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Abstract The majority of worldwide data and voice traffic is transported using
optical communication channels. As the demand for bandwidth continues to
increase, it is of great importance to find closed form expressions of the infor-
mation capacity for the optical communications applications at the backbone as
well as the access networks. In particular, we introduce an information-theoretic
derivation of the capacity expressions of Poisson channels that model the appli-
cation. The closed form expression for the capacity of the single input single
output (SISO) Poisson channel-derived by Kabanov in 1978, and Davis in 1980
will be revisited. Similarly, we will derive closed form expressions for the capacity
of the multiple accesses Poisson channel (MAC) under the assumption of constant
shot noise. This provides a framework for an empirical form of the k-users MAC
Poisson channel capacity with average powers that are not necessarily equal.
Moreover, we interestingly observed that the capacity of the MAC Poisson channel
is a function of the SISO Poisson channel and upper bounded by this capacity plus
some quadratic non-linear terms. We have also observed that the optimum power
allocation in the case of Poisson channels follows a waterfilling alike interpretation
to the one in Gaussian channels, where power is allotted to less noisy channels.
Therefore, we establish a comparison between Gaussian channels and Poisson
optical channels in the context of information theory and optical communications.
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4.1 Introduction

Information Theory provides one of its strongest developments via the notion of
maximum bit rate or channel capacity. Determining an ultimate limit to the rate at
which we can reliably transmit information over a physical medium in a given
environment is an earnest attempt of fundamental and practical consideration. Such
a limit is referred to as the channel capacity and the process of evaluating this limit
leads to an understanding of the technical solutions required to approach it.
Therefore, if the capacity can be found, then the goal of the engineer is to design an
architecture which achieves that capacity. Capacity evaluations require information
theory which must be adapted to the specific characteristics of the channel under
study. The seminal work of Shannon published in 1948 [1] gave birth to
information theory. Shannon determined the capacity of memoryless channels,
including channels impaired by additive white Gaussian noise (AWGN) for a given
signal-to-noise ratio (SNR). However, applying concepts of information theory to
the optical communications channels encounters major challenges. The most
important difficulty is dealing with the simultaneous interaction of specifically:
The noise, filtering, and Kerr nonlinearity phenomena in the optical channel. These
phenomena are distributed along the propagation path, and influence each other
leading to deterministic as well as stochastic impairments [2].

Therefore, in this chapter, we accomplish an information-theoretic approach to
derive the closed form expressions for the capacity of the SISO Poisson channel
already found by Kabanov [3] and Davis [4], as well as for the k-user MAC Poisson
channel using a direct detection or photon counting receiver and under constant
noise; therefore, we simplify the framework of derivation. Several contributions
have been done using information theoretic approaches to derive the capacity of
Poisson channels under constant and time varying noise via martingale processes
[3–7], or via approximations using Bernoulli processes [8], to define upper and lower
bounds for the capacity and the rate regions of different models [9, 10], to define
relations between information measures and estimation measures [11], in addition to
deriving optimum power allocation for such channels [6, 7, 12]. However, in this
contribution, we introduce a simple framework for deriving the capacity of Poisson
channels for the model of consideration—The MAC Poisson channel—with the
assumption of constant stochastic martingale noise, i.e. for the sake of simplicity, we
didn’t model the noise as Gaussian within the stochastic intensity rate process.
In addition, we build upon derivations for the optimal power allocation.

In Poisson channels, the shot noise is the dominant noise whenever the power
received at the photodetector is high; such noise is modeled as a Poisson random
process. In fact, such framework has been investigated in many researches; see
[2–7, 9–13]. Capitalizing on the expressions derived on [3, 4, 6, 7] and on the
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results by [6, 7, 9], we investigate the derivation process of the channel capacity in
a straightforward way; we then determine the optimal power allocation that
maximizes the information rates. To derive the optimal power allocation for dif-
ferent channel frameworks, it’s worth to notice that different optimization criteria
could be relevant. In particular, the optimization criteria could be the peak power,
the average optical power, or the average electrical power. The average electrical
power is the standard power measure in digital and wireless communications and it
helps in assessing the power consumption in optical communications, while the
average optical power is an important measure for safety considerations and helps
in quantifying the impact of shot noise in wireless optical channels. In addition, the
peak power, whether electrical or optical, gives a measure of tolerance against the
nonlinearities in the system, for example the Kerr nonlinearity which is identified
by a nonlinear phase delay in the optical intensity or in other words as the change
in the refractive index of the medium as a function of the electric field intensity.

4.2 The Communication Framework

In a communication framework, the information source inputs a message to a
transmitter. The transmitter couples the message onto a transmission channel in the
form of a signal which matches the transfer properties of the channel. The channel
is the medium that bridges the distance between the transmitter and the receiver.
This can be either a guided transmission such as a wire or a wave guide, or it can
be an unguided free space channel. A signal traverses the channel will suffer from
attenuation and distortion. For example, electric power can be lost due to heat
generation along a wire, and optical power can be attenuated due to scattering and
absorption by air molecules in a free space. Therefore, channels are characterized
by a transfer function which models the input–output process. The input–output
process statistics is dominated by the noise characteristics the modulated input
experiences during its propagation along the communication medium, in addition
to the detection procedure experienced at the channel output. In particular, when
the noise nG tð Þ is a zero-mean Gaussian process with double-sided power spectral
density N0/2, the channel is called an additive white gaussian channel (AWGN).
However, when the electrical input is modulated by a light source, like a laser
diode, the channel will be an optical channel with the dominant shot noise nd tð Þ
arising from the statistical nature of the production and collection of photoelec-
trons when an optical signal is incident on a photodetector, such statistics char-
acterized by a Poisson random process.

Figure 4.1 illustrates both the AWGN and the Poisson optical channels. In this
chapter, we focus on the Poisson optical communication channel shown in
Fig. 4.1b and we derive capacity closed form expression for the MAC Poisson
channel capitalizing on the framework of derivation of the SISO Poisson channel
capacity under a constant shot noise.
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4.3 The SISO Poisson Channel

Consider the SISO Poisson channel P shown in Fig. 4.2. Let NðtÞ represent the
channel output, which is the number of photoelectrons counted by a direct
detection device (photodetector) in the time interval [0, T]. NðtÞ has been shown to
be a doubly stochastic Poisson process with instantaneous average rate kðtÞ þ n.
The input kðtÞ is the rate at which photoelectrons are generated at time t in units of
photons per second. And n is a constant representing the photodetector dark
current and background noise.

4.3.1 Derivation of the Capacity of SISO Poisson Channels

Let p NTð Þ be the sample function density of the compound regular point process
NðtÞ and p NT jSTð Þ be the conditional sample function of NðtÞ given the message
signal process SðtÞ in the time interval [0, T]. Then we have,

p NT jSTð Þ ¼ e
�
RT

0

kðtÞþnð ÞdðtÞþ
RT

0

log kðtÞþnð ÞdNðtÞ
ð4:1Þ

p NTð Þ ¼ e
�
RT

0

ckðtÞþn

� �
dðtÞþ

RT

0

log ckðtÞþn

� �
dNðtÞ

ð4:2Þ

We use the following consistent notation in the paper, dkðtÞ is the estimate of the
input kðtÞ. E½�� is the expectation operation over time. Therefore, the mutual
information is defined as follows,

I ST ; NTð Þ ¼ E log
p NT jSTð Þ

p NTð Þ

� �� �

ð4:3Þ
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Fig. 4.1 a The AWGN
channel. b The Poisson
optical channel
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Theorem 1 (Kabanov’78 [1]-Davis’80 [4]):
The capacity of the SISO Poisson channel is given by:

C ¼ K

P
ðPþ nÞ logðPþ nÞ þ 1� K

P

� �

n logðnÞ � ðK þ nÞ logðK þ nÞ ð4:4Þ

Proof:
Substitute (4.1, 4.2) in (4.3), we have,

I ST ; NTð Þ ¼ E �
ZT

0

kðtÞ � dkðtÞdt þ
ZT

0

log
kðtÞ þ n
dkðtÞ þ n

 !

dNðtÞ

2

4

3

5

Since E dkðt)
h i

¼ E E kðt)jNðtÞ½ �½ � ¼ E kðt)½ �, it follows that,

I ST ; NTð Þ ¼ E

ZT

0

log
kðtÞ þ n
dkðtÞ þ n

 !

dNðtÞ

2

4

3

5

And NðtÞ �
RT

0
log kðtÞ þ nð Þ is a martingale from theorems of stochastic

integrals, see [6, 11] therefore,

I ST ; NTð Þ¼E
ZT

0

kðtÞ þ nð Þlog
kðtÞ þ n
dkðtÞþn

 !

dt

2

4

3

5

¼
ZT

0

Ed kðtÞ þ nð Þlog kðtÞ þ nð Þe � Ed kðtÞ þ nð Þlog dkðtÞ þ n
� �

dte

¼
ZT

0

Ed kðtÞ þ nð Þlog kðtÞ þ nð Þe � EdE½ kðtÞ þ nð Þ�log dkðtÞ þ n
� �

jNT dte

¼
ZT

0

Ed kðtÞ þ nð Þlog kðtÞ þ nð Þe � EdE ½kðtÞ þ n�ð ÞjNT �elog dkðtÞ þ n
� �

dt

Fig. 4.2 The SISO Poisson
channel model
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¼
ZT

0

Ed kðtÞ þ nð Þlog kðtÞ þ nð Þe � Ed dkðtÞ þ n
� �

log dkðtÞ þ n
� �

dte ð4:5Þ

See [6, 7] for similar steps. In [11], it has been shown that the derivative of the
input–output mutual information of a Poisson channel with respect to the intensity
of the dark current is equal to the expected error between the logarithm of the
actual input and the logarithm of its conditional mean estimate, it follows that,

dI ST ; NTð Þ
dkðtÞ ¼E log

kðtÞ þ n
dkðtÞ þ n

 !" #

ð4:6Þ

The right hand side term of (4.6) is the derivative of the mutual information
corresponding to the integration of the estimation errors. This plays as a counter
part to the well known relation between the mutual information and the minimum
mean square error (MMSE) in Gaussian channels in [14].

The capacity of the SISO Poisson channel given in Theorem 1 (4.4) is defined
as the maximum of (4.5) solving the following optimization problem,

max I ST ; NTð Þ ð4:7Þ

Subject to average and peak power constraints,

1
T
E

ZT

0

kðtÞdt

2

4

3

5� rP

0� kðtÞ�P ð4:8Þ

With P is the maximum power and the ratio of average to peak power r is used
with 0� r� 1. We can easily check that the mutual information is strictly convex
via it kðtÞs second derivative with respect to as follows,

d2I ST ; NTð Þ
dk2ðtÞ

= log
kðtÞ þ n
dkðtÞ þ n

 !

[ 0:

Therefore, the mutual information is convex with respect to kðtÞ:
Now solving:

max

ZT

0

Ed kðtÞ þ nð Þ log kðtÞ þ nð Þe � Ed dkðtÞ þ n
� �

log dkðtÞ þ n
� �

e � n
T
EdkðtÞe

0

@

1

A

With n as the Lagrangian multiplier.
The possible values of EdðkðtÞ þ nÞ logðkðtÞ þ nÞe must lie in the set of all

y-coordinates of the closed convex hull of the graph y ¼ xþ nð Þ log xþ nð Þ.
Hence, the maximum mutual information achieved using the distribution pðk ¼
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PÞ ¼ 1� pðk ¼ 0Þ ¼ a. Where 0� a� 1, so that E½kðtÞ� ¼ K. So, we must have
E kðtÞ½ � ¼

P
kðtÞpðkÞ. It follows that, K ¼ Ppðk ¼ PÞ ¼ Pa. Then, a ¼ k

P and the
capacity in Theorem 1 (4.4) is proved.

4.3.2 Optimum Power Allocation for SISO Poisson Channels

We need to solve the following optimization problem,

max
K

P
ðPþ nÞ logðPþ nÞ þ ð1� K

P
Þn logðnÞ � ðK þ nÞ logðK þ nÞ � n

T
K

� �

ð4:9Þ

Since (4.9) is concave with respect to K, i.e. the second derivative of (4.9) with
respect to K is negative. Using the Lagrangian corresponding to the derivative of
the objective with respect to K, and the Karush–Kuhn–Tucker (KKT) conditions,
the optimal power allocation is the following,

K� ¼ ðPþ nÞe� 1þn
Tð Þþn

P log 1þP
nð Þ � n ð4:10Þ

4.4 The MAC Poisson Channel

Consider the MAC Poisson channel shown in Fig. 4.3. Let us consider a 2-input
MAC Poisson channel, then, N1ðtÞ is a doubly stochastic Poisson process with
instantaneous average rate k1ðtÞ þ k2ðtÞ þ n.

4.4.1 Derivation of the Capacity of MAC Poisson Channels

Let pðN1Þ and pðN1jS1; S2Þ be the joint density and conditional sample function of
the compound regular point process N1ðtÞ given the message signal processes S1ðtÞ
in the time interval [0, T]. Then we have,

.

.

nFig. 4.3 The MAC Poisson
channel model
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p N1jS1; S2ð Þ ¼ e
�
RT

0

ðk1ðtÞþk2ðtÞþnÞdtþ
RT

0

logðk1ðtÞþk2ðtÞþnÞdNðtÞ
ð4:11Þ

pðN1Þ ¼ e
�
RT

0

ðdk1ðtÞþdk2ðtÞþnÞdtþ
RT

0

log dk1ðtÞþdk2ðtÞþn

� �
dNðtÞ

ð4:12Þ

Therefore, the mutual information is defined as follows,

I ST ; NTð Þ ¼ E log
p N1jS1; S2ð Þ

pðN1Þ

� �� �

ð4:13Þ

Theorem 2:
The capacity of the 2-input MAC Poisson channel is given by:

C ¼ k1
P
þ k2

P

� �

Pþ nð Þ log Pþ nð Þ þ 1� K1
P
þ K2

P

� �� �

n logðnÞ � ðK1þ K2

þ nÞ logðK1þ K2þ nÞ
ð4:14Þ

Proof:
Substitute (4.11, 4.12) in (4.13), we have,

I ST; NTð Þ ¼E �
ZT

0

k1ðtÞ � dk1ðtÞ
� �

dt �
ZT

0

k2ðtÞ � dk2ðtÞ
� �

dt

2

4

þ
ZT

0

log
k1ðtÞ þ k2ðtÞ þ n
dk1ðtÞ þ dk2ðtÞ þ n

 !

dNðtÞ

3

5

Since E dk1ðtÞ þ dk2ðtÞ
h i

¼ E E k1ðtÞ þ k2ðtÞjNT½ �½ � ¼ E½k1ðtÞ þ k2ðtÞ�, it fol-

lows that,

I ST; NTð Þ ¼ E

ZT

0

log
k1ðtÞ þ k2ðtÞ þ n
dk1ðtÞ þ dk2ðtÞ þ n

 !

dNðtÞ

2

4

3

5

And NðtÞ �
RT

0
logðk1ðtÞ þ k2ðtÞ þ nÞ is a martingale from theorems of stochastic

integrals, see [6, 11] therefore,

I ST; NTð Þ ¼ E

ZT

0

ðk1ðtÞ þ k2ðtÞ þ nÞ log
k1ðtÞ þ k2ðtÞ þ n
dk1ðtÞ þ dk2ðtÞ þ n

 !

dt

2

4

3

5
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¼
ZT

0

Edðk1ðtÞ þ k2ðtÞ þ nÞ logðk1ðtÞ þ k2ðtÞ þ nÞe

�Edðk1ðtÞ þ k2ðtÞ þ nÞ logð dk1ðtÞ þ dk2ðtÞ þ nÞedt

¼
ZT

0

Edðk1ðtÞ þ k2ðtÞ þ nÞ logðk1ðtÞ þ k2ðtÞ þ nÞe

�EdE ðk1ðtÞ þ k2ðtÞ þ nÞ½ � logð dk1ðtÞ þ dk2ðtÞ þ nÞjNTedt

¼
ZT

0

Edðk1ðtÞ þ k2ðtÞ þ nÞ logðk1ðtÞ þ k2ðtÞ þ nÞe

�EdEdðk1ðtÞ þ k2ðtÞ þ nÞjNT logð dk1ðtÞ þ dk2ðtÞ þ nÞedt

¼
ZT

0

Edðk1ðtÞ þ k2ðtÞ þ nÞ logðk1ðtÞ þ k2ðtÞ þ nÞe

�EdEdðk1ðtÞ þ k2ðtÞ þ nÞjNT logð dk1ðtÞ þ dk2ðtÞ þ nÞedt

ð4:15Þ

The capacity of the MAC Poisson channel given in Theorem 2 (4.14) is defined
as the maximum of (4.15) solving the following optimization,

max IðST ; NTÞ ð4:16Þ

Subject to average and peak power constraints,

1
T
E

ZT

0

ðk1ðtÞ þ k2ðtÞÞdt

2

4

3

5� rP

0� k1ðtÞ�P1

0� k2ðtÞ�P2 ð4:17Þ

With P1 and P2 are the maximum power and the ratio of average to peak power
r is used with 0� r� 1. Now, solving:

max

ZT

0

Edðk1ðtÞ þ k2ðtÞ þ nÞ logðk1ðtÞ þ k2ðtÞ þ nÞe � Edð dk1ðtÞ þ dk2ðtÞ þ nÞ

0

@

log dk1ðtÞ þ dk2ðtÞ þ n
� �

e � n
T
E½k1ðtÞ þ k2ðtÞ�

�

;
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with n as the Lagrangian multiplier. The possible values of
Edðk1ðtÞ þ k2ðtÞ þ nÞ logðk1ðtÞ þ k2ðtÞ þ nÞe must lie in the set of all y-coordi-
nates of the closed convex hull of the graph y ¼ ðx1þ x2þ nÞ logðx1þ x2þ nÞ.
Suppose that the maximum power for both inputs is P1þ P2 ¼ rP. Hence, the
maximum mutual information achieved using the distribution pðk ¼ PÞ ¼
1� pðk ¼ 0Þ ¼ a. Where 0� a� 1 so that E½k1ðtÞ� ¼ K1, E½k2ðtÞ� ¼ K. So, we
have E½k1ðtÞ þ k2ðtÞ� ¼

P
ðk1ðtÞpðk1Þ þ ðk2ðtÞpðk2Þ. It follows that, K1 ¼

Ppðk1 ¼ PÞ ¼ Pa: K2 ¼ Ppðk2 ¼ PÞ ¼ Pð1� aÞ. Then, a ¼ k1
P and 1� a ¼ k2

P and
then the capacity in Theorem 2 (4.14) is proved and can be maximized when k1

P ¼ k2
P .

It’s worth to note that we also have K3 ¼ P1p 0� k1ðtÞð
� rPÞ þ P2p 0� k2ðtÞ� rPð Þ ¼ P1aþ P2ð1� aÞ, however, K3 is not considered
in the capacity equations since we only need the maximum and the minimum
powers for both k1ðtÞ and k2ðtÞ to get the maximum expected value. Therefore,
our framework of derivation differs from [9] by solving the problem geometrically.

4.4.2 Optimum Power Allocation of MAC Poisson Channels

We need to solve the following optimization problem,

max
K1
P
þ K2

P

� �

Pþ nð Þ log Pþ nð Þ þ 1� K1
P
þ K2

P

� �� �

nlog(nÞ
�

�ðK1þ K2þ nÞ logðK1þ K2þ nÞ � n
T
ðK1þ K2Þ

�

ð4:18Þ

Using the Lagrangian corresponding to the derivative of the objective with
respect to K, and the Karush–Kuhn–Tucker (KKT) conditions, the optimal power
allocation is the solution of the following equation,

K1� þ K2� ¼ ðPþ nÞe� 1þn
Tð Þþn

P log 1þP
nð Þ � n ð4:19Þ

The optimum power allocation solution introduces the fact that orthogonalizing
the inputs via time or frequency sharing will achieve the capacity; therefore, it
follows the importance for interface solutions to aggregate different inputs to the
Poisson channel.

4.5 MAC Poisson Channel Capacity and Rate Regions

We dedicate this section to analyze the result of Theorem 2. We will introduce the
two-user MAC Poisson channel rate regions and we will then define the MAC
capacity with respect to the SISO capacity and to bounds found mainly in [9]. The
rate regions for the two-user MAC Poisson channel is given by,
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R1� IðS1; N1jS2Þ ð4:20Þ

R2� IðS2; N1jS1Þ ð4:21Þ

R1þ R2� IðS1; S2; N1Þ ð4:22Þ

The mutual information that defines the sum of the rates IðS1; S2; N1Þ is defined
in [Eq. 3.21, 9] under the condition that the average inputs for the two users are
equal; in particular when both inputs are equiprobable. Here, we can manipulate
this result into a sum rate upper bound with the two users having different average
input powers as follows,

IðS1; S2; N1Þ ¼
K1
P
þ K2

P

� �

Pþ nð Þ log Pþ nð Þ þ 1� K1
P
þ K2

P

� �� �

n logðnÞ

� ðK1þ K2þ nÞ logðK1þ K2þ nÞ

� 2
K12

P2
þ K22

P2

� �

Pþ nð Þ log Pþ nð Þ

þ K1K2
P2

� �

2Pþ nð Þ log 2Pþ nð Þ þ K1K2
P2

� �

n logðnÞ

ð4:23Þ

Where, IðS1; S2; N1Þ is maximized when K1
P ¼ K2

P . It is important to notice that
the first non-quadratic terms of IðS1; S2; N1Þ is the capacity of the SISO Poisson
channel with the input as k1ðtÞ þ k2ðtÞ. Therefore, we can see through Theorem2
that the capacity is approximately defined by the first term of IðS1; S2; N1Þ,

IðS1; S2; N1Þ ¼ CSISOðk1 þ k2Þ þ b ð4:24Þ

Where,

b ¼ �2
K12

P2
þ K22

P2

� �

Pþ nð Þ log Pþ nð Þ þ K1K2
P2

� �

2Pþ nð Þ log 2Pþ nð Þ

þ K1K2
P2

� �

n logðnÞ

ð4:25Þ

Therefore, we can deduce that the rate region as defined in [9] is an upper
bound for the capacity, and thus we can write an empirical form for the k-user
MAC Poisson capacity, using the first non-quadratic terms of the above equation
as follows,

Ck�user MAC ¼ CSISOðk1þ . . .þ kkÞ ð4:26Þ

We can also verify Theorem 2 comparing it to the results in [9] for different
setups, for example, consider the case when K1 = K2 = K, the capacity will be,
C ¼ 2 K

P ðPþ nÞ logðPþ nÞ þ 1� 2K
P

� 	
n logðnÞ � ð2K þ nÞ logð2K þ nÞ:

4 The MAC Poisson Channel: Capacity and Optimal Power Allocation 55

http://dx.doi.org/10.1007/978-94-007-4786-9_3


When K1 ¼ K2 ¼ K ¼ P, the negative terms indicates a zero capacity, C ¼ 0,
and when K1 ¼ K2 ¼ K 6¼ P, and n ¼ 0 the capacity will be, C ¼ 2K log P

2K, and

the rate sum will be, IðS1; S2; N1Þ ¼ 2K log P
2K þ 2 K2

P log 2.
Therefore, IðS1; S2; N1Þ given in [Eq. 3.21, 9] upper bounds the capacity by the

term 2 K2

P log 2, and via the constraints over the average power, 2 K2

P log 2� 2 log 2
it follows that this upper bounds the capacity with a value always less than or equal
to 1.4 nats/sec for the two-user MAC. In a more generalized way, the empirical
form differs from the upper bound by less than or equal to k log k, where k cor-
responds to the number of inputs/users to the MAC Poisson channel. We can also
verify that the maximum capacity achieved by orthognalizing the inputs such that
the capacity approaches P=e nats/sec for each user. Therefore, non-orthognalizing
the inputs incurs a maximum of around 0.5256 P power loss in the two-user MAC
case. This well explains the limitation in the number of users for the MAC Poisson
channel.

Figure 4.4 shows the capacity of different Poisson channels under a total power
constraint of P ¼ 5 on the SISO channel and each user’s input of the parallel channel
and the MAC channel, an equal average input power K1 ¼ K2 ¼ K, and shot noise
n ¼ 0:1. When the average input power is around one quarter the total power
K ¼ P=4, the rate is the maximum achievable rate, this explains the power loss in the
two-user MAC case explained before. We can notice that the maximum mutual
information presented by Lapidoth et al. in [Eq. 3.21, 9] upper bounds the rate region
of all given channels, however, we can see that the maximum achievable rate is
always C�P=e nats/sec. In particular, for the MAC channel the maximum
achievable rate with total power P ¼ 10 is 3.425 nats/sec which is
C� 10=e� 3:7037 nats/sec, i.e. the capacity for the k-user MAC is always C� kP=e.
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We can further see that in the low average power regime, both the upper bound and
the empirical capacity of the MAC matches, while it logarithmically differs at the
high average power regime, this is due to the quadratic part that is missed in the
empirical capacity formula denoted by b. Notice also that the MAC channel under the
given conditions upper bounds the parallel channel, or in other words the parallel
channel defines a lower bound over the MAC when both inputs are active.

Figure 4.5 shows the capacity of different Poisson channels with respect to the
noise where naturally the capacity decreases with respect to the increase in the shot
noise. However, it is of particular relevance to notice that in the low noise power
regime, that Lapidoth upper bound for the MAC maximum achievable rate [9]
indeed cannot be achieved due to existence of the quadratic terms, this gives rise
of the achieved capacity over the right one, C� kP=e however, our empirical form
of the MAC capacity shows consistency regarding this relation and can be gen-
eralized to k-users.

4.6 Discussion

The solutions provided in this chapter show that the capacity of Poisson channels is a
function of the average and peak power of the input. As a normal consequence to the
expressions of the SISO Poisson channel, the Poisson parallel channels throughput is
the sum of their independent SISO channels, proof is provided in [7]. For the MAC
Poisson channel, the capacity expression derived here gives a generalization of a
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closed form expression for the k-user MAC Poisson channel. The authors in [9]
studied the capacity regions of the two-user MAC Poisson channels.

They also pointed out an interesting observation that we can also emphasize and
verify via Theorem 2; that is; in contrary to the Gaussian MAC, in the Poisson
MAC the maximum throughput is bounded in the number of inputs, and similar to
the Gaussian MAC in terms of achieving the capacity via orthogonalizing the
inputs or via the usage of a limited average input power for each user that is equal
to one quarter the total power in the two-user MAC case. In fact, for the Poisson
MAC, when equal input powers up to half the total power for each are used, the
capacity faces a decay to zero, while when they differ i.e. inputs are orthogonal,
the capacity is again maximized. In addition, we can also verify that the two main
factors in the MAC capacity is the orthogonalization and the maximum power,
while increasing the average power for one or the two inputs above a certain limit
will not add positively to the capacity, see [7]. We can also see that the maximum
power is a function of the average power through which both can be optimized to
maximize the capacity.

Moreover, it can be deduced via the mathematical formulas that the power
allocation is a decreasing value with respect to the dark current for all Poisson
channels. It means that the power allocation for the Poisson channels in some way
or another follows a waterfilling alike interpretation to the one for the Gaussian
setup where less power is allotted to the more noisy channels [7, 15]. However, it’s
well known that the optimum power allocation is an increasing function in terms
of the maximum power.

4.6.1 Gaussian Channels Versus Poisson Channels

Here, we summarize some important points about the capacity of Poisson channels
in comparison to Gaussian channels within the context of this work. Firstly, in
comparison to the Gaussian capacity, the channel capacity of the Poisson channel is
maximized with binary inputs, i.e. [0, 1], while the distribution that achieves the
Gaussian capacity is a Gaussian input distribution. Secondly, the maximum
achievable rates for the Poisson channel is a function of its maximum and average
powers due to the nature of the Poisson process which follows a stochastic random
process with martingale characteristics, while in Gaussian channels, the processes
are random and modeled by the normal distribution. Thirdly, the optimum power
allocation for the Poisson channels is very similar for different models depending on
the defined power constraints, and in comparison to the Gaussian optimum power
allocation; it follows a similar interpretation to the waterfilling, at which more power
is allocated to stronger channels, i.e. power allocation is inversely proportional to the
more noisy channel. However, although the optimal inputs distribution for the
Poisson channel is a binary input distribution, the optimal power allocation is a
waterfilling alike, i.e. unlike the Gaussian channels with arbitrary inputs where it
follows a mercury-waterfilling interpretation to compensate for the non-Gaussianess
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in the binary input [16]. Finally, it is worth to emphasize two more important
differences that were already shown in [10], which can be straight forward to proof
here: Unlike the Gaussian channels, in Poisson channels, due to the characteristics of
the Poisson distribution, we cannot implement interference cancellation techniques,
since it is not possible to construct the probability of pðN1 ¼ k1þ nÞ from the
probability pðN1 ¼ k1þ k2þ nÞ if k2 is considered as an interferer to k1. Besides,
unlike Gaussian channels, Poisson channels are scale-invariant, since
pðN1 ¼ k1þ n=aÞ 6¼ pðN1 ¼ ak1þ nÞ, if a scaling factor a 6¼ 1 is multiplied to the
inputs, the mutual information IðS1; S2; N1 ¼ ak1þ ak2þ nÞ 6¼ IðS1; S2;
N1 ¼ k1þ k2þ n=aÞ.

4.7 Conclusions

In this chapter, we show via an information theoretic approach that the capacity of
optical Poisson channels is a function of the average and maximum power of the
inputs, the capacity expressions have been derived as well as the optimal power
allocation for the SISO and the MAC channel models. We provide a closed form
expression for the k-user MAC Poisson channel with any average input powers. It is
shown-through the limitation on users within the capacity of the Poisson MAC- that
the interface solutions for the aggregation of multiple users/channels over a single
Poisson channel are of great importance. However, a technology like orthogonal
frequency division multiplexing (OFDM) for optical communications stands as one
interface solution. While it introduces attenuation via narrow filtering, etc. it
therefore follows the importance of optimum power allocation which can mitigate
such effects, hence, we build upon optimum power allocation derivations.
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