
Chapter 11
Power-Aware Topology Generation Based
on Clustering for Application-Specific
Network on Chip

Fen Ge and Ning Wu

Abstract A clustering-based topology generation approach is proposed to
construct Network on Chip (NoC) topologies for given applications. The approach
consists of four phases and constructs irregular NoC topology with design
constraints, according to the communication requirements of the given application
and characteristics of the router architectures. Specially, a recursion based link
construction algorithm embedded in the topology generation is proposed to con-
struct links between routers. The evaluation performed on various multimedia
benchmark applications confirms the efficiency of the proposed approach.
Experimental results show that the approach saves 61.5 % of power consumption
on average in comparison with using regular Mesh topology. Significant network
resource improvement is also achieved. Moreover, the approach performs well for
two multimedia applications compared to existing algorithms.
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11.1 Introduction

The rapid advancement of semiconductor technologies makes it possible to integrate
dozens of cores on a single chip. With more and more cores, the on-chip commu-
nication architecture design encounters more challenges in various aspects including
the throughput, latency, power consumption, signal integrity, and clock synchro-
nization. Traditional bus-based interconnect architectures are inherently non-scal-
able, which constitutes a bottleneck for the on-chip communication. The emerging
Network on Chip (NoC) provides an effective, reliable and flexible infrastructure for
system modules based on data packet transmission scheme. It has become an
effective solution to overcome difficulties associated with global interconnections
and communications in complex System on Chip (SoC) designs [1].

NoC architectures are constructed using topologies. A topology describes the
overall connection forms between routers and resource nodes. The floorplan of a
topology determines the length and complexity of the on-chip connections, and as
a result, significantly affects the network latency, throughput, area cost and power
consumption. Network topologies of NoC can be classified into two categories,
regular and irregular architectures. Regular topologies, as used in most NoC
designs (e.g., mesh and torus), have the advantage of reusability and low design
complexity. However, with regular topologies, applications cannot be well
optimized. This may lead to large-scale redundant routers, low link utilization rate,
and local congestion. For example, the number of routers on a mesh architecture is
fixed irrespective of how many of them are actually used. The same happens to the
links between routers. Even if unused routers and links can be shut down, they still
occupy area on the chip. Irregular topologies, on the other hand, are designed to be
application specific and therefore, are tailorable for each design. Compared to
regular topologies, they usually use fewer routers and links, while offering better
system performance and lower cost [2].

In this chapter, we focus on network topology generation for the custom
irregular architecture. Specifically, we propose a clustering-based topology
generation approach for application-specific NoC. Parts of our work have been
presented in [3] to minimize the network communication power consumption. This
chapter expands the previous work with a further analysis of the feasibility to
address the problem of application-specific 3D NoC topology generation using the
proposed approach.

The rest of the chapter is organized as follows: Section 11.2 summarizes related
work; Sect. 11.3 describes the problem definitions; Sect. 11.4 presents our topology
generation approach with an example; Sect. 11.5 discusses the possible extension of
the current approach; experimental results are discussed in Sect. 11.6, and finally the
conclusion is made in Sect. 11.7.
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11.2 Related Work

There are many advantages of using irregular topologies over regular topologies
for application-specific NoC [4]. However, generation of irregular topologies calls
for scalable topology generation algorithms [5–11]. In [5], the authors present a
technique for constraint driven communication architecture synthesis of point to
point links. The technique results in network topologies that have only two routers
between each source and sink, and does not address routing for each communi-
cation trace. The work in [6] presents the mixed integer linear programming
(MILP) based topology generation. However, this method is constrained by the
exponentially increasing solution times for large communication trace graphs.
Different optimization techniques have been proposed to address the problem of
topology generation within reasonable time [7–10]. In [7] and [8], genetic algo-
rithm based topology generation approaches are proposed, which obtain better
results and less runtimes compared to the MILP technique. The author of [10]
proposes a combination of the depth first search and the AO* algorithm to gen-
erated a near-optimal topology. However, these techniques have greater compu-
tational complexity due to a sufficient number of iterations.

In [11], a three-step topology generation algorithm called PATC is presented,
which includes core cluster, core cluster optimizing and physical router mapping.
The author of [12] proposes another simpler method called TopGen to cluster the
given application based on the communication characteristic, and thereafter,
construct the topology by connecting the clusters to each other one by one.

In this chapter, we propose a four-phase approach of topology generation
analogous to those used in [11] and [12], but completely different in the algorithm
design. The proposed approach is verified and compared to those using regular
NoC topology and existing algorithms on multimedia benchmarks, which shows
that our approach achieves better results.

11.3 Problem Formulation and Definitions

An NoC architecture consists of interconnected routers that are responsible for
routing data packets on the communication architecture. As shown in Fig. 11.1a,
a router is composed of switch fabrics, a routing and arbiter unit, an input port and
output port module. Every resource node (IP core) should be connected to a router
through input and output port channels, which consist of two unidirectional links.
Each link can connect to a core by a network interface (NI) implemented with
open core protocol (OCP), or connect to other routers directly to expand the
architecture [11], as shown in Fig. 11.2b. In this case, designers can construct
different regular or irregular NoC topologies based on the requirements and design
constraints.
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The topology generation problem can be formulated as follows.
Given a core communication graph denoted by CCG(C, A), where each vertex

ci [ C represents an IP core, and each directed edge ai,j [ A represents the com-
munication trace from IP ci to IP cj. Every edge has two attributes, denoted by
b(ai,j) and l(ai,j), which represent the bandwidth requirement in bits per second
(Mbps) and the latency constraint in hops respectively.

Given a characterized library £ of the router architectures, with g denoting the
number of input and output ports of the router, and X denoting the peak bandwidth
that can be supported by the router on any one port.

Find a NoC topology T(R, E), where R [ £ represents the set of routers chosen
to use from library £ in the topology generation, and E represents the set of links
between the routers.

Such that:

(1) Each IP core c can be mapped onto a port of a router r, and the maximum
number of cores mapped on a router should less than g.

(2) For each ai,j [ A, there exists a unique path pi,j = {(ri, rk), (rk, rm), … (rn, rj)} [
P in T that satisfies communication latency and bandwidth constraints.

(3) The total communication power consumption is minimized:

min EðAÞ ¼
X

8ai;j2A

bðai;jÞ � E
ci;cj

bit ð11:1Þ

where

E
ci;cj

bit ¼
X

r2pi;j

ERbit þ
X

e2pi;j

ELbit

¼ ðdðpi;jÞ þ 1Þ � ERbit þ dðpi;jÞ � ELbit
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Fig. 11.1 The router structure and NoC architecture, a The router structure of NoC b NoC
architecture
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E
ci;cj

bit represents the energy consumed when one bit of data is transported
through the routing path pi;j; ERbit and ELbit are the energy consumed on the router
and the link respectively [11].

Since ERbit and ELbit are constants, the NoC power consumption varies linearly
with the communication amount and routing distance, which can be represented
by:

min EðAÞ ¼
X

8ai;j2A

bðai;jÞ � dðpi;jÞ ð11:2Þ

Therefore, we try to cluster high communicative cores into the same router so
that data exchanges among these cores consume minimized communication power
consumption as calculated by (11.2).

11.4 Topology Generation Approach

The main idea of our proposed approach is to assign high communicative cores to
the same routers or nearby routers, and subsequently, determine the optimal
connection between routers. The goal is to minimize the total number of
communication hops for communication IP core pairs, as well as to reduce the
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S3:             Clustering
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        communication amount 
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communication amount？

S5:          Results  Output 
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Fig. 11.2 The flowchart of
the clustering algorithm
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number of used routers and links in the NoC topology. The approach consists of
four phases: (1) core clustering, (2) cluster and router mapping, (3) router con-
nection construction, and (4) topology optimization. Each phase of the approach is
described in detail as follows.

11.4.1 Core Clustering

In the first phase, we partition the IP core set for a given application into several
clusters under the design constraints. The flowchart of the clustering algorithm is
shown in Fig. 11.2.

Step 1: Algorithm Preparation. We define a variable Nmax, which denotes the
maximum number of cores in each cluster. Since IP cores in the same cluster will
be mapped to different ports of the same router in a topology, and each router must
be connected to the topology on at least one port, Nmax = g-1. Then, we sort each
communication trace ai,j in descending order according to the communication
weight b(ai,j).

Step 2: Clusters Initialization. Clustering is to partition vertices of CCG(C,
A) into k non-empty sets C1, C2,…, Ck. Each cluster Ci (i = 1, 2,…, k) contains
Nmax cores at most. In the initialization, each vertex of CCG(C, A) forms a cluster
partition, that is CP = {C1, C2,…, Cn}, where Ci = {ci}, i = 1, 2,…, N, N is the
number of vertices of CCG.

Step 3 and 4: Clusters Merging. According to the order of communication
traces in step 1, we first process the edge ai,j with highest communication weight.
Let ai,j = (ci, cj), if ci and cj belong to different clusters, and if the core number in
the new cluster is not greater than Nmax after merging, calculate the inter-cluster
communication amount among clusters after merging. If the calculated amount is
less than the previous one, merge the clusters, otherwise not.

Step 5: Results Output. When all the edges have been processed in sequence,
we obtain the best number of clusters with minimum inter-cluster communication
amount.

For example, we give CCG in Fig. 11.3a, in which the labels of the edges in CCG
denote the bandwidth requirement. Assuming the number of router ports g is 4, each
partitioned cluster contains Nmax = 4-1 = 3 cores at most. According to the above
clustering algorithm, the CCG can be divided into four clusters C1, C2, C3, C4, as
shown in Fig. 11.3b.

11.4.2 Cluster and Router Mapping

In the second phase, we map each cluster to a router. The router number used in
the generated topology is equal to the number of clusters. Every IP core in the
cluster is mapped to a port of a router randomly.
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For the core clustering results shown in Fig. 11.3b, the clusters need to be
mapped to four routers, denoted by r1, r2, r3, r4 respectively. As shown in
Fig. 11.4, the core c1 in the cluster C1 is mapped to port 0 in the router r1, and the
cores in the cluster C2 are mapped to three ports in the router r2.

11.4.3 Router Connection Construction

In the third phase, the routers mapped with IP cores are connected to form the
initial topology. We sort the clusters in ascending order according to their number
of cores. For clusters with the same number of cores, we sort them in descending
order according to their communication amount. Then, we use a recursion based
link construction algorithm to generate router connections.

Before describing the recursion based link construction algorithm, it is worth
pointing out that, the communication amount of a certain cluster is calculated as
the sum of the inter-cluster communication amounts between this cluster and all
others. Such sort will make the communication trace with high communication
weight get shortest communication path in advance, and as a result, minimize the
communication power consumption.

The idea of our proposed recursion based link construction algorithm is as
follows. First, the source and destination routers for each communication trace are
obtained according to current router selection and port mapping results; then,
under the bandwidth and latency constraints, the following three ways are
attempted to recursively search the path from the source router to the destination
router:
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(1) Use the existing links between source and destination routers;
(2) Use the empty port of routers without placing IP core between the source and

destination router to build new links;
(3) Use the links built by previous communication trace from the source or

destination router to other routers.

Through the above recursively search process, we can construct router
connections by allocating a routing path for each communication trace.

The pseudo code of the recursion based link construction algorithm is shown in
Fig. 11.5. The return value of the routine get_next_rtr(ri) is rnext which is con-
nected to the router ri. The constructed link between router ri and rnext should
satisfy the bandwidth and latency constraints. The adjacency matrix
RAdj[MR][MR] represents the interconnection relation among routers, where MR is
the number of used routers in the topology generation. The initial value of the
matrix elements is 0, and the value is between 0 and ? if there exists a link among
routers. After allocating paths for all the communication traces, each element in
RAdj[MR][MR] is checked to ensure that its value does not exceed the supported
bandwidth X. The port information list PortList is used to record the status of each
router port. The status indicates whether the port is empty or connected with IP
cores or other routers.

As an example, the number of cores in cluster C1 and C4 is identical as shown in
Fig. 11.3b, and the communication amount of cluster C1 is 5 which is larger than
that of cluster C4. As a result, the routing path for communication trace between
cluster C1 and C2 is allocated first, and port 3 is connected to port 5 to construct a
routing path. Then, the routing paths for other two communication traces between
C4 and C2, C3 and C2 can be allocated. Eventually, after completing path
allocations for all the communication traces, connection among routers can be
constructed. The initial topology of the mapping results in Fig. 11.4 is shown in
Fig. 11.6.

11.4.4 Topology Optimization

The last phase is to merge adjacent routers with empty ports until no adjacent
routers can be merged. This further reduces communication power consumption
and resources costs. As an example shown in Fig. 11.6, there exist empty ports in
router r1 and r4, thus router r1 can be merged with router r4, leading to the final
NoC topology as is shown in Fig. 11.7.

In order to evaluate the time complexity of our proposed approach, let n be the
number of vertices in the core communication graph, and a be the number of edges
in the core communication graph CCG. Since each cluster contains at most
n elements and there exists a maximum of n clusters, the complexity of inter-
cluster communication amount calculation is O(n2). All the edges should be
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Algorithm Input the corresponding source router rsrc and 

destination router rdest for each communication trace ai,j=(ci, cj).

Algorithm Output the routing path p rsrc, rdest={(rsrc, rnext), … (rn,

rdest)}.

Recursive terminative condition if rsrc==rdest or find no path for the 

communication trace.

Recursive function route_construction(rsrc, rdest)

{ if (rsrc==rdest) exit;

if (no link between rsrc and rdest)

{ if (existing empty port porti and portj in rsrc and rdest)

{construct link between porti and portj, let rsrc=rdest, add b(ai,j)to 

RAdj[rsrc][ rdest], and update PortList, exit;}

else if (no empty port in rsrc)

{ rnext = get_next_rtr(rsrc);

if (rnext != NULL)

{ let rsrc=rnext, add b(ai,j)to RAdj[rsrc][ rnext];

route_construction(rsrc, rdest);}

else add ai,j to PathUnAssignedSet, exit;}

else if (no empty port in rdest)

{ rnext = get_next_rtr(rdest);

if (rnext != NULL)

{ let rdest=rnext, add b(ai,j)to RAdj[rnext][ rdest];

route_construction(rsrc, rdest);}

else add ai,j to PathUnAssignedSet, exit;};}

else if (existing link between rsrc and rdest)

{ if (RAdj[rsrc][ rdest]+ b(ai,j)≤ && d(p rsrc, rdest) ≤ l(ai,j))

{ let rsrc=rdest , add b(ai,j)to RAdj[rsrc][ rdest], exit;}

else {

rnext = get_next_rtr(rsrc);

if (rnext != NULL && rnext != rdest)

{ let rsrc=rnext, add b(ai,j)to RAdj[rsrc][ rnext];

route_construction(rsrc, rdest);}

else if (existing empty port porti and portnext in rsrc and rnext)

{ construct link between porti and portnext;

let rsrc= rnext, add b(ai,j)to RAdj[rsrc][ rnext];

update PortList;

route_construction(rsrc, rdest);}

else add ai,j to PathUnAssignedSet, exit;};}

Fig. 11.5 The pseudo code of the link construction algorithm
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traversed, so the time complexity of cluster partitioning is O(a 9 n2). Conse-
quently, the overall time complexity of the algorithm is estimated to be O(a 9 n2).

11.5 Experimental Results

In this section, we present the experimental results obtained by executing the
proposed approach on various multimedia benchmark applications. We generated
custom irregular NoC topologies for seven combinations of four multimedia
benchmarks: MP3 audio encoder, MP3 audio decoder, H.263 video encoder, and
H.263 video decoder [5]. In addition, we obtained results for three other bench-
marks: MPEG4 decoder, video object plane decoder (VOPD), and multi-window
display (MWD) [2]. Table 11.1 lists the graph IDs and sizes of the CCG of the
various benchmarks.

In order to evaluate the efficiency of the proposed approach, we compared the
results produced by our clustering-based topology generation approach (Cluster-
TG) against the solution of mapping benchmark applications onto regular Mesh
topology. The selection of Mesh topology for comparison is due to the fact that,
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Table 11.1 Graph
Characteristics

Graph Graph ID Nodes Edges

MP3 decoder G1 6 6
H.263 decoder G2 7 8
MP3 encoder G3 7 8
H.263 encoder G4 8 11
MWD G5 12 13
VOPD G6 12 15
MPEG4 decoder G7 12 26
H.263 enc MP3 dec G8 12 17
H.263 enc MP3 enc G9 14 19
H.263 enc H.263 dec G10 15 19
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Mesh topology is proved to outperform other regular NoC topologies with respect
to power consumption and area costs, and it can be easily implemented on chips.
The number of router ports g is set to be 4, and the supported bandwidth X is set to
be 1 GB/s.

Figure 11.8 presents the results of the comparison in communication power
consumption of NoC topology generated by Random-Mesh, Optimal-Mesh and
Cluster-TG. ‘Random-Mesh’ represents the solution of mapping IP cores in
benchmark applications onto regular Mesh topology randomly. ‘Optimal-Mesh’
represents the solution of mapping IP cores onto optimized regular Mesh topology
by the genetic algorithm based approach in [13]. Figure 11.9 shows the compar-
ison of router and link utilities. As seen from the figures, a much better
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performance in communication power consumption and resource costs has been
achieved using our approach compared to that of the regular Mesh topology. On
average, our approach saves about 61.5 % of communication power consumption
compared to Optimal-Mesh.

Another experiment is conducted to compare the results of two multimedia
applications, VOPD and MWD, generated by Cluster-TG, TopGen [12] and PATC
[11] respectively. The resource costs of the applications using different approaches
turn out to be about the same, and the power consumptions are compared in
Fig. 11.10. It can be seen that our proposed approach achieves results that are
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better than PATC, and commensurate with TopGen. As an example, the CCGs and
the generated irregular topologies of the VOPD and MWD benchmarks are
illustrated in Figs. 11.11 and 11.12 respectively.

11.6 Possible Extension

The advent and increasing viability of 3D silicon integration technology make it
possible to scale NoC over the third dimension [14]. As a result, 3D NoC is
arousing more and more research interest. My proposed approach can be extended
to application-specific 3D topology generation with metrics of 3D NoC taken into
consideration.

In 3D NoC, IP cores are distributed on different 2D layers, and multiple device
layers are stacked on top of each other with direct vertical interconnects tunneling
through them using through-silicon vias (TSVs). Every IP core also should be
connected to a router in 2D layers. The router connects to other routers in the same
layer using horizontal links, and connects to other routers in the adjacent layers
using up/down port and vertical links.

The approach for application-specific 3D NoC topology generation also should
consist of four phases: core clustering, cluster and router mapping, router con-
nection construction, and topology optimization. However, the problem introduces
new issues, such as the technology constraint on the number of TSVs that can be
supported, accurate power models for 3D interconnects.

In the phase of core clustering we first partition the IP core set for a given
application (the example CCG is shown in Fig. 11.13a) into several clusters under
the constraint on the number of TSVs, and make the IP cores in different clusters
distribute on different 2D layers, as shown in Fig. 11.13b. Then IP cores in the
same layer are further partitioned into clusters according to the algorithm in
Sect. 11.4.1. In the phase of router connection construction, the routing path
allocations for communication traces maybe use the vertical links among routers in
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adjacent layers, as shown in Fig. 11.13c. The construction of vertical links should
meet the constraint on the number of TSVs

Additionally, the power model in 2D NoC should be extended to 3D NoC by
including the power consumed on vertical links.

11.7 Conclusion and Future Work

This chapter presents a four-phase clustering-based topology generation approach
for application-specific NoC. The aim is to reduce the network communication
power consumption. Under the constraints of the bandwidth and latency, the
approach designs custom irregular NoC topologies according to the communica-
tion requirements of the given application and characteristics of router architec-
tures. Specially, a recursion based link constructing algorithm embedded in the
topology generation is proposed to construct links between routers. Applying our
approach on various multimedia benchmark applications gives experimental
results showing significantly improved performance as compared to those using
regular Mesh topology and existing algorithms. The detail analysis of 3D NoC
topology generation using our approach will be done as future work.
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