
Chapter 5
An Efficient Dispersion Control Chart

Saddam Akber Abbasi and Arden Miller

Abstract Control chart is the most important Statistical Process Control tool used
to monitor reliability and performance of industrial processes. For monitoring
process dispersion, R and S charts are widely used. These control charts perform
better under the ideal assumption of normality but are well known to be very
inefficient in presence of outliers or departures from normality. In this study we
propose a new control chart for monitoring process dispersion, namely the D chart,
and compared its performance with R and S charts using probability to signal as a
performance measure. It has been observed that the newly proposed chart is
superior to R chart and is a close competitor to S chart under normality of quality
characteristic. When the assumption of normality is violated, D chart is more
powerful than both R and S charts. This study will help quality practitioners to
choose an efficient and robust alternative to R and S charts for monitoring
dispersion of industrial processes.
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5.1 Introduction

Control chart introduced by Walter A. Shewhart in 1920’s, is the most important
Statistical Process Control (SPC) tool used to monitor reliability and performance
of industrial processes. The basic purpose of implementing control chart proce-
dures is to detect abnormal variations in the process (location & scale) parameters.
Although first proposed for manufacturing industry, control charts have recently
been applied in a wide variety of disciplines, such as in nuclear engineering [7],
health care [16], education [15], analytical laboratories [10] etc.

Monitoring process dispersion is an important component of SPC. Dispersion
control charts are a well known tool used for improving process capability and
productivity by reducing variability in the process. R and S charts are the two most
widely used control charts for monitoring changes in process dispersion [11]. The
design of these charts is based on estimating the process standard deviation r using
sample range and sample standard deviation respectively. These charts perform
better under the ideal assumptions but are well known to be very inefficient when
the assumption of normality is violated. In this study we propose a new dispersion
control chart, namely the D chart, based on Downton’s based estimate of process
standard deviation. The design of D chart is established and is shown to be more
efficient as compared to both R and S charts particularly for non-normal processes.

Assume X be a normally distributed quality characteristic with in-control mean
l and standard deviation r (i.e. X�Nðl; r2Þ). Let X1;X2; . . .;Xn represents a
random sample of size n and the corresponding order statistics are represented by
Xð1Þ;Xð2Þ; . . .;XðnÞ. The Downton’s estimator is defined as (see [2, 5] and [1]):

D ¼ 2
ffiffiffi

p
p

nðn� 1Þ
X

n

i¼1

i� 1
2
ðnþ 1Þ

� �

XðiÞ ð5:1Þ

For normally distributed quality characteristic, D is an unbiased estimator of r [3]
and it has been shown in the past that D is not much affected by non-normality.
The purpose of this study is to develop a variability chart based on D that performs
better than existing variability charts, such as R or S charts, under the existence and
violation of normality assumption. The rest of study is organized as follows: In the
next section the widely used 3-sigma and probability limit structure of D chart is
established following [14] and [6]. The following section compares the perfor-
mance of D, R and S charts assuming normality of quality characteristics. The
comparison is made using probability to signal as a performance measure. Fourth
section presents comparison of these charts when the assumption of normality is
violated and quality characteristic is assumed to follow non-normal (heavy tailed
symmetric and skewed) distributions following [14] and [12]. Finally conclusions
have been made in the last section.
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5.2 Design of D Control Chart

Suppose the relationship between D and r be defined by a random variable Z as
Z ¼ D=r (similar to W ¼ R=r for R chart; [11]). For setting up control limits of
the proposed D chart, estimates of r and rD are required. By taking expectations
on both sides of Z, we obtain:

EðZÞ ¼ EðD=rÞ ¼ EðDÞ=r ð5:2Þ

EðDÞ can be replaced with average of sample D0s (D), computed from an
appropriate number of random samples obtained from a process during normal
operating conditions (similar to R and S used in the construction of R and S charts).
Let EðZÞ ¼ z2, as D is an unbiased estimator of r hence we have z2 ¼ 1 (for every
value of n). Thus under normality, an unbiased estimator of r based on Downton’s
estimator is given as br ¼ D.

Similarly for an estimate of rD we have rZ ¼ rD=r. Let rZ ¼ z3, hence we have

rD ¼ z3r ð5:3Þ

Barnett et al. [3] showed that

varðDÞ ¼ r2

nðn� 1Þ n
1
3
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From Eqs. (5.3) and (5.4) we have

z3 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Replacing an estimate of r (i.e. br ¼ DÞ in Eq. (5.3), we obtain brD ¼ z3D
Hence the widely used 3-sigma control limits for the proposed D chart are

defined as

LCL ¼ maxð0;D� 3z3DÞ; CL ¼ D and UCL ¼ Dþ 3z3D ð5:6Þ

LCL ¼ Z3D; CL ¼ D and UCL ¼ Z4D ð5:7Þ

where Z3 ¼ maxð0; 1� 3z3Þ and Z4 ¼ 1þ 3z3. The coefficients z3; Z3 and Z4

entirely depends on sample size n and are given in Table 5.1 for some represen-
tative values of sample size n. After setting up control limits, sample statistic D is
plotted against time or sample number. If all the plotted points lie inside the
control limits we can say that the process variability is in statistical control
otherwise if one or more points lie outside the control limits, the process variability
is said to be out-of-control.

5 An Efficient Dispersion Control Chart 63



The use of 3-sigma limits is based on the symmetric assumption of the plotted
statistic, we will see that the distribution of D is not symmetric atleast for small to
moderate values of n. Hence there is a need to develop the probability limit
structure for the proposed D chart. Probability limits for D chart can be computed
by using the quantile points of the distribution of Z. Let a be the specified prob-
ability of making Type-I error, denoting a-quantile of the distribution of Z by Za,
the probability limits based on D are given as:

LCL ¼ Zða=2ÞD with PrðZ� Zða=2ÞÞ ¼ a=2

UCL ¼ Zð1�a=2ÞD with PrðZ� Zð1�a=2ÞÞ ¼ 1� a=2
ð5:8Þ

These quantile points have been computed through extensive Monte Carlo simu-
lation routines. The distribution of Z is obtained by generating 10,000 samples of
size n ¼ 2; 3; � � � ; 15; 20; 25; 35; 50; 75 and 100 from standard normal distribution.

For a specified Type-I error probability a, ða=2Þth and ðð1� aÞ=2Þth quantile points
have been computed from the distribution of Z for every combination of a and n.
The same procedure is repeated 1000 times and the mean values of the quantile
points together with their standard errors are reported in Table 5.1. The 3-sigma
and probability limit structure of R and S charts with their respective control chart
constants and quantile points can be seen in [13].

5.3 Comparison of D, R and S Charts for Normal Processes

In this section we provide comparison of the D, R and S Charts for normally
distributed quality characteristic using probability to signal as the performance
measure. For a fair comparison, different competing procedures needs to be
adjusted to have the same false alarm probability and then comparison is made
with respect to out-of-control detection probabilities. In our case, the process is
said to be out-of-control whenever process standard deviation r shifts from an in-
control value, say r0 to another value say r1, where r1 is defined as
r1 ¼ r0 þ dr0. For a fixed false alarm rate, control chart structure which gives
highest probability to signal for out-of-control situations will indicate best per-
formance as compared to other charts.

By setting up probability limits for a ¼ 0:002, probability to signal have been
computed for both in-control and out-of-control situations for D, R and S charts
using their respective control chart coefficients and quantile points. To save space
and to aid in visual clarity, power curves have been constructed instead of pre-
senting results in tabular form. The power curves of the three charts for normally
distributed quality characteristics for n ¼ 5; 10 and 15 are shown in Fig. 5.1.

From power curves in Fig. 5.1 we can observe that for zero sigma shift in process
standard deviation, the probability of signaling is very close to 0:002 for all the
charts and for every sample size, representing the case for an in-control process.
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When the process is out-of-control, D chart is equally efficient to S chart for
detecting shifts in process variability and have significantly higher probability to
signal as compared to R chart, as the power curves of D chart coincides with that of S
chart and always higher than the power curves of R chart for every choice of n. Hence

Table 5.1 Control chart constants and quantile points of the distribution of Z (standard errors)

n Z0:001 Z0:01 Z0:05 Z0:95 Z0:99 Z0:999

2 0.00166 0.01565 0.0785 2.45975 3.23694 4.15268
(0.00056) (0.00015) (0.001) (0.00027) (0.00111) (0.00033)

3 0.03551 0.11492 0.25502 1.96152 2.439 3.00633
(0.00084) (0.00057) (0.00086) (0.00052) (8e�04) (0.00086)

4 0.09823 0.21368 0.37075 1.76101 2.12345 2.53082
(0.00032) (0.00111) (0.00031) (0.00109) (0.00096) (0.00069)

5 0.15217 0.28511 0.44493 1.64577 1.9552 2.30548
(0.00025) (0.00044) (0.00027) (0.00047) (0.00076) (0.00089)

6 0.20846 0.34765 0.50023 1.56683 1.8354 2.15353
(0.00025) (0.00048) (0.00032) (0.00057) (0.00093) (0.00036)

7 0.25049 0.39398 0.54303 1.51488 1.75368 2.02625
(0.00013) (2e�04) (0.00061) (0.00034) (0.00076) (0.00035)

8 0.30186 0.43455 0.57671 1.47484 1.68721 1.94266
(0.00033) (0.00087) (0.00023) (0.00025) (0.00086) (0.00028)

9 0.33462 0.46845 0.60199 1.443 1.64455 1.87114
(0.00016) (0.00025) (0.00079) (0.00011) (0.00035) (0.00081)

10 0.37155 0.49531 0.62393 1.41335 1.60123 1.81688
(0.00028) (0.00024) (0.00046) (0.00078) (0.00063) (0.00035)

11 0.38631 0.51896 0.63972 1.39357 1.56754 1.7785
(9e�04) (0.00036) (0.00091) (0.00024) (0.00068) (0.00073)

12 0.41242 0.53575 0.6575 1.37317 1.54059 1.7294
(0.00109) (0.00087) (0.00039) (0.00056) (0.00076) (0.00085)

13 0.43215 0.55201 0.6712 1.35789 1.52125 1.69148
(0.00067) (0.00034) (0.00079) (0.00021) (0.00025) (0.00063)

14 0.45467 0.57071 0.68466 1.34069 1.49412 1.68263
(0.00031) (0.00056) (0.00077) (0.00041) (0.00033) (0.00039)

15 0.46773 0.58356 0.6935 1.32709 1.47725 1.63709
(0.00066) (0.0011) (0.00098) (0.00022) (0.00051) (0.00081)

20 0.54297 0.63953 0.73694 1.27848 1.4035 1.54339
(0.00042) (0.00033) (0.00092) (0.00059) (0.00017) (0.00011)

25 0.57977 0.67448 0.76569 1.24488 1.35738 1.47917
(0.00074) (0.00028) (0.00107) (0.00053) (0.00088) (0.00072)

35 0.64444 0.72547 0.8022 1.20638 1.29519 1.4015
(0.00022) (0.00091) (0.00012) (0.00031) (0.00067) (0.00079)

50 0.70201 0.77009 0.83552 1.17129 1.24661 1.33503
(7e�04) (0.00084) (0.00019) (5e�04) (0.00052) (0.00094)

75 0.75708 0.8122 0.86561 1.13826 1.1971 1.26395
(0.00031) (0.00099) (0.00053) (0.00036) (0.00097) (0.00025)

100 0.78607 0.83591 0.88294 1.12025 1.17153 1.2276
(0.00094) (0.00079) (0.00055) (0.00105) (0.00077) (0.0011)
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we can say that under the ideal assumption of normality D chart is more efficient than
R chart and is a close competitor to S chart.

5.4 Comparison of D, R and S Charts for Non-Normal
Processes

Normal distribution have wide applications in statistics and almost all SPC charts
are based on this assumption. But in practice data from many real world processes
follow non-normal distributions. To mention a few of such cases: [4] and [8]
pointed out that quality characteristics such as capacitance, insulation resistance,
surface finish, roundness, mold dimensions follow non-normal distributions.
Levinson and Polny [9] indicates that impurity levels in semiconductor process
chemicals follow Gamma distribution. Many other characteristics such as
straightness, flatness, cycle time are not distributed normally. Hence there is a need
to study the performance of these variability charts for different parent non normal
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Fig. 5.1 Power curves of D;R and S charts for n ¼ 5; 10 and 15 under Normal distribution when
a ¼ 0:002
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distributions. To represent the case of non-normal processes, the performance of
D;R and S charts is investigated by assuming that the quality characteristic follows
heavy tailed symmetric Student’s t and skewed Gamma and Weibull distributions.
The density function of these non-normal distributions are given below:

Student’s t (tkÞ : f ðxjkÞ ¼ C½ðkþ1Þ=2�
ffiffiffiffi

kp
p

Cðk=2Þ 1þ x2

k

	 
�ðkþ1Þ=2
; �1\x\1; k [ 0

Gamma(a; bÞ : f ðxja; bÞ ¼ ba

CðaÞ x
a�1e�bx; x [ 0; a[ 0; b[ 0

Weibull(a;bÞ : f ðxja; bÞ ¼ a
b xa�1e�xa=b; x� 0; a [ 0; b[ 0

Probability to signal of D;R and S charts have been computed for these
non-normal distributions using similar simulation routines as were used earlier for
the case of normal distribution. In our simulation study we used Student’s t distri-
bution with k ¼ 5, Gamma distribution with a ¼ 2 and b ¼ 1, and finally Weibull
distribution with a ¼ 1:5 and b ¼ 1. The power curves of the three charts when
quality characteristic is assumed to follow Student’s t, Gamma and Weibull
distributions are presented in Figs. 5.2, 5.3, 5.4 respectively. From Figs. 5.2, 5.3, 5.4
we can clearly see that the power curves of D chart are always higher than the power
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Fig. 5.2 Power curves of D;R and S charts for n ¼ 5; 10 and 15 under Student’s t distribution
when a ¼ 0:002
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curves of both R and S charts for all non-normal cases and for every choice of sample
size n. This indicates that D chart has higher probability to signal shifts in process
variability as compared to both R and S charts when the assumption of normality is
violated. We can also observe that the difference in the detection ability of these
charts increases with an increase in n. Relatively R chart is extremely affected while
D chart is least affected by non-normality. Hence for non-normal processes, we can
easily say that D chart is always superior than both R and S charts.

5.5 Conclusions

This study proposes an efficient control chart, namely the D chart, to monitor
changes in process dispersion. The performance of the D chart is compared to the
widely used R and S charts. It has been shown that for normally distributed quality
characteristic, D chart is equally efficient to the S chart in terms of detecting shifts
in process variability and has significantly better detection ability as compared to
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Fig. 5.3 Power curves of D;R and S charts for n ¼ 5; 10 and 15 under Gamma distribution when
a ¼ 0:002
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the R chart. For non-normal processes, D chart clearly showed superiority over
both R and S charts. Quality control practitioners can now easily choose D chart as
a superior alternative to both R and S charts due to its efficient detection ability.
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