
Chapter 9
An Analysis of the Genetic Evolution
of a Ball-Beam Robotic Controller Based
on a Three Dimensional Look up Table
Chromosome

Mark Beckerleg and John Collins

Abstract This chapter describes how a robotic controller based on a 3-dimensional
lookup table was used to control a ball balancing beam system. The evolved motion
of the beam and the corresponding chromosome is analysed. The 3 system states of
the ball and beam were translated by the lookup table into a motor speed and
direction which maintained the ball in balance. The ball-beam states included the
ball position, ball speed, and beam position. The reproduction method used 2-point
crossover with a mutation rate of 2 percent. The selection method was tournament,
and the population size was 100 individuals. Successful evolution was achieved on
4 lookup tables, each containing different maximum motor speeds. Each evolved
lookup table was able to maintain the ball in balance for more than 5 minutes.
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9.1 Introduction

An investigation was undertaken to determine if a genetic algorithm (GA) could be
used to generate a ball-beam controller by evolving a population of lookup tables
(LUT) employed to control the motion of the beam. The system that was devel-
oped (Fig. 9.1) consisted of 4 parts: (i) the graphical user interface (GUI), which
displayed the motion of the ball and beam with control and data logging capa-
bilities, (ii) the GA, which generated the final controller by evolving a population
of LUTs, (iii) the simulation, which modeled the characteristics of the ball-beam
system and (iv) the LUT, which provided the new beam motor speed and direction
depending on the current ball-beam state [1].

In this experiment a curved beam was chosen rather than a standard straight
beam, as the curved beam provided a more complex control system, and made the
ball control more challenging.

The mathematical model and corresponding simulation was based on a physical
ball-beam system that was developed at AUT University as part of a student
project (Fig. 9.1). The position of the ball was determined using 19 infrared
detectors while the motion of the beam was controlled by a stepper. The pulse rate
of the stepper motor controlled the angular velocity of the beam. The maximum
pulse rate was 125 pulses per second and the angular movement of the beam per
pulse was 0.22 degrees. This resulted in a maximum angular velocity of the beam
of 27.5 degrees per second.

9.2 Background

The ball-beam has historically been used to demonstrate control systems, owing to
its non-linear dynamics and behaviour. It has now become a benchmark for
research in this field. Studies using the ball-beam system have been implemented
using a range of control systems such as proportional integral differential (PID)
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Fig. 9.1 Block representation and connections between the 4 units that were implemented on a
computer and the physical beam that the simulation was modeled on
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control [2, 3], fuzzy logic [4, 5], and neural networks [6, 7]. Ball-beam controllers
have been investigated using GAs. Some examples of evolved robotic controllers
are the evolution of rules and classes of a fuzzy logic controller [8, 9], the
weightings and connectivity of artificial neural networks [10, 11], and the coef-
ficients of a PID controller [12, 13]. However the authors were unable to find any
research into the use of a LUT for a ball-beam controller evolved by a GA.

LUTs have been used in evolution in a variety of ways. Robotic simulation has
been replaced by lookup tables thus reducing real-time computation requirements
[14, 15]. Cellular automata rules have been configured within a LUT and then
evolved to create 2- and 3-dimensional shapes [16]. LUT’s have been encoded
with simulated DNA sequences and evolved to create robotic motion [17]. LUTs
contained within a FPGA functional element have been evolved to create a robotic
controller [18]. Finally, the authors have used GAs to evolve LUT based robotic
controllers for 2 systems including a mobile inverted pendulum [19] and the gait
of a hexapod robot [20].

9.3 Mathematical Model

The beam position (Fig. 9.2), is the angle u from horizontal, while the ball
position is the angle h from the centre of the beam. Eqs. (9.1) and (9.2) outline the
final equations for the ball acceleration. The full derivation for this mathematical
model has been described by the authors in other literature [21].

€h ¼ Aðhþ /Þ ð9:1Þ

A ¼ g

R 1þ 1
mr2

� � ð9:2Þ

Where

g — gravitational acceleration

R

Φ+θ

θ

Fig. 9.2 The ball and beam
showing the relationships
between the angles and
motion
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I — moment of inertia of the ball
R — radius of curvature of the beam
m — mass of the ball
r — radius of the ball
h — ball position (angle from the centre)
Ø — beam position (angle from horizontal)
x — ball position
v — ball velocity
b — beam position
a — acceleration of the ball

The value for acceleration (a) of the ball on the beam was determined by
physical experimentation, as a factor of the ball position (x) and beam position (b)
in Eq. (9.3). Using this acceleration the new ball position can be found dependant
on it current velocity (v), acceleration and position as shown in Eq. (9.4), and the
new speed of the ball dependant on its current speed and acceleration in Eq. (9.5).
The simulation was adjusted to a time period of every millisecond in Eqs. (9.6)
and (9.7).

a ¼ 12xþ 2:8b ð9:3Þ

xnew ¼ xþ vt þ at2

2
ð9:4Þ

vnew ¼ vþ at ð9:5Þ

xnew ¼ xþ v

103
þ 12xþ 2:8b

2� 106
ð9:6Þ

vnew ¼ vþ 12xþ 2:8b

103
ð9:7Þ

9.4 Genetic Algorithm

A genetic algorithm is a metaheuristic optimization method that uses natural
selection as a search engine. It acts on a population of individuals or chromosomes
which are potential candidate solutions to the problem needing to be solved.
Chromosomes are comprised of various forms such as bits, numbers or parameter
sequences, depending on the problem. The genetic algorithm is iterative and is
comprised of 3 main processes including reproduction, fitness evaluation, and
selection. Reproduction is the generation of offspring from the surviving popula-
tion of chromosomes. It uses 2 genetic operators: (a) crossover, where chromo-
somes are exchanged between parents, and (b) mutation, where parts of the
parents’ chromosomes are randomly altered. Fitness evaluation determines how
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well each chromosome in the population performs as a potential solution to the
problem. Selection determines which chromosomes within the population will
survive to the next generation based on their fitness.

The steps in a genetic algorithm are: (a) generation of an initial random pop-
ulation of chromosomes, (b) reproduction of offspring, (c) fitness evaluation of
each new chromosome, and (d) selection, where the chromosomes with the best
fitness are kept. The processes of reproduction, fitness evaluation and selection are
repeated until the required fitness is reached or a set number of generations have
been completed.

9.4.1 Chromosome

The heart of the controller was a 3-dimensional lookup table (Fig. 9.3). The
lookup table contained the motor speed and direction required to drive the motor in
such a way as to balance the ball. The 3-dimensions of the lookup table were
linked to the ball and beam states. These were ball position (19 inputs), beam
position (10 inputs), and ball speed (3 inputs). Several lookup tables were eval-
uated with a range of motor speeds varying from 2 to 11. The elements of the array
were defined as char variables initialized with a randomly generated number
quantised into 11 discrete steps ranging from 0 to 250. This enabled each location
in the array to describe a motor speed with 5 left speeds, 5 right speeds and
1 stopped. The speed range was reduced when evaluating different speeds by
adjusting the threshold so that the motor had limited speeds. For example with a
2 speed range, values below 125 would drive the motor hard left, while values
above 125 would drive the motor hard right.

The LUT was used to control the beam’s motor depending on the beam states.
This was achieved by connecting the simulation’s current ball-beam states to the
axis of the LUT. The parameter at that location was sent back to the simulation to
control the simulation’s motor speed and direction.
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Fig. 9.3 Three dimensional
LUT showing 19 ball
positions, 10 beam positions,
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The search space that the GA explores was dependent on the total number of
combinations that the chromosome can have. This was dependent on the number
of locations within the LUT, and the number of speeds that were employed at each
location. The experiments were repeated with 4 ranges of motor speeds: 2 (left
and right), 3 (left, stopped and right), 5 (2 left, stopped and 2 right) and 11 speeds
(5 left, stopped and 5 right). The total search space for each LUT was calculated
using Eq. (9.8) and illustrated in Table 9.1. As evident in this table, the search
space rapidly increased as the number of speeds increased. The exponent 570 was
derived from the size of the LUT (19 9 10 9 3).

Search space ¼ speedssize of LUT ¼ speeds570 ð9:8Þ

9.4.2 Reproduction and Selection

The objective of reproduction is to generate new offspring from a population of
chromosomes which will have a higher fitness than their parents. The purpose of
selection is to decide which offspring and parents to keep, with the goal that the
population will move rapidly up the fitness landscape while maintaining enough
diversity to bypass local maxima. The 2 parts of reproduction are crossover and
mutation. Crossover is a method that is used to split and recombine the chromo-
somes from 2 or more parents into 1 offspring. Two-point crossover was used in
this experiment using the x-axis (ball position) and y-axis (beam position) of the
array as the positions within the array to be cut. The first cut points of the crossover
were determined by randomly choosing points between 0–18 and 0–9. The end cut
points of the crossover were determined by randomly choosing points between the
first cut points and the end of the array, 18 or 9. Mutation will randomly alter the
parameters within a single chromosome with the purpose to maintain the diversity
of the population. It has a low probability of occurring which is typically between
0.1 to 2 percent. In this experiment a mutation rate of 2 percent was chosen, with
every individual in the population being mutated after crossover occurred.

The selection pressure is an important parameter in genetic selection. The
selection operator has a high selective pressure if it severely reduces the difference
between individuals, or a low selective pressure if it allows many different indi-
viduals to survive. A low selection pressure will have a slow rate of convergence

Table 9.1 Search space
within the LUT dependent on
the number of motor speeds

Speeds Search space

2 3.9 9 10171

3 9.1 9 10271

5 2.6 9 10398

11 3.9 9 10593
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to the optimum solution and can possibly stagnate, whereas a selection pressure
that is too high may get stuck on local maxima due to loss of diversity. The choice
of which selection method to use is dependent on what type of problem is to be
solved, with each method having its advantages and disadvantages. Tournament
selection with a group size of 2 was employed for this experiment. The choice of
this group size was primarily to maintain a large diversity within the population
with a moderate selection pressure.

9.4.3 Fitness Criteria

Each chromosome was evaluated by the simulation to see how well it functioned.
This fitness evaluation was then used by the genetic selection to determine if the
chromosome would be kept. The maximum fitness that a chromosome could have
was 420 seconds. This was made up from 7 simulation runs with the beam
positioned horizontally and the ball placed at rest on various positions on the
beam. Each simulation run would last either until 60 seconds had passed, or until
the ball reached a beam end stop.

9.5 Simulation

Using a genetic algorithm to evolve a physical robot controller is difficult due to the
potential damage to the robot and its environment. As well, the complexity of the
robot’s actions has a large search space requiring a large number of generations
before a suitable controller can be evolved. This is time consuming if performed in
real time on an actual robot. To overcome these problems, evolutionary robotic
genetic algorithms are normally performed using a software simulation of the robot.
Once a suitable solution is found it can be transferred to the actual robot. However
creating a simulation for a robot means modelling the real world which can never be
entirely accurate, thus the final solution will carry with it the flaws in the simulation.

In this experiment the new ball position and speed were determined by the
simulation every millisecond, based on the new beam position and the previously
described Eqs. (9.6) and (9.7). Two maximum beam velocities of 22.7 and
45.4 degrees per second were evaluated. The motor speed and direction was
converted by the simulation into a new beam position, and from this, the new ball
position and speed were calculated. The motor speed and direction produced by
the lookup table, was converted by the simulation into a new beam position. From
this, a new ball position and speed were determined by the simulation based on the
previously described Eqs. (9.6) and (9.7). The new ball-beam states were then
feedback to the lookup table to determine the next motor speed and direction.
The simulation recalculated the ball position and speed every millisecond.
Two maximum beam velocities of 22.7 and 45.4 degrees per second were
evaluated.

9 An Analysis of the Genetic Evolution 115



9.6 Graphical User Interface

The GUI (Fig. 9.4) displayed the current ball position, ball speed, beam position,
and the current time that the ball had remained balanced. A dynamic visual
representation of the ball and beam in motion could be turned on or off, allowing
the user to see how the ball and beam were responding at various stages of the
evolutionary process. The visual representation was normally turned off, as when it
was on, the evolutionary process was slowed to real time. Evolutionary control
buttons were used to start, pause, and terminate the evolutionary process. The
evolutionary parameters of generation number, current individual under test,
average fitness of the population, and maximum fitness that had been reached was
provided. A text display showed the number of speed settings, the maximum beam
speed, the maximum fitness, average population fitness, generation number and
time taken for the evolutionary process. These values were stored for later
analysis.

9.7 Results

Two ranges of experiments were performed with 2 maximum motor speeds
equating to a maximum beam angular velocity of 22.7 and 45.4 degrees per
second. For each experiment, 4 ranges of motor speeds (2, 3, 5 and 11 speeds)
were evaluated. Each simulation was repeated 7 times with a different ball start
positions lying between ±12 degrees from the top of the beam. The simulation
was run until either the ball reached a beam end stop or 60 seconds had passed.
This gave a maximum fitness of 420 seconds.

Fig. 9.4 The graphical user interface
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9.7.1 Evolved Motion of the Ball

The relationship between the fitness of number of generations and corresponding
fitness of the best individual for 4 different maximum motor speeds is shown
(Figs. 9.5, 9.6, 9.7, and 9.8).

The first observation of these results is that the LUT using only 2 motor speeds
evolved in a shorter number of generations and time. This was due to 2 factors: (1)
the smaller search space of the chromosome, and (2) no requirement for multiple
speeds with an associated smoother response of the beam was built into the fitness.

The second observation was that the fitness increased in discrete steps,
improving rapidly until it reached a plateau at a fitness of approximately 320 and
360 seconds. On investigation of the ball motion, it was found that it was difficult
to capture the ball when it was started at the furthest position from the centre of the
beam. To avoid failure at these start positions, the beam was required to move at
maximum angular velocity in the opposite direction. This problem was more
apparent in a LUT with 5 or 11 motor speeds as there was a greater possibility that
the maximum beam angular velocity would not be used.

The motion of the ball-beam during the evolution process could be monitored
on the GUI. It could be seen that the ball beam motion evolved through 4 stages.
These were: (1) the beam remained stationary and the ball simply fell to an end
stop; (2) the beam would react once, reversing the motion of the ball. However the
ball would then fall to the opposite end stop; (3) the ball would be captured in
1 position, where the beam would perform an oscillation motion causing the ball
to stay within 2 points. This pattern would last for between 5 and 10 seconds, but
eventually the ball would break free and reach an end stop; (4) finally the beam
was able to trap the ball between 2 points for the full 60 seconds test. This method
of balancing by capturing the ball between 2 points by oscillating the beam was
observed in all motor speed ranges.

It was observed that the ball tended to be captured near either end of the beam.
This seemed unusual as it is a more risky position than a ball captured near the
center of the beam. This was due to the design of the beam’s sensor location, with
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more sensors placed near ends of the beam as it was thought that this was a more
important position. Unintentionally this gave the simulation a more accurate
position of the ball and its speed at this point. Subsequently the evolved controller
used the end locations to balance the ball.

A peculiarity of using a robotic simulation was observed when the ball was
started at rest in the center of the beam. The evolved chromosome learnt to keep
the motor off, thus achieving a perfect score for that run. This behaviour of course
would not work well with a real ball-beam system.
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9.7.2 Evolved Chromosome

When the best chromosomes from several successful evolutionary runs were
compared, it was found that each chromosome was different, producing a varied
pattern for the beam and ball motions. This variation in successful chromosomes
was due to the initial random population and the multiple pathways that the ball
and beam could interact with the LUT. This variation in chromosomes was
compounded by the fact that the evolution stopped once a successful pattern had
been found.

Most successful simulation runs did not use a large part of the LUT because the
ball would simply be moved to a position on the beam, and be kept in place by
beam oscillations.

The maximum and average fitness of a typical run shows that the maximum
fitness increased in abrupt steps, and then reached a plateau (Fig. 9.9). The average
fitness would then converge with the maximum fitness at each plateau. It was
thought that the population had converged at these points allowing only mutation
to modify the chromosome and its associated fitness. However an investigation of
the individual chromosomes and associated ball-beam motion showed that there
was still population diversity, and that the reason for the convergence of fitness
was due to the difficulty of evolving a chromosome that could start the ball at the
edge of the beam.

9.7.3 Comparison of Two Maximum Motor Speeds

Multiple experiments were run using the 2 maximum beam angular velocities of
22.7 and 45.4 degrees/second with speeds ranging from 2 to 11 settings. A com-
parison of these results is shown in Table 9.2, which details the average fitness,
number of generations and time the evolution was in progress at the end of the
evolution. From this table it can be seen that the faster motor and minimum
number of motor speeds had the best results in terms of the number of generations
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and the time taken to come to a successful evolution. It was noted that the time
taken for the 5 and 11 motor speeds to successfully evolve was also acceptable
despite the much larger search space. This was due to the constrained motion of
the beam and the path that the ball took, with only a limited part of the chro-
mosome being used for the beam control.

A comparison of the 4 motor speeds within each maximum motor pulse rate is
shown (Figs. 9.10 and 9.11). From these graphs it can be seen that doubling the
beam angular velocity had a significant improvement on the ability of the system
to evolve, especially at the 5 and 11 speed range. The fitness plateau at 320 and
360 seconds can clearly be seen. All the solutions had difficulty with either one or
both of the extreme starting points.

9.8 Conclusion

These experiments have shown that a 3-dimensional lookup table used as a
controller for a ball-beam system can be successfully evolved to allow the ball to
remain in balance for a total of 5 minutes. The motion of the ball and beam are
unique for each successful evolved chromosome. The experiments were performed
on 2 maximum beam angular velocities, and a range of 2, 3, 5 and 11 motor
speeds. It was found that the higher beam velocity and lower number of motor
speeds had the best evolutionary performance.

Table 9.2 Comparison of the average fitness, average number of generations and the average
time taken to evolve

22.7 � per second 45.4 � per second

Generation Av fitness Time(s) Generation Av fitness Time(s)

118 347726 197 42 268456 35
268 364240 592 56 327891 76
398 357240 3624 98 351811 297
861 359427 25794 103 349563 467
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Future research will involve modifying the fitness evaluation such that the
behaviour of the ball is more accurately controlled, for example to bring the ball to
rest at a set point in the shortest amount of time. This could then be compared with
other controllers such as proportional, differential and integral control. In addition
further research will explore how the evolved chromosome can be moved from
simulation to a physical beam.
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