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  Abstract   Among the pathological alterations that give tumor cells invasive potential, purinergic sig-
naling is emerging as an important component. Studies performed in  in vitro ,  in vivo  and  ex vivo  
glioma models indicate that alterations in the purinergic signaling are involved in the progression of 
these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in cul-
ture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not 
evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP 
for glioma pathobiology was con fi rmed by the reduction in glioma tumor size by apyrase, which 
degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an 
ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor 
growth depends on the nucleotide produced by its degradation. The participation of purinergic recep-
tors on glioma progression, particularly P2X 

7
 , is involved in the resistance to ATP-induced cell death. 

Although more studies are necessary, the purinergic signaling, including ectonucleotidases and recep-
tors, may be considered as future target for glioma pharmacological or gene therapy.  

  Keywords   ATP  •  Adenosine  •  Gliomas  •  Ectonucleotidases  •  Animal models of gliomas  •  E-NTPDases 
(ectonucleoside triphosphate diphosphohydrolase)  •  E-NPPs (ectonucleoside pyrophosphatase/
phosphodiesterase)  •  Ecto-5 ¢ -nucleotidase/CD73  •  P2X 

7
   •  Cancer stem cells  
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  Abbreviations  

  ADA    Adenosine deaminase   
  ADP    Adenosine diphosphate   
  Akt    Protein kinase B   
  ALP    Alkaline phosphatase   
  AMP    Adenosine monophosphate   
  APCP     a , b -Methylene ADP   
  Apyrase    Adenyl-pyrophosphatase   
  ATP    Adenosine triphosphate   
  BBB    Brain blood barrier   
  BBG    Brilliant Blue G   
  BzATP    2,3-(Benzoyl-4-benzoyl)-ATP   
  CDK    Cyclin-dependent kinase   
  CDKN2A (Ink4a/ARF)    Cyclin-dependent kinase inhibitor 2A   
  CSCs    Cancer stem cell   
  ECM    Extracellular matrix   
  Ecto-5 ¢ -NT/CD73    Ecto-5 ¢ -nucleotidase   
  EGF    Epidermal growth factor   
  EGFR    Epidermal growth factor receptor   
  E-NPP    Ectonucleoside pyrophosphatase/phosphodiesterase   
  E-NTPDase    Ectonucleoside triphosphate diphosphohydrolase   
  ERBB2    Human epidermal growth factor receptor 2   
  ERK    Extracellular signal-regulated kinases   
  FGF    Fibroblast growth factor   
  IL-1 b     Interleukin 1 b    
  IL-6    Interleukin 6   
  KO    Knockout   
  MDM2    Murine double minute 2   
  MET    NF1, neuro fi bromatosis 1   
  MMP-9    Metalloproteinase-9   
  NPCs    Neural precursor cell   
  NSC    Neural stem cell   
  OPC    Oligodendrocyte precursor cell   
  PDGF    Platelet-derived growth factor   
  PI3K    Phosphatidylinositol 3-kinase   
  PTEN    Phosphatase and tensin homolog   
  Ras/MAPK    Ras/Mitogen activated protein kinase   
  Ras-GAP    Ras-GTPase activating protein   
  NF1    Neuro fi brimatosis 1   
  RB1    Retinoblastoma   
  CNS    Central nervous system   
  SVZ    Subventricular zone   
  TNF- a     Tumor necrosis factor       
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    5.1   Introduction 

    5.1.1   Molecular and Cellular Origins of Gliomas 

 Two questions are central about the origin of a given cancer: What are the genetic alterations behind 
formation of this cancer? And in which cells do these alterations  fi nd the cellular environment to 
strive? Both questions are obviously very dif fi cult to answer and, as in all complex illnesses, there is 
a wide range of possible answers. This is even more true for cancer, in which every new cancer has its 
own evolutionary history, but which is constrained by the cellular repertoire and the microenvironment 
of the tissue in which the cancer develops. 

 Several landmark papers appeared in the last years aiming at these dif fi cult questions regarding 
gliomagenesis and now there is a good body of evidence for the most frequent molecular alterations 
observed in gliomas and also some very convincing evidence on the cells that give rise to gliomas. 

 As suggested by the multitude of familial cancers, even though the mutation in these cases occurs 
in all cells, only a few cells eventually progress to form a tumor. Therefore, the cell of origin of muta-
tion was in an ancestor of the af fl icted patient, but the cell of origin of the tumor is a cell in the patient. 
Although in non-familial cancers the mutation may occur in the cell of origin, this is not necessarily 
the case. 

 Starting at the end of the 1990s, several studies aimed at identifying the glioma cell of origin, 
which was based on the expression of oncogenes under the control of promoters supposedly speci fi c 
for a given set of cells (Visvader  2011  ) . Despite the leakiness of these promoters, the picture that 
emerged was that glioma cell origin is stem cells, but the exact nature of these stem cells was not clear. 
Recently, using a mosaic analysis with double markers, Liu et al.  (  2011  )  pinpointed the cell of origin 
as being the oligodendrocyte precursor cell (OPC), at least in a murine model in which gliomas were 
induced by deletion of p53 and activation of the Ras pathway by deletion of neuro fi bromatosis 
1 (NF1). Interestingly, when these alterations were done in neural stem cell (NSC), tumors also arouse, 
but these were restricted to the OPCs formed from the NSCs. In this case, a multitude of other cells 
harboring the genetic alterations were formed by the NSCs, but did not produce tumors. This created 
the concept of cellular environment that allows the development of tumors, clearly differentiating the 
cell of origin of glioma (OPC), from the cell of mutation, which can potentially be any cell that can 
give rise to OPC, or OPC itself. 

 A large analysis of the molecular alterations that drive gliomagenesis revealed that the activation 
of the Ras/MAPKs and PI3K/Akt pathways, together with the inactivation of p53 are the most common 
events associated with gliomas. 

 Oncogenic signals are centered on the activation of Ras/MAPKs and PI3K/Akt, which are medi-
ated by activating genetic alterations in the growth factor receptors EGFR, ERBB2, PDGFRA and 
MET. Ras activation also occurs through deletion or mutation in the Ras-GAP NF1, while PI3K/Akt 
activation occurs mainly through deletion and mutation in PTEN, although direct mutations in PI3K 
was also observed (TCGA  2008  ) . 

 Among the tumor suppressor pathways inactivated in gliomas, the most prevalent were inactivation 
of p53, either directly, or through activation of MDM2 or deletion or mutation on CDKN2A (Ink4a/
ARF) and inactivation of the CDK inhibitors CDKN2A, 2B and 2C, together with deletion of RB 
(TCGA  2008  ) . It is important to stress out, however, that these are statistical analysis of the most 
prominent genetic alterations, and, tumors may arise with genetic alterations other than the one 
described above.  
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    5.1.2   Glioma Cancer Stem Cells (CSCs) 

 Since the  fi rst histological observation of gliomas, the cytological variability was evident, but only in 
the last 10 years or so the concept of cancer stem cells was clearly de fi ned and the role of this subtype 
of cells has been widely studied. 

 The  fi rst identi fi cation of glioma CSCs was done by the group of Peter Dirks, which showed that 
glioma cells expressing CD133 are much more tumorigenic in mice than glioma cell not expressing 
this cell surface marker (Singh et al.  2003,   2004  ) . Further evidence for the stem like nature of these 
cells came with the observations that these cells can give rise to functional tumor vasculature, further 
increasing the complex heterogeneity of glioma tumors (Ricci-Vitiani et al.  2010 ; Wang et al.  2010  ) . 

 The importance of CSCs in cancer biology predicts that elimination of this subpopulation of cells, 
either through induction of cell death or through differentiation should bring a considerable therapeu-
tic bene fi t. Data from animal models suggest that elimination of CSCs (Vlashi et al.  2009  )  or the CSC 
derived endothelial cells of the tumor vasculature (Ricci-Vitiani et al.  2010  )  is a promising therapeutic 
strategy. Unfortunately, CSCs are more resistant to radiotherapy due to higher expression of DNA 
repair enzymes (Bao et al.  2006  ) . On the other hand, chemotherapeutic agents that present the best 
results in gliomas in humans, such as temozolomide, seems to reduce the proportion of CSCs in the 
tumors, suggesting that this may be part of the mechanism of action (Beier et al.  2008  ) .  

    5.1.3   Tumor Microenvironment – Key for Understanding 
and Targeting Gliomas 

 A set of genetic alterations in a cell does not guarantee the development of a tumor. Interplay with the 
tissue microenvironment is a fundamental part of the process of tumorigenesis. Besides being able to 
form their own blood vessels through differentiation of their CSCs, gliomas also show complex interac-
tions with their neighbor cells and even with the organism. In a breakthrough work, Skog et al.  (  2008  )  
studied the microvesicles liberated by gliomas in culture and found that these microvesicles contain a 
set of mRNA enriched in pro-angiogenic genes and that these microvesicles can “transfect” cells. Thus, 
liberation of microvesicle protected mRNA allows the cancer cells to contribute to the pool of mRNA 
of their neighbor cells altering their behavior to favor tumor growth. Interestingly, these microvesicles 
could be observed in the circulations of patients with gliomas, indicating diagnostic potential. 

 Among the molecules that play important roles in the interplay of gliomas with the microenviron-
ment is glutamate. This molecule, well established as an excitatory aminoacid that is one of the main 
culprits of neurotoxicity, is secreted by gliomas in rodent models as well as in patients (Buckingham 
et al.  2011 ; Marcus et al.  2010 ; Takano et al.  2001 ; Ye and Sontheimer  1999  ) . 

 A recent clinical study with glioma patients using microdialysis technique, found 100-fold higher 
glutamate concentrations in the tumor resection margin, where the subpopulation of invasive cells 
is concentrated (Berens and Giese  1999  ) , when compared to the normal peritumoral cortex tissue 
(Marcus et al.  2010  ) . It has been hypothesized that this peritumoral increasing concentration of 
glutamate is responsible for the seizures and tumor associated epilepsy, presented by glioma patients 
as an early and recurrent symptom. The hyper-excitability and epileptic activity of neurons at the 
peritumoral regions was attributed to glutamate release by gliomas cells via the system x 

c-
 cysteine-

glutamate transporter (Buckingham et al.  2011  ) . 
 Glioma tumors that release glutamate have a substantial growth advantage when compared with 

those that do not secret this molecule. The role of glutamate is reinforced by the signi fi cantly attenu-
ation on tumor growth by the administration of the NMDA receptor antagonist MK801 (dizocilpine), 
 in vivo , but not  in vitro , con fi rming the microenvironment rather than cell autonomous nature of the 
action of glutamate (Takano et al.  2001  ) . 
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 Taken together, these  fi ndings point to a model where the glutamate released by gliomas affect the 
peritumoral microenvironment, causing peritumoral seizures and facilitating the tumor progression 
by damaging normal tissue. Nevertheless the glutamate by itself can not completely explain how the 
growing tumor mass causes neuronal cell death along the growing tumor margins. Among the signaling 
pathways that could synergistically act with glutamate, the purinergic system has emerged as an 
important candidate.   

    5.2   Purinergic Signaling in Gliomas 

 As would be expected for cancer cells, different gliomas express different sets of purinergic receptors 
(Table  5.1 ), and only for some their role in glioma biology was studied. As commented at the introduc-
tion of this chapter, gliomas originate from oligodendroglial precursor cells (OPCs) and a comparison 
of the receptors expressed by these cells with several gliomas may help pinpointing the involvement 
of speci fi c receptors in the OPC to glioma transformation.  

 From the initial studies of our group we noticed that glioma cells respond in diverse ways to ATP 
and other purinoceptor agonists and antagonists. ATP and adenosine induce proliferation of several 
human glioma cell lines such as U138MG, U87MG and U251MG (Morrone et al.  2003  ) . In U138MG 
cells, the proliferation stimulus was also observed with ADP, UTP, inosine and guanosine treatment 
suggesting the involvement of the subtypes P2Y 

4
  and A 

3
  in this response. Interestingly, ATP and 

   Table 5.1    Expression of purinergic receptors in gliomas and glial cells   

 Receptor  Cells expressing  Receptor  Cells expressing 

  A  
 1 
   OPC (r), Oligo (r), Astrocytes (r),   P2Y  

 13 
   Astrocytes (r), C6 (r), U138MG (h), U251MG (h) 

 C6 (r), U251MG (h) 
  A  

 2A 
   OPC (r), Oligo (r), 

 Astrocytes (r), 
 C6 (r), GL261 (m), U87MG (h), 

U138MG (h), U251MG (h) 

  P2Y  
 14 

   Astrocytes (r), 
 C6 (r), GL261 (m), U138MG (h) 

  A  
 2B 

   OPC (r), Oligo (r),   P2X  
 1 
   OPC (r), Astrocytes (r), 

 Astrocytes (r),  GL261 (m) 
 U87MG (h), U138MG (h), U251MG (h) 

  A  
 3 
   OPC (r), Oligo (r),   P2X  

 2 
   OPC (r), Astrocytes (r) 

 Astrocytes (r), C6 (r) 
  P2Y  

 1 
   OPC (r), Astrocytes (r),   P2X  

 3 
   OPC (r), Astrocytes (r), 

 C6 (r), GL261 (m)  C6 (r), GL261 (m) 
  P2Y  

 2 
   OPC (r), Astrocytes (r), 

 C6 (r) 
  P2X  

 4 
   OPC (r), Astrocytes (r), 

 C6 (r), GL261 (m), U87MG (h), U251MG (h) 
  P2Y  

 4 
   OPC (r), Astrocytes (r),   P2X  

 5 
   Astrocytes (r) 

 C6 (r), GL261 (m), 
 U138MG (h) 

  P2Y  
 6 
   Astrocytes (r), U251MG (h), C6 (r)   P2X  

 6 
   Astrocytes (r), U87MG (h), U138MG (h) 

  P2Y  
 12 

   Astrocytes (r)   P2X  
 7 
   OPC (r), Astrocytes (r), 

 C6 (r), GL261 (m),  GL261 (m),C6 (r), 
 U138MG (h), U251MG (h)  U87MG (h), U251MG (h) 

   Designations:  
 Oligo, Oligodendrocytes; OPC, Oligodendrocyte Precursor Cells; (r), Rat; (m), mouse; (h), human; C6, GL261, 
U251MG, U87MG, U138MG: Glioma cell lines 
 Data are from Agresti et al.  (  2005  ) , Verkhratsky et al.  (  2009  )  (OPCs and Oligodendrocytes), Braganhol et al.  (  2008  ) , 
Ledur et al.  (  2011  ) , Morrone et al.  (  2003  ) , Tamajusuku et al.  (  2010  )  (Gliomas), Fumagalli et al.  (  2003  ) , Jacques-Silva 
et al.  (  2004a  ) , Lenz et al.  (  2001  ) , Verkhratsky et al.  (  2009  )  (astrocytes)  
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adenosine also increased the transport of thymidine into the cell, suggesting a much broader effect 
than the regulation of cell cycle. ATP and adenosine activate the ERK, MAPK and PI3K/Akt pathways, 
and both pathways are important in mediating the proliferative effects of these purinergic agonists in 
U138MG human gliomas (Jacques-Silva et al.  2004a  ) . As discussed below, ATP to induce these 
effects could stem from cell lysis associated with low degradation of ATP in gliomas. 

 One important aspect of this model is that glioma cells are resistant to ATP induced cell death. 
ATP, at concentrations above 1 mM is toxic to several cell lines, mostly mediated by the P2X 

7
  receptor 

subtype. In neuronal cultures and organotypic cultures of the hippocampus, ATP is toxic at 5 mM 
(Morrone et al.  2005  ) . Glial cells are normally resistant to ATP-induced cell death, and, in astrocytes, 
high ATP concentrations and activation of P2X 

7
  actually activates the PI3K/Akt pathway, which 

normally has an anti-death role (Jacques-Silva et al.  2004b  ) . 
 Notably, mouse neural progenitor cells (NPCs), which are able to differentiate into neurons, 

astrocytes and oligodendrocytes are sensitive to extracellular ATP with a pharmacological and molec-
ular pro fi le that suggests the involvement of P2X 

7
  and NPCs from P2X 

7
  KO mice were much more 

resistant to extracellular ATP (Delarasse et al.  2009  ) . On the other hand, OPCs, which originate from 
NPCs, but are already restricted to the oligodendrocyte lineage and which recent data indicates to be 
the main cells of origin of gliomas, express functional P2X 

7
  receptors and suffer cytotoxicity when 

treated with high doses of BzATP, but not by a long lasting challenge with ATP up to 3 mM (Agresti 
et al.  2005  ) . Interestingly, mature oligodendrocytes are quite sensitive even to low concentrations of 
ATP or BzATP (Matute  2008 ; Verkhratsky et al.  2009  ) . The observation that glioma originate from a 
cell type resistant to ATP, while their precursor and differentiated cell are sensitive may be indicative 
of the importance of resistance to ATP cell death for glioma development. However, the observations 
that some glioma cell lines lost this resistance indicate that this is not an absolute requirement for 
glioma growth (Tamajusuku et al.  2010  ) .  

    5.3   Ectonucleotidases 

 The effects of nucleotides and nucleosides on purinergic receptors are regulated by the action of 
ectonucleotidases, which includes ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), 
ectonucleoside pyrophosphatase/phosphodiesterases (E-NPPases), ecto-5 ¢ -nucleotidase/CD73 (Ecto-
5 ¢ -NT/CD73) and alkaline phosphatases (ALP) (Robson et al.  2006 ; Zimmermann  2001,   2006  ) . These 
enzymes operate in concert for the complete nucleotide hydrolysis (e.g. ATP) to nucleoside (e.g. 
adenosine) and represent a powerful manner to control the effects mediated by extracellular purines 
(Knowles  2011 ; Yegutkin  2008  ) . 

    5.3.1   Ectonucleoside Triphosphate Diphosphohydrolases (E-NTPDases) 

 The occurrence of adenyl-pyrophosphatases, which splits the two phosphate groups from ATP, was 
for the  fi rst time demonstrated in muscle cells by Lohmann (Lohmann  1928  ) . Later, Meyerhof 
proposed the name “apyrase” for enzymes that hydrolyse ATP, ADP and other triphospho- and diphos-
phonucleosides to their equivalent monophosphonucleosides and inorganic phosphate (Meyerhof 
 1945  ) . Over the years, apyrases were identi fi ed in many different organisms such as plants; insects; 
parasites and mammals, and they were classi fi ed as ATP-diphosphohydrolase (EC 3.6.1.5) to dis-
tinguish them from intracellular ATPases. Until 1995, there was an apparent confusion about the 
molecular and kinetic identity of the enzymes responsible for the hydrolysis of extracellar ATP. In that 
year, a complete review describing the ecto-ATPases, which were identi fi ed as E-ATPases in analogy 
to other ATPases, was published (Plesner  1995  ) . Ecto-ATPases as well as ecto-apyrases (or ecto-ATP 
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diphosphohydrolases) are ubiquitous enzymes that hydrolyze extracellular nucleoside tri- and/or 
diphosphate exhibiting E-type ATPase activity. They hydrolyze several purine and pyrimidine nucle-
oside tri- and diphosphate but not nucleoside monophosphates. They are dependent on millimolar 
concentration of Ca 2+  or Mg 2+ , are insensitive to speci fi c P-type, V-type and F-ATPases and also 
alkaline phosphatase inhibitors and have an alkaline optimum pH. Ecto-ATPases/ecto-apyrases are 
glycoproteins anchored by two transmembrane domains, which makes dif fi cult their solubilization 
and puri fi cation (Plesner  1995  ) . 

 At present, the previously classi fi ed as E-type ATPases are identi fi ed as NTPDases belonging to 
the CD39 family. In mammals, at least eight related and homologous enzymes sharing  fi ve apyrase-
conserved regions (ACRs), named NTDPase1 to 8, have been cloned and characterized: NTPDase1 
(CD39, ATPDase, ecto-apyrase or ecto-ATP diphosphohydrolase), NTPDase2 (CD39L1, ecto-
ATPase), NTPDase3 (CD39L3, HB6), NTPDase4 (UDPase, LALP70), NTPDase5 (CD39L4, 
ER-UDPase, PCPH), NTPDase6 (CD39L2), NTPDase7 (LALP1) and NTPDase8 (Robson et al. 
 2006 ; Zimmermann  2001  ) . 

 NTPDase1-3 and 8 share common membrane topography with two transmembrane domains at 
the N- and C-terminus and a catalytic site facing the extracellular compartment. These E-NTPDase 
members differ regarding the preferences for nucleotides, while NTPDase1, 3 and 8 hydrolyses 
nucleoside tri- and diphosphates equally well, NTPDase2 hydrolyses nucleoside triphosphates with a 
30-fold preference (Bigonnesse et al.  2004 ; Chadwick and Frischauf  1998 ; Heine et al.  1999 ; 
Kaczmarek et al.  1996 ; Kegel et al.  1997 ;    Smith et al.  1998  ) . 

 NTPDase4-7 present an intracellular localization such as the Golgi apparatus and endoplasmic 
reticulum (Biederbick et al.  2000 ; Shi et al.  2001  ) . NTPDase5 and NTPDase6 lack the C-terminal 
transmembrane domain and are also expressed in the plasma membrane or as secreted enzymes with 
speci fi city for the hydrolysis of nucleoside diphosphates (Hicks-Berger et al.  2000 ; Oses et al.  2004 ; 
Mulero et al.  1999,   2000 ; Murphy-Piedmonte et al.  2005 ; Yeung et al.  2000  ) . 

 Several studies have shown the expression of multiple NTPDases in the CNS (Battastini et al.  1991 ; 
Braun et al.  2003 ; Bruno et al.  2002 ; Nagy et al.  1986 ; Pinsky et al.  2002 ; Wang and Guidotti  1999  ) . 
NTPDase1, the lymphoid cell activation antigen CD39, is associated with endothelium and vascular 
smooth muscle cells being strongly expressed by microglia (Braun et al.  2000 ; Zimmermann  2006  ) . 
In neurons, an apyrase-like enzyme has been characterized (Boeck et al.  2002  )  and the expression of 
multiple ectonucleotidase has been described in PC12 cells (Vollmayer et al.  2001  ) . NTPDase2 is the 
dominant ectonucleotidase expressed by rat astrocytes (Wink et al.  2006  )  being also identi fi ed in imma-
ture Schwann cells of the peripheral nervous system, in satellite glia cells of dorsal root ganglia and 
sympathetic ganglia and in enteric glia (Zimmermann  2006  ) . This enzyme is also expressed in adult 
mouse hippocampal progenitors (Shukla et al.  2005  )  and in type B cells of the subventricular zone 
(SVZ) (Braun et al.  2003  ) , two neurogenic regions of the adult mammalian brain. Chadwick and 
Frischauf described the tissue distribution of NTPDase3 in brain (Chadwick and Frischauf  1998  ) . 
In more recent studies, NTPDase3 was identi fi ed in the mitochondrial matrix or closely linked to the 
inner mitochondrial membrane of hypothalamic neurons. It was also found that decrease of NTPDase-
activity resulted in signi fi cantly decreased mitochondrial respiratory capacity. The authors assumed 
that hypothalamic neuronal activity especially that of excitatory neurons may be dependent on the 
activity of mitochondrial NTPDase3 due to the ATPase activity of this enzyme (Belcher et al.  2006 ; 
Kiss et al.  2009  ) . The NTPDase8 is very poorly expressed or absent in brain (Bigonnesse et al.  2004 ).  

    5.3.2   Ectonucleotide Pyrophosphatase/Phosphodiesterases (E-NPPs) 

 The second family of enzymes involved in the extracellular nucleotide metabolism is the ectonucle-
otide pyrophosphatase/phosphodiesterase family (E-NPPs; EC 3.1.4.1). NPP1-3 have been detected 
in almost all tissues, although individual isoforms are usually con fi ned to speci fi c substructures and/
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or cell types (for review see Bollen et al.  2000 ; Goding et al.  2003  ) . They hydrolyze pyrophosphate or 
phosphodiester bonds of a variety of extracellular compounds with a broad substrate speci fi city, 
including nucleotides, lysophospholipids and choline phosphate esters that may re fl ect their roles in 
various physiological and biochemical processes. NPP1 was originally discovered on the surface of 
mouse B-lymphocytes as the plasma cell differentiation antigen (PC-1) (Takahashi et al.  1970  ) . It is 
highly expressed in cells from bone and cartilage with intermediate expression in other tissues, includ-
ing brain capillary endothelium (Goding et al.  2003  ) . It is interesting to observe that NPP1 has not 
been detected in neurons or glial cells, although it has been detected in rat C6 glioma cells (Grobben 
et al.  1999  ) . The second member of this family, the NPP2 was discovered as an autocrine motility 
factor (autotaxin, NPP2a) (Stracke et al.  1992  ) . The expression of NPP2a has been correlated with 
oligodendrocyte differentiation and in the formation of myelin sheet (Fuss et al.  1997  ) . In addition, rat 
brain NPP2 is expressed in glial cells of the cerebellum (Goding et al.  2003  ) . NPP3 is a glycoprotein 
present in a speci fi c subset of glial precursor cells, which expression is dependent on the stage of 
differentiation (Blass-Kampmann et al.  1997 ; Deissler et al.  1995b  ) .  

    5.3.3   Ecto-Alkaline Phosphatases (ALP) 

 The extracellular nucleotides ATP, ADP (and AMP) can also be hydrolyzed by alkaline phosphatases 
(ALP, EC 3.1.3.1) (Picher et al.  2003  ) . Human ALPs are encoded by four different gene loci and three 
of the four isozymes are tissue-speci fi c, the intestinal (IALP), placental (PLALP) and germ cell 
(GCALP). The fourth ALP is the tissue-nonspeci fi c (TNALP) expressed in relatively high amounts in 
bone, liver and kidney (Martins et al.  2001  ) . This protein co-localize with detergent-resistant and 
glycolipid-rich membrane subdomains and is important to control signal transduction and membrane 
traf fi cking (Bianchi and Spychala  2003 ; Matsuoka and Ohkubo  2004  ) . Although TNALP is widely 
distributed in different tissues, information about its physiological function in the brain is limited 
(Zimmermann  1996  ) . It was established that this ubiquitous enzyme has a speci fi c regional and sub-
cellular localization in the brain of adult animals and could be involved in neurotransmission, as it 
exhibits a neuronal activity-dependent regulation and it is localized in the synaptic cleft of cortical 
synapses (Fonta et al.  2004  ) . TNALP is expressed in the neural tube in different brain regions during 
embryonic development indicating its involvement in developmental steps with a potential role in 
cortical plasticity and brain disorders (Fonta et al.  2005 ; Narisawa et al.  1994  ) . In addition, it was 
shown that TNALP is expressed in capillary endothelium of blood–brain barrier (BBB) and may par-
ticipate in extracellular phosphorylation/dephosphorylation processes, which are involved in the mod-
ulation of organic cation transport at BBB (Calhau et al.  2002  ) . Finally, considering that ATP may be 
hydrolyzed by E-NPPs generating PPi and that it is known that TNALP is able to hydrolyse PPi into 
Pi (Goding et al.  2003  ) , it is possible that in addition to E-NTPDases, these two enzymes might coop-
erate to hydrolyze ATP directly to AMP without transient production of ADP in the extracellular 
milieu. Therefore, the combination of more than one enzyme may acts as important regulator of 
purinergic receptor activation by removing ef fi ciently P2 agonists.  

    5.3.4   Ecto-5 ¢ -Nucleotidase (Ecto-5 ¢ -NT/CD73) 

 The intermediary product of ATP hydrolysis, AMP, can be hydrolyzed by the action of ecto-5 ¢ -
nucleotidase (ecto-5 ¢ -NT/CD73, EC 3.1.3.5), which is a widely distributed enzyme anchored on the 
outer surface of the plasma membrane via a glycosyl phosphatidylinositol linkage and also co-localizes 
with detergent resistant and glycolipid-rich membrane subdomains called lipid rafts (Bianchi and 
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Sypchala  2003  ) . It produces nucleosides from non-cyclic nucleoside monophosphates in the 
extracellular space, being the best-characterized enzymatic source of extracellular adenosine 
(Zimmermann  1992  ) . Considering that ATP and ADP can exert an inhibitory action on ecto-5 ¢ -NT/
CD73 (Dornand et al.  1978  ) , this step of extracellular nucleotide metabolism represents a pivotal role 
by controlling the activation of P2 and P1 receptors (Komoszynski and Wojtczak  1996  ) . Ecto-5 ¢ -NT/
CD73 is expressed in many different tissues (Zimmermann  1992  )  being identi fi ed in different brain 
regions either located as a membrane bound ecto-enzyme or as a soluble enzyme with intracellular 
localization (Bianchi and Spychala  2003 , Heymann et al.  1984  ) . In the Central Nervous System (CNS) 
it was identi fi ed in astrocytes, hippocampal mossy  fi ber terminals, the choroid plexus and vascular 
endothelium (Zimmermann  2006  ) . The subcellular distribution of ecto-5 ¢ -NT/CD73 in the brain cells 
shows that the bulk of activity is associated with myelin, synaptossomal and microssomal fractions 
(Heymann et al.  1984  ) . This enzyme has been proposed as a glial marker and indicator for develop-
ment, regeneration and plasticity (Lie et al.  1999 ; Zimmermann et al.  1998  ) . Recently, Stanojevic 
et al. showed a negative correlation between the enzyme activity and the enzyme protein abundance 
in the synaptic plasma membrane, indicating additional roles than those related to AMP hydrolysis for 
ecto-5 ¢ -NT/CD73 in the synaptic compartment during postnatal brain development (Stanojevic et al. 
 2011  ) . The results of this study provided direct evidence for the existence of this ecto-enzyme in the 
presynaptic compartment and suggest that ecto-5 ¢ -NT/CD73 may be a part of general scheme of brain 
development and synapse maturation. In fact, several studies demonstrate that besides its catalytic 
function, ecto-5 ¢ -NT/CD73 is also an important player on cell-cell and cell-extracellular matrix 
(ECM) interactions, (Spychala  2000 ; Stochaj et al.  1989  )  as well as a modulator of T lymphocytes 
signaling (for review see Resta et al.  1998  ) . The highly variable level of expression of ecto-5 ¢ -NT/
CD73 in animal tissues and cells suggests that tissue-speci fi c mechanisms control the expression of 
this enzyme. Indeed, a number of tissue-speci fi c regulatory elements within the ecto-5 ¢ -NT/CD73 
promoter were identi fi ed suggesting that there might be a high level of complexity in the interactions 
between binding factors of this gene (Hansen et al.  1995 ; Spychala et al.  1999  ) . 

 In addition to the action of ecto-5 ¢ -NT/CD73, AMP can also be deaminated to inosine monophos-
phate (IMP) by an AMP deaminase activity. This alternative enzymatic degradation of AMP might 
constitute a mechanism to control extracellular adenosine formed from ATP breakdown (Cunha and 
Sebastião  1991 ; Goldman et al.  2010  ) .   

    5.4   Ecto-Adenosine Deaminase (Ecto-ADA) 

 The extracellular adenosine levels are controlled by the uptake of plasma membrane-located adenos-
ine transporters and/or by the action of adenosine deaminase (ADA; EC 3.5.4.4) that produces inosine 
(Cunha et al.  2000  ) . ADA was originally considered to be cytosolic but it has been found ubiquitously 
on the surface of many different cell types including brain synaptosomes and, therefore, it can be also 
considered an ecto-enzyme (ecto-ADA) (Franco et al.  1997  ) . 

 Ecto-ADA has an extra-enzymatic function via its interaction with CD26 and other cell-surface 
proteins (Franco et al.  1998  ) . Ecto-ADA was identi fi ed in neuronal populations in the brain of 
different mammals (Yamamoto et al.  1987  ) . It was also shown that ecto-ADA can be associated with 
A 

1
  adenosine receptors (A 

1
 Rs) in different cell types including pig brain cortical membranes 

(for review see Zimmermann  1996  ) . Accordingly, the co-localization and interaction between A 
1
 Rs 

and ecto-ADA may be the functional basis of the extra-enzymatic role of ecto-ADA in modulating 
ligand-induced signaling, desensitization and internalization of A 

1
 Rs (Beraudi et al.  2003 ; Ciruela 

et al.  1996 ; Gines et al.  2001 ; Saura et al.  1998  ) . Inosine, product of adenosine deamination, was 
originally thought to have no biological effects, but today it is well established that this nucleoside 
may participate actively in many biological processes including immunomodulation and neuroprotection. 
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Inosine preserves the viability of glial cells and neuronal cells during hypoxia and stimulates axonal 
re-growth after injury. The actions of inosine might involve effects on adenosine receptors, but it is 
also possible that inosine augments extracellular adenosine levels by competing with the nucleoside 
transporters and thus generating secondary effects to adenosine binding to its receptors (for review see 
Haskó et al.  2004  ) . Recently, it was shown that inosine exerts anticonvulsant effect against hyperactiv-
ity of the glutamatergic system independently of benzodiazepines or adenosine receptors activation 
(Ganzella et al.  2011  ) . Thus, besides its non-enzymatic functions, the  fi nal step of purine metaboliz-
ing cascade catalyzed by ecto-ADA is very important for the control of adenosine availability and 
inosine production with consequent activation of different signaling pathways.  

    5.5   Other Ecto-Nucleotide Metabolizing Enzymes 

 ATP can be also consumed by ecto-enzymes belonging to protein kinase family (ecto-PK, EC 2.7.10-
11-12-13) (Ehrlich et al.  1990  ) . These enzymes are located on the surface of normal, transformed or 
malignant cells (Paas et al.  1999 ; Redegeld et al.  1999 ; Seehafer et al.  1984  )  and the coordinated action 
of ecto-PK and ALP would participate in the phosphorylation/dephosphorylation mechanisms in a 
variety of extracellular events, such as cell-cell interaction and transduction of external signals (Calhau 
et al.  2002 ; Kübler et al.  1989  ) . Moreover, the presence of purine converting ecto-enzymes such as 
ecto-nucleotide kinase (adenylate kinase, EC 2.7.4.3) (Nagy et al.  1989  ) , ectonucleoside diphosphate 
kinase (EC 2.7.4.6) (Yegutkin et al.  2002 ; Zimmermann  2006 ) and the identi fi cation of ectopic FoF1-
ATP synthase on plasma membrane of mammalian cells (Ravera et al.  2011  ) , provide new perspec-
tives for the scenario of extracellular nucleotide metabolism. In summary, the combination of these 
multiple extracellular ATP-generating systems along with ATP-consuming pathways would complete 
the panel of enzymatic and non-enzymatic systems involved in the control of availability of speci fi c 
agonists for nucleotide/nucleoside-selective receptors (Yegutkin et al.  2002  ) .  

    5.6   Ectonucleotidases in Gliomas 

 Events that trigger malignant transformation of glial cells into gliomas are poorly understood. 
Genetic alterations that controls cell proliferation and differentiation, including the regulation in 
oncogenes expression (MDM2, CDK4, EGFR) and tumor suppressor genes (p53, p16, p15 and RB1) 
(Louis  1994 ; Maher et al.  2001 ; Shapiro  2001 ; Von Deimling et al.  1995  )  are common features of 
glial cell malignant transformation. In addition, glioma progression requires speci fi c microenviron-
ment conditions, which affect tumor cell interactions with neurons, glia and vascular cells in the 
CNS (Demuth and Berens  2004  ) . Among the pathological alterations that give tumor cells invasive 
potential, purinergic signaling is emerging as an important component. By activating speci fi c puri-
nergic receptors (P2X and P2Y), extracellular ATP has been shown to mediate events related to cell 
proliferation, cell differentiation and cell death (White and Burnstock  2006  ) . Nucleotides exert a 
synergist effect on cell proliferation together with growth factors, chemokines or cytokines (Lemoli 
et al.  2004  ) . ATP has been identi fi ed as a mitogen for v-myc immortalized neural progenitor cells 
(Ryu et al.  2003  ) . In astrocytes, extracellular ATP regulates ERK function by activating P2Y 

1
 , P2Y 

2
  

or P2Y 
4
  purinoceptors (Lenz et al.  2000 ; Neary et al.  2003  ) , indicating the potential for cross-talk 

with FGF, EGF and PDGF driven cell mitogenic pathways. Adenosine is one of factors that can 
contribute to tumor progression (Spychala  2000  ) . This nucleoside accumulates at high concentra-
tions in solid tumors and it has been previously shown to stimulate tumor growth and angiogenesis 
through activation of P1 receptors and to inhibit cytokine synthesis, cell spreading, and adhesion of 
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immune cells to the endothelial wall and the function of T-cells, macrophages and natural killer cells 
(Spychala  2000  ) . 

 As described above, the biological effects of nucleotides and nucleosides are regulated by the 
action of ectonucleotidases, which ef fi ciently control the purinergic receptor activation by hydrolyz-
ing these molecules in the extracellular space. Accumulating evidence suggests that alterations in the 
extracellular nucleotide/nucleoside metabolism are involved in the growth and progression of gliomas. 
We demonstrated that glioma cell lines have altered extracellular ATP, ADP and AMP catabolism 
when compared to astrocytes, showing low rates of extracellular ATP hydrolysis and high rates of 
extracellular AMP hydrolysis (Wink et al.  2003  ) . C6 glioma presents a low mRNA expression of 
NTPDases1-6 (Morrone et al.  2006  )  and human glioma cell lines as well (unpublished data). These 
results were con fi rmed by applying a C6  ex vivo  glioma model, a primary glioma culture obtained 
directly from rat biopsy specimens that were previously implanted, indicating that the disruption of 
purinergic signaling is a feature shown not only by glioma cell lineages, but also by  ex vivo  glioma 
cultures which represent a closer model of original tumors (Braganhol et al.  2008  ) . 

 In addition, it seems also important to consider the NTPDase5 mRNA expression in C6 cells 
(Morrone et al.  2006  )  and in other different glioma cell lines (unpublished results). In addition to the 
participation of NTPDase5 in the process of re-glucosylation involved in glycoprotein folding in the 
endoplasmatic reticulum (Tombetta and Helenius  1999  ) , an unexpected role of NTPDase5 in onco-
genesis was recently revealed (Villar et al.  2007  ) . NTPDase5 was shown to be identical to the PCPH 
gene, a human proto-oncogene product expressed in human tumor cell lines (Paez et al.  2001 , Rouzaut 
et al.  2001  ) . The neoplastic transforming activity of the NTPDase5/PCPH oncoprotein is mediated by 
its ability to promote a Ras-independent, sustained activation of ERK (Recio et al.  2000  )  and/or ren-
der cancer cells resistant to a variety of apoptosis-inducing stimuli (Recio et al.  2000 ; Velasco et al. 
 1999  ) , including serum deprivation, hyperthermia, ionizing radiation and chemotherapeutic drugs. 
The resistance to various stress stimuli elicited by NTPDase5/PCPH was mediated by its ability to 
hydrolyze ATP, decreasing the phosphate donor availability for the kinases involved in the stress-
induced phosphorylation cascades with which it interacts (Recio et al.  2002  ) . 

 As presented before, extracellular degradation of ATP proceeds by a cascade of cell surface-bound 
enzymes that also includes the E-NPPs and ALP. Catalysis by E-NPPs affects processes as diverse as 
cell proliferation and motility, angiogenesis, bone mineralization and digestion. In addition, E-NPPs 
are also implicated in the pathophysiology of cancer, insulin resistance and calci fi cation diseases 
(Stefan et al.  2006  ) . NPP1 and −3 are expressed in rat C6 glioma cells where they are responsible for 
the hydrolysis of low extracellular ATP concentration (1–10  m M) (Grobben et al.  1999 ; Joseph et al. 
 2004  ) . Moreover, there is emerging evidence for non-catalytic functions of NPPs in cell signaling. 
For example, a role of NPP3 in tumor transformation was demonstrated by showing that its expression 
in glioma cells induced morphological changes and enhanced tumor invasive properties (Deissler 
et al.  1995a  ) . The role of NPP1 expression in C6 glioma cell motility and invasion remains to be 
determined. Regarding the involvement of ALP in the tumorigenic process, there are a few studies 
characterizing its participation in glioma biology. ALP activity is restricted to the capillary wall, being 
stronger in capillaries from glioblastomas than astrocytomas. Moreover, in opposite to normal cells, 
the ALP activity in glioblastoma is markedly positive on the luminal surface of plasma membrane of 
endothelial cells. Phosphatase activities in brain tumor appear to change in localization pattern in 
association with glioma malignancy, which may re fl ect a higher permeability of the BBB (Maeda 
et al.  1985  ) . ALP can also contribute to adenosine production from AMP as a substrate, as demon-
strated for the neuroblastoma glioma hybrid NG108-15 cells (Ohkubo et al.  2000  ) . 

 The AMP produced in the extracellular space is hydrolyzed to adenosine by the action of ecto-
5 ¢ -NT/CD73 (Zimmermann  1992  ) . A large body of evidence suggests that ecto-5 ¢ -NT/CD73 has 
tumor-promotion functions (Spychala  2000  ) . High ecto-5 ¢ -NT/CD73 expression levels have been 
reported in many human solid tumors, such as colon, lung, pancreas, ovary (Su et al.  2001  ) , melanomas 
(Sadej et al.  2006  ) , breast carcinomas (Zhi et al.  2007  )  and glioblastoma cells (Ludwig et al.  1999 ; 
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Wink et al.  2003  ) , being its expression correlated with shorter patient survival time (Spychala  2000  ) . 
Adenosine, the product of ecto-5 ¢ -NT/CD73 activity, has been reported as mediator of cell prolifera-
tion, angiogenesis and may suppress the anticancer immune response (Gessi et al.  2011 ; Morrone 
et al.  2003 ; Spychala  2000  ) . Adenosine concentrations increase within hypoxic regions of solid 
tumors, including gliomas (Melani et al.  2003  ) , and it has been recognized to interfere with the recog-
nition of tumor cells by cytolytic effectors cells of the immune system (Blay et al.  1997 ; Merighi et al. 
 2003  ) . In particular A 

2A
  adenosine receptors on T-cell surface may play an immunosuppressive role in 

large solid tumors, inhibiting incoming antitumor cytotoxic T lymphocytes from destroying the tumor 
(Koshiba et al.  1997  ) . The immunosuppressive role and the ability to protect against ischemia sug-
gest that A 

2A
  activation improves hypoxic tumor cell survival and immune escaping. A 

2B
  adenosine 

receptors seem to contribute to tumor growth, neovascularization and for the release of a subset of 
cytokines (Gessi et al.  2011  ) . In U87MG human glioma cells, adenosine increases IL-6 and IL-8 
expression via stimulation of A 

2B
 , while the stimulation of A 

3
  receptors induced an increase of metal-

loproteinase-9 (MMP-9) levels, which was responsible for an increase of glioblastoma cells invasion 
(Gessi et al.  2010  ) . In a parallel investigation, adenosine promoted an increase in U138MG glioma 
cell adhesion, which was prevented by adenosine receptor antagonists and dipyridamole, indicating 
the participation of extra- and intracellular signaling pathways in cell adhesion mediated by this 
nucleoside (Cappellari et al.  2011  ) . 

 In addition to produce the pro-tumor nucleoside adenosine, ecto-5 ¢ -NT/CD73 has a role in the 
control of cell growth, maturation, differentiation, cell-cell and cell-matrix interactions (Navaro et al. 
 1998 ; Turnay et al.  1989 ; Vogel et al.  1991 ; Zhou et al.  2007  ) . Notably, increasing cell con fl uency and 
culture times led to an increase in ecto-5 ¢ -NT/CD73 activity and expression in different glioma cell 
lines (Bavaresco et al.  2008  ) . The ECM laminin and chondroitin sulfate modulated the ecto-5 ¢ -NT/
CD73 activity and glioma adhesion in a parallel manner, suggesting the involvement of purinergic 
signaling in the effects mediated by ECM components (Cappellari et al.  2011  ) . In line to the role of 
ecto-5 ¢ -NT/CD73 and its product adenosine on tumor-promotion actions, the treatment with APCP, a 
synthetic inhibitor of this enzyme, and AMP signi fi cantly reduced glioma cell proliferation (Bavaresco 
et al.  2008  ) . Additionally, it was shown that the inhibitory effect of quercetin, dexamethasone and 
indomethacin on glioma cell proliferation was related to the modulation of ecto-5 ¢ -NT/CD73 activity 
(Bavaresco et al.  2007 ; Braganhol et al.  2007 ; Bernardi et al.  2007  )  and the expression of A 

3
  adenos-

ine receptor mediates the adenosine cell death actions (Gessi et al.  2011  ) . In conclusion, ecto-5 ¢ -NT/
CD73 expression is important in the glioma development for different reasons: (a) providing the 
major source of extracellular adenosine and/or (b) interacting directly with extracellular proteins 
acting as an adhesion molecule.  

    5.7   The Purinergic Hypothesis of Glioma Invasion 

 Previous studies from our group indicate a strong involvement of purinergic signaling in the growth 
and progression of gliomas. The majority of glioma cell lines present an extracellular nucleotide 
metabolism that has low ATPase and high AMPase activity, with is strikingly different from normal 
astrocytes, which have high ATPase and low AMPase activity (Wink et al.  2003  ) . 

 Adenine nucleotides induce cell proliferation in diverse human glioma cell lines (Morrone et al. 
 2003  )  and the majority of glioma cell lines are resistant to cell death induced by cytotoxic ATP 
concentrations (Morrone et al.  2005  ) . As ATP is poorly hydrolyzed by glioma cells and, in addition, 
can be ectopically produced in C6 glioma plasma membrane (Ravera et al.  2011  ) , this nucleotide 
could potentially accumulate within tumor, resulting in glioma cell proliferation and neuronal toxicity. 
We have proposed that besides the glutamatergic system (Takano et al.  2001  ) , the purinergic signaling 
could also be involved in this process (Morrone et al.  2003,   2005 ; Wink et al.  2003  ) . In this model, 
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we hypothesize that neuronal death induced by glutamate released from gliomas results in the liberation 
of ATP and glutamate (normally present in high concentrations in the intracellular milieu) to the 
extracellular space leading to more neuronal cell death and glioma proliferation in a positive feedback 
cycle. Because gliomas, contrary to astrocytes in culture, exhibit low NTPDase expression and activity 
(Morrone et al.  2006  )  this feedback is not blocked. 

 To test this hypothesis, we examined the effect of co-injection of apyrase, an ATP/ADP scavenger, 
in a C6 rat glioma experimental model, which has been extensively used to test antitumor interven-
tions (Takano et al.  2001  ) . The implanted glioma co-injected with apyrase produced smaller tumors 
when compared with the rats injected only with gliomas or with gliomas plus inactivated apyrase. 
According to the pathological analysis, the malignant gliomas induced by C6 co-injected with apyrase 
exhibited a signi fi cant reduction in the mitotic index, necrosis and vascular proliferation, pathological 
characteristics that indicate a less invasive/proliferative tumor (Fig.  5.1 ). Considering that the injec-
tion of apyrase was done only at the moment of implantation, the effect of ATP/ADP depletion is 

  Fig. 5.1     In vivo  glioblastoma growth is reduced by apyrase co-injection. To determine the effect of apyrase co-injection 
on  in vivo  glioma growth, C6 cells (1 × 10 6 ) were implanted in the right striatum of Wistar rat by stereotaxical surgery 
in presence (Glioma + Apyrase) or absence of apyrase (Glioma). ( a ,  b ) Histological characteristics that de fi ne glioblas-
toma multiforme as seen in rats implanted with gliomas and in rats co-injected with apyrase. Scale bars = 100  m m. ( c ) 
Tumor size quanti fi cation of implanted gliomas. Tumor size was evaluated 20 days following glioma implantation. Data 
represent the mean ± SD of at least six animals per group. Mean ± S.E.M. *p < 0.05 for comparison versus control, as 
determined by ANOVA, followed by Tukey-Krammer test. Glioma, rats implanted with C6 cells; CApyrase, apyrase 
denatured by boiling and co-injected with C6 cells; Apyrase, apyrase (2 U) co-injected with C6 cells; N, necrosis and 
microvascular proliferation; V, giant cell formation and nuclear pleomorphism ( arrow ) (Adapted from Morrone et al. 
 (  2006  ) . With permission from BioMed Central)       
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important probably at the implantation and initial growth of the glioma. This could be of therapeutic 
interest, because the application of apyrase in the surgical resection cavity could be helpful in reducing 
the initial growth of invaded tumor (Morrone et al.  2006  ) . Considering that NTPDase2 is the dominant 
E-NTPDase member expressed by astrocytes in culture (Wink et al.  2006  )  in a further study we better 
characterized the participation of nucleotides in glioma progression by restoring NTPDase2 expres-
sion and activity in rat C6 glioma cells. Surprisingly, NTPDase2 overexpression promoted a dramatic 
increase in the  in vivo  glioma growth and in the malignant characteristics (Fig.  5.2 ). A sizable platelet 
sequestration in the tumor area and an increase in angiogenesis and in fl ammatory response were 
observed (Braganhol et al.  2009  ) . The opposite biological outcomes obtained by using NTPDase2 
(high ATPase/ADPase ratio) and apyrase (low ATPase/ADPase ratio) as ATP/ADP scavengers, reveal 
a complex interactions between tumor, immune cells and purinergic mediators. This inverse effect 
could be due to the fact that whereas NTPDase1 hydrolyses ATP and ADP approximately equally 
well, the preferred degradation of ATP over ADP of NTPDase2 favors extracellular ADP accumula-
tion (Robson et al.  2006 ; Zimmermann  2001  ) . Considering that platelets express P2 receptors, which 
are activated by ADP (P2Y 

1
  and P2Y 

12
 ), we hypothesized that ADP produced by the NTPDase2 over-

expressed in the implanted glioma cells could activate these receptors, leading to increased platelet 
recruitment and activation. The latter processes promote angiogenesis as well as the recruitment of 
other in fl ammatory cells (Sierko and Wojtukiewicz  2007  ) . The treatment with clopidogrel, a P2Y 

12
  

antagonist that prevents the platelet activation by ADP, decreased these parameters to control levels. 
These data suggest that the ADP derived from NTPDase2 activity stimulates platelet migration to 
the tumor area and that NTPDase2, by regulating angiogenesis and in fl ammation, seems to play an 
important role in tumor progression (Braganhol et al.  2009  ) .   

  Fig. 5.2    NTPDase2 expression stimulates  in vivo  glioblastoma growth .  To determine the glioma growth  in vivo , equal 
amounts of C6, C6-EYFP, or C6-EYFP/NTPDase2 cells (1 × 10 6  cells) were implanted in the right striatum of Wistar rat 
brains by stereotaxical surgery. The animals were killed 20 days later and glioma sections were dissected and analyzed 
for tumor growth. ( a ,  b ) Photographs of rat brain slices of C6-EYFP and C6-NTPDase2-implanted gliomas. The gliomas 
are marked with a circle. ( c ,  d ) Representative sections of C6-EYFP and C6-EYFP/NTPDase2-implanted gliomas stained 
with HE. Scale bars = 0.5 mm (Adapted from Braganhol et al.  2009 . With permission from John Wiley and Sons)       
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 Interestingly, the NTPDase2 reconstitution in gliomas altered not only the local tumor 
 development, but also modulated systemic in fl ammatory responses. NTPDase2 overexpression pro-
moted an increase in IL-1 b , TNF- a  and IL-6 pro-in fl ammatory cytokine production and regulated 
platelet function  in vivo . Additionally, pathological alterations in the lungs were observed in rats 
bearing NTPDase2-gliomas (Braganhol et al.  2011  ) . These data suggest that disruption of purinergic 
signaling creates an in fl ammatory microenvironment that dictates tumor cell progression and local 
invasiveness. Moreover, our  fi ndings reveal a previously underestimated role for ADP in tumor pro-
motion and reinforce the important roles carried out by the different E-NTPDase members, which, by 
working in a highly coordinated enzymatic chain, maintain the extracellular nucleotide equilibrium 
and control the effects mediated by purinergic receptors. 

 As presented in the begging of this chapter, in concert with alterations in the extracellular ATP 
metabolism, modulations of P2 receptors, mainly P2Y 

1
 , P2Y 

2
 , P2Y 

12
  and P2X 

7
 , may be important 

participants in glioma pathology. In C6 glioma cells P2Y 
2
  respond to ATP and UTP while P2Y 

1
  and 

P2Y 
12

  both respond to ADP. Baranska et al. have shown that agonists of these receptors modulate 
activities of ERK1/2 and PI3K, which are central pathways of cell survival (Baranska et al.  2004  ) . 
These effects depend on physiological conditions of the cells. Under serum starvation culture condi-
tions, UTP and ADP modulate positively ERK1/2 on C6 rat glioma. In non-starved cells, ADP markedly 
decreases the PI3K activity, whereas in serum-starved cells it causes an opposite effect. The differen-
tial P2Y expression under different culture conditions suggests a cross-talk between P2Y 

1
  and P2Y 

12
  

receptors in order to favor the glioma cell growth (Baranska et al.  2004  ) . 
 P2X 

7
  receptor subtype possesses unique biological properties such as the opening of a pore 

through which molecules up to 900 Da can pass. P2X 
7
  is responsible for ATP-induced cell death 

in various cell types through mechanisms that involve necrotic features such as swelling, loss of 
membrane integrity and apoptosis (Taylor et al.  2008 ; Tsukimoto et al.  2005  ) . In the CNS, ATP is 
highly toxic to neurons  in vitro  and  ex vivo  (Morrone et al.  2005  )  and extracellular ATP plays an 
important role in neuronal death in pathological conditions such multiple sclerosis, Alzheimer and 
brain ischemia (Burnstock  2008  ) . To date, the involvement and roles of P2X 

7
 R in modulating the 

growth of brain tumors have been little explored. The P2X 
7
  activation in glioma cells mediates 

multiple effects that include cell death, survival and modulation of immune system. For example, 
in rat C6 cell line, C6  ex vivo  glioma model and human U138MG, the involvement of P2X 

7
 R in 

the resistance to citotoxicity of ATP has been reported (Braganhol et al.  2008 ; Morrone et al. 
 2005  ) . Consistent with the P2X 

7
 R role in tumor progression, immunohistochemical staining of 

human glioblastoma tissue samples demonstrated greater expression of P2X 
7
 R compared to con-

trol non-tumor samples and the pharmacological blockage of P2X 
7
 R inhibits  in vivo  C6 glioma 

growth (Ryu et al.  2011  ) . On the other hand, GL261 a murine glioma cell line sensitive to high 
concentrations of ATP, presents a higher ATPase activity, suggesting that the sensitivity may be 
compensated by a higher degradation rate of ATP for protective reasons. The sensitivity of GL261 
to ATP and BzATP was blocked by silencing of P2X 

7
 R (Tamajusuku et al.  2010  ) . The cell death 

induced by ATP is mainly necrotic of nature, but their involvement in actual tumor growth is not 
clear. Blocking of P2X 

7
 R with BBG, known P2X 

7
  receptor antagonist, produced a marked reduc-

tion in C6 glioma growth in rats, suggesting that cell death of glioma cells is not an important 
feature of this model (Ryu et al.  2010  ) . 

 In conclusion, the information presented here supports the idea that alterations in the activity and 
expression of ectonucleotidases are involved in the glioma progression. The alterations in the extra-
cellular ATP metabolism associated with P1/P2 receptor disruption may have important consequences 
in events related to tumor advance (Fig.  5.3 ). Although additional studies are needed to determine 
whether the altered nucleotide hydrolysis is the cause or consequence of malignant transformation, 
the ectonucleotidases may be considered as new molecular markers of gliomas and future target for 
pharmacological or gene therapy.       
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  Fig. 5.3    Possible pathways connecting alterations in purinergic signaling and glioma progression .  Gliomas exhibit an 
inversion in the extracellular nucleotide metabolism when compared to astrocytes in culture, hydrolyzing poorly the 
ATP and highly the AMP. This pattern of enzymatic activity may favor the accumulation of extracellular ATP and 
adenosine in the tumor milieu, inducing cell proliferation, angiogenesis and immunesuppression. Conversely, ATP 
could induce neuronal cell death, increasing the extracellular ATP pool and further improving the tumor invasion. 
In accordance with the participation of ATP and ADP in the glioma pathology, the co-injection of apyrase with gliomas 
decreased the tumor growth and the malignant characteristics, while NTPDase2 produced the opposite effect. We suggest 
that the ADP formation may be a component of platelet activation, induction of in fl ammatory cytokine release and the 
consequent tumor growth observed. The high expression of ecto-5 ¢ -NT/CD73, an adhesion and migration cell related 
protein and main source of enzymatic extracellular adenosine might mediate the interactions between tumor cells and 
tumor cell-ECM, essential for glioma progression       
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