ms windows) is below 8.
Firing rates represent the mean population firing rates.

3 Results

Figure 2 shows the regime of the asynchronous irregular activity of the MPM. We
observe that the dependence of the activity state on vy, and g from mono-layered
models [7] is largely conserved for the data-based MPM.

BRN activity is typically in the range of a few Hz and identical for excitatory
and inhibitory populations [1]. In the MPM, see Fig.3, the imposed cell-type
specific connectivity structure yields cell-type specific firing rates. The distribution
of firing rates is robust when the network is confronted with varying external inputs.
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Fig. 3 Comparison of simulated and experimentally observed spontaneous firing rates of excita-
tory neurons in L2/3, L4, L5 and L6. Black colors denote experimental data from in vivo recordings
in awake animals (e.g. [3], see [4] for an overview), circles indicating numerically given mean
values and bars indicating given ranges (e.g. 47 Hz). Shades of gray indicate simulated data of
the MPM based on the integrated connectivity map [4], stars indicating mean firing rates of the
reference parametrization and bars indicating the mean = std when changing external inputs (see
Methods)

Excitatory cells in L2/3 and L6 exhibit lowest firing rates with a mean value below
1Hz and excitatory cells in L5 fire at highest rates and also show the largest
variability.

Comparison to in vivo data Experimentally, cell-type specific spontaneous activ-
ity in awake animals has been measured by juxtacellular and multi-unit recordings
as well as by two-photon imaging. The mean firing rates are shown in Fig.3
in comparison to the simulated activity. Overall, we observe a good agreement
of experiments and simulations, without any particular tuning of the simulated
network. In particular, in L2/3, where most evidence is currently available, see [3],
and L6, the low level of activation is preserved.

Relation to other MPMs Table 1 summarizes a number of recent spiking MPMs
of the cortical microcircuit. The studies apply a wide range of neuron models,
regarding morphologies (from point to multi-compartmental neuron models) and
underlying dynamics (integrate-and-fire models (IAF), phenomenological models
[11,14] or Hodgkin-Huxley models [15]). Similarly, these studies span a range of
research foci, e.g. the function of the frontal eye fields (FEF) or the computational
performance of generic microcircuits. Regarding the connectivity, the majority
of models build on one of the two previously introduced connectivity maps;
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Table 1 MPMs of the local cortical network

Neuron model Connectivity Focus
Izhikevich and Multi-comp. Izhikevich Anatomical map Large-scale
Edelmann model
Heinzle et al. Single-comp. cond.-based Anatomical map FEF function
IAF
Traub et al. Multi-comp. Own data-based Fast oscillations
Hodgkin-Huxley
Hill and Tononi Single-comp. Hill-Tononi Own data-based Slow oscillations
Haeusler and Maass Single-comp. Physiological map  Comput.
Hodgkin-Huxley performance
Rasch et al. Single-comp. Izhikevich Physiological map  Stimulus-driven
activity
Potjans and Diesmann  Single-comp. curr.-based Integrated map Cell-type specific
IAF activity

The table lists, from top to bottom, a number of recent spiking, data-based MPMs [4, 8-13], with
the applied neuron model, the chosen connectivity map and the main research focus

only the two works published in 2005 compile their own data-based maps. Our
generalization of the BRN is the only MPM based on the inclusion of specific target
type selection [4].

Due to the diverse research foci of these works, not all provide detailed
information on the cell-type specificity of the simulated activity. Nevertheless,
it is remarkable that none of these works reports firing rates in L2/3 or L6 as
low as recent experiments. Hill and Tononi [11] provide a detailed comparison
of simulated and experimentally observed spontaneous activity and observe that
especially the simulated excitatory cells in L2/3 exhibit a higher activation than
reported experimentally.

4 Discussion

We present evidence that the extension of cortical network models from BRNs
to data-based MPMs conserves the main feature of the mono-layered models,
the asynchronous irregular activity state. We furthermore compare our simulated
spontaneous activity to experimental data from awake animals and also to a number
of other MPMs.

In order to account for the cell-type specific features of in vivo activity, it is
essential to consider MPMs. However, the parametrization of the connectivity of
MPMs poses a major problem and previous models were not able to reproduce
the strikingly low spontaneous activity especially in cortical layer 2/3, in spite of
applying a wide range of modeling approaches to the description of the constituents
of the network, the neurons and synapses. We argue that our integrated connectivity
data set [4] captures essential information on connectivity, such as the specific target
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type selection of a subset of inter-layer projections, which is not included in other
available data sets but necessary for reproducing cell-type specific in vivo activity
features.

We propose the comparison of cell-type specific spontaneous activity in simula-
tions and experiments as a critical benchmark for MPMs.
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Attentional Cholinergic Projections May Induce
Transitions of Attractor Landscape via
Presynaptic Modulations of Connectivity

Hiroshi Fujii, Takashi Kanamaru, Kazuyuki Aihara, and Ichiro Tsuda

Abstract There is evidence of presynaptic modulation of inhibitions on pyramidal
neurons in cortical layers 2/3, mediated by muscarinic Mj-receptors activated
by transient releases of the corticopetal acetylcholine associated with top-down
attention. Little is known, however, regarding its system-level consequences and
possible implications for cognitive functions. It is possible that, through a tempo-
ral modulation of connectivity between neurons, memory traces or the attractor
landscape in the cortex might be significantly affected. We present a hypothetical
argument on attractor ruins and temporal reconstructions of attractors by top-down
attention. In this paper, we discuss the mathematical validity of this scenario with a
computer study using a phase neuron model.

Keywords Transitions of attractor landscape ¢ Presynaptic modulations of
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1 Introduction

Purely internal cognitive process is an important and essential human activity. One
example of such activity is “mental imagery.” When a person is asked: “which is
longer — a donkey’s ears or an ear of corn?,” most people report that they visualize
the objects, and “see” the pertinent properties [1]. As Kosslyn pointed out [1],
this sort of introspection suggests that visual mental images reconstruct the spatial
geometry of objects. Here, no external stimuli are involved. How are top-down
signals implemented to help reconstruct internal representations of images in the
absence of external stimuli?

The crucial significance of corticopetal acetylcholine (ACh) in cognitive func-
tions is well recognized. Its deficiency, either due to diseases such as Alzheimer’s
disease or dementia with Lewy bodies (DLB), or due to pharmacological treatments
with an ACh antagonist (such as scopolamine or atropine) causes aberrant cognitive
disorders such as deficits of attention(s) and recurrent complex visual hallucinations
(RCVH) [2]. We have, however, only a vague concept regarding the representation
of such images and the neural mechanisms involved.

In relation to these questions, the core of the arguments presented here will focus
on the intrinsic cortical dynamics in ongoing states,! and their transitions to, and
back from, more attractor(-like) states due to transient and local projections of
corticopetal ACh. Kenet and coworkers investigated the brain’s “internal views”
of the world through experiments in the cat visual cortex, with both eyes closed,
that is, in the absence of external stimuli, and with no or at least minimal conscious
attention(s) due to anesthetization [3]. They found that the ongoing brain state was
not random, but continually fluctuating among a number of local internal states,
which are inherent within hierarchical structures in the cortical circuits (Fig. 1).
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Fig. 1 Baseline level of ACh keeps the landscape with attractor ruins (left), while high level of
ACh transiently released from the NBM makes a transition to a more attractor-like landscape
temporarily (right). Note that by a landscape we mean the spatial structure of attractor basins.
The “landscape” shown here is only for illustrative purpose

! An “ongoing state” is used here to mean primarily layer 2/3 dynamical state of a local cortex with
a circumstance where the cortex does not receive external input via layer 4, and also essentially no
spike volleys to layer 1 (and probably also layer 6) as related to conscious attention.
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From a dynamical systems standpoint, the transitory intrinsic states could be
viewed as an expression of “attractor ruins” [4]? or “quasi-attractors”, observed in a
mesoscopic dynamical system — the brain.

The authors presented a scenario of possible role for corticopetal ACh [5] in such
transitions of attractor landscape, focused on the dynamics of the superficial layers
(the layers 1 and 2/3).

We hypothesized that

1. In the absence of bottom-up external stimuli the layer 2/3 state exhibits transitory
dynamics itinerant among attractor ruins until top-down attention occurs. This
situation is maintained by the non-local baseline concentration of cortical ACh.

The attractor ruin® here is a dynamical systems-theoretical expression of pre-
built-in “internal states” [3], “features” [6], “proto-objects” [7] or “templates” [8]
appearing in various contexts. (See, also the Treisman theory: “pre-attentively,
features are free floating” [6].)

2. The commencement of top-down attention reverses the process, and temporarily
recovers the local landscape with attractors. This is a result of transient and local
ACh release due to top-down attention via the NBM (nucleus basalis of Meinert)
[9] which is bi-directionally activated by the mPFC (medial prefrontal cortex).

3. The selection of the orbit (state), i.e., the dynamical assignment of a specific
attractor is achieved by instantaneous glutamatergic (Glu) top-down spike
volleys projected onto layer 1.

Computer studies were conducted to clarify whether the scenario described above
can be justified from a dynamical systems standpoint, based on realistic cortical
network configurations. The model network used was the phase neuron model
developed by one of the authors (T.K.). For full details, see Kanamaru et al. [10].

Our simulations reconstructed dynamics such as:

1. Ongoing state dynamics — transitive dynamics between attractor ruins at a
baseline level of ACh.

2. Transition of the attractor landscape: from a landscape with attractor ruins at a
baseline ACh level, to one with attractor-like states associated with transient ACh
release onto layer 2/3.

3. Dynamic assignment of a specific attractor through instantaneous Glu spike
volleys onto layer 1.

2An attractor ruin (or, quasi-attractor) must have a mechanism for allowing both transition and
return to and from a state. A typical example of an attractor ruin is a perturbed structure of the
non-classical Milnor attractor [13], which possesses the positive measure of attracting orbits, but
may simultaneously possess the property of repelling orbits from itself.
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2 Cholinergic Functions in the Cortex

With conscious attention, two kinds of top-down signals arrive at the cortex, i.e.,
Glu spike volleys from “higher” cortical levels (and from the matrix element of the
thalamus), and corticopetal ACh ascended from the NBM. We hypothesize that, as
with overt or covert attention to external stimuli, ACh is transiently projected also in
internal attentions, in view of the attention to memory, or the internal representation
hypotheses (see, for example, [11]).

The existing data on cellular effects of ACh mediated by either muscarinic or
nicotinic receptors are, at present inconclusive, and sometimes controversial [12].
We are, however, primarily concerned with transient and local ACh released in
concert with top-down attention [12, 14].

According to [12], both pyramidal neurons (PYRs) and GABAergic FS (fast
spiking) interneurons (IN) in layer 2/3 are non-responsive to transient ACh release
post-synaptically. However, recent studies suggest that such a transient release of
ACh would induce a marked decrease of inhibition on layer 2/3 PYRs by IN [15, 16]
as a result of cholinergic muscarinic (probably, M, receptor-mediated) presynaptic
effects, which may bring about an extensive modulation of network connectivity.
The system-level consequences of such cholinergic effects leading to transitions of
attractor landscape are our main concern here. (see also the discussion in Sect. 4.)

The top-down Glu spike volleys projected onto layer 1 also play an essential role
in the dynamic assignment of attractors to be stabilized, kicking the orbit into the
basin of an assigned attractor. See, simulation 2, below (Fig. 3).

3 Computer Study Using the Phase Neuron Model

Here we provide a brief report of our simulation study on ACh-dependent transient
modulation of presynaptic inhibition of pyramidal neurons (PYRs) in layer 2/3. See,
[10] for the phase neuron model and full details of the results.
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Fig. 3 Top-down spikes are projected during a brief period (12,500 <t < 13,500) onto units 9
and 10 (a) with a baseline level of ACh (top), and (b) with an increased level (bottom) of ACh,
respectively. In the case of (b), the state transits, but does so temporarily to pattern 3, in which the
units 9 and 10 are “active” members. The level of ACh determines how long the state is maintained.
When ACh is phasically released in concert with the top-down spikes, the activated attractor is
more transient (Data not shown here. See [10])
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Simulation 1: Transitory dynamics among attractor ruins at a baseline level
of ACh.

When ACh levels are low, at a baseline level, i.e., under a strong inhibition of
PYRs (here the ACh level is “mimicked” by the strength of inhibitions of FS neurons
on PYRs), the originally built-in attractors (designated as “pattern” 1, 2 and 3 in
Fig. 2) are no longer stable, and the dynamics are chaotically transitive among the
three attractor ruins.

Simulation 2: Recovery of a specific attractor by an injection of brief top-down
spikes onto the distal apical dendrites of PYR neurons in layer 2/3.

When spikes are projected briefly onto a fragment (say units 9 and 10) of an
attractor ruin (i.e., pattern 3) at a baseline ACh level, the dynamics maintain their
transitive nature even under “top-down” inputs (Fig. 3a fop). On the other hand, the
whole pattern 3 is activated transiently when the ACh level is increased (Fig. 3b
bottom). This is a dynamic pattern completion controlled by the ACh level.

4 Discussion

Attentional ACh decreases IN — PYR inhibitions in layer 2/3, while intra-cortical
PYR <= PYR excitatory connections may be simultaneously depressed [17,
18], although there are studies suggesting that this may depend on its concentration
[19]. Our simulations suggest that as long as the levels of excitatory and inhibitory
inputs remain balanced during attention, our central proposition that ACh release
transiently recovers the relevant attractor in the landscape still holds. (see [10].)
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Forced Wakefulness for Entrainment
to Permanent Shift Work: A Computational
Study

Svetlana Postnova and Peter A. Robinson

Abstract A physiologically based model of sleep-wake cycles is used to examine
the role of forced wakefulness during shifts on circadian entrainment of permanent
shift workers. We demonstrate that forced wakefulness is crucial for entrainment to
night and early morning shifts, while on afternoon and late evening shifts entrain-
ment can be achieved simply due to changes in light. We explain this phenomenon
by the properties of the human circadian pacemaker which requires non-photic
entrainment for its phase advance in the early hours of the night. This finding
is important for a better design of shift workers routine in order to decrease
sleepiness.

Keywords Sleepiness ¢ Fatigue ¢ Circadian * Homeostatic ¢ Sleep-wake
cycles « Mathematical modeling

1 Introduction

Shift work and atypical sleep schedules are associated with an increased number of
accidents due to sleepiness and fatigue [1-3], and lead to long-term health problems,
including diabetes, obesity, and cancer [4]. These are hypothesized to be related
to prolonged desynchronization among different circadian rhythms in the body.
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Understanding of the mechanisms underlying circadian entrainment of workers to
shift schedules will help to design conditions to reduce sleepiness and improve
overall well-being of shift workers.

Sleep-wake cycles are controlled by a complex system of multiple interacting
neurobiological structures. Understanding of their dynamics has been significantly
advanced by computational approaches, and a number of mathematical models sim-
ulating performance of shift workers exist in the current literature [e.g., 5, 6]. Most
of these models are built up using a high level approach of interacting functions
formally simulating interaction between the circadian and homeostatic processes,
which modulate sleep pressure and control sleep-wake transitions [7]. These models
are very successful in predicting short-term effects of shift work on sleepiness and
performance, but do not address long term changes and underlying physiological
mechanisms. Recent advances in neurobiology of sleep [8] enabled development of
physiologically based models of sleep-wake cycles [9-11] and allowed examination
of long-term effects of shift work on sleep and entrainment, along with probing
mechanisms underlying sleepiness on the level of the interacting brain nuclei [12].

In this work we use such a physiologically based model of sleep-wake cycles
to understand the role of forced wakefulness during shifts on entrainment and
sleepiness of permanent shift workers. It is well known that often, especially during
night shifts, workers fall asleep either accidentally due to high sleep pressure
or purposefully if given a chance when work load is low. Such naps improve
performance of shift workers in short term, because they reduce an immediate sleep
pressure [13]. In this paper we examine long term effects of free versus enforced
wakefulness conditions during the shifts. We demonstrate that it is important to
enforce wakefulness on the night shift to entrain to permanent shifts and reduce
sleepiness in the long term.

2 Methods

The model used here is combined from two earlier models: a physiologically based
model of the ascending arousal system (AAS) [9], and a model of the human
circadian pacemaker entrained by light and non-photic inputs [14]. The schematic
of the model is shown in Fig. la. A similar combined model has already been
used to study sleep of different circadian chronotypes and general mechanisms
underlying sleepiness and entrainment of shift workers on different schedules [12,
15]. Therefore, here we briefly describe the key concepts involved in the model.

The AAS model is built up using neural mass modeling methods [9]. It simulates
average voltages and firing rates of the wake-active group of monoaminergic
neurons (MA) in the brainstem and the sleep-active ventrolateral preoptic nucleus
(VLPO) in the hypothalamus. These inhibit one another, thereby contributing to
the flip-flop like switch between sleep and wakefulness. The dynamics of the
MA and the VLPO are under influence of the homeostatic (H) and circadian (C)
processes [16].
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Fig. 1 (a) Schematic of the model. The bar-headed lines correspond to inhibitory connections,
while arrow-headed — to excitatory. (b) Time course of the homeostatic H, circadian C, and total
sleep drive D. Shaded areas indicate sleep intervals

The precise mechanisms of the H process are not yet known but are postulated to
increase sleep pressure during wakefulness and dissipate it during sleep, as shown
in top panel of Fig. 1b. Some of the proposed mechanisms include accumulation
of somnogens during wakefulness, and synaptic plasticity of specific neurons
[8, 10].

The circadian process modulates sleep drive depending on the time of the day
and external “time givers” (the so-called zeitgebers), including light, feeding times,
and locomotion. Change in zeitgebers leads to change of the phase of the circadian
oscillator. The master circadian clock in the brain is the suprachiasmatic nucleus
of the hypothalamus (SCN in Fig. la), which neurons change their firing rate
depending on the time of the day. Maximum activity of the SCN is observed during
the day and minimum during the night, as shown in Fig. 1b [16].

In the model presented here the circadian process C is incorporated as an input
to the VLPO from the model of the human circadian pacemaker [14] as shown in
Fig. 1a. This model uses Van der Pol oscillator to simulate circadian oscillations
and accounts for the effects of light and of non-photic stimuli on the phase of the
oscillator.

The combined effects of the circadian and homeostatic processes on sleep
pressure give a total sleep drive D =v,;,H + v,.C, where v,, >0 and v,, <0 are
coupling constants. The coupling constant for the homeostatic process is positive
because H promotes sleep, while the constant for the circadian process is negative,
because C promotes wakefulness. Thus, D is minimal when C is maximal. The
sleep drive D controls the transitions between sleep and wakefulness. During normal
sleep-wake cycles, sleep is initiated when D is above a certain threshold value, and
transition to wake happens when D is below it, as shown by the shaded areas in
Fig. 1b.

In this study we examine the simplest case of permanent 8 h shifts without week-
ends and simplest light conditions in order to understand the general mechanisms.
Therefore, in the absence of shift work the light input to the model is constant 200
Ix between 08:00 and 22:00. During the shifts additional light input of the same
intensity is introduced. During sleep light input is set to zero assuming that workers
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sleep in total darkness. Forced wakefulness during shifts is implemented by keeping
the MA and VLPO in wake state, while allowing dynamic changes of H and C (for
detail see [12]).

The total sleep drive D is used here as the simplest measure of sleepiness.
Average values of D during the shifts are used to compare sleepiness on different
schedules and days.

3 Results

When shift work with forced wakefulness during the shifts is introduced, it results in
increased total sleep drive D in the first days on the new schedule [12]. This happens
due to reduced sleep time resulting from sleeping during a day; i.e., during high
circadian input. The new external zeitgebers introduced due to shift, particularly the
additional light input, lead to re-entrainment of the circadian oscillator and, finally,
to re-establishment of normal sleep amount after a certain number of adaptation
days. It has been shown that in the absence of days off on the night shifts mean daily
sleep drive increases during the first 2-5 days on the new schedule, then starts to
decrease, and stabilizes when circadian re-entrainment is achieved. For description
of mechanisms, see [12].

Re-entrainment leads to change of the circadian phase and, accordingly, to a
different location of the circadian maximum. With the considered light profile in the
absence of shifts the circadian maximum, which corresponds to the minimum of D,
is located at 15:00. Shift work moves the circadian maximum towards either later or
earlier time depending on the time of the shift, as shown in Fig. 2.

As shown in Fig. 2a shift work leads to advance of Dy, to earlier time on the
night shifts starting between 23:00 and 08:00, in the presence of forced wakefulness.

a
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On the afternoon and evening shifts, starting between 15:00 and 23:00 it leads to
delay of Dp;,. Shifts starting between 8:00 and 15:00, which are normal work times,
do not change circadian phase, and thus have the same timing of Dy,.

The time course of D can be approximated by a sine wave (see Fig. 1b), thus
minimal average sleep drive during the shifts is obtained when Dy, is in the middle
of the shift; i.e., for the shift onset at 11:00. Night shifts lead to a significantly higher
(Dgnite) , because when entrainment is achieved Dy, is at the border of the shift (see
Fig. 2a).

With free sleep-wake activity during the shifts; i.e., sleep as allowed at any time
of the shift, the model does not allow relocation of D, to an earlier time during the
night shifts, while on the other shifts the dynamics are the same (compare the solid
and dashed lines in Fig. 2a). Therefore, (Dgys) for the night shifts is significantly
higher in the case without forced wakefulness, as shown in Fig. 2b. This means that
proper entrainment to night shifts can only be achieved when wakefulness is forced.

This finding is counterintuitive considering that napping on night shifts reduces
sleepiness [13]. However, the reduction of sleepiness is observed only in the short
term, while in the long term re-entrainment to the new external cues introduced by
the shift is much more beneficial, as shown in Fig. 3.

This figure demonstrates an example of the change of the mean sleep drive
during the night shift over the time span of 2 weeks. According to this plot the
shifts with forced wakefulness lead to a higher D during the first 3 days on the
new schedule, while afterward it starts decreasing until it stabilizes at much lower
values of (Dgyi) than those achieved without forced waking. Thus, the schedules
with forced wakefulness are beneficial in the long term.

4 Discussion

In this study we have used a physiologically based mathematical model of sleep-
wake cycles to study sleepiness of shift workers. We have showed that forced
wakefulness during the shifts is essential to enable entrainment to night shifts, and
that such re-entrainment is beneficial on long-term permanent schedules. We explain
these dynamics by the fact that the human circadian pacemaker cannot be advanced
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in the early hours simply by light inputs [16]. Non-photic stimulation is required
for re-entrainment, and this is achieved when wakefulness is enforced along with
changed lighting.

In the presence of forced wakefulness the model shows good re-entrainment
to the new zeitgebers. However, in practice, entrainment is not easily achieved,
due to diverse social commitments and other factors affecting the timing of
sleep and wakefulness. Thus, in future studies effects of random influences on
entrainment should be implemented and examined. Future work will also include
more complicated shift schedules, like rotating shifts, and account for effects of
weekends.

In practice, when sleep is allowed during the shifts, the workers do not usually
sleep until their sleep pressure is sufficiently decreased. Instead, they may just have
short naps at different times of the shift until a next task has to be performed.
Therefore, the model reproduces an idealized situation when the workers can sleep
just following their sleep drive. It is expected that the average sleep drive on such
shifts will be even higher than the one shown with the dashed line in Fig. 3. However,
during the first day(s), (Dshifr) on completely free sleep-wake schedules will still be
lower than (Dgpie) with forced waking. Also scheduled naps appearing at the same
time every day may lead to different dynamics, since they may promote entrainment.
This case should be examined in the future studies.

In summary, this study provides new insights into the conditions that allow to
improve sleepiness of shift workers and demonstrates how physiologically based
models of sleep expand applicability of modelling to understand sleepiness.
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Towards a Modeling and Simulation Platform
for Multi-level Neuronal Networks

Yoshiyuki Asai, Hideki Oka, Taishin Nomura, and Hiroaki Kitano

Abstract We have been developing an open platform for enhancing the integrative
life science called Physiome and systems biology, on which users can build
mathematical models of biological and physiological functions with hierarchical
structure, and perform simulations with parallel computing. We also have been
proposing a XML-based language for describing a wide variety of models, and
developing a model database in order to facilitate model sharing. Neuroscience
is one of the research fields in which mathematical models played effectively
important roles to reveal physiological principles. We will discuss on a possibility
to apply our platform for neuroscience.
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1 Introduction

Accumulation of knowledge of physiology has opened a new scientific field, i.e.
integrated life-science with the keywords such as Physiome [1] and systems biology
[2], in which inter-level principles as well as intra-level disciplines are explored.
Roles played by multi-scale and multi-level mathematical modeling of physiological
functions are becoming more and more important, since mathematical models are
capable of describing dynamics, i.e., time evolution of states of biological systems,
quantitatively based upon physical and chemical principles or phenomenological
logic governing system behaviors [3].

The framework for supporting to build such mathematical models of physio-
logical functions and for archiving and sharing models is inevitable for further
development. We have been developing an open platform called“insilico platform”
[3], and now we are going to develop PhysioDesigner as a successor of the
insilico platform, besides other pioneering efforts to promote physiome and systems
biology, such as SBML and CellML [4]. On the platform, physiological functions
are considered as an aggregate of modules which are easily viewed and edited on
insilicolDE (ISIDE) [5], a main application to provide a integrated development
environment in insilico platform. Based on this modularity, physiological functions
are structuralized and modeled. The model is described in insilicoML (ISML),
an XML based language, which we defined to well describe the modular and
hierarchical structure of the models [6]. Using our platform users can integrate not
only mathematical expressions but also experimentally obtained timeseries data and
morphological data. We also developed databases (insilicioDB: ISDB) to enhance
sharing of models and those data.

Neuroscience is one of the scientific areas in which mathematical models have
been playing active roles successfully through past decades. Now by combining
computational and theoretical neuroscience, systems biology and neurophysiology,
a new approach so called neurophysiome is arising. Several pioneering technologies
such as NEURON, GENESIS, NeuroML [7] and so on in this field are supporting
the basis of the theoretical and computational neuroscience. We will discuss on a
possibility to apply our platform for neuroscience.

2 insilico Platform Outline

The insilico platform is composed of three blocks, i.e. ISML, ISIDE and ISDB.
ISML is a language specification based on XML to describe mathematical mod-
els of physiological functions. In a model in ISML, each of physiological entities is
represented as a module. Each module is quantitatively characterized by several
physical-quantities, which are used to represent constant/variable parameters as
well as dynamical variables used in the definition of time evolution of the system
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state, such as only ordinary differential equations, partial differential equations,
rules for multi agent systems. ISML is also capable of describing the integration
of morphological and time-series data to mathematical models.

The structural and functional relationships between two modules are defined
by edges spanned between them. For example, if one module physically includes
another module (e.g. cell membrane includes mitochondria) they are connected by
a structural edge. If a module quantitatively affects to another module (e.g. an ionic
current flowing a channel on a cell membrane changes the membrane potential), the
two modules are linked by a functional edge. When a module wants to refer a value
of a physical-quantity defined in the other module, the value can be transferred to
the module along a functional edge spanned between the two modules.

A concept to make a kind of package of a physiological function has been
introduced to ISML, which is called capsulation, in order to enhance the model
sharing. Several modules acting together as a certain physiological function are
encapsulated by a capsule module. All connections to (from) the encapsulated
modules from (to) outside of the capsule must go through the capsule module to
secure the independence of the encapsulated modules. By this isolation of modules,
it becomes easy to reuse the encapsulated modules in other parts of the model or in
other models.

We also have been developing a simulator insilicoSim (ISSim) [8]. In the
framework of the insilico platform, the model construction and the simulation are
clearly separated. Users can focus on the structure and logic of a model, and do not
need to take care about algorithms for numerical calculations because ISSim takes
care such issues instead of users. ISSim also can perform parallel computing for
simulations of ISML models using multiple cores on a PC. This is one of advantages
to use this platform since if users want to adopt a parallel computing technology on
a multi-core environment, usually users are required to learn specific techniques
additionally, which is a time consuming task. ISSim can parse SBML as well.

3 Examples of ISML Model

Figure 1 shows an example of ISML model displayed on ISIDE. This is a coupled
two Hodgkin-Huxley (HH) model [9]. A HH model is a well-known conductance
based model of an excitation of neuron membrane. The membrane potential can be
calculated by an integration of three major ionic currents, i.e. voltage-dependent
persistent Potassium ion (K1) current, voltage-dependent transient Sodium ion
(Na™), and a leak current which is considered to be mainly carried by Chloride
ion (C[7), and at the same time to represent other channels which are not described
explicitly. The Na™ and K™ currents are regulated by three gating variables. In
total the model is described by four ordinary differential equations corresponding to
the membrane potential and three gating variables, and a couple of functions to
calculate currents and so on. In Fig.1 two HH neuron modules, one external
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Fig. 1 Anexample of a hierarchical and modular expression of a coupled Hodgkin-Huxley neuron
model on insilicolDE and a simulation result computed by insilicoSim

stimulus current generator module, and a gap junction module are shown. Modules
form tree structures on ISIDE. Double tapping on a module toggles showing and
hiding modules in its sublayers. A HH neuron at the left side in Fig. 1 shows its
substructure (three ionic current modules). The membrane of the HH neuron, each
ionic currents, channel conductances, and channel gating variables are represented
as modules. Equations and parameters are defined in each module.

4 Modeling with Morphology

To integrate morphological information into a model is inevitable for considering
physiological functions. For now, the morphometric data can be utilized on ISIDE
to define a domain on which partial differential equations are solved. For example,
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Fig. 2 Morphology viewer dialog. (a) A 3D morphology model with a slicing function to view
the inside. (b) Selecting a region with a rubber band function to define as a segment which is used
to set, for example, an initial condition or boundary conditions

as shown in Fig.2a, if one has morphometric data of a brain as an organ level
model, the data can be integrated to the model. Segments can be defined on the
morphology model to which an initial condition and boundary conditions can be
defined (Fig. 2b). By combining the morphology with partial differential equations
representing conduction of electric field and ordinary differential equations repre-
senting an excitable neuron membrane, users can construct a model, for example,
reproducing the EEG evoked by a neuronal activity. A model including morphologi-
cal data with partial differential equations can be numerically solved by FreeFEM++
which is a third-party free software developed at http://www.freefem.org.

5 Modeling with SBML

We proposed a method to create a multi-level model including cell and subcellular
phenomena in cooperation with SBML [10]. We will directly utilize models
described by SBML on insilico platform. SBML is a pioneering model description
language for systems biology, such as subcellular signaling pathways, metabolic
pathways, gene regulation, among others. The scheme of the hybridization of SBML
and ISML is illustrated in Fig. 3.

ISML is designed to represent a functional network and hierarchical structure
using its modular representation. The insilico platform provides a function to import
a whole SBML model in a module of ISML. The model in SBML is not converted
into ISML, but be wrapped by ISML and be kept in a module in the model. Then the
module can represent the subcellular phenomena which is modeled by the SBML
model. In this sense, the model is consequently written in a kind of hybrid language
of SBML and ISML.
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Fig. 3 Schematic diagram of a model written in SBML and ISML. XML shows an example of
ISML description including a whole SBML model. In a schematic figure of a module, squares
surrounded letters (K and S) represent physical-quantities of ISML. An oval in the module
represents a SBML model in which three hexagons corresponding to species of SBML are
described. The dotted arrows shows associations between physical-quantities and species. By these
associations, numerical interactions between ISML and SBML are defined

There are ‘“species” and “parameters” in SBML to represent quantitative
attributes of biochemical entities. At a module including a SBML model, it is
possible to define associations between physical-quantities and species/parameters.
By this association, a physical-quantity can get a value from a species/parameters or
can give a value to them, and the SBML model is effectively involved in the model.
By linking the module including the SBML model to other modules by structural
and functional edges, the SBML model eventually is integrated in the ISML module
network in the senses of both structural and functional relationships.

6 Discussion

The platform we have been developing can be also applied to neuroscience among
other fields. Let us take modeling of the basal ganglia as an example scenario.
To consider the overall functioning of the basal ganglia-thalamocortical motor
system, we can find neural network models [11] including projections among
neuronal nuclei in the basal ganglia which may be affected by LTP and LTD at
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striatum. A striatal synaptic plasticity has been modeled by Nakano et al. (2010)
[12] incorporating all major signaling molecules such as dopamine- and cyclic
AMP-regulated phosphoproteins. The model is written in SBML and shared at
BioModels [13]. One of inputs to the model is dopamine concentration which is
tightly related to the particular burst firing of the dopaminergic neurons in substantia
nigra pars compacta. There is a dynamical system model [14] stored in ISDB,
which reproduces the membrane potential dynamics of dopaminergic neurons.
Though these models are just examples, we can find several models developed
in each level such as molecular, single cell and network level. However, we can
scarcely find models bridging multiple levels, and we expect that ISIDE and coming
PhysioDesigner can be complementary technology to contribute to development of
multilevel modeling based on SBML and ISML.
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Robust Computation in Two Dimensional
Neural Field

Yuzuru Sato and Shun-ichi Amari

Abstract In this paper, we discuss robust computation represented by collective
motion of large neural dynamics. There exist stable traveling bumps and their
collisions in a two dimensional neural field. By using the stable traveling bumps and
their collisions, arbitrary logical operations can be constructed. The resulting com-
putation processes in the neural field is structurally and orbitally stable and the basin
measure of the dynamics of the computations is finitely positive. Thus, the compu-
tations are robust and constructive in the framework of dynamical systems theory.

1 Introduction

In which way, can information processing be embedded in statio-temporal pattern
dynamics? This problem has been broadly investigated in theoretical neuroscience
based on contemporary notions of information processing.

Computational ability of network of neurons was first studied by McCulloch
and Pitts [1] to show computational universality [2] directly constructing Boolean
circuits by using binary neurons. Other developments of computation in network
of neurons are found in studies on particle computation in cellular automata [3, 4],
representing computational process as collective motion. With two-dimensional cel-
lular automata (as a special case of binary neuron networks), universal computation
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is achieved as a new level of behavior that is different from the lower level of explicit
spatial configurations. Universal computation is also achieved with carefully con-
structed finite dimensional dynamical systems. For example, three-dimensional flow
which is topologically equivalent to universal Turing machine, can be implemented
in a billiard system with finitely complex boundary [5]. Real number computation
has been also studied in terms of computation in dynamical systems [6, 7] and the
limit of analog computaion has been discussed. However, these computations based
on intrinsic symbolic dynamics are not rubust but highly fragile.

Here we study robust computation represented by collective motion in large
neural dynamics. There exist stable traveling bumps and their collisions in a
two-dimensional two-component neural field [8, 9]. By using the stable traveling
bumps and their collisions, arbitrary logical operations can be constructed. Unlike
logical circuits in McCulloch-Pitts binary neurons, particle computation in cellular
automata, and symbolic dynamics in flow, the computational process in the neural
field is structurally and orbitally stable, and the basin measure of orbits of arbitrary
computation is positive. Thus, the computations in the neural field are robust
attracting sets. The initial conditions and boundary conditions are fully constructive
in the framework of dynamical systems theory. In the following, we explain a two
dimensional neural field model, show properties of stable traveling bumps and their
collisions, and discuss robust computation in the neural field.

2 Two Dimensional Neural Field

A neural field model is a continuous version of neural network describing the spatio-
temporal patterns of populational neuronal firing activities [8]. Let x = (x, y) be
the coordinates of a two dimensional field, and u(x, ) and v(x,?) be excitatory
and inhibitory variables at position x. The activation-inhibition mechanism is
described as,

W — Lo [0, 8)] + Loy (%, 0)] )
w = Ly, [u(x, )] + L,y [v(x,1)] (2)

where L,,, L,,, L,, and L,, are operators representing interactions of the field
variables. The reaction-diffusion equation uses the linear Laplacian diffusion for
L, together with pointwise interactions for L,, [10], whereas the equation of a
neural field uses non-local interactions for L,, due to the synaptic connections of
neurons, represented by a spatial convolution of the type

Lo [u(x,0)] = /w (x—=x') f[u(x.1)]dx, 3)
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where f is a nonlinear function. The typical equations for a 2D neural field are as
follows:

du(x, 1)

20— [ fx =) Al .r) = n]dx
- / wa (x—x) fo [y (¥1) — ha] dx’

—u(x,1), (@)
BV(X t)

s /W3(X—X)f3[ (K1) — 3] dx

—/W4 (x —X) fa [v (x’, 1) — h4] dx’
—v(x,1). (%)

Here, u(x, t) and v(x, t) are the mean potentials of excitatory and inhibitory neurons,
respectively, at position x and time ¢. The convolutive functions wy (x — x’),

wy (x — x’) represent the synaptic efficacies from position x’ to x. The functions
fis - - ., fa denote the activation functions of neurons. They are activated by u(x, t)
and in turn inhibited by v(x, ¢). The activation functions are sigmoidal functions or
Heaviside functions satisfying 0 < f;(u) < 1, (i = 1,2,3,4), and the synaptic
efficacy functions w;(x) > 0 are radial symmetric, that is, w; (x) are functions of
IIx]|, fori = 1,2, 3, 4. Hence, the two dimensional neural field is homogeneous and
rotationally invariant.

The neural field model can be regarded as a special case of the field equation
with excitation and inhibition mechanisms, similar to the standard reaction-diffusion
equation. While the reaction-diffusion equation is restricted within local interactions
due to diffusion term, the neural field model has a spatially wide range of
interactions, i.e., non-local interactions, that exhibit richer dynamical phenomena.
In the two dimensional two-component reaction-diffusion equation, the existence
of spatially localized traveling objects has not been reported with local operators
[11]. It is known that global operators added to two-component systems may induce
a single stable traveling bump, but may not induce multiple solutions [12]. On
the other hand, many three component systems with local operators show multiple
travelling bumps.

An example of multiple stable traveling bumps in a two dimensional neural
field model, which is a two-component system with non-local operators, is recently
presented [9]. In this case, the spatial convolution term plays the role of the third
component to stabilize the bump, which supports existence of multiple bumps.



126 Y. Sato and S. Amari
3 Stable Traveling Bumps and Their Collisions

We use the following simple equations comprising a two-dimensional extension of
the model given by Pinto and Ermentrout [13]

du(x,t) 3 B
= u(x,t) —v(x,t)
+/w(x—x’)f[u(x’,t)—h]dx’ (6)
W = au(x,t) — fv(x,t), (7

where = 0.6, 8 = 0.8/3, h = 3.0, and

_x24y? 1
w(x, y) =17.32e 2, f[u] = m (8)

Numerical experiments suggest that the field can be tristable, admitting the
quiescent state, a stable traveling bump with a characteristic length (Fig. 1), and a
traveling band solution growing to infinite length [9]. A number of traveling bumps
may coexist in a field, and they strongly interact when they are close. When two
bumps collide, they fuse into a single bump. The resulting bump converges to one
of the tristable states depending on the collision angle (Fig. 1). The threshold angle
is around %n. We use external inputs to control directions of motion of traveling
bumps to adjust the collision angle. There are no standing objects other than the
traveling bumps in the parameter settings because of the lack of diffusion terms, so
that even with complex collisions, the resulting output is thought to be only one of
the following: (1) quiescent state, (2) stable traveling bump, or (3) growing band
solution, implying that the field is very “clean” without complex after effects. As
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for complex transitory collision phenomena, see [14] for the various collision and
scattering phenomena of traveling spots in the reaction-diffusion equation with three
components.

4 Robust Computation in Neural Field

The stability of localized traveling bumps does not require any geometric restriction
or boundary to prevent them from propagating away. As an application of these
findings to theoretical studies of neural information processing, we construct logical
operations by using stable traveling bumps, their collisions, bump generators, and
bump eliminators with local boundary conditions (Fig. 2).

Computational ability of networks of binary neurons was first studied by
McCulloch and Pitts [1]. They constructed logical operations taking dynamics of
a single binary neuron as an elementary mechanism and an individual spike
as information carrier. Based on automata theory, computational universality of
binary neuron networks was shown. Studies on reliable computation in probabilistic
automata [15] were one of the extensions.

The theory was developed to “stochastic neural networks” to treat macroscopic
statistics and dynamics, known as theory of neural networks. In Amari-Hopfield
networks [17, 18], stochastic functions formed by stochastic neurons represent
elementary mechanics and distribution of spikes does information carrier. Statisti-
cal inference plays a key role in this theory represented by the fact that a multilayer
perceptron consists of sigmoidal neurons is a universal function approximator [16].

Direction control
D W= //
S I Bl colision |
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Collision Collision  Colljsion
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Fig. 2 Logical operation in two dimensional neural field: In the diagram below, (G) denotes the
bump generator and (E) does the bump eliminator. The circle represents collisions of traveling
bumps. The bump generator is constructed with periodically activated region and two fixed
quiescent region adjusting the characteristic length of bumps. The bump eliminator is simply a
fixed quiescent region whose size is about the characteristic length. Direction control is done by
external pulse inputs. Controlled multiple bump collisions can work as logical NOT and AND
operation with local boundary conditions

Generator Eliminator
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Statistical and information theoretic problems were unified into this theory to
solve thousands of important problems in theoretical neuroscience such as memory
capacity, classification, optimization, and statistical learning. Amari investigated
statistical learning in neural networks introducing information geometry [19].

There are other developments of studies on logic and computation in spatiotem-
poral dynamics. Early studies are found in Conway’s game of life [3] and particle
computation in cellular automata [4]. In these systems, computational process
is represented by collective motion. We can construct logical operations taking
dynamics of a large number of binary neurons as elementary mechanism and
pattern dynamics of spikes as information carrier. In life game computer, by taking
two-dimensional cellular automata, universal computation is achieved as a new level
of behavior that is different from the lower level of spatial configurations.

Based on stable traveling bumps and their collisions, we can construct logical
operations taking dynamics of a large number of stochastic neurons as elemen-
tary mechanism and pattern dynamics of distribution of spikes as information
carrier. Combining elementary logical operations, arbitrary logical operation can
be executed in two dimensional neural field at the collective level (See also
computation by waves in reaction diffusion dynamics with boundary conditions
[20].). Unlike McCulloch-Pitts binary neurons, cellular automata, and symbolic
dynamics in flow, the computational process in the neural field is structurally
and orbitally stable, and the basin measure of orbits of arbitrary computation is
positive. Thus, the computations in the neural field are robust attracting sets. The
initial conditions and boundary conditions are fully constructive in the framework
of dynamical systems theory. Spatial continuity, non-local interaction, and logical
operation construction at the collective level support this result.

5 Discussion

We discussed robust computation with stable traveling bumps and their collisions
in a two dimensional neural field. Logical operations can be constructed by
using collisions of multiple traveling bumps with local boundary conditions. The
presented results would be the simplest starting point to study neural information
processing as spatial pattern dynamics in neural field.

Multiple bumps in neural field can be a model for working memory [21]. In this
point of view, we may consider problems of memory formation, such as collisions
of working memory, resulting propagation phenomena, and creation of new working
memory as after effects. These spatial memory formation would imply short-term
learning in neural field. Pattern dynamics in heterogeneous media [14] may be
related to the multiple structured model for real neural systems corresponding to the
boundary conditions for the robust computation. Rigorous mathematical analysis
of traveling bumps, their collisions, and their controls will have to be conducted to
explore these problems.
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Dynamical Synapses Enhance Mobility,
Memory and Decoding

C.C. Alan Fung, K.Y. Michael Wong, and Si Wu

Abstract Depending on their activities, synapses in neural systems are dynamical
in relatively short time scales. This effect is known as short-term plasticity (STP),
which appears as short-term facilitation (STF) or short-term depression (STD). In
this paper, we describe the effects of STD and STF on the intrinsic phases and
plateau states. Consequently, we find that STD enhances the tracking performance
in continuous attractor neural networks, and provides a mechanism for an iconic
memory to shut off naturally. On the other hand, STF improves the precision in
population decoding.

1 Introduction

The short-term plasticity (STP) of dynamical synapses appears in two forms:
short-term facilitation (STF) and short-term depression (STD). STF is due to
the accumulation of calcium ions caused by the pre-synaptic spikes. This effect
enhances the release probability of neurotransmitters, and hence the connection
efficacy. STD is due to the fact that the recovery time of neurotransmitters is much
slower than the synaptic time scale [1].

In this paper, we will briefly describe the effects of STD and STF on the
intrinsic dynamics and plateau states of neural systems, and consequently their
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impact on the performance of neural computation. We will use continuous attractor
neural networks (CANNS) as our working model, but the results are applicable to
general cases. CANNs are recurrent networks that can hold a continuous family
of localized states. These states are localized in position, with neuronal activities
decreasing from a maximum at the center to a background level with increasing
distance from the center, and is hence usually known as bumps [3]. When an
external stimulus changes position, the bump shifts its position accordingly among
the continuous attractors. This process is called tracking, and hence can model how
the brain processes continuous stimuli, such as orientations, head directions and
spatial locations. As we shall see, dynamical synapses can enhance the tracking
performance of CANNs, provide a mechanism for an iconic memory to shut off
naturally, and improve the precision in population decoding.

2 Model

The state of a neuron is specified by the population-averaged neuronal current,
u(x,t), as well as the neuronal firing rate r(x,¢), where x is the preferred
stimulus ranging from (—oo,00). r(x,t) and u(x,t) are related by r(x,t) =
u(x,1)*/[1 + kp [ dx"u(x",t)*], in which k is the parameter controlling the
global inhibition, and p is the density of neurons in the space of the pre-
ferred stimulus [2]. In simulations, there are N neurons with preferred stim-
ulus ranging within (—L/2,L/2). So, p = N/L in simulations. The exci-
tatory connection weight between different neurons are given by J(x,x’) =
(Jo/V2ma?) exp [—(x — x’)z/(Zaz)], where Jy controls the strength of excitatory
connection, and a represents the width of the tuning curves. For a < L, the results
of simulations should be effectively the same as those with L = oo.
The neuronal current is governed by Tsodyks et al. [3] and Fung [4]

Jdu

vl I19(x, 1) — u(x, 1)

+ p/dx’](x,x’) [1+ f(x0)] p(x" 0)r(x', 1), (1)

where 7 is the external stimulus, and 7y is the synaptic time constant of the order
1 ms. The effects of dynamical synapses are introduced by including f(x,?) for
STF and p(x, ¢) for STD in the last term of Eq. (1). They are governed by

%_f — _M + o (frmax — f(x, 1)) r(x,1), 2
t Tf

dp _1-px.1)
=

- —BIL+ fCr0)] ple.0yr (.0, )
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where o and B are the parameters controlling STF and STD respectively. 7 and 74
are time scales for STF and STD, respectively. They are of the order 100 ms. In this
paper, we study STD and STF separately, focusing on their individual effects.

3 CANNs with STD

3.1 Intrinsic Dynamics

In this section, three key intrinsic phases are introduced in the (k, 8) space when
there are no external stimuli. They are the static phase, metastatic phase and moving
phase.

For the case without STD and STEF, if k is below a critical value k., the steady
state solution for Eq. (1) is a bump with a Gaussian profile, whose width is +/2a
and whose center of mass is z [2]. The value of Z can take a continuous range,
characteristic of continuous attractor neural networks. One may expect that, when
is small enough, the shape of the steady state of u(x, ¢) is effectively Gaussian. Also,
the steady state of p(x,?) has a background level of 1 depressed by a bump-shaped
profile. Their profiles are shown in Fig. 1a. Based on this observation, we propose
search for Gaussian-shaped solutions of Egs. (1) and (3). We can then figure out
the regions including metastatic and static phases (dashed line in Fig.2) over the
parameter space of (k, f8).

In the static phase, the height of the bump is stable and the velocity of the bump is
zero. In the metastatic phase, the height of the bump remains stable, but the position
of the center of mass is metastable, and is hence described as metastatic. This means
that when the static bump is given a small displacement, the bump will continue to

[

Static Moving
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. 0.5
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Fig. 1 Profiles of synaptic input current, u(x,¢), and synaptic depression, p(x,¢) for (a) static

bumps and (b) moving bumps
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Fig. 2 Phase diagram for 0.06
STD. Symbols: simulations.

Curves: theory.

B =B/ (p*J§) and

k = k/k, are rescaled 8 and 0.04
k respectively

0.02

move spontaneously. The condition for this happen can be studied by introducing
a small asymmetric distortion to the solution of Egs. (1) and (3). By considering
whether the variations diverge or converge, we can obtain the boundary between
metastatic and static phases respectively, separated by the phase boundary indicated
by the dotted line in Fig. 2.

The existence of spontaneously moving bumps in the network can be attributed
to the presence of STD. This is because neurons tend to be less active in the
locations of low values of p(x,t), causing the bump to move away from locations
of strong synaptic depression. For the moving bumps, the profile of p(x,¢) is no
longer symmetric about the center of mass of u(x, t), as shown in Fig. 1b. Therefore,
the assumption of a Gaussian-shaped depression is not appropriate for the case of
moving bumps. To solve this problem, higher order distortions are included in the
term 1 — p(x,t). We note that a Gaussian distortion is the lowest order member of
a family of distortions, commonly used to describe wave functions of the quantum
harmonic oscillator. Successively higher order functions of this family can describe
distortions in the position, width, and skewness etc. of the bump. Mathematically,
this family of functions is complete, meaning that any arbitrary distortion can
be expressed as a combination of these functions. This enables us to predict the
boundary of the moving phase (solid line in Fig. 2). Beyond the boundary, only the
silent phase with u(x,?) = 0 exists.

In the moving phase, the static bump cannot exist, and there are only moving
bumps.

The metastatic nature of the bumps enhances the tracking performance of
CANNs. When the network is tracking an external stimulus that changes position
rapidly, metastability speeds up the movement of the bump, as shown in Fig. 3.
Interestingly, when the synaptic depression is very strong, the network state can
even overtake the moving stimulus, reminiscent of the phase precessing behavior of
place cells in the hippocampus [5].
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Fig. 3 The bump position 4
when the stimulus position
abruptly changes from oo
z20/a = 0tozp/a = 3.0 at 3+ <>/9Q‘ 00000
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Fig. 4 Examples of plateau a
states. Symbols: simulations.
Lines: theory. Parameters:
(k,B) = (0.95,0.0085), i.e.
point P in Fig. 2.
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3.2 Plateau State

The plateau state provides a possible mechanism for the iconic memory. The
presence of STD provides an extra parameter region in which the bump states are
marginally unstable in amplitude, such as point P in Fig. 2.

Figure 4 shows two examples of plateau states, A and B, corresponding to
different kinds of initial conditions. A corresponds to the initial condition that the
network is under the influence of a stimulus for a long enough time, while B is for
the case the presence of stimulus is just long enough to excite function u(x, ).

Consider the initial state B. In the marginally unstable regime, the static bump
solution just loses its stability. The bump is stable if the synaptic depression is
fixed at a low level, but unstable at high level. Since the synaptic time scale is
much shorter than that of STD, a bump can build up before the synaptic depression
becomes effective. This maintains the bump in the plateau state with a slowly
decaying amplitude as shown in Fig.4a. After a time duration of the order 7,4, the
STD reaches a threshold, as shown in Fig. 4b, and the bump state eventually decays
to the silent state.

The plateau state for initial condition A does not last as long as that of B.
However, since the system is marginally unstable, there are states at which the
dynamics is very slow. When the system dynamics passes through these states, the
relaxation of the bump is slowed down.
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Fig. 5 Comparison of 5e-05
influences by the noisy
stimuli of systems with and 4e-05}
without STF. Parameters:
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4 CANNs with STF

Compared with STD, STF has a qualitatively opposite effect on CANNs with
dynamical synapses. STF provides an extra translational stability to a bump. To
check this, we consider a noisy stimulus, 7°*(x, ¢), which is a Gaussian function
of width +/2a, height A and centered at position 7(¢), n(¢) being a white noise
satisfying (n(¢)n(t")) = 2Ta’t,8(t — t'). In the inset of Fig. 5, the decoding results
of CANNs with and without STF are shown. With STF, the CANNSs can filter out
the fluctuational effects due to the noises considerably. We calculate the influence
of the noise on the decoding result is shown in Fig.5. This figure shows that the
presence of STF can improve the decoding efficiency when noises are present.

5 Discussion

In the absence of the stimulus, the CANN with STD favors different phases
with different system parameters, (k, 8). For k < k. and small B, the static
bump is stable. If one increases the strength of STD, §, the system will become
translationally unstable. York et al. found similar behaviors in a system with uniform
input current [6], while we found that this instability can improve the network
reaction to changes of stimuli.

The plateau state is due to the marginal instability of the bump state. It can
make the bump state last for a longer period such that the signal may have more
time to propagate to neurons of subsequent layers. Hence we predict that STD
should be important in early information pathways of the brain. For systems without
dynamical synapses, this behavior is not easily seen. However, the presence of STD
provides an extra parameter region so that the plateau state can be seen more easily.
Indeed, how to shut off the activity of a CANN has been a challenging issue that
received wide attention in theoretical neuroscience. Here, we show that STD may
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provide an important mechanism that supports the signal for a relatively long time
and allows the neuronal activity to turn off naturally.

STF has an effect qualitatively opposite to STD. Unlike STD, STF provides
translational stability such that it can improve the decoding performance. With this
property, CANNs with STF can be used as a noise filter processing noisy stimuli.
Based on the different advantages of STD and STF, we predict that each of them
should be dominant in different areas of the brain. STD should be dominant in
areas where time-varying stimuli are processed, whereas STF should prevail in areas
where accurate decoding of stimuli is required.
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Input Dependent Variability in a Model
of the Striatal Medium Spiny Neuron Network

Adam Ponzi and Jeff Wickens

Abstract In previous work we have shown how a biologically faithful medium
spiny neuron (MSN) network model of the striatum generates highly irregular firing
and coherent population dynamics on slow timescales. Here we investigate how the
firing irregularity depends on cortical activity. We find that irregularity is suppressed
for many hundreds of msecs after cortical stimulus onset in good agreement with
several neural observations. We also find that most cells spike count time series
display non-normal diffusion and fractal charasteristics.

1 Introduction

In recent modeling work on the striatal MSN network [1, 2] we have shown
that coherent cell assembly population dynamics on slow behaviourally relevant
timescales can be generated by the MSN network providing the network has the
sparse random striatally relevant connectivity of around 10% and cortical excitation
is weak so that the cells are just above firing threshold. We demonstrated that at these
connectivities even when simulations were completely deterministic individual cells
displayed highly irregular firing, broadly distributed firing rates consistent with a
power-law and that the network generated complex identity-temporal dynamics.
Here we investigate how this MSN network generated variability interacts with
cortical stimulation. We show that switches in cortical stimulation lead to a
temporary suppression of noise in the network. It has been observed that, in many
brain areas, stimuli cause significant suppression of neuronal variability [3-7]. Our
results are in agreement with this.
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2 Methods

The network is composed of model MSNs with parameters set so they are in the
vicinity of a bifurcation from a stable fixed point to spiking limit cycle dynamical
behaviour [1]. This models the dynamics in the UP state when the cells are all
receiving excitatory drive to firing threshold levels of depolarization. To describe
the cells we use the Iy, , + Iy model described in [8] which is two-dimensional
and given by,

dV;
CW =1i(t)—gL(Vi—EL)

—8&NaMoo(Vi)(Vi = Ena)

—gini (Vi — Ex) (1
% = (oo — 1)/
having leak current [}, persistent N at current / Na,p With instantaneous activation
kinetic and a relatively slower persistent K+ current /. V;(¢) is the membrane
potential of the i-th cell, C the membrane capacitance, E; y, are the channel
reversal potentials and g7y, are the maximal conductances. 7;(¢) is K+ channel
activation variable of the i-th cell. The steady state activation curves mq, and 7o
are both described by, xoo(V) = 1/(1 + exp{(VZ, — V)/kZ}) where x denotes
m or n and V2 and kZ, are fixed parameters. 7, is the fixed timescale of the K+
activation variable. The term /;(¢) is the input current to the i -th cell.

The parameters are chosen so that the cell is the vicinity of a saddle-node on
invariant circle (SNIC) bifurcation which is appropriate bifurcation to use for a
model of an MSN in the UP state, because its dynamics are in good qualitative
agreement with studies of MSN firing [1,9-11].

The input current [; (t) = Iic (1) + IM(¢) in Eq. 1 is composed of two parts.
One component IiM (t) comes from the MSN inhibitory network and the other
component /, ic (1) represents the current from excitatory sources, the cortex and the
thalamus. We describe the excitatory component first.

We model the excitatory part as a stochastic process. In general the excitatory
component will be given by Rall type synapses [12] Iic ) = (Ve = Vi) Xi(2)
where X;(1) = ), kﬁ aii(t). Ve is the excitatory reversal potential, set here to
the realistic value 0.0 mV. The MSN cells are considered to be contacted by many
excitatory inputs / which are non-overlapping between the MSN cells i. kicl are
fixed channel parameters from the /-th excitatory cortical or thalamic input to the
i-th MSN cell, described below. The a;;(¢) are the quantities of postsynaptically
bound neurotransmitter from the /-th excitatory input to the i-th MSN cell. They
are given by ru% = Zm 8(t — tizm) — a;; where the dirac delta function §() part
represents a series of spikes from the /-th input to the i-th cell at times ¢;;,, and t,
is a time scale which we set to the realistic value of 10 msec.
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If we assume the spikes follow independent Poisson process with rates r;;(¢)
then the contribution provided by many such processes is approximately Gaussian
and we can replace the spike series by a term given by the mean rate plus
a fluctuation proportional to the standard deviation, r;;(¢)dt + €;(t)+/rii(t)dt
where €;;(¢) is a standard normally distributed random variable (mean zero,
std unity) [13]. Assuming that spikes are independent across i and /, the term
> eil(t)kl.cl V/ri1(t)dt which arises can also be replaced by its expectation and

fluctuation 0 + €, (t) |/ dt Z[(ks )2r;;(¢) where € (¢) is standard normal noise term

independent in i and ¢ and we have used (€;;(¢)) = 0 and (€;;(?)€ix(¢)) = O,
(I # k) and (€;;(t)€ir (t)) = 1, (I = k). Therefore we calculate X; () using,

Nc¢
‘CadXi = (Zkﬁr,’](l) — X,) dt
1

Nc
e (Dde Y (k) rin(0)]' .
i

MSN cells are each contacted by around 10,000 cortical and thalamic cells and
we therefore set N¢ =10,000. Average cortical firing rates are around 10 Hz and we
therefore draw the 10,000 rates r;; (¢) for each MSN i independently randomly.

The ks are also fixed in our simulations reported here, although in reality they
may vary with short term facilitation and suppression as well as by LT P and LTD.
We choose the ks so that the MSN cells’ input current /€ () is just above the SNIC
bifurcation point /,;; = 4.51 jLA/cm? and accordingly draw the ks independently
uniformly from the interval [0, 0.002]. These values of excitatory input current mean
that all cells would be firing if the network inhibition were not present. In fact the
inhibitory network causes some cells to become quiescent by reducing the total input
current to below the bifurcation point.

The inhibitory current part is provided by the GABAergic collaterals of the
striatal network and given by I (1) = (V;(t)—=Vu) 3_; =k} g;(¢). These synapses
are also described by Rall-type synapses [12] contributing to /; (#) where the current
into postsynaptic neuron i is summed over all inhibitory presynaptic neurons j and
Vi and kijy are channel parameters. g (¢) is the quantity of postsynaptically bound

neurotransmitter given by, tgdj—tj = O(V;(t) — Vin) — g, for the j-th presynaptic

cell. Here V;;, = —40mV is a threshold, and ©(x) is the Heaviside function. g;
is a low-pass filter of presynaptic firing. The timescale 7, should be set relatively
large so that the postsynaptic conductance follows the exponentially decaying time
average of many preceding presynaptic high frequency spikes. In all simulations
here it is set so that postsynaptically bound transmitter exponentially decays to half
its value in time 7,/n(2) ~ 34 msec.

The network structure is described by the parameters kY = (kM /p)e; Z;;
where €;; is another uniform quenched random variable on [0.8, 1.2] independent in
iand j.Z;; = lifcellsi and j are connected and zero otherwise. In the simulations
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reported here we use random networks where cells i and j are connected with
probability p, producing binomial degree distributions, and there are no self-
connections, Z;; = 0. kM is a parameter which is rescaled by the connection
probability p so that when the network connectivity is varied the average total
inhibition on each cell is constant independent of p. k™ is set so that IPSPs
are around 200 'V, very similar to real striatal IPSPs, at connectivities of around
p = 0.1 when the postsynaptic cell is just above firing threshold.

Striatal MSNs are likely to contact (and be contacted by) about 500 other
MSNs[14-16]. Furthermore the probability of a connection is estimated to be
fairly low, p=0.05-0.3. To simulate a striatal network which respects these two
figures would require, say, a network of around 500/0.2=2,500 cells. However this
neglects the fact that not all cells are cortically excited into the UP state and such
never firing cells can be left out of network simulations. We suppose that only about
10-30% of MSNss are cortically excited at any time, and perform simulations of 500
UP state MSNs with sparse connectivities. All simulations were carried out with
the stochastic weak second order Runge—Kutta integrator described in [17] with
integration time step 0.1 msec.

3 Results

Here we investigate how the network responds to a switching input protocol. To
this end we construct two fixed cortical input firing rate matrices, rfll’B for two
cortical inputs A and B, which do not vary in time. The input rate matrices are
alternated every 2,000 msec. The synaptic weights kﬁ are fixed for the duration of
the simulation the same for both inputs A and B. The fano factor is a standard
tool used to understand how neural systems respond to varying stimulation. To
make stimulus locked fano factors we first construct the spike count observations
NI which are the number of spikes fired by cell i in 7 msec window centered
on (7/2)n msec from the onset of the mth presentation of stimulus A. Stimulus
locked fano factors are defined as F!7 = Var{N:I}/(N/T) where the expectations
(...) are taken over all presentations m. The F!” are then averaged over all cells
i (which have at least one non-zero spike count among the averaged observations)
and denoted F,!. The fano factor F, time series versus time (7//2)n msec for a
range of T values for a single network simulation are shown in Fig. 1. Two things
are evident, firstly the fano factors increase with time window size 7" and secondly
the fano factors decrease suddenly after stimulus onset and then revert slowly.

In fact for a normally diffusive process the mean (N/T) and variance Var{N,T
of the spike counts both increase linearly with time 7" and therefore the fano factor
is independent of time 7. However the process generated by the network diffuses
faster than normal on average across cells so that while the mean spike count grows
linearly with T the variance grows faster than this. The fano factor therefore grows
with T. Indeed in Fig.2 we plot log Var{N/T} where the variance is calculated
over all stimulus presentations m and over all time epochs n versus log(7") for
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Fig. 1 Mean fano factor across all cells for a single network simulation versus time since stimulus
A onset calculated for several different window sizes 7', shown in the key. The smaller time
windows have lower fano factors. The dashed vertical line shows stimulus B onset
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Fig. 2 Diffusion plots in log—log scale of spike count variance versus window size 1" for several
randomly chosen cells from the simulation whose fano factor time series is shown in Fig. 1. Each
cell is a different solid line. The dashed lines indicate linear behaviour
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several different cells i, for the same simulation as shown in Fig. 1. The dashed
lines describe linear behaviour Var{N(T)} « T. As can be seen for most cells the
variance increases faster than linearly Var{N(T)} o «T# where 8 > 1, for low T
before becoming more linear at high 7'. This indicates that at low 7" < 2,000 msec
the behaviour is superdiffusive with positive autocorrelation and a fractal dimension
D = 2— /2 before reverting to normal diffusion for sufficiently long 7. As can be
seen there are also cells which display subdiffusion with 8 < 1 for low 7. A cell’s
behaviour is probably dependent on the structure of its network connections, and
not analysed here.

The time series of mean fano factors shown in Fig.1 is also not constant
throughout the whole 4,000 msec period. As can be seen the fano factor decreases
after stimulus onset before increasing slowly. A similar behaviour has been observed
in several experimental studies showing stimuli can cause a suppression of neural
variability. Here it is caused by a transient effect after stimulus switching whereby
the slow network dynamics do not quickly accommodate the new input rate
distribution.

4 Discussion

Here we have shown that irregular firing generating by a biologically faithful
network model of the striatum is suppressed for many hundreds of seconds after
cortical stimulus onset. The slow network dynamics are much slower than any
timescale represented in the model parameters. Although there are no striatal
studies, many cortical and cerebellum experimental investigations report similar
suppression of variability [3—7]. In the future we will investigate how this behaviour
depends on network properties such as connectivity.
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Selection Criteria for Neuromanifolds
of Stochastic Dynamics

Nihat Ay, Guido Montifar, and Johannes Rauh

Abstract We present ways of defining neuromanifolds — models of stochastic
matrices — that are compatible with the maximization of an objective function such
as the expected reward in reinforcement learning theory. Our approach is based on
information geometry and aims to reduce the number of model parameters with the
hope to improve gradient learning processes.

1 Introduction

Within many formal models of neural networks the dynamics of the whole system
can be described as a stochastic transition in each time step, mathematically
formalized in terms of a stochastic matrix. Well-known models of this kind are
Boltzmann machines [2], their generalizations [5], and policy matrices within
reinforcement learning [7]. It is helpful to consider not only one stochastic
matrix but a parametrized family of matrices, which forms a geometric object,
referred to as a neuromanifold within information geometry [1,2]. This information
geometric view point suggests to select appropriate neuromanifolds and to define
corresponding learning processes as gradient flows on these manifolds. The natural
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gradient method, developed by Amari and co-workers (see for example [1]), proved
the efficiency of the geometric approach to learning. The study of learning systems
should further address the interplay between geometric properties and the quality
of learning. In this paper we study criteria for the selection of neuromanifolds. We
do not only focus on manifolds that are directly induced by neuronal models, but
also study more general geometric objects that satisfy natural optimality conditions.
Therefore, in the following we will talk about models instead of neuromanifolds.

We assume that learning maximizes an objective function f : C — R defined
on the set C of stochastic matrices. A model N C C is consistent with £, if the
set of maximizers of f can be reached through the learning. This implies that the
maximizers should be contained in the closure of N. If f is convex on C, then each
locally maximal value is attained at an extreme point (vertex) of C, and therefore
corresponds to a deterministic function. We refer to the following three examples in
which optimal systems also turn out to be close to deterministic functions:

1. Optimal policies in reinforcement learning [6],
2. Dynamics with maximal predictive information as considered in robotics [8], and
3. Dynamics of neural networks with maximal network information flow [3].

This suggests to consider parametrizations that can approximate all extreme points
of C, the deterministic functions. In this paper we concentrate on the first example
to illustrate the main idea.

2 The Main Geometric Idea

We first consider general convex sets and return to stochastic matrices in Sect. 3.
The convex hull of a finite set €, ..., €™ in R? is defined as

n n

C:=3> p)EY : p(i)=0Viand }_ p(i)=1¢.
i=1 i=1

The set of extreme points of this polytope C is a subset of {£(1), ... £} In general,
there are many ways to represent a point x € C as a convex combination in terms of a
probability distribution p. Here, we are interested in convex combinations obtained
from an exponential family. To be more precise, denote P, the set of probability
measures p = (p(1),..., p(n)) € R" and consider the map

m: P, > C. pr > pi)E?
i=1

For a family of functions ¢ = (¢b1,...,¢;) on {1,...,n}, we consider the
exponential family &, consisting of all p € P, of the form
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e k=1 M #10)
p(i) = i=1,...,n.

Y Xkt A i)

We denote the image of £; under m by Cy. With the choice
i) =&, i=1,...n k=1,...d,

the closure of the exponential family £ can be identified with the polytope C. This
allows to define natural geometric structures on C, such as a Fisher metric, by using
the natural structures on the simplex P,. In the context of stochastic matrices this
leads to a Fisher metric that has been studied by Lebanon [4] based on an approach
by Cencov. The above construction also motivates the following definition: We call
a family Cy an exponential family in C if the vectors ¢, k = 1,...,[, are contained
in the linear span of the vectors ¢/, k = 1,....d.

In general, the families C, are not exponential families but projections of expo-
nential families. In this paper the models Cy4 will play the role of neuromanifolds.
We are mainly interested in models that are compatible with the maximization of a
given function f : C — R in the sense that the closure of C,4 should contain the
maximizers of f. This is clearly not the only consistency condition, but here we
focus on this assumption only.

As stated above, in many cases the local maximizers of f are elements of the
set {1, £M1 and hence the problem stated above reduces to finding a family
¢ = (¢1,...,¢;) of functions such that Cy contains that set in its closure. This is
always possible with only two functions ¢, ¢,. One such family can be constructed
as follows: Consider a one-to-one map ¢ of the n points £V, ..., ™ into R, for
instance & @O+>i,i=1,...,n,and the following family of distributions:

o—BleE)—a)’

Pap(i) = )
’ > By —a)’

e 1) +rada(i)
DI M

where ¢1(i) := @(ED), ¢1(i) := ¢*(D), and 1| := 2a B, A, := —B. Itis easy
to see that for @ = ¢(£%)) and B — oo, the distribution Da.g converges to the point
measure concentrated in i. The convex combination Z?: | Dap (i) £9) therefore

converges to the point £). This proves that the closure of this two-dimensional
family in C contains all the points E(’), i = 1,...,n. In general, the geometric
properties of this family strongly depend on ¢, as we discuss in the following
section.
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3 Application to Reward Maximization

Given non-empty finite sets 2~ and ¢/, the stochastic matrices from 2 to % are
maps (x, y) — m(x; y) satisfying

w(x;y) >0 forallx e 2,y €%, and

Z w(x;y) =1 forallx € 2.
yEXW

The set of stochastic matrices is denoted by C := C(Z"; %). Stochastic matrices
are very general objects and can serve as models for individual neurons, neural
networks, and policies. Each extreme point of this convex set corresponds to a
deterministic function f : & — % and is given as

2D yy = | LTy =/,

0, else.

Although the number of these extreme points is |%|'# |, according to Sect. 2 there
always exists a two-dimensional manifold that reaches all of them. Note that in the
particular case of N binary neurons we have 2" = # = {0,1}" and therefore
(2V)@") extreme points.

To illustrate the geometric idea we consider the example .2~ = {1,2,3} and
% = {1,2}. This can, for instance, serve as a model for policies with three states
and two actions. In this case C is a subset of R**? =~ R® which can be identified
with the hypercube [0, 1]* through the following parametrization (see Fig. 1a):

rl—r
0,1 > (r.s.1) +— (s l—s).

t1—t

To test the properties of that family with respect to the optimization of a function,
we consider a map (s, a) — RY, which we interpret as reward that an agent receives
if it performs action a after having seen state s. The policy of the agent is described
by a stochastic matrix 7 (s; @). The expected reward can be written as

f@)=Y"p"(s) Y m(s:a) RE.

In reinforcement learning, there are several choices of p™ (see [7]). Here we
simplify our study by assuming p” to be the uniform measure.

We investigate the influence of the map ¢ and compare the natural gradient flow
(gradient with respect to the Fisher metric, see [1]) with the ordinary gradient. For
the experiments we drew a random reward matrix R and applied gradient ascent
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Fig. 1 Optimization with ordinary (light) and natural (dark) gradient on the model C4 for two
different choices of ¢. (a): A Hamilton path ¢ = (1,2,3,4,5,6,7,8). (b): An arbitrary map
v =1(1,7,3,52,8,4,6)

(with fixed step size) on f(m) restricted to our model and several choices of ¢
(see Fig. la/b for typical outcomes). The optimization results strongly depend on ¢.
We restricted ourselves to the case that ¢ maps the vertices of C onto the numbers
{1,...,n}. Such a map is equivalent to an ordering of the vertices. We recorded the
best results when ¢ corresponds to a Hamilton path on the graph of the polytope
C, i.e. a closed path along the edges of the polytope that visits each vertex exactly
once. This way ¢ preserves the locality in C, and the resulting model Cy is a smooth
manifold. In Fig. la, both methods reach the global optimum ((1) (1)) In Fig. 1b, ¢
01

is ‘unordered’. We see that the landscape f(mqg) is more intricate and contains
several local maxima. The natural gradient method only converged to a local but not
global optimum, and the ordinary gradient method failed. In Fig. 1a/b every vertex
& of the cube is labeled by ¢ (&) for the corresponding ¢.
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4 Towards a Construction of Neuromanifolds

Here we approach implementations of policies 7 in the context of neural networks.
We start with the case of two input neurons and one output neuron (Fig. 2, left). All
neurons are considered to be binary with values 0 and 1. The input-output mapping
is modelled in terms of a stochastic matrix . The set of such 4 x 2-matrices forms a
four-dimensional cube. A prominent neuronal model assumes synaptic weights w,
and w, assigned to the directed edges and a bias b. The probability for the output 1,
which corresponds to the spiking of the neuron, is then given as

1
1 + e~wixi+waxy—b)

©))

w(xy,x2;1) =

This defines a three-dimensional model in the four-dimensional cube, see Fig. 3.
Some extreme points are not contained in this model, e.g. the matrix 7(0,0;1) =
w(1,1;1) = 0, #(0,1;1) = =(1,0;1) = 1. This corresponds to the well-known
fact that the standard model cannot represent the XOR-function. On the other hand,
it is possible to reach all extreme points, including the XOR-function, with the two-
dimensional models introduced above. However, there are various drawbacks of our
models in comparison with the standard model. They are not exponential families
but only projections. Moreover, we do not have a neurophysiological interpretation
of the parameters.

T

Ty oyl

Fig. 2 Two simple neural

networks T2

o
o "

9 O

Fig. 3 The standard model given in Eq. (2) for three values of the bias parameter b (left) and the
new model (right) introduced in Sect. 2
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Fig. 4 Histogram of the 3.25 3.5 3.75
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We now discuss models for the case of one additional output neuron. The system
is modelled by stochastic 4 x 4 matrices, which form the 12-dimensional polytope
C := C({0,1}2: {0, 1}?). A natural assumption is the independence of the outputs Y;
and Y, given the input pair X, X,. This is the case if and only if the input-output
map of each neuron i is modelled by a separate stochastic matrix 7;, i = 1,2. The
stochastic matrix of the whole system is given by

(X1, X25 y1, y2) = (X1, X2; Y1) - W2(X1, X25 Y2).

This defines an 8-dimensional model J\/pmdm that contains all extreme points of C.
Furthermore, it contains the submodel Nyundaa given by the additional requirement
that r; and m, are of the form (2). The model Nyungara 1S an exponential family
of dimension 6. However, as in the one-neuron case, Nyundara does not reach all
extreme points. Another submodel NVyey Of ./\/pmdm is defined by modelling each
of the stochastic matrices m; in terms of two parameters as described above. The
following table gives a synopsis:

Model Dim. Exp. fam. Reaches ext. points
C 12 Yes Yes
Nproduct 8 Yes Yes
-A/slanda.rd 6 Yes No
Nhew 4 No Yes

We conclude this section with the maximization of a reward function in the
family MVew, as in the previous section. Figure 4 shows a histogram of the results
for a fixed randomly chosen reward R after 500 steps for ordinary gradient and
natural gradient methods. We chose a constant learning rate and 5,000 different
initial values. Both methods find three local maxima. The natural gradient process
tends to converge faster. Furthermore, it finds the global maximum for a majority of
the initial values, which is not the case for the ordinary gradient.

5 Conclusions

We proposed and studied models which contain all extreme points in the set of
stochastic matrices (the global maximizers for a variety of optimization problems).
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These models have very few parameters and a rich geometric structure, and they

a

llow a simple implementation of natural gradient methods. At this stage we do

not suggest them for describing neural systems but as basis for extensions to more
plausible models.
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A Manipulative Approach to Neural Dynamics
by Combined TMS-EEG

Keiichi Kitajo, Yumi Nakagawa, Yutaka Uno, Ryohei Miyota,
Masanori Shimono, Kentaro Yamanaka, and Yoko Yamaguchi

Abstract We propose a new approach for manipulating neural dynamics by using
combined TMS (Transcranial magnetic stimulation) — EEG (Electroencephalogra-
phy) recordings. We demonstrate that we can perturb the phase dynamics of ongoing
neural oscillations by TMS. Using the manipulative approach we can investigate
(1) state-dependency in frequency-specific network connectivity by analyzing how
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TMS-evoked phase reset of ongoing activity propagates from one cortical area to
the rest of the brain in humans and (2) causal links between the neural dynamics
and brain functions. We can causally confirm dynamical and computational models
in manipulative manners using this approach.

1 Introduction

Growing evidence indicates that synchronous neural oscillations are important in
mediating perceptual and cognitive processes [1, 2]. A lot of “neural correlates”
studies demonstrated the correlation between synchronous neural activity and
brain functions. It is important, however, to show causal links between the neural
dynamics and brain functions, which are beyond the correlation between them.
Stochastic resonance is one of the ways to manipulate neural oscillations and
look at functional changes in the human brain [3]. To address this issue more
directly we propose another new manipulative approach using TMS-EEG. New
findings on the human brain start to emerge from combined TMS-EEG studies
[4, 5]. Massimini et al. for example, demonstrated evidence for a breakdown of
long-range effective connectivity during NREM sleep by combined TMS-EEG
recordings analyzing propagation of TMS evoked response across the brain [5].
This study suggests that TMS can transiently perturb and modulate cortical ongoing
activity in the human brain. No study, however, has shown frequency-specific,
state-dependent changes in large-scale cortical synchronous network connectivity.
We therefore investigated frequency-specific and state-dependent cortical network
connectivity by analyzing how TMS-evoked phase perturbation of ongoing activity
at one cortical area measured by EEG is propagated to the rest of the brain at
different frequencies.

We propose that using the new manipulative approach we can investigate (1)
state-dependency in frequency-specific network connectivity by analyzing how
TMS-evoked phase reset of ongoing activity propagates from one cortical area to
the rest of the brain and (2) causal links between the neural dynamics and brain
functions in humans confirming dynamical and computational models.

2 Methods

In total 40 right-handed adult participants with normal or corrected-to-normal
vision gave informed consent. The study was approved by the ethical committee
of RIKEN. Using a 19-channel (Neuroprax, neuroConn, Germany) or a 64-channel
(BrainAmp MR plus, Brain Products, Germany) TMS-compatible EEG amplifiers,
we recorded TMS (Magstim rapid, The Magstim company, UK) — modulated
ongoing brain activity while normal participants sit on a chair with their eyes closed
or eyes open fixating a gray cross in the dark on a black background in the center
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of a 19” CRT monitor (100 Hz refresh rate) at a distance of 95 cm. A chin rest
maintained participants’ head position throughout the experiment. Participants were
instructed to avoid making eye movements or blinks.

EEG data were sampled at 4,096 Hz and off-line resampled at 1,024 Hz
(Neuroprax) or sampled at 1,000 Hz (BrainAmp MR plus). EEG records were
digitally re-referenced to averaged earlobe electrodes. Electrode impedances were
kept below 10 k2.

We targeted TMS to the left primary motor cortex with intensity at the 95%
motor threshold or the visual cortex with intensity at the 95% phosphene threshold.
Participants were given 50-60 pulses in eyes-open and eyes-close conditions.
In 19ch EEG experiments, 17 subjects participated in the motor area targeted
experiments. 14 different subjects were identified as those who were able to see
TMS-induced phosphenes and participated in the visual area targeted experiments.
The electrooculogram (EOG) was recorded with electrodes positioned 1 cm from
the outer canthi of both eyes and above and below the left eye. Epochs with artifacts
caused by blinks or eye movements or amplifier saturation were detected using an
amplitude criterion (4 — 150uV) and excluded from further analysis. Three subjects
in the motor area targeted and four subjects in the visual area targeted experiments
were excluded because too few epochs survived after the artifact rejection. The
signal was segmented into a series of 3,000 ms-long epochs. Each epoch consists
of 1,500 ms pre TMS and post TMS periods. The EEGLAB, Matlab toolbox
was used for artifact rejection, visualization and topographic plots [6]. We band-
pass filtered the EEG or EEG SCD (scalp current density) signals and computed
instantaneous phase and amplitude of the filtered signal by constructing the analytic
signal using the Hilbert transform or wavelet methods or a two-cycle complex
exponential sequence [7]. By using these methods, we can dissociate instantaneous
phase from amplitude of signals. Next, to quantify the TMS evoked phase reset
of ongoing activity, we computed phase locking value (PLV), which is a measure
of phase consistency across trials for each time/frequency point, according to the
following [8]:

PLV(t, ) = %

N
Z PUAGYED]
n=1

where ¢(t, f, n) is the instantaneous phase at time ¢ and frequency f from an electrode
of the n th trial. N is the number of trials.

3 Results

In all participants, we observed strong modulation of phase of ongoing activity by
TMS. Figure 1 shows representative PLV headmaps from a single subject using a
64ch EEG SCD data at 10 Hz. In this case we stimulated the occipital pole at the
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Fig. 1 Representative PLV head maps of EEG-SCD at 10 Hz at various times after single-shot
TMS for a single subject. The visual area (occipital pole) was stimulated at the 95% phosphene
threshold in the eyes-open condition
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Fig. 2 PLV averaged across all channels and participants (N = 14) in eyes-open, eyes-closed
conditions and difference between eyes-open — eyes-closed conditions for the motor area targeted
TMS experiment

95% phosphene threshold. Strong phase reset was observed right after TMS around
the target site. Then, the phase reset propagated from the visual area to the rest of
the brain very globally and disappeared at around the motor cortex.

In our group experiments using 19ch EEG recordings, (Motor area targeted
TMS: N = 14, Visual area targeted TMS: N = 10), we found significant increase
in PLV by single shot TMS (p<0.05, FDR corrected permutation test). Figures 2
and 3 show PLV time frequency diagrams averaged across all channels for the
eyes-open and eyes-closed conditions in the motor area targeted and visual area
targeted experiments, respectively. We found that global propagation of phase reset
was most prominent at 3—6 Hz delta to theta ranges and 813 Hz alpha range
in both eyes-open and eye-closed conditions. We observed more widespread and
prolonged propagation of phase reset of ongoing activity in the eyes-open condition
than in the eyes-closed condition most prominently around 10 Hz (p<0.05, FDR
corrected, permutation test) both in motor area targeted (Fig. 2) and visual area
targeted experiments (Fig. 3).
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Fig. 3 PLV averaged across all channels and participants (N = 10) in eyes-open, eyes-closed
conditions and difference between eyes-open — eyes-closed conditions for the visual area targeted
TMS experiment

4 Discussions

We observed prominent phase reset of ongoing EEG by single-shot TMS. The phase
reset propagated from the stimulated area to the rest of the brain in a frequency spe-
cific way. We speculate that phase reset propagated globally across coupled neural
oscillators in the human brain. Large-scale cortico-cortical and/or thalamocortical
synchrony networks [5] should be associated with global propagation of phase reset
by a single-shot TMS.

We found more prominent propagation of phase rest in the eyes-open condition
than in eyes-closed condition at around 10 Hz. It has been shown that the
phase of pre-stimulus alpha oscillations modulates visual detection [9, 10]. It has
been also demonstrated that detection of TMS-evoked phosphenes is modulated
by alpha power [4, 11]. These studies and our results suggest the alpha-band
synchrony networks might be mediating gain regulation of incoming flow of visual
information.

Our study provides evidence that TMS-EEG can reveal frequency-specific, state-
dependent changes in large-scale cortical synchronous network connectivity. Our
results also indicate that TMS can reset and control the phase of ongoing oscillations
locally and globally. We therefore speculate that we can manipulate global phase
dynamics and look at functional consequences. This idea will lead to a new system
neuroscience method for real-time control of neural dynamics for showing causal
links between neural dynamics and brain functions.

In our preliminary experiments, we also used double-shot TMS and found fre-
quency specific entrainment of ongoing oscillations. More specifically, we observed
stronger phase reset at 6 Hz when giving double-shot TMS at 6 Hz than 10 Hz. The
results suggest that repetitive TMS might be better in perturbing frequency specific
synchronization networks.

In conclusion, TMS-EEG is an excellent manipulative tool for investigating
(1) state-dependency in frequency-specific network connectivity by analyzing how
TMS-evoked phase reset of ongoing activity propagates from one cortical area to the
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rest of the brain in humans and (2) causal links between the neural dynamics such
as the phase of ongoing activity and brain functions. By using this manipulative
approach we can causally confirm dynamical and computational models.
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Long-Tailed Statistics of Corticocortical EPSPs:
Origin and Computational Role of Noise
in Cortical Circuits

Jun-nosuke Teramae, Yasuhiro Tsubo, and Tomoki Fukai

Abstract Neurons in the brain exhibit highly irregular asynchronous firing even
without sensory stimulation. Here, we study the recently proposed hypothesis
that a highly non-homogeneous distribution, typically lognormal distribution, of
cortico-cortical EPSP (excitatory postsynaptic potential) accounts for the low-rate
spontaneous irregular activity observed in vivo. When amplitude distribution of
EPSPs among excitatory neuron pairs obeys the lognormal distribution, networks of
leaky integrate-and-fire model neurons robustly show ongoing firing state with low
firing rate. Moreover, consistent with cortical neurobiology, the obtained activity
had high irregularity, low synchronicity, and dynamically balanced excitation-
inhibition population activity. We derive effective evolution equations for excitatory
and inhibitory population activities from a recurrent network of the leaky integrate-
and-fire neurons coupled with highly non-homogeneous connections. Based on the
evolution equation, we perfume stability analysis of nontrivial solutions of the
equation and reveal underling mechanisms and computational functions of the noise
in cortical circuits.
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1 Introduction

Even in the absence of sensory stimulation, cortical neurons exhibit highly irregular
asynchronous firings in low spiking rate [1]. The spontaneous cortical activity,
or noise in cortical circuits, is influential to our perception and also modifiable
by sensory experiences [2—6], and have been discussed in relation with cortical
activities during sleep [7]. However, the underlying mechanisms and computational
roles of the intrinsic cortical noise have remained unclear until very recently.
Recent electrophysiological recordings revealed that some corticocortical excitatory
postsynaptic potentials (EPSPs) can be as large as several millivolts, while the
majority is weak (<1 mv) [8, 9]. The highly non-homogeneous EPSP distribution is
well described by long-tailed distributions, typically by the lognormal distribution.

Asynchronous irregular (Al) firing of cortical neurons has been studied in
various model studies. Sparsely connected networks of binary neurons receiving
external noise can generate ongoing states similar to the Al state [10]. Under the
assumption that excitatory and inhibitory inputs to neurons is averagely balanced,
inputs mediated by relatively strong synapses enable the model to generate large
temporal fluctuations crucial for irregular firing. The network states realized with
excitatory-inhibitory balance and external input have been extensively studied in
sparsely connected networks of spiking neurons [11]. Such networks can generate
Al states even without external noise [12, 13]. However, the generation of very low-
rate asynchronous firing (<10 Hz) was difficult in the previous models [14]. The
typical frequency of spontaneous cortical activity is as low as 1 ~ 3 Hz in pyramidal
neurons [1].

Previous models with weak and modest EPSPs require either highly synchro-
nized input or asynchronous input at relatively high rates to evoke postsynaptic
spikes. Therefore, these models are considered to show relatively high spontaneous
firing rate to maintain spontaneously ongoing firing. However, if some EPSP is
extremely large, as observed in in vitro experiments, we may solve the above
difficulties of the previous models in generating low-rate spontaneous activity. Here,
we consider the recently proposed hypothesis based on this possibility that the low-
rate spontaneous irregular activity of neurons is due to the highly non-homogeneous
EPSP distribution [15].

We study a recurrent network of excitatory and inhibitory leaky integrate-and-
fire model neurons. While connections among neurons are randomly generated, we
assume that amplitude of EPSPs on each excitatory neuron distribute according
to a lognormal distribution which well reproduces experimental literatures. We
develop a theory to describe activities of the lognormally connected network.
This theory reveals that low-rate irregular firing emerges spontaneously in the
lognormally connected network even without external input or background noise.
Modeled activity is consistent with various experimentally known properties of
intrinsic cortical activity, including high irregularity [16], low synchrony [17, 18],
excitatory-inhibitory balance [19], for which several computational advantages are
known, depolarized membrane UP state, and existence of precisely firing structures.
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Moreover, depolarize membrane potential about 10 mV above the resting potential,
which sustained by many synaptic inputs on small synapses maximizes spike trans-
mission received at extremely strong synapses. This maximal spike transmission is
confirmed experimentally by dynamic-clamp recordings of cortical neurons.

2 Methods

We consider the network consists of conductance-based leaky integrate-and fire
model neurons,

dv

1
—=——Ww=V)—ge(v—=Ve)—g1(v—=V7),
dt Tm

where gg and gy are excitatory and inhibitory synaptic conductances which evolve as
dg 1
o =T8T D Gy Y 8t —tjx —dy)
K ; ©

with synaptic decay time constant Ts. t;x is the k-th spike time of the j-th neuron, d;;
is the synaptic delay from neuron j to neuron I, Gj; characterize coupling strength
of the connection. While we use random topology for the network structure, on
each excitatory neuron, we fixed synaptic coupling strength between excitatory
neuron pairs such that EPSPs measured at the resting membrane potential of the
postsynaptic neuron distribute according to the lognormal distribution,

_ ! _(ogx—p)*
P(x) = N exp [ 752 :|

whose average is
TP
ex —0
PlUT 5

exp (2u + 0°) [exp (07) — 1].

and variance is

Since the lognormal distribution has a right long-tail, a few EPSPs on each
neuron can be extremely strong while majority of EPSPs are still sufficiently weak.
We use uniform values of G for other types of connections. The network we have
used consists of N = 10,000 and N = 2,000 inhibitory neurons with few mill second
synaptic delays.
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3 Results

In the lognormally connected network, we can divide the contribution of synaptic
inputs to the firing rate into two components. The first component arises from weak
and modestly strong synapses, which is estimated from the membrane potential
fluctuations. The second component comes from a few extremely strong synapses
which characterize long-tailed nature of the lognormal connectivity. Since output
spikes are highly irregular and asynchronous, we can safely assume that input spike
trains to each neuron are well described by independent identical Poisson processes.
Denoting the rates of the Poisson processes as rg and 1y for excitatory and inhibitory
presynaptic neurons, respectively, we can adopt the diffusion approximation for
dynamics of v, gg and g to obtain a set of Langevin equations. Because of
the nonlinearity of the Langevin equations, we need further approximation to
solve these equations. Here we employ the assumption in which we remove the
nonlinearity by replacing v—Vg and v—V; with Vy—Vg and V(—Vj in the equation.
Here

Vo=1 (E +(ge) Ve + (g1) VI)

Tm

and

m

o= (Lt +len)

are the effective equilibrium membrane potential and the effective membrane time
constant respectively.

With this approximation, we can obtain the stationary distribution function for
normalized membrane potential u as

1 u? 2
P(u,z) = ———=exp| — —
27 \JOu0z; 200 20y
where z is du/dt. Since the probability current along the direction of u is given as zP,

the first component of output firing rate of neurons are given as

_2
2
e Ouu UZZ

Fout,1 = s
2 Ouu

where 6 is the gap to the firing threshold from V.

The second component of output firing rate is given as the sum of products
of presynaptic firing rate at an extremely strong synapse and the probability of
postsynaptic firing in response to the evoked strong EPSP as
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rE 0 0 — EPSP
e X (o) e (ISR,
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where the erf(x) is an error function.

By utilizing self-consistency between input firing rates and output firing rates
in recurrent networks, we finally obtain the evolution equations for the excitatory
and inhibitory population of neurons. The obtained equation has a nontrivial fixed-
point solution might correspond to the irregular spontaneous activity. To study the
stability of the nontrivial solution, we apply the linear stability analysis around the
fixed point and we obtain a closed-form equation for the stability index A as,

(ATE’E +1 —aEEe_M“) (/\‘L'e’] +1 —a”e_ld”) = aIEe_ldlEaEIE_AdEl.

By solving the equation numerically, we can examine the stability of the
spontaneous activity.

The result of the analysis shows that the fixed point is unstable if the second
component of output firing rate which comes from the long tail of the lognormal
EPSP distribution. However, an introduction of the second component easily
stabilizes the fixed point. The fixed point is robust against modification of model
parameters. Moreover, We also find that even though the second component
significantly contributes to the sustaining spontaneous activity, the second term
only is not sufficient to realize the sustained activity. Actually, removing the first
component reduces the equilibrium membrane potential of neurons and drastically
decreases firing probability of postsynaptic neuron to the strong EPSP. The fixed
point disappears due to the reduction.

To confirm above analytical results from a different viewpoint, we compared Al
states between the lognormally connected network and one in which the weights
of recurrent synapses are distributed as a Gaussian that has the same mean and
variance as the lognormal distribution. The resultant Gaussian-connected network
only has relatively weak synapses. We numerically simulated the two models to
obtain the regions of the parameter space spanned by inhibitory conductances in
which Al states are stable with sufficiently low firing rates. The lognormally-
connected network offers a wide region of the parameter space to Al states with
low frequencies (<10 Hz), low synchronicity and highly irregular spiking (the
average coefficient of variation ~ 1). In contrast, the stable region for low-frequency
firing is narrow and irregular firing turns less asynchronous in the Gaussian-
connected network. These results indicate that Al states are much more robust in
the lognormally-connected network than in the Gaussian-connected network against
changes in the network parameters.

To clarify the crucial role of strong synapses in generating low-frequency Al
states, we added a small number of the strongest synapses from the lognormal
EPSP distribution to each excitatory neuron in the Gaussian-connected network,
and calculated diagrams similar to those for the lognormally-connected network.
The diagrams obtained when the top five strongest synapses were added to each
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excitatory neuron, which are surprisingly similar to those for original lognormal
network. We further conducted a similar analysis when only the strongest synapse
was added. Except that the region of parameter space for a stable asynchronous
firing was slightly narrowed, the results were essentially unchanged. Thus, although
we cannot rigorously separate ‘weak’ and ‘strong’ synapses for the lognormal EPSP
distribution, the coexistence of both weak and strong synapses is essential for the
generation of the Al state.

4 Discussions

The results of our analysis reveals that the long-tailed statistics of cortico-cortical
EPSPs are responsible for stable maintenance of the intrinsic noise in networks
of spiking neurons. The activity is maintained by coexistence of both input from
a few strong synapses and that from many weak synapses which lifts membrane
potential up to the high-conductance depolarized state. Due to the depolarized state,
inputs on strong synapses are transmitted into output spikes of the neurons with high
probability. Thus intrinsic noise in cortex is not just noise but significantly contribute
to achieve reliable information transmission via spike trains in cortical circuit.
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On a Theory of Precise Neural Control
in a Noisy System

Wenlian Lu, Shun-ichi Amari, Jianfeng Feng, and David Waxman

Abstract In this paper, we introduce a novel computational paradigm based on
modern control and optimization theory and biological observations. We investigate
the ‘minimum-variance principle’ of a controlled dynamical system with noise,
assuming that the noise inherent to the control signal is sub-Poisson. In this case, we
find that the optimal solution of the stochastic controller is not an explicit function
but is composed of a parameterized measure. Moreover, in contrast to the supra-
Poisson or Poisson noise, this sort of parameterized measure can achieve precise
control performance even in the presence of noise.

1 Introduction

The purpose of this paper is to introduce a mathematical framework to realize
precise neural control in a noisy system. The initial motivation of the paper comes
from several biological observations. Noise is believed to be inevitable since it
is an intrinsic component of the signal and furthermore its magnitude could also
strongly depend on the signal magnitude [1]. However, as reported in [2], the
movement error is believed mainly due to inaccuracies of the neural-sensor system,
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and not associated with the neural-motor system, which implies that the neural-
motor system may be precisely controlled, even with randomness. A key feature
of the neural signal is that it is locally distributed and likely to have only three
states, namely inactive, excited, and inhibited. To make progress in understanding
how precise movement control can be achieved in a noisy environment, we shall
investigate theoretical relationships which may connect the observed activity of
neurons with precise control performance.

In a mathematical form, the neural control problem can be expressed as
minimizing the execution error caused by the noise inherent in the control signals
[3]. One characteristic of the noise is the dispersion index, o, which relates the
variance in the control signal to the mean control signal and hence describes the
statistical regularity of the control signal. When the variance in the control signal
is proportional to the 2a-th power of the mean control signal the dispersion index
of the control noise is said to be «. It was shown in [1, 3] that an optimal solution
of analytic form can be found when the stochastic control signal is supra-Poisson,
i.e., when @ > 0.5. However, the resulting control is not precise and a non-zero
execution error arises.

In the present work, thanks to an elegant theory developed by Young (Young
measure) [4,5], we introduce some of mathematical principles linking the regularity
of the control signal noise and the precision of the resulting control performance.
We consider two examples of neural control: saccadic eye movement control and
straight-trajectory arm movement control, where neural spikes act as control signals,
which are formulated as Gaussian processes with signal dependent variances. Our
results show that if the control signal is less random than a Poisson process (i.e.,
a < 0.5) then the control optimization problem naturally involves solutions with
a specific character (parameterized measure optimal solutions), which can achieve
precise control.

2 Methods/Models

The purpose of our control task is to minimize the variance of the final ‘value’ of a
dynamical system under a constraint on its average activity. That is,

minyy fi % varfx (1)]dt,

subject to : & = a(x(t),t) + b(x(t). Hu(t)
x(0) =xo; E[x(t)] =2z t €[T,T + R];
Ai(t) € [-My.My), t € [0.T + R].

D

Here, var(-) and E(-) represent variance and expectation respectively, x(¢) is a
state vector while u(t) = [u;(¢),--- ,un(¢)]" is a controller vector, a(x, t) denotes
the uncontrolled dynamical system and b(x,?) is the gain matrix with respect
to u. Let u;(t) = A;(t) + ¢ (¢), where A;(¢) denotes the mean control signal
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and each ¢;(¢) is an independent white noise with the properties £(¢;(¢)) = 0 and
E(i(t)e;(t") = 0i(t)o;(t')é(t —t')8;;, while 6(-) is a Dirac delta function and §;;
a Kronecker delta. The noise fluctuation o; (¢) explicitly depend on the magnitude
of the signal: 0; = k;|A;(¢)|%, with k; > 0, and « is the dispersion index of the
control process. The aim of control is to let x(¢) reach a target z at time ¢t = T and
stay there for the period [T, T + R].

Due to limited space, we cannot provide any details in the present paper, but
give a summary of the main ideas. The mathematical contents can be found in our
other papers. The abstract Hamiltonian minimum (maximum) principle (AHMP) [6]
provides a necessary condition for the optimal solution, which is composed of the
points that minimize the integrand function of the Hamiltonian (IFH). This principle
indicates that the optimal solution should be a minimum of the given IFH for each 7.
If the control noise is supra-Poisson or Poisson, i.e., « > 0.5, then the IFH is convex
(or semi-convex), which implies that there is a unique minimum of the IFH for each
t. Hence the optimal solution is an explicit function, in the sense that for each #, A(¢)
is the unique value that minimizes the IFH. If, however, the control signal is sub-
Poisson, i.e., @ < 0.5, then no explicit function A(¢) exists as the optimal solution,
since the IFH is not convex. However, an optimal solution that is not an explicit
function but a parameterized measure, {n,(-)}, exits. It is called “Young measure’
following [4, 5] and yields a set of values on which a measure (i.e., a weighting)
n;(+) is defined for each 7. And, the optimal solution of Young measure has the form

Ne() = N1 () X -+ Mg (+), with
Nii(ds) = [pi(t)8(s — My) 4+ v; (t)8(s + My)
+(1 = i (t) —v; ())8(s)]ds (2)

with p;(¢) and v;(¢) non-negative and w;(¢) + v;(¢) < 1, u;(®)v;(t) = 0. In
addition, we can derive that

T
min \/ / varlp (v )t = O(1/ (M), 3)
n 0

as My — oo. This implies the execution error approaches zero as My goes to
infinity if @ < 0.5. This is in clear contrast to the situation where the control signals
are Poisson or more random than Poisson (i.e., « > 0.5) where the optimal control
signal is an ordinary function, not a parameterized measure, and the variance in
control performance cannot approach zero.

3 Results

We consider two examples of neural controls, where the control signal is described
as a Gaussian process: A(t) + o(t)d W;/dt, with the noise depending on the
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frequency A(¢), that is o(t) = k|A(?)|* for some @« > 0, « > 0. Then, the
underlying dynamical system can be formulated as Itd diffusion.

First, we consider the model (4) of saccadic eyeball movements, which was
studied in [7].

1 T+ 1,
-——X

X=——

12 12

+ y[/\(t)+/c|)k(t)|°‘(t)dI/V,/dt:|, x(0) = 0, %(0) = 0.
(€]

Here x is the position of the eyeball, y, 7| » are positive parameters of the oculomotor
plant, and A(¢) + «|A(¢)|*d W;/dt describes the control signal accompanying with
signal-dependent noise [1]. The control object is to let x () reach a target D at time
t = T and stay there for a period [¢, T + R]. We revisit this problem via the idea of
Young measure. As shown in Fig. lA(a—c) with @ = 0.25 (< 0.5), one can see that
the control signal is localized (Fig. 1A(b)) and the performance of control is precise
(Fig. 1A(b)), in comparison to the case @ > 0.5 which cannot achieve a precise
performance (Fig. lA(c)).

Second, we consider a more complicated model of the arm movement related to
biological signal control. The sensorimotor transformations are often formalized in
terms of coordinate transformation. The nonlinearity arises from the geometry of
the joints. For simplicity, we neglect gravity and viscous forces, and formulate the
model as (5),

4 .. [6
N(6:,6,) 91:| + C (61,062,601, 6,) |:91:| = )/0|:Q1:|, 6,(0) = —%,92(0) = %

| 02 2 0>
012(0) =0
N _Il + m1r12 + mzll2 + I, + m2r22 + 2k cos by I, + m2r22 + k cos 6,
wi = ,
| I, + mary + k cos 6, I + mar3
. 0, 0, + 6, o
C =ksin6, i 0 , Qi = Ai(t) +kolAi @)|*d Wi /dt, (5)
1

where 0 , are the angles between upper arm and horizontal direction, forearm and
upper arm, respectively, A1 »(¢) are control signals to two directions accompanying
with signal-dependent noises, and all other symbols (1>, 112, r1» and ko) are
constant parameters. The relation between the position of hand (x(¢), y(¢)) and
the angles 6, is 0; = arctan(y(¢)/x(t)) — arctan(l, sin 6,/(l; + I, cos 6,)) and
6, = arccos[(x? 4+ y> —1} —13)/(21,1,)]. For the details of the model, please refer to
[8]. We are to control the final hand position to reach the given target H = [H,, H>].
We can use a numerical approach to calculate an approximate solution, as shown
in Fig. 1B(b). As it is shown in Fig. 1B(a), when o < 0.5, the optimal localized
solution has a precise control performance, in comparison to the case « > 0.5,
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Fig. 1 Optimal control and performance. The ODE is numerically solved by the Euler method
with a time step 0.01 ms. Panel A: Saccadic eye movement model with parameters 7; = 224 ms,
7, =13ms,y = le—2,k =058, T = 50ms, R = 50ms, D = 10 degree and My = 500.
(a) the dynamics of the position (in degree) under optimal control with @ = 0.25; the curves are
plotted with ten overlaps (blue lines) by randomly picked initial values, the red line represents the
mean over ten overlaps and the red circle is the pre-given position of the eye. (b) The localized
sampling distributions of the value My which is picked by the Young measure 7,(-) with ten
overlaps (indicated by different colors). (c) the dynamics of the position (in degree) under the
optimal control with &« = 1; the curves are plotted with ten overlaps (blue lines) by randomly
picked initial values and the red line represents the mean over ten overlaps. Panel B: Straight-
trajectory arm movement model with parameters m; = 2.28kg, m, = 1.31kg, [; = 0.305m,
I, =0.254m, I, = 0.022 kg-mz, I, = 0.0077 kg-mz, r1 = 0.133m,r, = 0.109m, T = 650 ms,
R = 10ms, ¢ = 37/4 and My =20,000. (a) the movement of the arm in a platform under the
optimal control with @ = 0.25. The red dash circle represents error region over ten overlaps and
the gray line is the theoretical trajectory. (b) the local distribution of the optimal Young measure,
where x and y axes represent the 7, , respectively, and the red points represent that 7, , are picked
values at My and otherwise in dark blue. (c) the movement of the arm in a platform under the
optimal control with « = 1 and the red dash circle represents error region over ten overlaps

which possess a deterministic solution but an unprecise performance as shown in
Fig. 1B(c). The movement error also depends strongly on o and My. The error
decreases as My increases and the logarithm of the standard deviation is linearly
dependent on the logarithm of My with a slope very near «. This relation can be
described as Eq. (3) but is not shown in this paper.
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Real-Time Wireless Sonification of Brain Signals

Mohamed Elgendi, Brice Rebsamen, Andrzej Cichocki, Francois Vialatte,
and Justin Dauwels

Abstract In this paper, an alternative representation of EEG is investigated, in
particular, translation of EEG into sound; patterns in the EEG then correspond to
sequences of notes. The aim is to provide an alternative tool for analysing and
exploring brain signals, e.g., for diagnosis of neurological diseases. Specifically,
a system is proposed that transforms EEG signals, recorded by a wireless headset,
into sounds in real-time. In order to assess the resulting representation of EEG as
sounds, the proposed sonification system is applied to EEG signals of Alzheimer’s
(AD) patients and healthy age-matched control subjects (recorded by a high-quality
wired EEG system). Fifteen volunteers were asked to classify the sounds generated
from the EEG of 5 AD patients and five healthy subjects; the volunteers labeled most
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sounds correctly, in particular, an overall sensitivity and specificity of 93.3% and
97.3% respectively was obtained, suggesting that the sound sequences generated
by the sonification system contain relevant information about EEG signals and
underlying brain activity.

1 Introduction

One of the interesting multidisciplinary applications of EEG is sonification, i.e.,
converting the brain waves into music.

As far as we know, sonification was for the first time attempted in 1965 by
Alvin Lucier (composer) and Edmond Dewan (physicist); in their composition,
called Music for Solo Performer [3], human brain waves control percussion
instruments. Although several researchers and musicians tried to generate sound
from EEG signals, there are still many open questions and challenges, and plenty of
opportunities. For example, the recent advent of convenient wireless EEG headsets
[4-8] may further stimulate and advance the area of EEG sonification.

In this study we design and implement a system that in real-time translates EEG
signals, recorded from a wireless EEG headset, into sounds. We assess the sound
representations in an offline fashion, by applying our sonification system to EEG
collected from Alzheimer’s disease (AD) patients and from healthy subjects. The
sounds generated from AD EEG should be distinct from sounds extracted from
the EEG of healthy subjects. We investigate whether our EEG sonification system
improves diagnosis of AD, following an approach proposed earlier by Vialatte
et al. [9].

The paper is structured as follows. In the next section we explain our methodol-
ogy. In Sect. 3 we evaluate our system offfine by means of an EEG dataset of AD
patients and control subjects. In Sect. 4 we discuss our results and offer concluding
remarks.

2 Methods

The proposed sonification system has two operating modes: offline and real-
time sonification. In the offline mode, the system extracts sounds from EEG
signals that have been recorded earlier. In Sect. 3, we will apply our system to
an EEG dataset from Alzheimer’s patients and control subjects, recorded by a
wired high-performance EEG system. In real-time mode, EEG signals are acquired
and immediately transformed into sounds. In the following, we will elaborate
on the EEG signal acquisition. Next we will explain how we extract sounds
from EEG.
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2.1 Data Acquisition

The real-time EEG signals have been collected using a wireless EEG headset,
specifically the Emotiv EPOC wireless headset [4] with a sampling frequency
128 Hz. The headset has 14 data collecting electrodes and two reference electrodes.
The electrodes are placed approximately at the 10-20 locations AF3/4, F3/4, FC5/6,
F7/8,T7/8,P7/8, and O1/2. We used the software package BCI2000 [10] to interface
with the Emotiv EPOC wireless headset. The headset transmits encrypted data
wirelessly to a laptop computer.

The Emotiv headset is mostly intended for entertainment (e.g., video games)
rather than research or medical applications [4]. However, it is inexpensive and user-
friendly, and with suitable signal processing, it may become suitable for research
and clinical purposes. In particular, the device seems to be prone to various artefacts
(such as eye blinking, ECG, EMG, body movements, power sources, etc.). In our
ongoing work, we are developing real-time algorithms for removing artefacts, which
is a crucial step towards reliable real-time EEG sonification.

2.2 Sonification

The system computes the relative power in three non-overlapping frequency bands
(4-10, 10-20, and 20-30 Hz) and generates notes from the computed values. The
EEG spectrum is known to depend on the mental state (e.g., relaxation, sleep);
moreover, abnormal EEG spectra seem to be associated with neurological disorders,
e.g., Alzheimer’s disease (AD) [11, 12]. We characterize the EEG spectrum by
computing relative power in three different EEG frequency bands. Relative power is
a simple measure that can readily be computed in real-time. In future work, we will
experiment with other spectral measures as well.

We now provide more details on the sonification algorithm. The power spectrum
P is calculated for each EEG channel; next relative power features f, f>, and f; are
calculated:

_ P(@—10H) _ P(I0-20H) = P(20 — 30Hz)
T P(4—30Hz) 7> P(4—30Hz) T P(4—30Hz)

S

Those features are averaged across all channels. The averaged features are then
mapped to music notes. To keep the generated sounds as simple and transparent
as possible, we considered only notes from one octave (MIDI Octave -1) with
pentatonic scale (five notes per octave); we limited ourselves to only one instrument
(acoustic bass). Obviously, one could incorporate more music instruments and
multiple octaves. However, the extracted sound easily becomes cacophonic and
difficult to parse. In the future, we will explore alternative schemes to generate music
from EEG relative power. We consider the following three notes and corresponding
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MIDI note number: (C,48), (E,52), and (A,57). Those three notes will be played
according to the three values of relative power (f;, f>, f3): If feature f; is above a
certain threshold TH;, note i is played. More precisely, the notes are generated as
follows:

IF fi > T H; THEN play bass note 48
IF f, > T H, THEN play bass note 52
IF f3 > T H3.THEN play bass note 57.

The EEG is divided in consecutive segments of 1 s. In each segment the features
(1,12, f3) are computed, and notes are generated according to the above rule. Note
that at most three notes can be generated for each EEG segment; that occurs when all
three features are above threshold. Typically, however, one or two notes are played
during each segment, which leads to simple sequences of notes. In future work,
we hope to extract more melodic and harmonic compositions, perhaps by mapping
features to multiple notes, music samples, natural sounds, etc.

We implemented our sonification system in Python (specifically, pyPortMidi [13]
and Numpy [14]). The generated MIDI sequences are synthesized by SyFonOne
[15] in conjunction with MIDI-YOKE [16]. The sound sequences are saved into
MP3 files for further offline analysis.

3 Evaluation

Our sonification system translates EEG signals into sounds. It is important to verify
whether the sounds are representative of EEG. To this end, we conducted a test:
We asked several volunteers to use our EEG sonification system for diagnosing
Alzheimer’s disease. The procedure is as follows. By means of our sonification
system, we extract sounds from EEG signals of Alzheimer’s patients (AD) and age-
matched control subjects. We ask the volunteers to label the generated sounds (AD
vs. healthy). If the sounds reliably represent the EEG signals, it should be possible
to distinguish sounds generated from AD EEG from sounds extracted from healthy
EEG. Interestingly, the volunteers were indeed able to reliably classify the sounds.
In the following, we describe our EEG data set; next we discuss the test procedure,
and present our results.

3.1 EEG Dataset

We consider EEG data of mild-AD patients and age-matched control subjects. The
EEG data set has been analyzed in previous studies [17-19]; the data was obtained
using a strict protocol from Derriford Hospital, Plymouth, U.K., and had been
collected using normal hospital practices [18]. This EEG dataset is composed of
24 healthy Ctrl subjects (age: 69.4 £ 11.5 years old; ten males) and 17 patients
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with mild AD (age: 77.6 &= 10.0 years old; nine males). The EEG time series were
recorded using 21 electrodes positioned according to Maudsley system, similar to
the 10-20 international system, at a sampling frequency of 128 Hz. EEGs were
band-pass filtered with digital third-order Butterworth filter (forward and reverse
filtering) between 0.5 and 30 Hz. For each patient, an EEG expert selected by visual
inspection one segment of 1920s artifact free EEG, blinded from the results of
the present study. From each subject, one artifact-free EEG segment of 1920s was
extracted and analysed.

3.2 Classification Procedure

A critical issue in our sonification system is the choice of thresholds 7H;. Depending
on the application, we can determine the thresholds through various statistical
principles. In the application at hand, we determine the thresholds 7H; with the
aim of detecting AD EEG. We noticed that relative EEG power has substantially
different values in AD patients than in healthy subjects. By appropriately choosing
the thresholds, the generated sounds will differ as well. Following this reasoning,
we have determined the thresholds as follows:

_ aCf) —oa(fi) + (e (f1) +ou(f1)

TH, >

TH, = (ku(f2) —ou(f2) + (ra(f2) + 0a(f2)
2= 3 .

TH+ — (u(f3) —ou(f3) + (ka(fz) +04(f3)
3= 3 .

where 14 and o4 is the mean and standard deviation respectively of the features
for AD EEG, and likewise ;g and oy for healthy (control) EEG. Those choices of
thresholds can be understood as follows. For example, relative power in the 4—-10 Hz
band is clearly larger in AD patients. Therefore, we choose the corresponding
threshold TH; below the mean value (of relative power in the 4-10 Hz band) for
AD EEG and above the mean value for control EEG. As a result, for AD EEG
the threshold TH; will be reached more often, which will lead to more frequent
low-pitch notes (bass note 48). Similarly, AD EEG will yield fewer high-pitch
notes (E,52) and (A,57). Now we explain our survey in more detail. We asked 15
volunteers to listen to the generated sounds, and to guess whether they stem from
AD patients or healthy subjects. Particularly, we asked each volunteer to classify
sound sequences from ten different subjects (one sequence from each subject). Each
volunteer was asked to score the sound sequences from 0 to 10 (0: certainly healthy,
5: unsure, and 10: certainly Alzheimer’s). We did not provide any further details
about the sound files.
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Prior to this test, each volunteer was trained with sound sequences from four
subjects (2 AD patients and two healthy subjects), so that they can learn to
appreciate how the sounds generally different in both subjects groups; we also
briefly explained how the sounds were generated, and emphasized that, in our
sonification scheme, AD EEG tends to generate more low-pitch notes.

4 Results

Overall, the volunteers were able to reliably label the sound sequences; they
correctly classified 95% of the subjects, with sensitivity of 93.3% and specificity
of 97.3%. Note that we tested just ten subjects out of 41, and classification on the
entire database might be worse. Nevertheless, this experiment demonstrates that the
proposed sonification system translates EEG into meaningful sounds, which can for
example be used for detecting EEG abnormalities (as in, e.g., AD EEG).

As a benchmark, we conducted linear discriminant analysis (LDA) with the
same features (f;, f>, f3) for the same ten subjects; we average those features
over the entire EEG segment of 1920s. In other words, we do not consider here
individual EEG segments of 1 s. We compute classification rates through leave-
one-out crossvalidation. It is noteworthy that through this approach, at most 90%
of the subjects are correctly classified. In contrast, our sonification system yielded
classification rates of 95%.

5 Discussion and Conclusion

In this study we have developed a system that translates EEG signals (acquired by a
wireless headset) to sounds in real-time. The proposed sonification system has been
validated offline by means of a small EEG data set, collected with high quality wired
EEG headset.

Interestingly, the results show that the presented sonification algorithm can be
used to differentiate offline, by listening to their sonified EEG, the subject with the
mild Alzheimer’s disease from control subjects with 95% accuracy (see samples on
internet [20]), and therefore, it seems the real-time system can be used as a reliable
AD diagnostic tool.

Acknowledgments Mohamed Elgendi and Justin Dauwels would like to thank the Institute for
Media Innovation (IMI) at Nanyang Technological University (NTU) for partially supporting this
project (Grant M58B40020).



Real-Time Wireless Sonification of Brain Signals 181

References

1.

2.

O 03N N~

10.

11.

12.

13.
14.
15.
16.
17.

18.

19.

20.

Berger, H.: Uber Das Elektrenkephalogramm Des Menschen. Archiv fiir Psychiatrie und
Nervenkrankheiten 87 (1929) 527-570

Berger, H.: On the Electroencephalogram of Man. Electroencephalography and Clinical
Neurophysiology (1969) 28:133

. Lucier, A.: Statement on: music for solo performer. Biofeedback and the Arts: Results of Early

Experiments (Vancouver, Canada: Aesthetic Research Centre of Canada) (1967)

. EmotivSystems. Emotiv - brain computer interface technology. http://emotiv.com.

. Imec: http://www2.imec.be/be_en/press/imec-news/imecEEGMDM West.html.

. NeuroFocus: http://www.neurofocus.com/.

. MKS: http://www.mks.ru/eng/Products/EEG/Neurobelt/.

. Biopac: http://www.biopac.com/researchApplications.asp?Aid=23& AF=437&Level=3.

. Vialatte, F., Musha, T., Cichocki, A.: Sparse Bump Sonification: a New Tool for Multichannel

EEG Diagnosis of Brain Disorders. Artificial Intelligence in Medicine (2010)

BCI2000 - General-Purpose System for Brain Computer Interface http://www.bci2000.o0rg/
BCI2000/Home.html.

Dauwels, J., Srinivasan, K., Reddy, R., Musha, T., Vialatte, F., Latchoumane, C., Jeong, J.,
Cichocki, A.: Slowing and loss of complexity in Alzheimer’s EEG: Two sides of the same
coin? International Journal of Alzheimer’s Disease((in press)) (2011)

Vialatte, F., Cichocki, A., Dreyfus, G., Musha, T., Rutkowski, T.M., Gervais, R.: Blind Source
Separation and Sparse Bump Modelling of Time Frequency Representation of Eeg Signals:
New Tools for Early Detection of Alzheimer’s Disease. Paper presented at the IEEE Workshop
on Machine Learning for Signal Processing, 28-28 Sept. 2005
http://alumni.media.mit.edu/~harrison/code.html.

http://new.scipy.org/download.html.

http://www.synthfont.com/.

http://www.midiox.com/.

Goh, C., Ifeachor, E., Henderson, G., Latchoumane, C., Jeong, J., Bigan, C., Besleaga, M.,
Hudson, N., Capotosto, P., Wimalaratna, S.: Characterisation of EEG at different stages of
Alzheimer’s disease (AD). Clinical Neurophysiology 117 (2006) 138-139

Henderson, G., Ifeachor, E., Hudson, N., Goh, C., Outram, N., Wimalaratna, S., Del Percio, C.,
Vecchio, F.: Development and assessment of methods for detecting dementia using the human
electroencephalogram. IEEE Transaction on Biomedical Engineering 53 (2006) 15571568
Dauwels, J., Vialatte, F., Latchoumane, C., Jeong, J., Cichocki, A.: EEG synchrony analysis
for early diagnosis of alzheimer’s disease: A study with several synchrony measures and EEG
data sets. Paper presented at the 31st Annual International Conference of the IEEE EMBS,
Minneapolis, Minnesota, USA,

http://sonification.webs.com/audio.htm.


http://emotiv.com
http://www2.imec.be/be_en/press/imec-news/imecEEGMDMWest.html
http://www.neurofocus.com/
http://www.mks.ru/eng/Products/EEG/Neurobelt/
http://www.biopac.com/researchApplications.asp?Aid=23&AF=437&Level=3
http://www.bci2000.org/BCI2000/Home.html
http://www.bci2000.org/BCI2000/Home.html
http://alumni.media.mit.edu/~harrison/code.html
http://new.scipy.org/download.html
http://www.synthfont.com/
http://www.midiox.com/
http://sonification.webs.com/audio.htm

Part IV
Spatiotemporal Network Dynamics
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Oscillator Cell Networks in the Hypothalamic
Suprachiasmatic Nucleus, the Mammalian
Circadian Clock

Sato Honma, Daisuke Ono, and Ken-ichi Honma

Abstract The master circadian clock of the mammals locates in the hypothalamic
suprachiasmatic nucleus (SCN) which is composed of multiple oscillator cells.
Cellular oscillators mutually synchronize to form several regional pacemakers
which further couple to make-up the master circadian clock for coherent rhythm
expression in physiology and behavior. In the present experiment, bioluminescent
imaging of cultured SCN from mice carrying a Per!/ promoter-driven luciferase
reporter revealed two separate pacemakers which locate in the anterior and posterior
SCN, and regulate the onset and offset of behavioral activity, respectively. Thus the
activity time is photoperiodically regulated depending on seasons. The neuronal
and molecular mechanisms for forming the regional pacemakers are still poorly
understood, however, Perl and Per2 are suggested to have different roles in the
photoperiodic clock. Furthermore, CRY 1 and CRY2 seem to be involved in coupling
between these oscillators.

1 Introduction

Mammalian circadian clock is located in the hypothalamic suprachiasmatic nucleus
(SCN) which is composed of about 20,000 neurons in mice and rats. In the dispersed
cell culture, about 70-80% SCN neurons with spontaneous firing show significant
circadian rhythms in their firing rate, suggesting that most of SCN neurons possess
an autonomous circadian oscillator. In addition, circadian periods of dispersed SCN
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neurons followed Gaussian distribution in a relatively wide range from 20 to 30 h
[1]. Therefore, synchronization among cellular oscillators is critical for circadian
rhythm expression in physiological functions. In the organotypic slice culture of the
SCN, the distribution of the circadian period in single neuronal rhythms became
much narrower, between 22 and 26 h, but the average circadian periods were similar
to that of dispersed cell culture. The result suggests that mutual coupling of single
cell oscillators depends on cell architecture within the SCN. Circadian rhythms
were also observed in the release of neuropeptides from cultured SCN slices. We
previously reported synchronized circadian rhythms in the release of vasopressin
(AVP) and Vasoactive intestinal polypeptide (VIP) [2]. However, two rhythms were
desynchronized to each other by antimitotic treatment in the beginning of the
culture, suggesting oscillatory cell networks form at least two regional pacemakers
in the SCN.

Currently, an autoregulatory transcriptional and translational feedback loop is
regarded as the intracellular molecular clock machinery. In the loop, heterodimeric
transcription factors, CLOCK and BMALI, activate transcription of Period (Per)
1, Per2, Cryptochrome (Cry) I and Cry2. The protein products PERs and CRYs
translocate into the nucleus and bind CLOCK/BMALI heterodimers to suppress
their own transcription, thus closing the feedback loop. A single turn of the feedback
loop takes about 24 h. Perl and Per2 are induced by phase-resetting light signals
but with different kinetics. CRY1 and CRY2 are regarded as indispensable for
the loop to turn and Cryl and Cry2 double deficient (Cryl™~/Cry2™~) mice are
regarded as “clock-less” mutants, because they become behaviorally arrhythmic
immediately after they were exposed to constant darkness (DD). On the other
hand, we previously reported that Cryl™~/Cry2™~ mice exhibit behavior rhythms
with circadian periodicity by chronic treatment with methamphetamine, a potent
dopamine releaser in the central nervous system [3]. The finding suggested that
Cryl™~/Cry2™~ mice are not arrhythymic mutant but have an oscillatory system
which can exhibit rhythms with circadian periodicity.

Recently firefly luciferase reporter genes are utilized for monitoring gene
expression in living cells in real-time. In the present experiment, by using transgenic
mice carrying a Perl promoter driven—luciferase gene, we examined (1) location
and functions of regional pacemakers which measure photoperiods and interface
seasonal changes in the environments to bodily functions, and (2) coupling mecha-
nisms within and between these regional oscillators in the SCN.

2 Methods

Animals: We used adult and newborn mice of C57BL/6J background carry-
ing a Perl promoter driven luciferase reporter gene (Perl-luc). We also used
Cryl™~/Cry2™~ mice carrying a Perl reporter gene (Cryl™~/Cry2~~). They
were housed in controlled environmental conditions, 12 h light-12 h dark condition
(LD 12:12), lights-on 6:00-18:00, unless otherwise stated. All experiments were
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conducted in accordance with the Guidelines for the Care and Use of Laboratory
Animals in Hokkaido University.

Behavioral activity recording: Adult male mice were singly housed in a light-
tight box. Spontaneous locomotor activity was measured every minute by a infrared
thermal sensor in Experiment 1, and wheel-running activity rhythm was measured
in Experiment 2.

SCN culture: For measuring Perl-luc rhythms, we made coronal SCN slices from
adult mice kept in LD and measured bioluminescence either from the entire SCN
slice using a photomultiplier or from single SCN cells by bioluminescence imaging
with an EMCCD camera as described elsewhere [4].

For measuring neuronal activity, we made a coronal SCN slice of 200 pm
thick from 2 to 5 day old pups and plated on a collagen precoated multi electrode
array dish (MED) with 64 electrodes in the area of 0.56 mm?. They were cultured
as described elsewhere with minor modification [5]. Spontaneous discharges of
signal/noise >2.0 were simultaneously recorded from 10 to 19 electrodes.

Rhythm analysis: Significant circadian rhythmicity was evaluated by a chi-square
periodogram using data of 5 consecutive days between 10.0 and 40.0 h with a
significance level of 0.01.

Experimental protocols: In Experiment 1, we exposed adult male mice to one
of following three different photoperiods for more than 3 weeks, LD 6:18, LD
12:12, and LD 18:6. After measuring behavior rhythms, brains were sampled for
culturing two serial coronal SCN slices, anterior and posterior slices. We also made
horizontal slices to further identify the regional pacemakers. In Experiment 2, we
used Cryl™~/Cry2™~ and control mice carrying a Perl-luc reporter. Adult mice
kept in LD 12:12 were used for bioluminescence imaging, and 2-5 day old mice
were used for MED recording.

3 Results

Experiment 1: The peak phase of Per/-luc rhythms always appeared earlier in the
posterior SCN than in the respective anterior SCN. Irrespective of photoperiods,
posterior peaks were phase-locked to the end of activity, suggesting the site of the
pacemaker regulating the activity end, and the anterior peaks, to the activity onset,
suggesting the site of the pacemaker regulating the activity onset. Under LD18:6,
a bimodal Perl-luc pattern appeared only in the anterior SCN which gradually
merged together in 5 days of culture. Single cell analyses by bioluminescence
imaging revealed that the bimodal patters are composed of two oscillating cell
groups with the early and late peaks (Fig. 1). These findings indicate that there
are three oscillating cell groups in the SCN which constitute regionally specific
circadian pacemakers and regulate photoperiodic response of behavioral rhythm.
The Perl-luc thythms from horizontal slices further localized the site of three
pacemakers in the SCN. However, Perl-luc rhythms are not always in phase with
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Bioluminescence (counts/hour)

Time of day (hours)

Fig. 1 Perl-luc thythms in single cells of an anterior SCN from mice in LD18:6 revealed two
regional oscillating cell groups. Dark horizontal bars indicate the subjective night
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Fig. 2 Representative wheel-running activity records of a wild type mouse (WT) and
Cryl=™=/Cry2~~ mouse (KO). Number of wheel revolutions in every 5 min was plotted as a
histogram. Shaded areas indicate dark period. White and dark horizontal bars on the top indicate
light and dark period under LD

Per2 rhythms, suggesting the different phase adjustment in Per2 expression. In
addition, the location of regional pacemakers was not coincided with the distribution
of major neuropeptides, AVP and VIP, in the SCN.

Experiment 2: Behavioral rhythms of CRY deficient mice: Cryl™"/Cry2~/~
mice showed significant 24 h circadian rhythms under LD in their behavior activity,
and became arrhythmic immediately after they were exposed to constant darkness
(DD) (Fig. 2). However, the activity onset under LD was not always observed at the
dark onsetin Cryl~~/Cry2™~ as in the wild type mice. The mean activity onset was
located at 14.8 2.7 h (£ SD, n = 14) which was significantly advanced compared
with that of wild type (18.0 £ 0.1 h). Among 14 Cryl~~/Cry2™~ mice examined,
the activity onsets of ten mice were located 2—10 h before the dark onset. These
findings suggest that the circadian behavioral rhythm of Cryl™~/Cry2~~ mice in
LD is not due to simple masking by light but rather an expression of oscillatory
entrainment to LD.
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Fig. 3 A bright field image of SCN slice culture on an MED probe (a) and bioluminescence image
of A (b). Black squares are electrodes. OC optic chiasm, Vj; the third ventricle. Spontaneous
discharges from the SCN were shown with scale bars (50 nV, 0.5 s) (¢)

In a cultured SCN slice of wild type mice, all SCN cells examined showed
robust circadian bioluminescent rhythms. They were synchronized within a single
SCN slice as demonstrated by the robust circadian rhythms in a whole SCN slices.
The peak phases were located in the middle of the subjective day on the first day
of culture similar to those in situ. In the SCN slices from Cryl™~/Cry2™~ mice,
most single SCN cells showed significant but less robust circadian bioluminescent
rhythms. However, significant rhythms were not detected in a whole SCN, and the
rhythms in a single SCN slices were desynchronized. The peak phases of cellular
rhythms distributed in an extremely wide range even on the first day of culture,
which markedly contrasted with the consolidated circadian peaks at the subjective
noon in the control cells. These results indicate that individual SCN cells can exhibit
circadian PerI-luc rhythms without CRYs, but they are desynchronized in a cultured
SCN slice.

Robust and significant firing rhythms were also detected from all recorded elec-
trodes in the wild type mice (Fig. 3). Interestingly, spontaneous firing of individual
neurons exhibited robust and synchronized circadian rhythms in a cultured SCN
slice of Cryl™~/Cry2™~ mice.

4 Discussions

By monitoring Perl-luc thythms, we demonstrated three regional pacemakers in
the SCN. Two of them separately entrain to the light-on and light off signals and
regulate the offset and onset of behavioral rhythms, thus change the activity time,
the duration of active period in a day, depending of seasons. The long-lasting
model for seasonal adaptation of behavioral rhythms is the two mutually coupled
oscillators which separately respond to dawn (E-oscillator) and dusk (M-oscillator)
and regulate the activity onset and end, respectively [6]. The two oscillating cell
groups of synchronous Perl rhythms demonstrated the localization of the E and M
oscillators within the SCN. The role of the third oscillator is not known, but seems
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to relate dawn or dusk signals. The molecular mechanisms for the couplings within
and between these regional oscillators are not known. VIP released from the ventral
SCN and VIP receptors in the SCN are known to involve in oscillator networks in
the SCN [7]. But other mechanisms may be involved in the present results. Since
they are not photoperiodic, and VIP receptor deficient mice can exhibit behavioral
rhythms in DD. The present study also suggested CRY 1 and CRY?2 are involved in
the oscillatory network in the SCN. A lack of these proteins results in behavioral
arrhythmicity in the constant condition, yet Cryl™~/Cry2™~ mice still have some
mechanism for entraining light-dark cycles.

In the SCN, there are different levels of oscillatory networks; multiple molecular
networks within a single cells, networks among cellular oscillators within a regional
pacemaker and those among regional pacemakers. The hierarchical multi-oscillator
pacemaker system seems to be advantageous to adapt flexibly to a large variability
of environmental cycles without losing stable and precise oscillation. Since there
are different levels of networks in the SCN, disruption of oscillatory networks at
any level would result in arrhythmicity in rhythm outputs.
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Oscillator Network Modeling of Circadian
Rhythm in the Suprachiasmatic Nucleus

Isao Tokuda, Hirokazu Fukuda, and Naoto Hayasaka

Abstract Oscillator network model is presented for the simulation of phase waves
observed in a cultured slice of the suprachiasmatic nucleus (SCN). The coupling
matrix is obtained by partial synchronization analysis of the bioluminescence image
data, which represent gene expression signals. Numerical simulations show that
the coupling matrix itself is not sufficient for the network model to reproduce
the phase waves. Our study implies that additional condition such as gradient
distribution of the oscillation periods is necessary to reproduce the dynamics of
the measurement data.

1 Introduction

Biological clocks, the generators of the circadian rhythm with a natural period of
nearly 24 h, are ubiquitous in almost all living organisms. In mammals, the master
circadian clock is located in the suprachiasmatic nucleus (SCN) of the brain. In
the rat SCN, at least two subregions have been reported, i.e., the ventrolateral
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SCN (vISCN, core) and the dorsomedial SCN (dmSCN, shell). The SCN is a
network of approximately 20,000 neurons. Within each individual neuron, clock
genes and proteins compose interlocked regulatory loops that generate circadian
oscillations on molecular level [1]. SCN neurons dispersed in cell cultures display
cell-autonomous oscillation, with periods ranging from 20 to 28 h [2, 3]. Coupling
and synchronization among SCN neurons are ensured by neurotransmitters and
other factors. How such a network of heterogeneous circadian oscillators achieves a
synchronous and coherent output rhythm has motivated extensive experimental and
theoretical works [4—6]. Although anatomical studies provide a deep insight into
the SCN physiology [7, 8], yet they are not enough to identify the core mechanism
that maintains the synchronized neuronal rhythmicity in the SCN. Interestingly,
recent technology of bioluminescence imaging has revealed synchronization of the
SCN neurons and the robust temporal gradients in circadian clock gene expression
in cultured SCN slices, which persist for weeks [9]. This kind of coordinated
and recurring gradients, which we refer to as “phase wave,” potentially reflect
unique and critical characteristics of the central circadian clock. Little is however
known about the mechanism underlying the propagation of the phase wave and its
biological significance.

In nonlinear physics, wave propagation in spatio-temporal system is usually
induced by local diffusive coupling in the oscillatory media. This implies that the
propagation of the phase wave in SCN is primarily due to local coupling among
the neurons [10]. On the other side, it has been also speculated that there exists
a monotonic gradient in the spatial distribution of the oscillation periods of the
SCN neurons [11]. Such gradient may strongly contribute to the formation of the
phase wave even under the global coupling. Towards understanding the mechanism
underlying the phase wave, the present paper studies the effect of two factors,
i.e., coupling function among the neurons and gradient distribution of the neuronal
periods, on the formation of the phase wave observed in the SCN.

2 Experimental Data

Transgenic rats carrying a Per2::Luciferase reporter gene were generated [10].
Coronal brain slices including the SCN (300 wm thickness) were prepared from
2-week-old rat. Bioluminescence was measured with a luminescence microscope
optimized for live cell imaging. The recording duration was 7 days.

To characterize the spatiotemporal dynamics of the circadian oscillations in the
cultured SCN slices, phase of the bioluminescence oscillations in each pixel was
computed by the peak picking technique, which defines inter-peak-interval as one
cycle [12]. Moving images of the phase dynamics shows that the phase waves were
initiated from the innermost dmSCN and traveled regularly from the dmSCN to the
vISCN with a velocity of about 0.2 mm/h [10].
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3 Partial Phase Synchronization Analysis

In the SCN, neuronal oscillators are synchronized to achieve a coherent output
rhythm. From such global coherence, it is important to distinguish direct and indirect
dependencies among the neurons. To make such distinction, partial phase synchro-
nization analysis [13] was carried out. This methodology has been developed based
on the concept of graphical models and partialization analysis to phase signals of
nonlinear synchronizing systems.

Consider phases of N neurons {@(t)|k = 1,2,---, N}. First, synchronization
matrix is computed as

I R -+ Rin
Riy RIy -+ 1

using pairwise synchronization indices of Ry; = %Ztexpi [Dr ()P (2)]. Di(2)
represents phase of k-th neuron. The asterisk denotes complex conjugation. Then,
the inverse PR = R~' of the synchronization matrix R provides partial phase
synchronization index

| PRy ;|

Rijly = — kel
I PR < PRL

between k-th and /-th neurons conditioned on the remaining neurons {® (¢)|Z =
1,---, N; Z#k,1}. If the phase synchronization index Ry ; is considerably different
from zero, while the corresponding partial phase synchronization index is close to
zero (R j1z~0), there is a strong evidence for an indirect coupling between k-th
and /-th neurons.

From the bioluminescence image data, gene expression signals of 83 neuronal
points were picked up at different locations (N = 83). The partial phase
synchronization analysis was then applied. Since the oscillations of the SCN slice
show strong coherent activity, the synchronization indices Rj; were all high. In
contrast, partial phase synchronization index Ry ;|7 were variable. Figure 1 shows
the partial phase synchronization indeces Ry ;z between the neuron located by
white box and the neurons located by colored boxes. The red and purple colors
indicate strong coherence associated with direct interaction, whereas blue colors
indicate weak coherence with indirect interaction. We see that the neighboring
neurons tend to exhibit a strong partial coherence, whereas strong coherences exist
also in some of the long-range connections. Figure 2 shows dependence of the
partial synchronization index Ry ;7 on the distance di; between k-th and /-th
neuronal points. Although the distribution is rather noisy, the regression line of
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Fig. 1 Partial phase
synchronization indeces
Ry 11z between one neuron
(white box) and another
(colored box). The red and
purple colors indicate strong
partial coherence (Ry iz ~1)
associated with direct
interaction, whereas blue
colors indicate weak
coherence (Ry 1z ~0)
associated with indirect
interaction

Fig. 2 Dependence of the
partial phase synchronization
index Ry |z on the distance
dy; between k-th and /-th
neuronal points. The dotted
line represents a regression
line of Ry 1z =
—0.00022d; + 0.28
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Ry iz = —0.00022d;; + 0.28 indicates an abstract tendency that the partial
coherence is weakened as the interaction range becomes longer. The noisy structure
might be partially due to the estimation error cased by the limited duration of
measurement and inaccurate extraction of the phase.

4 Modeling Study

4.1 Mathematical Modeling

Mathematical modeling based on Stuart-Landau equations was utilized for studying
the synchronization-induced rhythmicity in the SCN.

N

. . K

7= (o; +i2; —|z;|)z; + NZTk,/’(Zk —zj).
k=1

where j = 1,.., N (N = 83), the overdot means differentiation with respect to
time 7, z; is the complex amplitude of the jth neuron, £2; is the natural frequency,
K represents the coupling strength among the neurons, and Hopf parameter «;
determines whether j-th neuron is self-sustained or dumped oscillator. In the
numerical simulations, the Hopf parameter was randomly chosen as o ; ~N (0, 0. 12).
As the coupling matrix, the partial phase synchronization indeces were utilized
(Tk.j = Ry j12)-

We test whether the coupling matrix T, obtained by the partial phase synchro-
nization analysis is sufficient to generate the phase waves or additional condition
is necessary. Two conditions were examined. (A) Natural periods (277/£2;) of the
neurons were randomly distributed as ~N (24, 1.5%), while natural period was set
to be 25h only for the rightmost neurons next to VISCN (in accordance with
experimental measurement [11]). (B) Natural periods (27r/§2;) were monotonically
increased from 23 to 25 h in the direction from the innermost dmSCN to VISCN.

4.2 Simulation Results

With a strong coupling K, mutual synchronization among all neurons was achieved
for both conditions. In condition (A) with random setting of the natural periods, the
phase wave was not observed. On the other hand, in condition (B) with gradient dis-
tribution of the natural periods, phase waves, which travel from the innermost dm-
SCN to VISCN, were clearly observed. Figure 3 shows the phase profiles observed in
conditions (A) and (B). Condition (A) exhibits random ordering of the phases. Con-
dition (B), on the other hand, gives rise to a monotonic decrease in the phase profile,
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Fig. 3 Phase profile of neurons located from innermost dmSCN to outer dmSCN. (a) and
(b) correspond to simulation conditions of (A) and (B), respectively, where (¢) corresponds to
real data from the bioluminescence imaging technique
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which is quite similar to the measurement data. This implies that the coupling matrix
itself is not sufficient to produce the phase wave and that gradient distribution of the
oscillation periods is necessary to reproduce the measurement data.

5 Discussions

In summary, our quantitative analysis and mathematical model simulation of the
phase wave propagation provided new insights into the network structure of the
SCN neurons. The partial phase synchronization analysis revealed that the neurons
are connected directly with neighboring neurons. Direct connections however exist
also among distant neurons. Simulations of the oscillator network showed that
the network structure itself could not well reproduce the phase wave. Additional
condition such as the gradient distribution of the neuronal periods was necessary for
the simulation of the phase waves. Our study needs further careful examination. In
particular, limitation of the partial synchronization analysis due to short duration of
the measurement data should be taken into account. It is of great interest to clarify
possible functional roles of the phase waves from biological perspective.
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In Vivo Monitoring of Circadian Output
in Clock Mutant Mice

Wataru Nakamura

Abstract It is well established that the suprachiasmatic nucleus (SCN) is the
master circadian pacemaker in behavior and vice versa locomotor activity rhythm
reflect SCN function as well. In this paper, we reported functional correlations
between the SCN and locomotor activity in circadian systems by using direct read
out of neuronal activity in the SCN and Clock mutant mice as effective tools.
Further behavioral analysis revealed a possibility of unknown circadian oscillatory
mechanism.

Keywords Circadian rhythm ¢ Suprachiasmatic nucleus * Locomotor activity e
Social interaction

1 Introduction

The master circadian clock in mammals is located in the suprachiasmatic nucleus
(SCN) of the anterior hypothalamus, drives the daily circadian rhythms of the
physiological and behavioral processes. The SCN functions as a self-sustained
oscillator and is synchronized to the environmental 24-h light-dark (LD) cycles.
Although circadian rhythm generation appears to be the property of individual SCN
neurons, SCN tissue organization seems to be responsible for synchronizing the
multiple oscillator neurons and producing an ensemble period that closely matches
the period of the locomotor rhythm [1, 2]. Significant progress has been made in
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manifesting the molecular mechanism underlying the mammalian circadian system.
The core molecular circuitry of opposing interlocking transcriptional feedback loops
has been defined as the fundamental basis of the circadian clock [3]; however, the
network complexity of the clock system is becoming apparent [4—6]. Consequently,
we are seeking how these cell-autonomous circadian oscillators interact in multi-
cellular organisms to regulate physiology and behavior.

The mouse Clock mutation was identified in an N-ethyl-Nnitrosourea muta-
genesis screen for circadian variants [7]. Clock is a semidominant mutation [8]
that lengthens circadian period by 1 h in heterozygotes (Clock/+) and by 4 h in
homozygotes (Clock/Clock). With prolonged exposure, Clock homozygotes fail to
express persistent circadian rhythms in constant darkness. The lengthened-period
and loss-of-rhythm phenotypes are the hallmarks of the original mutant allele.

The apparent complexity of the circadian control over the locomotor activity
rhythms, drive us to monitor neuronal activity of the SCN in freely moving mice [9].
In the present study, we have used this technique to describe the characteristics of
the SCN in vivo, the differences between the Clock mutant and wild-type combining
with the detailed behavioral analysis. The purpose of this study is to elucidate the
certain responses to environmental cues in behavioral circadian rhythms. Those
results provide a new framework for understanding the regulation of locomotor
rhythms in the circadian timing system.

2 Methods

Animals. Wild-type and Clock mutant mice were used in this study. Genotypes were
determined for each individual by using a PCR mutagenesis method before surgery.
The breeding colony was kept on a 12 h light: 12 h dark cycle (light on at 0800 h);
food and water available ad libitum; light intensity of 200 Ix at cage level.

Locomotor Activity recording. The mice were housed individually in standard cages
(182 %260 x 128 mm) placed in light-tight, ventilated boxes. Locomotor activity
was detected with a passive infrared sensor (Biotex, Kyoto, Japan) positioned 30 cm
above the center of the cage floor. Activity counts were monitored continuously by
computer which can control light-dark cycle for each recording boxes and summed
and stored at 1 min intervals. ClockLab (Actimetrics, IL) was used for analysis and
display of activity data.

In Vivo Multiunit Neural Activity Recording. In vivo multiunit neural activity record-
ing (MUA) from SCN was performed as previously described [9]. Simultaneously
with neural activity monitoring, the locomotor activity in individual mice also was
detected with a passive infrared sensor.

Social entrainment analysis. Pairs of female Clock/+ and wild-type mice, 2 months
old at the beginning of the experiment, were formed from animals previously kept in
litter mate groups. Those pairs of mice were housed in cages and locomotor activity
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was detected with a passive infrared sensor under constant darkness. After paired
recording, each mouse was transferred to individual cages and monitored locomotor
activity separately. Determination of the circadian period in individual records was
obtained by the method of the chi square periodogram.

3 Results and Discussions

Light entrainment of the Clock/Clock mouse. The entrainment behavior of
Clock/Clock mice to a light-dark cycle (LD) of 12 h: 12 h (LD12:12) appeared
relatively normal. To determine whether photic entrainment may have been altered
in Clock/Clock mice, we examined the phase relationship to the light cycle of
LD 4:20, 2:22 and 1:23 (Fig. 1). The difference between the two genotypes was
clearly seen when the durations of light period were shortened. Wild-type mice had
negative phase angle of activity onset to the light off in all of 24 h light cycles.
On the other hand, Clock/Clock mice showed positive phase angle under LD 4:20
and 2:22, consequently, the shortened light phases hit on those activity off. The LD
1:23 condition did not entrain Clock/Clock mice fully and we observed the “relative

Time in days

(=]
=]

LD 2:22

LD 12112
150 ~

Time of day in hours

Fig. 1 Light entrainment to 24 h LD cycle in the locomotor activity rhythms of wild-type (a) and
Clock/Clock (b) mice. Behavioral records are double-plotted. The gray and clear areas on the first
part of actograms indicate the LD conditions denoting at the middle. The actograms show clear
differences between the two genotypes in circadian property including free-run period and phase
response to the lights
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Fig. 2 Circadian rhythms of MUA in the Clock/Clock SCNs. Serial-plotted actograms of
neural and locomotor activity show a long-lasting circadian rhythm (a) and a damping rhythm
(b). Lighting condition is indicated at the top of the figure. Bottom trace represents simultaneous
recorded locomotor activity. The number of spikes for MUA or activity counts for locomotor
activity was counted every minute and integrated every 6 min

coordination” of lengthened circadian rhythms of the mutant mice. Under constant
darkness (DD), the mutant mouse showed free-run rhythm with a period of 27.0 h.
The wild-type mouse was entrained to LD 2:22 after several LD regimes with larger
phase angle than before (Fig. 1a) and the Clock/Clock failed to be entrained to the
24 h cycle (Fig. 1b). Those suggest the “after effects” of circadian rhythms [10] in
both genotypes.

Damping circadian rhythms of MUA in the Clock/Clock SCN. As previously
reported [9] Clock/Clock mice exhibited elevated MUA during the day in the
SCN under LD 12:12 (Fig. 2). After released in DD, one of homozygous mutants
exhibited a long lasting free-running rhythm both in locomotor and MUA in the
SCN (Fig. 2a). The peak in MUA occurred in the middle of the subjective day and
in antiphase with locomotor activity. Another Clock/Clock mouse showed damping
circadian locomotor rhythm for up to five cycles (Fig. 2b). When the mutant mouse
showed the damping rhythm, a small elevation of MUA in the SCN occurred
just before the onset of behavioral activity. That “anticipatory” elevation of MUA
disappeared when the mouse got arrhythmic in locomotor activity except for an
ultradian rhythm.

Functional input into the SCN. MUA in the SCN showed light response in circadian
phase dependent manner. During the subjective day, the baseline discharge was
relatively high and 1 h light pulse during this phase elicited only small responses
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Fig. 3 Light response and correlation with locomotor activity of MUA in the wild-type SCN.
Both MUA and locomotor activity were plotted in 1 min bins. MUA were normalized with the
mean counts of pre- 60 min of light pulse (a). Positive (b, top) and negative (b, bottom) correlation
were observed in different mice suggesting a regional heterogeneity within the SCN

(Fig. 3a bottom). During the subjective night, when baseline discharge was in its
lower phase, large light responses were obtained for CT15 (Fig. 3a top) and CT21
(Fig. 3a middle). The MUA responses corresponded behavioral phase shift, phase
delay of CT15, phase advance of CT21 and no phase shift of CT 6. Even though
subtle light response during subjective day, certain correlation between MUA in the
SCN and locomotor activity were observed (Fig. 3b). Because positive or negative
correlations were consistent throughout the MUA recording, those directions might
be dependent on the regional heterogeneity within the SCN. The functional effects
of the behavioral feedback on the SCN remain to be elucidated.

Social interaction as a zeitgeber? By using of approximately 1 h difference of
intrinsic circadian period between wild-type and Clock/4 mice, we examined the
effect of social interaction on circadian systems. The actograms from a pair of
females showed two components of circadian rhythmicity (Fig. 4a, b). Those two
components might attribute to each intrinsic circadian periods of the SCN in two
genotypes because individual females showed their own period after separation
(Fig. 4a, left for wild-type, right for Clock/+ mice). We observed that some mice
continued to show two circadian rhythmicities for several cycles after separation.
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Fig. 4 Implication of a “social entrainable circadian pacemaker”. Two representative actograms
of social interaction trials are shown (a, b). For the first 40 days, locomotor activity of paired wild-
type and Clock/+ mice were monitored in a same cage under DD. Then the pair was separated and
monitored in individual recording box. The first part of actograms were duplicated and followed to
individual recordings, respectively. The lefts are for wild-type and the rights are for Clock/+ mice
in either actograms (a, b)

One seems to be its own circadian period and the other was in accordance with the
period of another genotype (Fig. 4b, left for wild-type). Although, the substantial to
be determine, we propose that the second component might be controlled by social
entrainable oscillator; SEO. Seeking the “SEO” circuit within and/or out of the SCN
might be an intriguing challenge and we can extend our understandings of circadian
systems beyond the SCN.
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Modular Organization Enables Both
Self-Organized Criticality and Oscillations
in Neural Systems

Shengjun Wang, Claus C. Hilgetag, and Changsong Zhou

Abstract Neural networks in the brain display prominent hierarchical modular
organization and complicated rhythmical oscillations. We systematically study the
phenomenon of sustained activity in hierarchical modular networks, which are
obtained by rewiring initially random networks. We find that a hierarchical modular
architecture can generate sustained activity better than random networks. More
importantly, the system can simultaneously support rhythmical oscillations and self-
organized criticality, which are not present in the respective random networks. These
results imply that the hierarchical modular architecture of cortical networks plays
an important role in shaping the ongoing spontaneous activity, allowing the system
to take the advantages of both the sensitivity of critical state and predictability and
timing of oscillations for efficient information processing.

1 Introduction

Understanding the large-scale organization of the structure and dynamics in the
brain from the viewpoint of complex networks has become a new frontier in
neuroscience [1, 2], because the architecture of networks in brain always impacts
neural system’s dynamical behaviors and the dynamics underlie the mechanisms of
the brain’s functions.

One of the most prominent structural features in the neural system of the brain
is the organization of modules, structured hierarchically from large-scale regions
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of the whole brain, via cortical areas and area subcompartments organized as
structural and functional maps, to cortical columns, and finally circuits made up of
individual neurons [3]. Meanwhile, the networks display self-organized sustained
activity, which is persistent in the absence of external stimuli. At the systems
level, such activity is characterized by complex rhythmical oscillations over a
broadband background, such as a, 6, and § oscillations [4]. While at the cellular
level, neuronal discharges have been observed to display avalanches, indicating
that cortical networks are at the state of self-organized criticality (SOC) [5]. Self-
organized criticality is a concept proposed in physics that mimics the avalanche
of sandpiles, and is an ubiquitous property of complex systems, such as piling of
granular media, earthquakes, and forest fire, etc. [6—8]. The concept asserts that
a system self-organized into a critical state is characterized by scale invariance.
At such a critical state, signals and perturbations can efficiently propagate over
broad spatio-temporal scales. Critical behavior in neural models has been shown
to bring about optimal computational capabilities, optimal transmission, storage of
information and sensitivity to sensory stimuli [9]. And SOC has been suggested
playing an important role in human perceptual functions [10].

SOC is characterized by power-law distribution of the size of avalanches,
indicating that there is no characteristic scale. On the contrary, rhythmic oscillations
suggest that neural activity possesses typical scales and is predictable to certain
extent. How these two apparently contradictory dynamical properties are unified
in the neural dynamics is a question that has not been addressed in the studies of
neurodynamics. In this work, we use numerical simulations to show that the modular
network organization provides such a template to unify them.

Within the modules, the activity of the neural firing is characterized by SOC,
while the weak interaction between the modules makes it possible that the
avalanches of some modules can act as the weak input to other modules, leading to
sustained activity without external stimulus.

2 Method/Models

We carried out intensive numerical simulations of a balanced neural network model
[11]: there are 80% excitatory neurons and 20% inhibitory neurons. The dynamics
of the membrane potential is described as

T% = (Vrest - V) + gex(Eex - V) + ginh(Einh - V)

The value of the time constant is 7=20 ms, the resting membrane potential
is Viess = —60 mV, reversal potentials of synapses for excitatory and inhibitory
neurons are E,, = 0 mV and E;,;, = —80 mV. When an excitatory (or inhibitory)
neuron fires, the synaptic variables g.. (org;;) of its postsynaptic targets are
increased by Ag., (or Ag;;). Otherwise, synaptic variables decay exponentially
with the time constants 7., = 5 ms and t;,;, = 10 ms.
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Fig. 1 (a) Connection density matrix of a 4-level HMN. Network size is N = 10,000, R.x = 0.99.
(b, ¢) Average duration of network activity in the parameter space (Agin, Agex). The results are
averaged over 100 realizations of (b) random networks and (c) 4-level HMNs with Re, = 0.99,
respectively

The strengths of excitatory and inhibitory neurons are such that in a broad
range, the average input current of a neuron from the excitatory pool is roughly
canceled by that of the inhibitory pool; however, the fluctuations can be so large to
exceed the firing threshold in sparse random networks with large enough number of
neurons (10,000 neurons in our simulations). This will lead to sustained irregular
activity in such a balanced random network of neurons. In our study, we introduced
modular structure into the network connectivity. Beginning with random networks,
the neurons are divided into groups and the connections between groups are moved
into groups with a probability R. Then connections are denser within the group
but much sparser between the groups, while maintaining the total connections the
same as the original random networks. We can further divide the modules into sub-
modules to obtain a hierarchical modular network (HMN). See Fig. 1 for an example
of a 4-level HMN with 16 modules, each having N/16 = 625 neurons. Considering
the fact that inhibitory couplings form local connections and excitatory couplings
provide long-distance interactions, we rewire inhibitory inter-module connections
with the probability R, = 1, and rewire excitatory inter-module connections with
O0<R.<1.

3 Results

In random networks, balance between excitation and inhibition exists in a region
of the parameter space of the strength of the excitatory and inhibitory synapses
(Aginh, Agex), which allows the neural network to sustain irregular activity without
external signals. In simulations, the networks were stimulated by noise in an initial
period of time. Figure 1b and ¢ show how long the activity sustained after noise is
removed. The region III of the Fig. 1b represents the irregular sustained activity in
random networks [12]. When the rewiring probability Rex = 0.99, although modules
are dense and small, the irregular sustained region is maintained in HMNs, as shown
in Fig. lc.
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Fig. 2 (a) Population activity of an ensemble of neurons in a random network and of a module in
the HMN rewired from the random network (upper panels), and corresponding average membrane
potentials (lower panels). (b) Power spectrum density of average potentials in random networks
(black) and HMNss (blue). (c) and (d) Distributions of the silent period in an ensemble of neurons in
random networks and in a module of HMN:Ss. (e) and (f) Distribution of the activity size in networks
corresponding to (¢) and (d). The insets in (d) and (f) show the cumulative distributions of silent
period and activity size in modules of HMNs

However, different from quite homogeneous random activity in random net-
works, the activity patterns in modular networks is very heterogeneous. In Fig. 2a,
we compare the activity of one module in a 4-level HMN obtained at R, = 0.99
and the activity of the corresponding ensemble of neurons in the random network
before rewiring. The HMN displays intermittence with bursts of relatively strong
activity separated by distinct silent periods, while the activity in the random network
continues at a lower level, but without discernible silent intervals.

The intermittent activity of modules in the HMN exhibits the characteristics of
avalanche dynamics. We analyzed the distribution of the size of each activity of a
module and the lengths of the silent interval between two activities. In Fig. 2c and e,
distributions of both the silent interval and the activity size in random networks
are straight lines when plotted in log-linear form, showing that the distributions
follow exponential functions. On the contrary, the distributions of modules in HMNs
display straight lines in the log-log plot (Fig. 2d, f). Therefore in the HMN both
the silent interval and the activity size are distributed according to the power-law
functions.

Power-law distribution of avalanche size is the fingerprint of the self-organized
criticality [9]. These results show that HMNs are close to critical states, while
the random networks are not. The observation of critical states is consistent with
experimental data which showed a power-law distribution of the neuronal avalanche
size [5] or the intervals between large energy fluctuations [13].
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Another significant effect of the intermittent dynamics in HMNss is the emergence
of low frequency activity. In Fig. 2a one can see the fluctuation of the average
potential of modules in HMNs is more significant than that of random networks
and exhibits the characteristics of rhythmic oscillations. We perform an analysis
by calculating the power spectrum density of the average potential of networks.
Figure 2b shows that in random networks the power decays monotonically as the
frequency increases. In the HMNs with R, = 0.99, a pronounced peak appears at
low frequency around 15 Hz.

4 Conclusion/Discussions

We studied the effect of hierarchical modular structure on the dynamics of the
sustained activity of neural networks with both excitatory and inhibitory neurons.
The modular property can support the irregular sustained activity. More importantly,
we found that the coexistence of SOC and oscillations could be realized in
modular neural networks. Our results provide a new mechanism of sustaining
activity and generating oscillations in cortex-like neural network that captures the
most prominent structural features: the hierarchical modular organization and the
coexistence of excitatory and inhibitory neurons.

Our further analysis shows that cutting SOC off at finite size due the limited
number of neurons within the module could be one of the reasons that leads to
the oscillations of the network collective activity. Currently we are exploring the
implications of the combination of SOC and oscillations in information processing,
which should shed light on the structure-function relationship in the brain. Fur-
ther studies on the role and advantages of HMNs in information processing are
interesting, and are potentially useful for understanding neural activities underlying
perceptual functions.
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Traveling Waves in Locally Connected Chaotic
Neural Networks and Their Phenomenological
Modeling

Makito Oku and Kazuyuki Aihara

Abstract The emergence of traveling waves is a universal property of nervous
systems. However, mechanisms of these waves and their functional roles have not
yet been fully elucidated. Here, we numerically investigate traveling waves in a
locally connected large-scale chaotic neural network (CNN) consisting of more than
one million units. We simulate it by parallel computing and visualize the network
output by using color images. If the refractoriness of neurons is sufficiently large,
many local cell assemblies are generated and the boundaries between them move as
traveling waves. We also develop a simplified phenomenological model for the CNN
by adding a negative self-feedback mechanism to the Potts model. The proposed
meso-scopic model can qualitatively reproduce complex wave patterns in the CNN.
Because the model requires less computational resources, it may serve as a useful
tool for investigating traveling waves in nervous systems.

1 Introduction

The emergence of traveling waves is a universal property of nervous systems. These
waves have been widely observed experimentally in many organs such as the retina
[1,2], olfactory cortex [3], neocortex [4—6], hippocampus [7], and cerebellum [8].
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Furthermore, theoretical and numerical analyses support the idea that traveling
waves are easily generated in locally connected neural networks [9-13]. However,
mechanisms of traveling waves and their functional roles have not yet been fully
elucidated.

Detailed investigation of traveling waves requires large-scale simulations. This is
because traveling waves are meso-scopic phenomena and involve a large number of
neurons. Certain types of traveling waves are actually observable only in large-scale
simulations [12].

Usually, the term “traveling waves” refers to the phenomenon of activation of
some local region in the brain, and propagation of the activity to neighboring
regions. However, not only the strength of neural activity but also higher-order
properties may propagate in the actual brain. One such example of traveling waves
is those of cell assemblies in a locally connected associative memory model [14,15].
Here, cell assemblies refer to particular patterns of active and inactive neurons.
Movement of boundaries between the assemblies results in alternation of local
activity patterns.

In this study, we first numerically investigate traveling waves in a locally con-
nected large-scale neural network. Then, we develop a simplified phenomenological
model for the network.

2 Models

2.1 Chaotic Neural Network Model

In this study, we use the chaotic neural network (CNN) model [16,17]. This network
is composed of N units, each of which has two internal variables 7; and ¢; and
one output variable y;. The units also receive a uniform and time-invariant external
input. Let us adopt the vector representation § = {n1,....ny}7, & = {&1, ..., ¢ty )T,
and y = {y1,....yy}". Then, the model dynamics can be described by the
following difference equations:

0@+ 1) =kyn@)+Wy@), (1
Se+1) =k §t)—ay() +a, 2
ye+D)=fe+1D)+8+1), 3)

where W = (w;;) denotes the N x N weight matrix; 0 < k., k. < 1, the decay
constants; & > 0, the strength of the refractoriness; and a = {a, ... ,a}T, the bias
that includes the external input and the threshold. The activation function f is an
operation that applies the logistic function f(x) = (1 + exp(—x/€))~' to each
element of the argument vector, where € denotes the steepness parameter.
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Fig. 1 Four color images |
(256 x 256 pixels, 24-bit :
RGB mode) stored in the I
network :
|
|

The weight matrix W is determined in the same manner as that in the conven-
tional associative memory model [18]. This model defines the way in which the
network memorizes some spatial patterns by changing its synaptic weights. The
data here are K binary patterns s¥ = {s* ..., sk}T (k = 1,..., K, sk € {—1,1}).
For simplicity, we assume that each pattern contains an equal number of 1’s and
—1’s. Then, the weight matrix is determined by the autocorrelation matrix of the
patterns as follows:

_ 1 - k(o k\T
W—?kzzjls(s). 4)

Now, we change the network’s connectivity. Since many connections in the real
brain are short-range ones, we restrict the connections in the neighborhood of each
unit [14, 15]. Let us assume that the units are arranged in a two-dimensional lattice
and let (u;, v;) denote the position of unit i. Its neighborhood V; is defined as N; =
{(u,v) | max(Ju — u;|,|v — vi]) < d}. Within the area N;, we select L units at
random and connect them to unit i. Then, Eq. 4 is modified as follows. If there is a
connection from unit j to unit i, wi; = K~' Y, sks¥. Otherwise, wy; = 0.

To visualize the network’s state, we use the color images shown in Fig. 1 and
store them in the network. By using a method proposed in our previous study [19],
we convert the color images to binary patterns so that the network can memorize
them. The length of the binary patterns is N = 24 x 256> = 1,572,864. We
also adjust some statistics of the images so as to facilitate emergence of chaotic
transitions among the patterns. Specifically, >, s¥ = 0,>", sk s/ = 0.08N (k # 1),
and ), sk sl s = —0.08N (k # 1,1 # m,and m # k).

2.2 Phenomenological Model

Since large-scale simulations of the CNN are still computationally difficult, we
develop a simplified phenomenological model based on the Potts model [20]. The
Potts model is a generalization of the Ising model, which is a simple mathematical
model of ferromagnetism in statistical physics. The Potts model is composed of
spins that take discrete states s; € {I,..., Q}. The spins are arranged in a lattice
and interact only with their nearest neighbors.
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In our model, a single Potts spin represents the state of a small group of units
in the CNN. Each state of the spin corresponds to the retrieval of a stored pattern
within the local area. We also introduce the refractoriness variable h! for each state
q of each spin i. This variable intuitively shows to what extent spin i tends to avoid
state ¢. The dynamics of /! is described by the following difference equation:

hi(t + 1) = y hi(t) + ¢ 8(si.q). (5)

where 0 < y < 1 denotes the decay constant and ¢ > 0 denotes the strength
of the refractoriness. §(-,-) is the delta function. The size of the time step is the
characteristic time in which every spin is updated once.

The refractoriness variable changes the form of the system’s Hamiltonian H. It
is then becomes as follows:

0
H==Y " J;8(si.s;))+ > > hit)8(si.q). (6)
i,j q=1

i

where J;; denotes the strength of the interaction between spin i and spin j. If these
spins are neighbors, J;; = J > 0. Otherwise, J;; = 0. In this study, we use a
two-dimensional lattice of size 100 x 100 and adopt the Moore neighborhood, that
is, each spin has eight neighbors.

To investigate the model dynamics, we adopt the standard Monte Carlo method
for the Potts model. In each step, we pick a spin i at random. Then, we update its
state according to the following probability distribution:

exp(—p H(si = q))
Yo exp(—B H(si = q'))

p(si = q) = 7

where  denotes the inverse temperature. H(s; = ¢) denotes the value of the
Hamiltonian when s; is set to ¢ with other spin states fixed. Because those terms
that do not involve s; can be canceled in the numerator and denominator, only the
states of the nearest neighbors contribute to the probability distribution.

3 Results

In the following simulations of the CNN, we set ky = 0.7, k, = 0.9, ¢ = 0.015,
d = 10, and L = 400. As an initial condition, 7;(0) takes a random value
that is uniformly distributed in [0, 1], and ¢;(0) = 0. The simulations are run

on a cluster of four Linux server machines that have two 3.0-GHz dual-core
processors and 8.0-GB RAM each. Computation of one step of the simulation takes
approximately 1 s.
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First, we set « = 0 and @ = 0 so that the neurons have no refractoriness. In
this case, the network is initially divided into many small clusters of different colors
(see Fig. 2a). These clusters merge to become bigger ones with time and are not very
mobile.

Next, we investigate the influence of the refractoriness by setting « = 20
and a = 6.4. In this case, the network shows rich spatio-temporal dynamics (see
Fig.2b). The boundaries between clusters move as traveling waves. When two
waves moving in different directions collide, rotating waves or spiral waves are
sometimes generated temporally.

Finally, we investigate the behavior of the phenomenological model. We set
J=1,8=3,0 = 4, and y = 0.98. Initially, s; takes a random state and
h?(0) = 0. The model exhibits dynamics qualitatively similar to those of the CNN.
If there is no refractoriness, i.e., ¢ = 0, cluster merging is observed (see Fig. 3a). In
contrast, with refractoriness (¢ = 0.08), complicated wave patterns are generated
(see Fig. 3b).
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4 Discussion and Conclusions

We have shown that a locally connected CNN exhibits rich dynamics of traveling
waves (see Fig.2b). These waves correspond to moving boundaries of local cell
assemblies, and the waves disappear if the neurons have no refractoriness (see
Fig.2a). Therefore, refractoriness plays a key role in the emergence of traveling
waves in the CNN. In the case of the real brain, the refractoriness—and possibly
some other negative self-feedback mechanism such as spike-frequency adaptation
and synaptic depression—could also contribute to the emergence of traveling waves.

Next, we showed that the proposed meso-scopic model can qualitatively repro-
duce complex wave patterns in the CNN (see Fig. 3b). Because the model requires
less computational resources, it may serve as a useful tool for investigating traveling
waves in nervous systems.

Fig. 3 Spatio-temporal
patterns in the
phenomenological model
displayed with eight-step
intervals. (a) ¢ = 0. (b)
¢ =0.08
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Furthermore, we found that rotating waves and spiral waves are often generated
in both models. This seems to contradict the fact that such waves are rarely observed
in experiments [21,22]. Perhaps our model is not precise enough to reproduce real
neuronal activity. However, some other numerical studies have also reported the
emergence of rotating waves and spiral waves [12,23,24]. Thus, despite difficulty
in detection of these waves, they may be actually generated in the brain.
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Spatial Filtering by a Two-Dimensional
Interconnected Network with Spike Timing
Dependent Synaptic Plasticity Depending
on Its Temporal Properties

Kazuhisa Fujita

Abstract In the present study, we investigated the dependence of characteristics of
spatial filtering by the two-dimensional interconnected network with spike timing
dependent plasticity (STDP) on its temporal properties. STDP has different temporal
properties according to the area of a brain. The temporal properties are indicated
by the form of learning window. In the previous study, we studied the response of
an one-dimensional interconnected network with STDP in spatial processing using
computer simulation and found that the one-dimensional network well responded
to a particular spatial frequency component of the input. Here, we showed that the
two-dimensional interconnected network with STDP provided two types of spatial
filtering. One is spatial low-pass filtering using the learning rule of electric fish type.
The other is spatial high-pass filtering using the learning rule of hippocampus type.

1 Introduction

Spike timing dependent synaptic plasticity (STDP) plays an important role in
temporal processing because of dependence of synaptic modification by STDP on
time differences between pre- and postsynaptic spike firing. Synaptic modification
by STDP is found in various areas of various neural systems [3]. For example, STDP
is found in the cultured hippocampus of rats [2], the visual cortex of cats [5], the
electrosensory lobe of a weakly electric fish [1], etc. These STDP learnings have
the individual temporal properties. The temporal properties are indicated by the
form of learning window. Learning window is the function that indicates the relation
between the intensity of synaptic modification and time difference of firings between
pre- and postsynapse. In hippocampus, if time difference is negative, synaptic
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efficacy is strengthened, whereas synaptic efficacy is weakened if time difference
is positive [2], we call this learning “hippocampal type”. Meanwhile, the reversed
learning rule is found in the electrosensory lobe of a weakly electric fish [1]. In this
paper, we call this learning “electric-fish type”.

In the previous study, we studied the response of an one-dimensional intercon-
nected network with STDP in spatial processing using computer simulation and
found that the one-dimensional network well responses particular spatial frequency
of input [6]. In the present study, we showed that the two-dimensional intercon-
nected network with STDP worked as spatial filter. The function of spatial filtering
depended on temporal properties of learning window. The network provided low-
pass spatial filtering applying electric-fish type learning window. The network
provided high-pass spatial filtering applying hippocampal type learning window.
Furthermore we investigated the dependence of the filtering function on time
constant t of learning windows defined by Eq. 1.

2 Methods

Figure 1 shows the interconnected network using in this study. The structure of the
network is two dimensional array. A neuron of the network has connection to neigh-
bor neurons through synapses with STDP. The neuron 7, j connects with neurons
fromi —RF to7 + RF and from j —RF to j + RF. RF is the size of connecting area.
Each synapses were facilitated and depressed being subject to STDP learning rule.

2.1 Neuronal Model

The “leaky integrate and fire” neuron was used as a single neuron. The membrane
potential V() of a neuron is determined by degft) = Vo — V(t) + In(¢), where
T,y 18 a time constant, In(?) is the input voltage of the neuron. V; indicates resting
potential. A neuron generates a spike and resets the membrane potential to V) when

the membrane potential reaches threshold ¥. Spike S(¢) is 1 if V' > . Otherwise,

Fig. 1 Network model.
A neuron on the network
connects with neighbor
neurons. The network
received two-dimensional
inputs
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S(¢) is 0. A neuron is stimulated with input voltage and synaptic potential evoked
by connected neurons. In(¢) is summed input voltage, synaptic potential, and noise.
In(?) is determined by In(¢) = I. + g(t)(Ey — V) + Noise, where /. is input
voltage and g(¢) is synaptic conductance. In the present study, /. is voltage of a
direct current. The noise is a uniform random number from O to 1 and is generated
at each step.

2.2 Synaptic Model

We used the synaptic model proposed by Song and Abbott [7]. The synaptic con-
ductance g(¢) is determined by 7, di(tt) = —g(t), where T, is a time constant. This
model is based on a leaky integrator, thus synaptic conductance only decreases and
comes to converge to 0. Synaptic conductance g(¢) increases when a presynaptic
neuron generates a spike. If a presynaptic neuron generates a spike at ¢, synaptic
conductance at ¢ + dt is determined by g(¢t + dt) = g(¢t) + W(t), where W(¢)
is synaptic efficacy. On STDP, synaptic efficacy changes when the spikes from pre-
and postsynaptic neurons reach the synapse. Synaptic efficacy W(r) is given by
Wt + At) = W(t) + F(fpre — tpost) Wiax, Where F is the synaptic change rate that
is called “learning window”, #, is the time of presynaptic spike arrival, and fpe iS
the time of postsynaptic firing. The initial value of W(¢) is chosen W;. The synaptic
change rate F' is determined by

Ayexp(At/7) if At >0

F(At) = ,
A_exp(At/t) otherwise

ey

where A7 1S fpre — Ipost- W is Whnax when W is more than Wiy, W is O when W is
less than 0.

Temporal properties of STDPs are indicated by the form of learning windows
of STDP. Learning window is defined by asymmetric exponential curves (Eq. 7).
The temporal properties of learning window represents intensities of synaptic
modification A4 and A_, and time constant t in Eq. 1.

The values of parameters are: RF = 8, 7,, = 20msec, V) = —70mV, & =
=54mV, Ey = 0mV, 7, = 5msec, Wpax = 0.005, Wy = Wpay/2. Ay = 0.005
and A— = — A, when the learning is electric-fish type. A+ = —0.005 and A_ =
— A4 when the learning window is hippocampal type.

2.3 Frequency Characteristics of the Network

To assess features of outputs of the network, we computed frequency characteristics
FC. FC is defined by FC = Y. P; f;/ >_; P:, where f; is frequency of component
i of the input, P; is power of the component in the frequency f;. Simply, FC means
weighted average of spatial frequency components of the input.
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3 Results

3.1 Spatial Filtering by the Two-Dimensional Network

We investigated the response of the two-dimensional interconnected network with
STDP learning. To address this issue, we calculated responses of the network.
The network has 80 x 80 neurons. The synaptic connections between neurons
are modified based on STDP. Here, time constant 7 of the learning window
is 20 msec.

Using the learning rule of electric-fish type, the network acted as spatial low-
pass filter. Figure 2a, ¢ show the input image that consists of a filled circle and
spatial white noise. Figure 2b, d show the output of the network. The output image
means firing counts of the neurons of the network from 9,000 to 10,000 msec. In
this case, spatial high frequency noise was reduced and spatial low-frequency signal
was represented in the output of the network. Thus the network functioned as spatial
low-pass filter using the learning rule of electric-fish type.

Using the learning rule of hippocampal type, the network acted as spatial high-
pass filter. Figure 2e, g show input image. Figure 2f, h show the output of the
network. The output image means firing count of neurons of the network from 9,000
to 10,000 msec. In this case, firing counts of the neurons which were on the edge of
the input image was higher than that of other neurons. Thus the network enhanced
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Fig. 2 Inputs and responses of the two-dimensional interconnected network. (a) The input image
of the network with electric-fish type learning. Neurons on white and grey area received high
and low intensity of input voltage, respectively. (b) Response of the network with electric-fish type
learning. (¢) Input intensity of the network at j = 40. This input intensity is a input voltage divided
by the maximum input voltage that is 35 mV. (d) Response of the network at j = 40. Response
is defined by a firing count of a neuron divided by the maximum firing count. (e) The input image
of the network with hippocampal type learning. (f) Response of the network with hippocampal
type learning. (g) Input intensity of the network at j = 40. This input intensity is a input voltage
divided by the maximum input voltage that is 27 mV. (h) Response of the network at j = 40
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Fig. 3 (a) The input of the network to investigate frequency characteristics of the output of the
network. The input consisted of 2 Hz spatial wave and white noise. (b) Frequency characteristics
of the network. The vertical line indicates FC that means frequency characteristics of the network.
The horizontal line indicates t that is the time constants of learning window of STDP. The solid
line shows frequency characteristics of the network with electric fish type STDP. The broken line
shows frequency characteristics of the network with hippocampal type STDP. The dotted line
shows weighted average of frequency components of the input

the edge of the input image. In other words, the network might function as spatial
high-pass filter using the learning rule of hippocampal type because the edge of
image consists of spatial high-frequency components.

3.2 Frequency Characteristics of an Output of the Network

We showed the response of the network depending on learning window mentioned
above. In this subsection, we showed the dependence of frequency characteristics of
the output of the network on time constant t of learning window. The network using
in this subsection has 200 x 20 neurons. The input of the network consisted of the
signal that formed the 2 Hz wave and white noise shown in Fig. 3a. Here, one Hz
as spatial frequency in this subsection has a spatial periodic interval 200 neurons.
We calculated FC of the output of the network with changing time constant v of
learning window.

Figure 3b shows frequency characteristics FC of the output of the network with
time constant t of learning window. Solid line indicates the FC of the output of the
network with electric-fish type learning. The FC decreased with t from O to about
40 msec. From about 50 msec, the FC unchanged. The FC is lower than weighted
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average of frequency components of the input. This result shows that the network
with electric-fish type learning could work as spatial low-pass filter. Broken line
indicates the FC of the output of the network with hippocampal type learning. The
FC increased with t from O to about 40 msec. From about 40 msec, FC unchanged.
The FC is higher than weighted average of frequency components of the input.
This result shows that the network with hippocampal type learning could work
as spatial high-pass filter. The FC reached about 100 Hz at 40 msec. One hundred
Hz means that spatial period is 2 neurons. This result shows spatial filtering of the
network did not work. When time constant 7 is around 20 msec, spatial filtering
of the network works enough. The value of 7 that is 20 msec is appropriate for
experimental results [1,4].

4 Discussion

The purpose of the present study is to investigate the function of a two-dimensional
interconnected network with STDP and the change of the function according
to temporal properties of learning window of STDP. We showed that the two-
dimensional network could worked as spatial low-pass and high-pass filter applying
electric-fish type and hippocampal type learning, respectively. Furthermore, we
showed that characteristics of filtering of the network depended on time constant
T of learning window and the value of 7 is appropriate for experimental results
when the network work as spatial filter enough.
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Neural Model for Hierarchical Processing
of Auditory Information in Mammal’s Cortex

Yusuke Hara and Yoshiki Kashimori

Abstract In this paper, we present a model of auditory cortex, which performs
a hierarchical processing of auditory information. We show that the aspects of
spatiotemporal activity in the primary cortex are encoded by a combination of
feature-detective neurons and then by a dynamical attractor in higher-ordered cortex.
The present study provides a clue for understanding the mechanism of how the
information of notes and syllables are constructed from the spatiotemporal activity
of the primary auditory cortex.

1 Introduction

Animals utilize auditory information for survival and communications of con-
specifics. Researchers have focused on several model systems to investigate the
mechanism of auditory information processing. Studies on localization behaviors
have demonstrated how auditory information of target is processed in animal brains.
Bats have a specific brain maps for representing the features of target signal such as
relative velocity and distance [1]. Barn owl also has the map structures in the brain,
in which neurons respond selectively to interaural time difference and interaural
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level difference [2]. Although mammalian auditory cortex has also frequency map
structure in the primary auditory cortex, auditory information is encoded by a
distributed pattern of neuronal activity.

A sequence of sound is analyzed in animals’ brain as elementary components
such as notes and syllables. Bird song has been a subject for investigating the
neural mechanism underlying vocal learning. Studies on bird song revealed how
birds are able to learn their own song in early period of life [3]. The reciprocal
interaction between HVC and RA enables the song learning [4—6]. In contrast to
the mechanism of the vocal learning, how auditory information about notes and
syllables are represented in bird’s auditory brain remains unclear.

It has been reported that auditory information is represented by spatiotemporal
activity of primary auditory cortex (A1) of mammalians [7, 8]. The neural model of
Al has been proposed to account for the mechanism for generating the spatiotem-
poral activity in Al neurons [10]. Recent study also showed that neural responses
in the secondary auditory cortex mirror perception, showing categorical responses
to continuous stimuli [11]. However, how the elementary components of sound are
extracted from the spatiotemporal activity of neurons is poorly understood.

To address this issue, we present a model of auditory cortex, which performs a
hierarchical processing of auditory information. The model consists of three layers
of 2-dimensional networks. We show that the aspects of spatiotemporal activity in
the primary cortex are encoded by a combination of feature-detective neurons and
then by a dynamical attractor in higher-ordered cortex. The present study provides a
clue for understanding the mechanism of how the information of notes and syllables
are constructed from spatiotemporal activity of the primary auditory cortex.

2 Model

We propose a neural network model for hierarchical processing of auditory informa-
tion, which consists of three networks, as shown in Fig. 1. The auditory information
is encoded with spatiotemporal pattern of neuronal activity in the primary auditory
(A1) cortex. The model of Alwas made based on the previous model by Yamaguchi
et al. [10]. The network has a 2-dimensional array of A1l neurons, each of which is
constructed with a pair of excitatory and inhibitory neurons. The balance in the exci-
tatory and inhibitory connections between these neurons makes the spatiotemporal
activity of A1 stabilize as a stationary pattern. The excitatory connections among the
excitatory neurons enable propagation of stationary pattern across the network. Then
the spatiotemporal aspect of the neuronal activity evoked in Al is detected by the
feature-detective (FD) neurons in the second layer. These FD neurons integrate the
spatiotemporal pattern over a short time period, thereby enabling the second layer
to represent the information about notes and about the correlation of notes. The
FD neurons were organized by Kohonen’s self-organized map [12]. Thus the FD
neurons extract the features of the snapshot of the spatiotemporal activity, indicating
the compression of spatiotemporal auditory information. The information encoded
by the FD neurons is then combined as a linkage of attractors in the feature-binding
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Fig. 1 The network model of
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(FB) layer, providing semantic information such as word. The network model of FB
layer has a 2-dimensional array of neurons, each was based on the Leaky integrate-
and fire neuron model [13]. The temporal correlation between attractors was formed
with spike timing-dependent plasticity (STDP) learning [14].

3 Results

Figure 2 illustrates the snapshots of the neuronal activity of Al and the activity of
FD layer corresponding to the activity of Al neurons, respectively, in response to the
sound “a-b-c¢”. The sound was represented as a spatiotemporal pattern of neuronal
activity of Al. The balance of excitatory and inhibitory inputs to neurons enables
the network to stabilize the propagation of Al activity. The FD neurons integrated
the spatiotemporal activity over a short time period, enabling the encoding of the
features of the neuronal activity averaged over a short time period. The encoding
by the FD neurons shapes the representation of a compressed, or a coarse-grained
information of the spatiotemporal activity of Al.

Figure 3a and b illustrate the spatiotemporal activities of the FD neurons
detecting the features of the note “a” of “a-b-c” and “a” of “c-b-a”, respectively. The
sound features were encoded by the population of FD neurons. The spatial activity
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Fig. 2 Neural responses of Al and FD layer to the sound “a-b-c”. Activated neurons are depicted
by white-colored clusters in Al and filled circles in FD layer, respectively. The snapshots are
depicted every 20 ms
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Fig. 3 Spatial activities of FD neurons in response to notes and their overlaps. Spatial activities of
the FD neurons detecting the features of the notes, “a” of “a-b-c” (a) and “a” of “c-b-a” (b), and
of the overlaps, “a-b” of “a-b-c” (¢) and “b-a” of “c-b-a” (d). These patterns indicate the activated
FD neurons during the presence of the notes and overlaps

[IP%1]

of FD neurons in response to “a” in “a-b-c¢” exhibited the similar pattern to “a” in
“c-b-a”. In contrast, FD neurons showed different patterns in response to “a-b” in
“a-b-c¢” “and “b-a” in “c-b-a”, as shown in Fig. 3c and d. Other notes and overlaps of
them also had similar tendency to the patterns of the note “a” and the overlaps “a-b”
and “b-a”. The FD neurons exhibited the similar spatial patterns in response to the
notes, but did the different patterns for the overlap of the notes. This indicates that
it is important for auditory perception to extract the features of the overlap between
notes, besides the features of notes. Thus FD neurons encode the information about
notes (“a”, “b”, and “c”’) and the temporal correlation between the notes.

Figure 4 illustrates the network state of the FB layer during the perception of
words, “a-b-¢” and “c-b-a”. The spatiotemporal correlations among the attractors
were formed by STDP learning. The information about notes and their correlations
were combined as a linkage of dynamical attractors, enabling the network to
represent the two words, “a-b-c” and “c-b-a”. After the perception of “a-b-c” or “c-
b-a”, the network state was recovered to a background state, in which the network
state exhibited an itinerant state between the attractor “a-b-c”” and “c-b-a”.
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4 Discussions

We have shown a network model for hierarchical information processing in the au-
ditory cortex, which consists of three layers. These layers encoded the information
about different aspects of auditory features along the pathway from A1l to FB layer,
enabling the system to percept a word in the FB layer. The present study provides
an insight to understanding the information processing in auditory cortex.

In the present study, we have proposed the network models of the higher ordered
areas beyond A1l. The FD layer encodes the information about notes and syllables,
which are extracted from the spatiotemporal activity of Al. The FB layer combines
these features of notes and syllables and represents the information of a word as
a linkage of dynamical attractors. The second auditory cortex neurons have been
reported to exhibit categorical responses to continuous stimuli [11]. This might
correspond to the function of the FD layer. It seems also reasonable that sound
features are dynamically combined in a higher ordered area of auditory cortex.
Further studies are needed to understand how semantic information such as words
is constructed from spatiotemporal activity of Al.
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Modeling Dynamics of the Human Limbic
System

Mark H. Myers and Robert Kozma

Abstract In this paper, we proposed a computational model of the limbic system
in order to capture the spatio-temporal dynamics of abnormal/normal brain states.
Power spectral density measurements of the abnormal seizure states are captured
in order to differentiate from normal brain states. Electrical titration therapy is
proposed through this model to demonstrate how the model can be utilized as an
EEG simulator that demonstrates how external stimulation restores the model back
to its normal chaotic operating state.

Keywords Power spectral density e Electroencephalograph e Seizure e
Non-linear * Biological neural network

1 Introduction

Studies of the brain’s electrical activity based on EEG analysis provide methods to
differentiate among various cognitive states, i.e., sleep, awake, normal, or seizure
[6]. Models of relatively large groups of interacting excitatory and inhibitory
neural populations have been developed to exhibit abnormal/normal brain states
and the effects of imbalanced excitatory and inhibitory neurons [12]. Tsakalis and
Chakravarthy [2, 11] developed a neural mass model, with an internal feedback
mechanism to maintain synchronous behavior within normal levels despite elevated
coupling. Normal internal feedback quickly regulates an abnormally high coupling
between the neural populations, whereas pathological internal feedback can lead to
hyper-synchronization and the appearance of seizure-like high amplitude oscilla-
tions. Feedback decoupling is introduced [2] as a robust seizure control strategy. An
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external feedback decoupling controller is also introduced to maintain normal levels
of synchronous behavior. Other internal feedback models featured closed-loop
feedback control systems in epileptic seizures combining methods from seizure
prediction and deep brain stimulation [7]. Periodic stimulation was also performed,
with a reduction of seizure frequency in 33% of six rat modeling instances.

Clinical studies are often grouped by anatomical targets [1, 3, 8], but target-
specific factors need to play a greater role in individualizing electrotherapy strategy
and characterizing its mechanisms. Afferent connections throughout the different
regions of the brain can influence the dynamics of neuronal populations and
sensitivity to electrical stimulation.

2 Methods

High density arrays of electrodes were placed onto the surface of the scalp of four
patients with medically intractable epilepsy, who are candidates for the Vagus Nerve
Stimulator (VNS) surgical treatment. Features of normal/abnormal brain activity
have been monitored for 60-90 min. EEG evoked response potentials are captured
at a sampling rate of 250 points/s. Power spectral density analysis was performed on
the EEG data sets. Due to the identified spatio-temporal dynamics of EEG signals,
the power spectral density (PSD) often exhibits a linearly decreasing behavior over
log-basel0 coordinates considering frequency and amplitude of PSD or spectral
power. This is called in the literature “power law” or scale-free behavior “1/f~*”,
where cognitive processing states varied by “a” [6]. The power law relation is seen
on the example of Fig. 1 over the whole range of frequencies from 10 to 100 Hz,
i.e., the beta-gamma range. Power law behavior is attributed to the brain structural
connectivity and dynamical properties.

The PSD of the states of sleep, awake, seizure, and VNS dampened seizure
conform to the power law relation, 1/f~%, where o = —3 when the patient is at rest,
a = —3 to —2 during the awake state, o = —2 during cognitive tasks and intentional
behaviors [5]. The case o = —2 is mathematically referred to as brown noise, 1/£2,

log power
4 o
L)

Fig. 1 The EEG of the
normal state depicted as the i i

slope of the PSD where Y3 o 05 1 15 >
a=-—2.16 log frequency (Hz)
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Fig. 2 The EEG of a seizure 5
state depicted as the slope of 2
the PSD here a = —3.68

log power

05 1 15 2

wm
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log frequency (Hz)
whereas oo = —3 is called sometimes as black noise. The calculated PSD linear

regression values during the seizure state will have a<—4. Figure 1 exhibits low
alpha values signifying the normal EEG state, while Fig. 2 exhibits alpha values in
the seizure range.

The KIV model is a biologically inspired neural network [10]. The K-set family
includes hierarchy of K models of increasing complexity. They represent different
aspects of the vertebrate brain. It has the functionality of sensory perception and
action selection. The fundamental building block of the KIV model is the dynamics
corresponding to the KO set which is governed by a point attractor. This means that,
over time, a non interacting population of neurons will converge to the point zero.
The KO set is the basic unit of the K models, upon which the rest of the hierarchy is
based on. The dynamics of the KO set are given by the following second order ODE
(ordinary differential equation).

d? d
ﬁ [ d;;gz) + (a + b)% + abp(l)i| = X(@t) + 1(t)

where ‘a’ and ‘b’ are rate constants determined based on physiological experiments,
p(t) is the pulse density at time t and X(t) is the internal input, and I(t) is the external
input at time t. The KIV model architecture is represented by three major parts; the
KIII cortex, KIIT hippocampus and the KII amygdala. Hippocampus models include
navigation functions. The cortex models sensory processing and pattern recognition
in various sensory modalities. The amygdala is the unit where the activations from
the cortex and hippo-campus are projected and decision is made concerning the next
action, based on the fusion of the signals from other brain areas.

The KIV model is used as an EEG simulator to exhibit similar attributes found in
the analysis of human EEGs. In order to exhibit the ‘normal’ chaotic state of human
EEGs, the KIV model was adjusted to exhibit the same ‘noisy’ attributes through
the input of random variables throughout the network. Low coupling between the
networks enabled low feedback to occur and therefore diminish the influence of the
three networks onto each other.
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Fig. 3 The simulated EEG of s T T T
the normal state depicted as 5 ; :
the slope of the PSD where
a=-—2.73

log power

Fig. 4 The simulated EEG of 5 : T T
the seizure state depicted as : : 5
the slope of the PSD where
a=-—3.88
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We have utilized the seizure parameterized KIII and incorporate this model into
the KIV model [4]. Due to the increased energy in the theta brain state frequency
range, the calculated alpha value, derived by the slope of the PSD is much steeper
than the alpha value of the PSD of the normal state. The epilepto-genesis created in
the KIII is due to the imbalance of inhibitory nodes/neurons in the delayed feedback
connections of the KIII causing runaway inhibitory behavior.

Figure 3 shows normal simulated normal EEG behavior. Figure 4 displays
abnormal simulated EEG behavior using the KIV model.

3 Results

The PSDs of four human patients EEGs were analyzed to find the differing alpha
values found between the normal and seizure states, as seen in Tables 1 and 2. These
behaviors are modeled in the KIV network. The PSD values found during seizure
activity exhibited high power in both the low and high theta ranges, corresponding
to the 3/s wave that dominated the EEG [6].
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Table 1 PSD- EEG — normal

at Patient 1 (25) Patient 2 (25) Patient 3 (25) Patient 4 (25)
state

Ave 2.38 2.53 2.46 2.51
Std  0.24 0.29 0.25 0.24
Min 2.02 2.01 2.04 2.15
Max 291 293 2.86 2.89

Table 2 PSD-EEG - seizure

at Patient 1 (25) Patient 2 (25) Patient 3 (25) Patient 4 (25)
state

Ave 3.65 3.68 3.72 3.64
Std  0.16 0.14 0.11 0.10
Min 3.41 3.39 3.54 3.42
Max 3.89 391 3.88 3.81

Table 3 PSD-KIV — normal

AL (25) A2(25) A3(25) A4(25) A5(25)
state

Ave 240 2.40 2.50 2.67 2.70
Std 0.28 0.26 0.24 0.22 0.16
Min  2.04 2.06 2.12 2.32 2.41
Max 2.86 2.88 2.92 2.95 2.96

Table 4 PSD-KIV —

Al (25) A2(25) A3(@25 A4Q25 A5Q2)5)
abnormal state

Ave  3.61 3.65 3.74 3.77 3.77
Std 0.18 0.17 0.13 0.11 0.11
Min  3.31 3.33 3.44 3.57 3.60
Max 3.96 391 3.95 3.97 3.98

Additionally, the KIV normal and seizure state exhibited the same alpha value
range. The role of noise in the KIV is illustrated in Table 3 and 4 Five simulated
patients are constructed through the KIV by varying the levels of noise throughout
the KIV by 5%, whereas patient Al is a KIV with full input noise, and patient
A5 has 20% less noise than Al. Noise is applied to the external input I(t) of the
second order ODE of the KO set. These simulated ‘patient” EEGs illustrate how
noise affects the alpha values collected from their respective EEGs. The lessening
of noise from patient Al to A5 seems to increase the PSD alpha values from the
normal to abnormal KIV time series. The rise of PSD values found in the theta
frequency bands of 3-8 Hz causes the slope of the PSD to rise sharply, causing the
higher frequency bands to diminish due to the reduction of noise in the system [9].
Takeshita et al. have proposed that noise is still present in the seizure state as well as
the normal state and may contribute to seizure initiation within neural populations
where transitions between bistable states (epileptic and nonepileptic) are caused by
noise [12].

The simulation using noise in the KIV requires temporal filtering to give 1/f
amplitude spectra of temporal frequencies. This method of simulation is based on
the premise that EEG activity is due to near-white noise generated by immense
numbers of interacting pyramidal cells, whose activity episodically undergoes
transient increases in spatial coherence [5]. Noteworthy are the steepened slope of
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Tta:"e S PSD - KIV restored AL (25) A2(25 A3(25) A4(25) AS5(25)

state Ave 247 252 261 2.69 277
Sed 0.8 0.17 0.17 0.17 0.16
Min  2.13 2.17 2.8 236 2.44
Max  2.65 270 2.78 2.89 2.95

1/£ PSD in the seizure state compared with the normal EEG state, which is simulated
in the KIV model. PSD values found during the EEG time series and the simulated
EEG time series exhibit low standard deviation during the seizure states per patient.
This activity may be due to the entrainment of large scale neural population whose
power per frequency is limited to the theta range. High theta activity causes the
slope of the PSD to rise sharply, and diminishes any other brain activity state, i.e.,
the carrier wave in the rest state, active state and sleep state which seems to be
diminished or lost during the seizure [6].

Additionally, KIV network is able to simulate behavior characteristic to the so-
called ‘restoration’ state that mimics the external stimulation of the VNS therapy
onto the brain to restore the effects of the seizure state back to the brain’s normal
neural chaotic behavior. The ‘seizure to restore’ state is accomplished through the
input of Brain Stimulator Interface (BSI) object. The de-synchronizing external
signal is a KII signal with the original internal node values. In this manner, we
are adding a KII network to the KIV network to overcome the semi-periodic neural
abnormal firings of an ‘abnormal firing” KII network due to runaway inhibitory
neuron hyper-excitation. The KII object also consists of an amplitude reduction
signal which is a sample of the seizure state time period increased by 1%. The
BSI added input restore the signal back to its normal state (Table 5). This technique
mirrors the approach from Tsakalis [11] Decoupling Control mechanism.

The previous PSD values show that the restoration state also exhibits small
standard deviation across the simulated patient EEGs, while maintaining the alpha
range of 2-3. The external signal that restores the KIV model back to its initial
state causes the runaway inhibitory signal to become ‘rebalanced’, since the external
signal may provide the excitatory signal needed to restore the signal.

4 Discussions

Measurement of the slope of the PSD of human EEG data provides o values in the
range of 2-3 for normal brain states, and values approaching four near the seizure
location. Changes of the power law index alpha values are successfully modeled by
the KIV network. Injection of KII object as a BSI object onto the simulated seizure
state restores the normal simulated EEG state, which is of potential modeling benefit
to titration therapies.
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Infant’s Primitive Walking Reflex
from the Perspective of Learning in the Uterus

Hiroki Mori and Yasuo Kuniyoshi

Abstract Recently, researchers have found that preterm infants’ walking starts later
than term infants, epidemiologically. In previous study, we have discussed about
fetal development in uterus from a perspective of learning and self-organization in
the uterine environment and hypothesized that the fetal experience affects an infant’s
walking ability because fetuses learn reflexive alternating foot stepping relative to
primitive walking. We conducted a fetal development simulation and analyzed the
feet trajectories by canonical correlation analysis to detect legs’ alternating coordi-
nated movements. The results of the analysis show the appearance of alternating feet
movements through the uterine experience. Finally, we conducted primitive walking
experiments out of the uterine environment with learned neural connectivity and
random neural connectivity. In conclusion, the behavior such as primitive walking
is acquired through the uterine experience in the simulation and we show the
possibility that uterine experience contributes to walking development after birth.

1 Introduction

Even just after birth, term infants can perform walking-like leg movements when
one holds them to stand on a floor. Researchers have considered that the reflexive
leg movements, which are called walking reflex or primitive walking, facilitate
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the development of walking. Thelen and Smith had implied that infants’ nervous
system for walking does not disappear, based on results from a primitive walking
experiment in water with 2 months old infants, which do not perform walking reflex
above ground. They concluded that the stepping behavior at birth continuously
contributes to walking development around 1 year old of age.

A recent epidemiological study revealed delay in the walking development of
preterm infants. According to Jeng et al. [1], preterm infants start to stand and walk
2 months later than term infants do, on average. We have discussed the effects of
fetal experiences in the uterus for fetal motor development from the perspective
of the self-organization of dynamical system of the nervous system, the body, and
the uterus, based on a whole body fetal computer simulation. From that aspect, we
considered that the duration of the fetal experience in the uterus affects walking
development after birth.

In this research, we proposed the scenario of shaping the reflex neural circuit for
primitive walking through experience in uterus and the proposal was examined by a
computer simulation of a fetal whole body muscloskeletal model and a spinobulbar
system with tactile cells.

2 Methods

To study fetal sensori-motor development, we previously developed a fetal whole
body muscloskeletal model (Fig. 1) with 198 muscles, 22 joints, 1,542 tactile cells,
an uterine wall and amniotic fluid [2]. The distribution of the tactile cells depends
on two-point discrimination lengths, so there are many cells on the face, the hands
and the feet whereas there are fewer cells on the arms, the thighs, calfs and the body
trunk (Fig.2).

The spinal cord model, including inter-neurons, & motor neurons and y motor
neurons, is based on He et al. [3] while a neural oscillator model, modeling neurons
in medulla to generate general movements [4], is based on Asai et al. [6]. The neural
oscillator is embedded in a one-to-one manner for each muscle, implementing a
Coupled Chaotic System [5].

The proposed nervous system is illustrated in Fig. 3. The nervous system model
has totally-coupled connectivity from tactile cells to the o motor neurons and
the neuronal oscillators. The connectivity weights from the tactile cells to the
motor neurons change depending on a modified Hebbian learning (Covariance
rule) [8].

In previous work, we proposed a scenario that fetal motor developments,
including isolated arm/leg movements and hand/face contacts [7], emerges from
tactile experiences with complex and smooth movements, which are regarded as
general movements [2]. The scenario had been validated based on the fetal computer
simulation. In this paper, we hypothesized the scenario that stepping behaviors
emerge from an interaction between leg movements and the uterine response
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Fig. 1 A fetal whole body
simulation with uterus

Tactile points on right or left side
(Whole tactile points: 1542)

Head| Neck| Chest|{Abdomen| Hip
365| 6 32 45 22

Shoulder |Upper arm | Forearm | Hand hg il
3 WYy
15 17 14 173 | 3% 42 ¢s 24
B 8 )
Thigh |Calf |Foot >y L
g S €4,

22 17 | 43 g-,’ '-,y

Fig. 2 A simulation model of fetus with tactile cells

through tactile signals before birth, and from an interaction between leg movements
and the floor response through tactile signals after birth, since a little biased tactile
pattern on right or left foot due to the body trunk’s squirm and kicking womb is
gradually strengthened by Hebbian learning in the uterus.
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To validate our scenario in which the fetal experiences facilitate the construction
of the neuronal circuit to induce primitive walking, we conducted the fetal computer
simulation in uterus with learning for 10,0005, and primitive walking experiments
on a floor without learning for 1,000 s with the following three conditions.

1. Randomized(initial) connectivity, on the floor.
2. Learned connectivity, above the floor.
3. Learned connectivity, on the floor.

Condition 1. corresponds to preterm infants without the experience in uterus.
Condition 2. corresponds to term infants without interaction with the environment.
Condition 3. corresponds to term infants with environment interaction experience.

The result is analyzed by three aspects. One of them is correlation of distances
between both fetal model’s feet and its groin. The feet perform stepping movements
if the correlation was a negative value. The second is the weight from the feet to the
motor neurons which indicate the effect of tactile signals for the behavior. Finally,
canonical correlation analysis (CCA) is used to detect the most coordinated feet
movement patterns as the first canonical vectors.

3 Results

In the fetal simulation experiment in the uterus model, the leg movements gradually
change from random to alternating or stepping, qualitatively.

For the quantitative account, the change of correlation between both feet is
illustrated in Fig. 4. The result indicates the stepping behavior increases while the
value became negative by 10,000s.

The weights from tactile cells on both feet to o motor neurons for muscles in
both legs at 10,0005 is displayed in Fig. 5 The weight values to the right and the left
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Fig. 5 The weight of connectivity from foot tactile cells to leg muscles

leg muscles are inverted, which means that the neuronal circuit induces alternating
leg movements by inverted signals to muscles in the right and the left leg through
tactile signals.

To demonstrate the most coordinated leg movement pattern, the results of CCA at
the first 1,000 and the last 1,000s of the simulation are displayed in Figs. 6 and 7.
The canonical correlation increases along with the increase of experience in uterus.
The first canonical vectors change from simultaneous forward or backward kicking
Fig. 7a to stepping to right or left Fig. 7b.

After the learning period, the fetal model was located on the floor without the
uterine model. In Condition 1 (Fig. 8a) and Condition 2 (Fig. 8b), the leg movements
did not perform stepping movements. In Condition 3 (Fig. 8c), the leg movements
perform stepping movements which are similar to primitive walking by term infants.

Finally, we show the appearance of the primitive walking experiment in Condi-
tion 3 in Fig.9. The fetal model appears to move right and left legs alternatively,
such as primitive walking by real infants.
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Fig. 9 Primitive walking experiment with neural connectivity experienced in uterus

4 Discussion

The traditional perspective of development is that human development is scheduled
along with a built-in time clock, whereas the traditional perspective of learning,
such as reinforcement learning, is that learning is adapted to only a certain purpose
in the here and now. However, we do not think that the above two perspectives can
describe the human development efficiently.

According to the computer simulation in this paper, fetal intrauterine experiences
do not only shape intrauterine behavioral development but also primitive walking on
the ground, which contributes to walking development after birth. It is plausible that
the structure of a body and a nervous system under a dynamics for cognition and
behaviors is shaped (or prepared) through the interaction among the nervous system,
the body, and the surrounding environment in a self-organizing way before a certain
cognitive or behavioral development appear. This concept for human development
is similar to “pre-adaptation” in the field of evolutional study.

It is problem that the simulation duration, which is 10,000s, is too short to
validate the model to explain the real fetal developments. An simple way to solve
the problem is that the gain from merkel cells to motor neurons and the learning
coefficient are identified from observation data of fetal behaviors. Finally, we should
execute “lifelong” simulations with realistic parameters.

We believe that this scenario contributes to novel therapy methods for preterm
infants to help with their walking development.
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Socially Developmental Robot based on
Self-Induced Contingency with Multi Latencies

Hidenobu Sumioka, Yuichiro Yoshikawa, Masanori Morizono,
and Minoru Asada

Abstract Early social development is a process that a human infant and his/her
caregiver adapt to each other. This paper presents a learning mechanism to find
the contingency of human-robot interaction in the real world, which is intended to
enable similar process to the mutual adaptation in the infant-caregiver interactions.
A contingency measure based on information theory is applied not only to acquire
behavior rules but also to find suitable latency to observe the found contingency.
Experimental results show that a robot can acquire a series of social behavior such as
gaze following and utterance to a human subject through 20 min interaction. Mutual
adaptation between them is discussed in terms of transition and synchronization of
their behavior, based on the analysis of the interaction data.
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1 Introduction

Human infants acquire a variety of social behavior and gradually socialize through
various interactions with their caregivers [1]. For example, they become to follow
the gaze of an adult and then begin to show gaze alternation, i.e., successive looking
between a caregiver and an object, and pointing. However, it remains unclear how
these abilities are acquired through multimodal sensorimotor association with their
caregivers.

When we try to understand such a learning process, we need to consider not
only the information processing for learning in an infant but also dynamics of the
interaction with a caregiver because the caregiver adapts himself/herself to infant
development. In other words, it is necessary to model mutual adaptation of dynamics
among cognition and actions of both an infant and a caregiver. However, it seems
difficult to study such adaptation and to understand how an infant adapts itself to its
caregiver. A simple computational model might miss key elements such as response
time to a caregiver.

We approach to reveal a basic mechanism underlying the dynamics of early social
development from a viewpoint of the cognitive developmental robotics [2]. As a
learning principle of an infant, we focus on contingency that refers to a rule of
environmental changes caused by a certain action given a certain context. Finding
contingencies in the interaction with another person is supposed to be the most
fundamental for early social development [3]. Synthetic studies have reported that
such ability allows a robot to acquire a social skill such as gaze following [4] and
detection of responses from another person [5]. Although some mechanisms based
on contingency or similar principles have been proposed for learning several motor
skills or social ones [6—8], computation time was unrealistic [8] or time interval to
find contingencies in the interactions was fixed [6-8].

In this paper, we build and examine a robot that extracts contingencies from the
interaction with a person and utilizes them as behavior rules for realizing mutual
adaptation with the person. A contingency measure proposed in [8] is applied not
only to find the behavior rules but also to improve them online in order to refine the
robot’s behavior during the interaction. It is also used to find suitable time intervals
between robot’s actions to highlight the found rules. Experimental results show that
a robot can acquire a series of social behavior such as gaze following and utterance
to the human subject through 20 min interaction.

2 Methods

We assume a scene of human-robot interaction where a person sits across from a
robot and tries to teach it colors of objects on a table between them (see Fig. 1). We
also assume that the robot detects the following information: locations of objects,
orientation of the human’s head, human’s utterance, and its own posture. The robot
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Fig. 1 An experimental
setup

executes actions such as gaze shift and vowel utterance. These senses and actions
are represented and processed in a discrete manner. The robot has no knowledge
about relations among them at the beginning.

Let si’ and a;. be a state of sense S; and a motor command for act A; at

time ¢, respectively. Contingency among s;, a;, sf, and s,’fm, is measured as the

reliability of the transition rule from s to s; %' caused by a’; given s;. We refer to
a combination (Sk|S;, A ;) as an event. The task of the robot is to find several events
with larger expected values of contingencies than other possible events. The found
values are then exploited for learning behavior rules and for tuning time interval Az
between its actions so as to highlight the contingencies.

We use the information theoretic measure proposed by Sumioka et al. [8],
called C-saliency, to evaluate contingencies in each event. C-saliency of an event
(Sk|Si. A;) is given by:

Ci],k = T(s,-,A,-)—>S,c - (TSi—>Sk + TA,/—>Sk)

t t t+At t t t
= E P(Skssi) 2 : e(sk A |Skssi)s
Si[’SI[c St+At’at.

J

where Ty _, x shows transfer entropy [9] representing the dependency of a process X

on a process Y, and e(s,’{+A’ , a;. | s;.5!), called an element of C-saliency, indicates
the reliability of the contingency among sj T/, st, aj, and si. A behavior rule is

defined as selecting an action with the highest element of C-saliency.

The robot incrementally acquires behavior rules based on the extended mech-
anism of the previous method proposed in [8] (Fig.2). The mechanism includes
a prediction evaluator to ignore doubtful behavior rules and a timing adjuster to
tune time interval for each rule to highlight the found contingencies, in addition
to four existing modules: (1) a contingency detector; (2) contingency reproduction
modules (CMs) that output motor commands according to behavior rules; (3)
reactive behavior modules (RMs) that output ones according to pre-defined rules;
and (4) a module selector.

RMs and CMs output motor commands to be executed and the reliability values
that are computed based on elements of C-saliency. The reliabilities are used by the
module selector to decide robot’s actions after they are modified by the prediction
evaluator. The history of the state and the selected motor command are stored with
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Fig. 2 The proposed mechanism

the resultant state in the contingency detector to find a contingent event and to
generate subsequent CM based on it. A behavior rule in the CM is updated online
so that the C-saliency of the contingent event increases, while it was fixed in [8].

Although a robot and its caregiver were assumed to alternately act at a fixed
time interval in the previous model [8], it is not likely in the real world interaction.
The timing adjuster finds an appropriate time interval to observe contingent change
caused by the last action of the robot, based on the prediction of the change. This
module allows the robot to take its next action at different interval.

3 Results

We implemented the proposed mechanism into a humanoid robot and observed
its interaction with a person during about 20 min. In the interaction, the person
responded to its behavior and tried to draw its attention to an object. The robot’s
senses and acts were given and represented by six sensory variables, allowing
the duplicated definitions for the same property, and two action ones: orientation
of person’s head (S)), a state of an object (S,), person’s utterance (S3), person’s
frontal face (S4), person’s profile (Ss), own posture (S¢), gaze shift (A;), vowel
utterance (A4»).
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Fig. 3 Change of robot’s
behavior in face-to-face
interaction. (a) change in
gaze shift (b) change in
utterance. One step in the
horizontal axis indicates an
action selection of the robot.
The vertical one indicates the
moving average of the
occurrence rate of each
behavior among the last 50
steps. The timing of
generating new CMs is shown
as arrows at the top of the
graphs
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The robot was able to acquire various behavior rules with different time intervals,
although their types, orders, and intervals depended on the history of the interaction.
We pick up and analyze a case where it acquired some social skills. Fig. 3 shows the
change of its behavior through the interaction. The robot found a rule in (3|52, 42)
that its utterance to an object causes human’s utterance (U-1) and then often chose
to utter a vowel when looking at an object (green line in Fig. 3b). Then, it become
to often keep its gaze on an object due to the next rule found in (S2|Ss, A1) at G-1
(cyan line in Fig. 3a). After that, the utterance during looking at the person (red line
in Fig. 3b) and shifting its gaze to the person given human utterance (magenta line
in Fig. 3a) increased from U-2 and G-2, respectively. Finally, it became to follow
the person’s gaze by using the rule found in (S,|S}, 4;) at G-3 (red line in Fig. 3a).
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Fig. 4 Examples of probability distributions of the contingent changes observed during 4.5 s after
the last robot’s action. The red and blue lines show the case of contingent change for an object
(G-1) and one for a human (U-1), respectively

An analysis of time intervals found by the robot revealed different tendencies
between events concerning objects and those concerning the person (Fig.4). The
time interval for objects had a peak immediately after the last robot’s action
while one for the person was observed a few seconds later which is considered
to correspond to the duration between a robot’s action and a human response. As
a result, longer interval was observed when a contingent change concerning the
person was expected, compared to one concerning an object.

We observed changes of the dynamics of person’s behavior as well as ones of
the robot (see Fig.5). The person increased the utterance to an object (blue line in
P1 of Fig. 5b) as the robot increased its utterance to an object (green line in P1 of
Fig. 3b). The person’s utterance to the robot was often observed when the robot kept
its gaze on an object (aqua line in P2 of Fig. 3a and red one in P2 of Fig. 5b). When
the robot became to follow the person’s head (red line in P3 of Fig. 3a), the person
often uttered a vowel to an object (blue line in P3 of Fig. 5b). Since the changes in
the person seem to synchronize with ones in the robot, mutual adaptation between
them might cause the transition of interaction patterns.

The synchronization between the person and the robot was also observed in terms
of the timing of their actions. They took actions alternatively as the interaction
develops: the ratio in Fig. 5c approached to one. The time interval between their
actions seemed to get shorter (data not shown).

4 Discussion and Conclusion

The proposed mechanism allowed a robot to acquire a series of social behavior
through interaction with a person. Moreover, mutual adaptation between the person
and the robot was observed in terms of transition and synchronization of their
behavior. Although similar tendencies were observed among some of persons, there
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the horizontal axis shows the robot’s action selection. The vertical one shows the moving average
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was a diversity of their behavior patterns. Further analysis on the influence of
person’s behavior on learning of the robot will shed light on how the behavior of
a caregiver facilitates early social development.

It is noteworthy that the changes in the robot and the person were observed
through the 20 min interaction. By virtue of the shorter time scale necessary for
mutual adaptation, the proposed system is expected to provide a new research field
where early social development can be synthesized and examined through human-
robot interaction.
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On the Brain’s Dynamical Complexity:
Coupling and Causal Influences Across
Spatiotemporal Scales

Emmanuelle Tognoli and J.A. Scott Kelso

Abstract The goal of this paper is to reflect on how neural ensembles affect
one another, that is, to characterize their causal influences. The work is based
on the tenets that function emerges at several levels of organization between
micro- and macro-scale and unfolds on multiple time scales. Such dynamical
context creates the condition for complexity and blurs the classical Shannonian
definition of transmission upon which causality can be unambiguously established.
Our arguments are supported by analysis of models of and empirical support for
spatiotemporally metastable brain dynamics: a scale-independent self-sustained
regime in which integration (tendencies for the parts to act in a coordinated manner)
and segregation (tendencies for independent behavior) are simultaneously realized
in space and time.

1 Introduction

Function is a fundamental concept for biological systems. It rests on two foun-
dations. The first one is coordination between parts of the system. As a matter
of fact, it is difficult to imagine any function produced by just one biological
entity: a single thing “is” but does not “do”. In effect, exchange of information,
energy or matter between parts creates functional coupling or synergies, from which
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function emerges [1]. The second foundation is dynamics: for the system to adapt
to ever changing external and internal milieu, it is proscribed that interactions
between its parts would be fixed. This is most evident when studying the cognitive
brain.If spatiotemporal patterns of brain activity ever freeze rather than perpetually
change, thinking, memory, perception, emotion, action and consciousness vanish
hopelessly. Within the framework of Brain Coordination Dynamics, and its key
concept, metastability [1-3], here we explore how functionally meaningful neural
ensembles influence each other. After a theoretical discussion of concepts (Sect. 2),
we will consider two types of informational paths, that of synaptic coupling of
neurons (Sects. 3 and 4), and that of extracellular neuromodulation of neural
ensembles by global neural fields (Sect. 5).

2 Functional Coupling: Irregular Contours in Space ~ Time

The brain exhibits organized activity at many spatial and temporal scales, in which
neural ensembles couple and uncouple dynamically. This complex spatiotemporal
patterning has been demonstrated empirically, both at rest and during interac-
tion with the environment. The fact that change in spatiotemporal organization
arises spontaneously (and with it, associated itinerancy of the mind) imposes
specific constraints on our theories of the brain: a plausible theory should explain
changing spatiotemporal patterns from within, without resort to inexplicit control
mechanisms, the brain’s deus-ex-machina. Theories have proposed that the brain’s
dynamically coordinated behavior is accomplished under the rule of attractors
[1, 4, 5] or more flexible attractor remnants [1, 3, 6] or both [2]; in the presence of
attractors, spontaneous changes in brain coordination dynamics are obtained from
multistability on one end, and noise (rest) or incoming energy (stimulation) on the
other; in the absence of attractors, spontaneous changes naturally occur as attractor
remnants are successively visited and escaped from. A model of coupled oscillators
that exhibit simultaneous phase-locking (attractors) and metastability (attractor
remnants) is that of Kuramoto and Battogtokh [7]. In this model, oscillators that
do escape phase-locking were initially described as following an “incoherent”
behavior [7]. We have demonstrated that their dynamics exhibited dwell ~ escape
patterns of relative phase behavior that is characteristic of metastability [8]. Study
of this model revealed that integrative tendencies exist within irregular space ~ time
contours (Fig. 1). Over time, larger or smaller ensembles integrate their activity,
and from the complementary spatial standpoint, oscillators join collective behavior
for longer or shorter periods of time. The resulting space-time portrait of this
behavior (in the Minkowski sense) reveals irregular contours: a challenge for
separate spatial or temporal approaches (see boxes, Fig. 1) that if not addressed,
limits our understanding of brain complexity.

By relaxing the constraints on spatial and temporal order simultaneously (Fig. 2),
spatiotemporal metastability also presents the joint possibility for integrative
behavior and information flows. It offers a compromise between two radical views
in which the brain is deemed to function in terms of information propagation (in the
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Fig. 1 From Kuramoto and Battogtokh’s chimera model [7], a space ~ time portrait of integration
is shown. Oscillators are represented on the vertical axis and their partaking in collective behavior
over time (horizontal axis) is encoded following the color scale on the right (integrative tendencies
in yellow; segregative in dark red). Integrative behavior emerges in a space ~ time domain that
has irregular contours (yellow surface) which are not properly captured by techniques that follow
only a spatial or temporal approach: as black rectangles suggest, only a fraction of the integrative
behavior is expressed in such partial approaches, namely those with less complex and dynamical
coordination behavior

Fig. 2 A conceptual view of
the spatial and temporal order
in the behavior of neural
ensembles. Concepts of order
in time (blue, “transfer”’) and
space (red, “‘synchroniza-
tion””) have been most
studied. In their pure form,
each hampers the meaningful
expression of the other.
Complexity lives in the dark
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(spatiotemporal metastability)
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tendencies in space ~ time

orderly

spatiotemporal
metastability

BEHAVOR IN TIME

synchfonizatign

N

disorderly

disorderly BEHAVIOR IN SPACE orderly

strict Shannonian sense) or coupled oscillations [e.g. 1, 4, 5, 9]. Yet, metastability
creates difficulties with the interpretation of the direction of information flow which
emerge at multiple levels of description and become dependent on spatial and
temporal scales, as we further discuss in Sect. 3.

3 Causality in Simple and Complex Systems

Coupling is a concept more akin to spatial order (Sect. 2), whereas causality
relates more closely (albeit not exclusively) to temporal order. In this latter
respect, a substantial part of today’s neuroscience paradigm draws from Shannon’s
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“Mathematical Theory of Communication” (1948) [10]. This seminal paper
describes transfer of information between emitter and receiver in telecommunication
networks, and implies two fundamental boundaries: discrete communication acts,
and well-defined direction for the transfer of information in unique channels.
In a single channel of communication with emitter and receiver as defined by
Shannon [10], to define causality, it suffices to track the temporal ordering of
information to determine the system’s causal flows. The paradigm’s success in
Neuroscience owes much to the fact that it works sufficiently well insofar as
only two brain components are isolated: with their directional interactions, a pair
of neurons immediately comes to mind as an ideal substratum for Shannonian
transmission. Even in a more complicated system composed of multiple components
and reciprocal connectivity, if the system is initially silent and then subjected to
external stimulation, its transmission path(s) can readily be identified. But the
brain as a whole is operating in a self-sustained nonequilibrium regime [1, 6,
11-13], and is not amenable to such formalism: if observed for sufficient time
especially at meso- and macro-levels, it is clear that parts of the brain “talk”
continuously and simultaneously to each other: they are self-organized. When
there is energy input coming in (for instance, a stimulus entering the system
through sensory receptors), what happens is not the recruitment of mute regions
that suddenly enter into action -each at their turn- and return to rest. What happens
instead is that the ongoing coordination is “perturbed” and ripples across the many
spatial and temporal scales at which brain self-organization lives. The “event”
is woven into the brain’s ongoing activity. In this (general) case, causal influences
between brain parts are much less straightforward to define. Since information flows
cannot be described as departure from equilibrium states, well-defined causality is
restricted to narrow spatiotemporal windows in the vicinity of a particular “input” or
“event” (see also fig. 5 from Izhikevich and Edelman [14] for related account). And
because observation windows are finite, empirical quantifications of information
flows are restricted: lack of information about the system’s past prevents accurate
characterization of ongoing dynamics and its coupling with incoming information
(see Sect. 4).

4 Entangled Precedence

We have argued that spatiotemporal metastability prevents stagnation of information
flow, while simultaneously allowing for collective (coordinated) behavior (Fig. 2).
The challenge becomes to determine which brain parts influence which others,
through space and time, and across their respective scales of observation (Fig. 3).
When emitter and receiver are not a priori defined, a useful concept is that of
precedence (Sect. 3). However, even in the simpler case of the resting brain
transiently removed from external input, its intrinsic dynamics includes continuous
exchange of information between the parts (A-causes-B-causes-A . ..), and salient
“causes” to any neural event exist at multiple times in the history of the system’s
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Fig. 3 Functional nodes across spatial scales shown at two successive time points t and t+1:
the dendrograms link microscopic parts (bottom) according to their momentary coupling. Every
node influences every other at all times, with a finite strength k(iy;,j;). A few nodes are marked
to exemplify upward and downward causation (e.g. influence of B on C, and vice-versa),
instantaneous (e.g. A on B) and delayed (D on E) causality. An important challenge is to discover
key causal nodes in this system: which set of relationship is strongest across spatial scales, within
and across time [15]

self-organized dynamics: causes are entangled over continuous and reciprocal
information exchange. To understand spatiotemporal influences between brain
parts requires one to confront this “entangled precedence”: that is, to incorporate
precedence and causality from Shannonian systems (Sect. 3) with ongoing coupling
expressed at multiple time scales (Sect. 2), which, under metastable regimes of
coordination, fluctuates over time.

Rather than attempting to identify causality in a time-independent manner, a
solution consists of quantifying its manifold expression across temporal and spatial
scales (which are interrelated: see e.g. Fig. 1). Figure 3 shows a dendrogram that
clusters phase similarity of neural ensembles over spatial scales at different times.
Each node of the dendrogram speaks of a transient neural ensemble, which exerts
a finite influence k on each of the other nodes. The strongest directional couplings
between pairs of nodes in the system reveal key causal relationships.

S Beyond Synapses: Dendritic Sensing
of the Extracellular Field

So far, we have only explored (slow) information exchange via synaptic coupling.
This scheme of information exchange suffers delays of several tens of milliseconds
for the communication of information between most distant neural groups. Dendritic
trees however are exposed to two types of information: that delivered through their
synaptic contacts and that due to local fluctuations in the ionic composition of extra-
cellular space. This raises the theoretical possibility that neurons attune themselves
to specific aspects of extracellular fields, using their spatially extended dendritic
branches to appreciate extracellular gradients and to sense the global patterning of
the brain near-instantaneously. According to this suggested mechanism, the brain
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would be endowed with two ways to exchange information, one global and fast, the
other local or selective and slow. Such a mechanism could have a profound impact
on the definition and quantification of coupling and causality in the brain.

6 Conclusion

Identifying information flows in the brain constitutes an important challenge with
significant consequences: for instance, with such knowledge, ideal functional nodes
for therapeutic intervention could be discovered and operationalized. We have
stressed that brain complexity constitutes an obstacle to the unambiguous and
unique definition of causal paths in the brain. We discussed whether causality : (1)
is uniquely defined by the structural network; (2) is context-dependent; (3) flows
in an identical manner across spatial scales of description; and (4) is expressed
in a similar manner across different temporal scales. These considerations point
toward the importance of spatiotemporally metastable dynamics for understanding
the workings of the brain.
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Formulating a Cognitive Branching Task
by MTRNN: A Robotic Neuroscience
Experiments to Simulate the PFC

and Its Neighboring Regions

Fady Alnajjar, Yuichi Yamashita, and Jun Tani

Abstract The foremost objective of our research series is to construct a neuro-
computational model that aims to achieve a Large-Scale Brain Network (LSBN),
and to offer a better insight of how the macro-level anatomical structures, such
as the connectivity between the frontal lobe regions and their dynamic properties,
can be self-organized to obtain the higher order cognitive mechanisms. To address
this issue, this paper focuses in proposing a model that intends to understand the
mechanisms underlying the cognitive branching function, a higher order cognitive
mechanism, in which a delaying to the execution of an original task occurs until the
completion of a subordinate task. The model is constructed by a hierarchical Multi-
Timescale Recurrent Neural Network (MTRNN) and conducted on a humanoid
robot in a physical environment. Experimental results suggest possible neural
activities and network’s layout at the investigated regions that act as an important
factor to accomplish such a task.

1 Introduction

Defining the functional organization of the frontal lobes and its neighboring regions
in the human brain remains a significant challenge for cognitive neuroscience. The
importance of such areas is its responsibility to operate higher cognitive functions
and controls [1]. Although many studies have provided various assumptions of
how the neurons on the frontal cortex are organized, connected, functioning and/or
communicating, through neuropsychological, and neuroimaging studies [1, 2], these
assumptions are still in a very abstract level [1]. The common argument is mainly
that the frontal regions along the rostro-caudal axis interact with one another

F. Alnajjar (><) * Y. Yamashita ¢ J. Tani

Lab. for Behavior and Dynamic Cognition, RIKEN Brain Science Institute,
Saitama 351-0198, Japan

e-mail: fady @brain.riken.jp; yamay @brain.riken.jp; tani @brain.riken.jp

Y. Yamaguchi (ed.), Advances in Cognitive Neurodynamics (II), 267
DOI 10.1007/978-94-007-4792-0_36,
© Springer Science+Business Media Dordrecht 2013



268 F. Alnajjar et al.

hierarchically [3]. The more anterior regions on the brain influence processing
in the more-posterior regions to a greater extent than vice versa. Although this
issue has been so far generally formulated in phenomenological terms, their
functional organization remains controversial. The question is how such hierarchal
connectivity between the frontal lobes and the dynamic properties of each of its
local region, can be self-organized to obtain the higher order cognitive mechanisms,
such as planning, reasoning, cognitive branching, etc.

Neurocomputational models attempt to establish detailed links between biology
and cognition in a way that is consistent with established neural information
processing principles. Their main advantages are being able to describe functional
principles of how the simulated neural system in the brain operates in a relatively
comprehensible set of equations, which makes it a powerful tool for studying
mechanisms of neural systems. MTRNN model has been considered as a suitable
candidate to simulate, to some extent, the brain activities [3]. It has been proven to
achieve the function hierarchy through a form of self-organization that is not only
based on the spatial connection between neurons but also on multi distinct types of
neuron activities, each with different time properties. Through such various neuron
activities, continuous sequences of any set of behavior are segmented into reusable
primitives which in turn are flexibly integrated into diverse sequential behaviors.
The biological observation of such a type of hierarchy has been discussed in details
by Badre [1], who suggested that levels of abstraction might gradually reduce along
the rostro-caudal axis in the frontal cortex of the monkey and human brain. Others
have also addressed that the rostral part is considered to be more integrative in
processing information than the caudal part due to its slower timescale dynamics,
which result in such a formation of functional hierarchy in the frontal cortex.

The purpose of this paper, therefore, is to construct a neurocomputational model
of the frontal lobes based on anatomical and functional image data collected from
the brain of monkey and human [1, 2]. The proposed model will aim to pave
the way to achieve a large-scale brain network, and to offer a better insight of
how macro-level anatomical structures can be self-organized to obtain the higher
order cognitive mechanisms. More precisely, we are trying to understand how the
dorsolateral prefrontal cortex (BA9/46) with its neighboring regions, such as the
lateral frontopolar cortex (BA10), the premotor cortex (BA8&6), and the primary
motor cortex (BA4) are structured and linked to ruling the cognitive branching task,
in particular (Fig. 1a).

The validity of the resulted model is examined and analyzed through a variety
of robotic experiments. We believe that this proposed study can be considered as
a joint research between the synthetic and the empirical studies, which can open a
new era for better understanding of brain mechanisms.
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Fig. 1 (a) Anatomical sites of area of focus on the human brain. (b) The proposed MTRNN model

2 Methods

2.1 Task Design

A small humanoid robot was used in the role of a physical body interacting with
the actual environment Fig. 2. The robot was fixed to a stand, with tasks involving
movement of the head and the right arm of the robot. The arm moves with 4° of
freedom m7 (4 dimensional vectors representing the angles of the arm joints), and
the head motor moves with 2° of freedom s (2 dimensional vectors representing
the stimulus position (a red mark)). The joints of the robot have rotation ranges
which are mapped to values [0.0 ~ 1.0]. Encoder values of these arm joint sensors
are received as the current proprioceptive sensory feedback and sent to the network.
A vision system mounted on the robot’s head was programmed to locate a red mark
on the workspace. The direction of the robot’s head, indicated by encoder values
of two neck joints, expressed the object position in the visual field relative to the
robot. This relative location of the object was treated as visual input to the system
to observe the stimulus status.
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Fig. 2 The workspace and the robot tasks

For the workspace, a workbench was set up in front of the robot. A sheet of a
white paper, which shows four numbers and moveable red mark, was placed on the
workbench to conduct the experiment Fig. 2. The robot’s task was to autonomously
reproduce a cognitive branching behavior: (1) Start an original task: dialing a certain
sequence of numbers by clicking on these numbers using its right arm index finger
whenever the red mark is replaced on the initial position. (2) When an external
stimulus appears, i.e. the red mark is placed to one of the interruption positions (I1,
12, 13), the robot should suspend working on its original task until accomplishing the
interruption subtask (clicking directly on the red mark). (3) When the red mark is
returned to its initial position, which is a Go-Back signal, the robot should resume its
outstanding original task starting always from the arm in its Home-Position (Fig. 2).

2.2 System Overview

The main component of the current model is borrowed from a Continuous Time
RNN (CTRNN) [4]. CTRNN is a type of RNN that implements a feature of
biological neurons, thus the activities of neurons are determined not only by the
current synaptic inputs but also by the history of neural states. Due to these
characteristics, CTRNN can reproduce complex dynamics, and continuous sensori-
motor sequences.

To construct a hierarchy structure of CTRNN, we adopted the model of the
MTRNN (Fig. 1b). The functional hierarchy in MTRNN is made possible through
the use of three distinct types of neurons, each with different temporal properties.
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The first type of neurons is the “fast” unit, whose activity change quickly over the
short term. The second type of neurons is the “mid” unit, whose activity change over
time between the fast and the slow unit, which in turn represents the third type of
neurons “slow unit”.

In the model, inputs to the system were the proprioception m; and the vision
sense s7. Based on the current m’ and s7, the model generated predictions of
proprioception m,4; for the next time step (vision is not predictable since it is
randomly occurring). The prediction of the proprioception m,4; was then sent to
the robot in the form of target joint angles, which acted as motor commands for
the robot in generating movements and interacting with the environment. For the
initial teaching signal, the experimenter guided the robot’s right hand along the
trajectory of each task sequences. These trajectories were then recorded and used,
in an off-line manner, as teaching sequences to the model using the conventional
Back-Propagation Through Time (BPTT). The learning target was to find optimal
values of synaptic weights that minimizing the error between teaching sequences
and the model output.

Neural activity in the model can be described by the following differential
equation [3]:

Tiltiy = —Ui; + Zwijxj,t (1)
J

where u;; is the membrane potential, x;; is the neural state of the ith unit, and w;;
is synaptic weight from the jth unit to the ith unit. The second term of the equation
corresponds to synaptic inputs to the izh unit. The time constant t is defined as
the decay rate of the unit’s membrane potential, analogous to the leak current of
membrane potential in real neurons. When the t value is large, the activation of the
unit changes slowly, because the internal state potential is strongly affected by the
history of the unit’s potential. On the other hand, when the t value of a unit is small,
the effect of the history of the unit’s potential is also small, and thus it is possible
for activation of the unit to change quickly.

The network that was used in the current model consisted of input-output and a
context unit. Context unit was divided into three groups based on the value of time
constant 7. The overall connection between the units in the model is as shown in
Fig. 1b. The setting of neuron initial states are self-organized through the learning
process [5], thus the initial values which correspond to the same behavior are very
close to each other in the state space of initial values.

2.3 Training

Through the training process, the network learns gradually to predict the motor
feedback for the next time step. After teaching the network in a closed-loop manner,
the robot in turn will be able to reproduce the learned movements.
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Fig. 3 Example of behavior sequences for (a) multi task TA with an interruption (I;), (b)
multi TB with I}, and (¢) multi TA with I; (different initial synaptic weights). The trained
networks reproduced target behavior sequence successfully (teach mode = trained network output
(simulation mode)). In this example, fast-unit (t = 3), mid-unit (t = 8), and slow unit (t = 40).
Due to different initial synaptic weights, different neural representations that can affect long-term
memory stability have been observed during the experiments

Three learning trials were conducted with randomized initial synaptic weights.
Optimal trained weights were then tested through the interaction of the robot in
the simulation and the physical environment. Figure 3 illustrates an example of the
trained model generated by mental simulation while performing Task A and Task B.
In our experiment, both in mental simulation and in the actual robot interacting
with a physical environment, the trained network reproduced the desired behavior
successfully.

2.4 Results

In the first example, Fig. 3a and b, when the robot reproduces the movements of a
task, the slow context unit changes gradually and systematically without showing
the details of the motor moving patterns (represents a very abstract manner).
Accordingly, no significant discrimination between the original and the interruption
task can be observed in this unit.

The mid-unit, in contrast, shows better the distinction between these tasks. The
repetitions of similar patterns, e.g., click 1, click 2, etc., are also observed partially
in the mid-unit activities, and in more details in the fast-unit (results are not shown).
These results suggest that the robot, in this example, has indeed encoded the memory
of the original task in the slow unit, forming a role similar to that of the parametric
bias [3]. Such a memory formation build a static-type memory, which helped the
robot to have stability when dealing with a multi and/or long term interruption task,
as has been experimentally observed.

In the second example, Fig. 3¢, on the other hand, the slow context unit seems to
be much involved in encoding both the original and the interruption tasks, which
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in turn leads to form a dynamic-type memory that decreases the robot memory
stability. If the interruption task occurs for a longer period, for instance, all the
units, including the slow unit, will gradually tuned to fit with the interruption task
making returning to the original task impossible. This phenomenon has also been
experimentally observed.

3 Conclusions and Future Directions

In this study, the proposed model successfully situated itself to perform properly
the desired behavior; suspending an original task up to the time of the completion
of the extraneous subtask. The result analyses outlined how both the mid- and the
slow units could work to form the memory by delaying the outstanding task. The
memory formation (static or dynamic), however, seems to be highly affected by
the randomized initial synaptic weights. From the results, we believe that this work
could contribute as a possible neural implementation for a better insight of how
macro-level anatomical nodes in the frontal lobe are dynamically structured and
organized to obtain such a higher order cognitive mechanism. An important issue
for the future directions will be to scale both the model and the task into a further
complex level: as for the model, it is important to look at the direction and the
strength of connection between the local units. While as for the task, we are planning
to conduct an additional switching task and compare between its neural dynamics
and the reported dynamics from the current task. It will be also interesting to try to
enhance the interruption task to occur not only in the HP period but also in between
the task sequences itself.

Acknowledgments Use of the robot was made possible through a collaboration with SONY
Corporation.
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Neurodynamical Account for Altered Awareness
of Action in Schizophrenia: A Synthetic
Neuro-Robotic Study

Yuichi Yamashita and Jun Tani

Abstract We hypothesize that altered awareness of action in schizophrenia may
arise from disturbance of the forward model originating in functional disconnection
in a hierarchical neural network. The proposed idea was tested through a neuro-
robotic experiment using a hierarchical neural network model connected to a
humanoid robot interacting with a physical environment. The results demonstrate
that not only top-down forward dynamics, but also bottom-up regression processes
driven by prediction error are important mechanisms for flexible adaptation to
unpredictable changes in environment. In the simulated functional disconnection, in
contrast to the normal condition, it turns out that this bottom-up regression process
generates unnecessary modulatory signals which may induce altered awareness of
action in patients. These results suggest that the proposed hypothesis may provide
novel insight for understanding the pathological mechanisms of schizophrenia.

Keywords Prediction error ¢ Neural networks ¢ Hierarchy ¢ Disconnection ¢
Motor control

1 Introduction

It is generally thought that complex and diverse behavior of animals result from
functional hierarchy of the neural systems [1, 2]. In such hierarchical neural
systems, fop-down and bottom-up interactions play an important role for flexible
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adaptation to the environment. For example, in a cognitive task such as the
Wisconsin card sorting test, a subject selects a response based on an internally
represented task context (i.e. a current appropriate matching rule) in a top-down
manner. During the course of the test, the matching rules could be switched by
the experimenter with unpredictable timing, resulting in a discrepancy between
top-down prediction and the actual feedback. Based on this discrepancy signal,
the task context should be modulated so as to match with the current appropriate
rule (bottom-up regression). This interaction between top-down and bottom-up
processes in a hierarchical network could allow animals to produce skillful behavior
and to achieve flexible adaptation to changes in environment.

However the underlying neural mechanisms governing the interactions between
top-down and bottom-up processes in hierarchical neural systems have not yet been
clarified. In the previous studies, Tani [3] showed that a robot can produce adaptive
behavior through the top-down prediction and bottom-up regression processes
using a simple computational principle of minimizing prediction error. Based on
a similar idea of minimizing prediction error, but using a statistical formulation,
Friston [4] also proposed a computational model as a general principle of brain
functions. In the current study, we test these hypotheses through examining a
pathological symptom of neuropsychiatric disease as a failure in the interaction
of top-down and bottom-up processes in hierarchical neural systems. Specifically,
we focus on a symptom of altered awareness of action (delusion of control) in
schizophrenia.

Delusion of control is one of the characteristic symptoms of schizophrenia, where
a patient feels that his actions are generated not by himself but by some outside
force, even though his action itself is basically intact. Some biological observations
suggest that delusion of control is associated with abnormal functionalities in the
prefrontal cortex and the parietal cortex [5]. However, there is little evidence for
the anatomical abnormalities in those local regions. Based on this fact, Friston
proposed a hypothesis that basic pathology of schizophrenia may be associated
with functional disconnectivity between prefrontal and posterior brain regions (i.e.
“disconnectivity syndrome hypothesis” [6]).

This pathological phenomenon is also considered from the aspect of motor
control theory. Frith [7] hypothesized that delusion of control arises due to a failure
to form the sensory prediction of action (“forward model hypothesis™). According
to this hypothesis, the sense of agency (awareness that one executes and controls
one’s own action) is based on the sensory attenuation which occurs when the
forward prediction of action consequences matches the actual sensory feedback. In
schizophrenic patients, due to the impairment of forward model, mismatch between
the forward prediction and actual sensory feedback would arise. As a result, altered
awareness of action may be induced, even though patient’s action itself is intact [7].

In the current study, we unite these two lines of theory. We hypothesize that
delusion of control may arise from disturbance of the forward model originating
in functional disconnectivity in a hierarchical network. In order to test this idea,
we developed a hierarchical neural network model connected to a humanoid robot
interacting with a physical environment.
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2  Methods

The task for the robot was to repeatedly reproduce the following series of sequential
behavior associated with positioning an object: (1) move the object up and down
three times at the position L, (2) move the object from the position L to the
position R, (3) move the object left and right three times at the position R, (4)
move the object from the position R to the position L. This sequence is described
by the state transition diagram in Fig. la. In addition to producing the periodic
behavior sequences, the robot was also required to adapt to unpredictable sensory
perturbation. Specifically, during execution of task behavior, the position of the
object was switched by an experimenter with unpredictable timing.

Figure 1b shows an overview of the system. Inputs to the system were the
proprioception and the vision senses. Based on the current input, the system
generates predictions of proprioception and the vision senses for the next time step.
The forward prediction of the proprioception was sent to the robot in the form of
target joint angles, which acted as motor commands for the robot in generating
movements.

The main component of the system was modeled by a “multiple timescale
recurrent neural network (MTRNN)” [2] which is a type of a continuous time
recurrent neural network. The model of neurons is a conventional firing rate model,
in which each unit’s activity represents the average firing rate over a group of
neurons. The continuous time characteristics of the MTRNN are described as
follows,

Tiltiy = —Ui; + Zwijxj,t (1)
J

where u;, is the membrane potential and x;, is neural state of the ith unit at time 7.
The MTRNN is made up of two different types (fast and slow) of context units,
each type with its own distinct time constant t (multiple timescale). Through the
introduction of the multiple timescales, functional hierarchy, within which the slow
units represents task context states as a higher level and the fast units represents
sensori-motor interaction as a lower level, can be self-organized [2].
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Fig. 1 (a) Robot task and (b) system overview
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A network was trained by means of supervised learning (back-propagation
through time algorithm (BPTT)) using teaching sequences obtained through tutoring
by the experimenter. The objective of training was to find optimal values of
connective weights minimizing sensory prediction error.

In order to achieve quick adaptation to environmental changes, we also
introduced a bottom-up regression process [3], in which task context states were
modulated so as to minimize prediction error (Fig. 1b). In the current model,
we introduced conflict resolver (CR) units which modulate activities of the slow
context through the bottom-up regression process. The role of CR units is similar
to a “parametric bias” [3], in the sense that activity of the CR unit can be modified
only through the regression process, not by external inputs. Update of CR activity
is calculated as follows,

) @)

where pe, is prediction error within time window [ at time step ¢, error is determined
as a KL-divergence between the prediction of the network y, and actual feedback
¥:. Membrane potential of the CR unit is updated in a direction opposite to that of
the gradient dpe/du, which is calculated using BPTT algorithm. Interested readers
could find details of the calculation as described in our previous work [3].

In order to simulate disconnection syndrome, connective weights between the
slow (task context level) and fast (sensori-motor level) context units were slightly
modified by adding random noise.

t A
b= 30 3 atog
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3 Results

As a result of training, the proposed network successfully reproduced learned
task behavior with the interaction of robot’s body and a physical environment.
Moreover, the robot successfully adapted to unpredictable sensory perturbation,
through the bottom-up modulation of task context. Figure 2 illustrates an example of
sensori-motor sequences and changes in the activities of the trained network during
robot’s task execution. Due to the unpredictable switch of the object’s position,
prediction error was temporally increased. This increase of prediction error induced
the activation of CR units resulting in the modulation of task contexts represented
in the slow units.

In the simulation of disconnection syndrome, despite no external sensory pertur-
bation, intermittent increases of the prediction error were observed (Fig. 3). This
indicates that functional disconnection in a hierarchical network led to impairment
of forward prediction. However, the increase in prediction error induced the acti-
vation of CR units resulting in the context states of the higher level of the network
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Fig. 2 Example of behavior sequence with sensory perturbation by experimenter. Arm: 4 dimen-
sional joint angles, Vision: relative position of the object (x—y axis), Pred error: prediction error
accumulating for past ten steps. A long sideways rectangle indicates the single unit activity of fast,
slow, and CR units over many time steps. Activation level was indicated by the intensity of grey
scale
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Fig. 3 Example of behavior sequence with simulated functional disconnection

being automatically modulated so as to minimize prediction error. As a result of this
top-down and bottom-up interaction, the robot was able to generate seemingly nor-
mal behavior. Modulatory signals resulting from the functional disconnection were
equivalent to those from external sensory perturbations. These observations suggest
that, the modulation signal induced by internally generated prediction error might
account for the feeling that the patient’s action is affected by some outside force.
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4 Discussions

We demonstrated that not only top-down forward dynamics, but also bottom-
up regression processes driven by prediction error are important mechanisms
for flexible adaptation to unpredictable changes in environment. In contrast to
the healthy condition, in the simulated disconnection syndrome, this bottom-up
regression process generates unnecessary modulatory signals even in the predictable
environments. This unnecessary modulatory signal may induce altered awareness of
action in patients. These results of the robot experiments support the hypothesis of
the impaired forward model resulting from functional disconnection in a hierar-
chical network and may provide novel insight for understanding the pathological
mechanisms of schizophrenia.

The current study also showed that production of sequential behavior and flexible
adaption to changes in environment can be realized based on a simple computational
principle of minimizing prediction error. This result is consistent with the idea that
minimizing prediction error may act as a general principle of the computation of the
brain conducted in different levels and various modalities [3, 4].

Acknowledgments Use of the robot was made possible through the collaboration with SONY
Corporation. This work was partially supported by KAKENHI (#23700279).
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Self-Organizing Dynamic Neural Fields

Nicolas P. Rougier and Georgios Is. Detorakis

Abstract In this paper, we propose a model of cortical self-organization based
on the dynamic field theory. Learning is made through the modification of feed-
forward connections using a time invariant learning rule that allows for dynamic (or
life-long) learning. This preliminary model suggests that cortical plasticity may be
conveyed through feed-forward connections only while cortico-cortical connections
role would be to ensure dynamic competition among cortical columns.

1 Introduction

We introduced in [1] the dynamic self-organized map architecture that is a variation
of the self-organizing map algorithm [2] where the original time-dependent (learn-
ing rate and neighborhood) learning function has been replaced by a time-invariant
learning rule. This modification allows the network to support life-long learning and
may explain to some extent cortical plasticity. However, current implementation is
not biologically plausible since it requires a central supervisor (to designate the
winning unit) and the neighborhood influence is computed using a function.

This article introduces preliminary results concerning a biologically plausible
implementation using numerical, distributed and local computations, based on the
original dynamic neural field definition [3].

The concept of self-organization using lateral connections is well-known and
well-investigated, especially by Sirosh and Miikkulainen [4] and Bednar et al. [5].
In those works authors provide an algorithm for self-organization learning lateral
weights using a Hebbian-like learning rule. On the other hand, we put forward a
new approach of self-organization using a combination of a dynamic neural field
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and a Hebbian-like learning rule. Thus, self-organization can be achieved, learning
only the feed-forward weights. Because of that property our model is quite simple,
straightforward to implement and it does not require any outlandish handling.

2 Model

The neural field theory has been introduced by Wilson and Cowan [6, 7] and latter
formalized by Amari [3] and Taylor [8]. This theory introduces a model at the level
of a population of neurons in the form of an integro-differential equation describing
the spatio-temporal evolution of coarse-grained variables such as synaptic or
firing rate value [9]. We will use notations introduced by Amari and consider the
membrane potential to be governed by the following equation:

tavg, 2 =—-V&, 1)+ h+I1(x,1)

4 / W(lx - ¥) f(V(y. 1))dy )
M

where V(x, t) designates the membrane potential at position x and time ¢, W(|x—y|)
is the lateral connection weight function between position x and y (we assume here
that the system is spatially homogeneous and isotropic), f is the mean firing rate
function, /(x, t) is the input at position x and / is the resting potential.

2.1 Fitting Input

Depending on the firing rate function f, the lateral connectivity function W and
the input /, such fields are known to exhibit a range of dynamic behaviors going
from spatially and/or temporally periodic patterns to localized regions of activity.
This latter case has been extensively used in a number of work to model visual
attention [10], motor control [11], working memory [12], etc. In the following, we
will consider the lateral connectivity function to be a Difference of Gaussians (DoG)
of the form:

W(x) = Ae™¥/204> _ go=x*/208°
and the firing rate function to be a simple positive linear function:

xifx >0
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Fig. 1 One dimensional neural field using n = 100, t = 10, A = 1.5,04 = 0.1, B = 0.75,
op = 1.0. For any uniform and positive input level 7, the neural field maximum activity is
approximately equal to / after convergence

The numerical simulation of such fields requires the spatial discretization of the
domain M into n spatial elements while the temporal integration can be made using
classical integration schemes. Considering M = [0..1] and & = 0, we can thus
rewrite Eq. 1 as:

AV(xi, t)
——= = —V(xj, 1) + [(xj,t
T, (xi, 1) + I(xi,1)
n
+ 3 Ws — 1) (V.1
j=0
with x; = i/(n — 1). In the following, we will use the forward Euler integration

scheme. Under these assumptions, we have been studying a set of parameters for
the lateral weight connection that exhibit the following property: for any uniform
and positive input I, the neural field converges towards a single localized packet
of activity whose maximum is approximately equal to I. We do not have yet the
formal proof of such behavior but we found the property to be very consistent
over a wide set of numerical simulations using different parameters (n, I, At).
We report in Fig. 1 such a simulation where the field is able to fit a constant input
of level 0.45 after convergence. Instead of a stereotyped packet of activity with a
constant maximum, the field activation represents a measure of the input. We will
now explain how to use such property to ensure self-organization.
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2.2 Self-Organization

Let us now consider the slightly modified equation:

IV (x,1)
ot

T

=V +1- /M |1(t) — Wr(x)|dx

+ / WL(Ix - ¥) £(V(y. 0))dy ?)
M

where / is now considered to be uniform over M while a set of feed-forward
weights Wr has been added such that the actual input for any position X is
1= 1(t) = Wr(x)|.

Considering the set of parameters given in the previous subsection and consid-
ering a given input /, if we have Wr(x) = I, the actual input of the field would
be 1. In such a case, we explained that the field maximum activity would match
this value (1). However, it is not possible to have such equality for any value of /
because it would means to change all feed-forward weights at once. Nonetheless,
we can restrict this equality to the support of the localized packet of activity at the
equilibrium point. Said differently, it is sufficient to have Wy (x) = I for x such that
V(x,t) is not null at the equilibrium point. The goal of the learning rule is thus to
reach such a state.

We considered the learning rule introduced in [1] that reflect two main ideas:

e If a neuron is close enough to the data, there is no need for others to learn
anything: the winner can represent the data.

e If there is no neuron close enough to the data, any neuron learns the data
according to its own distance from the data.

To achieve such behavior, we propose to consider the following learning rule:

% = nLe(x.0)(1(0) = Wr (x.1)) v

where Lo (x,1) = [, Wr,(|x — y|) f(V(y.1))dy denotes the excitatory part of the
lateral interaction such that W; = W, — W, and 7 is a constant learning rate. The
modification of feed-forward weights is thus directly correlated with the closeness
of weights to the input and this is modulated by the amount of lateral excitation.
Since we know the final state of the model is a localized Gaussian-shaped packet of
activity, learning occurs maximally in this vicinity.
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3 Results

3.1 Experimental Setup

A set Sy of samples is generated by drawing k evenly spaced values in the interval
[0..1] with special case S Whose values are drawn uniformly from the interval
[0..1]. A sample is randomly chosen from Si and presented to the network which
has been previously reset. The network is then simulated and learning occurs until
e-convergence has been reached, i.e. VX, |V(x,t + dt) — V(x,t)| < &. Another
sample is then drawn and the procedure is repeated for a given number of epochs.

3.2 Learning Discrete Values

We trained a network of 100 neurons for 2,500 epochs and using as parameters,
t=10,4=15,04 =0.1, B =0.75,0p = 1.0, self-organization was obtained.
In Fig. 2 is illustrated the results of the simulation. The feed-forward weights were
randomly initialized (the red line) and after 2,500 epochs the feed-forward weights
were organized (the blue line), as the network learned the three input values (0,2,1).
Hence, that step-like shape of feed-forward weights is because the first 20 neurons
learned the value O, the 20 middle neurons learned the value 12, and the last 20
neurons learned the value 1. Moreover, the rest of the neurons learned different
values from the input and may be that provide a smooth drift from one batch of
neurons to another one.
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Fig. 2 A neural field has been trained for 2,500 epochs on S3 (0, 12 and 1). Blue and red curves
respectively show initial and final set of weights
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Fig. 3 A neural field has been trained for 2,500 epochs on Sc. Blue and red curves respectively
show initial and final set of weights

3.3 Learning Continuous Values

We used the same network architecture as in introduced in previous paragraph but it
has been trained on the S, set. After 2,500 epochs the network has learned the feed-
forward weights. In addition, the so-called step-like shape of feed-forward weights
was substituted by an almost linear shape. That’s because of the continuous nature
of the input. It is to be noted that almost all values are represented but the bounds
due to the non-toric nature of the network. This side effect is well-known in the case
of Kohonen’s map. Results are depicted in Fig. 3 while Fig. 4 shows the evolution of
the receptive fields of unit #50 that slowly drifts from a weak and random response
to a sharp localized one.

4 Discussion

We introduced a one dimensional dynamic neural field that can continuously and
dynamically self-organize itself around a set of one-dimensional discrete or uniform
values by modifying its feed-forward connections and using the lateral weighted
sum of excitation as a modulation signal for learning. We are currently investigating
the two-dimensional case, due to obtain a more biological plausible model since the
cortex can be modeled as a two-dimensional sheet of neurons. In this context, we
would like to investigate meta-plasticity and/or homeostatic plasticity as it has been
reported in [13].
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Fig. 4 Evolution through time (t) of the receptive field of unit #50 from a network learning Soo. At
each record time, learning is frozen and the network is presented successively with values ranging
from O to 1 with step of 0.01. Activity level of unit #50 is recorded (after convergence) for each of
these input values and is plotted for each record time

Finally, we would like to examine the properties of cortical reorganization
under the presence of a lesion. Such lesions have been extensively investigated
by Kaas [14] and others from a neurophysiological point of view and there is
consequently a strong and detailed experimental background providing significant
data which could feed our computational model.
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Spontaneous EEG Activity and Biases
in Perception of Supra-Threshold Stimuli

Andrey R. Nikolaev, Sergei Gepshtein, and Cees van Leeuwen

Abstract Human perception of oriented visual stimuli is biased: some orientations
are seen more often than others. We studied how the orientation bias is represented
in the electrical brain activity that preceded presentation of ambiguous supra-
threshold visual stimuli. We examined scalp EEG over the parieto-occipital regions
during 1 sec before stimulus presentation. The alpha activity of pre-stimulus EEG
was associated with the orientation bias: the preference for vertical orientation in
most observers corresponded to low pre-stimulus alpha power. The results indicate
that the orientation bias is encoded in intrinsic properties of ongoing cortical
dynamics, forming spontaneous orientation-specific patterns of activity.

Keywords EEG e« Spontaneous alpha activity e Perceptual organization e
Perceptual bias

1 Introduction

The perception of a stable and continuous world is mediated by neural mechanisms
that are adept at resolving ambiguities of stimulation. One factor that helps to
resolve the ambiguities is expectation of stimuli from prior experience in similar
perceptual situations. Perception can therefore be viewed as a competition of two
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forces: current stimulus and stimulus expectation. Unnoticeable in regular viewing
conditions, the competition comes to the fore in the perception of multistable stimuli
[1,2].

Gepshtein and Kubovy experimentally measured and modeled the competition
in ambiguous visual stimuli [3]. They explicitly separated the factors extrinsic
to the brain (called “stimulus support”) from intrinsic factors (“perceptual bias™)
in grouping by proximity. The authors showed how perception depends on both
factors, and how stimulation controls perception when it overcomes the intrinsic
perceptual bias.

Gepshtein and Kubovy proposed that the intrinsic factor depends on ongoing
brain activity [3]. Supporting this notion, previous studies found that the power
[4] and phase [5] of ongoing electrical brain activity (EEG) affected perception
of the upcoming stimuli. These studies mainly used stimuli near the threshold of
detection. Here we asked whether ongoing activity may also affect perception of
supra-threshold stimuli.

We studied perceptual grouping in ambiguous dot lattices, each of which can
be seen as strips of dots in different orientations. Perception of these stimuli is an
outcome of competition between stimulus factors that support several orientations,
and intrinsic orientation bias that presumably originates in ongoing brain activity.
We looked for associations between electrical brain activity that precedes stimulus
presentation and the perception of subsequent dot lattices.

2 Methods

Thirteen healthy participants took part in the experiment. The stimuli were dot
lattices which are spontaneously perceived as strips of dots [6]. The shorter the
distance between the dots in a certain orientation, the more likely the dots group
along that orientation. According to the pure distance law [7], grouping in dot
lattices depends on their aspect ratio (AR), which is the ratio of two shortest inter-
dot distances. We used dot lattices with four values of AR: 1.0, 1.1, 1.2, and 1.3. The
lattices were presented at four orientations, such that the orientation of the shortest
distance was rotated counterclockwise from the horizontal for 22.5°, 67.5°, 112.5°,
or 157.5° (Fig. 1).

Each trial consisted of four phases: fixation, stimulus, blank screen, and response
screen. During fixation, observers were instructed to look at a small circle at the
screen center for a duration that varied randomly according to a uniform distribution
on the interval of 1,200-1,500 ms. The durations of stimulus and blank-screen were
both fixed at 300 ms. A response screen was presented until a response was received.
The task was to report the orientation of the perceived dot grouping by choosing one
of the four response icons (shown as white insets in Fig. 1) on the response screen.

EEG was recorded using a 256-channel Geodesic Sensor Net (Electrical
Geodesics Inc., USA). Data were digitized at 250 Hz. All channels were referenced
to the vertex electrode (Cz). Further details of stimulus, procedure, and EEG
recordings are available in [8].
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We estimated the power of alpha-band activity (8—13 Hz) during a 1-s interval
prior to stimulus presentation (i.e., during fixation). The alpha power was computed
using FFT in 59 electrodes selected over the parieto-occipital regions. Electrodes
were sorted by alpha power in descending order. We selected 29 electrodes
with highest power and averaged their alpha power. The power values were log-
transformed so the distribution of values approached the normal distribution.

3 Results

All other factors being equal, observers preferred vertical over horizontal dot
groupings (Fig. 2). We estimated the strength of this orientation bias by measuring
the difference in frequency of reports of “vertical” and “horizontal” groupings.
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Fig. 3 (a) Strengths of orientation bias within bins of trials for different levels of pre-stimulus
alpha power. Alpha power decreases from left to right. (b) Association of bias strength and pre-
stimulus alpha power. Each point represents a different observer. The association of alpha power
and bias strength was more pronounced in those trials where perception was dominated by bias

We sorted trials by alpha power in descending order, divided them into five bins,
and calculated the strength of orientation bias for trials within each bin. Pre-stimulus
alpha activity was associated with orientation bias: the bias for vertical orientation
occurred more often in trials with low pre-stimulus alpha power (Fig. 3a). This effect
was modulated by bias strength: the higher the bias the more it was associated with
pre-stimulus alpha power (Fig. 3b).
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first third of session, and only when horizontal groupings were reported. (b) Log alpha power for
reports of horizontal and vertical grouping in the first third of session (left ordinate), and behavioral
bias strength (right ordinate). Both alpha power and bias strength decreased with AR in trials where

horizontal groupings were seen. The data are shown for ten observers whose performance was the
highest

Next we asked whether the effect of alpha power depended on stimulus ambiguity
(controlled by lattice aspect ratio, AR). We found that alpha power was not
associated with AR when all trials were analyzed together. But when trials from
different parts of experimental sessions were studied separately, it turned out that the
strength of orientation bias was high in the beginning of the session, and gradually
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decreased toward the end. We therefore divided the session in three equal parts,
each about 200 trials long, and studied associations of alpha power in each part
separately. We found that alpha power significantly increased during session time
course (F(2,18)=20.3; p=.00003) (Fig. 4a), suggesting that observers became
more relaxed toward the session’s end.

Alpha power was significantly higher in trials with reports of horizontal than
vertical grouping (F(1, 9) = 8.1, p =.02), consistent with an effect of alpha power
on orientation bias (Fig. 3a). In the first third of trials, alpha power was associated
with AR. Alpha power gradually decreased with AR in trials with reports of
horizontal grouping (F(3, 27) = 3.2, p=.039). This decrease was consistent with
the decrease of bias strength as a function of AR (Fig. 4b). That is, the association
of pre-stimulus alpha power with perception was largest in the most ambiguous dot
lattices (AR = 1.0).

4 Discussion

Studies of perceptual organization suggested that perception of ambiguous figures
depends on two competing factors: extrinsic (stimulus support) and intrinsic
(perceptual bias) to the brain [3]. Here, we found in ongoing electrical brain activity
a correlate of the intrinsic bias in the perception of supra-threshold visual stimuli.
Alpha power of pre-stimulus cortical activity correlated with the degree to which
intrinsic bias affected perception (Fig. 3a). This relationship was most prominent in
the trials where grouping was inconsistent with the proximity principle (Fig. 4b).
Since high alpha power is considered an indicator of cortical inhibition [9], the
association of low alpha power with large perceptual bias suggests that the bias is
an intrinsic property of the visual system manifested during its active state. Previous
studies showed that ongoing cortical activity can spontaneously generate patterns
that correspond to certain stimulus orientations, in absence of stimulation [10]. Our
results show how this spontaneous activity affects perception.

Analyzing the event-related potentials in the same data set we previously
found that orientation of dot lattices is reflected in early C1 component of the
stimulus-evoked activity: C1 amplitude gradually changes with orientation [8].
Alpha activity correlates with early components of the evoked potentials [9]. This
may indicate the mechanism of influence of pre-stimulus brain state on subsequent
perception of orientation.
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Functional Roles of Corticofugal Plasticity
in Detecting a Moving Target in Bat’s Auditory
System

Yoshitaka Muto, Yoshihiro Nagase, and Yoshiki Kashimori

Abstract In the present paper, we present a neural model for detecting Doppler-
shifted frequency of echo sound reflecting from a target. We present here the neural
mechanism by which the centripetal and centrifugal best frequency (BF) shifts are
elicited. These BF shifts come from the modulations of the receptive field of cortical
neurons elicited by short-term synaptic learning, depending on the stimulus context.
This synaptic learning enables the system to follow a rapid frequency modulation,
leading to detection of a moving target.

1 Introduction

Animals usually receive complex sensory signals in external world. To perform
sensory perception, they must select actively the sensory information relevant to
their behavior. To extract such information from complex signals, the feedback
signals from cortex to subcortical and peripheral regions are needed. However, it
is not yet clear how the feedback signals contribute to the selection of sensory
information. The behavioral characteristics of the sound selection determine that
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the underlying neuronal substrate must be a back projection system and is able
to implement selective sound processing based on auditory information already
registered in the higher auditory processing levels. To address the issue of sound
selection, we study echolocation of mustached bats, because the physiological
properties of neuronal activities modulated by the feedback signals have been
actively investigated [1—4], and the functions of the cortical areas have been well
characterized [5].

Mustached bats emit ultrasonic pulses and listen to returning echoes for ori-
entation and hunting flying insects. The bats analyze the correlation between
the emitted pulses and their echoes and extract the detailed information about
flying insects based on the analysis. This behavior is called echolocation. The
neuronal circuits underlying echolocation detect the velocity of target with accuracy
of 1 cm/s and the distance of target with accuracy of 1 mm. To extract the
various information about flying insects, mustached bats emit complex biosonar
that consists of a long-constant frequency (CF) component followed by a short
frequency-modulated (FM) component. Each pulse contains four harmonics and
so eight components represented by (CF1, CF2, CF3, CF4, and FM1, FM2, FM3,
FM4) [6]. The information of target distance and velocity are processed separately
along the different pathways in the brain by using four FM components and four CF
components, respectively [5].

In natural situation, large natural objects in environment, like bushes or trees,
produce complex stochastic echoes, which can be characterized by the echo
roughness. The echo signal reflecting from a target insect is embedded in the
complex signal. Even in such a environment, bats can detect accurately the detailed
information of flying insect. To extract the information about insects, the feedback
signals from cortex to subcortical areas are needed.

To investigate the role of feedback signals in extracting the information about
insect, we consider the neural pathway for detecting velocity of target, which
consists of cochlea, inferior colliculus (IC), and Doppler-shifted constant frequency
(DSCF) area. The IC and DSCEF area are located in subcortical and cortical area,
respectively. The cochlea is remarkably specialized for fine-frequency analysis
of the second harmonic CF component (CF2) of Doppler-shifted echoes. The
information about echo CF2 (ECF2) is transmitted to IC, and the relative velocity of
target insect is detected in DSCF area by analyzing the Doppler-shifted frequency
[7]. Xia and Suga [4] have shown on intriguing property of feedback signals that the
electric stimulation of DSCF neurons evokes the best frequency (BF) shifts of IC
neurons away from the BF of the stimulated DSCF neuron (centrifugal BF shift) and
bicuculline (an antagonist of inhibitory GABA receptors) applied to the stimulation
site changes the centrifugal BF shifts into the BF shifts towards the BF of stimulated
DSCEF neurons (centripetal BF shift). Although these BF shifts are generated by the
feedback signals from DSCF neurons to IC neurons, it is not yet clear how the
feedback signals determine the direction of BF shift.

To address this issue, we present a neural model for detecting Doppler-shifted
frequency of echo sound reflecting from a target. We present here the neural
mechanism by which the centripetal and centrifugal BF shifts are elicited. These BF
shifts come from the modulations of the receptive field of cortical neurons elicited
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by short-term synaptic learning, depending on the stimulus context. This indicates
that the tuning properties of subcortical neurons change on-line. This synaptic
learning enables the system to follow a rapid frequency modulation, leading to
detection of a moving target.

2 Model

We propose a network model for detecting the Doppler-shifted frequency, as shown
in Fig. 1. The model consists of cochlea (Ch), inferior colliculus (IC), and Doppler-
shifted constant frequency (DSCF) area, each of which has a linear array of
frequency-tuned neurons. Each of the three layers contains a tonotopical map, in
which the neurons in each layer are tuned in to specific echo frequency ranging from
60.0 to 63.0 kHz, corresponding to the frequency range of the second harmonics.
The bat uses the Doppler-shifted frequency of echo sound to detect the relative
velocity of target. The neuron was modeled with the Leakey integrate-and-fire
neuron model [8], because temporal information may play an important role in
auditory information processing. The neurons in the three layers are reciprocally
connected with each other, with on center-off surrounding connections. The neurons
in different layers are connected with an excitatory and inhibitory synapse, whose
weights are updated with learning with short-term dynamics.

3 Results

Figure 2a shows the modulation of tuning property of IC neurons in the case where
electric stimulus (ES) was applied to a DSCF neuron. The ES evoked the BF shift
away from that of the electrically stimulated DSCF neuron, that is, centrifugal BF
shift. Before the ES, the IC neurons maximally responded to 60.6 kHz (vertical

Fig. 1 Neural model for e
detecting Doppler-shifted

frequency of echo sound. The

excitatory and inhibitory .
synaptic connections are e » e

depicted by the solid and
dashed lines, respectively
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Fig. 3 Effect of synaptic plasticity on centripetal BF shift. The solid and dashed lines indicate the
centripetal BF shifts elicited by IC neurons with and without synaptic plasticity, respectively

dashed line). When DSCF neuron tuned to 60.9 kHz was electrically stimulated,
the BF of IC neuron was shifted from 60.6 to 60.4 kHz. That is, the IC neurons
showed a centrifugal shift. Our model reproduced also centripetal BF shift evoked
by the application of bicuculline, an antagonist of GABA, as shown in Fig. 2b. The
inhibition of GABA by bicuculline led to the BF shift of the IC neuron towards
the BF of the bicuculline-injected DSCF neuron. The BF of IC neurons shifts from
60.6 to 60.9 kHz. That is, the IC neurons showed a centripetal BF shift. These BF
shifts come from the modulation of receptive field of top-down from DFCF to IC
neurons.

Figure 3 shows the centripetal BF shifts of IC neurons with and without synaptic
changes. The synaptic changes modulated the receptive field of top-down signals,
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Fig. 4 Time course of the firing patterns of DSCF neurons in response to a moving target

leading to a rapid BF shift to the echo signal. IC neurons without synaptic changes
exhibited a broad firing in response to echo signal and did not cause a significant BF
shift, as shown in Fig. 3.

Figure 4 shows the response of DSCF neurons for a moving target. The target
was oscillated with the frequency of 2 Hz. The DSCF neurons could follow rapidly
the frequency change of the moving target. The system without the synaptic changes
failed to follow the frequency modulation induced by the moving target. Thus the
detection ability of DSCF neurons is due to fast synaptic changes of top-down
connections from DSCF to IC neurons. The synaptic plasticity modulates the
balance of excitatory and inhibitory signals to IC neurons, producing the responses
of IC neurons depending on stimulus context.

4 Discussions

We have presented a network model of the Doppler shifted frequency. The model
well reproduced the two types of BF shifts observed by Xiao and Suga [4]. The
synaptic weights rapidly changed, enabling DSCF neurons to detect the temporal
varying stimuli such as echo signals reflecting from a moving target.

The balance of excitatory and inhibitory inputs to neurons has been reported to
play important roles in sensory coding. Recent study has demonstrated that detailed
balance of excitation and inhibition can efficiently gate the propagation of firing
rate [9]. The balance between excitation and inhibition appears also in short-term
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synapses, responsible for a temporal filtering of sensory signals [10]. Similarly to
the functions of short-term synaptic plasticity, the synaptic plasticity used in our
model also modulates rapidly the receptive field of DSCF neurons, enabling the
rapid adaptation for temporal-varying signal induced by a moving target. Thus the
short-term synaptic change may play a crucial role in extracting desired information
depending on stimulus context.
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The Origin of the Spatial Pattern of Amplitudes
in Trial-Averaged MEG

David M. Alexander, Peter Jurica, Andrey R. Nikolaev, Mikhail Zvyagintsev,
Klaus Mathiak, and Cees van Leeuwen

Abstract We analysed the spatial pattern of trial-averaged MEG time-series over
the whole scalp. The contributions of both signal phase and amplitude to these
spatial patterns were assessed. While a substantial proportion of the pre-stimulus
time-series is explained by the amplitude component in the alpha/beta range, most
of the post-stimulus evoked response is explained by averaging of the phase-only
component. We suggest that the whole scalp pattern of evoked responses is akin to
an interference pattern produced by trial averaging.

1 Introduction

The origin of event-related brain signals and the role phase therein is subject
to debate [1]. We distinguish the effects of cross-trial phase locking and single
trial amplitudes on the trial-averaged signal [2]. Understanding the relationship
between the signals underlying whole scalp patterns of event-related fields (ERFs)
is important for at least three reasons. First, whole scalp ERFs are typically used
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in source localization techniques. A reasonable alternative, though technically
challenging, would be to fit the equivalent current dipole to individual trial data
and then average these fits. So it matters what, exactly, is being localized when
averaged signal is fit to an equivalent current dipole [3]. Second, a wealth of
evidence links various stages of cognition to evoked responses in the EEG and
MEG. However, the relative effects of phase and amplitude on evoked responses are
usually considered at individual recording sites [1]. If there are global relationships
in the way phase and amplitude interact, they may be missed when only sites with
maximum ERF amplitude are considered. Third, inter-trial coherence has become a
standard tool for understanding large-scale network interactions in the cortex [4, 5].
The present work has implications for the relationship between evoked response
measures and measures of inter-trial coherence. We show that the bulk of the
ERF amplitude variation over the scalp is due to the degree of inter-trial phase
coherence.

2 Methods

2.1 Subjects and Task

Twenty human subjects (age range 22-36 years, mean age 27.1; 12 females)
engaged in an audio-visual perceptual task, while their brain activity was recorded
via MEG. All the subjects were right-handed, had no audiological abnormalities,
and had normal or corrected-to-normal vision. Written informed consent was
obtained from all subjects prior to participation in the study. The study was approved
by the ethics committee of the University of Tiibingen. The task required the subject
to choose the direction of motion of an audio-visual apparent motion stimulus. The
visual component was located on the horizontal with the distance of 15° of visual
angle at either side of the screen center. The apparent motion illusion was elicited by
presenting the stimuli for 67 ms at the one side, and then after 67 ms delay, for 67 ms
at the opposite side. The auditory stimuli were the white noise bursts presented in
such a way that the sound was spatially perceived at the position of the visual stimuli
(415° or —15°). Subjects were instructed to press buttons in random order either by
the left or right index finger. The stimulus moved from the side indicated by the
subject and then to the other side (i.e. either ‘left to right’ or ‘right to left’; this
was the ‘predictable’ condition). In some blocks of trials the direction of stimulus
motion was randomized and not due to the subject’s choice (i.e. ‘unpredictable’
condition). We applied analyses only on the trials in which the side of first stimulus
coincided with the button pressed: all trials in the predictable and approximately
half of trials in the unpredictable condition. Further details of the experiment can be
found elsewhere [6].
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2.2 MEG Recording

Subjects were seated comfortably in a dimly-lit room. Neuromagnetic responses
were recorded in a magnetically shielded booth using a 151-sensors whole-head
gradiometer (CTF Systems Inc., Vancouver, Canada). The MEG signals were
sampled at 312.5 Hz.

2.3 Analysis

MEG data were low-pass filtered with a cut off at 39 Hz. Artifact removal and trial
selection criteria are described in detail elsewhere [6]. Source modeling revealed
three consistent dipole patterns: a lateralized motor dipole at the time of stimulus
initiation, bilateral auditory activity at around 80 ms and a lateralized visual
dipole at around 150 ms [6]. In the present analyses we focused on the former
activity.

We sought to analyse the composition of the ERF signal, considered as a spatio-
temporal pattern over all recording sites and over one cycle at the frequency of
interest e.g. 100 ms at 10 Hz. In order to see how the band-pass signal predicted
the ERF, we made a trial average of the band pass signal and correlated this with
the ERF, including values from all sites and over an entire cycle. The amount of
variance explained by this predictor signal was simply the correlation squared. The
same procedure was used to see how well the phase-only signal (as cosine of phase)
predicted the ERF.

The Fourier components, X, of the MEG signal, x, were estimated over a range
of frequencies, f, (0.5 to 32.0 Hz in Ny steps), about each sample, #, using two cycle
Morlet wavelets. MEG time-series were averaged over all trials, NV;, (for each subject
and condition), T = (x) ~, and the pattern of T over sensors compared to a predictor
signal. One predictor signal was constructed by averaging the amplitude normalized
signal P = (Re(X/X))y,. We calculated the fit of P, at frequency, f, to T over all
sensors s (N; = 151), and over one cycle ¢, about the centre sample, ?.

5 =
RN,fo (T,p) = P(TNth/xNL.xM—
T 5} 2
(T NyxNp xNexNg ) N Ut i xve s PyxN g xNexNg)

where p denotes the correlation of two vectors, here length NN, and U is the unitary
matrix; ¢ € (t — 1y, t + 425); and, N, &~ 1000/3.2f. A second predictor signal was
constructed by averaging the band-pass signal B = (Re(X)) ~,; and analogously we
calculated Ri y (T, B).
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3 Results

The result of the analysis is given in Fig. 1, as a time/frequency plot of R Lr (T.P)

and R? f(T B). For this experimental task, a pattern of time-locked responses on
these measures begins with a theta band component at the time of the button press,
related to the motor dipole previously characterized [6]. The audio-visual stimulus
evokes a series of events in the alpha band from around 100 ms onwards, also
consistent with previous dipole modeling [6].

Consistent with previous studies [9, 10], the amplitude pattern of the cross-trial
average is a function of both single-trial phase and single-trial amplitudes. The
pattern of trial-averaged MEG across sensors in the pre-stimulus alpha/beta signal
contained a large contribution from single trial amplitudes, seen in the Ri Y (T, B)
plot. Indeed this effect is almost as large as the evoked portion of the plot. When this
component is compared to the pre-stimulus alpha/beta component of Ri Y (T, P),it

can be seen that about 30% additional explained variance in 7 is explained by the
band-pass compared to the phase-only signal.
By contrast, the peaks in th, y (T, P) at post-stimulus latencies are considerably

larger than the th, f(T, P) pre-stimulus alpha/beta component. Additionally, the
evoked peaks in Ri Y (T, P) were of the same order as the evoked peaks in
Ri f(T, B), with about 70% of the variance in the pattern of ERF amplitudes—at

Rf (T,P) - R?,(T,B)
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Fig. 1 The relative contributions of phase and amplitude to the spatial pattern of ERFs. The first
panel shows the grand-average values of R (T P), for all times and frequencies evaluated. The
values from 20 subjects, and each of four experlmental conditions (‘predictable’ vs. ‘unpredictable’
and ‘left to right’ vs. ‘right to left’), were averaged together here. The second panel, likewise,
shows the grand-average values of R2 (T B). The third column shows the difference between
these two grand-averages, and the results of pixel-wise t-tests, comparing each subject’s mean
score for the two statistics (n =20, p <0.05 shown in non-white). Since almost all points are
significantly different, i.e. there is only one cluster, correction for multiple comparisons was not
necessary. Throughout the event-related region of the plot (t > —100), the subjects show a small
(~8%) but significant difference in mean values of variance explained in the ERFs by the two
predictor signals. For t < —100, in the alpha/beta bands, the difference is larger (~30%)
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event-related peaks in the Ri f(T, P) spectrum—explained by the phase-only
signal. The single trial phase plus amplitude signal only contributed about 8%
additional explained variance to the ERFs.

While the band-pass signal contributes substantially to the pre-stimulus trial-
averaged time-series, it does not contribute the major proportion of the evoked
signal. The evoked signal, considered as a global spatio-temporal pattern, is mainly
due to cross-trial averaging of phase.

4 Discussion

The results in this paper clarify the relationship between dynamical approaches
to brain function and approaches that emphasize localized sources. Most of the
variance in the evoked components of this task is explained as the average of single-
trial dynamics with spatially uniform amplitudes, P. This component is distinct
from a signal in which amplitude declines as the inverse-square of distance from
a localized source. This raises the possibility that the ERFs have a component
that is akin to an interference pattern, where that interference pattern results from
cross-trial averaging during numerical analysis. This possibility arises when we put
together the present results with those on traveling waves in the EEG/MEG.

A growing literature relates coherent traveling waves to mental states [11, 12],
cognitive function [8, 13] and clinical deficits [14—16]. These waves are typically
of long wavelength and can traverse large distances across the EEG/MEG recording
array. They also can travel in a variety of directions during the same (i.e. stimulus
locked) task-related windows [16], and their preferred direction changes on a
developmental time-scale [15, 16]. Traveling wave components have been related to
the P2 and N2 auditory evoked potentials, as well as the P3b ERP [8, 17]. They share
common frequency and latency characteristics, as well as a shared task-dependency
[8, 16]. The results in the present study shed further light on the relationship between
evoked responses and these global phase dynamics. Phase is the main ingredient
in the global pattern of ERFs. If amplitude were the main ingredient, this would
make it more difficult to reconcile ERFs/ERPs with globally coherent traveling
waves.

When the phase dynamics have coherent motion, static ‘sources’ in the trial-
average can be understood as a kind of interference pattern. The resultant pattern of
activity has maximum amplitude over the localized brain region that is critical for
the execution of the task—and so this framework is consistent with the wealth of
data collected on specialization of cortical function. However, the present results
suggest that inter-trial measures may not directly reflect the ongoing activity
pattern. Rather, these measures reflect the consistency in timing of brain activity,
at particular sites, across trials. Localized regions with consistent timing across
trials, while conveying important information about #iming, do not necessarily imply
localized sources of brain activity. This can be easily demonstrated by making



308 D.M. Alexander et al.

an analogy with Moiré patterns—the component images (analogous to individual
trials) of these interference patterns do not have the same amplitude maxima as the
Moiré pattern itself (analogous to the inter-trial measure).

In conclusion, the fields generated by brain activity exist at the single trial level,
whereas repeated experimental trials are solely a convenience for the experimenter.
The subject’s brain has no direct access to the cross-trial measures. This point
is important because recent findings have shown network coupling effects via
endogenous fields in hippocampal and cortical neurons [18-21]. These findings
are consistent with a growing literature on the effects of trans-cranial stimulation
[22, 23]. In both these cases, the fields play a causal role in network activity. It is
therefore timely to uncover differences between the properties of single-trial activity
and inter-trial quantities. Here we show that single-trial phase dynamics contribute
more to the global pattern of ERF amplitudes than do single-trial amplitudes.
This result garners support for the importance of another property that cross-
trial measures often disguise (c.f. [24]), namely, coherent activity with non-zero
velocity—traveling waves. Cross-trial averages of both ERPs and traveling waves
typically have mean velocity close to zero [16, 17].
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