
Chapter 7
Periodic Oscillations on Angular Velocity
with Maximum Brake Torque ABS
Operation

Ivan Vazquez, Juan Jesus Ocampo and Andres Ferreyra

Abstract The appearance of oscillatory processes is inherent to the antilock
braking system (ABS) operation, that can represent a problem on performance and
comfort, that’s why the oscillatory behavior represents an important study area,
since in can lead to significant advances in ABS performance. In this paper we
show that the ABS operation while the longitudinal contact force applied in a
pneumatic system is near to the maximum value produces an oscillatory effect on
the angular velocity of the vehicle0s wheel, and that for the time intervals that the
system operates the oscillation can be considered periodic.
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7.1 Introduction

Security in modern automotive systems represents important criteria for design, for
that reason, research in security systems has been increased in the last years, one of
the concerns is brake systems, and more ABS, one of the problems to solve with
ABS is the appearance of high frequency vibrations in the angular velocity of the
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wheel’s rotation, which has been studied by Clover [1], Jansen [2], Kruchinin
[3, 4], and Gozdek [5] among others. Modeling and research of forced oscillations
in deformable wheel as a result of ABS activity has been discussed by Clover [1],
and Jansen [2], while Kruchinin [3, 4] has analyzed the processes of appearance of
vibrations during the pressure’s relief phase in the brake cylinder of the ABS are
analyzed, as well as the algorithms to suppress such vibrations. Gozdek [5] studied
the possibility of longitudinal vibrations in the chassis of an airplane during the
active phase of ABS is discussed.

The modern ABS systems very often use sliding modes control [6–11] with
switching of ABS valves. Simultaneously the nonlinear character of ABS
dynamics can lead to specific periodic regimes of angular velocity change for this
manner of control algorithms that make programmed switch of the valve with a
given period and duty cycle. The condition of existence of periodic changes in the
angular velocity of the wheel’s rotation due to the presence of specific ABS
regimes is discussed in this paper.

The model of a pneumatic brake system is under consideration. The specific
configuration of this system includes the next: brake disks, which hold the wheels,
as a result of the increment of the air pressure in the brake cylinder (Fig. 7.1). The
entrance of the air trough the pipes from the central reservoir and the expulsion
from the brake cylinder to the atmosphere is regulated by a common valve. This
valve allows only one pipe to be open, when 1 is open 2 is closed and vice versa.
The time response of the valve is considered small, compared with the time
constant of the pneumatic systems.

We study the case of wheel’s rotation control, such that the longitudinal force,
due to the contact of the wheel with the road, is near from the maximum value in
the period of time valid for the model. This effect is reached as a result of the ABS
valve’s throttling.

Fig. 7.1 Pneumatic brake
model
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7.2 Mathematical Model

7.2.1 Wheel Motion Equations

To describe the wheel’s motion we use a partial mathematical model of the
dynamic system [3, 12]. Let’s write the equation of the angular momentum change
relative to the rotation axis (Fig. 7.2).

Iy
dXy

dT
¼ FRþ L ð7:1Þ

where Iy—wheel’s inertia moment, Xy—wheel’s angular velocity, R—wheel’s
radius, F—contact force, L—brake torque.

The expression for longitudinal component of the contact force in the motion’s
plane according to experimental results [13] is equals

F ¼ �mNu sð Þ ð7:2Þ

m is the friction coefficient between the wheel and the road, N—normal reaction.

s ¼
Vx þ XyRþ d

dT n
^

Vx
ð7:3Þ

s—slip rate, Vx—longitudinal velocity of the wheel mass center, n
^

—longitudinal
deformation of the tire’s contact area element. The function u(s) is defined experi-
mentally, and it looks like Fig. 7.3.

The motion equation of the contact element with mass Mc is described by the
tire longitudinal deformation. The interaction between this element and the rigid
part of the wheel can be described with a viscoelastic forces model. The movement
equation for the contact element is the next

Fig. 7.2 Model for the
contact element of the wheel
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Mc
d

dT
Vx þ XyRþ d

dT
n
^

� �
¼ F � Cx

d

dT
n
^

� Kxn
^

ð7:4Þ

Here Cx and Kx are longitudinal constants of viscous and elastic behavior of
tire’s model. The model to be used is the similar to description of first waveform in
model [2].

The Eqs. (7.1)–(7.4) characterize wheel motion. This system is closed if we
assume longitudinal velocity Vx and normal reaction N as constants. This
approximation is correct for time lag about seconds if longitudinal velocity and
normal reaction changes slowly and their variations are small [14].

Model proposed was previously used to describe the wheel’s vibration for small
values of slip ratio s \ 0.1 when dependence u(s) is approximately linear
u(s) = K0s [3]. Under these conditions, it is possible to consider that natural
period of contact element vibrations in (7.4) is much smaller than the characteristic
time of change of angular velocity and break torque. The fractional analysis
method [14] can be used to reduce Eq. (7.4) to terminal form and write approx-
imated relation F = Kxn. The wheel motion equations in this case is equivalent to
pendulum equation [2, 3] with viscous friction. Natural frequency of this
pendulum is

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KxR2

Iy
� K2

x V2
x

4m2N2K2
0

s

Such as been shown [3], this result is consistent with experimental effects
detected in the process of ABS control algorithm tests.

Further we consider the behavior of the system around the maximum value of
the brake torque, it means in the region of u(s) maximum. The Tikhonov’s
theorem [14] condition used for reduction in previous paragraph is correct too, but
reduced equations has singularities for u’(s) = 0. The analytic and numerically
solution of this equations is difficult. Therefore it is necessary to study full system

Fig. 7.3 Characteristic
function for slip rate

88 I. Vazquez et al.



(7.1)–(7.4) properties in order to analyze periodic oscillation of the angular
velocity.

We use the next approximation for u(s)

u sð Þ ¼ a1s2 þ a2sþ a3

s2 þ a4sþ a5
ð7:5Þ

The parameters a1…a5 were calculated with the least squares method [15]. We
use for calculation the values:

a1 = 0.8886
a2 = -0.1776
a3 = 0.0155
a4 = -0.2226
a5 = 0.0201

These values approximates top neighborhood of tire characteristics, used by
Mogamedov [10].

7.2.2 Pneumatic Brake System Equations

We suppose that the brake torque L is proportional to the pressure Pm in the brake
cylinder.

L ¼ KLPm ð7:6Þ

For the brake system we use an approximated model of pressure changes in the
brake cylinder due to the opening of the valve with a first order relation [1, 16].

Te
dPm

dT
þ Pm ¼ P� ð7:7Þ

Let’s suppose opening and closing of valve is momentary and the parameters of
the Eq. (7.7) are given by the next rules:

(a) P* = Pc = const Te = Tin when 1 is opened and 2 is closed
(b) P* = Pa = 0 Te = Tout when 2 is opened and 1 is closed

Here Pc—pressure inside the central reservoir, Pa—atmospheric pressure, that
we’ll consider 0. Tin and Tout—time constants of internal and external pipelines.

7.3 Dimensionless Equations

We desire to rewrite Eqs. (7.1)–(7.3), (7.5) in a more useful form, by ignoring

changes in Vx. Taking dXy

dT from (7.1), and writing in (7.5) we have:
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Iy
dXy

dT ¼ mNRu sð Þ � L

Mc
d2 n

^

dT2 þ Cx
dn
^

dT þ Kxn
^

¼ �McR
Iy

Lþ McR2

Iy
� 1

� �
mNu sð Þ

s ¼ 1þ X R
Vx
þ 1

Vx

dn
^

dT

8>>><
>>>:

ð7:8Þ

Equation (7.7) can be modified to following form:

Te
dL

dT
� KLP� þ L ¼ 0 ð7:9Þ

To reduce the number of parameters we take the variables to a dimensionless
form

l ¼ L

NR
; x ¼ XyR

Vx
; n ¼ n

^

VxT1
; t ¼ T

T1

where

T1 ¼
IyVx

NR2

is the characteristic time of the angular velocity changes, according to (7.1).
The system (7.1), (7.8), (7.9) has the next dimensionless form

dx
dt ¼ l� mu sð Þ s ¼ 1þ xþ dn

dt
d2n
dt2 þ q dn

dt þ pn ¼ �l� mku sð Þ
Te
T1

dl
dt ¼ ls � l ðaÞls ¼ lc ¼ const Te ¼ Tin

ðbÞls ¼ 0 Te ¼ Tout

8>><
>>:

ð7:10Þ

where

q ¼ CxT1

Mc
; p ¼ KxT2

1

Mc
; k ¼ Iy

McR2
�1 l c ¼

KLPc

L�
:

7.4 Periodic Solutions Finding

The main goal of this work is the study of periodic regimes produced by pro-
grammed switching of the valve with a given period and duty cycle [16].

To search for periodic regimes we analyze an auxiliary task: control with a
relay feedback built such that the system switches the valve when the slip ratio
s reaches the arbitrary limit values s1 and s2. We analyze the values s1, s2 for which
the function u sð Þ changes around the maximum value (Fig. 7.3). In this region the
contact force has a value less or equal than 10 % down the maximum value, for a
constant normal reaction between the wheel and the road.
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To find periodic solutions lP ; nP;xP½ � we integrate numerically the equation
system (7.10) for initial conditions that can be present in real systems [3]. As a
result of this integration we have solutions for which the values (a) work in the
interval D1 ¼ s1 � s0, and the values (b) in the interval Dfr ¼ sf � s1 (Fig. 7.4).

We consider that a periodic regime was found if the integration if the next
criteria is true

max lf � lP0 ; nf � nP0
;
dnf

dt
� dnP0

dt
;xf � xP0

� �
� 0:01

Here lP0 ; nP0
;xP0

� �
and lf ; nf ;xf

� �
are the variables in two successive periods

at the moment of valve’s opening. lP0 ; nP0
;xP0

� �
— are the initial conditions of

computed periodic solution.
All the possible values D1, Df and the corresponding initial conditions of the

periodic solutions at the opening moment were obtained by solving the system for
different pairs (s1, s2) inside the interval s1 min; s2 maxð Þ. The region of founded
values D1, Df for different friction coefficient value m can be seen in Fig. 7.5.

The parameters for calculations are

Tin = 0.0043 s
Tout = 0.0085 s
p = 1000
q = 100

Fig. 7.4 Periodic solution
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k = 10
ls = 0.4755
T1 = 0.0848 s

7.5 Conclusion

ABS has become standard equipment in most of the modern vehicles since they
can provide a good control response in direction during extreme braking situations.
ABS operation is based on a switching process, oscillatory affects are produced,
and the results can have consequences on performance, security and comfort of the
vehicle, for that reason it is important to analyze the properties of such oscillations.
The case of maximum longitudinal force before the wheel locks was considered
because operation of ABS starts when this condition occurs. The simulation
showed that the oscillations on the angular velocity of the wheel have a periodic
behavior for some regions of the analysis, that information can be helpful to design
control algorithms, either, to suppress vibrations or to take advantage of the
periodic oscillation on the switching process, to increase performance.
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