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  Abstract   Tumor cell invasiveness is a critical challenge in the clinical management of glioma 
patients. In addition, there is accumulating evidence that current therapeutic modalities, including 
anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is 
stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound 
receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of 
glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases 
regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow 
extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the 
extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular 
matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. 
Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. 
In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell 
surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include 
uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma 
cell invasion has led to the identi fi cation of molecular targets for therapeutic intervention in this 
devastating disease.  
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  Abbreviations  

  ATX    Autotaxin   
  BEHAB    Brain-enriched hyaluronic acid binding protein   
  DG    Dentate gyrus   
  DOCK180    Dedicator of cytokinesis 180   
  ECM    Extracellular matrix   
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  ELMO1    Engulfment and cell motility-1   
  Gab1    Grb-2 associated binder-1   
  GAP    GTPase activating protein   
  GBM     Glioblastoma multiforme    
  GDI    Guanine nucleotide dissociation inhibitor   
  GEF    Guanine nucleotide exchange factor   
  HGG    High grade glioma   
  LGG    Low grade glioma   
  LPA    Lysophosphatidic acid   
  LPC    Lysophosphatidylcholine   
  MCP-1    Monocyte chemotactic protein-1   
  mDia    Mammalian homolog of Drosophila diaphanous   
  MMP    Matrix metalloproteinase   
  MT1-MMP    Membrane type metalloproteinase 1   
  NB    Non-neoplastic brain   
  NSC    Neural stem cell   
  PDGFR    Platelet-derived growth factor receptor   
  PI3K    Phosphatidylinositol 3-kinase   
  PDK1    PI3K-dependent kinase 1   
  PH    Pleckstrin homology domain   
  PTEN    Phosphatase and tensin homolog deleted on chromosome ten   
  p130 Cas     Crk-associated substrate   
  ROCK    Rho-associated coiled-coil forming kinase   
  RTK    Receptor tyrosine kinase   
  SPARC    Secreted protein acidic and rich in cystein   
  SVZ    Subventricular zone   
  TAM    Tumor associated macrophage   
  TGF b -1    Transforming growth factor- b -1   
  TIMP    Tissue inhibitor of metalloproteinases   
  TN-C    Tenascin-C   
  TSP-1    Thrombospondin-1   
  VEGF    Vascular endothelial growth factor   
  VEGFR-1    Vascular endothelial growth factor receptor-1       

    7.1   Invasiveness of Glioma Cells 

 Malignant gliomas are characterized by a high proliferation rate, increased angiogenesis and diffusive 
growth. There is rarely a clear border between the tumor and the surrounding brain parenchyma. 
This complicates complete surgical resection, and as a consequence, usually within months after 
surgery, recurrent neoplasms are established in the proximity of the resection zone. 

 The pattern of glioma cell migration in the brain is not random. Tumor cells in fi ltrate the brain 
parenchyma as individual cells or isolated clusters, distributed mainly along blood vessels (perivascu-
lar zone),  fi ber tracts and subependyma (Farin et al.  2006 ; Giese et al.  2003 ; Scherer  1940  ) . Although 
it has been shown that C6 rat glioma cells can intercalate between endothelial cells and astrocyte end 
feet, or in some cases displace astrocytes from entothelial cells, they rarely invade the blood vessel 
lumen (Farin et al.  2006  ) . This is consistent with the well-established clinical observation that gliomas 
hardly metastasize to other organs or the spinal cord (Armstrong et al.  2011 ; Birbilis et al.  2010 ; 
Gotway et al.  2011 ; Schonsteiner et al.  2011  ) . 
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 In the resting adult brain, migrating neural stem cells (NSC) mainly originate from two niches, the 
subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. From there, these neural 
progenitors migrate towards the olfactory bulb (OB) or granular cell layer of the DG, respectively. 
There is evidence that the adult SVZ continues to generate glial progenitor cells. However, the vast 
majority of these progenitor cells reside outside the neurogenic niches and usually do not migrate 
(Cayre et al.  2009  ) . Progenitor cell migration can be stimulated however by pathological conditions 
such as in fl ammation or stroke (Cayre et al.  2009 ; Zhang et al.  2005  ) . Time-lapse microscopy analysis 
of neural and glial progenitor migration revealed that these cells are moving in a unique two-step 
process: continuous extension of long leading protrusions followed by saltatory movement of the cell 
body (Bellion et al.  2005 ; Cayre et al.  2009 ; Kakita and Goldman  1999  ) . 

 Interestingly, the pattern of glioma cell migration strongly resembles the pattern of glial progenitor 
cell migration during normal brain development (Beadle et al.  2008 ; Farin et al.  2006 ; Kakita and 
Goldman  1999  ) . Moreover, it was shown that the saltatory mode of migration re fl ects the requirement 
for the nucleus to squeeze through the small extracellular spaces that characterize the brain paren-
chyma (Beadle et al.  2008  ) . This nuclear squeezing is dependent on myosin-based contractility, as it 
is inhibited by both, blebbistatin, an inhibitor of myosin II, and Y27632, a small molecule inhibitor of 
Rho-associated coiled-coil forming kinase (ROCK), a Rho effector protein that controls myosin II 
activation. Thus, studying the mechanisms that drive progenitor cell migration during brain develop-
ment should facilitate our understanding of the signaling pathways that are involved in glioma cell 
dissemination. 

 There is growing evidence that antiangiogenic therapy prolongs progression-free survival 
(Norden et al.  2009  ) . Unfortunately, treatment with bevacizumab (an antibody against vascular 
endothelial growth factor, VEGF) or cediranib (a VEGF receptor tyrosine kinase inhibitor) have 
resulted in little improvement in overall survival (de Groot et al.  2010  ) . It has been reported that 
bevacizumab treatment results in a shift to more in fi ltrative tumor growth (de Groot et al.  2010 ; 
Lucio-Eterovic et al.  2009  ) . This behavior is recapitulated in experiments using a model of primary 
human glioblastoma cells in the rat, in which treatment with bevacizumab was accompanied by a 
strong increases in the number of invading glioblastoma cells and in the distance that they travel 
from the tumor core (Keunen et al.  2011  ) . Thus, combining bevacizumab treatment with an anti-
invasion therapy may be bene fi cial.  

    7.2   Factors That Control Glioma Invasion 

 Both the development of glioma as well as their invasive behavior is strongly controlled by the local 
microenvironment. Factors secreted by tumor cells diffuse into the peritumoral stroma affecting the 
local tissue. In response, cells in brain parenchyma secrete ligands that stimulate enhanced glioma 
invasion and/or change the local microenvironment into a more permissive one for tumor progression 
(Hoelzinger et al.  2007  ) . 

    7.2.1   Autocrine Factors 

 Cells residing in the brain are embedded in extracellular matrix (ECM) primarily composed of 
hyaluronan and proteoglycans. The latter include brevican (brain enriched hyaluronic acid binding 
protein), neurocan, as well as the glycoproteins SPARC (secreted protein acidic and rich in cystein, 
also known as osteonectin), tenascin-C (TN-C) and thrombospondin-1 (TSP-1). Collagens, laminins and 
 fi bronectins, which are widely found in other tissues, are present only in the proximity of blood vessels 



124 A. Kwiatkowska and M. Symons

in the brain (Bellail et al.  2004  ) . Importantly, overexpression of hyaluronan, vitronectin, osteopontin, 
tenascin-C and BEHAP correlates with tumor grade (Delpech et al.  1993 ; Higuchi et al.  1993 ; Jaworski 
et al.  1996 ; Mahesparan et al.  2003 ; Saitoh et al.  1995 ; Toy et al.  2009 ; Viapiano et al.  2003  ) . ECM 
components play an important role in the regulation of signaling pathways that are responsible for 
tumor growth, proliferation, adhesion, migration and angiogenesis (Akiyama et al.  2001 ; Higuchi 
et al.  1993 ; Matusan-Ilijas et al.  2008 ; Zagzag et al.  1995,   1996  ) . Therefore, it is likely that glioma 
progression is in part mediated by alterations in ECM composition. This is illustrated by the  fi nding 
that experimental inhibition of osteopontin expression by U87 glioblastoma cells causes a signi fi cant 
reduction in the number of migrating cells  in vitro  and slower tumor growth  in vivo , as knock down 
of osteopontin in U87 cells reduce the proliferation of cells within experimental glioma tumors 
(Lamour et al.  2010  ) . 

 Glioma cells also secrete factors that, upon binding to their cognate receptor tyrosine kinases, 
contribute to enhanced tumor cell proliferation and motility. Important factors are epidermal growth 
factor (EGF), transforming growth factor  a  (TGF a ), heparin-binding epidermal growth factor 
(HB-EGF), platelet derived growth factor (PDGF) and hepatocyte growth factor/scatter factor (HGF/SF) 
(Brockmann et al.  2003 ; Hoelzinger et al.  2007 ; Koochekpour et al.  1997 ; Ramnarain et al.  2006 ; 
Shih and Holland  2006  ) . A detailed discussion about receptor tyrosine kinase signaling in glioma can 
be found in other chapters in this book (mainly in Chap.   8    ). 

 In addition to conventional autocrine signaling, recent data imply bioactive phospholipids in the 
regulation of glioblastoma dissemination. A good example is autotaxin (ATX), an enzyme with lyso-
phospholipase D activity that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid 
(LPA). Glioblastoma cells  in vivo  are exposed to various plasma components when the blood brain 
barrier (BBB) is disrupted (Seitz and Wechsler  1987 ; Wolff and Boker  1989  ) . One such component is 
LPC, which is present in plasma at a high concentration (100–300  m M) (Kishimoto et al.  2002  ) . 
Interestingly, in most analyzed glioblastoma tissues and glioma cell lines, autotaxin and LPA 

1
  recep-

tor are highly expressed (Kishi et al.  2006  ) . In addition, there is more ATX expressed in glioblastoma 
cells in the invading rim in comparison to those in the tumor core (Hoelzinger et al.  2005  ) . Experimental 
overexpression of ATX enhances cell migration both  in vitro  and in  ex vivo  brain slices (Kishi et al. 
 2006 ; Hoelzinger et al.  2008  ) . Conversely, inhibition of ATX expression leads to decreased invasive-
ness of cells in a three-dimensional collagen spheroid invasion assay in response to LPC (Hoelzinger 
et al.  2008  ) . Taken together, these data strongly suggest a role for ATX in glioblastoma invasion.  

    7.2.2   Paracrine Factors 

 Microglia and macrophages can constitute up to 30 % of the total number of cells in glioblastomas, 
anaplastic astrocytomas and rodent gliomas (Badie et al.  2002 ; Badie and Schartner  2000 ;    Charles 
et al.  2011 ; Roggendorf et al.  1996  ) . For many years, tumor-associated macrophages (TAMs) were 
considered as a part of the immune response against the tumor or a nonspeci fi c reaction evoked by 
local damage (Badie et al.  2002 ; Flugel et al.  1999 ; Watters et al.  2005  ) . Although the role of micro-
glia and TAMs in brain tumors is not fully understood, recent studies suggest that microglia/mac-
rophages may be attracted by tumor-secreted factors such as monocyte chemotactic protein-1 
(MCP-1) (Platten et al.  2003  ) , in order to promote tumor growth and dissemination into the brain 
parenchyma (Badie and Schartner  2001 ; Charles et al.  2011 ; Markovic et al.  2009 ; Platten et al.  2003 ; 
Sliwa et al.  2007 ; Watters et al.  2005 ; Wesolowska et al.  2008 ; Zhai et al.  2011  ) . It is thought that 
microglia, in response to glioma stimulation, produce diverse factors, including matrix metalloprotei-
nases such as membrane type matrix metalloproteinase-1 (MT1-MMP) that contribute to ECM deg-
radation and the processing of growth factors (Markovic et al.  2009  ) . Moreover, microglia produce 
cytokines such as transforming growth factor  b -1 (TGF b -1) that promote tumor cell proliferation and 
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migration (Watters et al.  2005 ; Wesolowska et al.  2008  ) . In addition, TAMs have been shown to 
activate NF- k B transcription factor-dependent production of interleukin-8 (IL-8) by gliomas 
(Hong et al.  2009  ) . This chemokine also stimulates tumor cell migration (Wakabayashi et al.  2004  ) . 
Interestingly, T cells are rarely seen in gliomas (Morimura et al.  1990  )  which correlates well with 
compromised microglia-mediated antigen presentation in these tumors (Badie et al.  2002 ; Flugel et al. 
 1999  ) . In conclusion, the current literature suggests that glioblastoma tumors re-educate microglia/
macrophages from an in fl ammatory phenotype to an anti-in fl ammatory and pro-tumor phenotype 
(Gabrusiewicz et al.  2011  ) . 

 The presence of a neoplasm in the brain affects the function of parenchymal cells. As mentioned 
above, glioma cells stereotactically inoculated into the rat or mouse brain accumulate around blood 
vessels, where they displace astrocytic end feet from the endothelial cells. Astrocytes that withdraw 
their processes from the vascular wall become reactive (Nagano et al.  1993 ; Zagzag et al.  2000  ) . 
Reactive astrocytes have been shown to secrete urokinase-type plasminogen activator (uPA)  in vitro.  
uPA is a serine protease that converts plasminogen produced by glioma cells into active plasmin. 
Plasmin, in turn, activates pro-metalloproteinase-2 (pro-MMP-2) that is secreted by astrocytes 
(Le et al.  2003  ) , thereby increasing local proteolytic activity. Thus, brain tumor dissemination is 
complex and relies on interactions between several cell types in a way that is not readily recapitulated 
using  in vitro  assays. 

 Expression of chemokine receptor 4 (CXCR4) and its ligand chemokine ligand 12 (CXCL12, 
also known as SDF-1) is increased in human astrocytomas (Barbero et al.  2002 ; Bajetto et al.  2006  )  
and signi fi cantly more CXCR4 is expressed in invasive tumor foci as compared to the non-invasive 
tumor core (Ehtesham et al.  2006  ) . Moreover, SDF-1 produced by the endothelium has been shown 
to stimulate U87 glioblastoma invasion  in vitro . Under these conditions, glioblastoma cells produce 
more MMP-9 and cathepsins (another class of proteases, see below  Sect. 7.4 ) (Kenig et al.  2010  ) , 
enzymes that promote glioma cell invasion by cleavage of ECM components as well as activation 
of pro-enzymes present in the extracellular space (Kobayashi et al.  1991 ; Mai et al.  2002  ) . The 
observations that inhibiting CXCR4, either by CXCR4-neutralizing antibodies, CXCR4-directed 
siRNA technology or AMD3100, a CXCR4-speci fi c inhibitor, impaired glioma cell invasion 
 in vitro , strongly supports a role for SDF-1 in the invasive behavior of glioma (Ehtesham et al. 
 2006 ; Hong et al.  2006  ) .   

    7.3   Signaling Mechanisms That Control Glioma Invasion 

    7.3.1   Integrins 

 Cell migration requires anchoring of the leading edge to the ECM and release of cell attachment at the 
rear (Ridley et al.  2003  ) . Integrins are heterodimeric transmembrane receptors, composed of  a  and  b  
subunits. There are 8  b  and 18  a  subunits, combinations of which determine substrate speci fi city 
(D’Abaco and Kaye  2007  ) . Integrins participate in bidirectional signaling across the plasma mem-
brane. Integrins can be stimulated to bind ligands by intracellular signaling (inside-out signaling) or 
become activated upon interaction with extracellular ligands (outside-in signaling). Conformational 
changes within integrins enable association with and activation of diverse cytoplasmic adaptor pro-
teins (Fagerholm et al.  2004 ; Hynes  2002  ) . Integrins lack catalytic activity, and recruitment of these 
adaptor proteins is thought to be regulated by phosphorylation of the integrin cytoplasmic tails 
(D’Abaco and Kaye  2007 ; Fagerholm et al.  2004  ) . 

 Integrins have been proposed to play a key role in glioma biology including cell migration (D’Abaco 
and Kaye  2007  ) . Many studies have shown overexpression of the  b 1 subunit in malignant gliomas in 
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comparison to normal brain tissue and  b 1-blocking antibodies decrease glioma cell migration and 
invasion  in vitro  (Paulus et al.  1993 ; Rooprai et al.  1999 ; Tysnes et al.  1996  ) . Experimental over-
expression of  a 6 subunit in U87 glioma cells bearing a high level of  b 1 subunits increases glioma cell 
migration and invasion  in vitro , enhances dissemination of glioma cells  in vivo  and the formation of 
in fi ltrative foci at the margin of tumors established in nude mice (Delamarre et al.  2009  ) . In addition, 
immunohistochemistry studies have demonstrated that  a v b 3 and  a v b 5 are overexpressed in both 
glioma cells and tumor vasculature and that their expression is correlated with tumor grade (Bello 
et al.  2001a ; Stupp and Ruegg  2007  ) . Interestingly, stimulation of human glioblastoma cells with 
either TGF- b 1 or TGF- b 2 leads to an increase of  a v b 3 at the cell surface and enhanced glioma 
cell migration (Platten et al.  2000  ) . TGF- b -dependent stimulation of glioblastoma cell migration 
was shown to be abrogated by echistatin (a 49 amino acid peptide that binds integrins and blocks 
downstream signaling) or an  a v b 3 neutralizing antibody (Platten et al.  2000  ) . 

  a v b 3 and  a v b 5 are the  fi rst integrins targeted to suppress tumor angiogenesis. Three classes of 
integrin inhibitors are under investigation: monoclonal antibodies targeting the extracellular domain 
of  a v b 3 (e.g. vitaxin, phase II clinical trials completed) (Stupp and Ruegg  2007 ; Tucker  2006  ) , syn-
thetic peptides containing an RGD sequence recognized by both  a v b 3 and  a v b 5 (e.g. cilengitide, 
phase II clinical trials completed) (Gilbert et al.  2012 ; Reardon et al.  2008 ; Tucker  2006  ) , and an RGD 
peptidomimetic antagonist of  a v b 3 (e.g. S247) (Abdollahi et al.  2005  ) . Clinical evidence shows mod-
est antitumor activity of cilengitide (Gilbert et al.  2012 ; Reardon et al.  2008  ) . However, as for other 
antiangiogenic drugs, the targeting of integrins may be most effective in combination with other thera-
peutic modalities, such as radiotherapy, especially as  a v b 3 expression in endothelial cells is increased 
by radiation (Abdollahi et al.  2005 ; Gilbert et al.  2012 ; Stupp and Ruegg  2007  ) .  

    7.3.2   Rho GTPases 

 Rho GTPases constitute a family of 22 members in humans and regulate a large number of the cellular 
functions, such as actin organization, cell migration, invasion (Burridge and Wennerberg  2004 ; 
Bustelo et al.  2007 ; Schmitz et al.  2000  ) , cell proliferation and survival (Croft and Olson  2006 ; Gomez 
del Pulgar et al.  2005  ) . They switch between the GTP-bound active state and the GDP-bound inactive 
state. The GTPase cycle is tightly controlled by three groups of regulators: guanine nucleotide 
exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide dissociation 
inhibitors (GDIs) (Rossman et al.  2005 ; Schmidt and Hall  2002  ) . Rho GTPases are activated by GEFs 
which promote exchange of GDP to GTP. Subsequently, GTPases are inactivated by interaction with 
GAPs, that stimulate intrinsic GTP hydrolysis (Moon and Zheng  2003  ) . RhoGDIs play a dual role in 
the regulation of Rho proteins (Garcia-Mata et al.  2011  ) . On the one hand, they inhibit spontaneous 
release of GDP, thus clamping GTPases in the inactive state, on the other, by binding to the prenyl 
groups of GTPases, they prevent association with and facilitate extraction of GTPases from mem-
branes. Interaction with additional proteins, called “GDI displacement factors” releases the GDI from 
the GTPase, thereby facilitating access to GEFs (Dransart et al.  2005  ) . 

 RhoA, Rac1 and Cdc 42 are the best characterized of the Rho GTPases (Heasman and Ridley  2008 ; 
Raftopoulou and Hall  2004  ) . Rac1 controls the formation of lamellipodia, which are  fl at, actin-rich 
membrane protrusions at the cell periphery. RhoA regulates actomyosin contractility, formation of 
focal adhesions and stress  fi bers, and retraction of the tail of the cell during cell migration. Cdc42 
regulates the formation of  fi lopodia (thin,  fi nger-like membrane protrusions) and is a key control ele-
ment in the regulation of cell polarization. 

 Rac proteins (Rac1, Rac2 and Rac3) are highly homologous, but differ in their tissue distribution 
(Heasman and Ridley  2008  ) . Rac1 is ubiquitously expressed, Rac2 is speci fi c for hematopoietic cells 
and Rac3 is abundantly expressed in neural tissues (Burridge and Wennerberg  2004  ) . Although no 
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signi fi cant change was observed in Rac1 mRNA expression levels across astrocytoma grades, in a 
large set of glioblastoma tumors, Rac1 mRNA was shown to be elevated in tumors of patients with 
shorter survival (Salhia et al.  2008  ) . Interestingly, immunohistochemical analysis revealed a strong 
increase in Rac1 protein expression with tumor grade (Salhia et al.  2008  ) . These  fi ndings are consis-
tent with an earlier proteomic study showing that Rac1 protein levels are increased in high-grade 
(85 %) versus low-grade (20 %) gliomas and correlate with poor survival (Iwadate et al.  2005  ) . Taken 
together, these data suggest that Rac1 is regulated at the translational and/or protein stability level. 
Notably, Rac1 has been shown to display marked plasma membrane localization in a fraction of glio-
blastoma tumor samples, but not in low grade astrocytomas (Salhia et al.  2008  ) . Plasma membrane 
localization of Rac1 re fl ects a high activation state, suggesting that this GTPase may contribute to the 
malignant behavior of glioblastomas. 

 siRNA-mediated depletion of Rac1 or Rac3 signi fi cantly decreases glioblastoma cell invasion in a 
Matrigel invasion assay (Chan et al.  2005  ) . Interestingly, in contrast to depletion of Rac1, Rac3 deple-
tion only slightly inhibits glioblastoma migration, implying that Rac1 and Rac3 may be involved in 
different mechanism that contribute to cell invasion (Chan et al.  2005  ) . Depletion of Rac1 also 
signi fi cantly inhibits glioblastoma cell invasion in  ex vivo  brain slices (Chuang et al.  2004  ) , underlin-
ing the importance of this GTPase in glioblastoma invasiveness. 

 There are a number of Rac effectors (proteins that bind to active Rac and relay its functions) that 
control cell migration and invasion (Burridge and Wennerberg  2004  ) , although their role in glioma 
invasion still largely remains to be characterized. The Rac effector synaptojanin 2 (Malecz et al. 
 2000  ) , a phosphatidylinositol 5-phosphatase, has been shown to regulate glioblastoma cell migration 
and invasion  in vitro . Synaptojanin 2 localizes to both invadopodia and lamellipodia and is thought to 
control the formation of these structures (Chuang et al.  2004  ) . 

 In addition to overexpression of Rho GTPases, aberrant expression or genetic alterations of 
upstream regulators has been detected in a variety of human cancer types (Gomez del Pulgar et al. 
 2005  ) . In particular, the Rho GEFs Ect2, Vav3, Trio and SWAP-70 display increased expression at the 
message level in brain tumors when compared to normal brain tissue and expression is correlated with 
poor patient survival (Salhia et al.  2008 ; Seol et al.  2009 ; Tu et al.  2010  ) . Notably, depletion of any of 
these GEFs signi fi cantly inhibits glioblastoma cell migration and invasion (Salhia et al.  2008 ; Seol 
et al.  2009  ) . 

 Dedicator of cytokinesis 180 (DOCK180) and engulfment and cell motility 1 (ELMO) form a 
bipartite GEF that activates Rac proteins (Cote and Vuori  2007 ; Lu and Ravichandran  2006  ) . Depletion 
of either ELMO1 or DOCK180 strongly reduces Rac1 activation and glioblastoma cell invasion 
(Jarzynka et al.  2007  ) . Interestingly, both DOCK180 and ELMO proteins display increased expres-
sion in the invading tumor rim compared to the tumor core of human glioma specimens. 

 An additional mechanism that could contribute to an increase in Rho GTPase activation levels in 
cancer is the downregulation of GAPs. One example in gliomas is the Rac GAP  b 2-chimaerin, which 
shows high levels in normal brain and low-grade astrocytomas in comparison to malignant gliomas 
(Yuan et al.  1995  ) . Thus, loss of  b 2-chimaerin may contribute to the increase in Rac activation levels 
in glioblastoma. 

 There are two major effector proteins of RhoA, RhoB and RhoC GTPases: mammalian homolog 
of Drosophila diaphanous (mDia) and Rho-associated coiled-coil forming kinase (ROCK) (Narumiya 
et al.  2009 ; Wheeler and Ridley  2004  ) . mDia belongs to the formin protein family and catalyzes actin 
nucleation and polymerization. mDia depletion in glioma cells interferes with microtubule stabiliza-
tion, cell polarization, focal adhesion turnover and results in attenuated cell migration (Yamana et al. 
 2006  ) . Analysis of the underlying mechanism revealed that mDia controls actin-dependent c-Src 
recruitment to focal adhesions, phosphorylation of the adaptor protein Crk-associated substrate 
(p130 Cas ), Rac activation and subsequent focal adhesion disassembly. mDia also promotes the accu-
mulation of Cdc42 and adenomatous polyposis coli (APC) at the front of the cell, which may provide 
a mechanism for the role of mDia in cell polarization. 
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 ROCK phosphorylates and inactivates myosin phosphatase and directly phosphorylates myosin 
light chain. These two actions of ROCK stimulate actomyosin contractility. ROCK also phosphorylates 
and activates LIM kinase that in turn phosphorylates and inactivates the actin  fi lament severing 
protein co fi lin. As mentioned above, ROCK has been implicated in nuclear squeezing and glioblastoma 
cell invasion in  ex vivo  brain slices (Beadle et al.  2008  ) . ROCK is also necessary for glioma cell 
migration along myelinated retinal axons  in vitro , where ROCK inhibition was shown to result in 
shorter lamellipodia and non-polarized extension of  fi lopodia (Oellers et al.  2009  ) . In contrast, 
inhibition of ROCK has been shown to increase the migratory behavior of glioma cells under less 
physiological conditions, such as a two-dimensional cell migration in a radial migration assay and a 
transwell Matrigel invasion assay (Salhia et al.  2005  ) , underlining the importance of physiologically 
relevant experimental conditions to assess the role of actomyosin contractility in cell invasion.  

    7.3.3   PI3K and Phospholipid Signaling 

 Phosphatidylinositol 3-kinases are lipid kinases that phosphorylate the 3 position of the inositol ring 
of phosphatidylinositols and phosphoinositides (Endersby and Baker  2008  ) . Class IA PI3Ks are 
heterodimers composed of a regulatory subunit ( fi ve isoforms encoded by three genes p85 a , p55 a , 
p50 a  ( PIK3R1 ), p85 b  ( PIKR2 ) and p55 g  ( PIKR3 )) and a catalytic subunit (p110 a , p110 b  and p110 d ). 
The three catalytic subunit isoforms are encoded by the  PIK3CA ,  PIK3CB  and  PIK3CD  genes 
(Furnari et al.  2007  ) . 

 PI3Ks are regulated through the inhibitory effect of the regulatory subunit on the catalytic subunit 
(Yu et al.  1998  ) . Upon direct binding of the regulatory subunit to phosphorylated receptor tyrosine 
kinases (RTKs), including c-Met, VEGFR and PDGFR (Escobedo et al.  1991 ; Igarashi et al.  1998 ; 
Ponzetto et al.  1993  ) , p110 inhibition is released (Bader et al.  2005  ) . 

 PI3K is also regulated by Src family kinases. An interesting example is that binding of CD95L 
(also known as FasL) to CD95 on glioblastoma cells recruits Yes (a member of Src kinase family) to 
the receptor. Yes, in turn, recruits the p85 subunit of PI3K leading to PI3K activation and enhanced 
glioblastoma cells migration  in vitro . Interestingly, neutralization of CD95L in a murine intracranial 
model of GBM as well as treatment of C6 glioma cells with FasL Interfering Protein (FIP) reduces 
the number of invading cells (Kleber et al.  2008 ; Wisniewski et al.  2010  ) . It is remarkable that 
CD95L, which promotes apoptosis in many cells, also stimulates their invasiveness. Notably, in 
general, glioblastoma tumors are resistant to CD95-induced apoptosis and even induce CD95L 
expression in the surrounding tissue. These  fi ndings suggest that targeting the CD95L/CD95 system 
may be bene fi cial in the treatment of glioblastoma tumors, as no CD95 is expressed in the healthy 
brain (Kleber et al.  2008  ) . 

 Class I PI3Ks preferentially convert phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 
2
 ) to phos-

phatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P 
3
 ) (Martelli et al.  2010  ) . The formation of PI(3,4,5)P 

3
  

and PI(3,4)P 
2
  triggers the recruitment of proteins with pleckstrin homology (PH) domains to the 

plasma membrane, including PI3K-dependent kinase 1 (PDK1), Akt (Stambolic and Woodgett  2006  )  
and GEFs (Fleming et al.  2000 ; Shinohara et al.  2002  ) . A negative regulator of PI3K signaling is 
phosphatase and tensin homolog deleted on chromosome ten (PTEN). PTEN-mediated hydrolysis of 
P(3,4,5)P 

3
  (Stambolic et al.  1998  )  counteracts PI3K-dependent stimulation of many cellular functions 

including cell survival, proliferation and invasion. 
 Deregulation of PI3K function leads to tumorigenesis (Jaiswal et al.  2009  ) . This observation is 

important in glioma biology as RTKs are often overexpressed or mutated in gliomas (Kapoor and 
O’Rourke  2003 ; Parsons et al.  2008 ; TCGA  2008  ) . PTEN is also extensively deregulated in glioblas-
tomas. PTEN mutations occur in 25 % of patients and loss of 10q, which includes PTEN, occurs in 
70 % of patients (Endersby and Baker  2008  ) . Epigenetic gene silencing by methylation of the PTEN 
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promoter also has been reported (Baeza et al.  2003  ) . Notably, GBM patients with inactivated PTEN 
have a shorter survival time (Ermoian et al.  2002  ) . 

 Additionaly, PI3K signaling is deregulated in glioblastomas as a consequence of genetic aberrations 
within the  PI3K  gene. Mutations in  PIK3CA  have been described in primary human glioblastomas 
from both adult and pediatric patients with a frequency between 7 and 20 % (Gallia et al.  2006 ; 
Parsons et al.  2008 ; TCGA  2008  ) . Several of these mutations have been shown to be kinase activating 
in other human malignancies. Interestingly, mutations in the  PIK3R1  gene have been found in 8–10 % 
of studied glioblastomas (Parsons et al.  2008 ; TCGA  2008  ) . The clustering of these mutations around 
residues that serve as contact points with p110 strongly suggest that these mutations may relieve the 
inhibitory effect of p85 a  on p110 a , thereby rendering PI3K constitutively active (TCGA  2008  ) . 

 Importantly, a chemical inhibitor of PI3K (PX-866) has been shown to suppress glioblastoma cells 
invasiveness and VEGF secretion and diminished tumor growth, thereby prolonging animal survival 
(Koul et al.  2010  ) . Thus, PI3K inhibitors may be bene fi cial for patients who overexpress the PI3K or 
carry an activating mutation in  PIK3CA  or  PIK3R1  genes.  

    7.3.4   Akt Kinase 

 The Akt family of kinases comprises Akt1 (PKB a ), Akt2 (PKB b ) and Akt3 (PKB g ) that are encoded 
by three independent genes. All isoforms of Akt kinases are activated in a PI3K-dependent manner 
(Matheny and Adamo  2009  ) . PI(3,4,5)P 

3
  and PI(3,4)P 

2
  recruit Akt from the cytoplasm to the plasma 

membrane via the N-terminal PH domain of the kinase. Membrane recruitment of Akt results in con-
formational changes that permit its subsequent phosphorylation and full activation (Franke et al.  1995 ; 
King et al.  1997 ; Matheny and Adamo  2009 ; Milburn et al.  2003  ) . First, mammalian target of rapamy-
cin complex 2 (mTORC2) phosphorylates Ser-473 in the activation loop of Akt (Huang and Manning 
 2009 ; Partovian et al.  2008 ; Sarbassov et al.  2005  ) , that facilitates subsequent PDK1-dependent phos-
phorylation of Thr-308 (Wick et al.  2000  ) . mTOR participates in two signaling complexes, mTORC1 
and mTORC2. 

 Interestingly, Akt signaling is governed by negative feedback loop interactions. Akt activates 
mTORC1 by phosphorylation and inactivation of tuberus sclerosis 2 (TSC2). mTORC1 in turn stimu-
lates the activity p70S6 kinase (p70S6K), that can inhibit Akt by a dual mechanism. First, p70S6K 
phosphorylates insulin receptor substrate 1 (IRS-1), leading to its proteasomal degradation. IRS-1 is 
an adaptor protein of the insulin receptor and the insulin-like growth factor-1 receptor (IGF-1R), both 
of which are major activators of the PI3K/Akt pathway. Thus, p70S6K-mediated inhibition of IRS-1 
results in inhibition of Akt signaling (Easton et al.  2006 ; Martelli et al.  2010  ) . A second negative 
feedback loop involves p70S6K-stimulated phosphorylation of Rictor, the core component of 
mTORC2, which negatively regulates mTORC2 dependent activation of Akt (Dibble et al.  2009  ) . 
Thus, inhibition of mTOR can enhance Akt kinase activity (O’Reilly et al.  2006  ) , which could explain 
the moderate antitumor activity of mTOR inhibitors (Chang et al.  2005 ; Galanis et al.  2005  ) . Figure  7.1  
shows model of Akt activation and mTORC1-dependent negative feedback mechanisms.  

 The kinase activity of Akt may be additionally increased via direct interaction with phosphati-
dylinositol 3-kinase enhancer A (PIKE-A), a protein that is ampli fi ed in variety of human cancer cells, 
including glioblastomas. PIKE-A preferentially binds to activated Akt, and siRNA-mediated deple-
tion of PIKE-A diminishes Akt phosphorylation (Ahn et al.  2004  ) . 

 Akt activation is terminated via dephosphorylation by protein phosphatase 2A (PP2A) and PH 
domain leucine-rich repeat protein phosphatase (PHLPP a ) (Brazil and Hemmings  2001 ; Fayard et al. 
 2005 ; Gao et al.  2005 ; Meier et al.  1998 ; Millward et al.  1999  ) . Interestingly, expression of PP2A 
regulatory subunit A a  has been shown to be reduced in a signi fi cant fraction of both glioblastomas 
and oligodendrogliomas, thereby deregulating this phosphatase (Colella et al.  2001  ) . 
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 Initially, Akt kinase was known primarily for its role in regulation of cell survival and cell cycle 
progression (Brunet et al.  1999 ; Datta et al.  1997 ; del Peso et al.  1997 ; Diehl et al.  1998 ; Kennedy 
et al.  1999 ; Li et al.  2002 ; Shin et al.  2002 ; Viglietto et al.  2002 ; Zhou et al.  2001  ) . However, evidence 
has accumulated that Akt plays a key role in regulation of the invasive glioma phenotype (Molina 
et al.  2010 ; Pu et al.  2004  ) . Indeed, invasive glioblastoma cells have a higher level of phosphorylated 
Akt in comparison with cells isolated from the tumor core in a model of human invasive GBM 
established in the mouse brain (Molina et al.  2010  ) . 

 The molecular mechanisms that mediate Akt-stimulated cell migration are still being explored 
(Stambolic and Woodgett  2006  ) . Phosphorylated Akt localizes to lamellipodia of moving cells, 

  Fig. 7.1    Model of Akt kinase activation and mTORC1-dependent negative feedback mechanisms. Ligand binding 
induces IGF-1R-dependent association of IRS-1 with PI3K, thereby stimulating production of PI(3,4,5)P 

3
  by PI3K. 

PI(3,4,5)P 
3
  recruits Akt and PDK1. Subsequently, Akt is phosphorylated by mTORC2 and PDK1, leading to full 

activation. Akt phosphorylates and inhibits TSC2, leading to Rheb- dependent activation of mTOR. In turn, mTORC1 
phosphorylates S6K1 kinase and 4EBP1, stimulating protein synthesis. Activation of mTORC1 stimulates two 
parallel negative-feedback loops ( red pathways ) that inhibit Akt. S6K-1 phosphorylates IRS-1 ( red line ) and directs 
IRS-1 to proteasomal degradation ( red dashed arrow ). A second negative loop was proposed where S6K1 phosphorylates 
the Rictor subunit of mTORC2, thereby promoting 14-3-3 binding to Rictor. S6K-1-dependent phosphorylation 
of Rictor negatively regulates the ability of mTORC2 to phosphorylate Akt. Akt activation is terminated via 
dephosphorylation by PP2A       
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where it colocalizes with Rac and Cdc42. Constitutive activation of Rac1 or Cdc42 increases Akt 
phosphorylation in  fi broblasts, and inhibition of Akt inhibits cell migration stimulated by Rac or 
Cdc42 (Higuchi et al.  2001  ) , thus Akt may be activated via GTPase-dependent PI3K activation (Murga 
et al.  2002  ) . Akt can stimulate cell migration in a number of ways (Stambolic and Woodgett  2006  ) , 
including the role of p70S6K in actin reorganization (Qian et al.  2004  )  and direct phosphorylation of 
Girdin/Akt phosphorylation enhancer (APE) protein (Enomoto et al.  2005 ; Zhang et al.  2009  ) . Girdin 
can crosslink actin  fi laments and anchor cortical actin to the plasma membrane. Phosphorylated 
Girdin relocalizes to the leading edge of moving cells and promotes short-branched actin  fi laments 
(Enomoto et al.  2005  ) . 

 A comprehensive study has evaluated the role of all three Akt isoforms in gliomagenesis using a 
model system driven by common glioma abnormalities: loss of function of PTEN and p53 protein and 
expression of EGFRvIII receptor in primary murine astrocytes (PMA). The results showed that Akt3 
regulates anchorage-independent growth of transformed astrocytes and human glioma cells. 
Additionally Akt3, but not Akt1 or Akt2, knockdown reduces the ability of PMA to invade matrigel 
(Endersby et al.  2011  ) . Previous studies discussed the critical role of Akt2 in regulation of glioma 
invasion (Pu et al.  2004 ; Zhang et al.  2009,   2010  ) . Thus, depending on the glioma model used, the 
speci fi c functions of the various Akt isoforms may vary. It also remains unclear which Akt isoform 
plays a major role downstream of PI3K in gliomas and whether the respective isoforms interact with 
distinct binding partners depending on the cell setting. 

 The expression of Akt1 is similar in gliomas and normal control tissue (Mure et al.  2010  ) . Akt3 
mRNA and protein decrease with increasing grade of malignancy (Mure et al.  2010  ) , contrary to Akt2 
expression that increases with tumor grade (Mure et al.  2010 ; Wang et al.  2010 ; Zhang et al.  2010  ) . 
Although Akt3 expression levels in malignant glioma are signi fi cantly reduced compared to normal 
tissue, its kinase activity is equal to that of Akt2, and approximately 2-fold higher than that of Akt1 
(Mure et al.  2010  ) , thereby compensating for its decrease in expression.   

    7.4   Proteases 

 ECM proteins as well as parenchymal cells are natural obstacles for migrating tumor cells. In order to 
invade brain tissue, glioma cells detach from the tumor mass and reorganize the ECM by complex 
proteolytic mechanisms and expression of ectopic ECM components (Nakada et al.  2007  ) . 
Glioblastomas overexpress a number of proteases, including uPA, matrix metalloproteinases (MMPs), 
ADAMs and cathepsins (Fillmore et al.  2001 ; Fukuda et al.  2005 ; Nakada et al.  1999 ; Pagenstecher 
et al.  2001 ; Rempel et al.  1994 ; Sivaparvathi et al.  1996a,   b,   c ; Yamamoto et al.  1994 ; Zhao et al. 
 2008  ) . 

 The regulation of proteolytic activity is complex and often involves cross-talk between different 
classes of proteases. One example is uPA, a serine protease that is synthesized as an inactive 
propeptide – zymogen (known as pro-uPA), which binds to the uPA receptor (uPAR) on the plasma 
membrane and becomes cleaved by active plasmin. uPA catalyses the conversion of nonactive 
plasminogen into plasmin, thus establishing a positive feedback loop. Notably, binding of uPA to its 
receptor provides localized proteolytic activity (Pillay et al.  2007  ) . uPa directly cleaves and activates 
pro-MMP-9 in glioblastomas (Zhao et al.  2008  )  and experimental depletion of both uPA and uPAR 
from glioblastoma cells suppresses invasion  in vitro,  intracerebral tumor formation in nude mice as 
well as growth of subcutaneously pre-established tumors (Gondi et al.  2003  ) . In summary, the uPA-
uPAR axis controls many signaling pathways that contribute to the malignant behavior of glioblastoma. 
Importantly, uPA expression and activity are elevated in anaplastic astrocytomas (AA) and GBMs in 
comparison to non-neoplastic brain (NB) or low grade glioma (LGG) (Landau et al.  1994 ; Yamamoto 
et al.  1994  ) . Thus, targeting these proteases may be therapeutically bene fi cial. 
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 Interdependent activation of proteases also occurs in the family of matrix metalloproteinases, 
which comprises 25 enzymes that bind Zn 2+  ions in their active site. Based on substrate speci fi city, 
structure and subcellular localization matrix metalloproteinases are grouped into collagenases, gelati-
nases, stromelysins and membrane metalloproteinases. Like uPA, metalloproteinases are synthesized 
in cells as zymogens that have to be proteolytically processed to become fully active. The number of 
active enzymes in the cell is regulated on the level of gene expression, protein secretion and activation 
or inhibition by tissue inhibitors of metalloproteinases (TIMPs) (Ra and Parks  2007  ) . 

 MT1-MMP is a key metalloproteinase that contains a transmembrane sequence and cytoplasmic 
domain (Ra and Parks  2007  ) . The transmembrane/cytoplasmic domain is responsible for localizing 
the enzyme to invadopodia (Nakahara et al.  1997  ) , actin-rich structures to which most proteolytic 
activity of invading cells is localized (Frittoli et al.  2011 ; Ridley  2011 ; Symons  2008  ) . The MT1-
MMP cytoplasmic domain is also necessary for dynamin-dependent removal of the enzyme from the 
cell surface via clathrin-mediated endocytosis (Jiang et al.  2001  ) , an additional mechanism of 
MT-MMP-1 regulation. 

 Processing of pro-MMP-2 involves the formation of a MT1-MMP/TIMP-2 complex at the cell 
surface (Zucker et al.  1998  ) . This complex binds pro-MMP-2 via interactions between C-terminal of 
TIMP-2 and the hemopexin C-domain of pro-MMP-2 (Overall et al.  2000  ) . Subsequently, an addi-
tional molecule of MT1-MMP cleaves and activates MMP-2 (Fillmore et al.  2001 ; Ra and Parks 
 2007  )  (Fig.  7.2 ). This mechanism of activation requires a proper balance in the expression level of 
pro-MMP-2, TIMP-2 and MT1-MMP. In line with this mechanism is the  fi nding that CD95L (FasL) 
stimulates MMP-2 activity in rat glioma cells via NF- k B-driven transcription of TIMP-2. Inhibition 
of TIMP-2 expression decrease overall MMP-2 activity and leads to accumulation of inactive pro-
MMP-2 (Wisniewski et al.  2010  ) . Alternative mechanisms of MMP-2 activation have also been sug-
gested (Mazzieri et al.  1997 ; Monea et al.  2002 ; Morrison et al.  2001  ) .  

 Interestingly, MMP-2 is subject to autocatalytic processing, resulting in the formation of the 
hemopexin fragment (PEX). As for MMP-2 itself, the level of PEX increases with tumor grade (Bello 
et al.  2001b  ) . Paradoxically, PEX inhibits glioblastoma cell migration, invasion and proliferation and 
induces apoptosis. It also strongly inhibits angiogenesis, most likely, through its binding to  a v b 3. 
Intraperitoneal administration of PEX inhibits tumor growth by 99 % in both subcutaneous and intrac-
ranial human glioma xenografts mouse models, with no sign of toxicity (Bello et al.  2001b  ) , suggest-
ing that PEX is a promising therapeutic candidate. The anti-tumor and anti-angiogenic effects of PEX 
are reminiscent to those of endostatin (Cao  2001  )  and suggest that the effects of PEX on the malignant 
behavior of glioblastoma is overridden by powerful proinvasive and proangiogenic factors. 

 MT1-MMP, MMP-2 and MMP-9 are three major MMPs overexpressed in glioblastoma in com-
parison with non-neoplastic brain (Fillmore et al.  2001 ; Nakada et al.  1999 ; Pagenstecher et al.  2001 ; 
Zhang et al.  2010  ) . Upregulation of expression of those MMPs in HGG can be explained, at least in 
part, by hyperactivation of the PI3K/Akt signaling pathway in those tumors. In line with this, inhibi-
tion of PI3K or Akt reduces MMP expression in glioblastoma cells (Kwiatkowska et al.  2011  ) . 
In addition, downregulation of Akt-dependent MMPs production is associated with inhibition of 
glioma cell invasion  in vitro  and a reduction in the number of satellite tumors and tumor volume in an 
 in vivo  model of glioma (Pu et al.  2004 ; Zhang et al.  2009 ;  2010  ) . 

 Proteases also regulate glioma cell invasion by promoting receptor shedding from the plasma 
membrane (Nagano et al.  2004 ; Okamoto et al.  1999a,   b ; Yang et al.  2011  ) . Notably, ADAM-10, 
which belongs to the multidomain membrane-anchored protein family called adamalysins, catalyses 
proteolysis of the L1 receptor. Notably, increased surface expression of ADAM-10 on migrating 
glioblastoma cells correlates with loss of surface L1 (Yang et al.  2011  ) . Experimental attenuation 
of L1 expression in glioblastoma cells reduces migration velocity  in vitro  and suppresses invasion 
of tumor cells into chick embryonic brain. Migration can be restored upon adding L1 ectodomain to 
migrating cells (Yang et al.  2011  ) . In addition, ADAM-10 and ADAM-17, in response to different 
stimuli, cleave the CD44 hyaluronan receptor. Depletion of either adamalysin suppresses CD44 
ectodomain shedding and strongly inhibits cancer cell migration on hyaluronan (Nagano et al.  2004  ) . 
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Moreover, overexpression of ADAM-17 in U87 glioma cells results in increased invasion into Matrigel 
and tumor growth, whereas inhibition of ADAM-17 reduces tumor growth. Interestingly, speci fi c 
ablation of ADAM-17 decreases activation of EGFR/PI3K/Akt pathway, probably by decreasing 
TGF a  shedding (Zheng et al.  2011  ) . Thus, ADAM proteases stimulate cell invasion by multiple 
mechanisms, including ECM degradation, receptor shedding and growth factor activation.  

    7.5   Conclusions and Future Directions 

 Extensive  in vitro  and  in vivo  studies have revealed the complexity of signaling mechanism that 
drive dissemination of malignant glioma cells into surrounding brain tissue. The hope is that better 
understanding of critical signaling elements will help to identify molecular targets for therapeutic 

  Fig. 7.2    Mechanism of MMP-2 activation. Processing of pro-MMP-2 requires formation of a MT1-MMP and TIMP-2 
complex ( 1 – 2 ). This complex functions as a receptor for binding of pro-MMP-2 ( 3 ). Subsequently, an additional 
MT1-MMP molecule cleaves pro-MMP-2 ( 4 ). Active MMP-2 is released into the intercellular space ( 5 ). Modi fi ed from 
Brauer  2006        
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intervention. In addition, we anticipate that speci fi c targeting of the invasive behavior of glioblastoma 
will have limited therapeutic bene fi t and that anti-invasion strategies will have to be combined with 
additional therapeutic modalities, such as chemo- or radio-therapy. The discovery of genetically distinct 
subclasses within HGG patients is an important step toward introducing personalized therapies 
(Huse et al.  2011  ) . Thus, we anticipate that speci fi c combination regimens will be introduced to treat 
respective HGG subgroups.      
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