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  Abstract   Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to 
speci fi c tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at 
the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein 
phosphorylation by kinases is an important mechanism for communicating signals within a cell and 
regulating cellular activity; furthermore, this mechanism functions as an “on” or “off” switch in many 
cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identi fi ed in the 
human genome; the products of these genes regulate cellular proliferation, survival, differentiation, 
function, and motility. Tyrosine kinases play a critical role in the development and progression of 
many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent 
studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived 
growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythro-
poietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. 
Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, 
especially the invasive phenotype, and present the perspective that RTKs are a potential target of 
glioma therapy.  
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  Abbreviations  

  Ang    Angiopoietin   
  BBB    Blood brain barrier   
  CTGF    Connective tissue growth factor   
  DDR1    Discoidin domain receptor 1   
  EC    Endothelial cell   
  ECM    Extracellular matrix   
  EGFR    Epidermal growth factor receptor   
  Eph    Erythropoietin-producing human hepatocellular carcinoma   
  ERK    Extracellular signal-regulated kinase   
  FAK    Focal adhesion kinase   
  FGFR    Fibroblast growth factor receptor   
  Gas6    Growth arrest–speci fi c gene 6   
  GBM     Glioblastoma multiforme    
  GPI    Glycosylphosphatidyl-inositol   
  HB-EGF    Heparin-binding EGF-like growth factor   
  HGF    Hepatocyte growth factor   
  HIF    Hypoxia inducible factor   
  IDH1    Isocitrate dehydrogenase-1   
  JAK    Janus kinase   
  MAPK    Mitogen-activated protein kinase   
  MEK    MAPK kinase   
  MMP    Matrix metalloproteinase   
  mAb    Monoclonal antibody   
  MT1-MMP    Membrane-type1-MMP   
  NGF    Nerve growth factor   
  NF-kB    Nuclear factor-kappa B   
  OS    Overall survival   
  PDGFR    Platelet derived growth factor receptor   
  PFS    Progression-free survival   
  PI3K    Phosphatidylinositol 3-kinase   
  PKC    Protein kinase C   
  PLC    Phospholipase C   
  PTEN    Phosphatase and tensin homolog deleted from chromosome 10   
  PTK    Protein tyrosine kinase   
  RTK    Receptor tyrosine kinase   
  STAT    Signal transducer and activator of transcription   
  TAMR    A member of the Tyro3, Axl, and Mer family of receptor tyrosine kinase   
  TCGA    The Cancer Genome Atlas   
  TGF- a     Transforming growth factor alpha   
  TKI    Tyrosine kinase inhibitor   
  TMZ    Temozolomide   
  TrkA    Neurotrophic tyrosine kinase receptor type 1   
  uPA    Urokinase-type plasminogen activator   
  VEGF    Vascular endothelial growth factor       
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    8.1   Introduction    

 Glioblastoma (GBM) is an extremely aggressive, highly vascularized, in fi ltrative tumor with a median 
survival duration of 12–15 months after initial diagnosis (Nagane  2011  ) . GBMs invade the surrounding 
brain tissue, making complete surgical excision highly improbable. Despite current therapeutic strategies, 
these tumors almost universally recur because of the invading GBM cells left after excision and are 
associated with a poor survival rate (Nakada et al.  2007  ) . 

 Currently, numerous studies are attempting to decipher the molecular mechanism of invasion and to 
better understand the molecular mechanisms responsible for invasion processes (Chuang et al.  2004 ; 
Salhia et al.  2005 ; Nakada et al.  2007 ; Onishi et al.  2011  ) . Among the many molecules that were 
reported as invasion promoters, members of the protein tyrosine kinase (PTK) family play a major 
role in modulating invasion (Nakada et al.  2007  ) . The human protein kinase genome contains 518 
protein kinase genes, including PTK genes that encode transmembrane receptor tyrosine kinases 
(RTKs) and soluble cytoplasmic tyrosine kinases that are also known as non-RTKs (Manning et al. 
 2002  ) . More than 58 mammalian RTKs and 37 non-RTKs have been identi fi ed. RTKs contain an 
intracellular catalytic PTK domain and regulatory sequences, a transmembrane domain, and an extra-
cellular ligand-binding domain. RTKs modulate a wide range of cellular events, including proliferation, 
migration, metabolism, differentiation, and apoptosis, under physiological as well as pathological con-
ditions (Schlessinger  2000  ) . The phosphorylation of tyrosine residues in RTKs is essential for maintain-
ing cellular homeostasis and modulating gene expression in various intercellular and intracellular 
signaling pathways. Because the complex signaling network triggered by RTKs eventually leads to 
either activation or repression of various gene subsets, RTKs regulate intercellular communication 
and control cell proliferation, mitogenesis, survival, differentiation, motility, and metabolism 
(Schlessinger  2000  ) . The individual cellular consequences of RTK activation are complex and depend 
on the cell type and the activated signal transduction pathway. 

 Several lines of experimental evidence have revealed that aberrant RTK activation frequently occurs 
during glioma initiation and progression and that these tumorigenic cascades may cooperate through 
multiple signaling cross-talks in the malignant transformation of cells, treatment resistance, and disease 
relapse (Table  8.1 ). Because GBMs actively synthesize a substantial variety of RTKs that contribute 
to invasion, a systematic approach to inhibiting RTKs is being undertaken as a treatment adjunct.  

   Table 8.1    RTK associated with glioma invasion   

 RTK  Ligand  Expression in GBM 
 Ampli fi cation 
in GBM  Downstream signaling 

 EGFR  EGF  High  40 %  PI3K/Akt, Ras/MAPK, FAK, 
MMP-2 

 PDGFR  PDGF  High  11 %  PI3K/Akt, Ras/MAPK, JAK/STAT 
 ERBB2  Neuregulin-1  High  8 %  PI3K/Akt, Ras/MAPK, PLC- g , 

JAK/STAT, MT-MMP, FAK 
 c-Met  HGF  High  20 %  PI3K/Akt, Ras/MAPK 
 Tie  Ang  High  Not reported  MMP-2 
 Axl  Gas6  High  Not reported  PI3K/Akt 
 DDR1  Collagen  High  Not reported  MMP-2 
 Eph  Ephrin  High or low  Not reported  R-Ras, Rac1 
 Trk  NGF, CTGF  High or low  Not reported  NF-kB, ZEB-1 

   Designations:  
 Ang, angiopoietin; CTGF, connective tissue growth factor; DDR1, discoidin domain receptor 1; EGFR, epidermal 
growth factor receptor; Eph, erythropoietin-producing human hepatocellular carcinoma; FAK, focal adhesion kinase; 
Gas6, growth arrest–speci fi c gene 6; HGF, hepatocyte growth factor; MAPK, Mitogen-activated protein kinase; PDGFR, 
platelet derived growth factor receptor; PI3K, phosphatidylinositol-3-kinase  
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 In this chapter, the most recent advancements in the structural and functional characterization of 
invasion signal transduction elements of the RTK signaling network and the molecular mechanisms 
involved in glioma invasion are described. We provide an overview of this  fi eld, highlighting areas 
with the strongest research evidence for the translational potential of the use of tyrosine kinase 
inhibitors (TKIs).  

    8.2   EGFR/EGF 

 Epidermal growth factor receptor (EGFR) belongs to a large family of cell surface receptors with 
intrinsic protein tyrosine kinase activity. The EGFR family comprises four members designated 
EGFR (also known as ErbB1/HER1), ErbB2 (HER2/Neu), ErbB3 (HER3), and ErbB4 (HER4) 
(Jorissen et al.  2003  ) . Six ligands are known to activate EGFR: EGF, transforming growth factor 
alpha (TGF- a ), amphiregulin, betacellulin, heparin-binding EGF-like growth factor (HB-EGF), and 
epiregulin (Bogdan and Klambt  2001 ; Normanno et al.  2006  ) . These ligands are secreted by glioma 
cells as well as by tumor microenvironmental cells such as microglias and reactive astrocytes 
(Hoelzinger et al.  2007  ) . Upon binding of extracellular ligands, EGFR undergoes dimerization, 
resulting in trans-autophosphorylation of its cytoplasmic domain. EGFR can pair with another EGFR 
to form an active homodimer or with another member of the EGFR family to create a heterodimer 
(Yarden and Sliwkowski  2001  ) . For example, EGFR can easily form heterodimers with ErbB2, 
which has a reduced internalization capacity compared with that of EGFR and thus prolongs EGFR 
signaling (Jones et al.  2006  )  (Fig.  8.1 ).  

 EGFR and its ligands are often over-expressed in human carcinomas. In GBM, EGFR gene 
ampli fi cation is the most frequent RTK alteration (approximately 40 %) (Libermann et al.  1985  ) . 
EGFR overexpression and/or gene alteration is frequently observed in primary ( de novo ) GBM, which 
develops rapidly, has a short clinical history, and does not show evidence of less malignant precursor 
lesions (Ekstrand et al.  1992 ; Ohgaki et al.  2004 ; Wong et al.  1987  ) . Genomic analysis by The Cancer 
Genome Atlas (TCGA) network revealed that  EGFR  aberration is related to the classical subtype of 
GBM (Network  2008  ) . Ampli fi cation of the  EGFR  gene is also associated with structural alterations 
and the most common of these is called EGFR variant III (EGFRvIII). EGFRvIII is a mutant with an 
in-frame deletion of exons 2–7 from the extracellular region and can transmit constitutive growth 
signaling in a ligand-independent manner (Ekstrand et al.  1992 ; Yamazaki et al.  1988  ) . EGFRvIII 
expression in glioma cells stimulates expression of TGF- a  and HB-EGF, suggesting that EGFRvIII 
plays a role in generating an autocrine loop with wild-type EGFR expression (Ramnarain et al.  2006  ) . 
Genetic alterations that affect EGFR signaling result in the activation of several downstream pathways 
such as the phosphatidylinositol 3-kinase (PI3K)/Akt and Ras/Raf/MEK (MAPK kinase)/MAPK 
(mitogen-activated protein kinase) pathways, which mediate cell proliferation, survival, and mobility 
(Kita et al.  2007 ; Ohgaki and Kleihues  2009  ) . The PI3K/Akt pathway is negatively regulated by the 
tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN), which is 
mutated in 20–40 % of GBMs and is a hallmark of this disease (Ohgaki et al.  2004  ) . PTEN dephos-
phorylates focal adhesion kinase (FAK), which is a key molecule for cell interaction with the extracellular 
matrix (ECM) (Gu et al.  1999 ; Kita et al.  2001 ; Tamura et al.  1998  ) . Dephosphorylated FAK interferes 
with EGFR vIII-mediated glioma cell invasion, indicating that the EGFR-PTEN-FAK interaction 
plays an important role in glioma invasion (Cai et al.  2005  )  (Fig.  8.1 ). 

 Several reports have showed that GBM patients with EGFR overexpression or mutation have 
shorter survival, suggesting that EGFR alterations are associated with highly aggressive GBMs (Barker 
et al.  2001 ; Feldkamp et al.  1999 ; Shinojima et al.  2003  ) . One report indicated that coexpression 
of EGFRvIII and PTEN was a positive indicator of responsiveness to EGFR inhibitors (e.g., ge fi tinib and 
erlotinib) in patients with GBM (Mellinghoff et al.  2005  ) .  
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  Fig. 8.1    Cell signaling pathways induced by receptors tyrosine kinase (RTK). Homo-/heterodimerization of RTKs are 
caused by their ligands in autocrine or paracrine fashion. The dimerized receptors can initiate signal transduction cascades 
involved in cell survival, proliferation, motility and angiogenesis and so on, e.g.: phosphatidylinositol 3-kinase (PI3K)/
AKT/mTOR; RAS/RAF/mitogen-activated protein kinase (MEK)   /extracellular signal-regulated kinase (ERK); Janus 
kinase (JAK)/signal transducer and activator of transcription (STAT); and phospholipase C g  (PLC) g /protein kinase C (PKC). 
Examples of cross-talk between RTKs’ signaling and proteins associated with cell invasion (e.g. urokinase-type plasminogen 
activator (uPA), matrix metalloproteinase (MMP)s, focal adhesion kinase (FAK) and phosphatase and tensin homolog 
deleted from chromosome 10 (PTEN)) are demonstrated. Red arrows and blue bars indicate activation and suppression, 
respectively (ECM, extracellular matrix)       

    8.3   PDGFR/PDGF 

 Following EGFR/EGF signaling, aberrant platelet-derived growth factor receptor (PDGFR)/PDGF 
signaling is one of the hallmarks of GBM biology. Overexpression of PDGFR subtypes  a  and  b  and 
PDGF ligands A–D has been observed in glial tumors of all grades and is possibly associated with 
malignant progression (Fleming et al.  1992 ; Guha et al.  1995 ; Hermanson et al.  1992 ; Lokker et al. 
 2002 ; Nister et al.  1988 ; Ozawa et al.  2010  ) . An experimental study revealed that glioma-like tumors 
can be induced after overproduction of PDGFB in the mouse brain (Uhrbom et al.  1998  ) . Histochemical 
studies revealed that PDGFR a  and PDGFA are expressed in glioma cells, whereas PDGFR b  and 
PDGFB have been found in the surrounding endothelial cells (ECs) (Hermanson et al.  1992 ; Plate 
et al.  1992  ) . The expression of this receptor in blood vessels suggests that paracrine activation is also 
possible with respect to tumor cell migration and colony formation (Hoelzinger et al.  2007 ; Shih and 
Holland  2006  ) . Although the expression of PDGFC and D ligands has also been demonstrated in 
gliomas, the clinical and biological signi fi cance of their expression has not been determined (Lokker 
et al.  2002  ) . Ligand-receptor co-expressions in tumor cells allow for both autocrine and paracrine 
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forms of activation. Some reports suggest that PDGFR/PDGF signaling thorough this autocrine/para-
crine pair results in increased GBM cell motility  in vivo  (Cattaneo et al.  2006 ; Natarajan et al.  2006  ) . 
Furthermore, these autocrine and/or paracrine loops can stimulate downstream signal transduction 
pathways including Ras/MAPK, PI3K/Akt and Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT) and have pivotal roles in proliferation, differentiation, survival, and invasion 
(Blume-Jensen and Hunter  2001 ; Khoshyomn et al.  1999 ; Valius and Kazlauskas  1993  )  (Fig.  8.1 ). 

 The association between PDGFR expression and the prognosis of glioma patients is controversial. 
PDGFR a  expression in low-grade gliomas was reportedly associated with both poor (Varela et al. 
 2004  )  and favorable (Ribom et al.  2002  )  prognosis. Furthermore, PDGFA expression, but not PDGFR a  
expression, was useful in predicting tumor grade in oligodendrogliomas (Majumdar et al.  2009  ) . 
PDGFR a  expression was not associated with survival in a series of high-grade pediatric gliomas and 
GBMs (Liang et al.  2008 ; Martinho et al.  2009  ) . However, the absence of PDGFA expression was 
signi fi cantly associated with poor prognosis in patients with glioma (Martinho et al.  2009  ) . PDGFR 
and ligand overexpression tend to be associated with loss of the TP53 tumor suppressor, which is 
characteristic of secondary GBMs that develop from less malignant precursors (Ohgaki and Kleihues 
 2009  ) . According to the TCGA consortium,  PDGFRA  ampli fi cation (11 %) and isocitrate dehydroge-
nase-1 ( IDH1 ) mutation are hallmarks of a proneural subtype of GBM, suggesting an association 
between this subtype and secondary GBM (Network  2008 ; Verhaak et al.  2010  ) . Another study demon-
strated that  PDGFRA  ampli fi cation was observed in 21 % of gliomas, although  PDGFRA- activating 
mutations were not found (Martinho et al.  2009  ) .  

    8.4   ERBB2 

 ErbB2 (HER2/Neu) belongs to the EGFR receptor family that contains the other three members: 
EGFR, ErbB3, and ErbB4 (see EGFR/EGF section). Although the intracellular tyrosine kinase domain 
of the EGFR family is highly conserved, none of the EGFR family ligands bind ErbB2 because of its 
extracellular region structure. Thus, the role of ErbB2 depends on the patterns of dimerization within 
the family (Normanno et al.  2006  ) . For example, among all possible ErbB2-containing heterodimeric 
receptor complexes, the most potent signaling module in terms of cell proliferation and  in vitro  
transformation is the ErbB2/ErbB3 heterodimer, even though ErbB3 lacks kinase activity (Citri et al. 
 2003  ) . These homo- or heterodimers have various potencies for the induction of signaling pathways 
such as the Ras/Raf/MEK/MAPK pathway for proliferation, the PI3K/Akt pathway for survival 
(Ben-Levy et al.  1994 ; Prigent and Gullick  1994  ) , the phospholipase C (PLC)- g  pathway for cell 
migration and invasion (Khoshyomn et al.  1999  ) , and the STAT pathway for cell cycle regulation (Gao 
et al.  2010  )  (Fig.  8.1 ). 

 Forced ErbB2 expression can transform cells into the invasive phenotype in association with 
expression of membrane-type1 (MT1) matrix metalloproteinase (MMP), which is a key enzyme in 
glioma invasion (Miyamori et al.  2000 ; Nakada et al.  2001 ; Sato et al.  1994  ) . In addition, post-
transcriptional shedding of cell surface ErbB2 has been reported to be processed by proteases that can 
degrade the ECM (e.g., MMP2, MMP9, MMP13, and uPA) (Gondi et al.  2009 ; Spencer et al.  2000 ; 
Yong et al.  2010  ) , indicating a strong association between ErbB2 expression and glioma invasion. 

 Although ErbB2 protein expression is mainly seen in high-grade gliomas (Andersson et al.  2004 ; 
Engelhard et al.  1995  ) , evidence for the prognostic value of ErbB2 expression levels in GBMs is 
presently sparse (Gulati et al.  2010 ; Haapasalo et al.  1996 ; Hiesiger et al.  1993 ; Mineo et al.  2007 ; 
Schwechheimer et al.  1994  ) . On the other hand, both ErbB2 and ErbB4 expression levels have been 
shown to predict prognosis in childhood medulloblastoma and ependymoma (Gilbertson et al.  1997 ;   
2002  ) . Although few reports have described mutation of the  ErbB2  gene (Stephens et al.  2004  ) , a 
recent study of the TCGA consortium revealed that mutation was observed in 7 of 91 (8 %) GBMs 
(Network  2008 ; Verhaak et al.  2010  ) . 
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 Furthermore, ErbB2 overexpression has been well described in human breast cancers (20–30 %), 
which correlates with more aggressive tumors and a poorer prognosis (Hortobagyi  2005  ) .  

    8.5   c-Met/HGF 

 Hepatocyte growth factor (HGF) was originally identi fi ed as a polypeptide growth factor for hepato-
cytes and is believed to play an important role in liver regeneration (Yamada et al.  1994  ) . HGF functions 
as a mitogen for a variety of cell types and as a morphogen and motogen for some epithelial cells that 
express its receptor (Moriyama et al.  1995  ) . The receptor protein for HGF, c-Met, is encoded by the 
 c-met  proto-oncogene, which has tyrosine kinase activity and was originally described as an activated 
oncogene in a human osteosarcoma cell line (Cooper et al.  1984  ) . Recently, attention has been focused 
on the role of the HGF/c-Met system because of its multiple biological activities including motility, 
proliferation, survival, and morphogenesis. 

 Under normal conditions, HGF-induced c-Met activation is tightly regulated by paracrine ligand 
delivery, ligand activation at the target cell surface, and ligand activated receptor internalization and 
degradation (Cecchi et al.  2010  ) . Despite its functions under normal conditions, HGF/c-Met signaling 
contributes to oncogenesis and tumor progression in several cancers and promotes aggressive cellular 
invasiveness that is strongly linked to tumor metastasis (Rosario and Birchmeier  2003 ; Zhang and 
Vande Woude  2003  ) . 

 The HGF/c-Met pathway has been implicated in a wide variety of human malignancies. Overexpres-
sion of HGF and/or c-Met is frequently observed and ampli fi cation of the  c-met  gene has been reported 
in several tumor types (Burgess et al.  2006  ) . Several studies have described the expression of HGF 
and c-met as well as HGF activator mRNAs in glioma cell lines and tissues, particularly GBM 
(Koochekpour et al.  1997 ; Moriyama et al.  1995  ) . On the other hand, the expression of HGF and c-Met 
was low or barely detectable in low-grade astrocytoma and c-Met immunoreactivity was correlated 
with the histological grade of the tumor. 

 A few studies suggested that HGF and c-Met are expressed in human gliomas and that expression 
levels correlated with tumor grade (   Moriyama et al.  1998b  ) . Likewise, HGF expression was signi fi -
cantly higher in high-grade tumors than in low-grade tumors based on HGF content detection in 
samples of different clinical grades (Abounader and Laterra  2005 ; Lamszus et al.  1999  ) . c-Met receptor 
expression has also been detected in malignant brain tumors including all gliomas, medulloblastomas, 
ependymomas, and schwannomas (Koochekpour et al.  1997 ; Moriyama et al.  1998b ). The results of 
an overexpression study provided suf fi cient evidence implicating the HGF/c-Met pathway in brain 
tumorigenesis and malignant progression; this study demonstrated that HGF/c-Met plays important 
and critical roles in brain tumor formation and growth. 

 The HGF/c-Met system in vascular ECs works as signal transduction molecules/pathways in 
gliomas that mediate neovascularization. Numerous  in vivo  and  in vitro  studies have indicated that 
HGF and c-Met are expressed and functional in neuromicrovascular and brain tumor vascular cells. 
The HGF/c-Met system is highly activated in cultured neural microvascular ECs. In gliomas, HGF 
stimulates the proliferation of neuromicrovascular ECs by paracrine and autocrine mechanisms. 
Other studies demonstrated that HGF-dependent interactions between glioma cells, and between 
glioma cells and the endothelium, can contribute to the heterogeneous proliferative and angiogenic 
phenotypes of malignant gliomas  in vivo  (Abounader and Laterra  2005  ) . Moriyama et al. explored the 
effect of HGF on vascular endothelial growth factor (VEGF) expression in c-Met-positive human 
glioma cell lines and their results suggest that HGF can act as an indirect angiogenic factor through 
autocrine induction of VEGF expression and secretion in malignant gliomas in addition to its direct 
angiogenic activities (Moriyama et al.  1998a    ) . Taken together, these  in vitro  and  in vivo   fi ndings sug-
gest the multifunctional and multilevel involvement of the HGF/c-Met pathway in brain tumor angio-
genesis as well as brain tumor growth. 
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 Activation of the HGF/c-Met axis promotes proliferation and survival through a variety of downstream 
effectors including Gab1, Grb2, and PI3K (Abounader and Laterra  2005 ; Ponzetto et al.  1994  ) . Following 
activation of the HGF/c-Met pathway, the RAS-MAPK signaling pathway plays an essential role in 
morphogenesis. The activation of c-Met prevents apoptosis through activation of PI3K and subsequent 
Akt activation. Cross-talk between the PI3K/Akt and the RAS-MAPK pathways has been implicated 
in promoting cell survival, migration, and invasion (Zeng et al.  2002  )  (Fig.  8.2 ).   

    8.6   Tie/Ang 

 The Angiopoietin/Tie system acts as a vascular-speci fi c ligand/receptor system and plays an essential 
role in tumor-associated angiogenesis. The angiopoietin family includes four ligands, namely, angio-
poietin-1 (Ang-1), angiopoietin-2 (Ang-2), angiopoietin-3 (Ang-3), and angiopoietin-4 (Ang-4), and 
two corresponding RTKs (Tie1 and Tie2). Ang-1 acts as an agonist, whereas Ang-2 acts as an antago-
nist, of the Tie2 receptor (Maisonpierre et al.  1997  ) . Tie2 activation promotes vessel assembly and 
maturation by mediating EC survival signals and regulating the recruitment of mural cells. The Tie/
Ang-1 system may function during vessel maturation and stabilization and Ang-1 is a prominent regulator 
of vascular development (Lee et al.  2009 ; Machein et al.  2004  ) . In contrast, Ang-2 is produced by ECs 
and acts as an autocrine antagonist of Ang-1-mediated Tie2 activation. Ang-2 is an angiogenic factor 
that antagonizes Ang-1 activity by competitively inhibiting the binding of Ang-1 to its cognate 
endothelial receptor, Tie2, causing vasculature destabilization. Ang-2 also acts in concert with VEGF 
to regulate vessel growth (Hu et al.  2006  )  (Fig.  8.3 ).  
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  Fig. 8.2    Major signaling pathways by the receptor tyrosine kinase c-Met. Growth factor receptor-bound protein 2 
(GRB2), Grb2-associated adaptor protein 1 (GAB1), hepatocyte growth factor (HGF), phosphatidylinositol 3-kinase 
(PI3K), son of sevenless (SOS), rat sarcoma oncogene homolog (RAS), extracellular receptor kinase (ERK), mitogen-
activated protein kinase (MAPK), signal transducer and activator of transcription (STAT), SRC, SRC homology protein 
tyrosine phosphatase 2 (SHP2), SRC homology domain c-terminal adaptor homolog (SHC), mammalian target of 
rapamycin (mTOR)       
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 The role of Ang-1 in tumor-associated angiogenesis remains controversial because some reports 
imply that Ang-1 induction impairs angiogenesis and inhibits tumor growth whereas other authors 
suggest that Ang-1 overexpression promotes tumor growth in some animal models (Hawighorst et al. 
 2002 ; Hayes et al.  2000 ; Machein et al.  2004  ) . However, Machein et al .  reported that Ang-1 can promote 
tumor angiogenesis in a rat glioma model (Machein et al.  2004  ) . 

 Ang-2 immunoreactivity is higher in malignant gliomas than in low-grade gliomas, which documents a 
strong correlation between the expression of Ang-2 and increasing glioma tumor grade (Koga et al.  2001  ) . 
Increasing data suggest that Ang-2 expression is negatively correlated with vessel maturation in 
malignant gliomas and that VEGF expression is positively correlated with vessel maturation in low-
grade gliomas. 

 Con fl icting results have been reported in the literature regarding the role of the Tie2/Ang system in 
tumor angiogenesis. The tyrosine kinase receptor Tie2 was initially reported as a speci fi c vascular 
receptor present in both normal and tumoral ECs, including ECs in astrocytomas, and its levels 
correlate positively with increasing malignancy (Liu et al.  2010 ; Stratmann et al.  1998  ) . Tie2 is also 
expressed in glioma cells and brain tumor stem cells present in malignant gliomas and its expression 
and activation increases with increasing astrocytoma malignancy grade (   Zadeh et al.  2004b  ) . 

 Studies on  in vivo  human glioma biopsies have showed that Ang-2, MMP-2, MT1-MMP, and 
laminin 5  g  2 are co-overexpressed in the invasive areas but not in the central regions of the glioma 
tissues.  In vitro  data also demonstrated that Ang-2 promoted the expression and activation of MMP-2, 
MT1-MMP, and laminin 5  g  2, which may be essential for malignant glioma invasiveness (Brinckerhoff 
and Matrisian  2002 ; Lohi  2001  ) . In addition, inhibition of Tie2 activation signi fi cantly decreased 
GBM xenograft growth by disrupting tumor vascularity (Zadeh et al.  2004b  ) . 

Endothelial cell

GRB2PI3K

RAS

RAF

eNOS

AKT

SHP2

Endothelial cell proliferation/migration

Vasculogenesis/Angiogenesis

Tie Tie TieIntegrinαvβ1

Survivin Caspase9Bad

DOKR

NCK

PAK ERK1/2FAKMEK

Endothelial cell interaction

Ang2 Ang1 Ang2 Ang4Extracellular
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  Fig. 8.3    The major Ang/Tie signaling pathways in glioma angiogenesis and migration. Angiopoietin (Ang), growth 
factor receptor-bound protein 2 (GRB2), phosphatidylinositol 3-kinase (PI3K), rat sarcoma oncogene homolog (RAS), 
SH2 domain-containing phosphatase (SHP2), focal adhesion kinase (FAK), endothelial nitric oxide synthase (eNOS), 
docking protein R (Dok-R), extracellular receptor kinase (ERK), p21-activated kinase (PAK)       
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 Accumulating evidence suggests that Tie2 activation regulates angiogenesis in a highly context- 
and tissue-dependent manner and closely collaborates with VEGF and possibly with other angiogenesis 
regulators (Gale et al.  2002 ; Zadeh et al.  2004b  ) . Activation of the Tie/Ang functional axis promotes 
glioma proliferation and migration through various downstream effectors, including FAK, VEGF-A, 
PI3K,  a  

 g 
  b  

1,
  and extracellular signal-regulated kinase 1/2 (ERK1/2) (Brinckerhoff and Matrisian  2002 ; 

Lee et al.  2009 ; Zadeh et al.  2004  b  ) . Following activation of the Tie/Ang pathway, the FAK signaling 
pathway plays an essential role in malignant cell migration. The activation of Tie-2 induces VEGF-A 
to bind its EC-speci fi c receptors, VEGFR1 and VEGFR2, which induces internalization of vascular 
endothelial cadherin (Zadeh et al.  2004a    ) . 

 Furthermore, Tie receptor-independent signaling and non-vascular Ang effects can produce other 
intracellular signaling outcomes. ECs can adhere to immobilized Ang via the  a  

 g 
  b  

1
  integrin and FAK 

signaling pathway to induce glioma cell invasion by stimulating MMP-2 expression (Hu et al.  2006  ) . 
The activation of the Tie-2/Ang-4 functional axis promotes the  in vivo  growth of human GBM cells 
by promoting tumor angiogenesis and directly activating ERK1/2 in GBM cells (Brinckerhoff and 
Matrisian  2002  ) . 

 Although the preceding studies focused on elucidating the role of Ang-2 in cancer biology, its exact 
role in glioma angiogenesis remains elusive. A recent report demonstrated that Ang-2 signi fi cantly 
enhances vascular growth and induces aberrant pathological changes in malignant astrocytomas; this 
report also found that Ang-2 is not consistently elevated throughout all growth stages of malignant 
astrocytomas (Zadeh et al.  2010  ) . 

 Although Ang-1 and Ang-2 play known roles in tumor angiogenesis, it is unknown how Ang-4 
affects GBM angiogenesis progression and the mechanism underlying its effects. Brunckhorst et al. 
found a novel mechanism of Ang-4 on glioma progression that directly activates the ERK1/2 kinase 
pathway (Brunckhorst et al.  2010  ) . Taken together, these data indicate that the Tie-2/Ang-4 functional 
axis can be considered an attractive therapeutic target for GBM.  

    8.7   Axl/Gas6 

 The receptor tyrosine kinase Axl, a member of the Tyro3, Axl, and Mer family of receptor tyrosine 
kinases (TAMRs), is characterized by an extracellular domain consisting of two immunoglobulin-like 
domains in juxtaposition to two  fi bronectin type III domains (Janssen et al.  1991  ) . TAMRs, in particular 
Axl, have transforming properties: overexpression of a truncated version of Axl in premalignant cells 
is suf fi cient to induce tumors in mice (Zhang et al.  1996  ) . Growth arrest–speci fi c gene 6 (Gas6), 
which is the natural ligand of Axl, was discovered because its expression is upregulated in  fi broblasts 
under growth-arrest conditions (Man fi oletti et al.  1993  ) . Axl/Gas6 signaling has been shown to regu-
late survival, proliferation, and migration in a variety of cells  in vitro  including tumor-derived cell 
lines of epithelial, mesenchymal, and hematopoietic origin (Ha fi zi and Dahlback  2006  ) . 

 Axl and Gas6 are overexpressed in human gliomas of malignancy grades WHO II to IV. In contrast, 
Axl staining was not detectable in non-neoplastic brain tissue and Gas6 was strongly expressed in 
neurons (Hutterer et al.  2008  ) . The receptor tyrosine kinase Axl is a mediator of glioma growth and 
invasion. Axl is predominantly expressed in pseudopalisading glioma cells, which are characterized 
by an accumulation of tumor cells around necrotic areas. Furthermore, an accumulation of Axl-
positive tumor cells was observed adjacent to microvascular neoformations, which is a characteristic 
feature of invading glioma tumor cells spreading along perivascular regions. Inhibition of Axl signaling 
by overexpression of a dominant-negative receptor mutant suppressed experimental gliomagenesis 
and resulted in long-term survival of mice after intracerebral glioma cell implantation when compared 
with Axl wild-type transfected tumor cells. Inhibition of Axl signaling interfered with cell proliferation 
(30 % inhibition versus Axl wild-type), glioma cell migration (90 % inhibition versus Axl wild-type), 
and invasion (79 % inhibition versus Axl wild-type) However, an analysis of tumor vessel density and 
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diameter failed to reveal an attenuated tumor vasculature as an explanation for the reduced tumorigen-
esis in Axl dominant-negative cells (Vajkoczy et al.  2006  ) . GBM patients with high Axl expression 
and Axl/Gas6 coexpression showed a signi fi cantly shorter time to tumor progression and poorer overall 
survival, indicating that Axl and Gas6 expression predict poor prognosis in GBM patients (Hutterer 
et al.  2008  ) .  

    8.8   DDR1/Collagen 

 Discoidin domain receptor 1 (DDR1) tyrosine kinases constitute a family of non-integrin collagen 
receptors that contain a discoidin homology region in the ectodomain (Alves et al.  1995  ) . DDR1, which 
is mainly expressed in epithelial cells, is primarily activated by collagens I to IV and VIII and facilitates 
cell adhesion (Vogel et al.  1997  ) . DDR1 has  fi ve isoforms generated by alternative splicing: DDR1a, 
b, c, d and e. DDRs have been implicated in the expression of pro-in fl ammatory mediators and matrix-
degrading enzymes and play an important role in migration, proliferation, ECM remodeling, and 
wound repair (Vogel et al.  2006  ) . 

 In GBM, collagen IV is present in virtually all tumor vessels, in some giant glioma cells, and in 
tumor cells around vascular proliferations. Collagens VII and VIII are absent from normal brain but 
may be expressed in glioma tissues supporting DDR1 signaling (Senner et al.  2008  ) . Furthermore, 
DDR1 is overexpressed in glioma. Although overexpression of either DDR1a or DDR1b in cell-based 
glioma models caused increased cell attachment, glioma cells overexpressing DDR1a exhibit enhanced 
invasion and migration concomitant with increased levels of MMP-2. Inhibition of MMP activity 
suppressed DDR1a-stimulated cell-invasion and inhibition of DDR1 reduced DDR1a-mediated invasion 
and enhanced adhesion of DDR1a and DDR1b overexpressing cells. DDR1a plays a critical role 
in inducing tumor cell adhesion and invasion, and this invasive phenotype is caused by activation of 
MMP-2 (Ram et al.  2006 ; Yamanaka et al.  2006  )  (Fig.  8.4 ). DDR1 expression is more closely correlated 
with survival than histological grade in gliomas, suggesting that DDR1 expression might be a better 
predictive factor of patient survival than WHO grading (Yamanaka et al.  2006  ) .   

    8.9   Eph/Ephrin 

  E rythropoietin- p roducing human  h epatocellular  c arcinoma (Eph) receptors comprise the largest family 
of RTKs in mammals. Eph receptors have been divided into an EphA subclass (nine members) and an 
EphB subclass (six members) on the basis of extracellular domain sequence homology and ligand 
af fi nity (Gale et al.  1996  ) . Ephrin ligands are also transmembrane proteins and have been divided into 
two subclasses: glycosylphosphatidyl-inositol (GPI)-linked ephrin-As ( fi ve members), which are 
anchored to the cell membrane, and transmembrane ephrin-Bs (three members). Ephrin-As preferentially 
bind to EphA receptors, while ephrin-Bs preferentially bind to EphB receptors, although promiscuity 
has been observed. 

 Eph/ephrins form an essential cell-cell communication system capable of bi-directional intracellular 
signaling between adjacent cells, where receptor signaling is designated “forward” and ephrin signaling 
is “reverse” (Heroult et al.  2006 ; Kullander and Klein  2002  ) . Eph/ephrin members are plentiful and 
their relationships are complex. Generally, Eph/ephrin interactions are repulsive because cells con-
taining a given Eph are repelled by cells containing the corresponding Ephrin. Through this mecha-
nism, the Eph/ephrin system plays a role in numerous biological processes including cell adhesion 
and migration during development, especially in the central nervous system (Wimmer-Kleikamp and 
Lackmann  2005  ) . Recently, a role for the Eph/ephrin system has also emerged in cancer, especially in 
the area of invasive behavior (Campbell and Robbins  2008  ) . 
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 Genes for Eph/ephrins are overexpressed or differentially expressed in numerous human cancers 
(Surawska et al.  2004  ) . Mounting evidence documents a strong correlation between the expression 
and phosphorylation levels of many Eph/ephrin family members and increasing glioma tumor grade, 
suggesting that elevated Eph/ephrin expression levels may be diagnostic for GBM and reduced patient 
survival rates (Nakada et al.  2011  ) . Based on the microarray data obtained from two distinct GBM cell 
phenotypes (invading cells and tumor core cells) collected from GBM specimens, pathway enrichment 
analysis indicated that EphB/ephrin-B is the most tightly linked system to the invading cell phenotype 
(Nakada et al.  2010  ) . According to these results, it is likely that the Eph/ephrin system contributes to 
glioma invasion. In spite of the overexpression of Eph/ephrin members in glioma, no evidence of gene 
ampli fi cation or mutation has been reported. 

 Numerous Ephs and ephrins have been noted to in fl uence or correlate with the malignant behavior 
of cancer cells. In glioma, EphA/ephrin-A was associated with proliferation (Wykosky et al.  2005  )  
whereas EphB/ephrin-B was involved in invasion and neovascularization (Erber et al.  2006  ) . EphB2, 
ephrin-B2, and ephrin-B3 mRNA levels were shown to signi fi cantly increase with histological grade 
in glioma and contribute invasive properties in GBM (Nakada et al.  2004,   2006,   2010  ) . Additionally, 
a high ephrin-B2 level was shown to confer poor survival (Nakada et al.  2010  ) . The co-expression of 
EphB2 and ephrin-B in GBM cells suggests the existence of an EphB/ephrin-B interaction through 
cell–cell contact in GBM. Data showing that glioma invasion is inhibited by blocking Eph/ephrin 
suggest that the Eph/ephrin system is a potential therapeutic target for invasive glioma. 

 Different Eph/ephrin molecules are conceivably linked to different intracellular signaling pathways 
in a cell-type-speci fi c manner, which allows this system to perform a variety of functions. The key 

DDR1

P

MMP-2

Migration

Invasion

Tumor cell

Collagen IV, VII and VIII

Extracellular

MMP-2

  Fig. 8.4    DDR1 signaling in glioma. In GBM, DDR1 is overexpressed and activated by collagen IV which is present in 
virtually all tumor vessels, as well as in some giant glioma cells and in tumor cells around vascular proliferations; also 
collagens VII and VIII may be expressed in glioma tissues supporting DDR1 signaling. Glioma cells overexpressing 
DDR1a display enhanced migration and invasion associated with the increase levels of matrix metalloproteinase 2 
(MMP-2). (DDR1, discoidin domain receptor 1)       
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signaling molecules in the invasion-signaling pathway induced by EphB/ephrin B in GBM appear to 
be small GTPases such as Rac and Ras. Ephrin-B2 and ephrin-B3 can activate EphB2 through cell–
cell contact, inducing invasion via EphB2 forward signaling. A previous study showed that EphB2 
plays a functional role in promoting GBM cell invasion by eliciting signaling through R-Ras and 
affecting integrin activity (Nakada et al.  2005  ) . In contrast, reverse signaling of the ephrin-B2 and 
ephrin-B3 ligands was demonstrated to be an important factor in the regulation of glioma cell invasion 
through the Rac1 GTPase (Fig.  8.5 ).  

 A greater depth of investigation has occurred with respect to involvement of the Eph/ephrin 
subsystem in invasion. Fundamental effect of Eph/ephrin necessitates direct cell-cell contact. However, 
it was recently revealed that ligand-independent signaling via autophosphorylation of Eph without ephrin 
stimulation can promote invasion without cell-cell communication (Miao et al.  2009  )  (Fig.  8.5 ). EphB2 
was overexpressed in invading GBM cells compared with stationary cells in the tumor core, suggesting 
that EphB2 is autophosphorylated in invading glioma cells (Nakada et al.  2004,   2006  ) . This indicates 
that invading glioma cells overexpressing Eph/ephrin far from the tumor can migrate by themselves 
without interaction of other cells.  

    8.10   TrkA 

 Neurotrophic tyrosine kinase receptor type 1 (TrkA) is the high af fi nity receptor for nerve growth 
factor (NGF), neurotrophin-3, and neurotrophin-4/5. Phosphorylated TrkA may play an important 
role in mitotic spindle assembly because it is colocalized with  a -tubulin at the mitotic spindle from 
prophase to anaphase, whereas in interphase, phosphorylated TrkA is localized on the membrane and 
processes of glioma cells (Zhang et al.  2005  ) . 

 TrkA is strongly expressed in the subpopulation of highly in fi ltrating glioma cells  in vivo  but not 
in the glioma cells that remain within the bulk of the tumor. Thus, TrkA expression is dependent on 
both the cell type and the location within the tumor (Edwards et al.  2011  ) . TrkA activation typically 
leads to the activation of survival- and growth-mediating pathways through the cytoplasmic proteins 
SHC, PI3K, and PLC- g 1 (Escalante et al.  2000 ; Meakin et al.  1999  ) . GBM cell growth can be enhanced 

EphB2
Ephrin-B2, B3

Cell-cell contact

P

P

R-Ras

Rac1
Eph

Without cell-cell contact

PP

autophosphorylation

Repulsion

Forward

Reverse Migration
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Eph

  Fig. 8.5    Putative model of Eph/ephrin function in glioma. Signaling induced by cell-cell contact via EphB/ephrin-B 
induces repulsion. Ligand independent signaling via autophosphorylation of Eph without ephrin stimulation can also 
promote the invasion without cell-cell communication       
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by NGF acting via TrkA receptor phosphorylation (Singer et al.  1999  ) . Switching between anti-mitogenic 
and mitogenic TrkA signaling is controlled by PLC- g 1 activity (Ye et al.  2000,   2002  )  (Fig.  8.6 ). 
Consequently, it was shown that TrkA expression in GBMs attenuates tumor progression  in vivo  
(Rabin et al.  1998  )  by inducing differentiation of tumor cells from undifferentiated glioma to oligo-
dendrocytes (P fl ug et al.  2001  ) .  

 Glioma initiating/stem cells require the cell surface protein receptors integrin  b 1 and TrkA, which 
constitute the integrin  b 1–TrkA complex, for connective tissue growth factor (CTGF) signaling. The 
integrin  b 1–TrkA complex can bind to CTGF and cause nuclear factor-kappa B (NF-kB)-mediated 
activation of the ZEB-1 promoter with subsequent induction of the ZEB-1 transcriptional repressor, 
resulting in decreased expression of E-cadherin and subsequent enhancement of glioma cell invasion and 
migration (Fig.  8.6 ). TrkA knockdown resulted in decreased CTGF-induced cell migration and the 
absence of tumor cell invasion into normal mice cortex. However, TrkA knockdown did not affect CTGF-
induced proliferation or the clonogenicity of the glioma stem cells  in vitro . Thus, CTGF, TrkA, and 
NF-kB may be potential therapeutic targets to alleviate tumor cell in fi ltration (Edwards et al.  2011  ) .  

    8.11   Cross-Talk 

 As described above, many RTKs lead to the signaling of PI3K/Akt and Rac1 in invading glioma cells, 
suggesting that these molecules confer critical downstream signaling for invasion. A previous study 
showed coexpression of multiple activated RTKs in individual dissociated cells from a primary GBM 
(Stommel et al.  2007  ) . Accordingly, multiple RTKs may be simultaneously or sequentially used by 
GBM cells to maintain invasion-signaling pathways via molecules such as PI3K/Akt and Rac1. 

  Fig. 8.6    TrkA signaling pathways in glioma. GBM cell growth can be enhanced by TrkA receptor (neurotrophic 
tyrosine kinase receptor type 1) phosphorylation activated by NGF (nerve growth factor). TrkA activation leads to the 
activation of survival and growth mediating pathways through cytoplasmic proteins SHC, PI3K and PLC- g 1. Switching 
between anti-mitogenic and mitogenic TrkA signaling is controlled by PLC- g 1 activity. Glioma initiating/stem cells 
require integrin  b 1–TrkA complex for connective tissue growth factor (CTGF) signaling; binding of the complex with 
CTGF causes NF-kB-mediated activation of the ZEB-1 promoter with subsequent induction of the ZEB-1 transcriptional 
repressor resulting in decreased expression of E-cadherin, accordingly enhancing glioma cell invasion and migration       
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 Given that individual cells express multiple RTKs, it is reasonable to speculate that these RTKs 
are interacting with each other. For example, the c-Met receptor is strongly phosphorylated as a 
function of EGFRvIII receptor levels, suggesting the presence of cross-talk between c-Met and 
EGFRvIII signaling, although the intermediary molecule has not yet been elucidated (Huang et al. 
 2007  ) . The Axl RTK follows a similar phosphorylation response as a function of EGFRvIII levels 
(Huang et al.  2007  ) . It was previously reported that EGFR and EphA2 are expressed in GBM and 
co-localize to the cell surface. EphA2 phosphorylation is dependent on EGFR activity and EphA2 
downregulation inhibits EGFR phosphorylation, downstream signaling, and EGF-induced cell viability 
(Ramnarain et al.  2006  ) . Previous studies reported that EphA4, whose expression is correlated with 
increasing glioma grade, forms a heteroreceptor complex with  fi broblast growth factor receptor 1 
(FGFR1) in glioma cells and that the EphA4-FGFR1 complex potentiated FGFR-mediated down-
stream signaling such as Akt/MAPK, Rac1, and Cdc42 pathways, resulting in the promotion of invasion 
(Fukai et al.  2008  ) . 

 In such a multiple-input system with cross-talk among RTKs, a single-agent of anti-RTK inhibition 
might be incapable of suf fi ciently suppressing invasion signaling, resulting in insensitivity to invasion 
inhibition by any single agent and a lack of clinical ef fi cacy. It is anticipated that combinations of 
drugs against different activated RTKs or single drugs with inhibitory activities against multiple activated 
RTKs will have more favorable outcomes.  

    8.12   Targeting Receptor Type Tyrosine Kinases 

 As mentioned in the previous paragraphs, TKIs that target multiple signaling pathways and critical 
growth factors essential for tumor progression have become a major focus of interest in various clinical 
studies. Although all studies remain experimental, several of these speci fi c molecular agents that are 
most expectant or have been widely evaluated are reviewed below (Table  8.2 ).  

    8.12.1   Targeting EGFR 

    8.12.1.1   Ge fi tinib 

 Ge fi tinib is a low molecular weight, selective inhibitor of EGFR tyrosine kinase and was the  fi rst drug 
of this type. Although an early study suggested that ge fi tinib was active in patients with malignant 
gliomas (Franceschi et al.  2007 ; Mellinghoff et al.  2005  ) , ge fi tinib therapy showed limited ef fi cacy in 
multicenter phase II studies in patients with malignant glioma (Franceschi et al.  2007 ; Hegi et al. 
 2011 ; Rich et al.  2004  ) , either for recurrent disease or as part of the initial treatment regimen. Because 
EGFR kinase domain mutations, which are associated with the greatest sensitivity to EGFR inhibitors 
(Pedersen et al.  2005  ) , are uncommon in malignant gliomas (Lassman et al.  2005  ) , it remains to be 
determined whether other molecular alterations involving EGFR signaling pathways occur selectively 
in treatment responders.  

    8.12.1.2   Erlotinib 

 Erlotinib is an orally active, reversible EGFR TKI. Because erlotinib is metabolized by the cytochrome 
P450 isoenzymes 3A4 (70 %) and CYP 1A2 (30 %), patients taking enzyme-inducing anti-epileptic 
drugs are not eligible for this treatment (Raizer et al.  2010  ) . Similar to ge fi tinib, clinical studies examining 
the therapeutic ef fi cacy of erlotinib have so far failed to demonstrate a major therapeutic break-through 
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in the setting of GBM (Haas-Kogan et al.  2005 ; Mellinghoff et al.  2005 ; Raizer et al.  2010 ; Van Den 
Bent et al.  2009  ) , including newly diagnosed GBM treated with temozolomide (TMZ) and radiotherapy 
(Peereboom et al.  2010  ) . Although Raizer and colleagues reported that the development of a rash during 
the initial erlotinib administration cycle correlates with survival in patients with non-progressive 
GBM after radiotherapy, the signi fi cance of this  fi nding remains unclear (Raizer et al.  2010  ) .  

    8.12.1.3    125 I-mAb 425 

  125 I-mAb 425, an  125 I-labeled anti–EGFR 425 murine monoclonal antibody (mAb), is an IgG2a iso-
type developed from mice immunized with A-431 epidermoid carcinoma cells. mAb 425 binds to the 
tumor and produces anticarcinogenic effects mediated by direct cell growth inhibition, complement-
dependent cytotoxicity, and activation of the humoral response. Initial clinical studies have shown 
survival bene fi ts of adjuvant  125 I-425 mAb in GBM patients (Emrich et al.  2002 ; Quang and Brady 
 2004  ) . In a phase II study of 192 patients with GBM treated with anti–EGFR  125 I-mAb 425 radioim-
munotherapy, the reported survival was 15.7 months and treatment was safe and well tolerated (Li 
et al.  2010  ) .  

    8.12.1.4   Nimotuzumab 

 Nimotuzumab (h-R3), a humanized monoclonal antibody directed against the EGFR, consequently 
inhibits tyrosine kinase activation. Recently, several reports of pediatric diffuse intrinsic pontine 
glioma treated with nimotuzumab showed a relatively favorable prognosis (Lam et al.  2009 ; Mateos 
et al.  2011 ; Saurez et al.  2009  ) . Thus, nimotuzumab is currently being evaluated in conjunction with 
radiotherapy in a phase III trial in children with diffuse pontine glioma and adult GBM.  

    8.12.1.5   Cetuximab 

 Cetuximab, IMC-C225, is a chimeric (mouse/human) monoclonal IgG1 antibody that binds to EGFR 
with high speci fi city and af fi nity. Encouragingly, cetuximab enhanced the cytotoxicity produced 
by radiation therapy  in vivo  in EGFR-ampli fi ed GBM (Belda-Iniesta et al.  2006 ; Eller et al.  2005  ) . 
In 2006, however, a phase II trial of cetuximab in 55 recurrent high-grade glioma patients revealed no 
signi fi cant correlation between response, survival, and EGFR ampli fi cation (Neyns et al.  2009  ) .  

    8.12.1.6   Lapatinib 

 Lapatinib is a dual TKI that interrupts the HER2/neu (ErbB2) growth receptor pathway. It is used in 
therapy for HER2-positive breast cancer. However, a phase I/II trial of lapatinib in patients with 
relapsed GBM failed to show signi fi cant activity of this agent independent of the presence of EGFRvIII 
mutation and PTEN immunohistochemical status (Thiessen et al.  2010  ) .   

    8.12.2   Targeting PDGFR 

    8.12.2.1   Imatinib 

 Imatinib mesylate (Gleevec; formerly known as STI571) is a potent inhibitor of the PDGFR a , 
PDGFR b , Bcr-Abl, c-Fms, and c-Kit tyrosine kinases. Its antitumor activities in chronic myelogenous 
leukemia and gastrointestinal stromal tumors result from the inhibitions of Bcr-Abl (Druker et al. 
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 2001  )  and c-Kit (Demetri et al.  2002  ) , respectively. An initial study showed that imatinib mesylate 
plus hydroxyurea was well tolerated and associated with durable antitumor activity in some patients 
with recurrent GBM (Reardon et al.  2005  ) . However, more extensive phase II and III studies have 
shown only minimal evidence of single agent activity (Dresemann et al.  2010 ; Raymond et al.  2008 ; 
Wen et al.  2006  ) .  

    8.12.2.2   Sunitinib 

 Sunitinib malate is an oral small-molecule inhibitor of VEGFRs, PDGFRs, c-Kit, Flt3, and RET kinases 
(Chow and Eckhardt  2007  ) . Sunitinib has substantial clinical activity against hypoxia-inducible factor 
(HIF)/VEGF-dependent, PDGFR-dependent, and KIT-dependent cancers. Recently, a phase II study 
of sunitinib failed to demonstrate a relevant clinical bene fi t from single-agent sunitinib (37.5 mg/day) 
in patients with alkylator-refractory recurrent glioma. Furthermore, substantial treatment-related 
toxicity was observed in several patients (Neyns et al.  2011  ) . Although sunitinib affected the glioma 
vasculature in a small subgroup of patients, no objective tumor responses were observed regarding 
apparent reduced cerebral blood- fl ow and blood-volume within the lesion compared with the normal 
brain or reduced gadolinium enhancement of the tumor. A possible explanation for the failure of 
sunitinib to have meaningful clinical activity is the lower potency of sunitinib to selectively inhibit 
VEGF/VEGFR signaling within the tumor vasculature compared to the VEGF-targeted mAb beva-
cizumab (Friedman et al.  2009  )  or the more potent VEGFR-speci fi c small-molecule TKI cediranib 
(   Batchelor et al.  2010a,   b  ) .  

    8.12.2.3   Dasatinib 

 Dasatinib is an aminotriazole analog with high speci fi city for several kinases including Bcr-Abl, Src, 
c-Kit, PDGFR b , and EphA2, which was approved for use in patients with chronic myelogenous 
leukemia after imatinib treatment and Philadelphia chromosome-positive acute lymphoblastic 
leukemia. Dasatinib appears to be a more potent inhibitor of Bcr-Abl than imatinib (Tokarski et al. 
 2006  ) . Recently, investigators have shown that Src is frequently phosphorylated in GBM cell lines 
such as T98G and U87 compared with normal tissue and is activated in human GBM tumors (Du et al. 
 2009  ) . These  fi ndings support the possible role of dasatinib for malignant gliomas, and future clinical 
trials will further assess the clinical value of SRC inhibition with dasatinib incorporating TMZ and 
other cytotoxic agents.   

    8.12.3   Multi-Kinase Inhibitors 

    8.12.3.1   Cediranib 

 Cediranib (AZD2171) is a potent oral inhibitor of all VEGF receptor tyrosine kinases and PDGF 
receptors (Batchelor et al.  2007  ) . Cediranib caused a structural and functional normalization of tumor 
vasculature in all 16 patients with recurrent GBM and resulted in a signi fi cant reduction of tumor-
associated vasogenic edema as measured by MRI techniques. This effect was paralleled by a potent 
steroid-sparing effect in most patients (Batchelor et al.  2007  ) . In a subsequent phase II study, partial 
responses were seen in 57 % of patients based upon tumor measurements (Batchelor et al.  2010  b  ) , 
and the median progression-free survival (PFS) and the median overall survival (OS) were 32.4 weeks 
and 16.7 weeks, respectively (Table  8.2 ), with manageable toxicity. Based upon these results, a phase 
III study was conducted in 325 patients with recurrent GBM (   Batchelor  2010a ). Although cediranib 
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treatment regimens resulted in a statistically signi fi cant decrease in steroid use and a reduced contrast 
enhancing area on neuroimaging, there was no statistically signi fi cant improvement in PFS, the primary 
endpoint of the trial.  

    8.12.3.2   Sorafenib 

 Sorafenib is a multi-target oral TKI with inhibitory effects on the VEGF receptor, PDGF receptor, and 
the Ras/Raf signaling pathway (Wilhelm et al.  2004  ) . Despite potentially complementary direct and 
indirect mechanisms of anti-tumor activity, Reardon et al. demonstrated that sorafenib combined with 
daily TMZ has minimal activity as a salvage regimen for recurrent GBM patients in their single-arm 
phase II study (Reardon et al.  2011  ) . Meanwhile, Hainsworth et al. also failed to demonstrate the 
ef fi cacy of treatment when compared with the results expected with standard therapy in newly diagnosed 
GBM (Hainsworth et al.  2010  ) . A plausible explanation for this low effectiveness is the low to moderate 
ability of sorafenib to penetrate into the brain. However, the blood brain barrier (BBB) is compromised 
in patients with GBM and it is unlikely that sorafenib would have lower penetration than bevacizumab, 
a large protein. In general, the addition of small molecule TKIs to chemotherapy has not consistently 
improved treatment results, even when both components of therapy have individual ef fi cacy.  

    8.12.3.3   Vandetanib 

 Vandetanib (ZD6474) is a potent oral TKI for various RTKs, in particular VEGFR2 and EGFR. A phase 
I study of 35 children with newly diagnosed diffuse intrinsic pontine glioma treated with vandetanib 
reported 1- and 2-year OS outcomes of 37.5 % ± 10.5 % and 21.4 % ± 11 %, respectively. Three patients 
remained alive with PFS for more than 2 years. The recommended phase II dose of vandetanib in 
children is 145 mg/m 2  per day (Broniscer et al.  2010  ) . Several phase II studies, including those in 
recurrent and newly diagnosed malignant glioma, are currently underway.  

    8.12.3.4   Cabozantinib (XL-184) 

 Recently, interim results have been reported from a phase II study of Cabozantinib (XL184) treatment 
in previously treated progressive GBM. Cabozantinib is an oral inhibitor of multiple RTKs that 
includes VEGFR2 as the main target followed by c-Met, RET, c-kit, Flt3, Tie-2, and Axl (Wen  2010 ; 
Yakes et al.  2011  ) . In this study, the median PFS in antiangiogenic-naive cohorts was 16 weeks 
(Table  8.2 ). In total, 61 % of patients on corticosteroids at baseline had a reduction in corticosteroid 
dose of at least 50 %. The investigators concluded that XL184 demonstrates encouraging clinical 
activity in patients with progressive GBM. Cabozantinib, currently in phase III clinical trials, is a 
promising agent for inhibiting tumor angiogenesis and metastasis in glioma, especially in cases of 
dysregulated Met and VEGFR signaling.    

    8.13   Prospective 

 Future studies are required to more precisely establish the molecular mechanisms and speci fi c down-
stream signaling elements that contribute to the cooperative or synergistic interactions of RTK signaling 
pathways in invading glioma cells. Further studies on the manipulation of the RTK systems involved 
in invasion will aid in engineering GBM therapies and in elucidating the complexity and additional 
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functional implications of RTK systems. Moreover, it is of great therapeutic interest to de fi ne invasion-
associated RTKs that could be targeted for blocking invasion. These works should help to develop 
novel potential pharmacological agents to modulate invasion processes and thereby counteract the 
activation of invasion-signaling pathways and promotion of invasion. The data obtained from GBM 
patients treated with TKIs should con fi rm the therapeutic bene fi t of TKIs and the safety of selectively 
targeting RTKs, alone or in combination with the current conventional therapies. The effort to combat 
GBM, along with emerging data regarding the underlying molecular invasion circuitry and the devel-
opment of speci fi c TKIs, will result in the development of an array of new treatment approaches.      
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