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   Foreword   

    Integrated Circuits 

       David     Pimm    

 It is 1982. I am 28 years old and two-and-a-half years into paid work as a neophyte 
researcher in mathematics education in the UK. I sit in a secondary mathematics 
classroom, armed with a coding sheet, watching a lesson based on a piece of software 
on a Research Machines 380Z, the whole class attending to a small monitor. My    aim 
is to see what difference the computer’s presence makes to the lesson, particularly 
to the teacher’s practice. 

 I learn many things over the course of a term, including but not limited to:

•    How restrictive coding sheets can be, how they serve to determine what can actually 
be documented as occurring;  

•   How the need to write a code every 10 s (an early form of digital sampling) fragments 
a lesson and, more subtly, how coding is not a real-time activity – for instance, in 
order to ascertain whether a teacher question has been asked is not simply a 
matter of the grammatical form of an utterance, it involves waiting to see how it 
is taken by the students;  

•   How looking for altered patterns of interaction requires a strong grounding in 
prior norms; and,  

•   How hard it can be to see the really new.    

 Reading across the chapters in this volume brought back these earlier memories, 
not least because of the intertwined discussions of classroom structures and teacher 
‘orchestrations’, as well as both the regularities and distinctions among them that 
occur in different settings. A staggering amount has changed in the past 30 years, 
with regard to the richness, range and sophistication of the mathematical devices 
and their encodings that are available for school use in the teaching and learning of 
mathematics. How far we have come from ‘Computer-Aided Learning (CAL)’ as it 
was then known. What is much more complicated to address, and problematic in a 
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variety of senses, is the scope and depth of actual use of this plethora of electronic 
possibilities in actual school classrooms and other learning contexts. 

 In a chapter of a book for teachers on ICT    (information and communication 
technology) and mathematics, Sinclair and Jackiw (2005) attempt to look to the future: 
in a prognosticating vein, they identify three waves in technology-for- mathematics- 
education. The fi rst focuses on the individual student (the site of the ‘L’ in CAL), the 
second develops the context of classroom learning (including the teacher and the 
curriculum), and the third looks outward to the world (wide web)   . Issues they explore 
include the relation between curricular specifi city and mathematical expressivity 
with any particular instance of technology-and-software. I mention their piece here 
in part as an introduction to my thinking across the various chapters of this collec-
tion, given the latter’s more or less common focus on and concern with the  teacher  
in a mathematics classroom and the use of pertinent digital technology. 

 In Sinclair and Jackiw’s terms, then, this book is primarily second wave. But also 
in terms of research on technologised mathematics classrooms, this feels    to me a 
second-wave collection. Many early studies in this area focused on what teachers 
did with the technology (for more on the broader study mentioned above, see, for 
example, Ridgway et al. 1984) and were largely descriptive and untheorised (cer-
tainly the one I was involved in was: in an important sense the coding scheme both 
summarised and operationalised the extent of theorisation of the act of mathematics 
teaching – and it was not technology specifi c). “What is it    like teaching mathematics 
with technology present?” such studies asked. We and many others learnt how hard 
it is (but not much about why). Others also learnt, among other things, about the 
potential for the ‘worksheetifi cation’ of expressive technology, as well as the ten-
sion between programming and small program use [1]. 

 But even given such commonality, this book is still quite plural. There is no one 
single focus, neither in terms of object of attention, phenomenon of interest, nor 
method of examination. Actual classrooms are looked at, often; teachers (present in 
various incarnations, novice and expert, experienced with technology or not, etc.) are 
considerably more in focus than students (computer-aided teaching?) and are repre-
sented by their views via questionnaires and interviews and by their reported class-
room actions. We are told about what is and also about what might be. Mathematics 
is the presumed common concern of all authors, but this book is only cursorily about 
technology’s effect on or interaction with mathematics. Technological devices are 
widespread across the chapters, but even they are not in continuous view. 

 In terms of foreground, I fi nd a marked concern with exploring the complexity of 
being the teacher in a technologised classroom, as well as beginning to address the 
intricate ‘teacher education’ question about what manner and nature of support to 
offer teachers in their work (whether beginning or ongoing) in such settings. Some 
chapters report on more narrowly delineated research studies (some attempt to doc-
ument the state of play while others opt for case studies, then, both in terms of    the 
closeness of focus to a very few teachers and necessarily I feel in terms of examining 
specifi c forms of technology). Others still attempt to propose or harness a far more 
theorised frame and then look at some teaching settings through it. And some do 
both and some look across a range of studies. In terms of method and manner of 
exploration, there is again appreciable diversity. At times, for me, I felt a sense of 
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struggle to fi nd a suitably helpful grip size that is suffi ciently specifi c to offer 
traction on the particular while rising suffi ciently above it to improve the view 
before disappearing into the clouds. 

 Returning briefl y to my opening personal vignette, we are far, far along the road 
from that naïve encounter. Mathematics education has produced much more 
informed and sophisticated classroom watchers. But despite this enhanced atten-
tion, there are still some fundamental and signifi cant questions about operating as a 
teacher in a technologised classroom that do not seem to have gone away. And that, 
I fi nd, is very, very interesting. 

 For instance, back in the older days, there used to be far greater concern with 
what used to be called ‘screen effects’, most particularly problematic features visible 
on screens that might mislead learners about the mathematics, due in considerable 
measure to issues of pixel size and the way certain mathematical phenomena 
were generated or implemented. While those schooled in mathematics via different 
means and media had little diffi culty discerning which was ‘something mathematical’ 
from a ‘screen effect’, concern was raised about how students, some of whose fi rst 
experiences – for instance, of graphs of functions – might be screen mediated, could 
develop into more discerning viewers of such screen displays. For me, this can 
helpfully be thought about in terms of device transparency (see below   ). 

 Once again, the phenomenon is not entirely new (for example, my generation of 
successful mathematics students, like those before us, had to become past masters at 
working with ‘faulty’ geometric drawings), but the ‘new’ devices amplify the effects and 
their signifi cance enormously. Yet, Bernard Parszyz’ (1988) interesting account distin-
guishing fi gure from diagram only arose in large part from early work with dynamic 
geometry software. So I wish to think more about digital devices as (among many 
other things) massive if perhaps temporary amplifi ers of didactic phenomena. I venture 
‘temporary’ because one thing I have noticed is that there is far less discussion/concern 
in the literature currently about screen effects ‘misleading’ students, only in part because 
of better pixelation and cleaner algorithms both simulating and dissimulating the 
mathematics. Why else, I wonder, might this ‘problem’ have dissipated or shifted? 

 Once again, this seems to me a fi rst-wave diffi culty, one for which the computer 
might have been blamed for leading to mistaken understanding. Now, it and its fel-
lows have shifted to being seen as second-wave phenomena, ones where we seem 
more willing to lay blame at the teacher’s door. The teacher ‘should’ now know 
what to do with the ‘opportunity’ of the mistaken pixel or the rounding error or 
whatever else arises from attempting to look with novice eyes through the e-screen 
(to use Mason’s interesting term) to the mathematics. 

 In relation to this book, I wonder about the pedagogic equivalent of screen effects 
and their link, among other things, to Clark-Wilson’s work on classroom ‘hiccups’. 
These can, in part, be seen in terms of ‘glitches’ in classroom functioning that parallel 
screen effects – only this time the concern (and responsibility) is centrally placed 
with the teacher rather than the student. And a parallel worry may also hold with 
regard to novice teachers, whose initial experience increasingly comes in device- 
richer settings, namely that they may not be able to distinguish clearly, at least 
initially, between ‘pedagogic screen effects’ and somehow more permanent or 
fundamental didactic challenges arising from teaching mathematics. 
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 I do not wish to fall into the yawning trap of essentialising the latter and consequently 
‘peripheralising’ the former, to say nothing of examining the interesting ways in 
which the two interact (cue mention of the older version of TPCK   , perhaps). Perhaps 
all didactic phenomena are ‘temporary’, in this sense of being conditioned by and to 
a considerable extent produced by the varied devices that have always graced the 
mathematics classroom (see, for instance, Kidwell, Ackerberg-Hastings and 
Roberts’s (2008) account of 200 years of mathematical materials). But the size and 
frequency of effects are much greater now. 

 These observations bring me to consider once more one of the background fram-
ings of this book, more evident in some chapters than others, in regard to profes-
sional development, namely how to bring new teachers into contact with and 
increase awareness of these amplifi cation and perturbation effects (some strong, 
some weak; some resolving, some mutating), as well as the potential for generating 
fundamentally new instances, of digital didactic phenomena. And all of these bring 
the hope of greater understanding of this very general second-wave focus and con-
cern, namely what it means to teach mathematics in a classroom setting, however 
temporary (cue a third wave) such settings themselves may be. But this book really 
underscores for me the fact that one profound interest for researchers in mathemat-
ics education of all backgrounds, over and above a specifi c concern with digitised 
classrooms themselves, comes from what highlights and sharp reliefs arise from 
their study in relation to the general topic of teaching mathematics in schools. 

 The professional development issue also brought to mind a tension in teacher 
education work around taking such observed regularities from research and incor-
porating them into a curriculum for teacher development (for example, Paul Drijvers 
et al.’s seven orchestrations from Chapter ‘  Technology Integration in Secondary 
School Mathematics: The Development of Teachers’ Professional Identities    ’, bear-
ing in mind their proposed expansion when looking at very young children, pro-
vided in Chapter ‘  Teaching Roles in a Technology Intensive Core Undergraduate 
Mathematics Course    ’). This process can contribute both to their normalisation and 
indeed, in some settings, to their institutionalisation. One need only recall the infa-
mous, imposed ‘three-part lesson’ of the UK national numeracy strategy, which 
became a focus for external teacher evaluation. A key question when observing such 
norms is to ask what forces have combined to normalise them, as well as perhaps 
looking for ways to subvert them, believing as I do that the particular is always 
richer than the general. 

    Frames of Conceptualisation 

 There are two theoretical (analytic/conceptual) frames which crop up to a greater or 
lesser extent in many chapters of this book, sometimes in the same piece: TPACK 
and instrumental orchestration. In the penultimate chapter, Ken Ruthven does 
sterling work in attempting a comparison across them, before offering his own third, 
with its interesting shift from ‘knowledge’ to ‘expertise’. This is important work, 
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especially when carried out so cleanly and carefully as here. I take advantage of my 
geographic location in this book to add a couple of further observations. 

 First, I believe the ‘metaphor’ of Venn diagram provides a problematic image: it 
‘forces’ TPACK to be a subset of PCK. It misses the fundamentally new (as well as 
framing everything   , as Ruthven points out, as knowledge rather than know-how, a 
point I return to at the end). It is a fl at image – as scrupulously even-handed as set 
theory itself – and has no scope for change or growth, no dynamic, no becoming. The 
categories themselves seem to be the preoccupying feature, giving rise to demarcation 
disputes, and not the reality they are supposed to capture, help analyse or explain. 

 Second, the addition of TPACK’s ‘and’ [2], as well as changing all of its component 
terms into nouns, seemingly changes TPCK into a straightforward list (it also risks losing 
the alphabetic/historical link to PCK). It unbundles the notion and risks shedding the 
implied interaction among the components. My parallel is with the mathematical 
notion of a topological vector space: this is not simply a vector space that is also a 
topological space; the two descriptors interact, in that the vector space operations must 
also be continuous with respect to the topology. Likewise, it is not simply technology, 
pedagogy and content knowledge in shopping-list isolation, but their mutual interac-
tions and shapings which are of interest and signifi cance in this book. 

 With instrumental orchestration [3], the focus is on patterns of classroom peda-
gogic organisation in the presence of technological devices. Its goal is to help examine 
one of the key elements of this didactic diffi culty, namely how to manage gaining 
facility with the device while maintaining a focus on the mathematics. Such devices 
in a mathematics classroom are nevertheless still means to an end, not ends in them-
selves (whether or not it is a device which has wider currency in the outside world 
or is solely for pedagogic use in a classroom setting). 

 These chapters brought to mind the work of Jill Adler (2001) on multilingual 
classrooms in the South Africa context and her productive use of Lave and Wenger’s 
notion of transparency to discuss the effect of language as a resource that needs at 
different times to be both visible and invisible. I wonder whether these notions have 
a helpful role to play in discussions of technology in the mathematics classroom, 
not least when one approach seems to be to frame digital devices (conservatively) in 
terms of classroom or curricular ‘resources’. And there is the general question of 
how such transparency transitions are effected [4]. 

 When I was a UK school student in the mid-1960s (pre-calculators), there were 
still occasions when such split (double) focus was involved, whether in being taught 
how to use a pair of compasses, a slide rule or logarithm tables (and why we were 
told to say ‘bar one’ not ‘minus one’), so this is not a completely new phenomenon. 
But it certainly seems to be one where such a difference in degree actually becomes 
a difference of kind. 

 And one of the ways in which studies of classrooms-with-technology can 
enhance the general study of teaching is by bringing to light altered forms of peda-
gogic phenomena or even more importantly new phenomena that have not been 
encountered before. Thus, in terms of the future, I expect the pertinent phenomena 
will be clearer and theorisations more settled, as the absorption of digital devices 
continues its complicated and intricate trajectory.  
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    Some Closing Words About ‘Technology’ 

 Words matter. This is a tenet that has shaped my career in mathematics education. 
With regard to the last bullet in my second opening paragraph, namely our frequent 
inability (individually and culturally) to perceive the radically novel, Marshall 
McLuhan (1964) had some interesting observations about the effect of metaphors, 
their conservative, backward-looking quality in search of resemblance, of similarity. 
In consequence, we can miss the new. In one of his examples, ‘the train is an iron 
horse’, he draws attention to how, unlike with horses, trains do not ‘get tired’ (even 
if they do require ‘feeding’). The automobile as a ‘horseless carriage’ is another 
instance McLuhan discusses. And Brian Rotman (2008), in his engaging and chal-
lenging book  Becoming Beside Ourselves , reminds us that it is not even perhaps the 
mathematics that will change most from digital pressures so much as the mathema-
tician. It is in this frame of mind, one of looking at the implicit effects of the choice 
of certain words, that I end this brief foreword in an etymological vein. 

  Technology  is a peculiar word, not least that its suffi x (‘-ology’ [5]) seems to 
promise the study of something, namely  techne , ‘know-how’ or craft, in contrast to 
 episteme , which might be rendered ‘knowledge’. (Recall my earlier comments on 
TPACK and Ruthven’s attempt to substitute ‘expertise’ for ‘knowledge’.) And in 
the Arzarello et al. chapter, the word ‘praxeology’ is used in this same sense of 
‘technology’. 

 But    technology actually refers to devices, to stuff – stuff into which mathemati-
cal and other know-how has been stuffed. Now we have ‘digital’ as the widespread 
preferred adjective, including ‘digital technology’, superseding ‘new technology’ 
or ‘information technology’ (to me one of the least informative) or ‘information 
and communication technology’. What is being signalled by this plurality of and 
rapid drift in naming – for change of terminology is seldom either neutral or inno-
cent? In particular, is it drawing attention to the most educationally salient aspect 
of these devices? 

 And in the same way that in the nineteenth-century ‘geometry’ and then ‘algebra’ 
morphed into ‘a geometry’ (which also permits ‘geometries’) and ‘an algebra’ (like-
wise seemingly authorising ‘algebras’), so ‘technology’ has, arguably faced with 
proliferation and fragmentation, shattered into ‘a technology’ (and ‘technologies’). 
One thing this pluralisation both refl ects and perhaps achieves is a destruction of a 
sense of naïve uniformity, that there is a monolithic thing called ‘technology’ that 
has constant and predictable effects and that internal differences are minor or insig-
nifi cant. Perhaps this has never been the case and ‘technology’ itself might have 
been used early on to provide an umbrella term for ‘calculators and computers’. 
These are words and expressions whose history could be explored to document an 
aleatory and forgetful fi eld (see Tahta and Love 1991; I believe ‘technology’ could 
be a signifi cant word to add to their closing list). 

 I end by drawing    attention to the term that is unvaryingly used to frame the 
central problem of this book, and that is ‘integration’: the unacknowledged but 
seemingly universal verb of pedagogic technological desire, an unanalysed good. 
Yet ‘integration’, to which obeisance is always made, is never actually interrogated – or 
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possibly even noticed. I recall a very telling conversation I had a decade ago with 
French didactician Aline Robert, when I was engaged in an exploration of new 
mathematics teacher induction in France. I had absorbed that the transitive verb 
commonly used for teacher education was  former  (literally, to shape or mould 
someone) and was using it fl uently, if unthoughtfully, when she asked me:  Qu’est-ce 
que ça veut dire de former quelqu’un ? This direct and powerfully simple question 
set me back on my heels. I draw on it here: What does it actually mean to  integrate  
technology into a classroom? 

 In their three-wave chapter that I mentioned at the outset, Sinclair and Jackiw 
(2005, p. 236) ask:

  Will it [school mathematics] ever reach the point where the phrase ‘innovation in ICT’ 
refl ects not just the presence of ICT in a classroom but something positive or exceptional 
about its  use  in the school, its involvement in the teaching and learning of mathematics? 

   One fi nal thing strikes me about the word ‘integration’: it usually refl ects a direc-
tionality, an attempt to integrate  this  into  that . And the  that  (in this case, the class-
room) usually has a prior integral and bounded existence. Is the goal a classroom in 
which the presence of digital devices passes unnoticed, unremarked? If so, will 
there then be a new boundaried whole into which the next ‘innovation’ will need to 
be ‘integrated’? 

 Just as the seemingly innocuous term ‘collaboration’ as a universal classroom good 
has signifi cant negative undertones for anyone with a memory of mid-twentieth- 
century European occupation (one only ‘collaborates’ with an enemy), so too any-
one who has experienced social, cultural, political or especially racial ‘integration’ 
(think civil rights and forced bussing, think immigration) cannot be purely sanguine 
about its challenges, prejudices and resistances by all concerned. And from psycho-
therapy (Clarke 1988), there is an uncomfortable awareness that someone can only 
resist if someone else is pushing.   

    Notes 

 [1]  Interestingly, 30 years on, programming as a mathematical activity worthy of 
the attention of school students seems to have all but disappeared (though see 
Chapter 6 by Buteau and Muller). For a further take on this, see:   http://www.
salon.com/2006/09/14/basic_2/    . 

 [2]  Possibly simply to change it from an initialism into an acronym – and perhaps 
as a play on rapper 2pac? My fi ngers will keep typing ‘teachnology’, my own 
hybrid second-wave form for TPCK. 

 [3]  In passing, I am slightly uneasy about the use of ‘Sherpa’ in one of these forms, 
given that it is the name of a people, not a job description. And ‘orchestrations’ 
are what composers do, not conductors. 

 [4]  The notion of meta-commenting (see Pimm 1994) may provide a useful means 
of detecting teacher attempts at shifting the degree of transparency. 
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 [5]  There is an old advert for British Telecom which has a doting grandmother 
(played by Maureen Lipman) cooing that her grandson had managed to pass 
an ‘-ology’ in the UK’s public exams at 16: ‘you get an ’ology and you’re a scientist’. 
And then there is the broad misuse of the term ‘methodology’ (the study of 
method), almost always when the plain term ‘method’ will suffi ce.  
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         Teacher educatio   n is an important issue for society and it is framed within cultural, 
social, political and historical contexts. In recent years international research in 
mathematics education has offered a range of theoretical perspectives that provide 
different and interrelated frames and viewpoints (   Ball and Bass  2003 ; Clark and 
Hollingworth  2002 ; Davis and Simmt  2006 ; Jaworski  1998 ; Wood  2008 ). The role 
of digital technologies within this discourse has an increasing relevance as the 
society and government place demands on teachers to integrate technology into 
their classroom practices so that students can experience its potential as a powerful 
learning tool (Drijvers et al.  2010 ; Lagrange et al.  2003 ; Trouche  2004 ). 

 Many of the chapters in this book open by stating how, despite over 20 years 
of research and curriculum development concerning the use of technology in 
mathematics classrooms, there has been relatively little impact on students’ 
experiences of learning mathematics in the transformative way that was initially 
anticipated. The direct response to this has been an increase in research that focuses 
on the role of the teacher within technology-mediated lessons, in addition to the 
need for governments and schools to justify their expenditure on educational 
digital technologies. Many researchers in the past have discussed the role that 
teachers might or could play in the technology-rich classroom – exploring, for 
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example, how the computer might blur the distinction between teacher and students 
(Papert  1980 ) or how the computer might even  become  the teacher (Pimm  1983 ) – 
but it is only recently that more systematic study of the unique demands and oppor-
tunities of the teacher teaching with digital technology had been undertaken. 

 Research on the use of technology in the mathematics classroom has tradition-
ally focused very strongly on the affordances of particular software environments 
(in addition to hardware confi gurations) as well as on the ways such software affects 
or even changes the nature of mathematical objects and relations (see Sinclair and 
Jackiw  2005 ). When the research lens is trained on the classroom teacher, however, 
the emphasis can shift away from the technology, the associated tasks for students, 
and even the mathematical concepts at play, as it is hard to maintain a deep focus on 
multiple aspects. This will be evident in the chapters that follow. However, many of 
the authors have provided more information about the tasks that featured in their 
research as additional materials that can be accessed on the Springer webpages 
associated with the book. 

 In compiling an edited volume such as this, which features research from 
Australia, Canada, England, France, Italy, Netherlands, Mexico, New Zealand and 
the United States, it is inevitable that there is a broad range of terminology adopted. 
For example, the word technology is used to mean software, programs, applets, 
applications, courseware, display technology and hardware. Similarly, this research 
domain has its own set of vocabulary and constructs. To assist the wider under-
standing of this domain within an international context, we offer a Glossary chapter, 
which can be found on the Springer website (  http://extras.springer.com     * )   , compiled 
by the editors and authors through a collaborative process of exchange of ideas. 

 Many of the chapters within the book make reference to examples of particular 
teachers using particular tasks that have incorporated technology in some way. In 
each case it will be important to consider the particular context for the associated 
research as, in many cases, the researchers are focusing on teachers’ existing or 
developing practice, rather than exemplifying forms of ‘best practice’. As such, 
each of the classroom tasks described within each chapter must be interpreted 
within its specifi c context and it is for the reader to actively question the appropri-
ateness of the task or the technology under scrutiny. Alongside this, the relevance of 
the cultural, social, political and historical context relating to each particular class-
room cannot be overlooked. 

    A Journey Through the Text 

 The book has been divided into three main parts, which are preceded by an opening 
chapter that plays the dual role of inviting the reader into the context of doing and 
teaching mathematics with digital technologies and of alluding to some of the oppor-
tunities and tensions that such work entails. In his chapter ‘  Interactions between 
teacher, student, software and mathematics: Getting a purchase on learning with 
technology    ’, John Mason shifts your attention away from the classroom-based 
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contexts contained within the remaining chapters of the book and invites you to 
engage with three different  e-screens  that are accessible from the Springer website 
(  http://extras.springer.com     * ). Mason’s chapter will challenge you to consider how 
to make sense of your mathematical experiences from the perspectives of several 
contrasting structural frameworks. He offers these in the spirit of his own work with 
pre-service and in-service teachers, which is centrally about helping them learn to 
attend to the mathematical ideas at play in the technological setting. 

 Following this opening chapter, the structure of the book unfolds as follows: 
 Part I     consists of six chapters that draw on a range of research perspectives (includ-
ing grounded theory, enactivism and Valsiner’s zone theory) and methodologies 
(including questionnaires, interviews, video analyses and longitudinal observations) 
that provide an overview of current practices in teachers’ use of digital technolo-
gies in the classroom and explore possibilities for developing more effective prac-
tices.  Part II  gathers six chapters that share many common constructs (such as 
 instrumental orchestration ,  instrumental distance  and  double instrumental genesis ) 
and research settings that have emerged from the French research community, but 
have also been taken up by other colleagues. The two papers in  Part III  provide 
more meta-level considerations of research in the domain by contrasting different 
approaches and proposing connecting or uniting elements. 

     Part I 

 The fi rst two chapters in this part both provide a snapshot of the ways in which large 
numbers of teachers are currently using digital technologies. In her chapter 
‘  Exploring the quantitative and qualitative gap between expectation and implementa-
tion: A survey of English mathematics teachers’ uses of ICT    ’, Nicola Bretscher sur-
veys 188 secondary teachers’ technology use in England with the aim of exploring 
the gap between the reality and the potential of ICT use in the mathematics class-
room. Rather than taking ICT broadly as the unit of analysis, Bretscher’s survey 
made important distinctions between software and hardware use, as well as between 
teacher-centred use of technology (whole classroom settings with data projectors 
and interactive whiteboards) and student-centred use (on laptops or in computers 
labs). Bretscher follows Remillard’s ( 2005 ) socio-cultural approach in her study of 
teachers’ technology use; this approach focuses more on how technology gets used 
as a resource in teaching, amongst other resources, which have institutional, con-
textual and historical dimensions, and not just cognitive ones. The results of her 
survey show a predominant use of IWBs in teacher-centred classroom environments, 
with relatively little use of mathematical software (such as graphing software and 
dynamic geometry software). Bretscher discusses the three factors that lead to the 
statistically signifi cant differences between using IWBs in a whole-class context 
and giving students direct access to ICT in a computer suite: teachers’ confi dence 
in using ICT; teachers’ perception of the diffi culty of classroom management; and 
the amount of curriculum material covered in ICT lessons. These factors should be 

   * Log in with ISBN 978-94-007-4638-1.  
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very important for professional development, and are worth bearing in mind in the 
following chapters in which more qualitative approaches are used to study the con-
ditions of digital technology integration. 

 In the chapter entitled ‘  Teaching with digital technology: Obstacles and opportu-
nities    ’, Michael Thomas and Joann Palmer consider the types of obstacles – which 
they defi ne as “anything that prevents an affordance-producing entity being in a 
classroom situation” (p. 72) – to research secondary teachers’ implementation of 
digital technologies. In order to study the indicators of teacher progress in imple-
mentation of technology use, the authors introduce the construct of Pedagogical 
Technology Knowledge (PTK), which they defi ne as including not only profi ciency 
in using technology but also understanding of the techniques required to build 
didactical situations incorporating it. Unlike TPACK and instrumental genesis, PTK 
attends also to the personal orientations of teachers and, thus, to the role that beliefs 
and attitudes play within technology integration. With a focus on this aspect of teacher 
orientation, Thomas and Palmer report on two studies that sought to examine the 
importance of teacher confi dence in the growth of PTK. One study involving 22 
secondary teachers shows that, for these teachers, there is a correlation between 
strong confi dence in one’s ability to teach with graphing calculators and a more 
positive attitude toward technology and its use in the learning of mathematics. A 
follow-up study involving 42 female secondary teachers confi rmed the strong cor-
relation between confi dence in using technology in the mathematics classroom and 
PTK. These fi ndings have important implications for professional development, 
which the authors outline in their fi nal section. 

 The rate at which technology evolves is such that there is an abundance of 
practice- based theories, which are offered to the community as a set of ideas that 
might prompt further research and discourse. The contribution by Allan Bellman, 
Wellesley Foshay and Danny Gremillon in the chapter ‘  A developmental model for 
adaptive and differentiated instruction using classroom networking technology    ’, is 
offered in this context; they suggest a progression in teachers’ development concern-
ing their uses of a particular technology that can make students’ learning outcomes 
more visible in the classroom. Drawing on grounded theory, and using extensive 
longitudinal observations, this chapter offers a model that could be used to consider 
how teachers might become masters of a given technology that has been designed to 
treat assessment differently. 

 In the chapter ‘  Integrating technology in the primary school mathematics class-
room: The role of the teacher    ’, María Trigueros, María-Dolores Lozan and Ivonne 
Sandoval examine the role of the teacher when integrating technology in the pri-
mary mathematics classroom. Guided by an enactivist perspective, this chapter 
examines the three different uses of technology that can occur in the classrooms 
–  replacement ,  amplifi cation  and  transformation  – and relate them to fi ve aspects 
of the role of the teacher in terms of communication of mathematics, interaction 
with students, validation of mathematical knowledge, the source of mathematical 
problems, and the actions and autonomy of students. The authors provide three case 
studies, each of which tends toward one of the three uses of technology (though all 
move between at least two different uses). They also emphasise the way in which 
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the characteristics of the technology used has a strong infl uence on the role of the 
teacher. Thus, their chapter shows also how any approach to technology integra-
tion for teachers must be attentive to the kinds of digital technologies being used. 

 In the chapter ‘  Technology integration in secondary school mathematics: The 
development of teachers’ professional identities    ’, Merrilyn Goos uses the construct 
of  teachers’ pedagogical identities  to prompt our thinking about the process through 
which two Australian secondary mathematics teachers (who are new to the profes-
sion) develop the afore mentioned identities as they begin to use technology in their 
classrooms. She defi nes technology in a broad sense to include display technologies 
in the classroom and various mathematical programs and applications. Goos’ theory 
emanates from a socio-cultural view of both teachers’ and students’ learning and it 
adapts Valsiner’s zone theory, as well as her earlier work, to provide a framework 
that takes account of the way that the technology alters the teachers’ role and the 
factors that infl uence how the teachers adopt the technology. Goos’ expansion of 
Valsiner’s zones lead her to defi ne a teacher’s  zone of free movement  and  zone of free 
action  as a complex system that overlaps with the teacher’s  zone of proximal 
development , which can be used to explain how beginning teachers are able to 
develop innovative practices that involve technology. 

 We move to a university mathematics department setting in the chapter ‘  Teaching 
roles in a technology intensive core undergraduate mathematics course    ’, as Chantal 
Buteau and Eric Muller describe the on-going development of a computer program-
ming course for undergraduate mathematicians in the Canadian setting, with an 
emphasis on the roles of the course tutors and the department in which they operate. 
The mathematics department’s goal was to achieve “an education of mathematics 
majors and prospective teachers of mathematics that would empower them to 
develop, implement, and use their own interactive mathematical objects”. The 
authors use the context of the  Mathematics Integrated with Computers and 
Applications  courses, which have been in development since 2001, to raise issues 
around the associated course design and implementation.  

     Part II 

 Most of the chapters in this part are inspired in one way or another by Trouche’s 
( 2004 ) notion of  instrumental orchestration , which is a construct that is based on 
the ergonomic framework of the instrumental approach. It articulates teachers’ work 
before and during their activity with students, which is described in terms of 
schemes of action. In the chapter ‘  Digital technology and mid-adopting teachers’ 
professional development: a case study    ’, Paul Drijvers, Sietske Tacoma, Amy 
Besamusca, Cora van den Heuvel, Michiel Doorman and Peter Boon combine 
instrumental orchestration with elements of TPACK (a framework that is 
described in more detail also in the chapter ‘  Frameworks for analysing the exper-
tise that underpins successful integration of digital technologies into  everyday 
teaching practice    ’) to describe the practices that teachers may develop when they 
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use technology in their classrooms, and how these practices change over time when 
working in a community of teachers. These practices are described in terms of the 
use of seven different orchestrations. The authors stress the importance of support-
ing mid-adopting teachers in their professional development concerning technol-
ogy, rather than focusing on the introduction of new technologies to non-expert 
teachers. Many of the orchestrations they describe are used in subsequent chap-
ters of this part, and further developed to better suit different contexts. 

 In the chapter ‘  Teaching mathematics with technology at the kindergarten level: 
Resources and orchestrations    ’, Ghislaine Gueudet, Laetitia Bueno-Ravel and 
Caroline Poisard seek to adapt Drijvers’ et al. orchestrations to the context of the 
kindergarten mathematics classroom. Indeed, one of their aims is to study the kinds 
of orchestrations that might be specifi c to this level of schooling, in contrast to those 
described in the context of secondary school mathematics teaching. The authors 
provide case studies of three kindergarten teachers using two different applications, 
one a digital abacus and the other a game focusing on using number as position. 
They fi nd new orchestrations in these kindergarten classrooms that are related to the 
differences in the resource system in the kindergarten classroom as well as in 
the importance of verbalisation for these children who do not yet read or write. 
Their chapter shows the need for theory development that is attentive to context – in 
this case the grade level of the students. 

 The chapter entitled ‘  How do teachers integrate technology in their practices? A 
focus on their instrumental geneses    ’ moves to the context of the secondary mathe-
matics classroom, where Mariam Haspekian describes a new study that expands 
upon her doctoral work in which she introduced two constructs,  instrumental dis-
tance  and  double instrumental genesis , focusing on the use of spreadsheets within 
mathematics education. These constructs, originating from French research based 
on the activity theoretic approaches fi rst proposed by Vygotsky, offer insight into 
the processes through which teachers appropriate the spreadsheet for use as a math-
ematical and pedagogical resource. Her case study of an experienced secondary 
mathematics teacher illuminates aspects of the teachers’ practices. 

 There is resonance between the work of Haspekian and that of Alison Clark- 
Wilson, whose research also concerns the professional learning of experienced sec-
ondary mathematics teachers. Clark-Wilson’s longitudinal study of two teachers 
focuses on aspects of what and how the teachers learnt as they began to use a 
complex multi-representational technology within an English school setting. In 
her chapter ‘  A methodological approach to researching the development of teachers’ 
knowledge in a multi-representational setting    ’, Clark-Wilson illuminates the method-
ology through which her construct of the  hiccup  became evident, highlighting the 
challenges that studies into teachers’ knowledge development present to researchers. 
Her approaches, which are framed within the instrumental perspective, offer insight 
into a researchers’ thinking in designing systematic and objective research protocols. 

 By contrast, in the chapter ‘  Teachers and technologies: Shared constraints, common 
responses    ’, Maha Abboud-Blanchard adopts a meta-level approach in her cross-
analysis of the outcomes of three different French studies that each researched aspects 
of the process of teachers’ integration of technology within mathematics classrooms. 
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Two of these studies involved empirical research in secondary classrooms concerning 
the use of a computer algebra system, dynamic geometry program and web-based 
resource, whilst the third concerned a meta-analysis of over 600 individual publica-
tions on this theme. Abboud-Blanchard, who uses the construct of the  double 
approach  (Robert and Rogalski  2002 ), shows how it is possible to identify the 
characteristics of ordinary teachers’ uses of technology and contrast the resulting 
outcomes in terms of the different components of their practice. 

 The chapter ‘  Didactic incidents: A way to improve the professional development 
of mathematics teachers    ’, by Gilles Aldon, connects to the other chapters in this 
part through some shared theoretical perspectives. It is based on the instrumental 
approach, emanating from the viewpoints of  documentational genesis , and the the-
ory of didactic situations ( milieu ). Aldon introduces the ideas of  didactic incidents  
and  perturbations , theoretical constructs that help to explain the dynamic relation 
between teaching and learning from the perspective of documentary genesis that is 
contextualised within a milieu. These ideas support the analysis of teaching and 
learning as it underpins the construction of knowledge in a dynamic way and as 
processes that evolve over time, with the possibility of enhancing teachers’ profes-
sionalism. The data and examples are taken from the European Union Comenius 
funded project EdUmatics, and provide evidence of this dynamism. The transforma-
tion of a resource into a document, or of an artefact into an instrument, when schemes 
of utilisation are activated, are not stigmatised once and for all, but they are seen as 
an interrelated set of on-going processes.  

     Part III 

 In the chapter ‘  Meta-didactical transposition: A theoretical model for teacher educa-
tion programme    ’, Ferdinando Arzarello, Ornella Robutti, Cristina Sabena, Annalisa 
Cusi, Rossella Garuti, Nicolina Malara and Francesca Martingone highlight the 
need to take the complexity of teacher education into account with respect to the 
institutions in which teaching operate, alongside the relationships that teachers must 
have with these institutions. This chapter also considers the evolution of the profes-
sional role of a teacher both as an individual within classes, and as member of a 
community of teachers. To address this need, the authors use Chevallard’s ( 1985 , 
 1992 ,  1999 )  Anthropological Theory of Didactics  (ATD), which is mainly centred 
on the transposition of mathematics created by the teacher with the students. It is 
applied to teacher education, that is, to teachers as learners in a community, in which 
they improve their professionalism using technologies and resources, discussing 
among themselves and other communities, particularly that of researchers. The 
result of this study is the presentation of a model entitled the  Meta-Didactical 
Transposition,  which describes the evolution of teacher education over time, by 
analysing the different variables involved:  components  that change from external to 
internal;  brokers  who support teachers interacting with them; and  dialectic inter-
actions  between the community of teachers and researchers. This chapter is 
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particularly useful to help researchers interpret the process of teacher education, not 
only in a particular national context, but in various situations, because this process 
is usually characterised by praxeologies that are adopted and evolve over time, as 
well as increases in teachers’ awareness when they come into contact with the com-
munity of education researchers. Moreover, the model usefully describes the role 
that institutions may have in this process, especially as, in every country, teacher 
education programme often start from specifi c directives given by a central institu-
tion that is linked to schools or to the academy. 

 The chapter entitled ‘  Frameworks for analysing the expertise that underpins 
successful integration of digital technologies into everyday teaching practice    ’, by 
Kenneth Ruthven, compares and contrasts some of the main frameworks that are 
currently being used in research on teacher expertise in the context of digital tech-
nology integration (and within this book). These frameworks are all relatively new 
and each attends to a somewhat different aspect of the teaching activity. In this 
chapter, Ruthven analyses each of these frameworks and shows, through examples, 
how they function differently – both in terms of their epistemological assumptions 
and their intended unit of analysis – as research tools. All three approaches that 
Ruthven discusses emerge out of research focused at the secondary level but 
involving a range of different digital technologies. 

 Ruthven begins with the Technology, Pedagogical Content Knowledge approach 
(TPACK), which complements, with the addition of the ‘technology component’,    
the widely-used PCK framing of the knowledge that mathematics teachers need to 
teach. Using examples from research, Ruthven shows how this framework is used to 
“signal the need to consider technological, pedagogical and epistemological aspects 
of the knowledge underpinning subject teaching and their interaction in general 
terms” (p. 380) as part of the other components of knowledge, but that it provides 
only a “rather coarse-grained tool for conceptualising and analysing teacher knowl-
edge” (p. 380). He then considers the Instrumental Orchestration approach, which 
also draws on an existing framework (instrumental genesis) focusing on student use 
of digital technologies (rather than on teacher expertise, as in PCK). This approach 
has been successful in providing a fi ne-grained analysis of the organisation of class-
room activity around the use of a tool. Researchers using this approach have devel-
oped a typology of orchestrations that have enabled the identifi cation of more 
general classroom patterns as well as comparison across different teachers and/or 
classrooms. As Ruthven writes, the typology “makes visible an important dimen-
sion of the professional knowledge that teachers participating in trialling had 
employed or developed in order to incorporate use of these digital technologies into 
their practice” (p. 384). While the Instrumental Orchestration approach used to 
study the integration of new technologies depends on the development of certain 
knowledge-for-teaching, Ruthven’s third framework, the Structuring Feature of 
Classroom Practice approach, has a different purpose, which is to support the 
identifi cation and analysis of teaching-with- technology expertise. This approach 
has evolved from prior research attending not only to teacher mathematics know-
ledge but also to classroom organisation and integration. It offers fi ve structuring 
features of classroom practice that shape the ways in which teachers integrate new 
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technologies. This approach provides a more differentiated characterisation of some 
of the key features of the instrumental  orchestration approach. 

 As you read through the chapters and encounter these different approaches 
(or, indeed, other ones), you might consider some of the particular orientations 
toward the phenomenon of technology integration in mathematics teaching that 
Ruthven has outlined, asking yourself perhaps why a particular approach was chosen 
and what it offers as well as obscures in terms of understanding the phenomena 
at hand. For beginning researchers, this chapter offers an (often missing) critical 
comparison between competing frameworks that should make it easier to select the 
one more appropriate for your research questions and goals. 

 In the ‘  Conclusion    ’, the editors make some concluding comments about the sim-
ilarities and differences between the theoretical constructs, contexts and implica-
tions of the book’s chapters, for example the ways in which the various constructs 
might be used to help to shape future research (and its associated methodologies) 
concerning the appropriation of mathematical digital technological tools in a range 
of educational settings. In addition, the editors look holistically at the implications 
of the various constructs on the design, content and implementation of professional 
development for teachers. Finally, the editors suggest how the individual chapters or 
combinations of chapters might be used within teaching sessions aimed at the 
intended readership of this book, that is to say researchers, Masters’ or Doctoral 
students and pre-service and in-service teachers.      
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dances and constraints; fi ve different structured forms of attention are used to refi ne 
the grain size of analysis; four aspects of activity are used to highlight the importance 
of balance between resources and motivation; and the triadic structure of the human 
psyche (cognition, affect and enaction, or intellect, emotion and behaviour) is used to 
shed light on how affordances may or may not be manifested, and on how constraints 
may or may not be effective, depending on the attunements of teachers and students. 
The conclusion is that what matters is the way of working within an established 
milieu. The same stimulus can be used in multiple modes according to the teacher’s 
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        Introduction 

 What roles can teachers play in using e-screens 1  to support interactions with  students and 
mathematics? How might teachers’ pedagogic choices be informed? The questions 
being explored in this chapter concern the affordances of teacher-guided use of ICT for 
stimulating interactions between teacher, student and mathematics. Attention is restricted 
to interactions which begin with the teacher taking initiative, either because the applet 
itself is a screencast of a tutor, or because the use of the applet is directed by the teacher. 

 Ordinarily one expects to fi nd a description of theoretical constructs before being 
told the method undertaken for the collection of data and the theoretical frame(s) for its 
subsequent analysis. However my approach is fundamentally experiential, which 
means that the data being offered are what arises in the reader through what they notice 
(what comes-to-mind) while reading and undertaking task-exercises. The analysis con-
sists of a narrative to account for observations that I have made which may resonate 
with what others have observed, or as in the case here, to give an account of affordances 
based on experience in multiple settings. The empirical aspect of these studies lies not 
in my presenting my data here, but in generating recent experience in the reader. The 
analysis is informed by experience. Note the parallel with teaching and learning math-
ematics: experience can inform action-in- the-moment without being used to try to con-
vince others using extra-spective data collected in some other situation. 

 The following assumptions provide an overview of the theoretical constructs 
being used, but these are only elaborated after you have had some exposure to the 
specifi c stimuli being considered.

   A0: The human psyche involves cognition, affect, behaviour and attention-will.  
  A1: Teaching takes place in time and learning takes place over time.  
  A2:  Action requires three roles to be fi lled: initiating, responding and mediating, and 

each of these roles can be played by the teacher, the student and the content.  
  A3: Effective activity requires a balance between motivation and resources.  
  A4:  One thing that we do not seem to learn from experience is that we do not often 

learn from experience alone. Tasks are provided for students to initiate activity, 
which provides experience and, in order to learn effectively from experience, it 
helps to adopt a refl exive stance.  

  A5: Aligning teacher and student attention improves communication.    

 The affordances of the three forms of e-screen stimuli arise from the form of 
relations amongst discerned details in what is experienced. These relations are sug-
gestive of general properties, which apply to many situations, being instantiated in the 
particular. Validity of these general properties can be tested by considering whether 
the proposed narrative fi ts or resonates with recent personal experience; whether the 
distinctions made help make sense of personal past experience; and most importantly, 
whether this articulated experience informs future practice through being sensitised to 
notice opportunities to act freshly and more effectively (Mason  2004 ).  

   1 I use ‘e-screens’ to refer to electronic screens, as distinct from the mental ‘screen’ which is the 
domain of mental imagery.  
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    Three Studies 

 The studies offered here all involve the use of an e-screen to initiate activity, in the 
form of a screencast, an animation, and an applet. Little will be achieved simply by 
reading the accounts however, since it is necessary to experience the stimuli for 
yourself, perhaps sensitised by assumptions A0 through A5. 

    ScreenCasts 

 With Jing and related software it is easy to record short videos showing work on 
mathematical problems or conceptual animations. There is a set of them at   www.
maths-screencasts.org.uk     (set up July 2011; accessed Feb 2012) or Khan Academy 
(  www.khanacademy.org     accessed Mar 2012). 

 Pick one of the screencasts, say the one on Lagrange multipliers:  
   http://www.maths-screencasts.org.uk/scast/LagrangeMult.html     
 What are you attending to as the screencast proceeds? 
 What learning is afforded by watching the screencast? 
 What would a student have to do to learn something from the screencast? 

 On the surface, the task for students is to make mathematical sense of what is 
presented, and to increase their confi dence that they can tackle a similar problem 
effectively in the future. The question of what constitutes a ‘similar problem’ might 
need to be discussed explicitly. During the screencast your attention may have 
shifted between what was on the screen and what was being said, and drawn to the 
symbols being written and spoken at the same time. Would a student watching this 
know how the presenter knew to perform the actions she does?  

    Rolling Polygons 

 At the heart of this task is an animation, however the presentation begins with set-
ting the scene by inviting the use of mental imagery. 

 Imagine a point  P  moving in a circle centred at point  C . Imagine a fi nite number 
of lines (at least 3) being drawn through  C . From  P  drop perpendiculars onto 
your lines and mark their feet as  F 1,  F 2,  F 3, … . Now join  F 1,  F 2, … in sequence 
to form a polygon. What happens to the polygon as  P  moves around the circle? 
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 On the surface, the initial task for students is to become aware of and be at least 
somewhat surprised by a phenomenon, and then to begin to seek an explanation 
for that phenomenon. This in turn is likely to call upon students’ powers to make 
deductions about angles using previously encountered fact such as the effects on 
angles of rotating lines through 90°, or angles in a quadrilateral with two right 
angles and angles subtended at a circle on the same side of a chord, etc.. 

 The initial mental imagery is intended to contribute to the ‘reality’ of the task through 
exercising a fundamental human power and evoking curiosity as to what might happen. 
It sets the scene. This is a pedagogic strategy that can be used in many situations, because 
imagining ourselves doing something in the future is the basis for planning.  

    Secret Places 

 This task and its applet support is intended for teacher-led exploration, though it can 
be used by individuals or small groups working without the teacher. 

 What role is played by the initial mental imagery? 
 What are you attending to as the animation proceeds? 
 What actions are stimulated by watching the animation? 
 What would a student have to do to learn something from the animation and 
the applet? 

 Changing  P  mentally is pretty diffi cult, and so the task proper begins with an 
animation involving a triangle (downloadable from ref   http://extras.springer.com     * ; 
double click on right hand fi gure to see animation).         

   * Log in with ISBN 978-94-007-4638-1.  
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 Initially there are fi ve places around a table, and one of them has been selected 
as a ‘secret place’. You can probe any place, but all you will be told is whether 
it is ‘hot’ (meaning either it or one of the adjacent places on either side of it is 
the secret place), or ‘cold’. How can you most effi ciently (least number of 
probes) discover the secret place?

 In the applet (  http://extras.springer.com     * ), if you 
click on a place, it will show either ‘red’ or ‘blue’. 
Red signals that the secret place is either the one 
chosen, adjacent to it, whereas blue signals that this 
is not the case. 

      

   What are you attending to as you explore the effect of clicking on places? 
 What actions are stimulated by predicting, justifying and then clicking? 
 What would a student have to do to learn something from a teacher-led search 
for a strategy? 

 Applet available for download at 
   http://mcs.open.ac.uk/jhm3/Applets%20&%20Animations/Reasoning/Secret%20
Places/Secret%20Places%201D.html     (Set up Feb 2011; accessed Oct 2012). 

 On the surface, the task for students is to locate the ‘secret place’ as effi ciently as 
possible, thus drawing on their natural powers to imagine (what could happen if 
they click somewhere) and to reason (possible consequences of clicking and whether 
that would be helpful). 

 For all three stimuli, what matters is what students do next, having encountered the 
stimulus; what ways of working have been established; and what sort of  atmosphere 
students are used to.   

    Elaboration of Assumptions 

 The assumptions that follow make no direct reference to the use of technology. 
However, later in the chapter the descriptions of interactions with the e-screens 
include this necessary elaboration. 

   * Log in with ISBN 978-94-007-4638-1.  
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    A0: The Human Psyche Involves Cognition, Affect, 
Behaviour and Attention-Will 

 This fi rst assumption is implicit in Western psychology, but has its roots in ancient 
Eastern philosophy-psychology (Ravindra  2009 ; Mason  1994b    ). Despite this, it is 
all too easy to forget to engage the whole of students’ psyche. 

    Consequences 

 Gattegno ( 1970 ) placed the notion of  awareness  at the core of his  science of educa-
tion.  By  awareness  he meant ‘that which enables action’, which includes the somatic 
(eg. control of breathing, heart-rate, perspiration etc.) and the automated or inter-
nalised, as well as both the subconscious (eg. Freudian and other impulses) and the 
conscious. Gattegno claimed that it is awareness that can be educated, and indeed 
that that is all that can be ‘educated’:  only awareness is educable . With the sample 
ICT uses, this raises the question of what awarenesses are available for educating 
due to the affordances of the ways of working and the medium used. 

 By contrast,  only behaviour is trainable . This conforms with an image found in 
several of the Upanishads (Rhadakrishnan  1953 , p. 623; Mason 1994), in which the 
human psyche is seen as a chariot. The chariot itself is seen as a metaphor for the 
body and hence for behaviour.     

 from website:   http://members.ozemail.com.au/~ancientpersia/page8a.html     

 The horses drawing the psyche-chariot represent the emotions (affect). These are 
the source of energies which are made available to the psyche. Thus  only emotion is 
harnessable . Emotion is the way that we access energy which acts through the dis-
position of various selves that take charge in the individual. All of these contribute to 
the setting in which attention acts, which many philosophers equate with the will, 
since as William James ( 1890 , p. 424) observed, “each of us literally  chooses , by his 
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way of attending to things, what sort of a universe he shall appear to himself to 
inhabit”. It is not simply what you are attending to, but how you are attending to it 
that matters (Mason  1998 , see A5). A mixture of surprise and curiosity draws on 
psychic energy accessed through the emotional-affective charge channelled accord-
ing to the habits of the active ‘self’. The issue is developing a milieu in which master-
ing the mathematical aspect of a situation matters to students. 

 Trained behaviour is essential, being the manifestation of automated functioning 
and habits, but on its own it can be limiting and infl exible, whereas coupled with 
awareness the two together can stimulate and exploit the energy that is often called 
creativity. None of the studies offered here are directly intended to train behaviour 
concerning the carrying out of a mathematical procedure, though they could be used 
to train behaviour concerning collective and individual mathematical thinking. 

 Assumption  A 0 can be used to probe implications of the adage ‘practice makes 
perfect’ which is the foundation stone of behaviourist theories of how learning takes 
place. Certainly it is necessary to integrate behaviours into psycho-somatic func-
tioning. However, repetition alone is no more likely to lead to internalisation than is 
constant exposure to the same idea. Even stimulus–response (Skinner  1954 ) is only 
effective in certain circumstances. As Piaget ( 1970 ) pointed out under the label 
 genetic epistemology , the individual is an active agent, constructing her own narra-
tive. From a Vygotskian perspective, narrative construction is based in and takes 
place within socio-cultural milieu. The role of a teacher is to direct attention towards 
appropriate narratives which constitute conceptual understanding (Bruner  1990 ; 
Norretranders  1998 ), and to provoke students to integrate appropriate action or 
functioning through subordinating attention (Gattegno  1970 ;    Hewitt  1994 ,  1996 ). 
‘Integration through subordination’ is achieved by withdrawing the attention ini-
tially required to carry out an action so that the action can be carried out in future 
while absorbing a minimum of attention. 

 Henri Poincaré ( 1956 ) expressed surprise that people fi nd mathematics diffi cult to 
learn, because from his perspective mathematics is entirely rational, and humans are 
rational beings. Jonathon Swift ( 1726 ) had already challenged this notion, proposing 
that human beings are at best ‘animals capable of reason’. If rational reasoning is not 
activated, mathematical thinking is likely to be experienced as mysterious. The suc-
cess of behaviourist strategies based on stimulus–response combinations shows that 
Swift was correct: people can be trained and enculturated into certain types of behav-
iours and this can be partly conscious and partly unwitting on their part. They can be 
successful in routine situations such as tests, but their success is short-term unless 
routines are frequently rehearsed. Such training only takes you so far. Once will is 
activated, attention wanders, different selves with different energy fl ows and disposi-
tions come into play, and learning becomes much more complex. Hence the need to 
educate awareness as well as to train behaviour. 

 To be responsible for your own learning is a commonplace sentiment that fi ts 
with Western democratic values. The word  responsible  has roots in parallel with the 
Italian  spondere  which means ‘to be able to justify actions’ (to respond). Jürgen 
Habermas ( 1998 ) began from a similar position to Poincaré’s assumption of ratio-
nality, but he focused on responsibility, which he cast in terms of justifi cation:
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  “The rationality of a person is proportionate to his expressing himself rationally and to his 
ability to give account for his expressions in a refl exive stance. A person expresses himself 
rationally insofar as he is oriented performatively toward validity claims: we say that he not 
only behaves rationally but is himself rational if he can give account for his orientation toward 
validity claims. We also call this kind of rationality  accountability  (Zurechnungsfähigkeit).”    
(Habermas  1998 , p. 310 emphasis in the original, quoted in Ascari  2011 , p. 83) 

   He delineated three different domains or types of rational justifi cation:

    Epistemic : factual; assertive (epistemic rationality of knowledge)  
   Teleological : intentions behind actions (teleological rationality of action)  
   Communicative : attempts to convince, requiring listener acquiescence (communica-

tive rationality of convincing), with both a  weak  and a  strong  form.    

 The point is that justifi cation is an essential core component of mathematical 
thinking, as well as involvement in society. A successful practitioner without a nar-
rative by means of which to justify choices on the basis of explicit criteria is at the 
mercy of habits in the face of changing conditions (Mason  1998 ). 

 The psyche operates within a socio-cultural-historical milieu with its undoubt-
edly important infl uences, most especially the atmosphere or ethos developed in the 
classroom or other setting and the social pressures from peers and from institutional 
norms (Brousseau  1997 ). One of the diffi cult things about online activity is that it is 
much harder to infl uence from a distance the atmosphere in which students are 
working than it is in face-to-face interactions.   

    A1: Teaching Takes Place in Time; Learning Takes Place 
Over Time 

 Despite the desire by government to have inspectors witnessing learning, learning is 
a maturation process. It requires time (Piet Hein  1966 ). Gattegno ( 1987 ) went so far 
as to suggest that learning actually takes place during sleep, when our brains choose 
what sense-impressions from the day to let go of. Thus memory is not about storing 
but about making and breaking links. Learning is reinforced not simply through re- 
encountering similar actions, activities and experience in fresh contexts, in what 
Bruner ( 1966 ) referred to as a spiral approach to the curriculum, but through devel-
oping an increasingly complex narrative to accompany the developing richness of 
connections. 

    Development 

 At the Open University (1981) we used the trio of  see–experience–master  (SEM) to 
emphasise that ‘learning’ does not take place on fi rst encounter, nor even after some 
further experience. The triple can act as a reminder that encountering new ideas is a 
bit like being in a train station. An initial encounter is like seeing an express train go 
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by when details are hard to make out and it all seems off-putting or complicated. 
With continued encounters there is growing familiarity, a bit like seeing a freight 
train rumble by. Eventually there is a degree of confi dence and mastery, as when a 
passenger train stops and you get on and go-with the idea. 

 We translated Bruner’s three modes of (re)presentation (enactive-iconic- symbolic) 
into a spiral of  manipulating-the-familiar, getting-a-sense-of,  and  articulating  that 
sense ( MGA ) as a reminder that it is natural to use what is familiar in order to get a 
sense of underlying relationships which, when articulated more and more succinctly 
eventually become confi dence-inspiring and familiar for use in further manipulation. 

  MGA  fi ts well with the principle of variation (Marton and Booth  1997 ; see also 
Watson and Mason  2005 ,  2006 ): learning a concept is becoming aware of what 
aspects of an example can be varied, and over what range, while remaining an 
instance of the concept. What is available to be learned is what is varied in a succes-
sion of experiences in contiguous space and time. Spiral learning and exposure to 
variation in key aspects is sometimes replaced by frequent repetition of nearly iden-
tical tasks in an attempt to train behaviour. However, if attention is not drawn 
(explicitly or implicitly) to carefully engineered variation of key aspects, the result 
may be successful performance on routine exercises, without educating awareness. 
It may also all too easily have a negative infl uence on disposition to engage, with 
students only willing to undertake what they know they can already succeed at.  

    Consequences 

 Learning, seen as educating awareness, training behaviour and harnessing emotion 
within a particular milieu, can be cast in terms of developing dispositions to attend in 
appropriate ways. A teacher cannot ‘do the learning’ for students. Indeed, the more 
they try to indicate to students the behaviour being sought as evidence of learning, 
the easier it is for students to display that behaviour without actually generating it for 
themselves, without educating their awareness (this is the  didactic tension  fi rst artic-
ulated by Brousseau: see Brousseau  1997 ). What a teacher  can  do is participate in the 
various possible modes of interaction with students, without looking for evidence of 
‘learning’ in too short a term (Piet Hein  1966 ). It often takes time to integrate a way 
of acting into your own functioning, even when this is stimulated by effi cient and 
effective pedagogy (integration through subordination of attention).  

    Implications for Teaching 

 When choosing or designing task-sequences SEM and MGA can act as reminders 
when choosing or designing task-sequences to arrange for multiple encounters, and 
within each encounter, multiple instances with relevant variation. Learning is seen 
as a maturation process, like baking bread or brewing beer. It takes time. When 
rushed, the tendency is to revert to superfi cial success through routine exercises 
 carried out using templates based on ‘worked examples’. 
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 SEM and MGA can also act as reminders that ‘responsible learning’, that is, 
 having access to justifi cations for actions initiated is a gradual process, as complex 
narratives take time and multiple encounters with phenomena in order to come to 
articulation. As the articulation becomes more succinct and familiar, it becomes 
available as a component in yet further development.   

    A2: Action Requires Three Roles to be Filled: Initiating, 
Responding and Mediating 

 Following Bennett ( 1966 ,  1993 ) who developed a framework called  Systematics , 
based on the quality of numbers, action has the quality of three-foldedness. Action 
requires an initiating impulse, a responding impulse and a mediating impulse. 
Without the mediator, there is nothing to bring or hold the initiating and responding 
together. Put another way, any action takes place within a context or milieu (Brousseau 
 1997 ) that enables the action to take place. 

    Consequences 

 From this perspective, interaction between a teacher-tutor, a student, and mathematics 
can take place in one of the six combinatorially distinct ways of arranging these three 
components in the three roles (Mason  1979 ). For convenience these six modes are 
known as the six ex’s: Expounding, Explaining, Exploring, Examining, Expressing, 
Exercising, all within a milieu consisting of institutional affordances and constraints 
(including classroom and institutional social norms and demands). The milieu also 
includes the focal world(s) or spaces of the participants. Usually this consists of the 
mental worlds in which people dwell and from which they express their insights, but 
the presence of virtual screen-worlds provides a more explicitly taken-as-shared world 
of experience, namely the world of phenomena acted out on, and interacted with, a 
screen (Mason  2007 ). 

 The key feature for consideration here is the mediating or reconciling contribution 
of one of these roles so as to bring the other two into relation, and so as to sustain that 
relation for long enough for the action to reach fruition, leading to a result that can par-
take in further actions. The use of electronic screens associated with the tasks sug-
gested above centres on the teacher as initiating impulse, and so draws particularly on 
the interactions summarised as  expounding  and  explaining , although there are plenty 
of opportunities to shift into other modes from time to time. 

  Expounding  is characterised by the presence (actual or virtual) of students bring-
ing the teacher into contact with the mathematics in a special way. The term  peda-
gogic content knowledge  (Shulman  1986 ) has been used to describe what is needed 
in order to carry through this action effectively, while others try to capture it by 
describing the  knowledge needed for teaching  (Davis and Simmt  2006 ). Here the 
focus is more on the experience of the action as the teacher crafts tasks for students 
through contacting the didactic peculiarities of the topic, calling upon relevant 
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pedagogic strategies. The effect of the action is to draw the students into the world 
and mind-set of the teacher. When the micro world or software plays the role of 
teacher, the quality of the action depends on the quality of the preparation of the 
software, which requires sensitivity to student experience and deep knowledge 
about didactic tactics and pedagogic strategies in relation to classic misunderstand-
ings and misapprehensions within the particular topic. 

  Explaining  is used in this way of thinking with a non-standard meaning. It is 
characterised by the teacher making contact with the thinking of the student, enter-
ing the student’s world, centred on, made possible by, and hence mediated by the 
particular mathematical content. As soon as the teacher experiences “Ah that is 
where the diffi culty lies”, there is likely to be a shift into expounding. Staying with 
the world of the student involves ‘teaching by asking’ and ‘teaching by listening’ 
(Davis  1996 ) rather than teaching by telling. The more usual sense of  explain  as ‘to 
make plain’ is highly idiosyncratic, because what is ‘plain’ to the speaker may 
not be ‘plain’ to the audience. Thus the usual meaning of  explaining  is usually an 
instance of the action of  expounding . 

 In relation to the previous axiom concerning teaching taking place in time, call-
ing upon modes of interaction in which students play the initiating role, and those 
in which the content plays this role, can at least balance the student experience of 
modes of interaction, and can provide opportunity for  exploring  the ideas (teacher 
mediates between content and student);  expressing  (students feeling the need to 
construct their own narrative, so the student mediates between the content and the 
teacher);  exercising  through practising what needs to be practised (the teacher medi-
ates between the student and the content by providing exercises); all in preparation 
for  examining , in which students’ own developing criteria for whether they are 
understanding and appreciating appropriately are tested against the expert’s criteria 
(the content mediates between student and teacher).  

    Implications for Teaching 

 Perceiving actions in which one participates as involving three impulses within a 
milieu can transform teaching by altering what a teacher attends to, and how, and 
also how they see their contribution. Arranging the energies of the classroom so that 
as teacher you can dwell in mediating or in responding can be exhilarating as well 
as liberating for students. Provoking students into experiencing the desire to express 
promotes the maturation of their understanding and their appreciation of what they 
are integrating into their functioning, that is, the education of their awareness.   

    A3: Effective Activity Requires a Balance Between Motivation 
and Resources 

 Following Bennett ( op. cit. ), activity involves two axes: motivation and operation 
within a world of attention. Motivation in an activity has to do with the perceived 
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gap between goals or aims and current state. It is ‘what matters’ to the student (Fig   .  1 ). 
This conforms with a Vygotskian perception of activity but with the addition of a 
tension or gap between current state and goal, which plays the role of disturbance 
identifi ed by Heidegger ( 1962 ) and many others (e.g. Festinger  1957 ; Piaget  1971 ) 
as what activates learning (leading to assimilation and accommodation).

   The second axis concerns the resources available (both those brought by the 
students and those provided by the environment) and the tasks provided. If the 
resources available are inadequate for the gap between current state and goal, or if 
the tasks do not actually provide suffi cient stimulus to reach the goal, then the activ-
ity will be ineffective. 

 Resources include student propensities and dispositions, and learner access to 
their natural powers such as stressing and ignoring, imagining and expressing etc. 
Where student powers are usurped by textbooks or modes of interaction with the 
teacher, students soon learn to park their powers at the door as not being required, 
and so become dependent on the teacher to initiate mathematical actions. 

 Tasks are inherently multiple by nature: as conceived by the author; as intended 
by the teacher; as construed by the student(s); as enacted by the students; and as 
recalled in retrospect by the student(s). Tahta ( 1981 ) pointed out that there are dif-
ferent aspects of a task: the outer task is what the task states (and is interpreted as 
by students), whereas the inner task is implicit, and has to do with mathematical 
concepts and themes that may be encountered, powers that may be used, and pro-
pensities that may come to the surface, all contributing to educating awareness. 

 In the language of affordances, constraints and attunements (Gibson  1979 ), 
affordances arise from the relationship between resources and tasks. The constraints 
are usually imposed from the tasks, for as is well known, creativity only takes place 
when there are constraints. Both student attunement and teacher attunement con-
tribute to the motivational and the operational axes. 

 Ainley and Pratt ( 2002 ) distinguish between  purpose  of a task as the local 
context which gives learners a purpose in undertaking it, and the  utility  of a task 
or a technique in terms of the range of situations in which it can be used in the 
future. Both contribute to the development of positive or negative dispositions 
and propensities. 

 The two-axis structure of activity provides a richer structure than that provided 
by the adage ‘start where the learners are’. Indeed, calling upon the whole psyche, 
and mindful of Vygotsky’s distinction between  natural  and  scientifi c  knowledge, 

  Fig. 1    Structure of activity 
in Systematics       

 

J. Mason



23

the effective teacher ‘starts’ where the learners could be rather than where they are, 
by invoking their energies through surprise or a sense of a gap so that they strive to 
move along the motivational axis, supported by access to appropriate resources and 
well judged tasks.  

    A4: One Thing We Don’t Seem to Learn from Experience, 
Is that We Don’t Often Learn from Experience Alone 

 Evidence for this is widely available, as you try to remember what you have read in 
the newspaper, what you saw on television, even what you set out to accomplish when 
you went into another room. What students get from engaging in an activity is highly 
variable, as Jaworski ( 1994 ) found when she asked students what a lesson had been 
about in which the task as set had been to draw and cut out copies of quadrilaterals 
and see if they would tessellate. Many students reported that the lesson was about 
‘cutting out quadrilaterals’, ‘using scissors’, etc., and only a few mentioned tessella-
tion. This reinforces the observation that different students attend to different things, 
stressing some things and ignoring others, and that even when they are attending to 
what the teacher intends, they may be attending in different ways (Mason  2003 ). 

 The student’s stance towards learning, delineated by Marton and Saljö ( 1976 ) as 
a mixture of  surface ,  deep  and  strategic  approaches, colours all of learners’ actions, 
and the closer they are to the strategic–surface, the more likely it is that task- 
completion characterises their epistemological stance. Even participation in suitable 
activity may not lead to the intended learning. Many students act as if their role is to 
attempt the tasks they are set, and that somehow those attempts will be suffi cient to 
produce the expected learning. This epistemological stance is the basis of the  didac-
tic contract  (Brousseau  1997 ). However tasks are supposed to generate activity, 
through which learners gain experience. Yet “one thing we don’t seem to learn from 
experience, is that we don’t often learn from experience alone” (Mason  1994a ). A 
refl ective stance, a withdrawing from the action in order to become aware  of  the 
action can make learning much more effi cient than without it. To paraphrase William 
James ( 1890 ) “a succession of experiences does not add up to an experience of that 
succession”. More is required. This is particularly hard to arrange when students are 
studying at a distance. 

 Evidence of learning is informed action in the future, which is what some call an 
 enactivist  stance (Varela et al.  1991 ) in which  knowing  is the same as  (en ) acting . 
This requires having an appropriate action come-to-mind (be-enacted) when needed, 
which brings us back to the education of awareness. 

    Implications for Teaching 

 To promote learning, including learning how to learn, it is useful to get learners to 
withdraw from activity and to refl ect not only on which actions were successful and 
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which were not, but on why. A further step is to prompt them to identify actions they 
would like to have come-to-mind in the future. This is how people most often learn 
from experience. Construction tasks (Watson and Mason  2005 ) are very useful for 
this purpose because they enrich personal example spaces while at the same time 
exercising techniques. 

 Stimulating effective refl ection involves creativity and sensitivity, because the 
same prompts used over and over can lead to learners becoming dependent on the 
teacher rather than developing independence (Baird and Northfi eld  1992 ). In order 
not to train students to depend on the teacher to indicate appropriate behaviour, it is 
necessary to use both scaffolding and fading (Brown et al.  1989 ). Another way to 
express this is to say that the teacher needs to be alert to moving from directing 
behaviour (instruction) to increasingly indirect prompting as required, until students 
are spontaneously initiating that action themselves. This is what van der Veer and 
Valsiner ( 1991 ) suggest was intended by Vygotsky’s notion of  zone of proximal 
development  (Mason et al.  2007 ).   

    A5: Aligning Teacher and Student Attention Improves 
Communication and Hence Affordances 

 Bringing what the teacher and what the students are attending to into alignment is 
only the beginning of effective teaching; alignment in how the teacher and the students 
are attending also matters. Different forms of attention include:

   Holding Wholes: gazing in an unfocused manner, absorbing the overall, placing 
oneself in a state of receptivity towards a situation;  

  Discerning Details: distinguishing entities (which can then be held as ‘wholes’);  
  Recognising Relationships between discerned details in the situation;  
  Perceiving Properties as being instantiated as recognised relationships between dis-

cerned details; and,  
  Reasoning on the basis of agreed properties.    

 These fi ve ‘states’ or structures of attention correspond closely with the ‘levels’ 
distinguished by Dina van Hiele-Geldof and Pierre van Hiele (van Hiele  1986 ) with the 
notable difference that rather than being seen as levels in a progression of development, 
attention is experienced as shifting rapidly between these states in no specifi c order. 

    Implications for Teaching 

 In order to be helpful to students it is necessary for teachers to be aware not only of 
what they are attending to in the moment, but how they are attending to it. This enables 
them to make use of an appropriate mode of interaction and to direct learner attention 
(however subtly or explicitly) so that either it comes into alignment with their own (cf. 
 exposition ) or it brings theirs into alignment with that of learners (cf.  explaining).    
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    Drawing Threads Together 

 Tasks are offered to students so that they engage in activity. The activity itself is not 
suffi cient to generate learning. Rather, students need to participate in transformative 
action in which they experience shifts in the focus and structure of their attention. It 
is not simply a matter of agentiveness, of converting assenting into asserting (Mason 
 2009 ) but of relationship (Wan Kang and Kilpatrick  1992 ; Handa  2011 ), of playing 
various roles in different modes of action. Experience alone is not suffi cient, and for 
most students, especially in order to stimulate the education of awareness as accom-
paniment to training of behaviour, an explicitly refl exive stance is required, as stu-
dents become explicitly aware of actions that have proved fruitful and of actions that 
have not. Imagining themselves in the future initiating those actions can improve 
the chances that a relevant action will come-to-mind when needed, and this is how 
development takes place. This is what Vygotsky was getting at with the  zone of 
proximal development : the actions that can be used when cued become actions that 
can be initiated by the student without explicit cues (van der Veer and Valsiner  1991 ; 
Mason et al.  2007 ).   

    Analytic Narrative Concerning the Three Studies 

    ScreenCasts 

    Background 

 The design of Open University Mathematics Summer Schools in the 1970s was 
based on a framework known as  Systematics  (Bennett  op cit. ). The format of one 
type of session introduced was called  Technique Bashing : a tutor would publicly 
tackle an examination question, revealing as much as possible of their inner mono-
logue and procedural incantations as they went. The idea was to draw the student 
into the world experienced by the tutor (a form of expounding). This was a real-time 
version of a mode of interaction based on tape-frames used in our distance taught 
courses, in which students listened to a tutor talking through a concept or a tech-
nique while directing their attention to a series of printed frames containing key 
phrases and whatever else needed to be written, together with space for students’ 
own work. There were lots of stop instructions for students to switch modes and 
take initiative, either  exercising  or  expressing  but also  exploring , in ways that are not 
possible in a face-to-face tutorial. 

 The idea of tape-frames was to have the tutor’s voice in the student’s head 
through the use of earphones, and we made use of BBC expertise to develop rules 
of thumb for linking the audio with the text so that students always knew what to be 
attending to, so we did not simply read the text out loud. Emphasis was placed on 
how the tutor knew what to do next, not just on what they did next, and this 
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conforms with a plethora of subsequent research on worked examples indicating 
that what students want most is to know how the expert knows what to do next (see 
for example Renkl  1997 ,  2002 ). 

 With readily-available online video (Redmond  2012 ), students can now access 
screencasts of tutors displaying worked examples of concepts and techniques in 
this technique-bashing mode. What is not so clear is how, when recording a tutor’s 
performance, student attention can be provoked to shift from dwelling in the par-
ticular (recognising relationships in the particular) so as to see the general through 
the particular (perceiving properties as being instantiated). Emphasis is on factual 
(A0) rather than teleological rationality; the person gaining most from bringing to 
articulation is the performing tutor (communicative rationality).  

    Questions 

 Students almost always ask for more examples, as if somehow exposure to suffi cient 
examples will mean that they internalise or learn what is intended. This is a manifes-
tation of the epistemological stance mentioned earlier. Having someone taking me 
sensitively through the steps, where I can stop and rewind whenever I want, looks 
like a powerful resource. Thus screencasts of a tutor ‘working’ typical problems are 
likely to be popular with students, as any teacher will surmise on the basis of what 
students ask them for. But what do students actually do with them, and what do stu-
dents need to do so as to use them effectively and effi ciently? How can initiative be 
shifted back to the student? These are important questions at any time when planning 
a lesson, but particularly when preparing a self-study resource such as a screencast.  

    Affordances 

 One question to be asked is what the student is attending to, and whether the 
resources required (student background, disposition and concern, and powers) are 
available. For example, what does the student think is ‘typical’ or generic about the 
particular example whose working is displayed in the screencast (A4)? Unless 
either the students have become used to asking this for themselves, or the tutor is 
explicit about it in the screencast, many students are likely to recognise at best a 
limited range of permissible change in the salient aspects that can be varied, and 
may even overlook some of those ‘dimensions’ (Marton and Tsui  2004 ). 

 Clearly some of the affordances are that the student can pause and back-up at 
will, as with a tape-frame but unlike a live lecture or tutorial. Constraints are that the 
examples worked are determined by the screencast. Even if students could choose 
the example, and a CAS could display the workings step by step, it would be diffi -
cult to insert the tutor commentary, especially the inner-incantations, which is what 
students appreciate (Jordan et al.  2011 , p. 13). Of course students would also like to 
be able to stop and ask questions, but that involves a two-way interaction in real 
time, at least with current technology. 
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 Here the action involves the tutor-screencast, the mathematical content and the 
student. The student begins the interaction when experiencing a sense of distur-
bance at not fully grasping or understanding a concept or the use of a technique 
(A5). They then choose to run the screencast seeking specifi c assistance. They may 
subsequently initiate a change of action by pausing, stopping or rerunning. However 
once running, the initiative immediately switches to the tutor-screencast in terms of 
the tutor’s words and actions. The student attempts to follow. They need extra 
energy or initiative to shift from assenting to what they see and hear to asserting 
(trying their own version).  

    Commentary 

 If the student stance is ‘watching and listening’, then the interaction is typical of 
expounding (A2): the tutor has, by virtue of imagining the students watching and 
listening, been brought into contact with the content in a particular manner, presum-
ably with awareness of typical stumbling blocks and sticking points experienced by 
students. Both mathematical and pedagogical content knowledge are required in 
order to be effective. Sensitivity to the nature and scope of one’s own attention is 
necessary in order to be effective in aligning student attention with the tutor’s atten-
tion (A5). One reason for not showing the tutor’s face is to reduce distraction, to 
approximate the sense of the ‘tutor in your head’ being shown what to do. Even so 
students may be distracted by unfamiliar accent, turns of phrase, and a possible gap 
between them wanting ‘the answer’ and the tutor ‘expounding’. 

 If the student is trying to make contact with the mathematical content, then there 
may be periods of time when the student is initiating and, if the tutor has focused on 
what the student seeks to fi nd out, the tutor-screencast can act as the intermediary or 
mediating force to bring the student into contact with the mathematics concerning 
relevant issues. Typical of the interaction mode of  explaining  is the teacher trying to 
enter the world of the student; here the student enters the world of the tutor who is 
trying to act like a student, a form of pseudo-explaining. The use of short tightly 
focused screencasts is likely to contribute to their usefulness because students can 
pick and choose which ones might meet their needs most effectively. This leads to 
the need for an appropriate organisation of screencasts so that users can fi nd what 
they are looking for and know what each contains without excessive effort, other-
wise they will not be used. 

 There is a diffi cult issue of milieu-at-a-distance. It is hard enough to persuade 
live students that making and later modifying conjectures is preferable to keeping 
silent until you are certain that you are correct. On a screencast a tutor can display 
this behaviour, but always at the risk of students losing confi dence in the tutor who, 
for example, might keep correcting themselves (explicitly and intentionally modify-
ing previous conjectures). The tutor in a screencast is a role model for the doing of 
mathematics. If correct and clear mathematics fl ows out of a pen on screen then 
students will imagine that unless this happens for them, they are failing or defi cient 
in some way. 
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 Any explicit support the tutor offers in the screencast may not be detected by the 
student  as  support, because student attention is likely to be on making sense of the 
mathematical content. Consequently explicit attention to fading of any scaffolding 
support is going to be required, either through prompting refl ection (A4) or by being 
increasingly indirect about the prompts and commentary in the screencast.  

    Ways of Working 

 There is a curious phenomenon with all screen-based activity, namely, “what does 
the student do when the show is over” (Mason  1985 ). The cessation of movement 
and sound creates a hiatus, not unlike the moment when you fi nish reading an 
engrossing novel. In that moment, attention shifts to the concerns of the material 
world, to what is to be done next; insights, relations and properties experienced 
during the session can evaporate all too readily. In order to learn from the experi-
ence of using a screencast ( A 4), students may need to be trained to pause at or near 
the end and to ask themselves what they have now understood that they did not 
before, and what they would now like to do in the future that they might otherwise 
not have done before. It is tempting to suggest that each screencast needs a linked 
set of exercises on which the student might be advised to work. However, it is not 
the doing of multiple exercises that leads to effective and effi cient learning 
( A 1/ MGA ), but rather the bringing to articulation for oneself of what makes a task 
belong to the space of exercises (Sangwin  2005 ) coped with by the technique, and 
the space of examples (Watson and Mason  2005 ) associated with a concept. The 
most powerful study strategy a student can use is to construct their own exercises 
and their own examples of concepts. Effective learning involves training students to 
‘learn how to learn’ (Shah  1978 ; Claxton  1984 ). 

 It is less than clear how watching a screencast, however often, contributes to 
learning in the sense of the student having an appropriate action come-to-mind in 
the future as a consequence of interacting with the screencast. It seems that what 
matters is what activity the student engages in using the screencast as stimulus. 
Screencasts begin as the tutor  expounding  the use of a technique to solve a par-
ticular exercise ( A 2). The tutor is of course aware of the specifi c exercise as an 
example of a class of similar exercises. They see the particular as an instance of 
the general ( perceiving properties A5 ). The students, however, see the particular. 
They may need extra stimulus to see the general through the particular, perhaps in 
the form of explicit meta-comments by the tutor who draws their own attention, 
and that of the students, out of the immediate activity so as to become aware of the 
actions being employed. There is a vast literature on the effectiveness of worked 
examples (see Atkinson et al.  2000 ) which could inform the way in which worked 
examples are presented on screencasts so as to maximise their usefulness and 
effectiveness for students. 

 For students who know what they do not know, screencasts could be very effec-
tive in clarifying the components of a technique, enriching a concept, or alerting 
students to mathematical powers, themes and heuristics. Their effectiveness will 
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depend as much on the disposition and agency of the student as on the quality of the 
awareness exhibited in the screencast. 

 In some commercial collections such as the Khan Academy ( op cit .) there is 
evident lack of sensitivity to classic student misapprehensions, such as for exam-
ple, confusing the name of a person with their age when working on age related 
word problems (Word Problems 3). What the student encounters from the screen-
cast is some measure of excitement-concern but manifested as behaviour without 
access to the thinking that brought that behaviour to mind as being appropriate to 
the situation.  

   Extensions 

 It would be useful to develop screen casts that display other aspects of learning and 
doing mathematics such as:

   The mathematical use of various human powers (imagining and expressing, special-
ising and generalising, conjecturing and convincing: see Polya  1962  or Mason 
et al.  1982 /2010) in a multitude of contexts;  

  The recognition of mathematical themes (such as doing and undoing, invariance in 
the midst of change, freedom and constraint see Gardner  1992 ,  1993a ,  b ,  c ); and,  

  Example construction, including counter-example construction (see Watson and 
Mason  2005 ; Mason and Klymchuk  2009 ).      

    Rolling Polygons 

   Background 

 Mathematical animations have been used for over 50 years to introduce topics, to 
stimulate exploration and to provide a context for applying ideas to new contexts 
(Salomon  1979 ; Tahta  1981 ). A particularly effective way of working with anima-
tions, posters and mental imagery was developed by a group called Leapfrogs 
( 1982 ) and involves watching (on an actual or a mental screen), then reconstructing 
what was seen, leading to mathematical interpretation and seeking justifi cation for 
conjectures about relationships that were articulated. 

 The Rolling Polygon animation was made in order to offer experience of a range 
of ‘ways of working’ including a ‘silent start’ to a lesson or task, reconstruction, 
discussion, conjecturing, reasoning and justifying, and refl ection (A1, A2, A3). 
These can all be used in many different contexts beyond animations. 

 Here the factual rationality is of little import, although one affordance is to 
bring to attention the way in which mathematical thinking depends on recognising 
factual relationships encountered in the past as being present. Put another way, 
relationships recognised in the current situation may be perceived as instances of 
more general properties.  
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   Narrative 

 Attention is at fi rst, naturally enough, directed towards the point  P  moving around 
the circle. Watching an animation and then reconstructing it proves to be an effec-
tive way of aligning student attention. The fi lm invites the conjecture that the tri-
angle remains the same shape independently of the position of  P  on the circle. This 
may or may not be experienced as the more technical description ‘congruent’; it 
may not emerge until reconstruction of what was seen. The fi lm also invites the 
conjecture that a point on the triangle traces an ellipse as  P  moves around the circle. 
There are implicit generalities which, if expressed as conjectures, give substance to 
conjectured relationships as properties of a whole class of phenomena. Thus the size 
of the circle, the angles between the lines and the position of the point on the trian-
gle could all be varied. 

 In terms of variation theory, what is likely to stand out for most people is the 
invariance of the shape of the triangle. Astute observation may reveal that the angles 
of the triangle are the angles between the lines. Such an observation, treated as a 
conjecture, might lead to a shift in what is attended to, and how. The presence of the 
right-angles, for instance, could trigger the possibility of cyclic quadrilaterals or of 
diameters of a single circle. Choosing between alternative relationships to pursue is 
an important feature of mathematical problem solving.  

   Commentary 

 This task is typical of  phenomenal mathematics  (Mason  2004 ,  2008 ) in which a 
mathematical theorem or technique is introduced by displaying a phenomenon. 
When the phenomenon is surprising, many students are moved to want to explain it, 
to make sense of it and to explore possible variations which leave the phenomenon 
invariant (A0). At fi rst the fact that the triangle appears to remain invariant in shape 
but not location is a surprise. The fact that a point on the triangle follows an ellipse 
is equally surprising, and leads to questions such as predicting the positions of the 
foci from the shape of the triangle, or determining under what conditions the locus 
will be a circle. If the triangle shape remains invariant, then it must be a rotation of 
the original, so one possibility is to seek the centre of that rotation, which could then 
lead to a justifi cation of the fi rst conjecture. 

 As with any challenging geometrical relationships, there are opportunities to 
catch shifts in both what is being attended to and what is being stressed (A5). 
Familiarity with stressing and consequent ignoring (Gattegno  1970 ) could open up 
questions about what is being ignored (and that might fruitfully be stressed!).  

   Affordances 

 The ‘silent presentation’ of the task, coupled with its surprise offers, students the 
opportunity to pose themselves problems as a way of making sense. It provides a 
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task in which everyone can participate because it draws upon known resources 
(A3). Beginning with an invitation to imagine, before seeing the diagram, affords an 
opportunity to work on strengthening the power to form mental images (which may 
be pictorial, verbal, kinaesthetic or some combination of all three). The imagery 
instructions are in expounding mode, but as soon as surprise is experienced, there 
can be shifts to other modes such as exploring and expressing (A2). Describing how 
the fi lm unfolded without recourse to a diagram or the fi lm itself provides an oppor-
tunity to express what is being imagined or re-imagined (A5). Various possible 
approaches may begin to come to mind, so there is an opportunity to park ideas as 
they emerge so that an effi cient and insight-generating approach can be selected. 

 Considering what can be changed while preserving the phenomenon is further 
opportunity to imagine and to express, and to conjecture various generalisations. 
Seeking a justifi cation for the initial phenomenon may lead to recognition of rela-
tionships that are expressed as properties in some standard geometrical theorems. 
Refl ecting on that reasoning can lead to increasing the scope of generality of the 
phenomenon itself. 

 Trapping the intentions (teleological rationality A0) behind approaches taken 
is really only possible by intentional withdrawal from action and refl ection upon 
that action.  

   Ways of Working 

 Animations lend themselves to a way of working in which individuals collectively 
experience a phenomenon, then mentally re-play it for themselves, before joining 
others to try to reconstruct the ‘plot’, the sequence of images. This in turn alerts 
attention to critical details that can be examined on a second viewing. Thus shifts of 
mode of interaction can be rapid and multiple, providing a range of roles for stu-
dents, teacher and mathematics (A2). Once a reasonable account of what was seen 
begins to develop, people naturally want to account-for the phenomenon, but it is 
particularly valuable to try to separate accounts-of and accounting-for, if only 
because that is vital when interpreting classroom video (Mason  2004 ) or when 
cooperating in a collaborative peer group.  

   Extensions 

 After thinking about the problem, students might feel moved to use a dynamic geom-
etry package to explore for themselves. Alternatively, an applet (available on the web-
site) can be provided which enables you to vary different constraints, such as the 
number of lines and the angles between the lines. You can also release the moving point 
from being confi ned to a circle to being confi ned to an ellipse, or even allow it to be 
completely free in the plane. There is also the question of what role the perpendiculars 
play: it they were replaced with lines of given slope, perhaps parallel to some given 
lines, would the triangle remain invariant, and would the locus remain an ellipse?  
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   Implications for Teaching 

 Seeing this task as an instance of a class of tasks under the general heading  phenomenal 
mathematics  could transform tasks used with students. A reasonable conjecture is that 
every topic and every technique in school mathematics and in at least the fi rst few years 
of undergraduate mathematics could be introduced through generating a phenomenon 
that surprises many people and invites or invokes attempts to explain what lies behind 
the phenomenon.   

    Secret Places 

   Background 

 Tom O’Brien ( 2006 ) demonstrated that children as young as 9 and 10 are capable of 
reasoning mathematically when number calculations are not required. The applet 
was produced to enable primary teachers and teacher educators to experience their 
own use of mathematical reasoning, in order to sensitise them to possibilities for 
children. The applet is designed to be used in a tutor-led mode rather than individu-
als by themselves. 

 Most people with whom this has been used rise immediately to the challenge. 
There is an initial sense that it should not be too diffi cult, however people often 
discover that they need to re-think what the blue and red information is telling them. 
Despite several decades of human computer interaction there is still some emotional 
arousal due to the machine responding to probes (as distinct, say, from a person 
playing the role of the computer). 

 Some people display a propensity to want to start clicking without thinking, so 
the role of the tutor is to act as a brake, getting people to park their fi rst impulse and 
think more deeply. Participants fi nd themselves imagining what will happen one or 
more steps ahead, with some resorting to notation in order to keep track of the pos-
sibilities. This could provide an instance of ‘reasoning by cases’ and of being sys-
tematic. Attention tends to be on resolving the particular at fi rst, rather than 
developing a general strategy, so again the role of the teacher is to promote move-
ment to the general.  

   Narrative 

 People seem to respond to the challenge very quickly, despite an absence of ‘pur-
pose’ or evident ‘utility’ (A3). It seems that the challenge appears tractable, and the 
dissonance of not-knowing but fi nding out stimulates emotions which are then har-
nessed (A0). One or more initial forays with the applet involving rapid clicking 
develops discernment of pertinent screen details and a sense of the task. Attention 
then shifts to what information is revealed by different choices, which invokes 
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relationships. There are of course differences in subsequent actions depending on 
the result of the fi rst click (A5). 

 People quickly work out that it does not matter which place you try fi rst, so it 
becomes a practice to click on place 1 to start with. However there is often a split of 
opinion about what the colour actually means. 

 Some people want to know how they will know if/when they get the correct 
place. However the software never confi rms the location of the secret place(s). 
Under most conditions (suffi cient places given the number of secret places chosen) 
there is no need for the applet to validate secret locations, since that ‘knowing’, with 
certainty, is the result of reasoning. Even after several ‘games’, confusion comes to 
the surface regarding what a blue place tells you about the adjacent places. This is 
amplifi ed where people work in groups of two or more in an ethos which values 
conjecturing and justifi cation (communicative rationality A0). 

 After a few random trials to  get-a-sense-of  what is going on ( A 1), people usually 
want to shift into individual or small group work. The initiating impulse has changed, 
either into an  exploratory  mode in which the teacher and presence of the software 
introduce and maintain the students in contact with the mathematical reasoning, or 
into an  exercising  mode in which the desire to try examples initiates student activity 
( A 2). Integral to Pólya’s advice ( op cit. ) but unfortunately sometimes overlooked, is 
the role of specialising (manipulating, exercising) not simply to collect data, but in 
order to get a sense of underlying structure, leading to a conjectured generality. Put 
succinctly,  doing ≠ construing ; something more is required (A4). 

 Working individually or in small groups, people usually recognise the need for 
case by case analysis. Sometimes it takes a while to realise that the number of clicks 
you have to make before you can be certain (for one secret place) depends on what 
colours show up when you make choices. For many this is an unexpected situation. 
Bringing to articulation a method for locating the secret places most effi ciently can 
take some time, even when it can be done in practice:  doing  is not the same as  say-
ing  and that again is not the same as  recording  succinctly ( A 4). Communicating 
with yourself, then a friend, then a sceptic (Mason et al.  1982 /2010) is useful for 
prompting clarifi cation and experience of locating and distilling the underlying 
essential relationships forming the structure of the situation. 

 While the initial or outer task is to ‘fi nd the secret place’ the implicit inner cogni-
tive task is to develop an effi cient method or algorithm for succeeding given what 
happens with a specifi ed number of places and what is revealed in successive clicks, 
and to justify this as the best possible strategy in dealing with all possible situations 
for that number of places. A great deal depends on how teachers prompt reasoning 
by requiring justifi cations for choices of places to click, and all that depends on past 
experience the class has had of mathematical thinking, conjecturing, justifying, etc.. 

 In order to be able to support desired shifts, for example between resolving the 
 particular and seeking a general strategy, it is useful for the teacher to be aware of dif-
ferences in goals (A3) and, over time, to direct student attention into alignment with the 
larger educational goal. Emotional commitment (harnessed emotion) may be so strong 
that students are locked into a simplistic version of the didactic contract (doing what is 
required will produce expected learning), whereas the teacher is aware that although 
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the outer task is to fi nd the secret location, the inner task (A3) is for the students to 
educate their awareness about the use of reasoning, becoming aware of possible actions 
(clicking, deducing, anticipating, conjecturing, …), analysis of cases, ruling out inef-
fective actions, and developing a general strategy. This is the teacher’s teleological 
rationality, but needs to be picked up by students if they are to gain substantially from 
the activity. Clearly the factual rationality is of little import in itself. 

 Adding a second secret place among fi ve places produces an ambiguity because 
in some confi gurations there is not enough information to locate them. This can lead 
to seeking the minimum number of places for which a given number of secret places 
can be located, or what is equivalent, the maximum number of secret places among 
a given number of places for which the secret places can always be located.  

   Affordances 

 The initial task offers opportunity to encounter and use the notion of symmetry, to 
realise the importance of considering different possible cases, to break the situation 
down into all possible distinct cases and to embark on a systematic examination of 
them all in turn. It also offers opportunity to imagine an action and its consequences, 
to make conjectures and to modify them in the face of contrary evidence, and to 
reason about what information is provided by discovering a ‘hot’ or a ‘cold’ place. 
Finding a ‘method’ which works with a minimal number of clicks is one form of 
generality (over all choices of location of the secret place). 

 Maintaining a plenary mode interspersed with individual and small group re- 
construction and exploration allows for multiple modes of interaction, and exposure 
to aspects of mathematical thinking that can be called upon in the future when 
working on core curriculum topics, informed by the teacher’s awareness of the 
affordances, inner tasks and goals of the activity (A3). 

 Effectiveness depends greatly on the working ethos and atmosphere of the social 
setting. It can work well in generating mathematical reasoning in a conjecturing 
atmosphere in which everything asserted is treated as a conjecture and expected to 
be modifi ed unless and until it is satisfactorily justifi ed, and in which those who are 
confi dent question and support those who are not so confi dent. It does not work well 
in an ethos of striving to get the right answer. 

 The extended task promotes a sense of generality through relating the number of 
places with the number of clicks required (with one secret place) and then to extend 
this further to deal with several secret places. It also offers repeated exposure to 
similar forms of reasoning in multiple situations which can contribute to students 
integrating these actions into their repertoire of available actions (exercising).  

   Ways of Working 

 The applet was designed to be used in plenary so that the teacher is in charge of 
when buttons get pressed. Ever since electronic screens came into use in class-
rooms, it has been appreciated that requiring agreement as to what buttons to press 
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next is a powerful stimulus to communication and reasoning, and some projects are 
based almost solely on this idea (Dawes et al.  2004 ). In fact the applet has a ‘locking 
feature’ to restrict what users can access if it is to be used in small group mode by 
students. The resistance to acting upon the fi rst idea that comes to mind is one of the 
contributions that a teacher-led plenary mode can contribute to the education of 
student awareness (A1), by blocking the fi rst impulse and calling upon more consid-
ered thinking. Learning to ‘park’ an idea and look for a different or better one is an 
important contribution and part of the potential ‘inner task’(A3). 

 The point of the applet is not actually to fi nd the secret place but to convince 
yourself and others (friends and sceptics) that your method will always fi nd the 
secret place(s) in no more than the number of clicks that you claim. Satisfaction and 
other effective rewards arise from personal use of reasoning powers, and agreement 
from peers and an expert (teacher). Note however that there is no ‘purpose’ offered 
apart from the arising of curiosity, the activating of desire to fi nd the location, and 
an initial sense that it cannot be too diffi cult. No one has ever dismissed the task as 
“well just click all the places … who cares?”. 

 In order to bring justifi cation through reasoning (reasoning on the basis of agreed 
properties) to the fore, the teacher needs to manage the discussion, creating and main-
taining a conjecturing atmosphere, providing thinking time as well as time and space 
for expressing ideas and insights, and for rehearsing and challenging the conjectures 
of others. Opportunities abound for constructing confi gurations for which a conjec-
tured ‘method’ does not always fi nd the secret place in the minimum number of clicks. 

 The applet itself at best provides an introduction to or on-going experience of 
reasoning by considering and eliminating cases. Unless it is used as part of a pro-
gramme of experience of activities involving similar types of reasoning, with appro-
priate drawing of attention to effective and ineffective actions, use of the applet 
would be mere entertainment.  

   Extensions 

 The applet permits changes to the number of places at the table (numbers from 4 to 
about 25 are distinguishable), the number of secret places, and the spread of the 
‘hot’ information (default value is 1 place each side of the secret place).

      

 Here position 1 has been clicked and found to be 
‘cold’. Deductions have been made that positions 
2 or 7 could not be the secret place, and have 
been marked ‘cold’ by the users to assist their 
reasoning. 

 But there is potential ambiguity in this additional 
notation: interesting things happen when it emerges 
that some people interpret the cold-marker to mean 
that clicking there would necessarily give a ‘cold’ 
response! 
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   There is a second version that takes the same idea (locating a secret place) into 
two dimensions, where the space of activity is ostensibly a fi nite grid of squares. 
‘Hot’ means adjacent horizontally or vertically, but the grid can be turned into a 
cylinder, torus, Mobius band or Klein bottle, and some of these can have displace-
ments. The intention is to introduce ‘as a matter of course’ rather than as an object 
of explicit attention, different surfaces that can be constructed by identifying edges 
of a rectangle, as multiple contexts in which to exercise similar reasoning. The 2D 
version offers opportunity to encounter and explore topological notions of ‘near-
ness’ on familiar and unfamiliar surfaces all generated in the same manner (identi-
fying some edges). Refl ecting on what is the same and what different about the 1D 
and the various 2D contexts could reinforce awarenesses that students have begun 
to educate in themselves.    

    Refl ection 

 Focusing on the use of applets by a teacher as stimulus to activity by students, and 
using the framework of six modes of interaction, combined with distinguishing vari-
ous human powers which can be used and developed mathematically, and with dis-
tinctions drawn concerning different ways of attending, it emerges that even these 
apparently simple ways of using software with students are both complex and 
demanding. The complexity arises from recognition of the need to vary the modes 
of interaction so as to keep the whole of the psyche involved, and to prompt a refl ex-
ive stance in order to learn from experience. The demanding nature of these pres-
sures arises from the need to have come-to-mind appropriate pedagogic strategies in 
order to maximise the learning potential for students. 

 The three studies are representative of only a restricted range of stimuli to math-
ematical thinking afforded by software. The stance taken here is that even taking 
one mode of interaction as the initial activity, different modes of interaction between 
stimulus (teacher-applet), student and mathematics are possible and desirable. It is 
not so much the stimulus that is ‘rich’ but the ways of working with that stimulus 
that can be pedagogically rich or impoverished. The narratives offered based on the 
case studies suggest general observations about what applets can provide:

   A means of initiating enquiry and exploration (producing a phenomenon to be 
explained as in the case of  Secret ,  Rolling Polygons );  

  An environment in which to work (at least some of the time, as in all three 
studies);  

  A means of stimulating continued study of a topic;  
  A means of testing conceptual grasp and manipulative profi ciency (as in the case of 

 Secret Places ) or of reinforcing and clarifying techniques and concept images (as 
in the case of  Screencasts );  

  An environment in which to make use of what has been learned about a topic in 
further exploration (as in the case of  Secret Places, Rolling Polygons ).    
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 It seems clear that a screencast can, if well constructed, initiate and  support 
conceptual understanding and appreciation, and the details of techniques or proce-
dures. A screencast can even activate desire to master a technique or appreciate a 
concept. However, screencasts are not well placed to provoke the kind of activity 
that leads to effective integration, educated awareness that can initiate an action in 
the future when required. If used in conjunction with routine exercises, then the 
integration will be only as effective as the structure of the exercises (Mason and 
Watson  2005 ; Watson and Mason  2006 ). 

 The addition of software into the educational milieu affords both potential and 
complexity:

   Pedagogical complexity arises from the need to develop fresh ways of working 
effectively, both when students work for themselves or in a small group to make 
sense of a screencast, and when activity is directed by a teacher using an applet 
as the focus;  

  Mathematical complexity arises from the greater scope for a mismatch between the 
mathematical potential and the teacher’s grasp of the topic or concepts; and,  

  Learning complexity arises from the demands made on students’ commitment to 
learning deeply and effectively.    

 It may be that within this complexity lay some of the obstacles to greater use within 
the mathematics classroom.     
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    Abstract     This chapter reports the results of a survey of English secondary school 
mathematics teachers’ technology use ( n  = 188). Set within the context of a broader 
study aiming to develop a deeper understanding of how and why mathematics 
teachers use technology in their classroom practice, the survey fi ndings are used to 
explore the widely perceived quantitative gap and qualitative gap between the real-
ity of teachers’ use of ICT and the potential for ICT suggested by research and 
policy. Teachers were asked about their access to hardware and software; their per-
ception of the impact of hardware on students’ learning; the frequency of their use 
of ICT resources; their pedagogic practices in relation to ICT; and school and 
individual- level factors which may infl uence their use of ICT. This survey suggests 
that given the right conditions, at least those currently existing in England, ICT 
might contribute as a lever for change; however, the direction of this change might 
be construed as an incremental shift towards more teacher-centred practices rather 
than encouraging more student-centred practices.  

  Keywords     Technology integration   •   Mathematics education   •   Teachers’ ICT 
practices   •   Hardware and software use  

        Introduction 

 This chapter reports the fi ndings of a survey of English mathematics teachers’ use of 
Information and Communication Technologies (ICT) in secondary schools. The sur-
vey forms part of a broader research study aiming to develop a deeper understanding 
of how and why mathematics teachers use technology in their classroom practice. 
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Lagrange and Erdogan ( 2008 ) record both a quantitative and a qualitative gap 
between institutional expectations and teachers’ use of digital technologies in class-
room practice. The apparent gulf between institutional expectations and classroom 
reality is particularly signifi cant in the context of unprecedented spending by govern-
ments around the world on initiatives to develop educational technology (Selwyn 
 2000 ), the emphasis placed on using ICT in the UK National Curriculum for math-
ematics and the inclusion of technology in mathematics curricula more globally 
(Wong  2003 ). 

 The survey fi ndings are used to explore the widely perceived quantitative gap 
and more subtle qualitative gap between the reality of teachers’ use of ICT in the 
classroom compared with the legacy of the UK Labour government’s vision (1997–
2010) and the potential of ICT use highlighted by educational research. Teachers 
were asked about their access to hardware and software; their perception of the 
impact of hardware on students’ learning; the frequency of their use of ICT 
resources; their pedagogic practices in relation to ICT; and school and individual- 
level factors which may infl uence their use of ICT. Previous surveys have tended to 
be confused by a lack of differentiation between hardware and software use. In 
contrast, this survey aims to provide insight into the types of software mathematics 
teachers choose to use in conjunction with particular types of hardware. More spe-
cifi cally, questions were posed separately regarding teachers’ use of software with 
interactive whiteboards (IWBs) or data projectors in a whole class context and 
teachers’ use of software in the context of a computer suite or using laptops, where 
students work individually, in pairs or in small groups. In addition, the reasons 
underlying the gap between expectations and classroom implementation are probed 
using the data collected in relation to school and individual-level factors. 

    The Quantitative and Qualitative Gap in Mathematics 
Teachers’ ICT Use 

 The evidence for a quantitative gap seems fairly unequivocal. The TIMSS 2007 
study (Mullis et al.  2008 ) reports that it was rare for computers to be used for any 
activity as often as in half the mathematics lessons, even in countries with rela-
tively high availability. In the UK, the ImpaCT2 report ( 2003 ) stated that 67 % of 
pupils at Key Stage 3 never or hardly ever used ICT in their mathematics lessons. 
In addition, Ofsted ( 2008 ) reported that opportunities for pupils to use ICT to 
solve or explore mathematical problems had markedly decreased, despite the 
previous years of unprecedented investment by the then Labour government, 
directing over £5 billion of funding towards educational ICT during the 1997–
2007 period (Selwyn  2008 ). On the other hand, Moss et al.’s ( 2007 ) survey on the 
introduction of IWBs in London schools reports that many teachers are using 
IWBs in most or every lesson, especially in mathematics and science, and that 
mathematics teachers made the most use of externally produced subject-specifi c 
software. 
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 Citing Ruthven and Hennessy’s ( 2002 ) study of mathematics teachers in England 
as evidence, Lagrange and Erdogan ( 2008 , p. 66) defi ne a qualitative gap between 
the expectation and implementation of ICT as the tendency of teachers to view the 
benefi ts of technology in terms of enabling “general ‘pedagogical’ aspirations rather 
than for its ‘didactical’ contribution to mathematics learning”. That is, mathematics 
teachers articulated the benefi ts of technology as indirectly enhancing students’ 
learning through increased  pace and productivity  and improved engagement 
(Ruthven and Hennessy  2002 ) rather than providing a direct means of enhancing 
mathematics pedagogy. Evidence for a qualitative gap may also be inferred from 
survey reports of mathematics teachers’ typical software use. For example in the 
US, Becker, Ravitz and Wong ( 1999 ) found that drill and practice software was 
most often used by mathematics teachers. Although this inference is problematic, 
the use of presentation-oriented software might suggest an additional obstacle 
to more student-centred practices. Despite this,  The Geometer’s Sketchpad  (Key 
Curriculum Press  2003 ) was the most favoured mathematical software amongst 
teachers in Becker et al.’s ( 1999 ) study. However, as will be discussed in the para-
graph below, surveys tend to give an overview of technology use and are not detailed 
enough to provide a picture of the different types of software teachers use in con-
junction with particular types of hardware. Investigating the choices teachers make 
about the software and hardware they use in their classrooms is therefore important 
in order to understand the apparent failure of ICT to make an impression on school 
mathematics.  

    Mathematics Teachers’ Choices: Hardware and Software 

 The type of hardware and its deployment appears to be an important factor in struc-
turing teachers’ choices about technology use in their classroom practice. In par-
ticular, the hardware available affects the types of classroom organisation possible 
and the nature of pupil interactions with any software used in conjunction with the 
hardware. It seems reasonable then that the available hardware might also affect 
teachers’ choice of software and how they choose to integrate the use of such soft-
ware into their classroom practice. For example, investigating teachers’ use of 
technology in the US, Becker et al. ( 1999 ) found that teachers with computers in 
their classrooms were three times more likely to use them compared to teachers 
who have access to larger numbers of computers but only available in shared com-
puter rooms. One of fi ve key factors in structuring teachers’ classroom practice that 
Ruthven ( 2009 ) describes is the  working environment , which is the physical loca-
tion and layout of the classroom, the classroom organisation and procedures of a 
lesson. Indeed, the reported popularity of IWBs amongst teachers in the UK 
appears due to their ease of use in a whole class context, making this hardware 
seem a more teacher-oriented form of technology (Moss et al.  2007 ). 

 Currently, little is known about what types of software teachers choose to use 
in conjunction with particular types of hardware (Clark-Wilson  2008 ). International 
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comparisons of educational technology use such as the TIMSS (Mullis et al. 
 2008 ), PISA (OECD  2005 ) or SITES (Law et al.  2008 ) surveys can only give a 
broad overview of technology use and are not fi ne-grained enough to consider 
usage of different types of software or hardware at the school level. In terms of 
hardware, the UK represents a special case since it became the fi rst school-level 
system to invest heavily in IWBs (Moss et al.  2007 ). However, large-scale surveys 
of technology use within the UK tend not to report in detail on technology use 
within subject areas, such as mathematics, nor to differentiate suffi ciently between 
hardware and software use. Thus whilst large-scale surveys can provide a broad 
picture of technology use, they cannot provide much insight into the nature of the 
specifi c uses by teachers in general or by mathematics teachers in particular. For 
example, the annual Becta schools survey  Harnessing Technology  reported that 
53 % of mathematics teachers use subject-specifi c software in half or more les-
sons (Kitchen et al.  2007 ). However, no further detail is given on what type of 
subject-specifi c software is used, nor any indication of the hardware involved. 
Surveys focusing on mathematics teachers’ use of technology, such as the survey 
conducted by the Fischer Family Trust ( 2003 ) or Hyde’s ( 2004 ) small-scale sur-
vey, give a more detailed picture of the types of software used by mathematics 
teachers; however, this picture is again confused by the lack of distinction between 
hardware and software use. Similarly, Forgasz’s ( 2002 ) survey of mathematics 
teachers’ use of technology in Victoria, Australia, gives a detailed picture of the 
types of software used by mathematics teachers with computers. However, it is 
not clear whether other types of hardware were available or used by teachers, nor 
how frequently specifi c software was used. Miller and Glover’s ( 2006 ) study of UK 
mathematics teachers’ use of IWBs reports that fewer than 5 % of lessons observed 
used ‘Other ICT’ such as geometry packages, spreadsheet or graphing programs; 
however, they note their lack of use may simply be a consequence of the topics 
being taught at the time of observation. 

 The survey reported in this chapter builds on previous surveys by providing an 
insight into the types of software mathematics teachers choose to use in conjunction 
with particular types of hardware. In particular, teachers were asked to report their 
frequency of use of a list of software types in a whole-class context with IWBs or 
data projectors and their use of the software in the context of a computer suite or 
when using laptops, where students work individually or in pairs. Teachers were also 
asked to give an indication of their pedagogic practices using ICT in each of these 
contexts. Responding to more teacher-centred statements like “I use ICT for presen-
tation purposes” (IWB context) and “Students use ICT to practice mathematical 
skills” (computer suite context) alongside more student-centred statements like “I 
use ICT to follow up and explore students’ ideas” (IWB context) and “I let students 
‘get a feel’ for the software” (computer suite context), teachers indicated how often 
these practices occurred in their classroom teaching using ICT. Thus the data from 
this survey provides a basis for an exploration of the nature of both the quantitative 
and qualitative gap between expectation and implementation of ICT in English 
mathematics classrooms.  
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    Factors Infl uencing Mathematics Teachers’ Use of ICT 

 Summarising previous surveys, Assude et al. ( 2010 ) note the similarity of factors 
encouraging or discouraging mathematics teachers’ use of ICT across a range of 
national and international settings spanning more than a decade. At school level in 
particular, they raise as issues: access to hardware and software; professional devel-
opment needs; and technical support and resources as factors which appear to out-
weigh individual-level factors such as confi dence, in preventing teachers from 
integrating technology into their mathematics teaching (Assude et al.  2010 , p. 416). 
Based on the fi ndings of previous surveys, the survey reported in this chapter also 
asked teachers about school and individual-level factors which may infl uence their 
use of ICT. In the school context, teachers were asked for the level of their agree-
ment with statements addressing factors such as access to hardware, software issues, 
collegial and technical support, provision of professional development and ICT 
integration in schemes of work. Again in contrast to previous surveys, questions 
regarding individual-level factors were posed separately in relation to teachers’ use 
of IWBs or data projectors in a whole class context and teachers’ use of computer 
suites or a class set of laptops, where students work individually or in pairs. This 
data should  provide for a more nuanced discussion of the factors underlying class-
room use of ICT, in particular the apparent popularity of IWBs in comparison to 
other forms of hardware, beyond a common-sense statement that IWBs are a more 
teacher-oriented form of technology.   

    Understanding Teachers’ Use of Technology 
from a Socio- Cultural Perspective 

 The broader aim of this study is to develop a deeper understanding of both how and 
why mathematics teachers use technology in their classroom practice. As with any 
curriculum resource, how and why teachers make use of the resource in their teach-
ing is a central research question. In this sense, I view digital technologies simply as 
a particular type of resource amongst a wider range of curriculum resources and not 
as something special or unique. This approach is similar to that adopted by Ruthven 
( 2009 ) and Gueudet and Trouche ( 2009 ), and contrasts to some extent with Zbiek 
et al.’s ( 2007 ) approach of singling out and focusing on certain digital technologies 
as  cognitive tools . Addressing the broader aim of this study, I assume a socio- 
cultural perspective on teachers’ use of resources in accordance with that described 
by Remillard ( 2005 ) as “ curriculum use as participation with the text ”. Remillard’s 
( 2005 ) perspective was developed in relation to ‘curriculum materials’, specifi cally 
referring to printed, often published resources designed for use by teachers and 
students during instruction. Nevertheless, this perspective is appropriate in the light 
of my stance towards technology as simply one amongst a range of resources, 
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essentially as a particular type of ‘text’. In addition, similar perspectives have been 
applied to a much wider range of resources and in particular to digital technologies 
(Gueudet and Trouche  2009 ; Ruthven et al.  2008 ; Ruthven  2009 ). 

    Applying Remillard’s Perspective to Teachers’ 
Use of Technology 

 Remillard’s ( 2005 ) perspective of “ curriculum use as participation with the text ” 
views teachers as sense-makers (Spillane  2006 ), actively interpreting curriculum 
materials through a process of dynamic interaction. Underlying this perspective are 
Vygotskian notions of tool use, wherein tools both shape and are shaped by human 
action through their constraints and affordances (Remillard  2005 , p. 221). Applying 
Remillard’s perspective to technology implies that, although the constraints and 
affordances inherent in digital technologies may help to shape its end use in the 
classroom, inevitably, the end user, in this case individual teachers, will also work 
to shape the technology. Thus the design and nature of hardware or software is an 
ingredient in, but does not determine, the way individual teachers interpret and 
make use of particular technologies in their classroom practice. For example, 
Ruthven’s ( 2008 ,  2009 ) research on mathematics teachers’ use of technology, in his 
notion of  interpretative fl exibility  and claims of interaction between teachers’  cur-
riculum scripts  and  resource systems  coincide with the perspective described by 
Remillard. Similarly, Gueudet and Trouche’s ( 2009 ) outline of the documentational 
approach, extending the widely infl uential instrumental approach to teachers’ appro-
priation of technology, shares the same Vygotskian roots as Remillard’s perspec-
tive. Put more simply, there is no guarantee that teachers will use mathematical 
software designated  cognitive tools  (Zbiek et al.  2007 ), such as dynamic geometry, 
graphing or spreadsheet software, if they use them at all, in ways approaching those 
envisaged by their designers or advocated in policy literature or mathematics educa-
tion research. Signifi cantly, Ruthven and Hennessy ( 2002 ) provide empirical evi-
dence of teachers using such technology to indirectly enhance students’ learning 
through increased  pace and productivity  and improved engagement rather than pro-
viding a direct means of enhancing mathematics pedagogy. 

 Remillard’s ( 2005 ) perspective also recognises the impact of contextual features 
in enabling or constraining teachers’ interpretations of technology. Stein et al. 
( 2007 ) identify  context  as one of the factors infl uencing the participatory relation-
ship between teachers and curriculum materials. In particular, they highlight con-
textual features, such as  time  available for planning and instruction,  locale  (school 
and departmental)  cultures  and  teacher support  through professional development, 
that can constrain or enable teachers’ interpretations of curriculum materials. 
Similarly, Ruthven ( 2009 ) describes  working environment  and  time economy  as two 
of fi ve structuring factors of classroom practice in relation to technology and 
Gueudet and Trouche ( 2009 ) include institutional infl uences as part of their model 
of the documentational approach.  
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    Theoretical Issues in Using Self-Report Data to Understand 
Technology Use 

 This sub-section outlines a theoretical approach to understanding the possibilities 
and limitation in using self-report data to gain insight into teachers’ use of technol-
ogy. To capture elements of the ways mathematics teachers in England interpret and 
use digital technologies in their classrooms, items relating to teachers’ pedagogic 
practices using ICT in a whole-class context with interactive whiteboards or data 
projectors and their use of ICT in the context of a computer suite or using laptops, 
were included in the survey instrument. These self-report pedagogic practice items 
attempt to access the ways teachers interpret and use these types of hardware, to 
explore the qualitative gap in technology use, however they cannot provide an indi-
cation of how teachers interpret specifi c software packages within these contexts. 
Further, a distinction must be acknowledged between what we say we do and what 
we do, relating to Argyris and Schon’s ( 1974 , pp. 6–10) defi nition of ‘espoused 
theory’ (theory to which we give our allegiance) and ‘theory-in-use’ (theory which 
governs actions). Thus, teachers’ self-reports must be considered “as being their 
account for us of what they do, refracting their espoused theory of teaching practice, 
through the items in the instrument that refer them to their concrete, practical 
actions” (Pampaka et al.  2012 ). In this sense, teachers’ self-reports of pedagogic 
practice cannot be assumed to correspond exactly with what they do in the actuality 
of the classroom. Nevertheless, Adler ( 2001 ) argues there is some relation or over-
lap between espoused theories and theories-in-use, although one cannot be reduced 
to the other. Hence, in the absence of direct observation data, teachers’ self-reports 
may be taken to give some insight into their use of hardware in classroom practice, 
whilst acknowledging the imperfections of the measure. Viewed as espoused theo-
ries, these self-reports of pedagogic practice may also provide insight into teachers’ 
conceptions (Thompson  1992 ; Zbiek et al.  2007 ) of mathematics teaching with 
regard to technology, mediated by the items in the instrument. 

 Consequently, my broader study is directed not simply at documenting the extent 
of teachers’ use of technology and the degree to which the quantitative and qualitative 
gap exists, but also at highlighting ways in which teachers, as sense-makers, interpret 
and shape the technology within the constraining or enabling features of their local 
school and departmental contexts. This chapter focuses primarily on detailing the 
types of hardware and software teachers use in their classroom practice, together with 
indications of how technology is being used, thus any conclusions with regard to why 
teachers use technology in their classroom practice are necessarily tentative.   

    The Survey: Instrument, Sample and Data Analyses 

 The survey instrument has been progressively developed over the course of various 
phases of piloting. The initial questionnaire design was informed by previous 
 surveys of mathematics teachers’ use of ICT, primarily Hyde’s ( 2004 ) survey of 
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mathematics teachers in Southampton and Forgasz’s ( 2002 ) survey of mathematics 
teachers in Victoria, Australia. This questionnaire was trialled with students on the 
Post-Graduate Certifi cate of Education 1  (PGCE) mathematics course at King’s 
College London, before being piloted with 27 schools working in partnership with 
King’s College London to offer initial teacher education in secondary mathematics. 
The results of the pilot survey are reported in Bretscher ( 2011 ). As a result of this 
piloting, the questionnaire was re-developed to include items relating to teachers’ 
pedagogic practices with ICT and to highlight more clearly the division of questions 
between using ICT in a whole-class context and using ICT in the context of a com-
puter suite or using laptops. Items relating to school and individual factors affecting 
teachers’ use of ICT were also re-written to aid clarity. The re-designed question-
naire was trialled in two further think-alouds 2  with PGCE students and with three 
experienced in-service teachers, who completed the questionnaire and then gave 
verbal feedback. The theoretical perspective outlined above implies that survey 
respondents engage in a participatory relationship with the text of the questionnaire, 
actively interpreting questionnaire items in the light of their own circumstances, 
whilst the questionnaire items may also shape respondents’ perception of these 
 circumstances. Indeed, one of the three experienced in-service teachers, with whom 
the questionnaire was trialled, commented with surprise on how she perceived shifts 
in her own conception of what ‘ICT use’ meant as she progressed through different 
sections of the questionnaire. 

 The fi nal survey instrument contained mainly closed Likert-type response for-
mats grouped under the following sections:

    A.     ICT in your school  – items on access to hardware/software and school/depart-
mental level factors effecting ICT use;   

   B.     ICT use in your own mathematics teaching 

    i.     Your use of hardware  – perceived impact and frequency of use of 
hardware;   

   ii.     Using an interactive whiteboard or data projector in maths lessons  – items 
on frequency of software use, individual factors effecting ICT use and peda-
gogic practices with an IWB or data projector in a whole-class context;   

   iii.     Maths lessons in a computer suite or using laptops  – similarly, items on 
frequency of software use, individual factors effecting ICT use and ped-
agogic practices with ICT in the context of a computer suite or using 
laptops;    

      C.     Your own mathematics teaching in general  – Pampaka et al.’s ( 2012 ) items relat-
ing to pedagogic practices in general (not specifi c to ICT use); and   

   D.     About You  – personal background details.     

1   The Post-Graduate Certifi cate of Education is a 1-year initial teacher-training course. 
2   A think-aloud is an interview where the survey respondent offers a verbal explanation of their 
responses as they progress through the questionnaire. 
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 In addition, two open-ended response questions were included so that teachers 
could comment more widely on issues relating to access to hardware or software 
and on using ICT in general in maths lessons. The list of software was derived 
mainly from Hyde’s ( 2004 ) list, checked against a survey of software use by the 
Fischer Family Trust ( 2003 ), with the notable inclusion of IWB software and the 
MyMaths.co.uk website (Oxford University Press  2012 ). IWB software refers to 
presentation-type software that is designed specifi cally for use with IWB hardware, 
for example SMART Notebook or Promethean ActivInspire. The growing presence 
of IWBs in mathematics lessons in England, indicated by the pilot study and other 
reports (e.g. Moss et al.  2007 ), suggests that IWB software may be used regularly 
by mathematics teachers and it was therefore included in the list of software for this 
survey. The  MyMaths  website was included since this site was known anecdotally 
to be widely used in UK schools (see for example, the school case studies reported 
in Clark-Wilson  2008 , pp. 103–104). It is a subscription site offering teachers pre- 
planned lessons, on-line homework and many other resources. The lessons and 
homework are linked to an ‘Assessment Management system’, allowing teachers to 
track individual student’s progress. 

 Questionnaires were sent to 87 secondary schools selected through contacts with 
mathematics educators in three English universities. The schools were thus situated 
mainly within three rough geographic areas: Greater London, West Yorkshire and 
the South of England (taken as comprising the counties of Hampshire, West Sussex 
and Dorset). Nine questionnaires were sent to each school and 50 schools agreed to 
take part. A total of 188 completed individual teacher questionnaires returned, an 
average of 3.8 questionnaires per school. Twelve schools returned only one com-
pleted questionnaire, whilst one returned all nine. The sample cannot be said to be 
statistically representative, nevertheless, the participating schools cover a range of 
characteristics including a wide range of attainment in national tests; most were 
state schools but some were private schools; some have speciality status and some 
do not; some are single sex and some are selective. The participating teachers 
(101 F; 86 M; 1 unspecifi ed) had an average age of 38.5 years and an average length 
of service of 10.5 years. The majority of respondents (96) described their main 
responsibility as classroom teacher. The sample also included 24 heads of depart-
ment, 18 deputy heads of department and 24 Key Stage 3  coordinators. There may be 
a potential bias in the sample towards teachers who are relatively well-disposed 
towards ICT or those wishing to be seen as frequent users of ICT. Comparing them-
selves to their colleagues in the maths department, only 9.0 % of survey respondents 
thought they use ICT less or much less frequently whereas 33.5 % thought they use 
ICT more or much more frequently. 

 Data that could be analysed statistically were manually entered into PASW 
Statistics 18.0. This package was used to generate descriptive statistics (i.e. frequency 

3   A Key Stage coordinator is a teacher with responsibility for overseeing the delivery of the math-
ematics curriculum to certain year groups. For example, Key Stage 3 refers to the fi rst three years 
of secondary school, whilst Key Stage 4 refers to the remaining two years of compulsory second-
ary schooling. 
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distributions and means) and inferential statistics (t-tests and χ 2  tests) were calculated 
as appropriate. An independent data coding check, based on a 10 % sample of ques-
tionnaires, gave a coding accuracy of greater than 99.9 %. 

 In order to investigate the infl uence of contextual factors relating to teachers’ 
local school and departmental contexts on their technology use, a crude measure of 
school level support for ICT use was also calculated for each school, as follows. A 
school score for each of the ‘school level’ factors relating to ICT use was calculated 
i.e. the mean of the responses given by the teachers in that school. An overall sup-
port score for each school was then calculated as the mean of its scores for the 
‘school level’ factors (negatively worded items were reverse-coded). Schools were 
labeled 1 if their overall support score was higher than the school sample mean and 
0 if their mean support score was lower than or equal to the school sample mean.  

    Results 

    Access to Hardware and Software 

 All schools in the sample equipped their teachers with either IWBs or data projec-
tors. The near ubiquity of IWBs in English mathematics classrooms can be 
ascribed in large part to funding initiatives put in place by the previous Labour 
government, allowing the purchase of this technology by schools on a large scale. 
Indeed, in only two schools did all the responding teachers say they had no access 
to IWBs: in school 90, one teacher responded, reporting access to data projectors 
(but not IWBs). Similarly in school 42, eight teachers responded, seven of these 
reporting access to data projectors. The eighth teacher in school 42 was the only 
respondent in the survey to report having access neither to an IWB nor to a data 
projector, specifi cally commenting on the questionnaire that s/he never used this 
hardware in classroom teaching – despite his/her colleagues’ access to and fre-
quent use of this technology.

   In contrast only 71.8 % of teachers reported having access to a computer suite 
shared with other departments. This seems surprisingly low, especially when com-
pared with the coverage of IWBs (93.1 % – see Table  1 ). Although 53 teachers 
report having no access to a shared computer suite, 21 of these teachers report hav-
ing access instead to a computer suite dedicated to the maths department. This 
leaves 32 teachers (17.0 %) saying they have no access to a computer suite at all 
(either shared or dedicated to the maths department). Looking across schools how-
ever, there are only three schools in which none of the teachers report having access 
to a computer suite of either type. In each of these three schools only one or two 
teachers completed questionnaires. Furthermore, 55 % of the 53 teachers who report 
having no access to a shared computer suite, confl ictingly report using a shared 
computer suite with some frequency during their teaching. Based on this measure, 
the apparent unreliability of reporting access to shared computer suites was far 
higher than for other types of hardware. 32 % of teachers who reported no access to 
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a data projector claimed to use them in their teaching, possibly refl ecting confusion 
between the IWB and data projector categories. 4  For all other types of hardware 
included in the survey this fi gure was below 10 %. The lack of consistency in teach-
ers’ responses, both across schools and individually, suggests that while some teach-
ers are reporting access to shared computer suites on the basis of their awareness of 
the existence of hardware, others are responding according to their perception of 
availability of the hardware for use (and there may be other interpretations too). 
Diffi culties in booking computer rooms mean that, although shared computer suites 
exist, their availability for actual use is often restricted. 23.1 % of teachers’ responses 
to an open-ended question regarding issues with access to hardware and software 
commented on diffi culties relating to gaining access to computer suites. The quote 
below gives a sense of these teachers’ comments on hardware access and neatly 
summarises the contrast in accessibility between IWBs and computer rooms:

  It is easy for us to use ICT with the software from the front but diffi cult to gain access to the 
computers for an ICT lesson where students use the computers. 

   In addition, 25.6 % of teachers’ responses commented on the unreliability or 
slowness of ICT facilities: thus even where access was not an impediment, technical 
issues could make lessons involving ICT highly problematic as illustrated by the 
following comment:

  Main issue is unreliability of ICT – so that you cannot guarantee that a planned lesson using 
ICT will run to plan. 

   A computer suite dedicated to the maths department or class sets of laptops might 
be a potential solution to diffi culties in gaining access. However, these facilities are 
still fairly rare and increased access does not overcome technical issues – indeed, in 
the case of laptops at least, they may carry additional technical diffi culties, as one 
frustrated teacher commented:

  I have access to a class set of laptops (one between two) but [I] never use [them] as the bat-
teries do not last a full lesson. There is very limited access to computer rooms as an 
alternative. 

   Access to generic software tools such as word-processing, spreadsheet and pre-
sentation software is almost universal (above 90 %). The majority of teachers appear 

4   In the survey, the IWB category was referred to as ‘Interactive whiteboard with a data projector’ 
whereas the data projector category was defi ned as ‘Data projector only, linked to a computer’. 

  Table 1    Number of teachers 
with access to hardware, 
 n  = 188  

 With access (%) 

 Interactive whiteboard  175  (93.1) 
 Data projector  36  (19.1) 
 Computer suite (shared)  135  (71.8) 
 Computer suite (maths only)  39  (20.7) 
 Laptops  41  (21.8) 
 Graphic calculators  65  (34.6) 
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to have access to graphing software (e.g.  Autograph  and  Omnigraph ) and dynamic 
geometry software (e.g.  Cabri ,  The Geometer’s Sketchpad  and  GeoGebra ),  however 
a signifi cant minority report no access to these resources (21.3 % and 34.0 % respec-
tively). Of course, this may refl ect teachers’ lack of awareness of the existence of 
the software at their school or, as with hardware, teachers may be responding based 
on their perception of the ease of accessing software rather than its existence. 
Nevertheless, the number of teachers reporting no access to these types of software 
is surprising perhaps, given recommendations in national curricula that pupils be 
given opportunities to use such software in mathematics, although there is no com-
pulsion to do so through national examinations, for example (Table     2 ).

   Perhaps more surprising is the near ubiquity of the  MyMaths  website, with 
89.4 % of teachers reporting access, costing secondary schools around £540 in 
annual subscription fees. Indeed, in only two schools did all the teachers consis-
tently report not having access to the  MyMaths  website. Using databases in work on 
data-handling was a statutory requirement of the original National Curriculum in 
1989 (DES  1989 ) and Logo appeared more frequently than any other form of soft-
ware in algebra and geometry contexts, although references to these software disap-
peared in later revisions (Andrews  1997 ). Despite this only 43.1 % of teachers 
report access to database software and 28.7 % of teachers responded positively for 
access to Logo. Some teachers complained about restrictions on downloading and 
installing software, such as  GeoGebra , and access to some websites being unneces-
sarily blocked. Although software might exist in a school, teachers expressed uncer-
tainties over whether it had been installed on all computers or whether it was 
available at any given time, thereby adding complexity to conducting lessons in a 
computer suite, as the following comments illustrate:

  Migration of software to new network has caused several items of software to be 
inaccessible. 

 The school system is sometimes slow which makes accessing the software time- 
consuming at times. Changes in our school status mean we have lost some software. 
Updates in SMARTboard have caused squared paper options to disappear. 

  Table 2    Number of teachers 
with access to software, 
 n  = 188  

 With access (%) 

 Spreadsheet  176  (93.6) 
 PowerPoint  171  (91.0) 
 Word  171  (91.0) 
 MyMaths.co.uk website  168  (89.4) 
 Interactive whiteboard software  166  (88.3) 
 Email  160  (85.1) 
 Graphing software  148  (78.7) 
 Other websites  141  (75.0) 
 Interactive geometry software  124  (66.0) 
 CD Roms  117  (62.2) 
 Database  81  (43.1) 
 Logo  54  (28.7) 
 SMILE  39  (20.7) 
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       School Level Factors Relating to ICT Use 

 Overall, teachers’ responses were positive about the factors affecting ICT use, cast-
ing their departments and schools in general as supportive communities in which to 
develop their mathematics teaching using ICT. Indeed Fig.  1  shows that the overall 
support score for the sample of schools was skewed towards the positive agreement 
end of the response scale. This could be interpreted as resulting from sample bias 
– that schools in the sample were more likely to be supportive of ICT use than is the 
norm – or that teachers simply tend to represent their schools and departments in a 
positive light. The overall school support score for the three lowest- scoring schools 
were based upon only one or two respondents from each school; this was not neces-
sarily the case for high scoring schools.

   Table  3  shows the mean school score for the school level factors included in the 
survey instrument. In particular, teachers highlighted their departmental colleagues 
as supporting their use of ICT. Surprisingly perhaps, given the comments in the 
previous section, in general teachers tended to disagree that they often had problems 
accessing hardware. It is important to note here that this question didn’t discrimi-
nate between access to IWB hardware or computer hardware: thus the positive 

  Fig. 1    Distribution of overall school support scores,  n =  50, mean = 3.64, s.d. = .44       
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response might refl ect the relative ease of accessing IWB hardware, masking 
 diffi culties teachers have in booking computer suites. For example, teachers from 
two of the highest scoring schools for overall support (school 60 scored 4.18; school 
80 scored 4.25) raised diffi culties with giving their students direct access to ICT due 
to problems booking computer suites and the unreliability of laptops via the open- 
ended response questions. In addition, there was no statistically signifi cant differ-
ence in access to any type of hardware or software listed in the survey between 
schools identifi ed as providing high and low support for using ICT in teaching 
mathematics (based on χ 2  tests at the 5 % level).

       Frequency and Perceived Impact of Hardware Use 

 The majority of teachers use IWBs and data projectors in almost every lesson, with 
85 % of teachers using IWBs in almost every lesson, see Table  4 . The ready avail-
ability of IWBs and data projectors in normal classrooms makes it unsurprising 
that they are the most frequently used hardware. IWBs stand out from the other 
types of hardware as having the highest perceived impact (see Table  5 ) – this is 
likely to be linked to their high frequency of use. Interestingly, the perceived 
impact of data projectors is little different from and actually slightly lower than 
that of computer suites and laptops in general. Of the 139 teachers reporting impact 
on student learning for data projectors, only 12 did not have access to IWBs. The 
relatively low mean impact score for data projectors compared to that of IWBs may 
refl ect a perception that the additional ‘interactivity’ of IWBs makes them superior 
for teaching purposes. 

 Computer rooms shared with other departments have a much lower frequency of 
use, with 77 % of teachers using them once or twice a term or less. As with IWBs, 
the frequency of use is to some extent refl ected by diffi culties in access and in turn 
refl ects the lower impact score of shared computer rooms. Computer suites dedi-
cated to the mathematics department appear to be used slightly more frequently, 
with a smaller percentage of teachers claiming they never use the resource and a 

   Table 3    Mean school support scores for school level factors,  n  = 50. Scored on a 5-point Likert- 
scale where 5 = strongly agree to 1 = strongly disagree   

 Mean  (SD) 

 ICT use is a high priority in my department  3.64  (.72) 
 I get support on using ICT from colleagues in my department  4.01  (.53) 
 ICT resources are poorly integrated into schemes of work  2.60  (.78) 
 I often have problems accessing hardware  2.62  (.77) 
 Access to software is easy and reliable  3.50  (.76) 
 The available software lacks relevance to the curriculum  2.03  (.56) 
 The level of technical support is poor  2.15  (.88) 
 I have had relevant professional development in using ICT  3.37  (.76) 
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somewhat larger percentage saying they use the resource once a week. Nevertheless, 
the increased frequency of use is marginal since 70 % of teachers still only use a 
computer suite dedicated to the maths department once or twice a term or less. 
Similarly there is no apparent difference in teachers’ perception of the impact on 
students’ learning of a computer suite dedicated to the maths department compared 
to one shared by other departments.

   The portability of laptops might make it easier to give students direct access 
to ICT within a ‘normal’ classroom context; however, this survey suggests that 
they do not lead to an increase in usage compared to a shared computer suite. 
Indeed, a greater proportion of teachers with access to laptops report never 
using them, perhaps due to the kinds of technical diffi culties alluded to in previ-
ous sections. Whilst the mean impact score of computer suites, laptops and data 
projectors are fairly similar, the perceived impact of graphic calculators is 
appreciably lower than this cluster. Likewise, graphic calculators have the low-
est profi le of frequency of use with 99 % of teachers reporting usage of once or 
twice a term or less.

   Differences in the frequency of use of IWBs between schools with higher and 
lower support for ICT use were statistically signifi cant (χ 2  = 16.67, df = 2, p = .0002). 
Specifi cally, teachers in schools with higher support reported higher frequency of 
use for IWBs in almost every lesson than those in schools with lower support. The 
difference in the frequency of data projector usage between schools with higher and 
lower support for ICT was also statistically signifi cant (χ 2  = 17.04, df = 3, p = .001). 
In higher support schools, more teachers claim never to use data projectors than was 

   Table 4    Frequency of hardware use, in %. Note the ‘Never’ column excludes those who reported 
having no access to the hardware   

 Never  Annually 
 Once or twice 
a term  Once a week 

 Almost 
every lesson 

 Interactive whiteboard   n  = 175  4  1  2  8   85  
 Data projector   n  = 35  3  0  9  26   63  
 Computer suite (shared)   n  = 131  6  11   60   21  1 
 Computer suite (maths)   n  = 37  3  16   51    30   0 
 Laptops   n  = 41   32   7   37   20  5 
 Graphic calculators   n  = 63   30    29    40   2  0 

   Table 5    Mean perceived impact score. Scored on a 4-point Likert 
scale where 4 = substantial; 3 = signifi cant; 2 = some; 1 = very little   

 Mean impact  (SD) 

 Interactive whiteboard   n  = 182  3.16  (.84) 
 Data projector   n =  139  2.43  (.89) 
 Computer suite (shared)   n  = 168  2.53  (.80) 
 Computer suite (maths only)   n  = 131  2.53  (.99) 
 Laptops   n  = 133  2.47  (.97) 
 Graphic calculators   n  = 140  2.21  (.90) 
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expected compared to those in lower support schools. Thus teachers in higher 
 support schools used data projectors less  frequently than those in lower support 
schools. There were no statistically signifi cant differences in frequency of use for 
any of the other hardware listed in the survey, tested at the 5 % level. The differences 
between higher and lower support schools in terms of teachers’ perceptions of the 
impact of using hardware on students’ learning followed a similar pattern. Those in 
higher support schools were signifi cantly more likely to perceive IWBs as having a 
substantial impact on students’ learning, whereas those in lower support schools 
thought IWBs only had some impact (χ 2  = 22.38, df = 2, p < .0001). There were also 
signifi cant differences in the perception of impact of data projectors between teach-
ers in higher and lower support schools (χ 2  = 8.61, df = 3, p = .035). In higher support 
schools, more teachers than expected thought that data projectors had either very 
little impact or substantial impact. Although it is not so easy to interpret this result, 
it could be taken to suggest that teachers in higher support schools have more 
extreme views about the impact of data projectors. Again there were no statistically 
signifi cant differences in teachers’ perception of impact for any of the other hard-
ware listed in the survey, tested at the 5 % level. These results can be interpreted in 
at least two ways: when considering school or departmental factors relating to ICT 
use, teachers appear to equate ICT use with IWB use. An alternative interpretation 
is that whilst supportive departments can apparently facilitate teachers’ use of IWBs, 
they do little to ameliorate obstacles to giving students direct access to ICT via 
computer suites or laptops. These results also tend to support the fi nding noted 
above that teachers appear to prefer IWBs to data projectors.  

    Frequency of Software Use 

 Table  6  compares the mean frequency of software use in lessons with an IWB or 
data projector to lessons where students are given direct access to the software, 
i.e. those that take place in a computer room or with laptops. A score of above 2 
indicates the software is used more than once or twice a term. Databases, SMILE 
and Logo scored very low in both contexts, with a score of below 1 indicating 
less than annual use, so no satisfactory comparison can be made for these soft-
ware packages. IWB software was the most frequently used piece of software 
(3.19) in a whole- class context with an IWB. This was followed by PowerPoint, 
other (unspecifi ed) websites and the  MyMaths  website which also scored above 
2. All other types of software including graphing, geometry and spreadsheet soft-
ware were used on average less than once or twice a term in a whole-class con-
text with an IWB. Thus in general, presentation-oriented software dominates 
IWB use. Whilst the theoretical stance adopted in this study suggests that making 
any inferences regarding teachers’ actual use of such software is problematic, it 
is reasonable to note that the design of such presentation-oriented software tends 
to be more teacher-centred and may therefore present an additional obstacle to 
the development of more student-centred practices. 
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 The frequency of use in lessons where students were given direct access to the 
software was low in comparison to lessons with an IWB: only  MyMaths  had a mean 
frequency score above 2 – a fi nding supported by the pilot study. This is unsurpris-
ing given the frequency of hardware use in mathematics lessons reported above: 
computer rooms are used much less frequently than IWBs. However the decrease in 
use is not uniform across all types of software. The mean frequency score of IWB 
software (−1.95) and PowerPoint (−1.11) dropped the most. Since the main purpose 
of IWB software and PowerPoint is for presentation, it appears well suited to teacher 
exposition in lessons with an IWB but not so relevant in lessons where students have 
direct access to the software.  MyMaths  (−0.38) and geometry software (−0.33) had 
the smallest drops in frequency use between contexts. Although the  MyMaths  web-
site can be used for teacher presentation, one of its main features are textbook-like 
exercises and on-line homework, linked to an ‘Assessment Management system’, 
allowing teachers to track individual student’s progress. Hence it can also be used in 
lessons where students are given direct access to computers. Similar to geometry 
software, graphing (−0.50) and spreadsheet (−0.43) software also have relatively 
low drops in use between contexts, maintaining a mean frequency of use between 
once or twice a term and annual usage.

   In a whole-class context with an IWB, teachers in higher support schools tended to 
use IWB software (χ 2  = 28.93, df = 3, p < .0001) and email (χ 2  = 8.89, df = 3, p = .031) 
statistically signifi cantly more than those in lower support schools. Although teachers 
in higher support schools also used Logo signifi cantly more often than those in lower 
support schools (χ 2  = 7.27, df = 2, p = .026), this still corresponds to very low levels of 
use overall. There were no statistically signifi cant differences in frequency of use with 
an IWB for any of the other software listed in the survey tested at the 5 % level, in 

   Table 6    Mean frequency of software use (a) with IWB or data projector and (b) giving students’ 
direct access via a computer suite or with laptops. Scored on a 5-point Likert-scale where 0 = never, 
1 = annually, 2 = once or twice a term, 3 = once a week, 4 = almost every lesson   

 (a)  (b) 

 For IWB/data 
projectors,  n  = 147  Mean freq.  (SD) 

 For direct student 
access,  n  = 158  Mean freq.  (SD) 

  IWB software    3.19    (1.39)   IWB software  1.24  (1.54) 
  PowerPoint    2.57    (1.24)   PowerPoint  1.46  (.98) 
  Other websites    2.56    (.95)   Other websites  1.85  (1.13) 
  MyMaths.co.uk    2.41    (1.22)    MyMaths.co.uk    2.03    (1.25)  
 Word  1.95  (1.23)  Word  1.34  (1.11) 
 Graphing software  1.89  (1.09)  Graphing software  1.39  (1.01) 
 Spreadsheet  1.82  (1.04)  Spreadsheet  1.39  (1.30) 
 Geometry software  1.53  (1.11)  Geometry software  1.20  (.99) 
 Email  1.37  (1.60)  Email  .66  (1.09) 
 CD Roms  1.46  (1.29)  CD Roms  .55  (.92) 
 Database  .84  (1.19)  Database  .58  (.94) 
 SMILE  .50  (.95)  SMILE  .25  (.62) 
 Logo  .35  (.67)  Logo  .37  (.72) 
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particular graphing, geometry and spreadsheet software, PowerPoint and  MyMaths  
showed no signifi cant difference in use between higher and lower support schools. 
Higher support school teachers’ more frequent use of IWB software is likely to be a 
refl ection of their more frequent use of IWBs in general, although perhaps of more 
interest is that they do not use other software signifi cantly more or less often than 
those in lower support schools. Nevertheless this result might be seen to offer support 
to the suggestion that when considering school or departmental factors relating to ICT 
use, teachers appear to equate ICT use with IWB use. 

 In the context of giving students direct access to ICT in a computer suite, the 
only software with a signifi cant difference in frequency of use between teachers in 
higher and lower support schools was Logo (χ 2  = 12.15, df = 2, p = .002). Teachers in 
higher support schools used Logo more frequently, however again this still corre-
sponds to very low levels of use overall. Again there were no statistically signifi cant 
differences in frequency of use with a computer suite for any of the other software 
listed in the survey tested at the 5 % level, in particular graphing, geometry and 
spreadsheet software and  MyMaths  showed no signifi cant difference in use between 
higher and lower support schools.  

    Individual Level Factors Relating to ICT Use 

 In general, teachers agreed that ICT makes an important contribution to students’ 
learning and helps them to understand mathematics, irrespective of whether students 
are given direct access to ICT or they experience ICT indirectly through whole-class 
teaching using an IWB (see Tables  7  and  8 ). The pattern of response differed little 
between using IWBs in a whole-class context and giving students direct access to 
ICT via a computer suite: there were no statistically signifi cant  differences between 
the two contexts, according to a paired  t -test at the 5 % level. Similarly, teachers 
agreed that using ICT improves students’ engagement in lessons, with no signifi cant 
difference between the two classroom contexts. These results suggest mathematics 
teachers in England generally have a favourable outlook towards using ICT in their 
teaching and to a similar extent whether students are given direct access to ICT or 
they experience ICT indirectly through whole-class teaching using an IWB. 

 Time is highlighted by Stein et al. ( 2007 ) as one of many contextual factors 
impacting on the participatory relationship between curriculum materials and teach-
ers. In terms of time needed for lesson preparation, overall, teachers tended to agree 
slightly that lessons involving ICT in both classroom contexts took more time to 
prepare (see Tables  7  and  8 ); there were no statistically signifi cant differences 
between the two contexts. However, in both contexts there was a relatively large 
variation in the perceived time costs across the sample, with 29.0 % ( n =  183) dis-
agreeing or strongly disagreeing that lessons with an IWB took more time to pre-
pare and similarly 30.1 % ( n =  176) for lessons in a computer suite. The large 
variation in perceived time costs for ICT use may refl ect that while start-up costs 
can be high in terms of designing lesson materials, once made, the materials can be 
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stored electronically, ready to be used in perpetuity. Thus teachers who are new to 
using a piece of hardware or software or teaching a topic for the fi rst time might 
agree that preparation time is increased, whereas those who have already accumu-
lated a bank of lesson materials may disagree. Preparation time also depends on 
how the hardware is used. For example, if an IWB is essentially used as a normal 
whiteboard then additional time costs may be minimal; however if a PowerPoint 
presentation is specially prepared for the lesson, the additional time costs could be 
considerable. Similarly, for lessons in a computer suite, if pupils work through a 
pre-prepared  MyMaths  lesson and exercises, the teachers’ time spent in preparation 
may be minimal, whereas preparing graphing or dynamic geometry software fi les 
for the pupils to interact with could be very time-consuming.

    Overall, teachers tended to disagree slightly that students’ lack of familiarity 
with software make ICT lessons more diffi cult. Still, there was a sizeable minority 
who either agreed or strongly agreed that students’ lack of familiarity with soft-
ware caused diffi culties in ICT lessons: 24.2 % of responding teachers ( n =  186) in 

       Table 7    Mean score for individual level factors using ICT with an IWB or data projector. Scored 
on a 5-point Likert-scale where 5 = strongly agree to 1 = strongly disagree   

 For lessons using an IWB or data projector in a whole-class context  Mean  (SD) 

 I am confi dent using ICT in lessons   n  = 181  4.24  (.90) 
 Lessons using an IWB/data projector take more time to prepare   n  = 183  3.18  (1.14) 
 ICT makes an important contribution to students’ learning 

of mathematics 
  n  = 184  3.87  (.82) 

 Using ICT improves student engagement in lessons   n  = 185  3.97  (.75) 
 Students’ lack of familiarity with software make lessons with ICT 

diffi cult 
  n  = 186  2.68  (1.01) 

 ICT resources help students to understand mathematics   n  = 184  3.85  (.80) 
 Classroom management is more diffi cult when using an IWB/data 

projector 
  n  = 185  1.86  (.88) 

 We cover more ground in lessons with an IWB/data projector   n  = 184  3.57  (.90) 

    Table 8    Mean score for individual level factors using ICT in a computer suite or with laptops. 
Scored on a 5-point Likert-scale where 5 = strongly agree to 1 = strongly disagree   

 Giving students direct access in a computer suite or with laptops  Mean  (SD) 

 I am confi dent using ICT in lessons   n  = 175  4.09  (.98) 
 ICT lessons take more time to prepare   n  = 176  3.18  (1.14) 
 ICT makes an important contribution to students’ learning 

of mathematics 
  n  = 176  3.85  (.83) 

 Using ICT improves student engagement in lessons   n  = 176  3.89  (.81) 
 Students’ lack of familiarity with software make lessons 

with ICT diffi cult 
  n  = 175  2.78  (1.02) 

 ICT resources help students to understand mathematics   n  = 175  3.75  (.82) 
 Classroom management is more diffi cult in ICT lessons   n  = 176  2.64  (1.03) 
 We cover more ground in ICT lessons   n  = 174  2.92  (.87) 
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the context of using an IWB and 26.3 % of responding teachers ( n =  175) where 
students were given direct access to ICT via a computer suite. Surprisingly there 
were no statistically signifi cant differences in this regard between using IWBs in a 
whole- class context and giving students direct access to ICT in a computer suite 
– despite the dominance of teacher control over software when using IWBs, see the 
following section. 

 Three individual level factors stood out as showing statistically signifi cant differ-
ences between using IWBs in a whole-class context and giving students direct 
access to ICT in a computer suite: teachers’ confi dence in using ICT; teachers’ 
perception of the diffi culty of classroom management; and the amount of ground 
(i.e. the amount of curriculum material) covered in ICT lessons – see Table  9  above. 
Teachers do appear to feel confi dent in using ICT in lessons both with an IWB and 
in a computer suite. Although mathematics teachers’ confi dence has appeared as an 
obstacle towards using ICT in previous surveys (e.g. Hadley and Sheingold  1993 ), 
a more recent survey of mathematics teachers (Forgasz  2006 ) suggested that teach-
ers’ personal confi dence and relevant skills were consistently one of the factors most 
encouraging their use of ICT. However, according to the results shown in Table  9 , 
teachers do appear less confi dent using ICT in lessons in a computer suite than in 
lessons with an IWB.

   Classroom management is perceived by teachers as being signifi cantly more dif-
fi cult in ICT lessons taking place in a computer suite than in lessons involving ICT 
using an IWB. Around 83 % of responding teachers ( n  = 185) disagree or strongly 
disagree that classroom management is more diffi cult when using an IWB or data 
projector, suggesting that, in the main, teachers believe that using an IWB facilitates 
classroom management. Although overall it appears that teachers also slightly dis-
agree that classroom management is more diffi cult in a computer suite, by compari-
son this fi gure is much lower with nearly 50 % of teachers disagreeing or strongly 
disagreeing that classroom is more diffi cult when giving students direct access to 
ICT in a computer suite. 

 Overall, teachers have the perception that they cover slightly more ground in les-
sons when using an IWB, with over half agreeing or strongly agreeing with the 
statement ( n  = 184). However, for lessons where students are given direct access to 
ICT in a computer suite, 50 % of responding teachers ( n  = 174) thought it made little 
difference to the amount of ground covered, whilst slightly over 25 % disagreed or 
strongly disagreed – presumably suggesting they think less ground is covered in 
lessons taking place in a computer suite. Thus in general, teachers believe that they 

    Table 9    Statistically signifi cant results of paired t-tests at the 5 % level, comparing means for 
individual level factors between using IWBs in a whole-class context and giving students direct 
access to ICT in a computer suite   

 Mean difference (IWB – CS)  SE  t-score  p-value 

 Confi dence   n  = 169  .154  .054  2.83  .005 
 Class management   n  = 173  −.786  .085  −9.29  p < .001 
 Ground covered   n  = 170  .665  .080  8.35  p < .001 
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cover signifi cantly less ground in lessons where students are given direct access to 
ICT compared to those conducted in a whole-class context using an IWB. This 
result is particularly interesting given the pace and productivity rationale for using 
ICT identifi ed by Ruthven and Hennessy ( 2002 ). 

 Comparing individual level factors in high and low support schools, all 
showed signifi cant differences with regard to using an IWB in a whole-class 
context (Table  10 ).

   Overall, teachers in high support schools were more positive in the perceptions 
of using ICT in a whole-class context with an IWB than those in low support 
schools. More teachers in high support schools strongly agreed to being confi dent 
using IWBs compared to those in low support schools. Similarly, teachers in high 
support schools agreed more strongly that ICT makes an important contribution to 
students’ learning; that using ICT improves student engagement and helps students 
to understand mathematics when using an IWB in a whole-class context compared 
to teachers in low support schools. However, teachers in high support schools dis-
agreed more strongly that ICT lessons take more time to prepare; that classroom 
management is more diffi cult and that students’ lack of familiarity with software 
causes diffi culties when using an IWB in a whole-class context compared to teach-
ers in low support schools (Table  11 ).

   Table 10    Chi-squared tests for differences in individual level factors using 
an IWB in a whole- class context between high and low support schools   

 For IWB lessons   χ  2 -value  df  p-value 

 Confi dence  21.03  4  p < .001 a  
 Preparation time  10.57  4  .032 a  
 Contribution to learning  25.47  4  p < .001 a  
 Student engagement  8.71  3  .033 a  
 Students’ lack of familiarity  11.60  4  .021 a  
 Help understanding  22.95  4  p < .001 a  
 Classroom management  17.30  3  p < .001 a  
 Ground covered  15.31  3  .002 a  

   a Indicates a statistically signifi cant result at the 5 % level  

   Table 11    Chi-squared tests for differences in individual level factors 
using ICT in a computer suite between high and low support schools   

 For computer suite lessons   χ  2 -value  df  p-value 

 Confi dence  12.33  4  .015 a  
 Preparation time  3.08  4  .545 
 Contribution to learning  16.09  4  .003 a  
 Student engagement  4.79  4  .309 
 Students’ lack of familiarity  2.52  4  .641 
 Help understanding  12.19  4  .016 a  
 Classroom management  6.78  4  .148 
 Ground covered  10.18  4  .038 a  

   a Indicates a statistically signifi cant result at the 5 % level  
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   Comparing individual level factors using ICT in a computer suite between high 
and low support schools offers a different picture. Teachers in high support schools 
agreed signifi cantly more strongly that they are confi dent using ICT in computer 
suite and that ICT makes an important contribution to students’ learning and helps 
their understanding when students are given direct access to it than those in low 
support schools. Although there was a signifi cant difference between high and low 
support schools with regard to teachers’ perception of the amount of ground cov-
ered in ICT lessons, this result was less easy to interpret. None of the other factors 
showed statistically signifi cant differences between high and low support schools at 
the 5 % level.  

    Teachers’ Pedagogic Practices Using ICT with an IWB 
and in a Computer Suite 

 Perhaps unsurprisingly given the apparent teacher-centred nature of IWBs, teacher- 
centred practices such as using ICT for presentation purposes and maintaining 
teacher-control of the software are the dominant pedagogic practices reported by 
teachers when using an IWB (see Table  12 ). Conversely, allowing students to take 
control of the software on an IWB is reported as the least frequent pedagogic prac-
tice. Using ICT to generate student discussion is reported as fairly frequent, though 
substantially less often than using ICT for presentation purposes. In particular, 
teachers relatively rarely report using ICT to follow up and explore student ideas, 
suggesting perhaps that the discussion might be rather one-sided. Interpreting this 
data, it is important to recall that teachers’ self-reports may not accurately refl ect 
classroom practice, since they represent espoused-theories rather than theories- in-
action, and that direct observation data is required to validate any assertions made 
on the basis of the survey data. The lower number of responses for the statements 
regarding mathematical discrepancies (such as rounding errors) in the software is 

   Table 12    Mean frequency of self-reported pedagogic practices using an IWB in a whole-class 
context. Scored on a 5-point Likert-scale where 5 = almost always to 1 = almost never   

 Mean  (SD) 

 I use ICT for presentation purposes   n  = 182  4.12  (1.07) 
 I use ICT to generate student discussion   n  = 184  3.28  (1.09) 
 I control the software on the interactive whiteboard or data projector   n  = 183  4.03  (.97) 
 I use ICT to follow up and explore students’ ideas   n  = 184  2.79  (1.12) 
 I manage software carefully to prevent mathematical 

discrepancies arising 
  n  = 173  3.06  (1.32) 

 Students control the software on the interactive whiteboard 
or data projector 

  n  = 184  2.03  (.86) 

 I draw attention to mathematical discrepancies in the software   n  = 176  2.66  (1.40) 
 Using ICT, I avoid students making mistakes by explaining things 

carefully fi rst 
  n  = 181  3.15  (1.16) 
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due to teachers’ confusion over the meaning of ‘discrepancies’. It is diffi cult to 
offer any interpretation of the data as a result, beyond noting perhaps that it may 
indicate that teachers are generally not aware of discrepancies between mathemat-
ics as modeled by the software and standard mathematics.

   Using ICT in a computer suite where students have direct access, the most com-
mon pedagogic practices were getting students to use ICT to practice mathematical 
skills and providing precise instructions for software use. Using ICT for students to 
investigate mathematical problems and concepts was one of the least frequent self- 
reported pedagogic practices. Surprisingly, preparing software fi les in advance was 
also one of the least frequent reported practices. Due to the dominant use of 
 MyMaths  in lessons taking place in a computer suite, perhaps it is unnecessary for 
teachers to prepare software fi les in advance, alternatively they may download 
materials from the Internet or from their own pool of resources rather than having to 
create new resources on a frequent basis. Again teachers found it diffi cult to under-
stand what was indicated by ‘mathematical discrepancies’. The reduced number of 
responses in comparison to IWB practices is partly due to a number of teachers 
omitting this question as they felt unable to give reliable responses because they use 
computer suites so infrequently (Table  13 ).

        Conclusion and Discussion 

 This study underlines the quantitative gap between institutional expectations and 
classroom reality in maths teachers’ use of both hardware and software. Allowing 
students direct access to digital technology remains at the margins of teaching prac-
tice, with over 75 % of responding teachers ( n =  131) using computer suites shared 
with other departments – the most commonly available resource for students’ direct 
access – one or twice a term or less. In contrast, IWBs are used almost every lesson 
by 85 % of responding teachers ( n =  175), where control of the technology is rarely 

   Table 13    Mean frequency of self-reported pedagogic practices using giving students direct access 
to ICT in a computer suite. Scored on a 5-point Likert-scale where 5 = almost always to 1 = almost 
never   

 Mean  (SD) 

 Students use ICT to practice mathematical skills   n  = 170  3.41  (1.16) 
 I encourage students to work collaboratively   n  = 175  3.35  (1.03) 
 I let students ‘get a feel’ for the software   n  = 175  3.19  (1.15) 
 Students explore mathematical discrepancies in the software   n  = 167  2.07  (1.13) 
 Students work on their own, consulting a neighbour from time to time   n  = 172  3.15  (1.06) 
 Students use ICT to investigate mathematical problems and concepts   n  = 175  2.90  (1.14) 
 I provide precise instructions for software use   n  = 170  3.42  (1.10) 
 I prepare software fi les in advance to avoid student diffi culties 

using the software 
  n  = 170  2.55  (1.36) 
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devolved to students. The quantitative gap is further emphasised by software use in 
both classroom contexts. Use of mathematical analysis software (Pierce and Stacey 
 2010 ), most commonly associated with theoretical notion of  cognitive tools  (Zbiek 
et al.  2007 ) and thus advocated by mathematics education research and government 
policy, is relatively rare in either classroom context. Presentation-oriented software 
dominates IWB use, whilst surprisingly the  MyMaths  web-site offering pre- prepared 
lessons dominates teachers’ use of computer suites as well as featuring prominently 
amongst software used with IWBs. Coming to understand the ways in which soft-
ware such as the  MyMaths  web-site and IWB software may be viewed as cognitive 
tools, might help provide insights into why teachers rely on these resources as well 
as reducing the impression of a defi cit in teachers’ use of technology. 

 Diffi culty in gaining access to computer suites clearly remains an obstacle to 
use. Yet even in schools more supportive of ICT use, where conceivably access 
might be ameliorated by other supporting factors, use of shared computer suites is 
not signifi cantly higher, although IWB use  is  higher. An alternative interpretation 
is that teachers judge the support for ICT given by their school based mainly on the 
ease of use of IWBs, essentially equating ICT use with IWBs. Neither interpreta-
tion offers a particularly positive outlook on closing the quantitative gap in ICT 
use. Similarly, a supportive school context does not improve the use of mathemati-
cal analysis software neither does it decrease the reliance on more presentation-
oriented software like  MyMaths  and PowerPoint. These fi ndings serve to illustrate 
how aspects of the  working environment  (Ruthven  2009 ), such as classroom ‘own-
ership’ and organisation, interacting with features of local departmental culture 
(Stein et al.  2007 ), both enable and constrain teachers’ use of technology and thus 
curriculum resources more generally. 

 It has been suggested that the success of IWBs lies in their teacher-centred 
design, since they allow teachers to incorporate ICT without disturbing well- 
established teaching practices. This study does nothing to disrupt this viewpoint, 
however it does offer a slightly more nuanced account. In general, teachers believe 
that giving students direct access to ICT through computer suites and using IWBs 
in a whole-class context support students’ learning and understanding of mathe-
matics to a similar extent (although the perceived impact of IWBs is higher perhaps 
due to the increased frequency of use). Likewise, teachers appear to see both class-
room contexts as similarly engaging to students. However, teachers are more con-
fi dent using IWBs than conducting a lesson in a computer suite, perhaps due in part 
to their teacher-centred design and to their high frequency of use. Again this refl ects 
the infl uence of the working environment enabling teachers’ use of IWBs, whilst 
limiting their use of computer suites, despite favourable orientations towards both 
types of hardware. More tellingly, perhaps, teachers perceive IWBs to make gen-
eral pedagogic aspirations easier to attain: classroom management was seen to be 
signifi cantly easier with IWBs than a lesson in a computer suite and teachers felt 
able to cover signifi cantly more ground in lessons with an IWB than those in a 
computer suite. This fi nding supports the pace and productivity rationale for using 
ICT identifi ed by Ruthven and Hennessy ( 2002 ) and also suggests the infl uence of 
 time economy  (Ruthven  2009 ) on teachers’ use of technology. The positive effect 
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of a supportive departmental culture (Stein et al.  2007 ) also appears to encourage 
more favourable individual orientations towards both IWB and computer suites. 
However in the case of computer suites, this positive effect is limited to enhancing 
enabling factors and does relatively little to effect what might be regarded as hin-
dering factors to teachers’ technology use (Zammit  1992 ). 

 This study uses survey data to extend the evidence for a qualitative gap in ICT 
use amongst mathematics teachers in England beyond that provided by case 
 studies or intermediate studies such as Ruthven and Hennessey ( 2002 ). In particu-
lar, the survey offers some insight into teachers’ pedagogic practices using ICT, 
although as it is based on self-report data, any inferences must be treated with 
caution. In the fi rst instance, the dominance of presentation-oriented software in 
an IWB context and  MyMaths  in computer suite lessons may be taken as evidence 
for a qualitative gap in ICT use. This inference is, of course, problematic. Just as 
 interpretative fl exibility  (Ruthven et al.  2008 ) implies that cognitive tools may be 
used in ways that deviate from those envisaged by their designers or advocated in 
mathematics education research, digital technologies often associated with repli-
cating ‘traditional’ or teacher-centred practices, such as IWBs or presentational 
software like PowerPoint and  MyMaths , may be interpreted and used by teachers 
in ways that run counter to this association, to support student-centred practices. 
Nevertheless, the frequent use of this type of software might suggest an additional 
obstacle to more student- centred practices. Whilst a strength of the theoretical 
perspective adopted in this study is the acknowledgement of teachers’ sense-making 
of software, it is also important to temper this with an awareness that the software 
design is an important factor infl uencing the participatory relationship between 
teacher and software, as Stein et al. ( 2007 ) point out. Further evidence for a quali-
tative gap may be inferred from the data on teachers’ self-reported pedagogic 
practices. Of the practices reported in both contexts, the most frequently occur-
ring tended to be more teacher-centred and those with lowest frequency tended to 
be more student-centred. For example, using ICT for presentation purposes and 
maintaining teacher-control of the software were highest for using IWBs in a 
whole-class context, whereas using ICT to follow up and explore students’ ideas 
and allowing students control of the software was lowest. For ICT lessons in 
 computer suites, providing precise instructions for software use and using ICT to 
practice skills were the practices with the highest reported frequency, whilst using 
ICT to investigate mathematical problems and concepts was among the lowest. 
Drawing fi rm conclusions regarding teachers’ pedagogic practices using ICT 
based on this data is problematic due to the reliance on self- report data, thus these 
fi ndings should be investigated and validated through further research. 

 The Second Information Technology in Education Survey (SITES) concluded that, 
whilst ICT cannot be considered as a catalyst that will necessarily bring about change, 
given the right conditions, ICT might contribute as a lever for such changes (Law et al. 
 2008 ). The direction of this change is implied as a shift in teaching towards a focus on 
‘twenty-fi rst century skills’ associated with more student- centred practices. Roughly 
half the educational systems included in SITES maintained a similar pattern practices 
whether or not the teachers used ICT (Law et al.  2008 , p. 146). The majority of 
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systems where the pattern of practice was dissimilar showed a stronger ‘twenty-fi rst 
century’ orientation in their teacher practices involving ICT. One exception was Hong 
Kong, which showed a slight increase in the tendency towards teacher-centred prac-
tices when using ICT. Cuban ( 1993 ) argues that reforms intent on shifting teaching 
towards student-centred practices tend at best to achieve incremental changes and 
only marginally reshape existing practices. In particular, Cuban ( 2001 ) argues that 
even if computing technology is taken up on a large-scale it is unlikely to fundamen-
tally change teaching practice. Somewhere between these two viewpoints, Ruthven 
and Hennessy ( 2002 , p. 85) suggest that as well as providing a ‘lever’ to make estab-
lished practices more effective, technology also appears to act as a ‘fulcrum’ for some 
degree of reorientation of teachers’ practice. The evidence from this survey pointing 
to a quantitative gap in ICT use, broadly concurs with Cuban’s argument: computer 
use remains low in frequency and therefore at the margins of practice. In the case of 
IWBs, where technology has been adopted on a large-scale, its use appears to cohere 
with existing structures of whole- class teaching especially through the predominant 
use of presentation-oriented software. Coupling the dominance of the IWB in whole-
class teaching and presentation-oriented software in both classroom contexts with the 
evidence of a qualitative gap in teaching practices with technology, this survey sug-
gests that given the right conditions, at least those currently existing in England, ICT 
might indeed contribute as a lever for change. England did not participate in the SITES 
study, however in common with Hong Kong and in opposition to the majority of 
systems in the SITES study, the direction of this change might be construed as an 
incremental shift towards more teacher-centred practices.     
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Abstract  A key variable in the use of digital technology in the mathematics 
classroom is the teacher. In this chapter we examine research that identifies some of 
the obstacles to, and constraints on, secondary teachers’ implementation of digital 
technology. While a lack of physical resources is still a major extrinsic concern we 
introduce a framework for, and highlight the crucial role of, the intrinsic factor of 
teachers’ Pedagogical Technology Knowledge (PTK). Results from a research study 
relating confidence in using technology to PTK are then presented. This concludes 
that confidence may be a critical variable in teacher construction of PTK, leading to 
suggestions for some ways in which professional development of teachers could be 
structured to strengthen confidence in technology use.

Keywords  Technology • PTK • Instrumental genesis • TPACK

The implementation of digital technology in schools has sometimes been slower 
than many predicted 20 years ago, with Ruthven and Hennessey (2002) concluding 
that “Typically then, computer use remains low, and its growth slow” (p. 48). It has 
also produced variable results in terms of student learning, leading some even to 
doubt whether it has any real value in schools (Cuban 2001). While some research 
has demonstrated clear advantages of the technology (Pierce et al. 2010; Zbiek and 
Heid 2011) other studies report students who are openly opposed to technology 
use and have a strong belief in the superiority of by-hand work for mathematics 
(e.g., Stewart et al. 2005). Still other research documents procedural applications, 
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such as the checking of answers, as the primary use of technology in secondary 
mathematics (Thomas and Hong 2004, 2005a).

In this chapter we examine the role of the teacher in using digital technology and 
present some results from a 10-year longitudinal study examining the pattern of 
digital technology use in secondary schools in New Zealand. This research describes 
teacher pedagogical practice and raises the issue of a number of obstacles to tech-
nology use. We also suggest that if the construct of pedagogical technology knowl-
edge (PTK) (Hong and Thomas 2006; Thomas and Hong 2005a) is used as a lens 
for examining crucial variables related to teacher use (and non-use) of technology 
in mathematics, then these obstacles may be changed into opportunities. Finally, the 
question of how PTK may be enhanced through suitable professional development 
is briefly addressed.

�Teaching with Digital Technology

Insight into some possible reasons for the slow uptake and variation in terms of 
student learning outcomes may be afforded by Brousseau’s (1997) theory of 
didactical situations. In his framework the role of the teacher is crucial in 
orchestrating components of the classroom milieu in such a way that a cogni-
tive epistemological learning situation results. Adding technology to the milieu 
requires a shift in focus to a broader perspective of the implications of the 
technology for the learning of the mathematics. Also, constructing a didactical 
situation involves organisation of an increased number of relationships, neces-
sitating a change in thinking for teachers. A crucial part of the teacher orches-
tration is the management of affordances and constraints (Gibson 1977), the 
former describing the potential for action in the situation, while the latter 
impose the structure for that action. The term obstacle is employed by Thomas 
(2006) and Thomas and Chinnappan (2008) for anything that prevents an affor-
dance-producing entity from being in a classroom situation. Thus in the context 
of our discussion of digital technology, the physical hardware may be an affor-
dance, the instrumental genesis of the teacher, lesson time available, and cur-
riculum content would be constraints, and a lack of funds and negative teacher 
attitudes could be obstacles. We will return to some of these below. When we 
attempt to identify obstacles and constraints that influence implementation of 
technology in mathematics teaching it is useful to divide them into extrinsic 
and intrinsic factors. As an example, a recent discussion of CAS technology 
use by Heid et  al. (2013) cites extrinsic factors such as negative attitudes of 
students, parents and society, and external assessment practice, as well as 
intrinsic ones such as the attitude and capabilities of teachers and problems 
inherent in integrating technology into current practice (which could also 
involve extrinsic factors). Some of these obstacles and constraints were the 
subject of the longitudinal study described below.
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�A Survey Revealing Obstacles to Practice

One attempt to understand the practice of teachers and the reasons behind it was the 
first author’s 10-year longitudinal survey study (1995–2005) of secondary mathe-
matics teachers in New Zealand. Replies from the postal surveys were received 
from 90 of the 336 secondary schools (26.8 %) and 339 teachers in 1995, along with 
193 of the 336 schools (57.4 %) and 465 teachers in 2005 (see Thomas 1996, 2006). 
Both closed and open questions were used to elicit feedback on: the amount of tech-
nology in schools; the level of access to the technology; the pattern of technology 
use in mathematics teaching; and teachers’ perceived obstacles to technology use. 
This data enables us to draw some conclusions about the changing nature of tech-
nology use in the learning of mathematics in New Zealand secondary schools.

For example, the teachers were asked in which areas of the secondary curriculum 
(along with specific topics of graphs, trigonometry and calculus) they used the com-
puter. The figures were very similar in the two years with the exception of an 
increase in the use of computers for the learning of statistics (from 38 % to 59.5 % 
citing it as the most common use of computers). This is not surprising since Statistics 
is a separate subject from Mathematics in New Zealand schools and there is a strong 
emphasis on learning it.

Over the 10 years there was a change in the kinds of software used in mathemat-
ics classrooms away from specific content-oriented graphical, mathematical and 
statistical packages towards generic software, especially the spreadsheet (from 
31.9 % to 62.6 % citing it as the most common software used). One reason for this 
may be that spreadsheets appear to handle statistical work well enough for second-
ary schools.

A number of obstacles to increased use of technology were identified by the 
teachers. With regard to computer use, the extrinsic obstacle of availability of com-
puters remained a major issue, mentioned by 58 % of teachers (see Table 1). While 
the number of computers in schools is increasing, giving potential affordances, a 
major constraint is that they are primarily located in large ICT rooms and access by 
mathematics teachers is often difficult due to competing demands from other cur-
riculum areas. In addition, in 2005 18.4 % mentioned other constraints including the 
time and effort needed by both students and teachers in order to become familiar 
with the technology, and the impact on time available for learning mathematics.

Table 1  Constraints and obstacles preventing teachers using computers more in their teaching

Obstacle

% of 1995 teachers (n = 229) % of 2005 teachers (n = 452)

First mentioned Mentioned First mentioned Mentioned

Available software 17.4 52.5 10.8 39.4
Available computers 43.7 67.8 42.7 58.0
Lack of training 17.4 45.4   7.5 31.9
Lack of confidence 12.7 34.8   5.3 22.4
Government policy   4.1 12.4 – –
School policy   0.6   8.0   0.4   9.3
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The situation is similar with regard to calculators. The major obstacle to using 
them more remains a lack of available calculators, although there has also been an 
increase in the need for professional development and greater teacher confidence 
(see Table 2). Given that 86 % or more of students in the survey owned their own 
calculator the perceived lack of calculators was surprising, and it may be an absence 
of GC’s is what teachers were mentioning, since only 27.1 % owned these.

In another question teachers were asked whether the existence of classroom 
resources, including good ideas that work in the classroom, was an obstacle to tech-
nology use. Over the ten years the number agreeing increased significantly 
( c

2
 = 76.5, p < 0.0001) from 41.0 % to 71.1 % in 2005, with a corresponding drop 

in those who disagreed from 32.2 % to just 11.0 %. Clearly there is still a great need 
for classroom resources with good ideas for teachers to use when teaching with 
technology. This would likely explain the high number of teachers citing a lack of 
training or professional development (PD) as an obstacle to increased use of both 
computers (31.9 %) and calculators (48.2 %).

These results agree with factors influencing teacher adoption and implementa-
tion of technology in mathematics teaching identified by other researchers. These 
authors also describe constraints or obstacles such as the teacher’s previous experi-
ence in using technology, lack of time, few opportunities for PD, poor access to 
technology, limited availability of classroom teaching materials, little support from 
colleagues, pressures of curriculum and assessment requirements and inadequate 
technical support (Forgasz 2006a; Goos 2005; Thomas and Chinnappan 2008). 
Further, Forgasz (2006a) lists access to technology as the most prevalent inhibiting 
factor, with lack of professional development and technical problems, including 
lack of technical support next. Thus there is some consensus with regard to imple-
mentation of digital technology availability of that technology is a major issue, fol-
lowed by a lack of resources, training and confidence. In the next section we discuss 
a construct that may assist in thinking about a way forward.

�Addressing the Issues: Pedagogical Technology Knowledge

It seems clear that addressing intrinsic teacher-related issues, such as those 
mentioned above, is crucial in the successful implementation of technology in 
mathematics learning, and this process starts with recognition that didactical use of 

Table 2  Constraints and obstacles preventing teachers using calculators more in their teaching

Obstacle

% of 1995 teachers (n = 64) % of 2005 teachers (n = 257)

First mentioned Mentioned First mentioned Mentioned

Calculator availability 76.6 81.3 52.5 71.6
Lack of PD 4.6 12.5 19.1 48.2
Lack of confidence 4.7 10.9 13.6 42.4
Government policy 1.6 9.4 1.9 6.2
School policy 3.1 10.9 0 5.1
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technology requires teachers to have a particular set of skills and attitudes. As we 
have seen above, there are a number of factors, often extrinsic, that may negatively 
influence a teacher’s decision to try to use technology. However, intrinsic factors are 
crucial and include the teacher’s orientations; their instrumentation and instrumen-
talisation of the tools (Artigue 2002; Guin and Trouche 1999; Rabardel 1995; 
Vérillon and Rabardel 1995); their perception of the nature of mathematical 
knowledge and how it should be learned (Zbiek and Hollebrands 2008); their 
mathematical content knowledge; and their mathematical knowledge for teaching 
(MKT – Ball et al. 2005; Hill and Ball 2004; Zbiek et al. 2007), which includes 
Shulman’s pedagogical content knowledge (PCK – Shulman 1986). The idea of 
MKT covers appropriate structuring of content and relevant classroom discourse 
and activities to form the didactical situation.

The factors mentioned above help us understand that while many mathematics 
teachers claim to support the use of technology in their teaching (Forgasz 2006a; 
Thomas 2006) the degree and type of use in the classroom remains variable (Zbiek 
and Hollebrands 2008). One further aspect that should not be overlooked is that a 
sizeable minority of teachers are either not convinced of its value (Forgasz 2006b) 
or actively oppose its use (Thomas et  al. 2008). This latter study reported that 
60.5 % of teachers disagreed with the statement that “All types of calculators should 
be allowed in examinations,” with only 21.7 % in favour, and that 27 % of teachers 
thought that using calculators can be detrimental to student understanding of 
mathematics.

A consideration of factors influencing teacher use of technology led Thomas 
(Hong and Thomas 2006; Thomas and Hong 2005b) to propose an emerging frame-
work for pedagogical technology knowledge (PTK) as a construct that could be a key 
indicator of teacher progress in implementation of technology use. A teacher’s PTK 
applied to mathematics incorporates the principles, conventions and techniques 
required to teach mathematics through the technology. Thus PTK includes the need 
to be a proficient user of the technology, but more importantly, to understand the 
principles and techniques required to build didactical situations incorporating it, to 
enable mathematical learning through the technology. A number of teacher factors 
combine to produce PTK, including: instrumental genesis; mathematical knowledge 
for teaching; teacher orientations and goals (Schoenfeld 2011), especially beliefs 
about the value of technology and the nature of learning mathematical knowledge, 
and other affective aspects, such as confidence (see Fig. 1).

Some comparisons could be made between PTK and the Technological Pedagogical 
Content Knowledge (TCPK), later TPACK, framework (Mishra and Koehler 2006; 
Koehler and Mishra 2009), which appears to have developed independently around 
the same time. This more generic framework articulates relationships between the 
pedagogical content knowledge (PCK) of Shulman (1986), technological pedagogical 
knowledge (TPK) and technological content knowledge (TCK). However, it differs 
from PTK in several aspects. Firstly although its original formulation could have been 
seen as generic, PTK has always been focussed specifically on mathematics, which 
has its own nuances of content knowledge. The use, in the latest version of PTK (see 
Fig. 1), of Ball and Bass’s mathematical knowledge for teaching, which includes, but 
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extends and builds on Shulman’s generic PCK, emphasises this. Secondly, PTK 
employs the theoretical base of instrumental genesis (Rabardel 1995), with its expla-
nation of the conversion of a tool into a didactic instrument, while TPACK relates to 
“knowledge of the existence, components and capabilities of various technologies as 
they are used in teaching and learning settings, and conversely, knowing how teaching 
might change as a result of using particular technologies” (Mishra and Koehler 2006, 
p. 1028), using the Fluency of Information Technology theoretical base (Koehler and 
Mishra 2009). This appears to have less emphasis on the epistemic value of the tech-
nology, that of producing knowledge of the (mathematical) object under study 
(Artigue 2002; Lagrange 2003; Heid et al. 2013). Thirdly, PTK includes the crucial 
element of the personal orientations of the teacher who is using the technology and 
their role in influencing goal setting and decision making, which seems absent in 
TPACK. However, while there are differences in the frameworks it seems clear that 
both can provide useful conceptual lenses for analysing classroom practice, with 
researchers who have used TPACK reporting elsewhere in this volume.

We believe that this latter aspect of teacher orientations and their effect on confi-
dence in using technology has been given less attention in research and develop-
ment than it deserves. For example, if we look again at Tables 1 and 2 we note that 
a lack of confidence was mentioned as a constraint or obstacle to further use of 
computers by 22.4 % and for calculators by 42.4 %, making it a significant factor.

A theoretical framework developed by Schoenfeld (2002, 2008, 2011) helps to 
explain why we should pay more attention to the role of teacher attitudes and beliefs 
in teaching practice. Based on the view that teaching is a goal-oriented practice it 
seeks to identify reasons behind the decisions teachers make during teaching. The 
framework links these decisions to the Resources, Orientations, and Goals (ROG) 
of teachers, where it is our orientations, dispositions, beliefs, values, tastes and 
preferences, that not only shape the way we see the world, but also, in any given 
situation, direct the goals we establish to deal with those situations. They also pri-
oritise the marshalling of resources, such as knowledge, that is used to achieve the 

Fig. 1  A model of the 
framework for PTK
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goals (Schoenfeld 2011). Hence, we should expect teacher orientations, including 
beliefs about the value of technology and their confidence in using it to be crucial 
factors in its implementation.

In an individual teacher where PTK is strong there will be good mathematical 
content knowledge, good understanding of how to use the technology, positive 
beliefs and attitudes to its use and the confidence to put it into practice. Thus, with 
this strong PTK such a teacher is more able to promote techniques that have epis-
temic value, capable of producing knowledge of the mathematical object under 
study, rather than those perceived and evaluated in terms of their ‘productive poten-
tial’ or pragmatic value (Artigue 2002, p. 248). Thus with a high level of PTK spe-
cific mathematical conceptions are placed firmly at the centre of classroom activity 
assisting teachers to appropriate structuring of content and classroom discourse and 
activities for didactical situations. So the question naturally arises, how might we 
strengthen teacher PTK? In summary, there are three main aspects of PTK that need 
attention. The first is to increase the mathematical knowledge for teaching of teach-
ers, which is crucial, and includes addressing content knowledge, which may be 
done through in-service professional development (see below). The second area is 
the instrumental genesis of teachers with regard to the digital technology. Once 
again this can be considered in short professional development courses, but their 
target must be the teaching of mathematics. For example, the process of instrumen-
tal genesis involved in changing a car artefact to become an instrument for taking 
young children to a school in town is quite different from that involved in changing 
the same car artefact into a rally driving instrument. It’s the same artefact but com-
pletely different instruments. We would argue that the same is true of digital tech-
nology. Using it as an instrument to improve the checking of answers or the speed 
with which they are acquired is totally different from using it as an instrument to 
improve conceptual understanding of mathematics, and the gap is probably as wide 
as the example of the car above. It is instrumental genesis for the second kind of 
instrument that should be the target of PD. However, it is the third area of PTK that 
is often not considered at all, and that is the effect of teacher orientations on the use 
of technology. It is this area, and in particular the role of confidence, that is consid-
ered below.

�Strengthening the Teacher Orientations Component of PTK

Teacher confidence was a target variable in a study of 22 teachers from Auckland, 
New Zealand, who were using GCs in teaching, 17 of them experienced in their 
use and five not. They were given a Likert-style attitude test with five subscales, 
comprising attitude to: mathematics, technology in general, personal learning, 
technology and GC in learning mathematics, a number of lessons were observed 
and finally they were interviewed for about 40 min. The level of confidence of the 
teachers in GC use in mathematics was inferred following discussion with them 
and classroom observation of their teaching, and it was deduced that 12 had strong 
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and 10 weak confidence, thus forming two groups. Of the 12 teachers with strong 
confidence in their ability to teach with the GC, 11 were experienced users, 11 had 
strong school support, 10 had strong HOD support, and 11 had the support of 
other teachers in their department. In contrast, from the 10 teachers with weak 
confidence in their GC use, eight were inexperienced users and seven had little 
head of department or other teacher support in their schools. Interestingly the 
level of school support for these teachers was split, with five being supportive and 
five not. This initial analysis suggested that key variables to produce confident 
users of GC’s are the teacher’s own experience and the affordance of support from 
others in the mathematics department. However, there were exceptions to this 
general situation, with two teachers confident in their use in spite of having no 
support from other teachers or their department and one who, although an experi-
enced user with strong support from both department and school lacked confi-
dence in his ability to teach with the GC.

The results of a comparison between the attitude scales for the group of teachers 
with strong confidence and those with weak are seen in Table 3. This shows that, 
apart from the attitude to mathematics subscale, there is evidence of a significant 
difference in attitude on all the other subscales, with a higher level for those with 
greater confidence, although this is weaker on the personal learning scale.

It seemed reasonable to infer from these results that strong confidence in one’s 
ability to teach with the GC is linked to a more positive attitude to technology, to the 
use of technology in the learning of mathematics and, possibly, to one’s attitude to 
personal learning, which is necessary to learn the new perspectives on teaching 
required to use technology with a focus on the mathematics. In addition, it was 
found that those with strong confidence were more likely to have more ideas for 
using technology to teach mathematics (Meanstrong = 4.3, Meanweak = 3.6) and to 
believe that students understand maths better when using a GC (Q25, Meanstrong = 4.0, 
Meanweak = 3.0).

Since this initial research (see also Hong and Thomas 2006; Thomas et al. 2008) 
suggested that improved confidence in classroom use of technology is not only a 
factor in digital technology use but may be a key driver of the growth of PTK we 
sought to find further evidence to confirm or refute this hypothesis.

A second study was conducted to test the hypothesis that confidence and PTK 
are linked (see Palmer 2011). The participants here were 42 female teachers from 
Auckland, New Zealand, working in a wide range of schools. The teachers’ confi-
dence in using GC technology was measured out of 161 using a questionnaire that 
included targeted questions (31 points – for the number of classes using GCs and 

Table 3  Comparison of subscale means for confident and non-confident GC users

Attitude  
to maths

Attitude to 
technology

Technology in 
learning maths

GC’s in  
learning maths

Personal 
learning

Strong Confidence (N = 12) 3.96 4.15 4.38 4.05 4.19
Weak Confidence (N = 10) 3.75 3.23 3.98 3.49 3.88
p-value n.s. <0.005 <0.05 <0.0005 0.06
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the frequency of use; greater use implying greater confidence), a self-evaluation 
on a 0–100 scale (100 points – see Fig.  2) and a Likert attitude subscale (30 
points). A Likert scale with 100 point continuum response format and semantic 
anchors was chosen in order to allow teachers a wider range of response than 
5-point Likert response format permits, thus better differentiating the teachers. 
This score was a major component of the total confidence score, with the Likert 
subscale and open questions providing additional components, along with an 
opportunity for insight into the confidence levels. Measurement of the variable of 
teacher confidence was crucial since investigation of any relationships between it 
and other attributes was a major focus of the study. The questions used in the 
5-point response Likert subscale were:

Learning how to use graphic calculators is difficult for me
I have lots of ideas about how I can make use of technology in mathematics
I lack the confidence to use graphic calculators to solve mathematical problems
I often need to ask colleagues when I am not sure about an aspect of using 

technology
I am more confident when I observe other teachers using graphic calculators with 

their classes
I lose confidence when another teacher observes my use of graphic calculators with 

my classes

(scores on negative items were reversed to give a positive measure of confidence).
Indicate your confidence in using graphics calculators in your teaching on the 

following scale, where 0 is no confidence at all and 100 is totally confident.

Some researchers have criticised the abuse of Likert scales (see e.g., Jamieson 
2004), for example, when used as interval scales. However, such concerns have 
been addressed by Carifio and Perla (2007). They describe the need to distinguish 
clearly between the use of the words (sub)scale for the measurement of the underly-
ing attitude, etc., and its use for the response format of individual items. As they 
note (ibid) a measurement (sub)scale constructed with at least 6–8 carefully chosen 
items is capable of producing required variations in (sub)scale score. Further, if this 
is coupled with a 5–7 point response format “…then it is perfectly acceptable and 
correct to analyse the results at the (measurement) scale level using parametric anal-
yses techniques…” (ibid, p. 115, original bold). Thus, an aggregated total, say, may 
be analysed. What is to be avoided is the analysis of data at the item level. We con-
tend that the two measurement (sub)scale requirements above have been met in the 
study and in the analysis that follows only Likert measurement subscale aggregated 
data is employed.

As outlined above, PTK is a theoretical construct comprising three major com-
ponents: mathematical knowledge for teaching; instrumental genesis of the digital 
technology; and teacher orientations relating to the use of technology, that is 

0 50 100

Fig. 2  The instrument for 
self-evaluation of confidence
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especially their beliefs about the value of the technology for the learning of 
mathematics and their confidence in its use. All of the teachers in the study taught 
mathematics in Years 9–13 (age 14–18 years) and so the content from these years, 
primarily elementary algebra, graphs, statistics and beginning calculus, was of 
interest. This content knowledge of the teachers was not assessed in this study but 
their pedagogical understanding was considered through some of the interview 
questions. Hence, in order to see if the rest of the measures correlated with confi-
dence, a single measure for PTK was produced as a composite of equally weighted 
scores for belief in the value of technology in teaching mathematics, level of per-
sonal instrumentation and pedagogical approach, in terms of benefits for student 
learning.

Teacher belief in the value of technology in teaching mathematics was measured 
with the following three questions in the questionnaire and also a 26 question Likert 
subscale, given below. The three questions were:

Do most of your students own graphic calculators? (each year asked for)
Would you like to use graphic calculators more often in your mathematics 

lessons?
Do your students use calculators in their mathematics lessons only when directed 

by you?

The Likert subscale questions were:

Learning mathematics is mostly memorising a set of facts and rules
Students understand mathematics better if they solve problems using paper and 

pencil
Students should not be allowed to use technology during mathematics tests or 

examinations
Students would understand maths better if they had a graphics calculator
Technology can be used as a tool to solve problems students could not solve without it
Students would be more confident in maths if they had a graphic calculator
Technology can make mathematics more fun
Students should use technology less often in mathematics
Using a graphic calculator will cause students to lose basic computational skills
Students rely on graphic calculators too much when solving problems
Technology should only be used to check work once the problem has been worked 

out on paper
Mathematics students need to know how to use technology
Students should not be allowed to use technology until they have mastered the idea 

or the method
Mathematics is easier if technology is used to solve problems
Using graphic calculators makes students better problem solvers
More interesting mathematics problems can be done when students have access to 

technology
When doing mathematics it is more important to know how to do a process than to 

understand why it works
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Learning mathematics means exploring problems to discover patterns and make 
generalisations

Students would be better motivated in maths if they could use a graphic calculator
Using a graphic calculator removes some learning opportunities for students
I think technology is a very important tool for learning mathematics
Graphic calculators are only a tool for doing calculations more quickly
Since students can use a graphic calculator, they do not need to learn to draw graphs 

by hand
I feel that computer algebra system calculators should be allowed in mathematics 

tests and examinations
Using a graphic calculator to solve statistics makes the problems easier to 

understand

The level of instrumental genesis of the teachers was assessed using two open 
questions from the questionnaire and the Likert subscale:

When I use a graphic calculator I often have problems finding the right keys
I find the menus on graphic calculators and computers easy to navigate
I often need to ask students how to do specific things on the graphic calculator
I usually know how to set up the graphic calculator to find answers I want
Many of the graphic calculator’s functions are a mystery to me

The open questions were: Please give the main advantage or benefit you have 
found, or feel to be true, of using graphic calculators in mathematics lessons; and 
What is the main criterion by which you would identify a good mathematics lesson 
using graphic calculators? In these the highest score was given for responses that 
represented a focus on the calculator being used to address mathematical concepts 
or generalisations, the next for a focus on time-saving and getting correct answers, 
then for a focus on particular functions of the calculator as a tool or the generating 
of interest and, finally, the lowest score for a focus on pushing particular buttons on 
the calculator. The aim here was to capture the primary area that the teacher 
responses focussed on. While some teachers made reference to one or more specific 
uses of the calculators in each case it was easy to determine for each teacher what 
their primary criterion for its use, or the main focus, was.

The pedagogical score was an attempt to measure the value for mathematical 
learning that the teachers assigned to the GCs. For the same two open questions 
above reducing scores were assigned for recording the graphics calculator as pro-
viding some benefit: addressing mathematical concepts or generalisations, theory or 
investigations; in the ability to move between representations and make links; for 
looking at graphs or comparing data; and as a tool to get an answer. In addition, the 
following ten question Likert subscale was used:

Technology can be used as a tool to solve problems students could not solve without it
Students rely on graphic calculators too much when solving problems
Technology should only be used to check work once the problem has been worked 

out on paper
Using a graphic calculator removes some learning opportunities for students
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Graphic calculators are only a tool for doing calculations more quickly
Since students can use a graphic calculator, they do not need to learn to draw graphs 

by hand
I think that the focus should be on the maths not on the graphic calculator
I would prefer students to have a graphic calculator when I teach with a graphic 

calculator
Teaching with technology is harder than teaching without technology
When I have a good idea for using graphic calculators I try to fit it in with the teach-

ing I have always done

Using the measure of confidence described above, three distinct groups among the 
teachers emerged, with statistically significant differences in mean levels of confidence: 
a low confidence group in the range 27–63 %; a medium group in the range 65–76 %; 
and a high group with confidence scores in the range 78–88 % (Palmer 2011).

Examining the correlation between the measures of confidence and PTK (see Fig. 3, 
where the blue vertical lines divide up the members of the three groups), the 
research found that “There was also a highly significant correlation between con-
fidence scores and the PTK score of teachers” (Pearson correlation coefficient 
0.633, p < 0.001) (Palmer 2011, p. 53). Although this correlation does not demon-
strate that either variable is a cause of the other, it does suggest that the two were 
closely related.

The mean of the aggregated attribute scores for each of the three confidence 
groups are given in Table 4, and Table 5 shows that there were highly significant 
differences between the mean confidence scores of the three groups. It is especially 

Fig. 3  Correlation between the measures of confidence and PTK
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Table 4  Mean (%) attribute scores by confidence group

Mean  
Score % Confidence

Belief in value  
of technology

Open to personal 
learning Instrumentation Pedagogy PTK

Low group 49 67 75 62 73 73
Mid group 70 70 74 77 77 81
High group 82 75 75 84 81 88

Table 5  t-Tests for the difference between means of attribute scores in confidence grouping

Attribute
Low and medium 
confidence

Medium and high 
confidence

Low and high 
confidence

Confidence 0.0002** 1 35 10 9. × − **

PTK 0.0129** 0.0373**

Belief in the value  
of technology

0.403 0.081* 0.016**

Instrumentation 0.017** 0.153 0.00015**

Pedagogical practice 0.275 0.128 0.037**

*Weak evidence of a difference  
**Evidence of a significant difference

worth noting that there was a significant difference in the PTK score between all 
pairs of groups. Not only that but in all other cases except two, namely Belief in the 
Value of Technology and Pedagogical Practice between the low and medium groups, 
the attributes were significantly different from one group to the next. In the two 
cases mentioned where this was not the case there was a significant difference 
between the medium and high confidence level groups.

These results seem to indicate that there is a strong correlation between confi-
dence in using technology in the mathematics classroom and PTK, which promotes 
use of digital technology in a pedagogical manner that facilitates learning of math-
ematical concepts, as well as procedures. Further we may suggest that often teach-
ers are at identifiably different levels of confidence and PTK. A tentative model of 
the relationships between some of the critical variables discussed above is presented 
in Fig. 4, which suggests teacher confidence as the pivotal attribute.

Openness to 
Personal Learning

Belief in the value
of technology

Confidence in 
teaching with 
technology

School and 
Department
Support

Improved PTK Conceptual 
teaching with 
technology

Instrumentation

Fig. 4  A tentative model of factors affecting conceptual teaching with technology
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Reporting on a national US survey of over 4,000 teachers Becker (2000a) 
concluded that “…computers have not transformed the teaching practices of a 
majority of teachers” (p. 29). However, he noted that for certain teachers, namely 
those with a more student-centred philosophy, who had sufficient resources in their 
classroom (five or more computers), and who had a reasonable background experi-
ence of using computers, a majority of them made ‘active and regular use of com-
puters’ in teaching. Becker (2000b) has added a description of some characteristics 
of such an ‘exemplary’ computer-using teacher, but concludes that extending these 
to other teachers would be expensive. With specific reference to mathematics teach-
ing, Ruthven and Hennessey (2002) have outlined a model, comprising 12 
themes, that “…highlights key processes and critical states which require active—
and reactive—planning and management on the part of the teacher for ICT use to 
successfully support teaching and learning” (p. 83) in the hope this might assist 
teachers to make more effective use of technology in the classroom. Hence, a cru-
cial question to address is, how can we use PD to assist teachers with lower PTK to 
move forward?

�The Role of Professional Development

The teachers in the study above were asked how they had learned about using the 
technology and what kinds of PD they would like to have. Two of the teachers in 
the lower confidence level group said that they learned to use the calculators from 
a manual or website and two from a workshop. Each member of the group men-
tioned learning from students and most had referred to notes in mathematics 
workbooks and textbooks. They were motivated by the fact that using the GCs was 
fun, was fast, and also had advantages in terms of student learning in particular 
topics. This was the only group where members mentioned that finding the time to 
play or ‘fiddle around’ with the calculators was an issue. They all commented that 
they would like to learn more about teaching with the calculator with a typical goal 
of “incorporating it constructively in lessons” expressed in her interview by one 
teacher (T40).

In contrast, the teachers in the medium confidence level group gained knowledge 
of how to use the calculators from other people, either at training college or within 
their school mathematics departments. Some of this learning took place in formal 
professional development sessions within mathematics departments, but informal 
interaction with other colleagues was described as the most valuable learning expe-
rience for this group. In their interviews, in response to the question “How did you 
learn to use a graphics calculator yourself?” two of the teachers said “Just learning 
from each other, incidental informal learning” (T31) and “I find my colleagues are 
always keen to share their knowledge” (T27). As a result this group seemed to have 
more time to practice with others. In terms of future professional development they 
were interested to learn from other teachers to “see how someone else uses it in a 
different way” (T31) and to “find out about specific things to work in the best 
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interest of the kids” (T34). Similar responses came from the high confidence group 
who had all learned to use the calculator from their colleagues in the mathematics 
department. Interestingly it was this group who had more specific topics that they 
would like for future professional development such as learning how to use CAS 
calculators or examining the variation in instrumentation between different brands 
of calculator. Only one teacher, who had been instrumental in training many of her 
colleagues, did not express a desire for further professional development in the use 
of calculators.

There seem to be several implications of these findings for both pre- and in-
service professional development of teachers with regard to technology. It appears 
that it is very beneficial to teacher confidence to be part of a group that shares and 
reflects on their knowledge of instrumentation, practical classroom activities and 
ideas about the calculator use, especially in the initial stages of learning about the 
calculators. In this way the medium and higher confidence level groups seem to 
have emerged from the period of frustration mentioned by the lower confidence 
level group, and this has helped them to persevere with graphic calculator use with 
their classes. In contrast, learning from a manual, workbook or from students did 
not help teachers reach a point where they became confident users of the technol-
ogy. What kind of activities could form part of the professional development the 
teachers want, and how might the sessions be structured?

To answer we note that teachers with lower levels of PTK and confidence see 
technology benefits as a function of visualisation, speed and accuracy of calcu-
lation, saving of time and student motivation (see also Thomas and Hong 2005b). 
They are still coming to grips themselves with basic operational aspects of the 
technology, such as key presses and menu operations. Their practice is often 
characterised by an over-emphasis on teaching operational procedures, such 
as  key presses and menu operations, to the detriment of mathematical ideas. 
Furthermore, with the emphasis on technology rather than mathematics, student 
work tends to be process-oriented; based on procedures and calculating specific 
answers to standard problems. They find it difficult to engineer didactic situa-
tions. There is little or no freedom given to students to explore and generalise 
using the technology, which can tend to be seen as an add-on to the lesson rather 
than an integral part of it. These features then become part of the teacher-initiated 
expectations in the didactic contract (Brousseau 1997).

In contrast, teachers with high PTK and confidence tend to relate the technology 
to linking multiple representations of constructs, understanding of ideas, generalisa-
tion and moving from step-by-step processes to an overview. They have advanced 
to the point where they are competent in instrumentation of the technology and are 
able to focus on other important aspects, such as the linking of graphical, tabular, 
algebraic, ordered pair and other representations. With high PTK they see digital 
technology as having a wider application than simply calculation. They feel free to 
loosen control and encourage students to engage with conceptual ideas of mathe-
matics through individual and group exploration, investigation of mathematical 
ideas, and the use of methods, such as prediction and testing. For these teachers the 
mathematics rather than the technology has come to the foreground, and technology 
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has been integrated into lessons and the didactic contract as a way to improve 
mathematical understanding. The medium level group may be seen as moving 
towards the position of the high level group. If we think that the approach of the 
group with high PTK and confidence is preferable, then we need professional devel-
opment that will assist teachers to progress towards it. This must have relevant 
resources, a classroom focus and good lines of communication.

The first issue identified through the PTK framework is that of teachers’ mathe-
matical knowledge. First, it seems desirable that initial teacher training courses 
specify minimum requirements of content knowledge for primary and secondary 
teachers. Second, universities could also be providing PD opportunities for deepen-
ing and widening teachers’ mathematical knowledge. Experience suggests that this 
is something that many teachers would be very pleased be involved in. The second 
issue arising from PTK is to improve instrumental genesis of teachers. This is a 
huge task since every new artefact requires individual attention. This needs to be 
done through supportive in-service professional development programmes that pro-
mote mentoring of individual teachers by others, preferably in the same school, who 
have already reached good instrumental genesis. This might be achieved by what is 
often called a cascade approach. The crucial step though is to put the newly acquired 
instrument into practice in the mathematics classroom. There is a continuing need 
for high-quality classroom-based resources that will assist teachers to build didacti-
cal situations, and for the corresponding PD to implement them.

While we don’t have strong empirical evidence, the comments of the teachers in 
the study do appear to agree with Jaworski’s (2003) argument that an individual’s 
development of mathematics teaching practice “is most effective when it takes place 
in a supportive community through which knowledge can develop and be evaluated 
critically” (p. 252) – a community in which all participants are co-learners (Jaworski 
2001), engaged in action and reflection she terms a community of inquiry (Jaworski 
2003). A key aspect of such a community is a critical alignment in which all partici-
pants align themselves with agreed aspects of practice but are still able to engage in 
“critically questioning roles and purposes as a part of their participation for ongoing 
regeneration of the practice” (Jaworski 2006, p. 190). Our contention is that teach-
ing practice PD is best constructed around such a supportive community of inquiry 
in a manner that gives teachers the opportunity to observe, practice and reflect on 
the use of digital technology in a classroom environment. This last factor is usually 
missing from current PD. How could it be achieved? There may be few places 
where there is the luxury of a school attached to institutes that train teachers 
(although these do exist and can be effective), and there may be few schools that 
would be willing to ‘loan’ classes for PD, so other means may be required. One 
suggestion would be to organise a small heterogeneous cluster of teachers on a PD 
course so that they form a classroom audience, each of whom, in turn, presents a 
(shortened) prepared lesson incorporating technology to the others, which is then 
the centre of community discussion and reflection. Doing this in the presence of 
some teachers with high PTK the resulting supportive discussion would likely be 
highly valuable. Such group discussions have already proven beneficially in other 
environments, such as university lecturing (Paterson et al. 2011). Using technology 
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in this way may lead to a positive change in the perception of its value, and in turn 
to increased confidence, and improved classroom practice based on the epistemic 
value of the technology.
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    Abstract        This paper presents a detailed explanatory model for adaptive and 
differentiated instruction. The model combines current practices for mathematics 
instruction with recommended practices for formative assessment. The model can 
best be implemented using classroom network technologies (such as TI-Nspire 
Navigator with TI handhelds), but it can also be used with manual data collection 
means such as personal whiteboards for each student. The model is presented for 
mathematics, but could be easily extended to science instruction or other subjects. 
Experience with adaptive and differentiated instruction suggests that teachers grow 
to full master level profi ciency over time, often over a period of years, and that some 
teachers never reach that level. Accordingly, two transitional models are presented, 
an immediate (entry-level) model and an expert model for adaptive instruction. 
Fully differentiated instruction is incorporated in the ‘Master’ model. Growth 
from immediate, to expert, to master level requires development of skill with the 
technology, but more important are critical changes we infer in the teacher’s beliefs, 
as well as growth in their pedagogical content knowledge (PCK).  
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        Introduction 

    There is a great deal of current interest in formative assessment, adaptive and 
differentiated instruction. Teaching with formative assessment for adaptive and 
differentiated instruction has been identifi ed as a powerful strategy for closing the 
achievement gap (Black and Wiliam  1998 ; Heritage and Stigler  2010 ; Popham  2008 ). 
However, these terms do not have uniform operational defi nitions. Popham ( 2008 ) 
defi nes formative assessment as:

  a planned process in which assessment-elicited evidence of students’ status is used by 
teachers to adjust their ongoing instructional procedures or by students to adjust their 
current learning tactics. (p. 6) 

   While we agree in principle with this defi nition, we use the terms slightly differ-
ently. In this chapter we will use the following defi nitions 1  of these common terms:

•     Formative assessment  is the assessment (data collection and interpretation 
process) used to support instructional decision-making by teachers and students, 
whether  synchronous  (embedded in an instruction sequence) or  asynchronous  
(immediately following it) and whether planned or spontaneous. We emphasise 
that any kind of information collection, not just quizzes and tests, can be used by 
teachers and students for this kind of guidance of the teaching-learning process,  

•    Adaptive  instruction is the process of selection of the next teaching activity based 
on formative assessment data, typically in a large group instructional context.  

•    Differentiated  instruction involves the organisation of the class into multiple parallel 
learning activities intended to meet the needs of individual students, based on 
formative assessment of individual students. This typically is accomplished 
using a variety of small group/collaborative activities and/or individual study.    

 Implicit in this defi nition of formative assessment are a number of requirements 
for an effective system for supporting adaptive or differentiated instruction:

•     Planning  a curriculum structure based on a  learning progression .  
•    Evidence of students’ status  comes from assessments (not limited to conventional 

tests), but note that what is important here is the information on (learning) status, 
and its timeliness, not the assessment. Stated differently, teachers (and students) 
need diagnostically useful and actionable information, in near-real time, not just 
classifi cation data such as numeric test scores. The assessment’s purpose is to 
suggest adjustments in instruction, in a timely fashion. As Popham ( 2008 ) argues, 
this is substantially different from the purpose of benchmark tests used to predict 
performance on summative tests, or of high-stakes (summative, standardised) 
tests meant to show attainment of a profi ciency level relative to a population of 
students. Since these tests provide asynchronous data, often weeks or months 
after test administration, they can at best help a teacher to build a broad picture 
of a student. The teacher can then use these data by examining how this longer-term 

1   Thanks to Jeremy Roschelle of SRI International for his contribution to these defi nitions. 
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(asynchronous) picture is consistent with the more timely (short- term asynchronous, 
or within-lesson synchronous) assessments based on daily classroom data.  

•    Adjustment of ongoing instructional procedures  can be invoked by teachers in 
response to the assessments. For example, teachers may increase instruction or 
practice time for some students; change the feedback strategy to provide 
 diagnostic guidance or to correct misconceptions; raise or lower diffi culty of 
examples, problems and questions; change assumptions about students’ prior 
knowledge in explanations; use a wider or more contextually meaningful range 
of examples and visualisations; invoke an appropriate collaborative learning 
activity to maximise peer teaching, and so on.  

•    Current learning tactics  requires that the actionable information from the forma-
tive assessment must be current, that is, closely attached in time to the current 
instructional activity. This is at a level of granularity that is fi ne enough to speak 
to each specifi c learning tactic which requires adaptation or differentiation. This 
is probably easiest when synchronous formative assessment strategies are used, 
but it is also possible with asynchronous strategies if time delays are not too great.    

 Note how the assumptions underlying this broad interpretation of formative 
assessment, adaptive and differentiated instruction differ from other practices for 
modifying instruction according to student characteristics. For example, the long- 
term organisation of pupils by ability (‘ability grouping’ or ‘setting’), as often 
implemented, implicitly assumes that students within each group are relatively 
stable and uniform in their aptitude profi le, thus perpetuating the myth of ‘teaching 
to the middle of the class’. By contrast, our defi nition of differentiated instruction 
assumes that a student’s aptitudes, interests, readiness and learning paths vary by 
topic and by learning task. In another example, supplemental educational services 
(SES) that remediate without differentiation are vulnerable to the same weakness, 
by implicitly assuming that all low-achieving students have the same learning gaps, 
and all that is needed is repeat teaching (repeated explanations, more practice and 
review). Mastery learning models that use a remediation strategy have this same 
limitation. Furthermore, grouping and SES strategies typically make their instruc-
tional modifi cation decisions only a few times per year, at most, implicitly assuming 
that each student’s learning progression is linear and uniform. 

    A 3-Level Explanatory Model for Differentiation 

 Fully differentiating instruction often requires major changes in teacher practices, 
supported by their beliefs about teaching and learning, classroom culture and 
the teacher’s role, and about mathematics. We have observed that the full transition 
can take three years or more and that some teachers never complete the transition 
to the highest level of expertise. To model our observations of pre-service and in-
service teachers, we propose three stages of practice of adaptive and differentiated 
learning, that is: immediate, expert and master levels. Whilst we have observed 
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these teachers practicing at all three levels, we are not yet ready to propose these 
levels as a developmental progression of teaching practice. 

    Origins of the Model 

 The model has emerged from the work of one of us (Bellman) with over 70 pre- and 
in-service secondary mathematics teachers over more than a decade, in a programme 
that includes ongoing participation in a community by programme graduates. Thus, 
it has been possible to gather longitudinal experience reports, observations and 
comments from these teachers over a period of up to a decade, to grow and evolve 
the methods initially taught in pre-service training, and to follow the teachers’ 
further growth in the years after qualifying. 

 The model presented here is a synthesis of that period of over a decade of data. 
We characterise the model as an explanatory product of refl ective practice and, 
whilst this synthesis of the model is prepared retrospectively in the spirit of 
Grounded Theory (Charmaz  2000 ), we do not mean to imply systematic use of that 
methodology in its development. The model evolved in three phases:

    1.     Phase 1  (fi rst 6 years): the model began as an adaptive instructional approach based 
on the use of questions for openers, monitoring progress and closing (a check for 
understanding at the end of the lesson or lesson segment). The technology used 
included personal white boards for each public school pupil in the classroom and 
an early version of networked calculators. This technology permitted some class-level 
synchronous feedback to the student teacher on learning progress, but it did not support 
detailed insights to the student teachers. Student teachers were trained to make daily 
refl ective journal entries about their teaching practice using six questions:

    1.    How did the lesson go? Who was successful and who wasn’t? How did you 
judge that?   

   2.    What did you do and why did you change any part of your lesson plan or why 
did you implement the route that you did?   

   3.    What will you do in the future for those who were not successful?   
   4.    What did you learn about any of your students today?   
   5.    What will you do for the class as a whole to follow today’s lesson and why?   
   6.    What will you change next time you teach this lesson?    

  As an additional refl ective exercise, the teachers were asked to “self-check on 
how well you knew your class”. In this activity, each test and occasional quiz was 
‘graded’ by the student teacher before the assessment was given or while the 
students were taking the test or quiz. Then the teachers compared their predicted 
grade with the actual grades and then refl ected on the differences by asking 
themselves these questions:

    1.    How accurate were you?   
   2.    How did you misjudge those for whom you were incorrect, either by predicting 

too low or too high of a grade?   
   3.    What will you do to correct your misunderstanding of their ability?     
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 As the year progressed, the teachers tracked the outcomes of these  ‘self- checks’ 
to see if they were getting better at understanding their students. In this phase, 
roughly half of the student teachers mastered this teaching technique. Longitudinal 
data, including test scores, the self-checks from above, classroom observations 
(using a contact charting protocol which maps teacher-student interactions, their 
frequency and cognitive level), daily refl ective journaling as listed above and 
self-assessment of lesson plans, confi rmed continued use of the method by these 
teachers, with a trend towards improvement in profi ciency.   

   2.     Phase 2  (next 4 years): Greater precision was added to the adaptive instruction 
method and experimentation began on differentiated instruction. A culture of data-
driven decision-making was made possible by the TI-Navigator 2.x classroom 
networking system. The pre-service and in-service teachers, mentor teachers and 
programme faculty collaboratively developed the adaptive model based on quiz 
and poll data gathered from the technology, together with videotaped classroom 
observations (multiple times per week), observation logs, lesson plan audits, 
daily refl ective journaling, formal assessment analysis and student homework 
samples. As understanding of the student teaching practice developed, experimen-
tation began among student teachers on extensions for differentiated instruction. 
Based on additional data from benchmark work after the opener question, the 
student teachers began to incorporate more one-on-one remediation, and they 
moved pupils into small groups based on branched lesson plans. These extensions 
were further validated and refi ned using longitudinal feedback from the teacher 
training programme graduates, collected during summer workshops or (later) 
weekly Wednesday afternoon workshops. The longitudinal data that were gath-
ered included quarterly reports, lesson plan audits, daily refl ective journals and 
bi-weekly videotaped observations using the contact sheet protocol. These data 
showed that some (but not all) teachers continued to develop profi ciency with the 
model in their fi rst years of teaching. The data also confi rmed the effi cacy of 
TI-Navigator as a tool for gathering student-specifi c data for differentiation.   

   3.     Phase 3 : (most recent 4 years) The programme now incorporates a differentiated 
instruction model using TI-Navigator 3.x. and TI-Nspire Navigator 3.x. Faculty 
and pre-service teaching students continue to develop the practices of data- 
driven decision-making, branched lesson plans, graduated diffi culty problem 
sets and various forms of differentiated worksheets used to scaffold small-group 
collaborative learning. The dynamic mathematics and digital image capabilities 
of TI-Nspire were incorporated into conceptual teaching for both the whole class 
instructional mode and for differentiated instructional approaches. The class-
room teaching data that was gathered continued to include classroom videos 
(discussed in weekly workshops) and bi-weekly observations. To support the 
validation and further evolution of the programme, data collection has continued 
from the range of sources used in phase 2, including quiz and poll data gathered 
from the technology, together with videotaped classroom observations (multiple 
times per week), observation logs, lesson plan audits, daily refl ective journaling, 
formal assessment analysis and student homework samples.    

  The longitudinal contact with teacher training programme graduates suggests 
that many continue to use parts of the model, often with student achievement results 
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among the best in their school, even when the context at their school does not allow 
a full implementation due to issues such as required pacing and classroom tests 
and high-stakes test preparation. Signifi cantly, some teachers have adopted newer 
versions of the differentiated instruction model developed after they graduated, but 
others have not, even when the school context allows. It is this uneven pattern 
of teacher adoption of the model that has led us to characterise the model in three 
levels, with potential developmental implications for teachers.  

    The Three-Level Model 

 The model that evolved from this programme shows that teachers (whether pre-service 
students or full-time teachers) work at three levels of practice. They may grow into 
full differentiation, as they develop their understanding of their own pedagogy, 
mathematics content and the effective use of classroom networking technology. The 
use of a developmental progression in technology adoption and use has long been a 
common feature of innovation integration models such as Levels of Use (LoU) in 
the Concerns Based Adoption Model (CBAM), and was proposed for technology 
integration as early as the Apple Classroom of Tomorrow (ACOT) project. The 
current model thus can be seen as an application of this principle to create a frame-
work for adaptive and differentiated instruction in mathematics using classroom 
network technology. 

 The developmental progression implied by the model also includes growing 
sophistication in the use of some kind of technology for teaching mathematics. The 
technology most commonly used is the handheld graphing calculator (such as TI-84 
or TI-Nspire). In addition, classroom networks (such as TI-Nspire Navigator) may 
be used to implement any of the three levels of adaptive or differentiated instruction. 
However, the model treats this technology as optional: some teachers are comfort-
able using only personal white boards, coloured cards or hand signals for students 
to provide feedback to the teacher. Considerations in the use of technology for our 
model are discussed later in this chapter.  

    Overview of the Three Levels 

 The developmental continuum of teachers’ skills with adaptive and differentiated 
instruction includes these three levels of defi nition 2 :

   The  Immediate level  describes many teachers’ practice in their fi rst year with the 
model. The nature of familiar large-group instruction changes little, though 
 decisions about “what to do next” from day to day may be informed by feedback 
from students obtained simply by manually checking quizzes or homework, or 
by using technology to obtain class summary data. Typically, these data are 

2   Thanks to Jeremy Roschelle for his contribution to these defi nitions. 

A. Bellman et al.



97

examined after class. Note also that while teachers at every level often use some 
form of formative opener/warm-up question or activity, teachers at the Immediate 
level often perceive the warm-up simply as a classroom management tactic, to 
get students quiet and on task quickly. Reported benefi ts at this level usually 
include better classroom management and higher student engagement. In addi-
tion, teachers at this level who use networked technology also often report time 
effi ciency: valuable minutes saved in class and two or more hours per week saved 
out of class. Teachers at this level receive post-class feedback on their students’ 
learning, which creates the opportunity for self-assessment and professional 
growth, as data from their classes may lead the teachers to challenge some of 
their beliefs, and confi rm others. Our experience is that some teachers – but not 
all – engage in this kind of refl ective practice, and grow to the next level.  

  At the  Expert level , a teacher feels comfortable with the mechanics of obtaining 
frequent student data and is ready to take ownership of the opportunity to adapt 
their teaching to better fi t student needs and to enrich opportunities for deep 
student learning. Teachers at this level likely make choices about the time 
required and the benefi ts of adapting instruction. They are likely to be open to the 
use of a wide range of instructional resources, including pre-defi ned learning 
activities and lessons, if these resources appear to have a high probability 
of providing a successful teaching experience in their classroom, with their 
students. We have seen teachers at the Expert level use classroom data to make 
‘real time’ decisions about the need to re-teach computational procedural skill 
steps or concepts and they may identify misconceptions needing correction. 
Their teaching routines (Ruthven’s ( 2009 ) ‘activity scripts’) include a mix of large- 
group instruction and seated work activities such as worksheets and working 
in pairs or small groups with brief one-on-one tutorial dialogues as the teacher 
walks around the class (see Ruthven in this volume). 

 Reported benefi ts added by the Expert model include the ability to use time effi ciently 
by re-teaching or correcting misconceptions only when most students have the 
need. Topics that present no diffi culties for most students can be skipped. 
Teachers at this level also like the assurance that no student is ‘lost’. Whilst the 
teachers may make conscious decisions to go on to the next topic and ‘leave’ 
some students behind temporarily, they spontaneously develop or may already 
have a plan to remediate those students either during the same class period or the 
next time a topic is needed. Gradually at the Expert level, a new classroom 
culture may emerge, in which helping everyone in the class to learn becomes the 
shared responsibility of the whole class. Eventually, teacher beliefs can change 
to support the new culture. In observations, an early indicator of this change in 
beliefs is a tolerance of a ‘constructive buzz’ in the classroom as students explain 
skills and concepts to each other. We often hear teachers who have made the 
transition to this level comment that they cannot imagine going back to their 
‘old’ way of teaching. They fi nd this model to be much more personally 
 rewarding, because they see who benefi ts from their teaching.  

  At the  Master level , a teacher welcomes the full range of advanced interactive capa-
bilities that their preferred technology offers, and makes innovative use of them 
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in classroom teaching to deepen student understanding and to differentiate 
instruction to support all learners. It is likely that teachers at this level have fi rmly 
established new, more interactive routines for differentiating instruction with 
their students. Large-group presentations are greatly reduced in length and 
frequency. The teachers routinely make real-time decisions about how to adapt 
large-group instruction, or how to group students and differentiate small-group 
instruction (as often as every 20–25 min), based on information collected 
throughout the learning activity using various techniques. By using this constant 
questioning (e.g., using the technology to poll students) the teachers get frequent 
synchronous checks to confi rm that the students are progressing as planned. This 
kind of differentiation requires sophisticated pattern recognition skills when 
interpreting classroom data in ‘real time’. In addition, the students frequently 
engage in self-guided learning, by picking their own problems at what they think 
is the appropriate level for them. 

 Teachers’ comments suggest that their beliefs and practices at this level repre-
sent a substantial change from the Expert level. They view their role in the 
classroom as a guide and instructional manager. They are interested in seek-
ing out knowledge gaps and misconceptions, which they view as the main 
barrier to learning. Consequently, their lesson planning includes multiple 
paths that are contingent on what students do. They make sophisticated deci-
sions about which paths to take, based on balancing of the time required versus 
the importance of an immediate mastering of the concepts being taught. 
Consequently, they are willing to diverge from the school’s prescribed daily 
pacing guide: they know when they can invest more time now, and gain time 
effi ciencies later. This is a sophisticated strategy for managing what Ruthven 
( 2009 ) calls the ‘time economy’ of the classroom (see Ruthven in this vol-
ume). Teachers report benefi ts added at this level include development of 
their pupils’ self-guided learning skills, deeper conceptual understanding by 
pupils, and more effi cient use of time and resources to help the students who 
need it most. Teachers at this level have reported to us that their classrooms 
are much more relaxed and rewarding for them and for their pupils at every 
level of profi ciency.     

   Development of Teaching Expertise 

 The development of teaching expertise we have observed at the three levels of the 
model probably depends on growth of three dimensions of knowledge, as they are 
related to teaching of mathematics:

•    Pedagogy, including classroom routines for adapting and differentiating instruc-
tion, probably supported by changes in beliefs about teaching and learning.  

•   Pedagogical mathematics content knowledge (PCK), especially an understanding 
of students’ concepts and common misconceptions of mathematics.  
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•   Technological pedagogical knowledge (TPACK), including the simple operation 
of the technology and its use in teaching and learning in mathematics.    

 We will discuss how teachers’ knowledge supports each of the three levels of this 
model. The fi rst section will address the fi rst two knowledge dimensions: pedagogy 
and PCK at each of the three levels of the model. In the next section, we will discuss 
TPACK growth.  

   Immediate Level 

 We have observed that teachers at the Immediate level show a high degree of 
teacher-centredness: they tend to focus on improving their explanations and managing 
the class. Typically, this is the entry-level experience with adapting instruction. 

  Pedagogy : The comments of Immediate level teachers suggest that these beliefs are 
the most common about pedagogy:

•    The teacher’s focus is on fi nding the ‘best’ explanation for his/her students. 
The teacher believes that “if I can answer everyone’s questions, and have good 
examples, everyone will get it”.  

•   The teacher wants to encourage student questions and discussions, but questions 
often require only recall or low-level convergent reasoning (limited to fi nding the 
right answer, computational procedure steps and mathematics facts).  

•   The teacher implicitly believes in a linear learning path: “I taught it – I tested it 
– they passed it – they know it – on to the next topic!” without further review, 
practice, or integration and generalisation of knowledge.  

•   The teacher believes that if a student doesn’t understand, the preferred strategy is 
to repeat the ‘best’ explanation (“louder and slower”) and to keep practicing. 
Thus, adaptive learning is primarily through review and modifi cation of the 
amount of assigned practice (the most simplistic defi nition of Mastery Learning). 
However, these teachers may criticise this kind of adaptation as “slowing down 
the class” and thus preventing them from “covering the content”.    

  PCK : We infer from their comments that teachers at the Immediate level have a rela-
tively simplistic understanding of the subtleties of mathematical content knowledge 
and how it develops through the learning process (PCK). Most commonly:

•    The teacher’s main focus in the enacted curriculum is on computational 
procedures and factual knowledge of mathematics.  

•   The teacher attributes wrong answers to carelessness or failure to accurately 
recall and follow procedures. Typically the teacher does not believe most errors 
are caused by misconceptions, and does not anticipate likely misconceptions as 
they teach.  

•   The teacher draws examples from the textbook; the teacher does not construct 
them to meet a specifi c learning need.  

•   The teacher has not considered the distinction between ability to do mathematics 
problems in the abstract as opposed to application to new and unfamiliar tasks 

A Developmental Model for Adaptive and Differentiated Instruction…



100

or contexts (far transfer). The teacher thinks of the curriculum as a linear 
sequence of topics, with the sequence provided by the textbook. The teacher does 
not recognise, or minimises, the importance of learning tasks such as conceptual 
change, integration, inference, generalisation and far transfer. The teacher tends 
to think of (and teach) each segment of the curriculum in isolation from others.     

   Expert Level (Adaptive Instruction) 

 The Expert-level teacher adapts instruction by focusing on diagnosis and systematic 
correction of errors and misconceptions. This eventually can lead to a culture change 
in the class, with teachers and students sharing responsibility for learning. In our 
experience, development from the Immediate to the Expert level often takes at least 
a year, unless extensive coaching and professional development are available, or the 
teacher already has developed the pedagogical insights that support this level. 

  Pedagogy : The comments of Expert level teachers lead us to infer these practices 
and beliefs as the most common about pedagogy:

•    The teacher allocates instructional time to conceptual understanding, as well as 
computational procedures. Typically, they prefer to build conceptual understanding 
fi rst, and then introduce the procedural knowledge based on the concepts.  

•   The teacher attends to pupils’ errors in order to diagnose gaps in prerequisite 
knowledge and misconceptions, based on the belief that most errors are caused 
by these fl aws in understanding.  

•   The teacher commonly asks questions with a single correct answer (convergent 
reasoning). However, they may occasionally use open-ended questions requiring 
divergent reasoning.  

•   The teacher most commonly does teacher-centred lecture, but with improved ques-
tioning and dialogue surrounding errors and misconceptions. The teacher also uses 
routines which allow students to talk and work in fl uid small groups (for example, 
‘playing dumb’ and thus requiring students to correct the teacher’s apparent 
misconception). The teacher tolerates ‘constructive buzz’ in the classroom.  

•   The teacher encourages students to take responsibility for building their 
understanding and helping to diagnose causes of errors and misconceptions they 
or other students have made.  

•   The teacher’s focus is on what the students are doing, because of the belief that 
learning is about what the students do, not what the teacher does.  

•   The teacher’s preferred routine is to enlist the class’s aid in identifying the cause 
of a lack of understanding. Once the probable cause is established, teaching 
strategies used often include construction of better examples, peer ‘teachback’ or 
other discussion techniques (often large-group). The teacher believes this kind 
of discussion of errors and use of peer teaching builds deeper conceptual 
 understanding for the whole class.  

•   The teacher takes extra time to address gaps and misconceptions, with the 
expectation that the time can be made up by identifying other topics that need 

A. Bellman et al.



101

no further explanation. They use frequent data collection to guide decisions 
about pacing.    

  PCK:  Expert-level teachers typically show deeper conceptual understanding of the 
mathematics they are teaching, as well as the ability to anticipate common mis-
conceptions and gaps in mathematical understanding.

•    The teacher anticipates likely misconceptions and plans ‘multipath’ lesson 
plans with contingencies to use when these misconceptions are encountered as 
student errors.  

•   Often, the teacher will prefer to “start where the students are” and defer the use 
of more diffi cult problems, which they know are beyond their students. Later, 
they will return to the more diffi cult problems when students have built new 
knowledge or knowledge integration and are ready for far transfer or higher 
cognitive complexity.  

•   The teacher spontaneously constructs examples to meet a specifi c learning need, 
rather than drawing examples exclusively from the textbook.  

•   The teacher is more likely to include contextualised examples and problems, to 
facilitate knowledge integration and far transfer.     

   Master Level (Fully Differentiated Instruction) 

 At the Master level, the teacher is generating and interpreting in real time a 
continuous data stream, generated by embedding questions frequently in the lesson. 
The teacher then interprets the data and recognises patterns of student understand-
ing, which lead to real-time decisions on how best to group students for small-group 
learning tasks. The groups are fl uid and task-based, and may be homogeneous or 
heterogeneous, depending on the pedagogical intent. The teacher uses a variety 
of differentiation strategies. Learning goals include not just ‘the content’ of 
mathematics, but also the building of a sense of mathematical curiosity, as well as 
dealing with the students’ anxiety and confi dence issues surrounding mathematics. 
In our experience, the few teachers who reach this level do so typically after two 
or more years of experience, typically with substantial support, coaching and 
professional development. 

  Pedagogy:  The comments of Master level teachers lead us to infer these practices 
and beliefs as the most common about pedagogy:

•    The teacher may begin a new topic with a short introductory lecture, but most 
time is spent in small-group work.  

•   The teacher routinely uses open-ended questions requiring divergent reasoning, 
with proportionately fewer questions with a single correct answer (convergent 
reasoning).  

•   The teacher’s role includes the frequent monitoring of group activity (both by 
using technology and by walking around). Whenever possible the teacher encour-
ages the small groups of students to engage in peer tutoring to solve problems 
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independently, before intervening. If a problem occurs frequently, the teacher 
may convene the class for short 5–10 min lecture/explanation, or may include the 
explanation in a summary discussion at the end of the learning activity.  

•   The teacher makes sure that students take responsibility for working collaboratively 
on assigned learning tasks. Students use feedback from questions to monitor 
their own understanding and to help diagnose causes of errors and misconcep-
tions they or other students have made.  

•   The teacher exhibits the role of instructional manager (‘guide on the side’).  
•   The teacher can usually use their pedagogical content knowledge to anticipate 

and prevent learning problems. The teacher uses this knowledge to construct 
examples and worksheets, and as input to grouping strategy.  

•   The teacher views a diversity of answers as a teaching opportunity, and may use 
teaching routines designed to elicit a diverse range of answers.  

•   The teacher’s preferred routine (script) is to enlist the class’s aid in identifying 
the cause of the problem and correcting it through better examples, and through 
a use of small-group techniques such as peer teaching. The teacher shows a 
preference for exploratory learning tasks to deeper conceptual understanding for 
everyone.  

•   The teacher differentiates learning objectives based on diffi culty level (low, 
average, and high or enrichment) and encourages a range of different problem- 
solving strategies, rather than a single solution algorithm.  

•   The teacher devotes considerable attention in class on questions to promote 
insights on ‘big ideas’ (see below), the integration of knowledge and far transfer, 
and justifi es this practice with the belief that learning progressions resemble a 
spiral, not a linear sequence.  

•   The teacher differentiates learning objectives and problem diffi culty, depending 
on a judgement of what each student needs next.  

•   The teacher differentiates using both homogeneous and heterogeneous small 
groups. Typically, when peer teaching to correct omissions, errors and miscon-
ceptions is the goal, heterogeneous groups are preferred; when students have a 
basic understanding but need different levels of problem diffi culty, homogeneous 
groups are preferred. Groups are task-specifi c and fl uid: in a 100-min extended 
class, up to four different groups per period may be used.  

•   The teacher makes informed trade-offs on time, often by spending time on initial 
learning and then on addressing misconceptions, but making up for this by iden-
tifying and skipping other topics that need no further explanation, identifi ed 
through use of frequent data collection. For students who need more time than 
class allows, out-of-class supplemental strategies are employed.  

•   The teacher shows high expectations for every student’s success in mathematics.  
•   The teacher uses differentiation to address issues of mathematics anxiety 

and confidence often within the first 6 weeks of class. However, even these 
Master teachers may not recognise or have the expertise to deal with long-
term (developmental) issues of the sort often encountered with special needs 
students.  
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•   The teacher’s lesson plans are not linear. They are planned as a series of learning 
activities, data collection actions and contingent branch points with decisions 
made based on how students respond.    

  PCK : Master-level teachers typically show a hierarchical knowledge structure of 
the mathematics they are teaching. They use this knowledge structure to struc-
ture their enacted curriculum and to anticipate common misconceptions and gaps in 
mathematical understanding.

•    The teachers often think of their curriculum content as differentiated by knowledge 
type, as shown in Fig.  1 .

      In this structure, the core concepts and procedural skills are defi ned by the state 
test, the textbook and the school or district curriculum leaders. This is the 
knowledge and skill level that every student must learn. By contrast, the elaborated/
related or complex concepts and contexts provide additional depth of understanding 
and ability to engage in far transfer of the Big Ideas. They go beyond the core, 
and represent a richer knowledge structure which students can develop as time 
permits, after having mastered the core. 

 In a typical year-long curriculum, there are fewer than 100 components to 
an instantiation of this structure, including fewer than a dozen ‘big ideas’ with 
supporting connected concepts and skills. Navigating this structure defi nes the 
options for  learning progressions  within a course. While it is rare even for Master 
teachers to actually draw this structure, their comments about the knowledge struc-
ture they are teaching often reveals a structure with these properties. At the Master 
level, the teacher’s insights are constantly evolving, thus the teacher is implicitly 
‘editing’ (adding, deleting, rearranging) this structure, in order to make better 
decisions on what to do next. In this way, the teacher gradually develops an 

Big Idea

Prerequisite big
ideas 

Core Concepts &
Procedural Skills

‘why’ (core
concepts)

Concept
prerequisites

‘how’ (core
procedural skills) 

Procedural
prerequisites

Enriched/ Related/
Complex Concepts

& Contexts

Additional
prerequisites

  Fig. 1    The Master teacher’s hierarchy of knowledge types       
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understanding of alternative  learning progressions  for the curriculum. While the 
teaching practices of the Master are superfi cially the same as those of the Expert, 
this knowledge structure sets the focus for their construction of explanations, 
worksheets, homework and assessment tasks.   

    TPACK and the Use of Classroom Networks 

 One of the biggest barriers to the adoption of adaptive and differentiated instruction 
on a wide scale is the all but overwhelming data management challenge that 
these strategies present. A ‘connected classroom’ within-class network that links 
every student’s personal device can be designed to overcome these challenges and 
provide an ideal platform for collaborative learning, automated formative assess-
ment, and adaptive or differentiated instruction. High quality, strong evidence 
shows classroom networking can be used to create a learning environment that is 
substantially more effective than conventional classroom practice (Center for 
Technology in Learning  2009 ; Penuel and Singleton  2010 ;  Penuel et al. submitted ; 
Roschelle  2011 ). 

 Our experience is with the Texas Instruments TI-Navigator and TI-Nspire 
Navigator classroom networks, so the discussion that follows will refer to that 
system. However, we do not mean to imply that adapting and differentiating 
instruction can be done only with TI-Navigator. Whilst we have observed that this 
technology saves time, is less cumbersome and improves the power of teacher and 
student decision- making when compared to non-technology techniques, it is quite 
feasible to adapt instruction, at least to some degree, without technology or by 
using alternative technologies. It might be that learning these techniques without 
technology can provide a useful starting point for teachers who are not yet confi dent 
in the use of the technology. We have observed subjectively, however, that teachers 
who attempt the Expert or Master levels of the model without use of technology 
often complain of the amount of preparation time required, and ultimately they are 
at risk of burnout. 

 Recent qualitative studies have demonstrated that Master-level teaching with 
fully differentiated instruction represents a major and challenging change for 
teachers (experienced or pre-service) who are used to large-group instruction. 
The previous section discussed the changes in pedagogical and pedagogical con-
tent (PCK) knowledge and beliefs as teachers progress to the Expert and Master 
levels. In this section, we will address the changes in knowledge and beliefs 
surrounding the use of technology in teaching (TPACK), with particular focus on 
mathematics teaching (Graham  2011 ; Hill et al.  2008 ; Niess et al.  2009 ). We used 
the following defi nition of TPACK, which we fi nd useful because of its focus on 
the teaching/learning process supported by technology:

  TPACK is a knowledge of the dynamic, transactional negotiation among technology, 
pedagogy, and content and how that negotiation impacts student learning in a classroom 
context. (Cox  2008 , p.77) 
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   The following discussion attempts to paint a developmental picture of how 
teachers’ thinking about the role of technology in their teaching process evolves, 
with particular attention to use of classroom networking as an important modality 
for sustaining the ‘transactional negotiation’ surrounding our three levels of sophis-
tication in adaptive and differentiated instruction. 

   Immediate Level 

 If mathematics teachers use technology at the Immediate level, typically it is used 
only in the most basic ways. Use of a handheld (such as TI-Nspire) is often limited 
to calculating and checking answers. If a classroom network links the handhelds, 
students can enter answers (e.g., via TI-Navigator’s  Question  tool), but this is seen 
primarily as a time-saver. Teachers often experience increased student engagement, 
which they often report as improved classroom management (e.g., “keeping every-
one on task”). On the other hand, teachers at this level will likely see time spent 
with technology as potentially competing with time they need to address their 
required scope and sequence (e.g., “I’d use the gadgets more, but then I wouldn’t 
have time to cover the content”), so they often limit technology use to one-for-one 
substitutions with familiar routine activities, such as taking attendance, distributing, 
collecting and automatically marking homework and worksheets, a warm-up exercise, 
or an end of unit quiz (automatically marked). 

   Immediate-Level Teaching Practices Using Technology 

    While generalisations are always dangerous, we offer these observations about 
Immediate-level teachers’ practice, synthesised from our observations:

•    Teachers use the classroom network to save time (e.g., through automated docu-
ment distribution and collection, automated grading of quizzes).  

•   Teachers use the TI-Navigator screen capture (which displays one, some or all 
student handheld screens on a projector) to spot who is off task.  

•   Teachers use the TI-Navigator projected emulator (which displays a functioning 
handheld device to the class) and Live Presenter (projection of student screens) 
to help students operate the technology.  

•   Teachers commonly use the TI-Navigator Question subsystem to give a warm-up 
problem to start the lesson.  

•   Teachers may also use the technology to do the wrap-up post-quiz or ‘exit prob-
lem.’ If the end-of-class activity shows a high error rate, this leads to subsequent 
re-teaching (a mini-lesson review) and more assigned practice, but not to further 
diagnostics or differentiated instruction. If only a few students have a problem, 
the teacher may follow up individually with them, but often this is not a result.  

•   Teachers often delay interpreting data until after class, rather than using the data 
to make decisions as the class is working. This delays re-teaching to the next 
day’s class or later.      
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   Expert Level 

 Expert level teachers assume availability of technology in their working environment 
and are willing to take chances with trying out new technology tools and teaching 
routines, because they feel confi dent they can handle any unexpected results. They 
also have a good sense of the time required to use technology and feel more freedom 
to allocate time when they identify opportunities to pursue important mathematics 
in depth and to correct gaps and misconceptions. 

   Expert-Level Practices Using Technology 

 Expert-level teachers still use the classroom network to save time (through automated 
document distribution and collection, automated grading of quizzes). In addition:

•    Teachers examine student work ‘on the fl y’ (e.g., through TI-Navigator’s screen 
capture) to spot ‘interesting’ errors (which show gaps and misconceptions). They 
then engage the class in analysing the reason for the error.  

•   Teachers encourage student explanations and examples presented to the whole 
class (e.g., using TI-Navigator’s  Live Presenter  mode, which displays any student’s 
handheld screen to the whole class). This mode is also used to show students how 
to operate the technology, as at the Immediate level.  

•   Teachers administer the warm-up (pre-) and wrap-up (post- or ‘exit’) problem 
using the classroom network (e.g., TI-Navigator’s  Question  subsystem). A high 
error rate leads to further diagnostics or peer teaching, as problem topics are 
identifi ed in real time.  

•   Teachers may occasionally embed individual questions in an instructional 
presentation as a ‘checkpoint’ or ‘exploration’ to generate a wide range of 
positive and negative examples for class discussion.  

•   Teachers may add additional instructional resources to the technology environment, 
such as examples, problem sets and questions taken from the textbook or their 
other resources.      

   Master Level 

 Master-level teachers often take pride in inventing new teaching routines (activity 
scripts) that fully exploit the affordances of the technology. They are comfortable 
with taking risks with the technology, and are ‘fault tolerant’ when the technology 
behaves in unexpected ways in class, because they can quickly recover by adapting 
or switching to a more familiar alternative teaching routine. These teachers are 
comfortable with importing learning activities from a wide range of sources, inventing 
their own learning activities and customising or localising the activities provided 
with the technology, in a constant quest to close learning gaps, prevent and correct 
misconceptions, stimulate curiosity, improve engagement and build student 
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self-confi dence to counteract ‘mathematics anxiety’. They often share these activities 
with their peers within or outside their school and district. Consequently, they are 
heavy users of tools to import and export content and data, and they often experiment 
with authoring tools to create examples, questions, simulations and games. 

 Master-level teachers may play a leadership role among their peers in their 
school and district, as well as their region and state. However, paradoxically, master- 
level teachers sometimes report that they feel isolated within their own school and 
they may have a stronger community of practice with Master teachers in other 
districts (often through technology user groups) than with their own local peers. 

   Master-Level Practices Using Technology 

•     As with teachers at every level, Master teachers still use the classroom network 
technology to save time (through automated document distribution and collection, 
automated grading of quizzes and homework). They also use the technology to 
administer the warm-up (pre-) and wrap-up (post- or exit) problems.  

•   Teachers are skilled at using real-time data displays (such as TI-Nspire Navigator’s 
screen capture and collaboration tools) to spot ‘interesting’ errors (which show 
misconceptions) and engage the class in analysing the reason for the error, and to 
see multiple correct solutions to a problem.  

•   Teachers encourage students to monitor their own learning through data 
summary reports and by comparing their work with others in the class (e.g., 
through the TI-Navigator screen capture tool).  

•   Teachers frequently use open-ended exploratory questions (and TI-Navigator’s 
collaboration tools, or just a personal white board for each student) designed to 
elicit and display a wide range of alternative answers, which then stimulate a 
rich discussion of the merits of each, alternative reasoning paths, and misconcep-
tions. Students are encouraged to share their ‘Aha!’ insights verbally and through 
display of their work (using TI-Nspire Navigator’s  Presenter  mode).  

•   The teachers will use the classroom network technology to identify students with 
something ‘interesting’ to discuss, who are not the fi rst to raise their hand or to 
participate. They see one benefi t as confi dence-building.  

•   Teachers continuously embed questions in lessons, to get immediate feedback 
for both teacher and students to use in deciding on what learning issues/tasks 
to address next. They often interpret the data display ‘on the fl y’ to spot problem 
topics and make the fi rst ‘path’ decisions in their lesson plan.       

    Concluding Remarks 

 Figure  2  is a graphical summary of the three levels of our model represented as a 
potential developmental continuum.
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   Most models of teaching with formative assessment (Heritage and Stigler  2010 ; 
Popham  2008 ) do not deal explicitly with the development of teacher capacity; the 
implicit expectation is that most teachers can immediately adopt the formative 
assessment model and differentiate instruction. We believe this is practically unreal-
istic, and inconsistent with general models of innovation and technology integration 
(Hall et al.  1975 ; Dwyer et al.  1992 ). Our observation of practising and pre-service 
teachers suggests that the three levels of sophistication in the use of formative assess-
ment presented here constitute three points on what may be a realistic developmental 
continuum (possibly a learning progression) of teaching skills, knowledge and 
beliefs. Because progression through the levels of the model often requires major 
changes in pedagogy knowledge and PCK, it is common for teachers to take years to 
reach the Master level of the model, even with effective professional development 
and coaching. However, teachers we have worked with report meaningful benefi ts to 
themselves and their students at every level of the continuum. 

 We also believe that the model can be viewed as consistent with the conclusions 
of Ruthven, who found that teachers most commonly integrated technology into 
their current practice, rather than attempting transformative change. It is also 
consistent with the research of Clark-Wilson ( 2009 ,  2010a ,  2010b ), who found 
that the most common pattern of technology integration was to substitute a 
technology- based teaching activity for the same or a similar non-technology 
activity. Only a few teachers attempted something that was truly ‘new’ to them. 

 As is common with other models of teaching with formative assessment, nothing 
about our model specifi cally requires use of technology. However, it is diffi cult to 
imagine this differentiated instruction as described here to be practical for daily use 
at scale without the support of a classroom networking system such as TI-Nspire 
Navigator, and teachers must master this technology as they develop their teaching 
skills at each level. The technology makes possible real time embedded data 
gathering and reporting, interaction with students individually or in groups, real 
time embedded formative assessment with tracking of individual student progress. 

Immediate Expert Master

Pedagogy
Teacher-centered

explanations;
Linear learning

Learning as a shared
responsibility; adaptive

strategies

Collaborative learning;
differentiated strategies

PCK Facts and procedural
skills

Conceptual understandingand
procedural; misconceptions &

gaps

Big ideas & knowledge
structures

TPACK
Time saving & class
management tactics

Whole-class data driven
decision making (synchronous

or asynchronous)

Individual data driven
decision making

  Fig. 2    Three-level model of adaptive and differentiated teaching and learning       
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Further, it makes student problem-solving work visible by showing the entire 
solution process, rather than simply gathering an answer. That said, learning the 
technology is the least challenging part of becoming an Expert-level or Master-level 
teacher as this explanatory model defi nes it. The most important learning tasks for 
teachers who wish to advance through the levels of the model may well be to build 
(or change) their knowledge and beliefs about mathematics, teaching and learning, 
classroom culture and their role. The speed and level of implementation of the 
model depends primarily on these critical changes in teacher beliefs. For that reason, 
TI-Nspire Navigator technology, and the feedback it provides to teachers, is as valuable 
to teachers as is the functionality and feedback provided to students. In addition, 
implementing the model requires carefully planned professional development, 
coaching and peer support, as well as supportive school policies and well- designed 
curricula, which stay in place over a sustained period of time, as teachers grow. 

 Our current research is using this model in two ways: fi rst, one of us (Bellman) 
is working with colleagues on scaling the teaching of the model to other pre-service 
and in-service teacher training programmes. This will help us understand if the 
developmental patterns of the model are stable and reproducible. Second, we have 
begun to use the model to synthesise and interpret fi ndings on teacher use of 
TI-Navigator and TI-Nspire Navigator. Roschelle ( 2009 ) provides a recent over-
view of this research. Ultimately, we believe the model has the potential to guide 
development of improved plans for introducing technology-based formative 
assessment for differentiated instruction.      
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    Abstract     In this chapter, we analyse the role of the teacher when using digital 
resources in the primary school mathematics classroom in Mexico and its relation 
to students’ mathematical learning. We carry out this analysis through the use of 
an instrument that we developed in which we relate fi ve different aspects of the 
role of the teacher we consider important with the three different uses of technology 
classifi ed by Hughes ( Journal of Technology and Teacher Education, 13 (2), 
277–302, 2005) namely  replacement, amplifi cation  and  transformation . We use 
an enactivist perspective that considers learning as effective action in a given context 
(Maturana, H., & Varela, F.  The tree of knowledge: The biological roots of human 
understanding , Revised Edition, Boston: Shambhala, 1992) in order to describe 
the way in which differences both in the uses of technology and in the role the 
teacher assumes in the classroom contribute to creating classroom contexts in 
which mathematical learning is promoted to different degrees.  
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        Introduction 

 The use of digital technology in the classroom has occupied the attention of 
researchers in mathematics education for several decades. Most of the studies focus-
ing on the teaching of mathematics using specifi c software have been concerned 
with middle or high school students and teachers (e.g. Ruthven  2007 ; Drijvers et al. 
 2009 ). Since the teaching of mathematics in primary school has particularities and 
restrictions that make it very different from the work done at higher levels of educa-
tion, it is important to carry out more research in order to investigate how the inte-
gration of technology occurs at this level. Through the work in this chapter, we 
intend to contribute in this direction by analysing the role of the teacher when using 
digital resources in the primary school mathematics classroom in Mexico and its 
relation to students’ mathematical learning.  

    Background 

 The use of digital technologies in the primary school in Mexico has been infl uenced 
greatly by the introduction of the national teaching programme Enciclomedia, which 
was created in 2004 with the intention of complementing already existing mate-
rials in primary school classrooms – such as the mandatory textbooks – with 
computer programs and teaching resources designed to be used with an interac-
tive whiteboard. It is a large-scale project, involving more than 7,000 schools 
and 170,000 classrooms, and is meant to support the teaching and learning of all 
subjects in grades 5 and 6 of primary school by working with one computer. 
Enciclomedia’s programs were designed with the intention of motivating stu-
dents to engage in mathematical problems by inviting them to take part in games 
and other activities and by providing them with interesting contexts. The use of 
interactive whiteboards was intended to promote classroom interaction and to 
enhance interactivity with computer programs. Evaluations of the Enciclomedia 
project have shown positive results in terms of resources’ usability and interac-
tivity, a high potential for promoting meaningful and high order operations 
learning, as well as high motivation of students (Holland et al.  2006 ; Díaz de C. 
et al.  2006 ; Trigueros et al.  2007 ). Infrastructure and teacher training were, 
however, found to be problematic (Loredo et al.  2010 ). Furthermore, diffi culties 
were identifi ed in terms of the integration of Enciclomedia’s resources by the 
teachers in their everyday lessons. Some studies (e.g. Díaz de C. et al.  2006 ; 
Sagástegui  2007 ) report that resources have the potential to change teachers’ 
practice, but more research is needed as there are still few studies focusing on 
the ways teachers use these resources in their classrooms (e.g. Trigueros and 
Lozano  2012 ). 

 In this chapter we will analyze primary school teachers’ work with technology in 
their classroom. We are interested in a detailed description of when and how they 
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use digital resources in their teaching practices and how this relates to different roles 
they can undertake.  

    Theoretical Framework 

 We are interested in investigating what happens in relation to the role of the teacher 
when technology is introduced in primary school mathematics classrooms. In order 
to do this, we use an enactivist perspective (Maturana and Varela  1992 ), which con-
siders that, in the process of living, individuals carry out those actions which are 
effective or adequate in a given context and that it is this continuous process of suc-
cessful interaction with the environment that we call ‘learning’. 

 In this way, learning occurs when individuals interact with each other, changing 
their behaviour in a similar way. In a particular context or location, the participants 
create together the conditions that will allow actions to be adequate. As members of 
a particular community interact with each other, patterns of behaviour are created 
constituting a classroom culture (Maturana and Varela  1992 ). With these ideas in 
mind, we are interested in investigating how patterns of effective behaviour emerge 
in mathematics classrooms as teachers and students use Enciclomedia. In particular, 
we focus on those patterns related to the role of the teacher. 

    Learning Mathematics with Computer Tools 

 From an enactivist perspective, the use of computer tools is part of human living 
experience since “such technologies are entwined in the practices used by humans 
to represent and negotiate cultural experience” (Davis et al.  2000 , p. 170). Tools, as 
material devices and/or symbolic systems, constitute an important part of learning, 
because their use shapes the processes of knowledge construction and of conceptu-
alisation (Rabardel  1999 ,  2011 ). When tools are incorporated into learners’ activi-
ties they become instruments which are mixed entities that include both tools and 
the ways these are used. Instruments are not merely auxiliary components or neutral 
elements in the teaching of mathematics, they shape students’ and teachers’ actions. 
Every tool generates a space for action, while at the same time imposing on users 
certain restrictions. This makes  possible the emergence of new kinds of actions. 
When using the tool, teachers’ history and context will then determine which actions 
are undertaken among the ones made possible by the programs. 

 In this way, we consider teachers as learners who are modifying their actions in 
an environment that includes specifi c characteristics and certain tools. The actions 
teachers undertake defi ne their different roles in the classroom, and we look at 
them through an instrument of analysis that considers different aspects of the role 
of the teacher.  
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    The Role of the Teacher and the Different Uses of Technology: 
An Instrument of Analysis 

 We propose fi ve different aspects of the teachers’ role that we investigate through 
this work. We are aware that the different aspects overlap and cannot be clearly 
separated. This classifi cation is used for purposes of theoretical analysis only.

    1.     Role in terms of communication of mathematics . In mathematics classrooms, 
students and teachers are in contact with mathematical concepts that are defi ned 
by a larger community of mathematicians. Sometimes, these concepts and pro-
cesses are made available to the students exclusively by the teacher and through 
textbooks. The inclusion of technology in the classroom often implies that the 
computer programs become another source of mathematical information. 
Technology might therefore infl uence the teachers’ role regarding mathematics 
concepts and procedures by providing a complementary source that the teacher 
and the students can both comment on and work with. Effective behaviours then 
might include several forms of interaction with the mathematical content 
included in the digital programs.   

   2.     Role in terms of interaction with students . The role of the teacher in the 
context of this study refers to the way in which teachers interact with students 
and how they manage and regulate what happens in the classroom. Sometimes 
teachers listen attentively to students and respond accordingly, often modifying 
what they had planned for a lesson. On other occasions, teachers tend to follow 
closely a determined path, and respond scarcely to students’ questions or inter-
ests. The inclusion of technology can infl uence the way in which the teacher 
regulates interactions by presenting unexpected situations that might have not 
occurred without the use of particular programs. Effective behaviours might 
include allowing students to explore the use of the program and discussing 
unplanned mathematical problems that might arise while using technology   

   3.     Role in terms of validation of mathematical knowledge . The teacher as a source 
of validation for correct mathematical procedures and answers is also an impor-
tant aspect to be examined when technology enters the classroom. Several inter-
active programs give feedback to the student when an answer is entered. Teachers 
might discuss answers with students before the program validates them or they 
might allow students to use the program as a means for validating their own 
answers.   

   4.     Role in terms of the source of mathematical problems . In mathematics class-
rooms, the teacher is often the main source of mathematical problems. Even if 
problems from textbooks are solved, it is the teacher who decides which prob-
lems or exercises are to be worked on. Mathematical problems, however, can 
also emerge from activities in the classroom itself. When technology is used in 
the classroom, it becomes another possible source of mathematical problems 
and it can also infl uence the way in which mathematical problems are selected. 
Teachers’ behaviours might include encouraging students to solve those 
 problems posed by the programs (directly or indirectly), even in those cases 
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when unexpected uses of technological devices lead to mathematical problems 
that had not been addressed before and that might not be included in the lesson 
plan or in the curriculum.   

   5.     Role in terms of actions and autonomy of students . Actions on mathematical 
objects and tools can be carried out both by teachers and students in the class-
room. Sometimes the teacher assumes a more active role, while students 
mainly listen or copy. At other times students have more autonomy to decide 
what to do and how to do it. Again, technology may change the dynamics of 
who does the mathematical actions in the classroom. Teachers’ actions might 
include allowing the students to work with the program and the mathematical 
problems without much intervention. In other cases, teachers might use the 
computer to show students certain features or uses of the program before the 
latter are allowed to explore.     

 After observing mathematics lessons or videos from lessons involving technol-
ogy, and having read some of the literature regarding the use of digital programs in 
the classrooms, we decided that we wanted to explore how the different aspects of 
the teacher’s role related to the particular ways in which technology is used. We 
considered that looking at both the teacher’s role and the use of the programs might 
give a richer account of the way in which technology is integrated within the class-
room culture. 

 In order to consider different ways of using technology, we use the categories 
developed by Hughes ( 2005 ): “The variation in technology supported pedagogy 
can be captured through three categories: (a) Technology functioning as replace-
ment, (b) amplifi cations, or (c) transformation” (p. 281). She defi nes technology as 
replacement when it is used in a way that does not change “established instruc-
tional practices”, that is, “the technology serves as a different means to the same 
instructional end”. Technology as amplifi er “capitalizes on technology’s ability to 
accomplish tasks more effi ciently and effectively, yet the tasks remain the same”; 
and technology as transformation may change “teacher’s instructional practices 
and roles in the classroom” (p. 281). From an enactivist perspective, it is important 
to analyse how the different aspects of the role of the teacher are related to her or 
his use of technology and how this relation changes through the lessons as he or 
she takes decisions through the lesson. Taken together we can have a clearer pic-
ture of the integration of technology in the mathematics classroom and of which 
aspects need to be considered to help teachers make innovative and effective uses 
of technology. 

 The research questions addressed in this study are:

•    How can we describe teachers’ effective actions in terms of the different aspects 
of the role they take when technology is introduced in the classroom?  

•   How are these aspects of the teacher’s role related to their use of technology?  
•   What kinds of classroom cultures are created by teachers’ effective behaviours in 

terms of the role of the teacher and of the use of technology?  
•   How are different classroom cultures fostered by different teacher behaviours 

related to students’ learning of mathematics?      
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    Methodology 

 We decided to investigate the teacher’s role in the mathematics classroom when 
using technology by selecting eleven teachers from fi ve schools in three different 
states in the country. The states and schools were chosen mainly because we, as 
participants in a larger study that investigates teaching practices with technology, 
are in contact with teachers and head teachers from those schools. Three of the 
schools involved in this study are urban and two of them are semi-rural. Additionally, 
one of the urban schools is a private school, while the remainder are state schools 
(see Table  1 ).

   Most grade 5 and 6 classrooms in Mexico have the Enciclomedia project equip-
ment, and some of them have also computer labs with an average of 20 computers. 
In addition, with the exception of one semi-rural school, all of the schools partici-
pating in this project have internet access. The teachers that we selected for this 
study had at least 1 year of experience using technology in their lessons and had an 
interest in participating in a research project. We selected them because, from our 
observations, they each represented a particular group of teachers who use technol-
ogy in a certain way. The three teachers we selected differed in their background, 
professional training and experience in teaching mathematics and also in their train-
ing experiences on the use of technology. 

 After observing several lessons and analysing video recordings from the eleven 
teachers who were initially included in the study, we identifi ed three teachers who 
were representative of the characteristics of the different groups of teachers, with 
respect to their experience both as teachers and with the use of technology, and 
according to the way in which they used digital resources in their classrooms. We 
decided that, in order to deepen our understanding of the role of the teacher when 
using technology, we would focus on the analysis of a lesson that can include one or 
more sessions of these three representative teachers who we will refer to as Gabriel, 
Juan and Susana. 

    The Teachers 

 Gabriel is an elementary school teacher with 30 years of experience and who ini-
tially trained as a secondary school mathematics teacher but then decided to work at 
the elementary level. His use of technology in the classroom started when the 

  Table 1    The teachers   State  Type of school  Teacher 

 Distrito Federal  Private  1 teacher 
 Public 1  5 teachers 

 Estado de México  Public 2  2 teachers 
 San Luis Potosí  Public 3  2 teachers 

 Public 4  1 teacher 
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program Enciclomedia was installed in his school in 2004. He initially received 
some general training, which consisted only of technical instruction on the use of 
the software, and has continued with the development of his technological abilities 
independently. He has not had any training in relation to the teaching of mathemat-
ics with digital technologies. Gabriel represents a large group of teachers who are 
interested in teaching with technology, but who have not received pedagogical 
training. 

 Juan is a young primary school teacher with 6 years teaching experience. He has 
trained himself on the use of technologies; he has never taken any training course, 
but he is a profi cient user of computers and owns a personal computer. During an 
interview, Juan mentioned that he likes technology because it is helpful to keep 
track of his records and to search for information. When he uses it in the classroom, 
it is mainly for teaching mathematics. We selected him because he represents 
another group of teachers who are profi cient users of computers and have recently 
started to use them in their teaching. 

 Susana is a teacher-researcher who had been teaching for 5 years in a private 
urban primary school before she started including digital resources in her lessons. 
She has been involved in mathematics education for several years and is interested 
in reading the mathematics education literature. She got involved in ‘Enciclomedia’s’ 
training workshops from its early stages, and has been using it in her classroom for 
6 years. She always has the latest version installed in her computer at home. We 
selected her because she represented a small group of teachers who were particu-
larly successful in integrating resources in their teaching practice.  

    Research Tools 

 In order to study teachers’ actions when investigating both the uses they make of the 
resources available and their role in the classrooms, it is necessary to employ a 
 variety of research tools so that different perspectives are addressed. For this study, 
we analysed classroom observation notes, video-recordings of teachers’ lessons and 
audio-recordings from interviews. The guides for the observation notes were devel-
oped as part of the abovementioned larger study and were very general. Observers 
described the digital resources used during the lesson and particular incidents they 
considered important in relation to the use of technology in the classroom. The 
lessons were video-recorded and teachers were free to decide on the mathematical 
theme they wanted to teach, the resources they wanted to use and how they wanted 
to use them. Often they would teach the mathematical topic that was meant to be 
taught on those dates according to the offi cial programme. During the interviews, 
which were also carried out as part of the larger project, teachers were asked about 
their background and training and about the ways in which they worked with tech-
nology during their mathematics lessons. 

 The collected data were reviewed, for this particular study, by all three research-
ers involved. During a fi rst round we looked at the data together with the aim of 
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selecting those episodes that would be analysed. For our analysis, we focused on 
teaching episodes where digital technologies were integrated. We then developed 
collectively an instrument of analysis to characterise each teacher’s practice that we 
describe below. The purpose of the analysis is to refl ect on the dynamics of the use 
of technology in the classroom, and of the different aspects of the role played by the 
teacher in relation to the mathematics being taught. In order to make our results reli-
able, the data coming from the selected teaching episodes were also analysed inde-
pendently on a second occasion by the three researchers using the same instrument 
of analysis. Final decisions were the result of comparison and negotiation of the 
independent outcomes. 

 Throughout a teaching session, it was possible to identify different time intervals 
in which a specifi c kind of activity involving the technology was used to work with 
mathematics problems. We call each one of these intervals an episode. A matrix is 
used to describe the dynamics of the selected episode by means of an arrow. A full 
description of how to interpret the resulting matrices is included later in the chapter. 
This instrument is useful to compare the dynamics of the lessons of the same teacher 
and of different teachers and can also be used to make teachers aware of their actions 
and to refl ect on their lessons. In this chapter we use it to compare one typical lesson 
of the selected teachers. 

 The comparison of the teachers who represent the selected classes is used to 
differentiate them in terms of the mathematical activity that is favoured during 
each interval and possibilities for students to learn the intended mathematical 
topics. We also use data to determine if certain uses of technology are favoured or 
more frequently linked to particular aspects of the teacher’s role and how it infl uences 
mathematical activity.   

    Results 

 We analyse in detail the different roles that teachers can play when they use digital 
resources in their lessons. This analysis provides useful information to help explain 
why certain approaches are taken by teachers and an indication of the possible 
learning outcomes (in terms of students’ learning) that are associated with the 
teacher’s different roles. For that purpose we have divided the descriptions of 
the episodes according to the changes in class activity. 

    Gabriel 

 For the selected session, Gabriel worked with a chapter from the students’ textbook 
in which, according to offi cial documents, students are expected to “ deduce equiva-
lences between the units of volume and capacity for liquids”  (SEP  2009 , p. 155). 
Gabriel started the lesson (episode 1) using the electronic whiteboard to write some 
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defi nitions. He also used manipulatives like a 1 dm 3  glass cube and a plastic bottle. 
During the whole episode, Gabriel followed closely his lesson plan. He gave expla-
nations and asked some questions, but he did not use the students’ responses to 
review or complete his explanations. He was always in charge of the communication 
and validation of the mathematical knowledge:

  G:  How many centimetres are in a decimetre?  
 S 1 :  Ten!  
 S 2 :  A hundred!  
  G: And what do you think? A decimetre is equivalent to how many centimetres?  
 S 4 .  To ten?  
 G:  To ten what…I cannot hear your, speak louder!  
 S 4 :  To 10 cm?  […] 
 G:  How much water can I fi t into that cube?  
 S 1 :  One litre!  S 2 :  One half!  
 S 4 :  A cubic decimetre has a capacity of mmm… litres.  
 G:  One litre, because exactly, it was exactly what I could pour here, one, do you agree? Very well.  

   (He continues explaining, showing equivalences in capacity using water and 
writing in the whiteboard). 

 The interaction with students was limited to the asking of rhetorical questions 
such as those shown above, to pose some problems from the textbook and to explain 
them. Students’ actions were limited to listening to Gabriel and answering some of 
his questions, without necessarily refl ecting. In this episode the technology was 
being used as a replacement tool, since Gabriel could have done all of his writing on 
the blackboard. 

 Later, Gabriel opened a program (episode 2) called ‘Capacity measures’ from 
Enciclomedia project (Fig.  1 ).

   This is an interactive program, which uses the context of a milk factory to invite 
students to fi ll containers of different sizes by using smaller containers of different 
capacities, which are then carried by a truck to the warehouse. With this program 
it is possible for the students to choose one container from the warehouse and 
calculate how many of another chosen container would be needed to fi ll the large 

  Fig. 1    Capacity Measures       
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container, prompting a possible class discussion of the comparison of different 
measurements of capacity. The program includes teaching suggestions and interest-
ing questions to ask while working with the program. 

 In this episode the teacher shared the communication of mathematical knowl-
edge using the interactive resource, which was a source of mathematical problems. 
Gabriel chose an activity from the program, asked questions that guided the whole 
class through the activity, and used the program to verify the results. He remained 
in control of the computer. His interaction with the students was limited to the 
posing of questions that students continued to answer, with little evidence of any 
deeper refl ection.

  G:  Which of these containers shall we use (referring to the containers in the truck)?  
 S:  The big one.  
 G:  How many containers are needed to fi ll up the tank in the warehouse?  
 S:  5 1/2  [Gabriel writes the number in the program and they see that when the all the milk 

is poured the container is not completely full] 
 G:  Let’s see if it works… How many more containers are needed?  
 S:  6 ¼, 8 teacher, 11  [Shouting] 

   Even though some students responded to the questions during the episode, their 
attitude seemed passive since they were not refl ecting on their answers. It can be con-
cluded that in this episode the use of the technology was as an amplifi er, since the 
program showed situations that it would not be possible to illustrate in the classroom. 
However, the teacher did not exploit fully the possibilities offered by the technology 
and did not use it as the starting point to further explore the students’ understanding. 

 After working with the program for a while, Gabriel opened the animation 
‘Metric units of volume’ (episode 3), where equivalences and comparisons between 
different units of volume are illustrated through images of objects such as a swim-
ming pool and a football stadium (Fig.  2 ).

   Students watched the whole animation without interruption. When it fi nished, 
Gabriel did not make any comment about it or ask any questions. He left the 
communication of mathematical knowledge and problems, and the validation of 
results, to the resource. Students did not have any autonomy to question what was 

  Fig. 2    Metric units of 
volume       
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presented to them and there was no possibility to interact with either the program 
or the teacher. The technology was used in part as replacement, and in part as 
amplifi er, since the animation illustrates situations, which cannot be observed in 
the classroom, but at the same time it was left completely in charge of the mathe-
matical explanation. 

 Finally (episode 4), Gabriel went back to the electronic whiteboard. He referred 
back to the ideas introduced when he started the lesson, but this time he used some 
of the examples shown in the animation, and used drawings to repeat some of the 
animation to ask new questions. Again, he expected immediate responses from 
the students and he did not invite them to think more deeply about the answers:

  G : A cubic decimetre, it is equivalent to what? To a litre. One cubic metre, how many litres 
can it hold?  
 S-G : A thousand.  
 G : Imagine that you have a cubic decametre. How many litres can it hold?  
 S : Ten thousand? Eight thousand?  
 G : How many cubic metres there are?  
 S:  A hundred?  
 G:  10 by 10 is 100. And 100 by 10 is 1000. Then a cubic decametre is 1000 m   3   .  

   Later, he showed again the same animation as reinforcement of his explanations, 
but again the students did not make any comment. He fi nished the lesson by asking 
students to work on some problems from the textbook. Later, some students went to 
the whiteboard to write their answers and neither Gabriel nor the other students 
asked them about their procedures. Gabriel emphasised the formulae that the stu-
dents needed to know in order to calculate the volume of different containers, the 
units of volume and the correct responses for the problems. Finally, as an end to the 
lesson, Gabriel reviewed the relationships between the units of volume and capac-
ity. He asked some questions but, as students did not give the answer he was expect-
ing, he gave the information that he was asking for:

   G: How can we calculate the capacity of a container?  
  G: In order to know how much container can fi t, fi rst we calculate its…  
  [No answer]  
  G: Volume  
  G: Here the volume is  
  S1: 30; S2:50; S3: 60  
  G: 40 right?  

   Again he was in control of the communication and validation of the mathemati-
cal knowledge, while the source of mathematical problems was the animation and 
the textbook. There was no real interaction with the students in terms of letting them 
participate and, although the students had some autonomy as they worked on the 
textbook problems, they were not able to discuss their ideas. We conclude that, in 
this fi nal episode, the technology is again used as a replacement since the teacher 
could have taught the same lesson without the use of the technology, and the anima-
tion was not actually discussed. 

 Table  2  describes the dynamics of Gabriel class. It gives a snapshot of how the 
different aspects of his role as teacher changed through the lesson and their relation 
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to the use of technology. Each arrow represents an episode by showing a movement 
regarding, on the one hand, the aspects of the role of the teacher (as denoted by 
upwards or downwards movements) and on the other, the use of the technological 
resources (represented by movements towards the left or right). The use of consecu-
tive arrows is intended to give information about how the role and the use of technol-
ogy change during the lesson. The position of the beginning and ending of each 
arrow are important in determining how close a teacher’s actions are to each aspect 
of the role or to each use of the technology. For example, a teacher can use technol-
ogy as a replacement, but his actions can reveal that this use can be closer or further 
away from using it as an amplifi er. The arrow corresponding to that episode will be 
nearer to the border of the table between these two uses. The same is true for the 
aspects of the role of the teacher; if the arrow point is closer to a border, it means that 
most of the actions of the teacher can mainly be considered related to that aspect.

   In examining the different aspects of Gabriel’s role as a teacher in relation to 
how he used the technology, the patterns of his actions in the classroom made it 

       Table 2    Analysis of Gabriel’s aspects of his role as a teacher in relation to the use of technology       

M. Trigueros et al.



123

possible to observe his tendencies to maintain control of the class and to follow 
his teaching plan closely. The use of the whiteboard and the animation did not 
contribute any substantial change in his actions. It was only when he introduced a 
more interactive tool that aspects of his role changed slightly as he allowed the 
program to be the source of mathematical problems and to determine the correct-
ness of answers. Still, during this episode, Gabriel’s behaviour did not allow stu-
dents to explore their ideas further by following unexpected pathways or incorrect 
answers. For students, effective actions in Gabriel’s classroom included guessing 
and answering by trial and error. Students’ answers led to a limited amount of 
feedback, which came from the interactive program. Often their responses were 
not followed up as Gabriel would give the correct answer himself. In this context, 
effective behaviour is unlikely to promote or be conducive to mathematical learn-
ing. It seems that even though Gabriel was interested in using technology in the 
class, he was not able to use it to stimulate students’ refl ection on the mathematical 
content he was teaching.  

    Juan 

 For the lesson we selected for analysis, Juan taught a chapter from the textbook on 
“conversion of fractions into decimal numbers and locating them on the number 
line” (SEP  2009 , p. 47). Juan started the lesson (episode 1) by asking his students 
to draw 5 apples and 3 children, and to share the apples among the children. 
He interacted with students by means of questions and comments in response to 
their answers, but he did not ask the students to explain the reasoning behind 
their answers:

   J: How many parts of each apple will be given to each child?  
  S   1   : One whole apple and two thirds.  
  J: Let’s see. Each one will have one apple. I have shared three of the fi ve apples, but I still 
have 2 more apples. This one and this other apple [signaling his drawings of the apple], 
how can I divide them?  
  Students: In three parts.  
  J: In three. I suppose they have to be equal. [He represents the parts in his drawing of the 
apples]. Each one will have one part of each apple. So, each child receives, how many?  
  Students: One whole and two thirds.  

   He then said:

   J: We will see an animation with the computer so we can revise what has been learnt and 
that it will show us some examples about how certain things can be shared.  

   Before showing the animation, he reminded students of the names of the 
 elements of a fraction (numerator and denominator) and their meaning. Then the 
animation ‘Fractions’ (Fig.  3 ) from the Enciclomedia project was introduced. 
It shows several situations in which familiar objects are divided into a given 
number of equal parts so that they can be shared amongst different numbers of 
clowns.
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   Once the animation ended, the teacher asked students whether they liked it and he 
posed another sharing activity. He did not make further comments that might have 
made students refl ect on the animation content in terms of the lesson’s objectives. 
Throughout the whole episode, Juan was in control of the communication of mathe-
matical knowledge, the main source of problems, in control of the validation of 
knowledge and making the decisions about what the students had to do. Students did 
not have autonomy and their participation was limited to answering his questions, 
although it is possible to observe that they did give careful consideration to their 
answers. The technology was used as a replacement since it seems Juan only used the 
animation as a way to review some contents and to motivate students, although it may 
be considered that it was also used as amplifi er since it shows concepts in a contextu-
alised and attractive way, which cannot be done by the teacher himself. However, no 
refl ection was initiated by Juan on what the technology had demonstrated. 

 Juan then used a worksheet that he had prepared using a word processor that 
included two sets of problems that presented situations concerning the sharing of 
donuts (episode 2). One set were problems with proper fractions, while the other 
involved improper fractions. The worksheet was the sole source of the mathematical 
problems. Students were asked to write the result using decimal numbers. Juan 
started with the fi rst set and asked:

   J: If we want to convert all these fractions to decimal numbers, is it possible?  
  Students: Yes!  
  J: How can we do it? Who can tell me how?  
  S   1   : By dividing.  
  J: What should I divide? [Showing the fi rst exercise]  

   A similar dialogue was repeated for each of the fractions, but a different student 
was selected to work on the whiteboard. In response to a problem where 7 donuts 
were shared by 3 children a student responded 2 wholes and one third where Juan 
had expected him to respond 7/3. Juan solved the division sum 7 divided by 3 on the 
board and wrote 2.33 (see Fig.  4 ) and gave the fact that the number continues 
indefi nitely.

  Fig. 3    Fractions        
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   When Juan asked the students for an equivalent decimal expression for 7/3, again 
they gave an unexpected response:

   J: And I can continue like this [referring to the division algorithm]. 7/3 is equivalent to…  
  Students: Two and three tenths.  
  J: thirty-three, what?  
  Students: hundredths.  
  J: And if a write another three?  
  Students: Thousandths.  
  J: Then it would be two and three hundred and thirty three thousandths.  

   When the students had fi nished the exercises Juan asked for volunteers to give 
the answers and he verifi ed the answers with the help of the group. When 7/6 
appeared, he asked,  What is this number called as a decimal?  However, none of the 
students could answer and they did not use repeating decimals in their solution. 

 In this episode there was interaction with students in the form of questions 
and answers and the communication and validation of mathematical ideas were 
shared between the teacher and the students, although the teacher had the last 
word on the validation of their responses. Students participated actively, but they 
did not have autonomy. The interactive whiteboard and the word processor was 
used as replacement since the activity on which the group had worked could have 
been accomplished in the same way using the blackboard, or paper and pencil. 

 In episode 3 Juan used the interactive Enciclomedia program ‘The Number Line’ 
with the group. In this activity the students are asked to fi nd a number between two 
given numbers that have been chosen randomly within the context of a game (Fig.  5 ).

   Mixed numbers can appear alongside proper and improper fractions. However, 
numbers can only be entered in the program as mixed numbers and decimal num-
bers are only accepted by the program when expressed with two decimal places. At 
a more advanced level, the students are also asked to approximate the location of the 
number on the line. Four groups of students play the game and, for each correct 
answer, they are awarded points. Each team is represented by a different colour 
token, which moves across a board until one of the tokens crosses the fi nish line. 
The program gives automatic feedback to the user by indicating whether the answer 

  Fig. 4    Juan’s solution 
on the board       
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is correct or not. Each time a correct response is given, the program selects the 
smaller of the two sub-intervals formed on the number line when the number given 
by the students is introduced. Fractional or decimal numbers soon become a neces-
sary input in order to progress in the game. 

 Juan explained the goal of the game to the students and chose the intermediate 
level of the program, which has decimal numbers as the end points of the interval. 
Hence the technology was the source of the mathematical problems. The teacher 
selected a student from each team to respond to each activity proposed by the 
program. There was more interaction between the students in their teams. They 
participated actively and refl exively in the game. Students compared different 
numbers and used different operations to make this comparison. Students acted 
with more autonomy, although the teacher was always in control of the activity as 
he was the one entering the numbers into the program. However, each time the 
students chose a wrong number Juan asked the group why it was not correct and 
helped the students with their explanations. They mainly worked with decimal 
numbers and hardly used fractions. The validation of knowledge was shared 
between the interactive program and the teacher, although it was mainly the 
teacher who justifi ed the feedback given by the program. 

 At some point they were faced with a situation in which they needed to fi nd a 
number between 435.36 and 435.37:

   J: [After three minutes without a response from the students] Which number have you 
 chosen? What is the whole part?  
  J: What is the difference between this [.36] and this [.37]?  
  S   1   : One hundredth, isn’t it?  
  J: How do we write it as a fraction?  
  S   1   : 435 and 375 hundredths  
  S   2   : Thousandths  

   Juan entered a number that lay outside the interval (1/100) so the program marked 
the answer as incorrect and presented an interval for the next team to play. After all 
the other teams had participated, the group faced again the interval (435.36, 435.37). 
This time Juan asked students to use numbers with decimals instead of fractions. 

  Fig. 5    The Number Line        
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They suggested 435.365 but the program only allowed him to write 435.36. Students 
commented that the answer was incorrect and Juan tried to use the program to show 
it was correct but was unable to solve the problem. A student fi nally found out that 
the program did not allow the user to write decimal numbers with more than two 
digits.

   J: Here it is again, so your answer is…  
  S3. Four hundred thirty fi ve point three hundred sixty fi ve.  
  J: [Enters the number 435.36 into the program] I cannot write such a number.  
  S3: [After two minutes] If you write that the program will say it is incorrect. If you write 
point thirty fi ve it will decide it is also incorrect. But there is no more hundredths there 
[referring to the program]  
  [Juan continues trying for an other 2 minutes]  

   Juan fi nally closed the program. He did not take the opportunity to discuss fur-
ther any strategies to fi nd a fraction or decimal number between two decimal num-
bers where the difference between them is one hundredth. Communication of 
mathematical knowledge was shared between the program, students and the teacher, 
although in the last part it was the teacher who communicated this knowledge 
exclusively. 

 Throughout this episode technology was used as a replacement and as an ampli-
fi er. There was a change in the class dynamics as the interactive program was intro-
duced, and students participated more actively and with more autonomy discussing 
in their teams which could be the answer and the way to present it since the program 
gives more points if students use fractions than if they use decimals. However, Juan 
did not use the resource to challenge students’ mathematical knowledge, to help 
them think on new strategies to fi nd fractions and decimal numbers on the number 
line, or to guide them in their solution of situations, which could not be solved with 
the program. 

 Juan ended the lesson (episode 4) by asking students to work on a textbook activ-
ity that asked the students to fi nd fractions and decimal numbers on given number 
lines. He worked with the whole group by reading each problem and asking ques-
tions such as  How do you know? How would you turn 4/5 into a decimal number?  
He worked on this last problem on the whiteboard, but wrote an incorrect answer 
(0.4). Students did not notice the mistake and the lesson ended before they fi nished 
the activity. In this episode the teacher was again the source of mathematical prob-
lems and was in charge of validation. The interaction with students was in terms of 
questions and answers and students did not have autonomy. Technology was used as 
replacement. Table  3  shows the analysis tool in this case.

   The different aspects of Juan’s role as a teacher in relation with his use of tech-
nology show that even though Juan’s patterns of actions were guided by his teaching 
plan, he tried to interact with his students by asking questions and listening to their 
answers. The use of the animation, his prepared worksheet and the whiteboard did 
not contribute much to change his actions. However, the use of the program, and 
particularly the need to divide students in four groups, contributed to a change in his 
actions. He used the program as a source of mathematical problems and to validate 
the answers; he was open to giving students more time for discussion before making 
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their responses and he made them refl ect on the reasons behind their answers. For 
the students, the effective actions in the classroom included the answering of the 
teacher’s questions and, in episode 3, their refl ections on how to respond in order to 
gain more points in the game, with reasons for their answers. Juan is a young teacher 
eager to use technology, but he did not use it in an effective way to promote stu-
dents’ learning.  

    Susana 

 Susana was particularly interested in the teaching of fractions. She developed a 
teaching sequence involving two interactive programs that involved the use of 
fractions in different ways. The fi rst program she used is called ‘The Balance’ 
(Fig.  6 ), which shows a problem situation where scales need to be balanced by using 

    Table 3    Analysis of Juan’s aspects of his role as a teacher in relation to the use of technology       
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fractions. The program provides the users with automatic feedback that helps them 
in identifying which parts of the mobile toy are balanced and which are not.

   The lesson took place in the computing room, where every pair of students had a 
computer with access to the program ‘The Balance’. In the fi rst part of the session 
(episode 1), Susana asked the students to use ‘The Balance’ to compare different 
pairs of numbers in order to decide which is greater. She started by using whole 
numbers and then she introduced simple fractions like 1/2 and 1/3 and decimal 
numbers like 0.5 and 0.05. Students used the program to compare the numbers thus 
becoming familiar with how the program functioned. Later, Susana taught the group 
how to build a balance with the program using two different levels of scales and 
asked them to work with this kind of scales using fractions. She posed different 
examples for students to solve. There was a group discussion regarding the meaning 
of equivalent fractions. 

 In this case, we consider that Susana, ‘The Balance’ and the students all 
 participated in the communication of mathematics. The program, by imposing a 
certain problem, was one source of mathematical problems, while Susana acted as 
another source by asking students to use specifi c numbers. The interactive pro-
gram validated the answers by visually showing whether the scales were balanced 
or not. Students had little autonomy in this part of the lesson, since they would 
just enter the numbers the teacher suggested in order to compare them, although 
they did have discussions in which they talked about why they thought one num-
ber was smaller than another one. ‘The Balance’ was mainly used as an amplifi er, 
as it carried out the calculations automatically and showed if the scales were 
balanced or not. 

 In a second episode, Susana asked students to build their own mobile toys using 
different levels and numbers (episode 2). She emphasised to the students that they 
should make sure that all of the different levels of the mobiles were balanced. In 
order to do this, students had to add and subtract fractions, and fi gure out how to 
divide a fraction into two different equal parts (see Fig.  7 ).

  Fig. 6    The Balance        
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   There was a long group discussion in which students talked about how to 
divide a fraction such as ½ in two equal parts. They used different representations, 
including drawings of pizzas on the blackboard. They worked with several exam-
ples, as after dividing 1/2 by 2 Susana asked about other fractions such as 1/3, 1/4 
and later 3/4, 5/8 and so on. In this episode, the students in Susana’s class became 
stronger agents in the communication of mathematics. They even became the 
source for mathematical problems, since they designed their own mobile toys. 
The program itself remained the main source for validation, showing every time 
whether the mobile was balanced or not. Susana adapted the group discussions to 
the kinds of problems posed by the students and to their explanations. We there-
fore consider that in the interaction with students she modifi ed her plans accord-
ing to their participation:

   I was not planning on discussing how to divide fractions using graphic representations. 
I thought maybe they would try different options, like trial and error, or adding two numbers, 
things like that, because I thought they would work with numbers like 2/4, but I was not 
expecting them to want to come up with an explanation like “the pizzas”. When I saw they 
wanted to do it that way, I was like, okay, let’s go ahead with this! (Susana, 01-07-2011)  

   The use of technology in this episode became transformational, because, in moti-
vating students to create their own mobile toys and therefore inventing their own 
mathematical programs, Susana’s plans and role were modifi ed:

   I did not think that students would create such big mobile toys one their own that quickly! 
It had never happened before when I worked on that particular chapter from the textbook. 
They were really engaged when using the program (Susana, 01-07-2011)  

   We consider that the interactive program alongside the students’ ideas and the 
discussions in the classroom, allowed mathematical learning to happen. In order to 
act effectively, that is, to balance different kinds of mobile toys that could be con-
structed using the program, students came up with new explanations and proce-
dures. They had not encountered the partitioning of fractions before, and they 
developed a procedure that allowed them to solve the problem that was posed by the 
program as well as the other problems posed by the teacher. During the last episode 
(episode 3) of the fi rst session, students worked with ‘The Balance’ in order to solve 
the problems posed in their textbook (see Fig.  8 ).

   The problems became more diffi cult. The students fi nished all of the exercises 
within the textbook and later they continued to devise their own even larger mobile 
toys that they had to balance. The discussion on the division of fractions continued. 

1/2

A
  Fig. 7    Problem with 
the balance       
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They concluded that, in the case of a division of a fraction by 2, if the numerator was 
even, it was easy to divide, while if it was odd, more diffi cult procedures had to be 
used. They came up with some ‘rules’ for even and odd numerators, which they 
wrote on the whiteboard. Later they extended the problem into partitioning fractions 
in 3, 4 and 5 equal parts and they spent quite a long time discussing different proce-
dures until they came up with a general one (fi nding equivalent fractions in which 
the numerator could be divided exactly by the whole number). 

 In this last episode, the role of the teacher was similar to that of episode 2. The 
sources of the mathematical problems were the textbook, the program and the stu-
dents and again Susana allowed the students to formulate their own explanations 
and procedures, especially in the case in which they had to divide fractions. The use 
of the technology remained transformational, as students deepened their explana-
tions and justifi cations. 

 We consider that, without the visual feedback from the program, students may 
not have had to conceptualise and develop procedures for the partitioning of fractions. 
Previously, we had observed that within that particular chapter in the textbook, 
students would balance mobile toys inadequately, for example by balancing a 
weight of 1 ½ kg with one of 1 kg and one of ½ kg placed horizontally. This would 
balance one level of the mobile but not the second level. ‘The Balance’ motivated 
students to fi nd ways of dividing a given fraction into equal parts as it was not effec-
tive behaviour to have sections of the mobile toy which were not balanced. Susana 
had asked the students to balance all sections of the mobile. In the end they were 
exploring the division of fractions by whole numbers in a general manner. 

 On the one hand, it is interesting to note here that, in this case, the program 
became a strong infl uence on the students’ effective behaviours. A different type of 
program might not have had the same effect. On the other hand, it is important to 
observe that the way in which Susana used this tool also modifi ed the students’ 
behaviour. The restrictions that she posed and the questions that she asked were 
important infl uences on the students’ learning. The importance of the way in which 
the teacher uses the digital tools was confi rmed by our observation of a second ses-
sion in which Susana used ‘The Number Line’ (see Juan above) in order to deepen 
students’ understanding of fractions. During this session, Susana asked questions 
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prior to the interactive program providing feedback. Frequently used questions 
were:  How did you fi nd the number? How do you know that number is between 
those two?  After the feedback had been given by the program, she asked additional 
questions such as:  Why is the answer correct/incorrect? How would you fi nd another 
number between those two?  Students were invited to come to the board in order to 
illustrate their explanations and justifi cations. They were allowed to make drawings 
and to use concrete materials. 

 During these discussions the use of the program was also transformational. 
Susana’s practice was modifi ed because, as she mentioned, the interactive programs 
related to fractions available in Enciclomedia invited her to create a teaching 
sequence related to fractions that she had not previously considered:

   When I saw that there were several programs that I could use for the teaching of fractions, 
I decided to create a longer teaching sequence. The textbook chapters which are related to 
these topics are not sequential, but I decided it would be interesting to explore fractions 
from different views in consecutive sessions. (Susana, 01-07-2011)  

   In this case, the context that the program created in the classroom, together with 
the teacher and the students, again promoted the students’ mathematical learning. 
Effective behaviour included using known ideas and procedures with fractions to 
solve mathematics problems that initially, they did not know how to solve. Table  4  
shows the analysis in Susana’s case. The thicker arrows represent the work with the 
Number Line.

        Discussion 

 A fi rst comparison of the Tables  2 ,  3  and  4  shows that there is a close interaction 
between the different aspects of the role of the teacher and the use of technological 
resources. 

 Regarding  communication  it can be observed that technology often becomes an 
additional source of mathematical information in the classroom. Interactive pro-
grams, animations and worksheets expose students to mathematical concepts and 
ideas. However, this mathematical information can promote very different kinds of 
effective behaviours in the classroom. For example, we observed that the use of 
interactive resources is more likely to promote the emergence of shared mathemati-
cal ideas, compared to the use of animations or activity worksheets based on the 
textbook where the interactive whiteboard is used to replace traditional paper and 
pencil activities. When using an interactive program such as the ‘Number Line’ or 
‘The Balance’, it is possible that mathematical information is communicated also 
by students as they engage with the problems and share their ideas. Of course, not 
all uses of interactive programs lead to this form of communication, as we saw in 
the case of Juan’s use of ‘The Number Line’. The teacher’s behaviour can impose 
restrictions on what it is possible to do with the program. 

 Technology also plays a role in promoting  interaction  in the classroom. However, 
it can be deduced from the data and the information we have about the teachers’ 
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backgrounds, that teacher training, didactical ability and disposition to share the 
control of the lesson with students and to be fl exible regarding the original lesson 
plan are dominant factors in this aspect. This is exemplifi ed by the way Susana 
modifi ed her original plan, and managed the use of the resources and the interaction 
with and between students. Effective behaviours during her lessons included the 
discussion of mathematical ideas and problems both in small groups and in whole 
group discussions. Her role as a teacher provided a space in which students could 
follow their ideas even when they led towards unexpected (to her) places. Gabriel, 
in contrast, stayed close to his original lesson plan and limited the interaction with 
students to the use of closed and rhetorical questions which promote effective 
behaviours such as guessing and trying to please the teacher and do not favour 
students’ mathematical learning. 

  Validation  of mathematical knowledge when using technology appears to be 
closely related to the design and use of the digital resource, although the teacher can 

    Table 4    Analysis of Susana’s aspects of her role as a teacher in relation with the use of 
technology       
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make use of the resource whereby the validation of knowledge is shared with 
students. Again, a good example of this possibility to share validation among stu-
dents, technology and the teacher is illustrated by Susana’s use of both ‘The Number 
Line’ and ‘The Balance’. In this case, effective behaviours include giving reasons 
for why a specifi c answer is entered into the program and fi nding procedures that 
might lead to correct answers before trying them out in the program. 

 Regarding the role of the teacher in terms of students’  autonomy , we observed 
that certain types of resources are more inviting to explore different mathematical 
ideas and procedures by students themselves than others. Problems like the ones 
posed by ‘The Balance’ or ‘The Number Line’ can motivate students and promote 
effective behaviours such as working on their own or with friends to fi nd answers 
and explanations. Other programs such as animations can promote a more passive 
attitude from students. This again, is strongly infl uenced by the way in which the 
teacher uses the digital resource. 

 In terms of the uses of technology the tables show that the introduction of digital 
resources alone is not enough to transform the activity in the classroom. During the 
same lesson different uses of technology can be observed. The creation of an envi-
ronment that promotes effective actions, which are related to the learning of math-
ematics depends on the different aspects of the role of the teacher. It is teachers who 
make decisions that can change both the use of technology and the dynamics in the 
classroom so that transformation is possible. A combination of the teacher and the 
use of the technology can create learning contexts where actions are limited or 
where they are more conducive to mathematics learning. 

 The analysis of the use of technology by teachers in this study shows a strong 
tendency for most of the teachers to limit the use of technology as a replacement and 
amplifi er. Most of the teachers have not received training regarding the didactical 
use of Enciclomedia’s mathematical resources and have not experienced, even as 
spectators, how the programs can be integrated in lessons which provide a context 
that promotes learning. This is clearly evidenced by Gabriel who is willing to intro-
duce technology in his classes, but does not exploit the potential of the resources to 
create an environment where mathematical activity is effective and by Juan who 
does not use it to challenge the mathematical knowledge of his students. Susana, on 
the other hand, illustrates how teachers who have been trained in the didactical use 
of technology can benefi t from the different possibilities afforded by resources, can 
combine them and create classroom contexts where students discuss and refl ect on 
their actions and can learn mathematics. In this classroom culture, the teacher her-
self can learn. 

 Mathematical knowledge of teachers can also limit the different aspects of their 
role in the classroom. Observations show how they are not able to use opportunities 
presented by the technology’s potential or limitations in order to discuss students’ 
strategies. For example, when Juan is faced with the need to explain how to fi nd a 
number between two given numbers when their difference is one hundredth, and 
there are students who apparently already know the answer, he did not ask these 
students how they found the number. When both Gabriel and Juan used animations 
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in their classroom, they did not ask any question related to the content. The students 
acted as spectators and in this environment their learning can be inhibited. 

 Traditional ways of teaching, in which the teacher intends to transfer mathemati-
cal knowledge, can become an obstacle to a use of technology that has transforma-
tional potential. When teachers stick to their lesson plans and when they keep the 
control of what mathematical knowledge is communicated, which problems are 
worked and the validation of students’ answers, technology is naturally used as 
replacement or amplifi er. Again, the class environment is such that mathematical 
learning can be limited. 

 From the technological resources used by these teachers it can already be 
observed that there is a variety among Enciclomedia’s resources. Although resources 
can be classifi ed as animations or interactive resources, some interactive programs 
demand more interactivity than others. In our examples we can observe that the 
‘Capacity Measures’ program used by Gabriel asks for calculations and approxima-
tions from the teacher and students, but as we described before, students can effec-
tively guess or use a trial and error strategy in order to select an answer from the 
options in the program. The responsibility for questioning and inviting students to 
modify their actions is on the teacher’s side. Other resources, such as ‘The Number 
Line’s ask for more involvement from the beginning in terms of the mathematics, 
since trial and error practices do not help in playing the game and are therefore not 
effective behaviours in this context. Also, the need to locate the selected number on 
the line requires refl ection on the part of the players. The teacher can take this 
opportunity to discuss procedures and strategies used by students in terms of their 
being correct or not, or in terms or their being effi cient. This discussion can promote 
effective behaviours such as mathematical reasoning activities and refl ection where 
learning is possible. In our previous description we could observe that Juan does not 
profi t from this opportunity while Susana does. Finally, ‘The Balance’ exemplifi es 
a very open resource that can trigger both teachers’ and students’ creativity in order 
to design a variety of ways of using it for the learning of concepts related to whole 
numbers, numbers with decimals and fractions. In the selected episode Susana 
allows the students to design challenging situations that result in interesting oppor-
tunities to discuss different properties and operations with fractions. 

 The differences in the design characteristics of the technological resources can 
impact differently in the ways teachers use them. Although it is the teacher who can 
guide activity with resources in the class, some of them can somehow induce 
changes in some aspects of the teacher’s role. 

 The results that have been analyzed show that the technological resources 
used by teachers infl uenced the learning of their students, as they framed the 
effective actions of both teacher and students. Although there are differences 
between the technological resources used, as we previously discussed, each of 
these create spaces for action and at the same time they impose certain restric-
tions. It is important for the teacher to be aware of the possibilities for action and 
of the restrictions so that the kinds of actions that promote the learning of math-
ematics can be fostered.  
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    Conclusions 

 The data analysis has enabled us to conclude that the characteristics of digital 
resources used in the classroom have an important infl uence on the role the teachers 
play during their lessons. Some technological resources such as ‘The Balance’ and 
‘The Number Line’ can, by themselves, help the teacher to create a context where 
the students have greater possibilities for autonomy and where interaction and dis-
cussion of mathematical ideas foster effective behaviour, creating an environment 
for mathematics learning. However this is strongly dependent on the teachers’ effec-
tive actions, which are infl uenced by their mathematical knowledge, the experience 
they have regarding the use of the technological tools and their didactical strategies 
and practices. It is important to notice that, even when digital resources can promote 
active participation in the classroom by opening spaces for mathematical explora-
tion, the actions carried out by the teacher, that is, the different aspects of her or his 
role can inhibit or enhance such effectiveness. 

 Enciclomedia’s resources were conceived as a tool for the classroom. The didac-
tical idea behind their conception was that teachers would develop didactic strate-
gies where the resources could play an important role in helping to provide a 
dynamical and participative class environment, which can promote students’ learn-
ing (SEP  2004 ). As can be concluded from this study, this goal is possible to achieve 
when teachers have reviewed and studied the programs, have made an open plan-
ning for their lessons and, most importantly, have been trained on how to integrate 
technological resources to their teaching in an effective way. This is the case with 
regard to Susana. The dynamics of the different aspects of her role in the two 
sessions provide a good example of how this integration can promote students’ 
learning. For her, technological resources are instruments she can use to replace, 
amplify or transform situations involved in teaching specifi c topics and which help 
create a classroom context where she and her students can propose and discuss 
mathematical ideas as well as share and develop them. 

 However, the data shows that developing this expertise is diffi cult and needs 
formal training. In our study there was only one more teacher who worked similarly 
to Susana. Other teachers, who have only received training on the general use of the 
software, without a hint of how to introduce them into specifi c lessons, often develop 
teaching strategies where technology is used as replacement or amplifi cation. In this 
case there is no real change in the environment they create in their classroom. 

 Regarding the programs themselves, it would be important to classify Enciclo-
media’s programs or any kind of digital resources in terms of their possibility to act 
as tools that can help teachers to: transform the classroom dynamics; work on mak-
ing the necessary changes so that they include possibilities for exploration; and 
enable the students to choose scenarios or discuss situations, with and without the 
teacher. In this kind of environment, effective actions include the refl ection on math-
ematical ideas and procedures that can be conducive to mathematical learning. 

 While other kinds of resources are not necessarily open, they can be useful as 
instruments to validate mathematical knowledge. In this case, the different aspects 
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of the teacher’s role such as interaction with students, being the source of 
mathematical problems, and enabling the shared communication of mathematics 
and autonomy of the students are fundamental to the creation a productive envi-
ronment for learning. 

 Finally, the methodological tool we developed was useful in describing teachers’ 
actions when using technology as it highlights aspects and details of the internal 
working of classrooms that may otherwise have remained hidden. We believe this 
instrument might be useful for other researchers and also for teachers who are inter-
ested in refl ection about their own practice. The matrix also served to highlight the 
relevant aspects of the role of the teacher with his or her possibility to move towards 
a transformation use of technology. This does not mean that other uses of technol-
ogy are not important; each of them can play a part in different moments of the 
lesson and may complement each other. It is the balance between these uses together 
with the dynamics of the aspects of the role of the teacher that creates the conditions 
for effective actions that can be described as mathematical learning.     
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�Introduction

In the twenty-first century, young people live in a world where digital technologies 
have become essential for managing work and leisure activities. Communication, 
entertainment, manufacturing, transport, finance, medicine, weather forecasting and 
many other aspects of life now depend on sophisticated technological systems, 
much of which is invisible to the user (Confrey et al. 2010). Digital technologies are 
often personalised and seamlessly integrated into young people’s daily lives through 
use of handheld devices such as mobile phones or tablets that offer a wide range of 
Web-enabled applications. Mathematics underpins many of these modern-day 
applications of technology, and yet, despite its ubiquitous presence in the world 
outside school, technology still plays only a marginal role in many mathematics 
classrooms (Artigue 2010).

A significant body of research has examined the effects of computer and calcula-
tor use on students’ mathematical achievement and attitudes and their understand-
ing of mathematical concepts (e.g., see Ellington 2003; Penglase and Arnold 1996 
for reviews on calculator use). More recently, research has begun to examine the 
potential for learning mathematics within digital game environments such as 
Nintendo and Pokemon (Jorgensen and Lowrie 2011; Lowrie 2005). These studies 
suggest that engagement with the game, and especially in the repetition of moving 
back and forth through its different sites, may help players develop complex visuali-
sation and problem solving skills. A second strand of inquiry is focusing on other 
kinds of technology-immersive environments created via digital mathematical 
performances. Gadanidis and Borba (2008) introduced this notion to highlight 
the social and multimodal affordances of new digital media. They noted that the 
Web offers a medium for sharing mathematical performances using texts, pictures 
and videos, and suggested that as a result the ‘performers’ – whether students or 
teachers – develop new mathematical understandings and new aesthetic appreciation 
of the power and beauty of mathematics.

In contrast to the longstanding research focus on how students learn mathematics 
with technology, less attention has been given to teachers’ technology-mediated 
classroom practices and the role of the teacher in technology integration. Inter
nationally there is research evidence that simply improving teachers’ access to tech-
nology has not, in general, led to increased use of or movement towards more 
learner-centred teaching practices (Burrill et al. 2003; Cuban et al. 2001; Wallace 
2004). Windschitl and Sahl (2002) identified two factors that appear to be crucial to 
the ways in which teachers adopt (or resist) digital technologies. First, teachers’ use 
of technology is influenced by their beliefs about learners, about what counts as 
good teaching in their institutional culture, and about the role of technology in 
learning. Secondly, school structures, especially those related to the organisation of 
time and resources, often make it difficult for teachers to take up technology-related 
innovations. These are some of the issues that are considered in this chapter, which 
draws on the findings from a 3-year research study that sought to identify and anal-
yse individual and contextual factors influencing secondary mathematics teachers’ 
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use of technology, and to compare the ways in which these factors come together to 
shape teachers’ pedagogical identities.

The next section of the chapter theorises the teachers’ changing roles in 
technology-enriched learning environments in terms of their pedagogical identities 
as users of technology, and introduces some theoretical frameworks for investigat-
ing the trajectories of their identity development. The sections that follow detail 
the case studies of two beginning teachers of secondary school mathematics who 
were integrating digital technologies into their classroom practice. The analysis of 
these case studies points to the factors that influence the development of their peda-
gogical identities.

�Theorising About Technology-Enriched  
Mathematics Teaching

Two types of theoretical framework are needed to study implications for teachers of 
the impact of digital technologies on mathematics education. One type of frame-
work represents ways in which technology can change classroom roles and mathe-
matical practices. The other framework is concerned with teacher learning and 
identity development, and helps explain why teachers might embrace or resist 
technology-related change. The research study informing this chapter used both 
types of framework to investigate implications for technology-enriched mathematics 
teaching. This research drew on sociocultural theories of learning involving teach-
ers and students in secondary school mathematics classrooms (see Goos 2009a, b). 
Sociocultural theories view learning as the product of interactions with other people 
and with material and representational tools offered by the learning environment. 
Because it acknowledges the complex, dynamic and contextualised nature of learning 
in social situations, a sociocultural perspective can offer rich insights into condi-
tions affecting innovative use of technology in school mathematics.

�Teaching and Learning Roles

In technology-enhanced learning environments, students experience mathematics in 
new ways that may challenge the traditional role of the teacher as transmitter of 
knowledge. Technology is not merely an add-on or supplement for pencil and paper 
work in such environments; instead, it becomes a “conceptual construction kit” that 
provides access to “new understandings of relations, processes, and purposes” 
(Olive et  al. 2010, p. 138). If digital technologies have the potential to change 
mathematical knowledge and practices in the classroom, the role of the teacher also 
changes. The first framework for theorising technology-enhanced mathematics 
teaching, developed by Goos et al. (2000), classifies ways in which technology can 
change the teacher’s role.
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Goos et al. (2000) analysed the effects of digital technologies as cultural tools 
that both amplify and re-organise mathematical thinking. Mathematics learning is 
amplified when technology is used to speed up tedious calculations or to verify 
results obtained first by hand. However, a more profound cognitive re-organisation 
occurs when students’ mathematical thinking is qualitatively transformed through 
interaction with technology as a new system for meaning-making. Goos et al. devel-
oped four metaphors to describe how digital technologies can act as tools that trans-
form teaching and learning roles. Technology can be a master if students’ and 
teachers’ knowledge and competence are limited to a narrow range of operations. 
Students may become dependent on the technology if they are unable to evaluate the 
accuracy of the output it generates. Technology is a servant if used by students or 
teachers only as a fast, reliable replacement for pencil and paper calculations with-
out changing the nature of classroom activities. Technology is a partner when it 
provides access to new kinds of tasks or new ways of approaching existing tasks to 
develop understanding, explore different perspectives, or mediate mathematical dis-
cussion. Technology becomes an extension of self when powerful and creative uses 
are seamlessly integrated into the teacher’s mathematical and pedagogical reper-
toire to support and enhance a teaching program. Although this framework classi-
fies more and less sophisticated uses of technology, it does not imply that only one 
type will be observed in a lesson or series of lessons (see Goos et al. 2000, for an 
example of a lesson in which all four technology roles were evident). However, the 
framework does provide a way of tracing changes in teachers’ classroom roles as 
they appropriate digital technologies into their practice.

�Teacher Learning and Development

The second theoretical framework is based on an adaptation of Valsiner’s (1997) zone 
theory of child development to study interactions between teachers, students, technol-
ogy and the teaching-learning environment. The zone framework extends Vygotsky’s 
concept of the zone of proximal development (ZPD) to incorporate the social setting and 
the goals and actions of participants. Valsiner describes two additional zones: the zone 
of free movement (ZFM) and zone of promoted action (ZPA). The ZFM represents 
constraints that structure the ways in which an individual accesses and interacts with 
elements of the environment. The ZPA comprises activities, objects, or areas in the envi-
ronment in respect of which the individual’s actions are promoted. The ZFM and ZPA 
are dynamic and inter-related, forming a ZFM/ZPA complex that is constantly being 
re-organised by adults in interactions with children. However, children remain active 
participants in their own development because they can change the environment to 
achieve their emerging goals. Thus the ZFM/ZPA complex does not fully determine 
development; instead, development is ‘canalised’ along a set of possible pathways 
jointly negotiated by the child in interaction with the environment and other people.

Valsiner (1997) noted that the ZFM/ZPA complex is also observable in educa-
tional contexts, and he provided examples of how teachers can set up broad or 
narrow ZFM/ZPA systems that allow students different choices in completing tasks. 
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He additionally argued that zone theory is applicable to any human developmental 
phenomena where the environment is structurally organised, and so it seems rea-
sonable to extend his theory to the study of teacher learning and development in 
structured educational environments. When considering teachers’ professional 
learning involving technology, the ZPD represents a set of possibilities for devel-
oping new knowledge, beliefs, goals and practices. The ZFM is an inhibitory 
mechanism that structures the teacher’s environment, and so could include percep-
tions of students (their behaviour, social backgrounds, motivation, perceived abili-
ties), access to resources and teaching materials, curriculum and assessment 
requirements, and organisational structures and cultures. Whereas the ZFM might 
suggest which teaching actions are permitted, the ZPA represents activities, objects, 
or areas of the environment in respect of which certain teaching approaches are 
promoted. The ZPA could include pre-service teacher education programme formal 
professional development, and informal interaction with colleagues at school.

Previous research on technology use by mathematics teachers has identified a 
range of factors influencing uptake and implementation. These include: skill and 
previous experience in using technology; time and opportunities to learn; access to 
hardware and software; availability of appropriate teaching materials; technical 
support; organisational culture; knowledge of how to integrate technology into 
mathematics teaching; and beliefs about mathematics and how it is learned (Forgasz 
2006; Simonsen and Dick 1997; Tharp et al. 1997; Thomas 2006). In terms of the 
zone framework outlined above, these different types of knowledge and experience 
represent elements of a teacher’s ZPD, ZFM and ZPA, as shown in Table 1. However, 
in simply listing these factors, previous research has not necessarily considered pos-
sible relationships between the teacher’s setting, actions and beliefs, and how these 
might influence the extent to which teachers adopt innovative practices involving 
technology. In the research discussed in this chapter, zone theory provides a frame-
work for analysing these dynamic relationships.

Taken together, the two theoretical frameworks provide a way of investigating 
the development of teachers’ pedagogical identities as users of digital technologies. 
From a sociocultural perspective, teachers’ learning is understood as changing par-
ticipation in practices that develop their identities as teachers (Lerman 2001). 
Wenger (1998) described identity as “a way of talking about how learning changes 
who we are” (p. 5). He argued that identity has a temporal dimension: because we 
continually re-negotiate our identities they form trajectories incorporating past, 
present and future. It is this sense of “learning as becoming” (Wenger 1998, p. 5) 
that the following analysis attempts to capture.

�Research Design and Methods

Participants in the research study were four Australian secondary school mathemat-
ics teachers acknowledged by their peers as effective and innovative users of tech-
nology. The teachers were selected to represent contrasting combinations of factors 
known to influence technology integration (see Table  1). They included two 
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beginning teachers who experienced a technology-rich pre-service programme 
(described in Goos 2011) and two experienced teachers who developed their 
technology-related expertise solely through professional development experiences or 
self-directed learning. This chapter focuses on the professional formation of the two 
beginning teachers.

The aim of the research was to carry out highly contextualised investigations of 
how and under what conditions the participating teachers integrated digital tech-
nologies into their practice. There were four main sources of data. First, a semi-
structured scoping interview invited the teachers to talk about their knowledge and 
beliefs (which influence their ZPDs), professional contexts (elements of their 
ZFMs), and professional learning experiences (providing ZPAs) in relation to tech-
nology. Thus the structure of the interview was based on the relationship of each 
zone to factors known to influence technology integration, as outlined in Table 1. 
For example, teachers were asked about their reasons for using technology in math-
ematics lessons, their views on how technology influenced student learning and 
attitudes towards mathematics, their perceptions of any constraints or opportunities 
in their schools that might affect their use of technology, and their formal and infor-
mal experiences in learning to teach mathematics with technology. Interviews were 
transcribed and teachers’ responses were used to ‘fill in’ the abstract zones of 
proximal development, free movement, and promoted action with details that were 
relevant to their own professional histories and contexts.

A second source of data provided additional information about the teachers’ general 
pedagogical beliefs via a Mathematical Beliefs Questionnaire (described in more 
detail in Goos and Bennison 2002). The questionnaire consisted of 40 statements to 
which teachers responded using a Likert-type scale based on scores from 1 (Strongly 
Disagree) to 5 (Strongly Agree).

Third, a snowballing methodology (described by Cobb et al. 2003), involving 
two rounds of audio-recorded interviews, was used to further probe sources of 

Table 1  Factors affecting teachers’ use of technology

Valsiner’s zones
Factors influencing teachers’ use of digital 
technologies

Zone of proximal development  
(Possibilities for developing new teacher 
knowledge, beliefs, goals, practices)

Mathematical knowledge
Pedagogical content knowledge
Skill/experience in working with technology
General pedagogical beliefs

Zone of free movement (Environmental 
constraints that limit freedom  
of action and thought)

Perceptions of students
Access to hardware, software, teaching 

materials
Technical support
Curriculum and assessment requirements
Organisational structures and cultures

Zone of promoted action (Activities, objects,  
or areas of the environment in respect  
of which teaching actions are promoted)

Pre-service teacher education
Professional development
Informal interaction with teaching colleagues
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influence on teaching mathematics. The first round asked participating teachers to 
identify people who significantly influenced how they taught mathematics, and sec-
ond round interviews were subsequently conducted with people identified via this 
process to determine how they attempted to influence how mathematics was taught.

The fourth source of data was lesson cycles comprising observation and video 
recording of at least three consecutive lessons in which digital technologies were 
used to teach specific subject matter, together with teacher interviews at the begin-
ning, middle, and end of each cycle. A single video camera was placed on a tripod 
towards the rear of the classroom and focused on the teacher, the whiteboard, or the 
data projector screen on which the teacher’s computer or calculator output was 
displayed. Interviews sought information about teachers’ plans and rationales for 
the lessons and their reflections on the factors that influenced their teaching goals 
and methods.

The next section draws on the data outlined above to present case studies of two 
beginning teachers, Geoff and Susie (pseudonyms) in order to develop a picture of 
each teacher’s pedagogical identity with respect to technology integration.

�Teacher Case Studies

�Introducing Geoff

Since graduating from his university pre-service programme in 2000, Geoff had been 
teaching at an independent girls’ school with an enrolment of over 1,000 students in 
Grades 8–12. This is an academically-oriented school that charges expensive tuition 
fees, with students who come mainly from upper middle class professional families. 
Although he was qualified to teach English as well as mathematics, Geoff was 
assigned only to mathematics classes.

When interviewed, Geoff said that his teaching philosophy was influenced by his 
love of mathematics, instilled in him as a secondary school student by a mathematics 
teacher he admired for his ‘command of the subject’. Geoff acknowledged that this 
teacher had been a conservative and a traditionalist at heart, but his ‘quirky sense of 
humour’ conveyed a sense of eccentricity that made learning mathematics exciting.

Geoff’s passion for mathematics was reflected in responses to the Mathematical 
Beliefs Questionnaire, where he expressed strong agreement with the statements 
“Mathematics is an evolving, creative human endeavour in which there is much yet 
to be known” and “Doing mathematics involves creativity, thinking, and trial-and-
error”. Questionnaire responses also indicated that Geoff held student-centred views 
about mathematics teaching and learning; for example, he strongly disagreed that in 
mathematics something is either right or wrong and that mathematics problems can 
be solved in only one way, and agreed that teachers should allow time for students 
to find their own methods for solving problems.

Geoff had been interested in computers since his childhood and was an experi-
enced Excel spreadsheet user when he started his pre-service teacher education 
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programme at university. As a teacher, he enjoyed developing mathematical 
modeling tasks that were embedded in real life scenarios or stories. (One such task 
is described in the next section.) In these tasks, he used various types of digital 
technologies to collect and analyse real data, skilfully blending empirical and 
analytical approaches to help students develop mathematical models to fit the data.

�Illustration of Geoff’s Practice

Geoff had participated in an earlier research project that documented the modes of 
working with technology adopted by pre-service and beginning teachers and inves-
tigated personal and contextual factors that shaped their pedagogical identities (see 
Goos 2005). In his first year after graduation, he taught a Grade 8 mathematics class 
that was the focus of the research. This was his first experience of using a motion 
detector in conjunction with a graphics calculator and screen projection unit to 
teach students how to interpret distance-time graphs. He called on individual stu-
dents to walk towards or away from the motion detector so as to match a pre-selected 
distance-time graph displayed on the calculator and view screen. In the following 
lesson, when he did not have access to the same technology, he devised a simulated 
graph matching activity in which students ‘walked’ the graph he had drawn on the 
whiteboard as he moved his pen along the horizontal (time) axis. In terms of the 
technology metaphors framework introduced earlier in the chapter, Geoff was using 
technology as a partner because he wanted to provide students with access to a new 
kind of task that developed their understanding of scale and gradient. This task 
engaged students in a physical experience that gave instant feedback on the match 
between the graphical representation and their movement.

When interviewed after the lesson, Geoff explained that he was looking for fur-
ther challenges in learning to teach mathematics with digital technologies:

I know what things the graphics calculator can do, and I have a pretty good knowledge of 
Excel, but really now that teachers know how to include this in their pedagogy, I suppose 
the emphasis would be now on getting the most out of it. Instead of just knowing what to 
do, how to really take this technology and explore it to its fullest extent and use all of the 
resources that [it] has to offer instead of taking bits and pieces that might be good. I suppose 
unlocking the potential … of what this technology has to offer.

Geoff’s interest in integrating powerful uses of digital technologies into his peda-
gogical repertoire suggests that his trajectory for development was leading him 
towards using technology, and especially Excel spreadsheets, as an extension of self.

Although Geoff’s approach in the Grade 8 lessons was taken directly from the 
teaching materials accompanying the motion detector, the activity resonated with 
his more creative interests in using drama, songs and story-telling in teaching math-
ematics as well as English. This mathematical performance approach was evident in 
a lesson that was observed during the subsequent research project, 5 years later.

Geoff was teaching an advanced mathematics subject to a Grade 12 class. In a 
series of lessons on differential equations he planned to introduce Newton’s Law of 
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Cooling via a ‘murder mystery’ that his students were to solve with the aid of data 
logging probes and Excel spreadsheets. His approach was aligned with the state-
mandated syllabus that emphasised using mathematically-enabled technologies to 
allow students “to tackle more diverse, life-related problems” (Queensland Board of 
Senior Secondary School Studies 2000, p. 10). As part of the study of calculus, 
students were to “appreciate the importance of differential equations in representing 
problems involving rates of change” (p. 17), through learning experiences such as 
investigating “life-related situations that can be modeled by simple differential 
equations such as growth of bacteria, cooling of a substance” (p. 18).

In the first part of the lesson, Geoff introduced differential equations of the type 
dy

dx
f y= ( )  and reminded students that they had dealt with equations of this type in 

their earlier studies of mathematics. He noted that there were many instances of 
such equations in real life and asked students to suggest examples. They remem-
bered that this equation could represent exponential growth or decay, such as in 
bacterial growth or measuring rates of cooling. One student recalled that the rate of 
change of temperature was a function of the difference between the object’s tem-
perature and room temperature.

Geoff worked through some examples, including one that illustrated exponential 
decay. He then set the students to work on textbook exercises. During this segment of the 
lesson another teacher, who had been recruited by Geoff to help set up the modeling 
scenario, burst into the room and announced that a ‘murder’ had been committed in a 
nearby classroom. Not knowing whether to believe the teacher or not, the class followed 
Geoff to the ‘crime scene’ where they found an outline of the ‘victim’ chalked on the 
floor and two cups of coffee that were still warm. Geoff told the class that police had 
arrested two suspects who admitted to being in the room making coffee some time earlier 
but denied committing the crime. According to the ‘police report’ that Geoff distributed 
to students, the time of death had been fixed at 11:45 am, 15 min before Geoff’s colleague 
announced the ‘murder’. The task for the class was to analyse the cooling rate of the cof-
fee, given the time it was poured and initial temperature, in order to work out whether the 
suspects could have been in the room at the time the ‘murder’ was committed.

This task is an application of Newton’s Law of Cooling, T T T e TR
kt

R= −( ) +0 , 
where T = temperature of an object undergoing cooling, t = time, k = decay constant, 
T0 = initial temperature of object, and TR = room temperature. Geoff set up tempera-
ture probes in each coffee cup to collect temperature and time data while he 
developed the necessary theory with input from the class. This involved eliciting 
from students the differential equation for the relationship between the rate of 
cooling and the difference between object temperature and room temperature, 
dT

dt
k T TR= −( ) , which was then re-written as 

dt

dT k T TR

=
−











1 1
. Students 

integrated this equation to give t
k

T T Ce R= −( ) +1
log , and found the value of 

the constant of integration, C, by substituting the initial values t = 0 and T = T0. This 

gave t
k

T T
k

T Te R e o R= −( ) − −( )1 1
log log , a function that the students then 

expressed in exponential form T T T e TR
kt

R= −( ) +0 .
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Geoff transferred the temperature (T) and time (t) data to a spreadsheet  
(http://extras.springer.com*) that plotted the exponential function T a e bkt= +.
. He had set up the spreadsheet to allow the user to change the values of a, k and b 
and observe changes in the ‘goodness of fit’ of the model (square of the difference 
between actual and predicted temperatures for each data point) and also in the 
corresponding graph superimposed over the scatterplot of temperature versus 
time data (Fig. 1). At the end of the lesson Geoff emailed this spreadsheet to the 
students. They finished the modeling task for homework and emailed Geoff their 
completed spreadsheets overnight.

Geoff’s use of the modeling task allowed students to engage with a practical 
application of differential equations at the same time as they were developing an 
understanding of the associated mathematical concepts. His use of multiple tech-
nologies – graphics calculator, temperature probes, Excel spreadsheet – allowed 

* Log in with ISBN 978-94-007-4638-1

Fig. 1  Newton’s Law of Cooling spreadsheet
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him to combine empirical and analytical approaches to give meaning to these 
concepts. Five years into his teaching career, it seemed that Geoff was creatively 
integrating a range of technologies into his mathematical and pedagogical repertoire 
as an extension of self, as foreshadowed in the interview conducted during his first 
year of teaching (see above).

While it is not uncommon for teachers to use digital technologies such as 
spreadsheets and graphics calculators with data probes to illustrate Newton’s 
Law of Cooling, Geoff’s approach was distinguished by his creativity in embed-
ding the modeling task in a dramatic ‘murder’ scenario that aroused his stu-
dents’ curiosity and guaranteed their attention as the underlying theory was 
developed. Although not a fully digital mathematical performance in the sense 
described by Gadanidis and Borba (2008), this was still a technology-enriched 
performance that had the potential to generate an emotional response to the 
murder and police investigation as well as a cognitive response to the mathemat-
ical problem.

�Geoff’s Developing Pedagogical Identity

According to Valsiner’s (1997) zone theory, the zone of proximal development 
entails a set of possible ‘next states’ of the developing system’s relationship with 
the environment, given the current state of the ZFM/ZPA complex and the individ-
ual’s developmental state. Thus the ZPD captures development that lies between the 
possible and the actual. In Geoff’s case, his ZPD as a recently graduated teacher 
included an appreciation of mathematics as a creative human endeavour, some 
student-centred understandings of how mathematics is learned, and considerable 
interest and skill in using digital technologies for learning and teaching mathematics. 
Thus his ZPD offered possibilities for development as a teacher who uses digital 
technologies as a ‘conceptual construction kit’ (Olive et al. 2010, p. 138) rather than 
only as a replacement for calculations that can be done by hand. Geoff found 
employment in an apparently well-resourced school that was beginning to imple-
ment a policy emphasising technology use in all subjects. In mathematics, this meant 
that all students from Grade 9 upwards had to buy their own graphics calculator, and 
the school had invested in data logging peripherals and screen projection units as 
well as fitting out several mathematics classrooms with data projectors and comput-
ers connected to the internet. External curriculum and assessment requirements in 
senior secondary mathematics included mandatory use of computer software or 
graphics calculators. On the surface, then, it seemed that Geoff’s professional envi-
ronment offered a zone of free movement with broad boundaries for action that 
permitted experimentation with digital technologies for teaching mathematics. 
Similarly, the teaching actions promoted by the school administration – the zone of 
promoted action – seemed to lie within the ZFM. For example, school-based profes-
sional development was provided whenever new technology resources were 
purchased, and the Head of the Mathematics Department encouraged Geoff to 
incorporate digital technologies into all of his mathematics teaching. The apparent 

Technology Integration in Secondary School Mathematics…



150

ZFM/ZPA complex therefore promoted teaching actions that were permitted within 
the school and external curricular environment.

However, the ZFM/ZPA complex that Geoff actually experienced within the 
school worked to constrain his development in subtle ways. Even though the school 
employed technical support staff to help teachers integrate technology into their 
lessons, Geoff said that they responded slowly, if at all, to his frequent requests for 
new mathematical software to be installed over the school’s intranet, and he had 
been obliged to install programs himself on individual computers in order to teach 
some lessons. This was the case for the Newton’s Law of Cooling lesson described 
earlier, where temperature and time data had to be manually entered into the model-
ing spreadsheet because the software that can do this automatically had not yet been 
installed on the classroom computer. The problem was exacerbated by having lim-
ited access to computer laboratories that were regularly booked out to other, non-
mathematics, classes. Timetabling practices often allocated mathematics classes to 
rooms in which the teachers rarely used the available technology, while other math-
ematics teachers who wished to use these resources could not gain access. Geoff 
also referred to an organisational culture that was not conducive to risk taking, and 
especially to the conservative influence of parents who expected mathematics to be 
taught in traditional ways not involving technology. Despite the support of his Head 
of Department, Geoff’s school-based ZPA was characterised by passive acceptance 
of technology on the part of the other mathematics teachers. He said he believed that 
he had brought more ideas to colleagues, in terms of technology, than they had been 
able to teach him.

Valsiner (1997) pointed out that children can negotiate changes to the ZFM/ZPA 
complex in order to achieve their emerging goals. Likewise, Geoff was able to find 
a zone of promoted action outside the school that mapped onto his ZPD in develop-
mentally productive ways. There were three aspects to this external ZPA. The first 
involved participating in university research projects such as the one described 
here. Geoff noted that the press for innovation that he felt as a consequence of his 
participation was beneficial because he was motivated to turn ‘a germ of an idea’ 
into a real lesson. Discussing his ideas for the coffee-cup murder mystery some 
weeks before this lesson, he acknowledged:

This project is good because it gives me the impetus to do something like that which … 
otherwise still might just be a happy thought.

The second aspect to the external ZPA saw Geoff looking for formal professional 
development opportunities, such as the intensive, week-long conference that had 
recently introduced him to advanced features of Excel. Nevertheless, Geoff was 
selective about what he took from these professional development experiences:

The majority of things I see that I’d like to use I don’t get to use, probably because I see so 
much of it. I’ve got to be a bit choosy about what I plan to do.

The third element of his external ZPA came from his increasing participation in 
the activities of his local mathematics teacher professional association, and in par-
ticular the professional growth he experienced by presenting workshops and 
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seminars on teaching mathematics with digital technologies. Although Geoff had 
little control over his material circumstances at the school – his ZFM – his decision 
to access an external ZPA helped him to take charge of his own development and 
re-interpret the limitations imposed by timetabling rigidity, lack of technical 
support, and a conservative school culture as not necessarily preventing him from 
adopting innovative teaching practices. This zone theory analysis provides some 
sense of Geoff’s identity trajectory in ‘becoming’ a teacher who confidently inte-
grated digital technologies into his practice, and his role in negotiating that trajec-
tory. The other way to observe the development of his pedagogical identity is to 
recognise that his modes of working with technology became more sophisticated 
over time, progressing towards extension of self as he integrated the range of 
resources available to him into the mathematical practices of the classroom.

�Introducing Susie

At the start of the research study, Susie was in her third year of teaching in an inde-
pendent secondary school with an enrolment of around 600 students in Grades 
8–12. The student population was fairly homogeneous with respect to cultural and 
socio-economic background, with most students coming from white, Anglo-
Australian middle class families. Susie was qualified to teach mathematics and 
music, but at this school she was assigned to teach only mathematics classes.

Susie’s own experience of learning mathematics at school was structured and 
content based, and this influenced the ideas about mathematics teaching that she 
brought to the pre-service programme:

I thought it would be great if I could just put stuff on the board and let them do their work 
and answer questions if they needed it and write exams, tick, cross and that’s my job.

According to Susie, these ideas were first challenged by her mathematics cur-
riculum lecturer at university who opened her eyes to different approaches to teach-
ing mathematics. She was now trying to implement these approaches herself. For 
example, when interviewed, she explained that in her classroom “we spend more 
time on discussing things as opposed to just teaching and practising it”, and that for 
students “experiencing it is a whole lot more effective than being told it is so”.

Susie’s responses to the Mathematical Beliefs Questionnaire were consistent 
with the student-centred approaches that she was now trying to implement in her 
teaching. For example, she expressed strong agreement with statements such as “In 
mathematics there are often several different ways to interpret something”, and she 
disagreed that “Solving a mathematics problem usually involves finding a rule or 
formula that applies”. Other questionnaire responses were strongly supportive of 
cooperative group work, class discussions, and use of calculators, manipulatives 
and real life examples.

Aged in her mid-20s, Susie said she felt she was born into the computer age 
and this contributed to her comfort with using digital technologies in her teaching. 
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She recognised that technology saved time with calculations and graphing but also 
saw it as providing opportunities for mathematical exploration:

You make progress so much quicker than having to do things by hand and you can just do 
examples like … what does this rule look like? What does this linear function look like? 
And they can put it into their calculator and check and have a look […] So it’s just quicker 
to explore things.

�Illustration of Susie’s Practice

Observations of Susie’s Grade 10 mathematics class in the first year of the research 
study illustrate her preference for using digital technologies to explore mathemati-
cal concepts. In one lesson cycle, she introduced quadratic functions via a graphical 
approach involving real life situations and followed this with algebraic methods to 
assist in developing students’ understanding. Lessons typically engaged students in 
one or two extended problems rather than a large number of practice exercises. For 
example, students used the regression function on their graphics calculators to 
investigated quadratic models for data on the growth of babies, the path of a tennis 
ball as it is hit over the net, the height of an object dropped from the top of a build-
ing, and the cross sectional dimensions of a railway tunnel arch. They then used 
their models to make predictions that went beyond the data. A characteristic of these 
tasks was that students were asked to comment on the strengths and limitations of 
their models in relation to the real life data rather than just accepting the calculator 
regression output as an indicator of goodness of fit.

The assessment task for this unit of work required students to investigate projec-
tile motion as a practical application of quadratic functions. The task made use of a 
computer game in which the Sesame Street character Gonzo was shot from a can-
non towards a bucket of water some distance away (http://www.funny-games.biz/
flying-gonzo.html; see Figs. 2 and 3). The game allows players to vary the angle of 
projection and the cannon ‘voltage’ (a proxy for muzzle velocity) and observe the 
effects on the distance Gonzo travelled as they ‘aim’ him at the bucket of water.

Susie had discovered this game at a professional development workshop run by 
the local mathematics teacher association. The presenter was Geoff, the teacher 
profiled in the previous section of the chapter. Geoff found the game when search-
ing on the internet for applications of projectile motion that he could use with his 
Grade 12 class. During this Grade 12 lesson, which was observed as part of the 
research study, Geoff introduced the parametric equations for projectile motion

	
x t Vt y t Vt

gt
( ) cos ( ) sin= = −ϑ ϑand

2

2 	

where x t( )  is the horizontal displacement, y t( )  the vertical displacement, ϑ  the 
angle of projection, V  the initial velocity, t the time in flight and g acceleration due 
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Fig. 2  Opening screen  
of Flying Gonzo game

Fig. 3  Firing Gonzo to land in the bucket of water
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to gravity. Noting that the y-component is zero when Gonzo lands, Geoff then 

solved Vt
gt

sinϑ − =
2

2
0  to obtain t = 0  (at the start of flight) or t

V

g
=

2 sinϑ
 

(when Gonzo lands). Substituting the latter value for t into the equation for x t( )  

gives the range equation, x t
V

g
( )

sin cos
=

2 2 ϑ ϑ
 or, using the double angle formula, 

x t
V

g
( )

sin
=

2 2ϑ
. Geoff’s Grade 12 students were to test a range of angles and 

velocities to predict the range, with the aim of landing Gonzo in the bucket of water. 
Because the real velocity and range were unknown, students instead recorded the 
cannon ‘voltage’ and estimated the range by counting the number of tiles on the 
wall in the screen background during Gonzo’s flight. They entered all these values 
into a spreadsheet and compared the predicted range, calculated from the range 
equation, with the actual range expressed in ‘tiles’. They then averaged the ratio of 
predicted to actual range to produce a constant factor (~140) that could be applied 
to subsequent tests to accurately predict Gonzo’s range.

When she tried out the game at the professional development workshop that 
Geoff presented, Susie wondered whether she could adapt the mathematical content 
to suit her Grade 10 class. She devised an assessment task in which students used 
their graphics calculators or TI-Interactive software to tabulate and plot data that 
would allow them to find a mathematical model for the relationship between the 
range and the muzzle velocity. Algebraic methods were then to be used to determine 
the best cannon settings for Gonzo to hit a target at a given distance. Students were 
given a low voltage setting and high voltage setting. Keeping each constant in turn, 
they fired Gonzo at eight different angles and recorded the range for each trial. They 
then entered the data into their graphics calculators or TI-Interactive and found a 
quadratic model that gave the best fit. Note that when voltage (velocity) is kept 
constant the model is trigonometric rather than quadratic because the range varies 
with the angle of projection. Susie could perhaps have designed the task differently, 
to keep angle constant and vary the voltage, which would yield a true quadratic 
model. Nevertheless, a quadratic model fitted to the data as collected gives a good 
approximation and allowed students to practise finding critical points (intercepts 
and turning points) algebraically.

Interview and lesson observation data suggest that Susie was interested in having 
students use technology for mathematical exploration, and not just for checking 
calculations or making graphing quicker. In terms of the framework for teaching 
and learning roles introduced earlier, she was working with technology as a partner 
to develop students’ understanding of mathematical concepts. Susie’s and Geoff’s 
use of a computer game to develop mathematical understanding of quadratic 
functions and projectile motion connects with Jorgensen and Lowrie’s (2011) argu-
ment that immersion in digital game environments engages learners and reshapes 
their thinking. Although the game provided a dynamic image of Gonzo’s motion, 
the effect was similar to ‘panning’ a camera so that the background seemed to 
move while Gonzo stayed in the centre of the computer screen. Students had to 
visualise his parabolic path and find an efficient method for measuring the 
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horizontal distance travelled, which required many repetitions of the game. As 
Jorgensen and Lowrie noted, the purpose of this repetition was not to achieve 
fluency with taught skills as is often the case with practice on textbook exercises, 
but to gain a better understanding of the problem situation and solution strategies.

�Susie’s Developing Pedagogical Identity

During interviews, Susie referred to a range of people and environmental influences 
that shaped her development as a teacher of mathematics. Unlike Geoff, who found 
alignment between his mathematics learning experiences as a school student and 
the practices promoted by the pre-service teacher education programme, Susie’s 
understanding that mathematics is learned and taught through memorisation and 
practice was challenged by her pre-service experience. It seemed that there was 
enough overlap between Susie’s ZPD, representing her possibilities for develop-
ment, and the zone of promoted action offered by the university teacher education 
programme to canalise her development towards more student-centred, exploratory 
approaches as she began her teaching career. But a teacher’s identity trajectory is 
also influenced by the relationship between ZPA and ZFM and the meanings 
ascribed to different aspects of the school environment by the people who organise 
that environment. Development can be constrained when the environment seems 
not to permit teaching actions that are ostensibly promoted. However, this seemed 
not to be the case at Susie’s school.

When Susie started working at the school she came under the influence of 
the Head of the Mathematics Department, who had developed a culture where 
mathematics was taught as much as possible in context, where students worked 
collaboratively and available technologies were used extensively. He had been the 
driving force behind the introduction of technology to the school during the 1990s, 
before the external curriculum had made the use of technology mandatory. When 
interviewed, he said he was able to achieve this cultural change because the school 
administration supported his teaching philosophy and provided funds for resources. 
Initially, however, even though he developed technology-based activities and 
provided teachers with professional development, there was not a great uptake of 
digital technologies by the mathematics teaching staff. To overcome this inertia 
he introduced technology into assessment tasks that had to be implemented by all 
teachers:

You actually had to design activities that you ask all teachers to do or you build it into 
assessment and teachers will tend to engage a bit more because they always want their 
students to do the best they can. And it took a long time before it got to the point where it is 
now where people just pick it up and use it and there are still people that resist anything 
that’s new, even in that culture.

Thus Susie started her teaching career in a school where there was a strong 
culture within the mathematics department that emphasised integrating digital 
technologies into everyday classroom practice, resulting in an expectation that she 
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would teach in the same way. Susie described the approach at her school as “This is 
what we do here”. She said it made sense to her, and she “learned so much in the 
first year about [her] personal understandings of maths, let  alone to do with the 
teaching of it, but also the different approach to it”. At this stage of her develop-
ment, lesson observations indicated that Susie’s main mode of working with digital 
technologies was as a partner in providing new ways for students to develop under-
standing of mathematical concepts.

The zone of free movement offered by the school supported technology innova-
tion through an organisational culture that expected teachers of mathematics to 
make use of the substantial resources in which the school had invested. Students in 
Grades 9–12 had constant access to graphics calculators obtained through the 
school’s hire scheme, there were additional class sets of CAS calculators for senior 
secondary classes, and data logging equipment compatible with the calculators was 
freely available. Computer software was also used for mathematics teaching; how-
ever, as is common in many Australian secondary schools, computer laboratories 
were difficult to access and had to be booked well in advance. Susie preferred to use 
graphics calculators so that students could access technology in class whenever they 
needed it. The data projector installed in her classroom also made it easy for her to 
display the calculator screen for viewing by the whole class.

The ZFM/ZPA complex that influenced Susie’s development as a teacher featured 
an expansive zone of free movement with few constraints limiting her choice of 
actions and a zone of promoted action set up by the school administration and Head 
of Department that encouraged her to explore the resources that were available to her. 
As Susie explained, “Anything I think of that I would really like to do [in using tech-
nology] is really strongly supported”. Susie’s pedagogical identity was taking shape 
as she constructed meaning from her person-environment relationship. It seemed that 
the ZFM/ZPA set up by the school mapped exactly onto her ZPD, so much so that 
she evaluated the external ZPAs offered by formal professional development work-
shops in terms of how well they matched the teaching approaches permitted by her 
environment and promoted by the people who organised that environment. She had 
attended many conferences and workshops in the 3 years since beginning her teach-
ing career, but found that most of them were not helpful “for where I am”. She 
explained: “Because we use it [technology] so much already, to introduce something 
else we’d have to have a really strong basis for changing what’s already here”.

One of the risks in continually judging the fit of an external ZPA in terms of its 
match with existing people-environment relationships within a school is that it may 
limit possibilities for envisioning and adapting to change. A school’s organisational 
culture and resources can change over time, as can the teaching approaches promoted 
if there is turnover of key staff. Susie was already aware that not all of the mathemat-
ics teaching staff were enthusiastic users of digital technologies. One experienced 
teacher who had been a longstanding staff member at the school expressed concerns 
that sometimes technology could be used “just because it’s there” and cited as an 
example the use of dynamic geometry software in junior secondary classes at the 
expense of using concrete materials: “I think it’s good to draw things and measure 
things”. This teacher was willing to question the value of using technology in certain 
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circumstances, and Susie acknowledged the teacher’s influence in making her more 
discerning in her own use of technology with her classes. When the Head of the 
Mathematics Department left the school, Susie was promoted to the position of coor-
dinator of the junior secondary mathematics programme. Now she noticed that some 
of the more recently appointed mathematics teachers were neutral and passive in 
their attitudes towards technology. Although they were willing to use technology 
in their teaching if pressed or shown how to, they rarely asked questions or engaged in 
discussions about improving existing tasks and technology-based teaching practices. 
Thus the ZPA implicitly set by the example of colleagues was contracting, and one 
might predict that Susie’s identity trajectory of ‘becoming’ a creative user of digital 
technologies – perhaps as an extension of self – would be impeded unless she delib-
erately sought out external ZPAs consistent with her pedagogical beliefs and goals.

�Conclusion

This chapter has focused on how mathematics teachers develop new practices in 
technological environments. Mathematics education researchers have been inter-
ested in the mathematical potential of technology and its effects on student learning 
for at least the last 30 years (Hoyles and Lagrange 2010), but only recently has there 
emerged a trend towards investigating how technology changes the professional 
work of mathematics teachers (Artigue 2010). The research reported in this chapter 
examined relations between factors known to influence ways in which teachers use 
digital technologies to enrich secondary school mathematics. Based on socio-
cultural theories that view learning as increasing participation in practices and 
constructing identities in relation to these practices, two frameworks were used to 
analyse the development of teachers’ pedagogical identities as users of technology. 
The first framework classifies different ways of working with technology and 
provides evidence of ‘what’ changes in teachers’ practice, while the second allows 
for investigation of teacher-environment relationships to explain the ‘how’ and 
‘why’ of developing practice in terms of Valsiner’s (1997) zone theory.

The analysis of two cases of beginning teachers illustrated several issues related 
to identity development. The first issue concerns the temporal dimension of 
identities, in that teachers are on a trajectory of ‘becoming’ a different practitioner. 
Zone theory is useful for conceptualising not only possibilities for development, but 
also the ongoing process of development as changing relationships between the 
zone of free movement, zone of promoted action, and zone of proximal develop-
ment. Other issues are related to how trajectories of teacher development are 
constrained rather than fully determined. Teachers’ knowledge and beliefs, on their 
own, do not determine how they will approach the classroom use of digital tech-
nologies. Neither does it make sense simply to ‘add up’ the positive or negative 
effects of institutional constraints or professional development opportunities to 
predict whether teachers will embrace or resist technology. Instead, an analysis is 
called for that gives attention to relationships amongst Valsiner’s (1997) three zones, 
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bearing in mind that the developing person is able to re-negotiate these relationships 
to some extent to achieve their emerging goals.

Susie and Geoff were regarded as innovative users of technology; however, they 
differed in the degree of fit between their respective ZPDs, ZFMs and ZPAs. The 
zone of free movement offered by their schools was important in allowing them 
some leeway to explore technology-enriched teaching approaches consistent with 
their pedagogical knowledge and beliefs. In both schools there was good access to 
most forms of technology, and an externally mandated mathematics curriculum that 
made it obligatory for teachers to use computers or graphics calculators. Yet, despite 
the availability of appropriate material resources, other institutional constraints 
worked against technology integration. In Geoff’s case, constraints arose from the 
school’s conservative academic culture and somewhat inflexible organisational 
structures that were not wholly conducive to experimentation with new technolo-
gies. For Susie, passive resistance from other mathematics teachers was beginning 
to undermine an organisational culture that had previously supported innovative 
technology integration. The zones of promoted action set up for and accessed by 
these two teachers also differed. Susie found that her school’s ZPA enabled her to 
fully exploit the possibilities provided by the ZFM, although these circumstances 
were changing due to staff turnover at the time of the research study. In contrast, 
Geoff’s school-based ZPA did not provide him with enough opportunities to develop 
and extend his teaching repertoire. Instead he sought an external ZPA through vary-
ing combinations of formal and informal professional development. This analysis 
shows that neither professional learning experiences, time, resources, curriculum 
mandates, nor supportive organisational structures and cultures are sufficient, on 
their own, to lead to a higher level of technology integration in mathematics 
classrooms. Instead, it is the dynamic relationships between these factors, and the 
teacher’s active reshaping of their professional environment, that develop their 
professional identities as users of technology.

The extent of overlap between the ZFM/ZPA complex and the ZPD may be criti-
cal in supporting beginning teachers in further developing the innovative practices 
they typically encounter in pre-service programmes. Susie and Geoff experienced 
different combinations of factors known to influence technology integration, but both 
had a ‘region’ of overlap between their respective ZPD, ZFM and ZPA where they 
were able to find sources of assistance that supported their ongoing development as 
teachers of mathematics, and this in turn enabled them to integrate technology into 
their professional practice in a variety of ways. Some of these uses of technology 
went beyond the familiar applications of computer software and graphics calculators 
to incorporate elements of mathematical performance and digital gaming that may 
offer new ways of learning mathematics. Susie and Geoff developed these activities 
themselves without any intervention from the researcher, and the account in this 
chapter of how they implemented these activities provides an authentic picture of 
what is possible in a typical independent secondary school classroom. With new 
generations of students coming to school familiar with using digital technologies 
to organise their daily lives, provide entertainment, find information, and maintain 
social networks, mathematics education research needs to find better ways to under-
stand the impact of such technologies on teachers’ professional work and learning.
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    Abstract     We discuss the dual teaching roles of university mathematics tutors, 
as teachers and policy makers, in relation to the classroom implementation of 
technology while guided by departmental policies. The main contribution of this 
chapter is the exemplifi cation of these roles in an undergraduate mathematics 
programme, called  Mathematics Integrated with Computers and Applications  
(MICA), with systemic technology integration. The current classroom practices 
of tutors in one of the MICA core courses for mathematics majors and future 
teachers of mathematics are examined. The role of the tutors in this course is to 
carefully guide the students’ instrumental genesis of programming technology 
for the investigation of both mathematics concepts and conjectures, and real-world 
applications. Acting as a mentor, the tutor encourages students’ mathematical 
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        Introduction 

 Since the advent of technologies many publications have focused on changes in 
tutors’ 1  approaches to the teaching of undergraduate mathematics. For example, the 
National Science Foundation ( 1996 ) report entitled ‘ Shaping the Future: New 
Expectations for Undergraduate Education in Science, Mathematics, Engineering, 
and Technology’  has motivated the individual tutors and department as a whole to 
explore new ways of teaching mathematics. More recently, the International 
Commission on Mathematical Instruction (ICMI) Study 11 on  The Teaching and 
Learning of Mathematics at the University Level  (Holton  2001 ) reports on advances 
in practice, research, technology and other areas that impact undergraduate mathe-
matics education. The chapter by    Keynes and Olsen ( 2001 ), entitled ‘Professional 
Development for Changing Undergraduate Instruction’, discusses the challenges 
that a mathematics department faced when it implemented systemic changes in its 
undergraduate mathematics education. Their method was to use a team approach 
that involved “senior faculty, graduate and undergraduate assistants (TAs) and 
teaching specialists” (p. 113). This suggests that at the university level, the role 
of the tutors for practices in the mathematics classroom is twofold: as a teacher, 
and also as a policy maker within his/her department. The 2004 Mathematical 
Association of America (MAA) report entitled ‘Undergraduate Programs and 
Courses in the Mathematical Sciences: CUPM Curriculum Guide’ addresses all its 
recommendations to the department and only indirectly to the individual tutors. The 
department is responsible for developing, supporting and sustaining its programmes. 
Only the department can ensure the continuity required for systemic integration of 
changes in mathematics education at this level. 

 Moreover, two ICMI studies that focussed on technology in mathematics education 
have addressed some specifi c issues faced by tutors in their roles and responsibilities 
in undergraduate mathematics instruction. However, whereas the ICMI 1 study 
(Howson and Kahane  1986 ) entitled  The Infl uence of Computers and Informatics on 
Mathematics and its Teaching  was principally devoted to undergraduate mathematics 
education, the most recent ICMI 17 study  Digital Technologies and Mathematics 
Teaching and Learning: Rethinking the Terrain  (Hoyles and Lagrange  2010 ) included 
only a few contributions addressing undergraduate mathematics education. 
This turns out to refl ect the shift over the years of mathematics educational research 
concerning the integration of technology to mostly one of focus on school level 
(Lagrange et al.  2003 ; Lavicza  2010 ). Nevertheless, the most recent ICMI 17 study 
addresses many issues about the use of technology in mathematics teacher education. 
This is of interest in university mathematics education as, for example, many Canadian 
mathematics departments have recently devoted signifi cant effort and resources 
towards the education of future teachers of mathematics (Mgombelo et al.  2006 ). 

1   In this chapter that focuses on teaching roles, the term ‘department’ will be used to denote a 
university administrative unit that has the responsibility to set curriculum, develop the department’s 
philosophy, etc., and the term ‘tutor’ will be used to denote a person who has a full-time position 
in the department, and is responsible for teaching university courses. 
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 The important issue of what part technology should play in undergraduate 
mathematics education competes for attention with all the other challenges that 
tutors face in their teaching; for example, Mason ( 2002 ) in his book  Mathematics 
Teaching Practice – A Guide for University and College Lecturers  discusses many 
of these challenges and provides constructive ways to address them. There are 
many publications that can be classifi ed as practitioner reports and that describe the 
implementation of technology in specifi c undergraduate courses (e.g. Calculus, 
Linear Algebra, etc.), for a given group of students, and within departmental con-
straints. An early example of a collection of these can be found in the MAA Notes 
24  Symbolic Computation in Undergraduate Mathematics Education  (Karian 
 1992 ). Few publications address the challenge of continuity, namely, the integration 
of technology over many years, the involvement of different tutors rotating through 
the same course, departmental decisions for on-going integration of technology 
in specifi c courses or programmes, etc. In other words, the tutor’s role of teacher in 
technology integration in the classroom is most often solely considered, leaving out 
his/her role as policy maker. But among the few publications that address the issue 
of continuity is one by Schurrer and Mitchell ( 1994 ) who discuss how their mathematics 
department, acting on a whole departmental initiative, accomplished a systemic 
integration of technology in their programme. 

 In the fi rst section of this chapter we discuss the use of technologies in university 
mathematics teaching, and explore substantial issues that impact upon both tutors 
and mathematics departments as they integrate these technologies in the teaching 
and learning of mathematics. The second section describes the evolving role 
of tutors in an innovative undergraduate fi rst-year core mathematics course that 
integrates programming technology with interactive interfaces. Here we will explore 
how the use of this technology in undergraduate teaching changes the traditional 
‘lecturer’ role of the tutor. Whereas the fi rst section elaborates on the tutor’s role 
as policy maker, this section describes in depth the tutor’s role as teacher in the 
classroom while guided by departmental policy. The third section briefl y touches on 
the intersection of students’ mathematical creativity and their use of technology. 
The Chapter concludes with a few suggestions for future studies to inform both 
tutors and mathematics departments about alternative ways to integrate technology 
in university mathematics teaching and learning.  

    Technologies in University Mathematics Classrooms: 
Moving from Individual Innovations to Departmental 
Implementations 

 From his international comparative research study involving the survey of 1,103 
mathematicians from Hungary, United Kingdom and United States of America, 
Lavicza ( 2010 ) found that “a large proportion of mathematicians use CAS [Computer 
Algebra Systems] and other technologies for both their research and teaching” 
(p. 112). The more recent Canadian extension of the survey corroborates Lavicza’s 
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fi ndings (Buteau et al.  forthcoming ). For example Buteau et al. found that 85 % of 
the survey participants (N = 302) use a least one technology 2  in their teaching, in 
particular 69 % of them use CAS. 

 Overall it seems that the great majority of tutors who integrate technology into 
their mathematics teaching do so by their own volition; for example 81 % of the 
mathematician participants in the Canadian survey study agreed to “ I can freely 
choose whether or not I use CAS in my teaching ” (Buteau et al.  forthcoming ). 
Similarly many individuals have described their experiences in scientifi c papers, 
conference communications, etc. There is no shortage of practical ideas for integrating 
technologies into undergraduate mathematics education. However, despite the many 
examples provided by tutors, it seems that mathematics departments provide them 
with little support. For example, Buteau et al. ( forthcoming ) found that 54 % of 
mathematician participants in their Canadian survey indicated the lack of depart-
mental support as a factor hindering the CAS integration in teaching. To promote 
consistent delivery of mathematics programmes there need to be some departmental 
policies on the integration of technology. The Mathematical Association of America 
CUPM curriculum Guide ( 2004 ) stresses, in its  Recommendations for Departments, 
Programs, and All Courses  section, that individual initiatives to substantial changes 
to a programme are not enough:

  No program will long survive if it represents the work of a single individual. For long-term 
sustainability, initiatives must be team efforts, with faculty in supporting roles who can be 
prepared to expand or take over the leadership of the program. (p. 25) 

   In what follows, we provide some insights into why such departmental policies 
on technology integration appear so diffi cult to achieve. 

 Within university settings the generation of a departmental policy that focuses on 
teaching is a challenging task. Informal discussions with colleagues at other univer-
sities confi rm that university mathematicians contribute willingly to debates on the 
curriculum but many, often a majority, do not participate in discussions about the 
teaching of mathematics. Mathematicians tend to have established views about how 
mathematics should be taught at the university level and these are likely to be based 
mainly on their own undergraduate and graduate experiences. Introducing technol-
ogy into the infrequent departmental discussions on teaching and learning mathe-
matics adds new formidable challenges. For example, technologies that have 
potential to assist, enrich and improve the teaching and learning of mathematics 
evolve at a pace that few, if any departments, have been able to keep up with. The 
many published case studies mainly report on what has worked for the author in a 
specifi c course and a given set of students. For example, in their literature review 
(326 contributions) on CAS use in postsecondary education, Buteau et al. ( 2010 ) 
found that 67 % of the contributions was of this kind; 27 % addressed a grouping of 
courses (e.g., fi rst-year courses or calculus courses) and only 6 % discussed a 
programme- wide implementation within a department. 

2   CAS, dynamic geometry software, programming, discrete mathematics software, simulation 
software, and/or statistical analysis software; i.e., excluding communication technologies, such as 
emails, text editors, LaTeX, online fora, etc. 
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 It will be some time before one is able to summarise the specifi c technologies 
used in which particular ways are most likely to be successful for specifi c classes of 
students and for the tutors who are charged with teaching them. By the time we are 
able to do so, it is very likely that the technologies in question will have evolved or 
been superseded. For some tutors, requiring the use of technology into mathematics 
programmes confl icts with their view of academic freedom. Mason ( 2002 ) explores 
a number of issues and tensions that tutors face in their roles as teachers; for example, 
“There is an endemic tension between technique and concepts, between under-
standing and facility, and hence a pedagogy based on ideas and a pedagogy based 
on practice” (p. 170). Technology in mathematics education is an issue that 
introduces new teaching tensions and these are unlikely to be resolved to the 
satisfaction of all mathematics tutors. Building on Mason’s views and moving 
the perspective from the tutors to the department, there is a profound tension 
between a pedagogy based on integrating technology in a systemic way and one that 
leaves the responsibility to the individual tutor. 

 There are examples where departments have overcome signifi cant challenges 
and have acted to integrate technology into their undergraduate mathematics 
education. Noss ( 1999 ) reports and analyses how mathematics departments in two 
major UK research universities (he called NU and SU), that had received substantial 
funding, decided “to exploit new technologies in the teaching of mathematics” 
(p. 375). Both departments decided to use  Mathematica  (Wolfram Mathematica 
 n.d. ) but they did so in very different ways. Noss describes,

  At NU the team centered their design on the production of eighty or ninety screens of 
hypertextual information, written in an appropriate authoring language and typically 
including animated examples of techniques. Students were given exercises, in the form of 
multiple choice questions, which were marked by the computer… (p. 375) 

   He further comments,

  SU’s approach differed substantially. The SU team sought to employ  Mathematica  as 
a means for students to express their mathematical knowledge via programming. Sequences 
of tasks were presented as  Mathematica Notebooks , i.e. textual information on screen, 
carefully sequenced, and capable of being executed as  Mathematica  code at suitable points. 
(p. 377) 

   Here Noss has provided two examples of many opportunities that technology 
offers in undergraduate mathematics. Another example of integration of technology 
in undergraduate mathematics education as a result of decisions by a mathematics 
department is reported by Ralph ( 2001 ) and Muller et al. ( 2009 ). The Mathematics 
Department at Brock University introduced in 2001 a policy of systemic integration 
of technology in its undergraduate courses and the development and implementation 
of the innovative core undergraduate mathematics programme called MICA 
( Mathematics Integrated with Computers and Applications ), which is still operational 
to this day. 

 The situations in which mathematics departments fi nd themselves vary from one 
university to another, most importantly in their tutors who have the power to impact 
and change the way mathematics is taught. Our understanding of the role that 
technology can play in students learning mathematics will evolve from the choices 
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of models that departments select to integrate technology in their mathematics 
programmes. When different approaches in the use of technology are implemented 
over signifi cant time, their results will provide pointers as to (1) what technologies 
are most likely to enhance mathematics learning; (2) when and how they can be 
implemented; (3) for which students they are most benefi cial; and (4) which tutors 
are most likely to integrate them in their teaching. From the experiences reported 
by tutors and from the experimental programmes and initiatives developed by math-
ematics departments, a pedagogy of systemic technology integration may emerge. 

 We reiterate that Noss ( 1999 ) noted that “The SU team sought to employ 
 Mathematica  as a means for students to express their mathematical knowledge via 
programming” (p. 377). When the mathematics department at Brock University was 
developing its new MICA undergraduate philosophy, the introduction of computer 
programming was one of the most discussed and contentious issues. Some tutors 
were opposed to introducing programming because it would take up valuable 
time that could be better devoted to other mathematical topics. Others, who used 
programming in their research, needed little convincing about the power of pro-
gramming when exploring new mathematical ideas. 

 Some of the benefi ts that accrue from using programming for learning school- 
age mathematics have been identifi ed by a few scholars. Elliot ( 1976 ) mentions, 
“Papert… points out that the process of writing a program forces one to consider 
possible misunderstandings and ambiguities in a discourse… This may force a student 
to clearly understand the problem themselves” (pp. 448–449). Abrahamson et al. 
( 2006 ) stress the benefi ts and skill development that students may experience when 
engaged in a mathematics programming activity:

  [The Students] checked the algorithm and the code several times and then formulated 
preliminary theories to explain the graph. That is, once they were satisfi ed that they had 
debugged the code, they reluctantly turned to debug their own thinking – the computer 
model they had themselves created now constituted an epistemic authority that forced them 
to reconsider their prior assumptions. (pp. 42–43) 

   Dubinsky and McDonald ( 2002 , p. 279) use the Actions-Processes-Objects- 
Schemas (APOS) theoretical framework to comment on the role of programming,

  It is important to note that in this pedagogical approach, almost all of the programs are 
written by the students. One hypothesis that the research investigates is that, whether 
completely successful or not, the task of writing appropriate code leads students to make 
the mental construction of actions, processes, objects, and schema proposed by the theory. 
(p. 279) 

   Dubinsky and Tall ( 1991 ), in their paper on  Advanced Mathematical Thinking 
and the Computer , explore the benefi ts, the concerns and the challenges of using 
programming within mathematics courses. They summarise,

  These experiences, both positive and negative, tell us that the issue in using programming 
to help students learn mathematical concepts is not whether it should be done, nor is it the 
particular language that is used. The main consideration is how the instructional treatment 
uses the language through the design of the programming tasks for the students. (p. 242) 

   Mathematics technologies, including programming, have the potential to 
bring benefi ts to teaching and learning mathematics at the postsecondary level. 
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For example, King et al. ( 2001 ) in the publication emanating from the ICMI Study 
on ‘the Teaching and Learning of Mathematics at the University Level’ quote Hoyles: 

 There is considerable evidence of the computer’s potential to:

•    Foster more active learning using experimental approaches along with the 
possibility of helping students to forge connections between different forms of 
expression, e.g. visual, symbolic;  

•   Provoke constructionist approaches to learning mathematics where students 
learn by building, debugging and refl ection, with the result that the structure of 
mathematics and the ways the pieces fi t together are open to inspection;  

•   Motivate explanations in the face of ‘surprising’ feedback: that is, start a process 
of argumentation which can (with due attention) be connected to formal proof;  

•   Foster cooperative work, encouraging discussion of different solutions and 
strategies; computer work is more visible and more easily “conveyed” between 
lecturer and students;  

•   Open the window on student thought processes: students hold different conceptions 
of mathematical ideas, which are hard to access, even in the case of articulate 
adults. How students interact with the computer and respond to feedback can 
give insight into their conceptions and their beliefs about mathematics and the 
role of computers. (p. 350)    

 As an example where university students reaped some of these benefi ts, consider 
the study by Chae and Tall ( 2001 ) where they report that, after a computer-based 
experiment involving the period doubling of the logistic function, two thirds of a 
class were able to link numerical approximation and visual representation, and then 
link it with theory. Even three students who did not have the desired pre-requisite 
knowledge of geometric convergence were successful. They stress the change in the 
role taken by the tutors. To improve effective experimentation, the tutors responded 
to students by “providing support and explaining the phenomenon of period 
doubling. Sometimes the supervisor offered advice by providing directed questions 
to keep the students going if they were stuck” (p. 204), or in other words, “the super-
visor acts as a mentor, using various styles of questioning to provoke links between 
different ideas” (p. 199). 

 For the mathematics department at Brock University, the use of programming in 
its MICA programme, besides many other technologies, was to meet a very specifi c 
goal – an education of mathematics majors and prospective teachers of mathematics 
that would empower them to develop, implement and use their own interactive 
mathematical objects. This goal guides a rich technology use in the sense that it 
addresses each of the fi ve potentials suggested by Hoyles (King et al.  2001 ). 
Furthermore, it is our experience that to meet this goal tutors are often required to 
move away from a traditional teaching lecturer role to a more ‘mentor’ role. 

 In the next section we discuss the evolving roles of tutors assigned to teach one 
of the first year courses, called MICA I, where students are introduced to 
programming for mathematics learning. Our decision to focus on this course is 
based on two factors. For the students joining the Mathematics Department at Brock 
University, this course plays a central role in their transition from school to a 
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university mathematics programme that integrates technology in an innovative way. 
For the tutors, it is the course that most explicitly affords an embodiment of the 
Department’s philosophy.  

    The Evolving Roles of Tutors in an Innovative First-Year 
Course (MICA I) Based on Programming Technology 
with Interactive Interfaces 

 In this section, we discuss examples of teaching practice from the experience of 
tutors teaching the fi rst-year course, MICA I, in the Brock University undergraduate 
core mathematics programme MICA. This programme was established in 2001, and 
aspects of it have been described in a number of publications. The philosophy and 
objectives of the Department that spurred the development of this programme are 
described by Ralph ( 2001 ). A review of all (traditional) courses of the programme 
under the umbrella of the new philosophy and principles was undertaken. For 
example, it was decided that Maple (Maplesoft  n.d. ) would be the standard CAS used 
overall in the MICA programme, and the introductory Calculus would entail the use 
of Maple and an engaging, interactive software called  Journey Through Calculus  
(Ralph  1999 ). In addition, three innovative core courses, called MICA I, II, III, 
were introduced, which most concretely embed two of the programme’s principles: 
(i) to encourage mathematical creativity, and (ii) to develop mathematics concepts 
hand-in- hand with computers. A fuller description of the programme and review 
can be found in Ben-El-Mechaiekh et al. ( 2007 ). Muller et al. ( 2009 ) have described 
how students enrolled in MICA I-III courses learn mathematics as they engage 
in designing, programming and using interactive, computer-based environments, 
called  Exploratory Objects  that are “interactive and dynamic computer-based 
model[s] or tool[s] that capitalise on visualisation and [are] developed to explore a 
mathematical concept or conjecture, or a real-world situation” (p. 65). 

 Marshall ( 2012b ) has explored the differences and similarities between 
Exploratory Objects and Microworlds at the university level (e.g., Wilensky  1995 ). 
Marshall notes similarities of the two as a learning activity rather than as an end 
product by noting that,

  [a]n important aspect of the evolution of microworld idea, is that “although initial focus was 
on microworld as a digital object it quickly became apparent that it made much more sense 
to discuss the term in association with the kinds of activities emerging from the use of 
microworlds and the scope of each microworld with respect to the conceptual fi eld it was 
designed to embody” (Healy and Kynigos  2010 , as given by Kynigos  2012 , p. 4). (p. 51) 

   He further notes that,

  Exploratory Objects are distinguishable from microworlds by the fact that the latter 
are designed (by tutors, teacher) with a didactical purpose for other (student) users to 
learn mathematics, whereas  Exploratory Objects  are entirely designed (by students) for 
self-use to do mathematics – students are provided with no initial object to base their 
constructions. (p. 51) 
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   A preliminary task analysis led Buteau and Muller ( 2010 ) to provide insights of 
the learning activity through their student development process model of creating 
and using Exploratory Objects: see Fig.  1 . Based on a literature review and using 
some empirical data for validation, Marshall ( 2012b ) refined this diagram by 
(1) adding a step between Step 5 and Step 6 which he termed ‘integrates results of 
the investigation with mathematical knowledge’, and (2) adding an arrow from 
Step 5 to Step 1 to better describe the  Refi ning Cycle .

   To illustrate the student development process model, we select Profetto’s ( 2005 ) 
Exploratory Object, 3  entitled  The Mandelbrot Set . After having had a discussion 
with his tutors, second-year student, Adam Profetto, enrolled in MICA II course, 
was interested in investigating the Mandelbrot set. His initial aim was to visualise 
the set and its self-similarities, together with its related Julia Set. Since the 
Mandelbrot Set is defi ned by use of a recursive quadratic polynomial, Adam set his 
investigation to consider also higher degree polynomials (Step 1 in Fig.  1 ). 

 As mentioned in the  Special Thanks and Credit  section of his Exploratory Object, 
Adam researched his topic by use of a textbook (Step 2). He developed his Exploratory 
Object to visualise sets (overview) and to graphically explore the similarities 
through a manual zoom-in access: with the mouse or with manually entered 
complex plane coordinates. The related Julia Sets are displayed through a mouse- 
click on a point in the Mandelbrot set (Steps 3–4). Adam writes, “[This Exploratory 
Object project] opened up a world of interest for me and pushed my programming 
and patience to the max.” Adam mentioned in an informal discussion that whilst 
exploring graphically the Mandelbrot Set with a systematic increase of the integer 

3   Both the Object and a summary of the written report (based on the original report submitted as an 
assignment for the course) are accessible via a web site (Brock Math  n.d. ). 

6. communicates results
with report & Object

5. uses the Object to
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code of the Object

3. designs & implements
an Object (interactive
environment with interface)

1. individual states a
conjecture

2. researches

Designing
Cycle
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Programming
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  Fig. 1    Student development process of a mathematics Exploratory Object for the investigation of 
a conjecture as illustrated in Buteau and Muller ( 2010 , p. 1113)       
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exponent parameter (Step 5), he became intrigued as to how it affected the area of 
the bounded regions defi ned by the sets. He thereafter extended his Exploratory 
Object (Refi ning cycle in Fig.  1 ) to systematically calculate the area of the bounded 
regions, as the exponent increases, by repeating a Monte Carlo Integration approxi-
mation method. 4  Adam chose to have the results represented in a two-dimensional 
graph in  Observations and Findings  section of his Exploratory Object. 5  Adam 
proudly describes his fi ndings in this section:

  Firstly, the area of the Mandelbrot Set was found to be Pi/2!! This is amazing.... This is 
where the magic starts to happen. As the exponent n is increased the areas of the generated 
regions will also start to increase. However, shortly after, they start to converge back to a 
fi xed value. Can you guess what that fi xed value is? Yes, that’s right. Pi/2!! 

   His excitement was utmost after he searched on the Web about this result but said 
he could not fi nd evidence of it as a known result. Adam (Profetto) therefore 
summarised this result as ‘Profetto’s Conjecture’ not only in his written report, but 
also in his Exploratory Object (Step 6). 

 Students enrolled in MICA core courses I to III create 4–5 of such Exploratory 
Objects per term, including at least one about a topic of their own choice such as 
Adam’s  Mandelbrot Set  Exploratory Object. Whereas MICA I concentrates on 
introducing students to learn mathematics by creating and using Exploratory 
Objects, MICA II and III 6  focus on furthering students’ skills for more sophisticated 
mathematics Exploratory Objects and related mathematical investigations. In short, 
the MICA courses I to III could be recognised as courses embracing approaches of: 
experimental mathematics; inquiry-based learning; learning by using/modifying 
mathematics simulation; and learning mathematics by programming (Marshall 
 2012b ). Programming their own exploration fosters experiences that initiate students 
into developing an intelligent partnership with technology (Martinovic et al.  2013 ). 

 Muller et al. ( 2009 ) describe a “different mathematics teaching paradigm that 
engages Brock University students from their fi rst year into personalised original 
mathematics work” (p. 63). In this section we provide further analysis of the evolving 
role of tutors to assist students to reach a level of knowledge and confi dence as 
demonstrated by Adam, to design, implement and use their own Exploratory 
Objects. Our analysis will focus specifi cally on the MICA I course in which fi rst- year 
students are introduced to the technology (computer programming). It is organised 
according to a (12 week) course format: 2 weekly hours of lecture and 2 weekly 
hours of computer laboratory. The last 2 weeks are devoted to the fi nal project, 
which is to produce an original Exploratory Object. In the analysis we will refer to 
the student’s development process model (Fig.  1 ), and explain the tutors’ roles as 
they have evolved over more than 10 years of implementation. The following clas-
sifi cation of the role of tutors is based on insightful observation by the authors. 

4   This method had previously been covered in an Exploratory Object assignment. 
5   The web-version of Adam’s original EO contains only a static graph summarising this experiment 
due to the intense computations involved and the time required to produce the results. 
6   MICA III has now evolved into two one-term optional courses recommended in the applied math-
ematics stream. 
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Muller was involved with the original design and implementation of the MICA 
programme. Buteau has taught the MICA I course for 8 years and, in this period has 
conducted and published studies with Muller on diverse issues about the course. For 
example, the discussion about the learning experiences of students when creating 
Exploratory Objects (Muller et al.  2009 ) and the description of the student process 
when creating an Exploratory Object as shown in Fig.  1  (Buteau and Muller  2010 ). 

    The Role of Tutors in MICA I Lectures 

 Tutors engage with students during MICA I course lectures mostly in direct relation 
to Step 1 (conjecturing), Step 2 (researching topic) and Step 6 (communicating results) 
of the development process model (Fig.  1 ). The mathematics content is introduced 
during lecture time as a means to support these three steps, but also as source and 
motivation for the learning of mathematics programming during the computer lab 
sessions. The pace is slow and highly interactive, which is not a traditional lecture 
format as it aims to maximise student engagement. Typically, topics in elementary 
number theory (e.g., prime numbers) and discrete dynamical systems are selected as 
they enable the purpose of the lab sessions to be served well, that is for students to 
learn a programming technology for investigating mathematics. Due to an increase in 
the student enrolment in the course over the years 7  and the requisite student engage-
ment during lectures and lab sessions, the Department has decided that the only way 
to meet the objectives of the course is to limit the enrolment at 35 students per section. 
In the following we describe the lecture activities and identify teaching criteria related 
to all three steps (1, 2 and 6) of the student development process model. 

 Throughout the lectures, tutors prompt students, directly or indirectly, to conjecture, 
to reword conjecture(s), to refl ect critically on what is of interest, and to evaluate the 
potential of fi nding evidence through the use of technology, whilst developing 
proper terminology in the realm of mathematical experimentation (conjecture, 
proof, counter-example, theorem, etc.). Conjecturing (Step 1 in Fig.  1 ) is at the heart 
of the MICA I course. In fact, it has long been promoted as an important activity in 
the mathematical problem solving process. For example, Mason et al. ( 1985 ) have 
argued that specialising, generalising, conjecturing and convincing are the compo-
nents of thinking in problem solving. In another publication Mason ( 2002 ) points to 
the in-class tone that tutors need to provide,

  The essence of a scientifi c debate and of a conjecturing atmosphere is that people are eager 
to try out ideas and neither embarrassed nor ashamed to make a mistake: everything said is 
offered as a conjecture, with the intention of modifying it if necessary (in contrast to an 
ethos in which things are only said when the sayer is confi dent they are correct). (p. 78) 

   In the case of MICA I course, Martinovic et al. ( 2013 ) report on the tutor’s role 
in developing a conjecturing atmosphere:

7   In 2012: three sections of MICA I, for a total of 80 students. In 2002: there were nine students in 
total enrolled in the course. 
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  To help students over- come such a recipient role and to take a more active role “as 
mathematical thinkers” (Goos & Cretchley,  2004 ; Jonassen,  1996 ,  2006 ; Pea  1987 ; 
Willis & Kissane,  1989 ), class time is assigned to activities where students develop their 
competency in question-posing and conjecturing in mathematics. (p. 92)  

   Sometimes the conjecturing task is initiated in small groups or directly as a 
whole class discussion. In this dialogue, all ideas are welcome, treated as important, 
and are criticised in a constructive way, leading to a well-stated conjecture as the 
result of a whole class effort. At times the discussion evolves to consider potential 
experiments that could be designed to test the conjecture, and throughout which the 
mathematical experiment terms (conjecture, counter-example, proof, evidence, etc.) 
are carefully used (Step 6 in Fig.  1 ). Muller et al. ( 2009 ) have commented further on 
the tutor’s role:

  Since students do not have any experience in raising open-ended mathematical questions, 
the professor’s fi rst goal is to set up fertile circumstances for this to happen. Faculty look 
for contexts that are experientially real for the students and can be used as starting points 
for progressive mathematisation (Gravemeijer  1999 , p. 158) and introduce students to 
easily described mathematical problems that admit many possible points of view generating 
many different lines of inquiry. (p. 65) 

   For tutors with little prior teaching experience who are assigned to teach this 
course, this teaching approach can be a rather challenging teaching situation (Buteau 
and Muller 2006). 

 The goal in MICA I is to expand the student conjecture horizons by the potential 
use of technology. Other researchers have recently focused their attention on student 
conjecturing in undergraduate mathematics courses; for example Morselli ( 2006 ) 
reports on the ‘Use of examples in conjecturing and proving’ in the context of 
elementary number theory, while Burtch ( 2003 ) explores ‘The evolution of conjecturing 
in a differential equations course’. In the MICA courses, the focus ‘the individual 
states a conjecture’ (Step 1 in Fig.  1 ) highlights the action that each student selects 
a conjecture that is of interest to him/her and is to be investigated with technology. 
The student’s selected conjecture will be at the heart of his/her investigative process, 
and will be the focus of his/her productive and creative mathematics activity. As 
such, tutors must ensure that students develop their abilities to state conjectures, and 
to assess critically their relevance, which often involves some researching about the 
topic (Step 2 in Fig.  1 ). In MICA I, researching mostly involves using the internet, 
and the role of the tutor has evolved to address in lecture sessions the trust-worthiness, 
usefulness, and relevance of reference sources. Although there is some discussion 
about programming in the lectures the students develop their skills and knowledge 
of programming in their lab sessions, which is what we now move to consider.  

    The Role of Tutors in MICA I Lab Sessions 

 The overall purpose of the computer lab sessions within the MICA I course is for 
students to learn the basics of mathematics programming (Steps 3 and 4 of the student 
development process model; Fig.  1 .), and for them to then use their programming 
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skills to undertake mathematical investigations (Step 5). The Department takes care 
to stress that its students’ primary interest is mathematics and not programming. 
Therefore as tutors teaching in MICA I: “We are conscious not to overload the 
students’ cognitive effort required to learn the programming for their exploration of 
mathematics. This we do by motivating but limiting the amount of programming 
language for the mathematics task at hand” (Muller et al.  2009 , p. 66). But how is 
this principle implemented in practice by tutors? 

 To guide our discussion in this section, we use the theoretical framework of 
 instrumental integration  (Assude  2007 ), based on the  instrumental approach  
(Artigue  2002 ) that encompasses four growing stages of students’ technology use 
in the classroom. “Instrumental integration is a means to describe how teachers 
organise the conditions for instrumental genesis of the technology proposed to the 
students and to what extent (s)he fosters mathematics learning through instrumental 
genesis” (Goos and Soury-Lavergne  2010 , p. 313). Briefl y, these four stages are: 
(i)  instrumental initiation  (stage 1) where students are engaged in strictly learning 
how to use the technology; (ii)  instrumental exploration  (stage 2) where mathemat-
ics problems serve as motivation for students to further learn to use the technology; 
(iii)  instrumental reinforcement  (stage 3) where students solve mathematics problems 
with the technology, but that requires students to extend their technology skills; and 
(iv)  instrumental symbiosis  (stage 4) takes place when the student’s fl uency with 
technology scaffolds the mathematical task resulting in an improvement of both 
the student’s technology skills and his/her mathematical understanding. The identi-
fi cation of the stages throughout the lab activities will help characterise the course 
design decisions and the learning objectives that guide the tutors in these activities. 
We will structure the analysis around the three course assignments (Exploratory 
Object projects), that evolve in complexity, and the 2-h weekly labs that are pre- planned 
to prepare the students for each of these assignments. 

 The fi rst four labs introduce Visual Basic.NET programming to students (stages 
1–2), and to provide them with minimal, though suffi cient, programming skills for 
their fi rst experience at creating and using an Exploratory Object (stage 3) in their 
assignment 1. It is worth noting that in the fi rst year that the MICA programme was 
offered the Department required a Computer Science Java course (stage 1). Students 
found it diffi cult to see the relevance of this course as it included few applications to 
mathematics. The following year the Java requirement was dropped and the 
Department revised the MICA I course to include programming in Visual Basic.
NET. The development environment Microsoft Visual Studio ( n.d. ) supporting Visual 
Basic.NET language, was selected by the Department due to its user- friendliness. 
With this change students now progress through stages 1–3 of Instrumental 
Integration concurrently, and eventually to stage 4, which we describe next. 

 Most of our students come to the MICA I course without any programming 
background, which causes anxiety for many. In the fi rst lab the tutor demystifi es 
programming by having students fi rst recreate a simple, fun interactive program. 
A detailed introductory Visual Basic.NET programming textbook (e.g., Halvorson 
 2010 ) is used by students throughout the course for the introduction to the basics of 
programming (stage 1). The fi rst lab requires students to follow step-by-step, from 
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the textbook, the code to re-create a user interface of the program. They use a 
user- friendly menu (both to select objects and change their properties) and re-type 
line by line the programming code (involving a decision structure, global and local 
variables, and a randomise command), which comes with explanation for each line 
(stage 1). The tutors and his/her two TAs, who help throughout the 12 labs, walk 
around the lab and talk to each individual. In this very fi rst lab, they mostly acknowledge 
the good work, encourage the enjoyment of the task, and may need to help. Over 
the years, we have observed the surprise, pride and somewhat relief of students 
as they walk out of their fi rst MICA I programming lab session. 

 The subsequent three lab sessions introduce students to the fi rst concepts of 
mathematics programming: variables, decision structures, and loops. For example, 
students create a program to test whether a positive integer is prime and are asked to 
use and modify it through some (strictly mathematical) exercise questions. These 
labs all have a similar format (as do lab sessions 5–9) in that the tutor gives a brief 
introduction to the whole class about the main programming concepts in a mathe-
matical context, thus establishing an initial connection between mathematics and 
the new programming concepts (stage 2). Each student then works individually on 
the details and exercises by reading through the textbook (stage 1). Also the tutor 
provides additional programming exercises that have been put in a mathematical 
context (stage 2). The use of the textbook encourages students to develop as independent 
learners, as does the use of the debug tool (embedded in Visual Studio), which 
the tutor introduces to the students early in the course. Tutors are aware that pro-
gramming provides a means of self-assessment for the students. Most computer 
programming software is unforgiving in that the code is either correct or the system 
records an error, so a knowledge of how to use the debug tool correctly can prevent 
much (technology related) frustration. 

 The mathematical focus of the course is stressed through the tutor’s whole class 
interventions at various times during the labs. These constantly emphasise the 
mathematical motivation, aim and context for programming (stages 2–3). In 
particular, tutors frequently remind students to check whether the results match 
expectation (stage 2). TAs provide help to students not only with their technical 
questions (stage 1), but they are also asked to frequently remind students of the 
course’s mathematical purpose (stage 3). 

 The fi rst four lab sessions lead to the fi rst assignment, when it is expected 
that the students have learned enough programming concepts to engage in an 
original mathematical experiment with technology (stages 2–3). This assignment 
aims to strengthen Steps 1, 3–4 (Fig.  1 ), and provides an initiation of the whole 
process shown in Fig.  1 . Students each select a question or conjecture that has been 
raised and discussed in class that is of particular interest to them. Using their Visual 
Basic.NET programming abilities, they explore the question or conjecture and 
report their fi ndings. If needed, the tutor assists students on an individual basis to 
select a conjecture and also ensures that the level of programming required for the 
exploration is within the student’s capabilities. Here the tutor’s aim is to stimulate 
an exciting fi rst Exploratory Object experience for students and avoid a negative and 
frustrating one. This individual guidance by tutors for the fi rst assignment, although 
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time demanding and considered as a non-traditional role for fi rst-year courses, is 
crucial to keep and build further students’ confi dence and motivation in learning 
programming for the purpose of doing mathematics. When the tutor dialogues 
with individual students, s/he also stresses the importance of their written report 
to communicate their results, reiterating that the assignment is a mathematical 
one (stage 3). 

 The second series of lab sessions (labs 5–7) aims at strengthening and furthering 
students’ basic programming skills within a mathematical context (stage 2) with an 
emphasis on arrays, functions and procedures, and modules. At this stage the tutor 
usually selects the topic of Modular Arithmetic and RSA encryption that, due to its 
high computational demand, requires the use of technology for any meaningful 
application. The tutor provides students with mathematics problems that are 
more conceptually diffi cult to implement (stage 2). The second assignment aims to 
strengthen Steps 3 and 4 of the development process model (Fig.  1 ) through an 
implementation of the RSA encryption method, with application (stage 3). 

 Labs 8–10 are designed around Steps 3 and 5 of the development process model. 
The foci in this part of the lab sessions are (i) the need for, implementation, and use of 
multiple representations of concepts, and (ii) the ability to investigate mathematics 
systematically. At this juncture tutors usually select the study of discrete dynamical 
systems. Students learn the basics of programming graphics (stage 1): to pay attention 
to integrating parameters in their computer environments; to create rich user inter-
faces appropriate to gather relevant data (stage 2); and to approach investigations 
systematically. Students reinforce their graphics programming skills by creating an 
Exploratory Object for the numerical and graphical investigation of the dynamical 
system based on the logistic function (stage 2). The last lab session (lab 10) is 
converted into a whole-class interactive session of mathematics investigation by use 
of the Exploratory Objects they created. The tutor guides students step-wise in the 
investigation through the use of questions such as: What do you expect?; Re-write 
in the form of a conjecture; How should you perform the experiment (how do you 
record results? What to do with the parameters? etc.); What could be interesting 
to note? How do you write a result (what is the proper wording)? The third assignment 
aims to strengthen Steps 3 and 5 of the development process model (Fig.  1 ) through 
the investigation of a discrete dynamical system involving three parameters, and 
requiring adapting the range of the functions (stage 3). 

 To summarise, the roles of the tutors in the MICA I labs, complemented by the 
assignments, are:

    (a)    To provide students with an inspiring, meaningful mathematical context that 
fosters the need and motivation to learn the programming basics (i.e. to move 
quickly from stage 1 towards stage 2);   

   (b)    To keep emphasising the aim of course, which is to do mathematics with 
technology (stages 3 and 4).     

 The tutors work to provide an environment in which students interact constantly 
with one another, with TAs, and with tutors to develop their programming skills and 
to build their confi dence to explore mathematics using technology.  
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    Role of Tutors in Final Projects Phase 

 The last 2 weeks of the course are completely dedicated to the students’ original fi nal 
projects. Individually or with a partner the students select their own topic of investiga-
tion, and create and use an Exploratory Object about their topic (i.e., students experi-
ence the whole process described in Fig.  1 ), as did Adam with his exploration of 
Mandelbrot Set. 8  For the students, the fi nal project is the highlight of the course. Lecture 
and lab sessions all take place in a computer laboratory. The role of tutors at this stage 
is mainly to provide individual guidance. The tutors motivate each student or pair of 
students to search for a topic of great interest to them and discuss with them the level 
of diffi culty of programming requirements for their planned Exploratory Object. The 
tutors explicitly encourage creativity and uniqueness of their mathematical work in 
terms of mathematics, programming, and artistry. Tutors also inspire them to reach 
beyond their skill and knowledge boundaries (programming-wise, this points to stage 3, 
possibly stage 4). For the tutors this also involves prompting students to think about, 
rather than trying to avoid, multiple representations of the mathematical concepts. 

 At this stage the students would have covered all of the basics of mathematics 
programming. However, from our experience, a large majority of students feel the 
need to extend their programming skills in order to fulfi ll their own vision of their 
mathematical investigation (stages 3 and 4). Whereas the tutors and TAs may pro-
vide assistance to students about programming issues, often students deal with the 
latter either by using external resources (textbook, help features embedded in Visual 
Studio, Internet) or by asking other students. Overall, at the fi nal project stage, the 
tutors continue to encourage the students’ development of their intelligent partner-
ship with technology in doing and learning mathematics (Martinovic et al.  2013 ). 

 The creation and use of Exploratory Objects by students, for their mathematics 
exploration, requires not only programming know-how, but also the design and use 
of interactive, dynamic graphical interfaces. For the students to succeed they need 
to be creative as they develop mathematics that is new to them and they must apply 
their creativity, particularly in their design of interfaces. This topic, creativity, 
informs the next short section.   

    Creativity, Technology and Educating Students 
for Their Future 

 Ervynck ( 1991 ) in his chapter on  Mathematical Creativity  advises that,

  Creativity plays a vital role in the full cycle of advanced mathematical thinking. It contributes 
in the fi rst stages of development of a mathematical theory when possible conjectures are 
framed as a result of the individual’s experience of the mathematical context. (p. 42) 

8   For their fi nal project, future teachers may choose to create and test a so-called  Learning Object  
for the learning of school mathematics concepts (Muller and Buteau 2006; Muller et al.  2009 ; Buteau 
and Muller  2010 ). See the web site (Brock Math  n.d. ) for other examples of student projects. 
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   In addition, Holton ( 2005 ), when refl ecting on the nature of mathematics and its 
teaching at the university level, proposes,

  [Mathematics] is a living and breathing entity that students can participate in. It is a 
subject that can involve their creative abilities and a subject where discussion is valuable 
[…] It seems to me axiomatic that university lecturers must take the lead in this 
movement to ‘redefine’ mathematics, to make the creative side more visible to our 
students. (pp. 306–7) 

   In line with Ervynck and Holton, we note that one of the guiding principles of 
the MICA programme is ‘Encourage Creativity and Intellectual Independence’ 
(Ralph  2001 , p. 1). For the mathematics department at Brock University, creativ-
ity is seen as a human talent that needs to be developed when students are learning 
mathematics. In the MICA programme technology is used to motivate students to 
be creative by building on their existing mathematical knowledge as they create 
mathematics that is new to them. We briefl y elaborate on the type of environment 
and student experiences provided by tutors in the MICA I course that aim to 
stimulate the student creative mathematical abilities. To guide our discussion, we 
use Ervynck’s ( 1991 ) proposed three stages for development of mathematical 
creativity, namely:

    1.    A preliminary technical stage.   
   2.    An algorithmic activity stage.   
   3.    A creative (conceptual, constructive) activity stage.    

  It is our opinion that by the time students complete their fi nal project in MICA I, 
they will have been mentored and have followed a number of phases that can be 
mapped onto these three stages. In a preliminary technical stage (1) students will 
have raised and explored, as a class and individually, problems in areas of mathe-
matics that they can tackle with their school mathematical knowledge. In that 
stage they will also have started investigating the problems using simple program-
ming. In an algorithmic stage (2) Ervynck envisages that the students will perform 
mathematical techniques. In MICA I the students will have implemented their 
own programs, thereby using the computer to perform many of the mathematical 
tasks. It is at the end of this stage that the ‘what if’ questions arise and students 
modify their programs to extend their mathematical understanding. Students enter 
a creative (conceptual, constructive) activity stage (3) as they start to question their 
mathematical conjecture, to query the results that their program has generated, to 
use their Exploratory Object to reinforce or modify their mathematical under-
standing, etc. This stresses that for students, this is more than the mere use of 
programming technology to solve a particular mathematics problem. The interactive, 
dynamic user- friendly interface that they design for themselves, enables them to 
enter a dialogue with technology, that they control from the programming code, to 
serve their evolving (through the refi ning cycle in Fig.  1 ) mathematical investiga-
tions. This involves, for example, addition/deletion of parameters, modifi cation of 
initial conjecture, new representations of results, etc. (Buteau and Muller  2010 ). 
The Exploratory Object that the students have created becomes a trace of the 
development of their understanding of the mathematics involved. 
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 Within MICA I, one way that tutors can be successful is to allow the students to 
develop their own creative mathematical abilities by mentoring and tutoring the 
students as they work through the various steps in the development model (Fig.  1 ). 
This course, and MICA II-III, can provide the students with an insight into how 
some mathematicians do research. A graduate of the MICA programme expressed it 
as follows: “Conjecturing, designing mathematical experiments, running simulations, 
gathering data, recognising patterns and then drawing conclusions are things 
many modern mathematicians do as part of their research” (Marshall  2012a , p. 72). 
Furthermore, the MICA programme goes further and engages students also to 
communicate their understanding in a creative environment, namely through their 
designing and implementing of interactive mathematical objects.  

    Conclusion 

 At the university level, tutors play a dual role in teaching as teachers and as policy 
makers within a departmental structure. When integrating technology into their 
courses tutors can do so on an individual basis but they should also be concerned 
about the continuity of the student experience within their mathematics programmes 
(MAA  2004 ). The latter and the support for systemic change or innovation in uni-
versity mathematics education is the responsibility of the mathematics department, 
i.e., of tutors in their roles as policy makers (MAA  2004 ). As previously noted, in 
the Canadian survey study about the integration of CAS in university teaching 
(Buteau et al.  forthcoming ), 54 % of participants expressed the view that the lack 
of departmental support is a factor hindering CAS integration in teaching. This 
indicates the need for research into the roles that a department should play to ensure 
continuity of student mathematics learning experiences while using technology. 

 We have used the MICA programme as an example of a departmental initiative 
that led to an innovative integration of programming technology in a number of core 
courses. In their survey study, Buteau et al. ( forthcoming ) found that programming 
technology 9  was the second most used mathematics technology by tutors in their 
research work after CAS. However surprisingly, they also found that amongst all the 
surveyed mathematics technologies, 10  only programming was not integrated to the 
same extent in research and in teaching. It was reported being used about twice as 
often in research (43 %) as it is in teaching (18 %). Buteau et al. ( forthcoming ) 
continue,

  This naturally raises the question as to why programming is relatively absent in mathe-
matics teaching […] One could argue that the learning curve for students’ use of program-
ming is much steeper than for many other technologies that feature more user-friendly 
graphical interfaces. (p. 13) 

9   The survey question indicated, “Programming (Java, C++, Fortran, …)”. 
10   See footnote 3. 
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   For programming, the MAA ( 2004 ) recommendation that, “Using the same software 
in several different courses also can shorten the total technology learning curve” (p. 23) 
may be even more important than for other technologies. As a consequence a 
departmental policy could be key for individual integration of programming in 
teaching. Since programming can play a signifi cant role in students’ learning in 
mathematics (Dubinsky and Tall  1991 ; Wilensky  1995 ; Dubinsky and McDonald  2002 ; 
Abrahamson et al.  2006 ), we contend that mathematics departments should explore 
ways in which programming could be integrated in their programmes. 

 The teaching roles of tutors, during lectures and lab sessions, in a particular fi rst 
year core mathematics course (MICA I at Brock University) that integrates program-
ming technology are non-traditional. The different teaching paradigm is dictated by 
the nature of the course that cannot be described by a list of mathematical concepts 
and techniques to be covered, but rather through a method that is made possible 
by technology. The approach is for students to do mathematics by designing, 
programming, and using mathematics Exploratory Objects to explore conjectures, 
concepts, or real-world situations. Unlike traditional university mathematics 
courses, MICA I lecture notes are unquestionably insuffi cient when passing on 
the baton to another tutor: fi rstly, the means whereby students learn mathematics 
‘partnering’ with technology has to be well understood, and secondly, the teaching 
aims and strategies used, both in lecture and in lab sessions, need to be carefully 
described. In particular, the description should stress the shift of the role of the tutor 
from ‘lecturer’ to ‘mentor’. With the experimental aspect of the learning activity, 
i.e., conjecturing, designing and conducting experiments to test conjectures, etc., 
mathematics and programming technology need to be carefully intertwined, 
thereby providing an opportunity for students to develop their creativity both in 
mathematics and in their communication of their understanding of mathematics. 
In his refl ections on the many contributions in the book  Advanced Mathematical 
Thinking , Tall ( 1991 ) writes,

  We therefore arrive at a possible new synthesis in teaching and learning advanced 
mathematics which offers a more complete cycle of advanced mathematical thinking to 
students, even those with modest abilities. The active participation in thinking is essential 
for the personal construction of meaningful concepts. Students need to be challenged 
to face the cognitive reconstruction explicitly, through conjecture and debate, through 
problem solving, and they may be assisted in the acquisition of insights at higher levels by 
selectively sharing the construction with the computer. (p. 258) 

   The MICA programme provides one example where students are challenged to 
face the cognitive reconstruction explicitly through conjecture and debate, through 
problem solving and simulation and where they do share the construction of their 
mathematical object with the computer. However, MICA provides only one example 
of a mathematics programme where a department is addressing the role of technology 
in mathematics teaching and learning. Other examples can be found but many more 
examples of departments that integrate technology in a systemic way are needed. 
This will make it possible for departments and tutors to evaluate, compare and 
decide what path to follow in their own university. 
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 An interesting observation from the Canadian CAS survey study (Buteau et al. 
 forthcoming ) is that a large majority (93 %) of mathematician participants, who are 
active in research, indicated that they used at least one form of mathematics 
technology 11  in their research work. Furthermore, the use of CAS in research was 
found to be the strongest factor infl uencing the use of CAS in teaching (Lavicza 
 2010 ; Buteau et al.  forthcoming ). If the results of the Canadian CAS survey can be 
projected over time, then any growth in the number of mathematicians who use 
technology in their research should be refl ected in an increase of mathematics 
courses where technology is integrated. 

 We have touched on a few, of many, issues that face mathematics tutors and their 
departments as they integrate technology into undergraduate mathematics education. 
One issue that we have not raised is how technology may force a redefi nition of 
mathematics. Noss ( 1999 ), in the study we have previously referred to, concludes,

  But the issue is not simply one of pedagogic innovation, it is one of what counts as mathematics. 
As stated at the outset, the opportunity to examine two different design decisions and their 
outcomes actually revealed fundamental differences in the way mathematical knowledge 
was conceived. This, perhaps is the main contribution of new technology in mathematical 
teaching and learning: it provides us with an opportunity to reassess not simply only how 
we teach, or even how students learn, but what it is that we teach them and why. (p. 388) 

   In the same vein, Lavicza ( 2010 ) in his international survey study on CAS use in 
university mathematics instruction (on which the Canadian CAS survey was built), 
recommends:

  [M]athematicians accept that CAS is part of the literacy, but at the same time they are 
reluctant to accept that CAS shapes mathematical knowledge. This disparity is possibly 
derived from the mismatch between mathematicians’ CAS-related and mathematical 
beliefs… a closer examination of th[e] relationship between these conceptions would be 
benefi cial. (p. 111) 

   The questions raised by both Noss and Lavicza are in the minds of tutors who 
integrate CAS and other technologies in their classes. Tutors who use technology 
extensively in their research and who communicate their research methods and 
results in their courses are likely to be the ones who exemplify how technology is 
reshaping mathematical knowledge.     
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    Abstract        The integration of digital technology into secondary mathematics 
 education is not yet a widespread success. As teachers are crucial players in this 
integration, an important challenge is not only to attract early adopters, but also to 
support mid-adopting teachers in their professional development on this point. The 
questions addressed in this Chapter are: which practices such mid-adopting teach-
ers develop when starting to use technology in their mathematics classroom; and 
how these practices change over time while engaging in a project with colleagues 
and researchers. To answer these questions, theoretical notions of instrumental 
orchestration, TPACK and community of practice underpin the case study of two 
mathematics teachers from a group of twelve, who engaged in a project on technol-
ogy-rich teaching. The data includes lesson observations, blogs and results from 
questionnaires. The results show the type of teaching practices the teachers develop 
and the changes in these practices. Even if these changes are modest and the impact 
of the  community is limited, the teachers clearly became more confi dent in inte-
grating technology in their teaching.  
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        Introduction 

 Nowadays, digital technology plays an important role in both personal and 
 professional life. For several decades its potential for mathematics education in par-
ticular has been widely recognised. For example, NCTM’s position statement claims 
that “Technology is an essential tool for learning mathematics in the 21st century, and 
all schools must ensure that all their students have access to technology” (NCTM  2008 ). 

 In spite of this, the integration of digital technology into secondary mathematics 
education lags behind the high expectations that many researchers and educators may 
have had in the past. It seems that the integration of digital technology into mathemat-
ics education is not at all to be taken for granted and that its success depends on several, 
sometimes complex and subtle factors (Artigue et al.  2009 ). One of these factors is the 
teacher. Teachers are considered as crucial players in education, and their ability to 
exploit the opportunities that technology offers determines to a high extent the success 
of the integration of digital technology in mathematics education. While integrating 
technology, teachers are confronted with new, sometimes destabilising situations, 
which challenge their existing teaching practices and may invite the development of a 
new repertory of appropriate teaching practices for these technology-rich settings 
(Doerr and Zangor  2000 ; Lagrange and Ozdemir Erdogan  2009 ; Ruthven  2007 ). 

 Of course, there are skilled and enthusiastic teachers who easily assimilate new 
technological developments in their teaching, who are able to deal with technological 
obstacles, and who are the early adopters of new tools as well as designers of new peda-
gogies. These ‘frontline teachers’ form an important minority for the design of teaching 
materials and the development of good practices. Meanwhile, the main challenge for 
integrating technology in regular mathematics education is not to attract these early 
adopters but, rather, to disseminate their experiences and to convince and support mid-
adopting teachers, who are less experienced and less convinced of the benefi ts of ICT. 
For a widespread integration, these mid-adopters are the critical group. 

 The issue at stake, therefore, is how mid-adopting teachers may engage in a pro-
cess of professional development concerning the integration of digital technology 
and the development of appropriate teaching techniques.  

    Theoretical Framework 

 The study’s theoretical framework consists of three main components: the notion of 
instrumental orchestration to describe teachers’ practices, the TPACK model to describe 
the teachers’ skills, and the theory on communities of practice to investigate the impact 
of participating in a collegial community on teachers’ professional development. 

       Instrumental Orchestration 

 The notion of instrumental orchestration emerges from the so-called instrumental 
approach to tool use, in which artefacts are expected to mediate human activity in 
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carrying out a task. To describe the teacher’s role in guiding students’ acquisition of 
tool mastery and their learning processes, Trouche ( 2004 ) introduced the metaphor 
of instrumental orchestration. An  instrumental orchestration  is the teacher’s inten-
tional and systematic organisation and use of the various artefacts available in a 
learning environment – in this case a computerised environment – in a given math-
ematical task situation, in order to guide students’ instrumental genesis (Trouche 
 2004 ). Within an instrumental orchestration, we distinguish three elements: a didac-
tic confi guration, an exploitation mode and a didactical performance (Drijvers  2012 ; 
Drijvers et al.  2010 ). 

 A  didactical confi guration  is an arrangement of artefacts in the environment or, 
in other words, a confi guration of the teaching setting and the artefacts involved in 
it. In the musical metaphor of orchestration, setting up the didactical confi guration 
can be compared with choosing the musical instruments to be included in the band, 
and arranging them in space so that the different sounds result in polyphonic music, 
which in the mathematics classroom might come down to a sound and converging 
mathematical discourse. 

 An  exploitation mode  is the way the teacher decides to exploit a didactical con-
fi guration for the benefi t of his or her didactical intentions. This includes decisions 
on the way a task is introduced and worked through, on the possible roles to be 
played by the artefacts and on the schemes and techniques to be developed and 
established by the students. In terms of the metaphor of orchestration, setting up the 
exploitation mode can be compared with determining the partition for each of the 
musical instruments involved, bearing in mind the anticipated harmonies to emerge. 

 A  didactical performance  involves the ad hoc decisions taken by teaching on 
how to actually perform in the chosen didactic confi guration and exploitation mode: 
what question to pose, how to do justice to (or to set aside) any particular student 
input, how to deal with an unexpected aspect of the mathematical task or the tech-
nological tool, or other emerging goals. In the metaphor of orchestration, the didac-
tical performance can be compared to a musical performance, in which the actual 
interplay between conductor and musicians reveals the feasibility of the intentions 
and the success of their realisation. 

 In a study on the use of applets for the exploration of the function concept in 
grade 8, the instrumental orchestration lens was used to describe observed teaching 
practices (Drijvers  2012 ; Drijvers et al.  2010 ). Six orchestrations for whole class 
teaching were identifi ed, and a seventh for the setting in which students work indi-
vidually or in pairs with technology. As this categorisation, which does not claim 
completeness, is the point of departure for the study presented here, we now sum-
marise the seven orchestrations.

•    The  Technical-demo  orchestration concerns the demonstration of tool tech-
niques by the teacher. It is recognised as an important aspect of technology-
rich teaching (Monaghan  2004 ). A didactical confi guration for this orchestration 
includes access to the technology, facilities for projecting the computer screen 
and a classroom arrangement that allows the students to follow the demonstra-
tion. As exploitation modes, teachers can demonstrate a technique in a new 
situation or task, or use student work to show new techniques in anticipation of 
what will follow.  
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•   In the  Link-screen-board  orchestration, the teacher stresses the relationship 
between what happens in the technological environment and how this is repre-
sented in the conventional mathematics of paper, book and board. In addition to 
access to the technology and projection facilities, the didactical confi guration 
includes a board and a classroom setting so that both screen and board are visi-
ble. The teachers’ exploitation modes may take student work as a point of depar-
ture or start with a task or problem situation they set themselves.  

•   The  Discuss-the-screen  orchestration concerns a whole-class discussion about 
what happens on the computer screen. The goal is to enhance collective instru-
mental genesis. A didactical confi guration once more includes access to the tech-
nology and projecting facilities, preferably access to student work and a 
classroom setting favourable for discussion. As exploitation modes, student 
work, a task, a problem or an approach set by the teacher can serve as the point 
of departure for student reactions.  

•   The  Explain-the-screen  orchestration concerns whole-class explanation by the 
teacher, guided by what happens on the computer screen. The explanation goes 
beyond techniques and involves mathematical content. Didactical confi gurations 
can be similar to the Technical-demo ones. As exploitation modes, teachers may 
take student work as a point of departure for the explanation, or start with their 
own solution for a task.  

•   In the  Spot-and-show  orchestration, student reasoning is brought to the fore 
through the identifi cation of interesting student work during the preparation of the 
lesson and its deliberate use in a classroom discussion. Besides previously men-
tioned features, a didactical confi guration includes access to the students’ work in 
the technological environment during lesson preparation. As exploitation modes, 
teachers may have the students whose work is shown explain their reasoning, and 
ask other students for reactions, or may provide feedback on the student work.  

•   In the  Sherpa-at-work  orchestration, a so-called Sherpa student (Trouche  2004 , 
 2005 ) uses the technology to present his or her work, or to carry out actions the 
teacher requests. A didactical confi guration includes access to the technology 
and projecting facilities, preferably access to student work and a classroom set-
ting favourable for interaction. The classroom setting should be such that the 
Sherpa student can be in control of using the technology, with all students able to 
follow the actions of both Sherpa student and teacher easily. As exploitation 
modes, teachers may have work presented or explained by the Sherpa student, or 
may pose questions to the Sherpa student and ask him/her to carry out specifi c 
actions in the technological environment.  

•   In the  Work-and-walk-by  orchestration, the didactical confi guration and the cor-
responding resources basically consist of the students sitting at their technologi-
cal devices, and the teacher walking by in the classroom. In some cases a data 
projector or whiteboard may be available. As exploitation mode, the students 
work individually or in pairs on the tasks. The teacher answers students’ ques-
tions and monitors their progress. In answering questions, the teacher may use 
the board or the projector, but often there is just individual interaction between 
teacher and student.    
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 In the study presented here, the instrumental orchestration perspective is used in 
two ways. First, we use it to describe and analyse the techniques that teachers use. 
Second, the instrumental orchestration model is presented to the participating teach-
ers to help them refl ect and report on their lessons. The model guided the design of 
a blog template described in the method section. As six out of the above seven 
orchestrations concern whole-class teaching, we expect that the study’s outcomes 
will inform a further development of the seventh orchestration, Work-and-walk-by, 
which seems to be quite common in Dutch mathematics education.  

      The TPACK Perspective 

 The acknowledgement that teachers need to go through a process of professional 
development to fi nd ways to successfully integrate digital technology in their 
teaching led to the development of the notion of technological pedagogical content 
knowledge, abbreviated as TPACK. The TPACK framework is an extension of the 
concept of pedagogical content knowledge (Shulman  1986 ). Shulman distin-
guishes content knowledge CK (in the case of mathematics teaching mathematical 
knowledge) and pedagogical knowledge PK. Pedagogical content knowledge 
(PCK) forms the intersection of the two and includes domain-specifi c pedagogical 
insights. The need to address technological knowledge led to the development of 
TPACK, which is the coherent body of knowledge and skills that is required for the 
implementation of ICT in teaching (Koehler et al.  2007 ). Figure  1  shows the 

  Fig. 1    The TPACK model 
(  www.tpack.org    )       
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different components of professional knowledge and skills in the TPACK model 
with their relations and intersections.

   While defi nitions of the TPACK concepts vary in different publications (Cox and 
Graham  2009 ; Graham  2011 ; Voogt et al.  2012 ), we take the following descriptions 
provided by Mishra and Koehler ( 2006 , p. 1021, 1026–1028) as points of departure. 
Pedagogical knowledge (PK) is knowledge about the processes and practices or 
methods of teaching and learning. Content knowledge is knowledge about the actual 
subject matter that is to be learned or taught. In the case of digital technologies, tech-
nological knowledge (TK) includes knowledge of operating systems and  computer 
hardware, and the ability to use standard sets of software tools such as word proces-
sors, spreadsheets, browsers and e-mail. Pedagogical content knowledge (PCK) rep-
resents the blending of content and pedagogy into an understanding of how particular 
aspects of subject matter are organised, adapted and represented for instruction. 
Technological pedagogical knowledge (TPK) is knowledge of the existence, com-
ponents and capabilities of various technologies as they are used in teaching and 
learning settings, and conversely, knowing how teaching might change as the result 
of using particular technologies. Technological content knowledge (TCK) is knowl-
edge about the manner in which technology and content are reciprocally related. For 
example, it includes insight into the relationship between the viewing window of a 
graphing tool and the mathematical notions of domain and range of a function. 
Technological pedagogical content knowledge (TPACK), fi nally, includes an under-
standing of the representations of concepts using technologies; pedagogical tech-
niques that use technologies in constructive ways to teach content; knowledge of 
what makes concepts diffi cult or easy to learn and how technology can help redress 
some of the problems that students face; knowledge of students’ prior knowledge and 
theories of epistemology; and knowledge of how technologies can be used to build 
on existing knowledge and to develop new epistemologies or strengthen old ones. 

 The TPACK model has the virtue of simplicity and accessibility; at the same 
time, it is criticised for its ambiguities and the limited clarity of its construct defi ni-
tions, including the ways in which these constructs are related to each other (Cox 
and Graham  2009 ; Graham  2011 ; Voogt et al.  2012 ). This particularly seems to hold 
for the ‘intersections’ in the TPACK diagram, the PCK, TCK, TPK and TPACK 
categories (Ruthven  2013 ). In spite of these limitations, we do believe the TPACK 
perspective can contribute to this study and we have thus used it as a model to analyse 
the skills and knowledge involved in the teachers’ practices.  

     Teachers in Communities of Practice 

 Wenger ( 1998 ) advocates an emphasis on collective learning. This collective learn-
ing results in “practices that refl ect both the pursuit of our enterprises and the atten-
dant social relations” (Wenger  1998 , p. 45). A community in which these practices 
are central can be defi ned as a community of practice. Communities of practice can 
be described using three dimensions: Mutual engagement, a joint enterprise and a 
shared repertoire. Together these three dimensions encompass a process in which 
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negotiation of meaning is central. Wenger uses the term negotiation of meaning to 
characterise the process through which we experience the world and our engage-
ment in it as meaningful. 

 Communities of practice provide a context for the notion of Community 
Documentational Genesis (Gueudet and Trouche  2012 ), which is an extension of the 
notion of documentational genesis (Gueudet and Trouche  2009 ). Documentational 
genesis is the process through which an individual uses a certain resource within his 
or her scheme of utilisation and, in so doing, turns it into a document. This process is 
dynamic and ongoing. A document comprises resources which can be associated 
with others and involved in the development of other documents. Within this model 
the terms instrumentalisation and instrumentation are used to denote, respectively, the 
constitution of the schemes of utilisation of the resources, and the way in which a 
subject (in our case a teacher) shapes the resources. When we consider documentational 
genesis within a community of practice we speak of Community Documentational 
Genesis (CDG). Gueudet and Trouche coin the expression CDG “for describing the 
process of gathering, creating and sharing resources to achieve the teaching goals of 
the community” (Gueudet and Trouche  2012 , p. 309). The result of this process is 
community documentation: a repertoire of shared resources, associated knowledge 
and practices.    Sabra ( 2011 ) elaborates on this idea in his study on the development 
of two communities of practice and shows how individual professional genesis is 
closely related to documentational processes within the community. 

 In this study, the notion of community of practice is used to monitor the teachers’ 
professional development in relation to their participation in a collegial community.  

     Research Questions 

 The theoretical framework allows us to better phrase the issue informally presented in 
the introduction. The following three research questions are addressed in this paper:

    1.    In which ways do mid-adopting teachers with limited experience in the fi eld of 
technology in mathematics education orchestrate technology-rich activities?   

   2.    How does this repertoire of orchestrations and the corresponding TPACK skills 
change during a professional development process?   

   3.    Can the teachers’ individual professional development be explained by the par-
ticipation in a collegial community?       

    Method 

 To address the above research questions, we carried out a case study focussing on 
two out of twelve mathematics teachers who participated in a collegial community 
project on the use of digital technology in grade 8. We now describe the digital 
technology involved, the design of classroom interventions, the participants, the 
instruments, the data and the data analysis. 
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    Digital Technology 

 In this study, two types of digital technologies are used: digital technology for 
teaching mathematics and technology for supporting the collaborative work within 
the community of teachers and researchers. The technology for teaching mathe-
matics is the Freudenthal Institute’s Digital Mathematics Environment (DME), 
which integrates a content management system, a learning management system 
and an authoring environment. 1  The content consists of online modules in the form 
of Java applets or Geogebra applets. The learning management system offers 
means to distribute content among students and to monitor the students’ progress. 
In the authoring environment one can adapt existing online modules or create new 
ones, based on existing materials and basic tools such as graphing and equation 
editing facilities. 

 The second type of technology involved is an online environment to support col-
laboration within the participating teachers and researchers. Available services 
include options for blogging, discussion and fi le exchange. For reasons of user 
friendliness, costs and accessibility, we decided to set up a project environment in 
Moodle (see Fig.  2 ).

       Classroom Intervention Design 

 To facilitate and support the teachers’ integration of digital technology in their 
 lessons, the research team, consisting of four researchers/designers, designed three 
interventions for mid- to high-achieving grade 8 classes (14 year old students). The 
interventions consist of online modules for students accompanied by tests and 
teacher guides delivered through the Moodle environment. The topic of the fi rst 
intervention was geometry, with a focus on perpendicular bisectors, altitudes and 

1   See  www.fi .uu.nl/dwo/en/ . 

  Fig. 2    Snapshot of the project’s digital environment in Moodle       
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medians of triangles. The second intervention was on linear equations, with a focus 
on the balance strategy to solve them. The third intervention was on quadratic 
equations. Figures  3  and  4  provide exemplary tasks in the online modules; the full 
modules can be accessed through the internet. 2 

    The design of the interventions was guided by different design principles, such 
as the emergent modelling perspective, the option to practice skills using randomi-
sation and feedback, and progressive formalisation. For more details on the design 
principles, we refer to Boon ( 2009 ) and Doorman et al. ( 2012 ). The online modules 
were intended to replace the regular text book chapters, even if teachers could 
decide to include paper-and-pencil work in their lessons.  

    Participants 

 The study’s participants are six pairs of mid-adopting mathematics teachers and four 
designer-researchers. The 12 teachers volunteered to participate. As a criterion for 
being considered as mid-adopter, the teachers were only admitted if they had taught 
less than 20 h in a mathematics class with technology during the previous school 

2   See  www.fi .uu.nl/dwo/en/ . 

  Fig. 3    An exemplary online task from the geometry module       
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year. During the school year 2011–2012 these teachers implemented the digital 
interventions in their grade 8 classes, while being supported by fi ve face-to- face 
community workshops and the online Moodle platform for virtual collaboration. 

 In this article we focus on the teaching practices and professional development 
of two of the twelve mathematics teachers. The two are colleagues from a Christian 
school in a small town in the centre of the Netherlands. We chose this pair because 
of their difference in background. Teacher A is a female teacher who has a 
teaching license for students up to 18 years old and has 18 years of experience in 
teaching students 12–18 years old. Before participating in this project, she used 
computers according to the suggestions made in the closing sections of regular 
textbook chapters. Teacher B is a male teacher with a teaching license for students 
from 12 to 15 years old. He has been teaching this age group for over 25 years and 
had never entered the computer room with his classes before the project.  

    Instruments 

 In this paper, the following research instruments play a role:

•    A blog template that provides teachers with a format for the self reports on their 
lessons. The headings of this template are Prepare the lesson, Carry out the 

  Fig. 4    An exemplary online task from the linear equations module       
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lesson, and Refl ect on the lesson. The rationale for this template and the relation 
with the orchestration model is provided through the so-called orchestration 
chart shown in Fig.  5 .

•      An ICT questionnaire for teachers on their views and opinions on the role of technology 
in mathematics education. This questionnaire was based on the one developed 
by Reed et al. ( 2010 ). It consists of 37 questions on a fi ve point Likert scale.  

•   A post-project questionnaire on the teachers’ retrospective refl ection on the benefi ts 
of their participation.     

  Fig. 5    The ‘Orchestration chart’ linking blog template and orchestration model       
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    Data 

 Table  1  shows the data on the two teachers in relation to the research questions. For 
the lesson observations, a total of eleven 50-min lessons in a computer lab were 
observed and videotaped, 2 per teacher per intervention (with one lesson less for 
teacher B’s third intervention). The self reports through blogs were submitted to the 
Moodle environment. The ICT questionnaire was administered twice; at the start 
and at the end of the project. The post-project questionnaire was administered 6 
months after the end of the project. The fi ve face-to-face community workshops 
were videotaped and the online Moodle platform activities were collected.

       Data Analysis 

 Qualitative data analyses were carried out using appropriate software 3  and with the 
lenses provided by the theory. For the lesson observations, the typology of seven 
orchestration types described in section ‘ Instrumental Orchestration ’ was extended 
with new types, particularly for individual settings. For the latter, we initially identi-
fi ed seven categories. However, as the inter-rater reliability was problematic for a 
cluster of three of them, we merged them into one category, which will be called 
Guide-and-explain in the results section. 

 In addition, the TPACK model was used to identify the teachers’ skills and 
knowledge involved and a video clip was coded with one of the TPACK model 
components if that type of knowledge and skill was involved. Also, a researcher’s 
judgement on the effect was attached: a ‘+’ if the attributed TPACK skills led the 
student to understand the issue or to be able to continue the work, a ‘0’ if this is not 

3   We used Atlas ti, see  www.atlasti.com . 

   Table 1    Research questions and corresponding data   

 Research question  Data 

 1. In which ways do teachers with limited experience in the fi eld of 
technology in mathematics education orchestrate technology-rich 
activities? 

 Lesson observations 

 2. How does this repertoire of orchestrations and the corresponding 
TPACK change during a professional development process? 

 Lesson observations 
 ICT questionnaires 
 Post-project 

questionnaire 
 3. Can these individual processes of change be explained by the 

participation in the collegial community? 
 Lesson observations 
 Self reports through 

blogs 
 Community workshops 
 Moodle activities 
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clear from the data, and a ‘–’ if the TPACK application by the teacher led to 
misunderstanding or miscommunication. In line with the criticism on TPACK that 
we discussed in section ‘ The TPACK Perspective ’, we acknowledge that this 
coding was not straightforward, but we were able to assign these codes in a satis-
factory way after some discussions and improvements of the codes. The analyses 
of the ICT questionnaire were guided by the TPACK model as well, and the com-
munity workshops and Moodle activities were analysed on the topics addressed. 
The different types of coding were partially repeated by a second coder and cases 
of disagreement were discussed until consensus was reached. 

 Concerning the third research question, the face-to-face community meetings 
were analysed with respect to the main topics addressed. The teacher’s blogs and 
questionnaire results were analysed as well. Next, we tried to establish links between 
these community topics and the individual teacher data.   

    Results 

 This result section is organised along the lines of the three different research ques-
tions (see section ‘ Research Questions ’), each with its own theoretical background 
described in sections ‘ Instrumental Orchestration ’, ‘ The TPACK Perspective ’, and 
‘ Teachers in Communities of Practice ’, respectively. 

    Teachers’ Orchestrations 

 The fi rst research question addresses the ways in which mid-adopting teachers with 
limited experience in the fi eld of technology in mathematics education orchestrate 
technology-rich activities. The lesson observations took the seven orchestrations 
described in section ‘ Instrumental Orchestration ’ as points of departure. For the 
six whole-class orchestrations, this categorisation suited most of the observed 
practices. Two new whole-class orchestrations were defi ned: the Guide-and-explain 
orchestration and the Board-instruction. 

 The  Guide-and-explain orchestration  shares with Explain-the-screen and 
Discuss-the-screen a didactical confi guration of access to the technology and 
 projecting facilities, preferably access to student work, and a classroom setting 
favourable for students to follow the explanation. The exploitation mode, however, 
straddles Explain-the-screen and Discuss-the-screen. On the one hand, the teacher 
provides a somewhat closed explanation based on what is on the screen. On the 
other, there are some, often closed questions for students, but this interaction is so 
limited and guided that it cannot be considered as an open discussion. 

 The  Board-instruction  orchestration is the traditional one of a teacher in whole- 
class teaching in front of the board. The board can be a chalk board, a whiteboard or 
an interactive whiteboard, but in any case it is just used for writing. No connections 
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are made to the use of digital technology. The didactical confi guration is the classical 
one of the teacher in front of the classroom working with the board. Different exploi-
tation modes are possible, with different degrees of student involvement and interac-
tion; however, no use of or reference to digital technology is made. We added this 
orchestration as we felt the need to also include the regular teaching in our analysis. 

 For the individual Work-and-walk-by orchestration, which was quite frequent in 
the case of the two teachers in this case study, it was clear that a closer look was 
needed and that similarities with whole-class orchestrations could be noticed. This 
led to a refi nement of the Work-and-walk-by orchestration into fi ve sub- orchestrations. 
These all share the didactical confi guration, that is, the students sitting individually 
or in pairs in front of their technological devices that provide access to their online 
work and the teacher walking by in the classroom, but they differ in exploitation 
modes. Within this setting, the following individual orchestrations are identifi ed and, 
when appropriate, named according to corresponding whole-class orchestrations:

•    Individual Technical-support 
 In this orchestration, in which technical issues play a central role, the teacher 
supports the student in technical problems that go beyond the DME technology, 
such as login diffi culties, software bugs or hardware issues.  

•   Individual Technical-demo 
 The didactical confi guration is exploited for the individual demonstration of 
techniques for using the digital content by the teacher. The goal is to avoid obsta-
cles that emerge from the students’ technical inexperience in using the digital 
environment.  

•   Individual Guide-and-explain 
 The exploitation of this orchestration involves an individual exchange between 
teacher and (a pair of) student(s) in which the teacher takes the position of the 
instructor through providing guidance and instruction to the student, explains 
mathematical concepts or methods based on what happens on the screen, or 
raises questions to make the student refl ect on his actions and results.  

•   Individual Link-screen-book 
 In the student-teacher interaction that characterises this orchestration, the didac-
tical confi guration is exploited by the teacher for connecting the representations 
and techniques encountered in the digital environment and their conventional 
paper-and-pencil and textbook counterparts. The goal is to link the mathematics 
on the screen and the mathematics of the regular paper-and-pencil. As an extra 
requirement for the didactical confi guration, the setting should allow switching 
between screen, notebook and textbook. This is not self-evident in computer labs 
that are often (too) full.  

•   Individual Discuss-the-screen 
 In this orchestration, the phenomena on the screen lead to a discussion between 
teacher and student(s). This discussion may start with a question from the 
student or with a remark made by the teacher. The goal of the discussion may not 
be clear beforehand and the student has considerable impact on the direction and 
the content of the talk by, for example, expressing his/her diffi culties.    
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 In Table  2  the frequencies of the whole-class and individual orchestrations for 
the observed lessons taught by the two teachers for the three modules are shown. 
The low whole-class orchestration frequencies can be explained by the fact that the 
observed lessons took place in a computer lab, which neither teacher considered 
very suitable for whole-class teaching. In spite of this, teacher A did exploit some 
whole-class orchestrations in the computer lab, but she also sometimes split up 
the lesson in two parts: one part in the regular classroom for whole-class teaching, 
and the other part in the computer lab for individual work. As for teacher B, he 
tried to prepare for and benefi t from the students’ computer experiences in the 
lessons before and after the computer lessons, to avoid whole-class teaching in 
the computer lab.

   As the two teachers privileged individual work in the computer lab, the individ-
ual exploitations of the setting were more frequent. The data in Table  2  shows that 
the Guide-and-explain orchestration accounts for the majority of the observations 
(144 out of 222 cases, which is 65 %), followed by Technical-support and Technical- 
demo. Therefore, the global image that emerges from the data is that the two teach-
ers, once technological issues are solved, walk by the students to engage in more or 
less interactive, teacher-driven forms of instruction on the mathematics provoked by 
the digital technology. 

 In Table  3 , the results of the application of the TPACK categories and the 
researchers’ judgement of the success of this are shown. Most frequent categories 
are PACK + and TPACK + (108 and 53 cases, respectively, out of a total of 235), 
with TK in third position. We interpret these fi ndings as follows. As Table  3  refers 
to the same set of video clips as Table  2 , most codes apply to individual orchestra-
tion settings. In many of these clips, the teachers use their pedagogical content 
knowledge, often in combination with technological skills. This implies that the 
researchers identify the combination and integration of the different TPACK com-
ponents as being used in many cases. In the majority of these cases, the judgement 
is positive, suggesting that the teachers are able to integrate these components in a 
satisfying and effective way. The relatively high scores for TK, in combination with 
the ‘0’ and ‘–’ occurring relatively frequently, suggests that teachers’ technological 
knowledge and skills are important, and may be an issue.

       Changes During the Project Period 

 The second research question refers to the changes of the teachers’ repertoire of 
orchestrations and the corresponding TPACK change during the project period. 
A fi rst way to answer this question is to look at Tables  2  and  3 , and compare the 
three different interventions that took place subsequently throughout the project’s 
school year; as such, they may reveal change over time. In Table  2 ’s individual 
orchestrations, we notice a decrease of Technical-demo and Technical-support from 
the fi rst intervention on geometry to the third on quadratic equations. Meanwhile, 
Guide-and- explain frequencies are increasing. Apparently, the technology itself 
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needed more attention in the fi rst teaching sequence than in the others. This is 
because the students had to get used to the Digital Mathematics Environment and 
because the fi rst module also involved the additional use of Geogebra. In the second 
and third module, the Guide-and-explain orchestration could be more frequent, as 
technical issues no longer played such an important role. Also, the mathematical 
topic may be a factor as, for example, solving linear and quadratic equations, the 
topics of the second and third module, are more algorithmic than the geometry tasks 
in the fi rst module. The data in Table  3  confi rms these fi ndings. The teacher work 
needed  isolated technological knowledge slightly less in the second and third inter-
vention, whereas pedagogical content knowledge, eventually in combination with 
technological skills and knowledge, is more central in Guide-and-explain formats. 

 A second way to consider teacher development over the year is to analyse the 
results from the ICT questionnaire, which was administered twice, once at the start 
of the project and once at the end. We focused on the questions in which the teachers 
changed their opinion by at least two points on the fi ve-point scale. For teacher A 
this led to a number of fi ndings. Firstly, she became more convinced that the results 
of the students’ work using ICT would improve in the short term. Apparently, she 
noticed learning effects from the ICT activities. Secondly, she changed her initial 
opinion that there was a big difference between what students learn while using ICT and 
while using paper-and-pencil. This can be explained on the one hand by the second 
module, which is aimed at transfer between online work and paper-and- pencil work, 
and on the other by this teacher’s increasing skills to link and relate online and 
paper-and-pencil activities. Thirdly, she lost some belief in ICT being effi cient for 
learning, compared to the traditional setting. We conjecture that her teaching skills 
were so much in a process of development that she was not yet able to make the ICT 
lessons effi cient. Fourthly, she became more positive about the means ICT offers for 
student exploration. Even if the tasks in the online modules were fairly closed, 
apparently she experienced the opportunities to enable student exploration. Fifthly, 
she changed her opinion toward claiming that teachers do have enough time to 
integrate technology in their teaching, probably because she felt more experienced 
in preparing ICT lessons and she noticed that teaching time spent on using the tech-
nology also affected paper-and-pencil skills. Finally, she appreciated more than 
before that student work could be followed by the teacher. This might be due to the 
student monitor system that the teacher had access to in the DME. All together, 
teacher A’s opinions of ICT use in her mathematics lessons became more positive 
during her project participation, even if she was not sure about the effectiveness of 
her ICT lessons. 

 Teacher B, however, hardly changed his opinions. The only question where a 
change of two points could be identifi ed concerned the visibility of student work for 
the teacher. After the project, he was more positive about this than before. As was 
the case for teacher A, this may be due to the student monitoring facilities that the 
DME offers. In addition, teacher B’s Work-and-walk-by orchestrations enabled him 
to regularly interact with the students and to oversee their work while walking 
around and watching the students’ screens. All together, teacher B’s opinions did 
not change much during the project. 
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 Finally, teacher changes were also seen in their answers to the post-project 
 questionnaire. Both teacher A and teacher B reported a more positive attitude 
toward, and an increased confi dence in, using technology in the mathematics class-
room as a main project outcome. Indeed, they both started new technology-rich 
teaching sequences in the new school year, without the project’s support.  

    The Infl uence of the Community 

 The third question is whether the teachers’ individual processes of change can be 
explained by the participation in the collegial community. Both teacher A and teacher 
B were very much involved in the project and the community. For example, they wrote 
48 lesson blogs (26 by teacher A and 22 by teacher B), which is far more than the 15 
blogs that the average participant posted. Also, they were active users of the commu-
nity’s Moodle, which they accessed 475 and 509 times, respectively, compared to an 
average number of 396 accesses. During the face-to-face community meetings, teacher 
A spoke a lot, whereas teacher B was less expressive, but clearly involved. 

 In three cases, we identifi ed traces of relationships between the main topics 
addressed in the community meetings and the blogs the teachers wrote afterwards. 
In other cases, we were not able to trace such relationships, suggesting that the 
effect of the meetings was not manifest in the teachers’ refl ections on their lessons. 

 The topic  Computer-paper-classroom  concerns the balance a teacher chooses 
to make between computer work, paper work and classroom sessions. This topic 
was discussed frequently during the meetings. For both teachers, a thorough dis-
cussion of this topic during the fi rst meeting was followed by a high emphasis on 
it in the blogs. For the following two meetings and periods of blogs, however, 
this relationship does not appear so clearly. Still, it is interesting to look at some 
quotations from the blogs. In the two passages below we see a clear relationship 
between a teacher’s choice for computer use and classroom sessions and their 
view on student insight.

  The lesson went smoothly; my better students do appear to like this module most. The 
weaker students prefer a standard lesson. That is why I try to alternate, to get everyone up 
to the necessary end level. (Blog teacher A, 5 oct 2011, lesson 7 and 8 module 1) 

 This week I will only go to the computer classroom twice. During the third lesson I want 
to work using paper to see who do and who don’t understand the theory. (Blog teacher B, 
28 sept 2011, lesson 4 module 1) 

   The topic  Degree of diffi culty  concerns the diffi culty of the modules. Contrary to 
the previous topic, this one shows an overall recurrence in the blogs related to the 
meetings. The teachers often mentioned the different degrees of diffi culty of the 
subsequent modules, as the following quotations show:

  The tasks demanded a lot of insight. They were better suited for the high achieving students 
than for my mid achieving students. There were few repeating tasks. Fortunately this is 
different for the next module. (Blog teacher A, 12 jan 2012, after module 1) 

 The students enjoyed it more as well, because they noticed that is was a lot less complicated 
(than the geometry module). (Blog teacher B, 11 jan 2012, lesson 1 module 2) 
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   Finally, the topic  Planning the module  concerned the actual planning of the 
teaching sequences, which was the teachers’ responsibility. This topic shows an 
almost overall recurrence in the blogs related to the meetings. Sometimes, the topic 
is related to student insight or behaviour, as is the case for teacher A’s quotation, but 
this co-occurrence appeared sparsely. Most quotations coded in relation to this topic 
are short and matter-of-fact, like the following quotation of teacher B.

  The students need a lot of time for the tasks in paragraph 3. At the end of the lesson they 
had not fi nished it. This means they have to fi nish it as part of their homework as well as 
paragraph 4. (Blog teacher A, 13 jan 2012, lesson 2 module 2) 

 During the fi rst lesson the students are going to work on the fi rst paragraph and maybe 
start on the second paragraph. (Blog teacher B, 11 jan 2012, lesson 1 module 2) 

   In the post-project questionnaire, the two teachers both rated the importance of 
the community aspects of the project (their colleagues’ blogs, the background litera-
ture on the Moodle, and the Moodle forum) as neutral to reasonable, which were 
relatively low scores compared to other aspects of the project. This confi rms the 
overall impression that we were able to trace some links between the community 
participation and the teachers’ professional development, but only to a limited 
extent. These results suggest that the project was not really successful in establish-
ing a community of practice.   

    Conclusion and Discussion 

 In this paper we set out to answer three questions, the fi rst being: In which ways do 
mid-adopting teachers with limited experience in the fi eld of technology in mathemat-
ics education orchestrate technology-rich activities? While answering this question, 
two new whole-class orchestrations were defi ned: the Guide-and-explain orchestra-
tion and the Board-instruction. A closer look at individual orchestrations led to a 
refi nement of the Work-and-walk-by orchestration into fi ve sub-orchestrations. 

 The data in Table  2  shows that the individual Guide-and-explain orchestration 
accounts for the majority of the observations. Therefore, the global image that 
emerges from the data is that the two teachers, once technological issues are solved, 
walk by the students to engage in more or less interactive but teacher-driven forms 
of instruction. In terms of TPACK skills, the teachers make use of their pedagogi-
cal content knowledge, often in combination with technological skills. In most 
cases, the teachers are able to integrate these components in a satisfying and effec-
tive way. Teachers’ technological knowledge and skills are important, and may be 
an issue to them. 

 As a further conclusion on the fi rst question, we note that the Drijvers et al. 
( 2010 ) orchestrations served as a good point of departure, but led to the identifi cation 
of additional orchestrations. The added descriptions of individual orchestrations not 
only offer an elaboration of the global Work-and-walk-by orchestration, but they 
also allow for a more detailed view on the relationships between whole-class and 
individual orchestrations, in that some of the exploitation modes and goals of 
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whole-class orchestrations have similar counterparts in individual orchestrations. 
For example, the whole-class Link-screen-board and the individual Link-screen- book 
orchestrations clearly share similar teaching goals. Other orchestrations, such as 
Spot-and-show, are constrained to whole-class or individual settings. The resulting 
‘landscape’ of whole-class and individual orchestrations, as well as the relationships 
between the two, is depicted in Fig.  6 . As Board-instruction and Technical-support 
are not at the heart of this study’s interest, we did not include them in the fi gure.

   The second research question was: How does this repertoire of orchestrations 
and the corresponding TPACK skills change during a professional development 
process? We noticed that the teachers’ orchestration preferences are changing, 
showing a decrease in Technical-demo and Technical-support, and Guide-and- explain 
becoming more frequent. This is explained both by the different nature of the three 
modules and by increasing professional development. This development also 
involves more complex teacher skills, with PACK and TPACK being the most fre-
quently observed skills needed. More information on professional development is 
provided by the teachers’ self reports in lesson blogs and ICT questionnaires, which 
in the case of Teacher A show a development in refl ection on the skills and knowl-
edge needed, and in the acquisition of these skills. The post-project questionnaire 
results suggest that the teachers’ self-confi dence increased through their participa-
tion in the project. In all, both teachers developed a more thoughtful and confi dent 
attitude to their use of technology in teaching. 

 The third research question was: Can the teachers’ individual professional 
development be explained by the participation in the collegial community? The 
results suggest that the project was not successful in establishing a community 
of practice. The overall impression is that some traces between the community 
participation and the teachers’ professional development were identifi ed, but 
only to a limited extent. In addition to this, the post-project questionnaire reveals 
that the two teachers both rated the importance of the community aspects of the 
project as relatively low.  

  Fig. 6    Whole-class and individual orchestrations (Based on Van den Heuvel  2012 )       
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    Discussion 

 In this discussion we fi rst address the study’s limitations. Of course, the observations 
of two teachers in eleven lessons cannot provide exhaustive and conclusive data on 
the complex issue of how mid-adopting teachers engage in a process of professional 
development concerning the integration of digital technology and the development of 
appropriate teaching techniques. Neither can we be sure that the two case studies are 
representative of mid-adopting teachers in the Netherlands or elsewhere. However, 
we do see the results from these case studies as useful in exploring the issue and in 
generating hypotheses as to how crucial steps can be made in the dissemination of 
technology in education, and in professional development for mid-adopting teachers 
in particular. 

 If we look back at the study’s theoretical framework, we see that the instrumental 
orchestration model was useful in two ways. First, it helped us as researchers to set up 
the blog template for the teachers’ lesson reports. Second, it provided us with a frame-
work to identify and describe the observed orchestrations and teaching practices in the 
videotaped lessons. We recognise, however, that we were not very successful in dis-
cussing the orchestration framework with teachers in a way that was useful to them. 

 As for the TPACK model, it provided us with a framework to analyse teachers’ 
blogs, as indicated in Table  3    . While doing so, we acknowledge that coding teacher 
statements in terms of the TPACK model was not always straightforward, which is 
in line with the criticisms on TPACK constructs described in Graham ( 2011 ), 
Ruthven ( 2013 ), and Voogt et al. ( 2012 ). In addition to this, the model seemed to be 
less effective in supporting teachers’ refl ections and self-reports. 

 Concerning the idea of establishing a community of practice, we think that this 
is a powerful idea, but one that we were unable to fully exploit, probably due to a 
lack of ownership over the project by the participants. Also, the relationships 
between face-to-face meetings and virtual communications might have been too 
weak. We might conjecture, for example, that having regular virtual meetings might 
bridge the gap between face-to-face and online communication. 

 As a closing remark, we do believe the three theoretical lenses proved valuable, in 
spite of their limitations. We recommend their further elaboration, refi nement and 
fi ne-tuning, probably in collaboration and comparison, as was done by Tabach ( 2011 ).     
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    Abstract     In this chapter we study the use of software in mathematics by French 
kindergarten teachers who are working with 5 and 6-year-old children. We retain the 
theoretical perspective of the documentational approach, considering that teachers 
interact with a variety of resources, including technology. These interactions lead to 
the development by the teachers of documents, associating resources and professional 
knowledge. We focus here on the way teachers organise the available resources, for 
a given mathematical objective through the orchestrations they choose. By focusing 
on three teachers in particular, we identify different types of orchestrations, evi-
dencing teacher agency and a specifi c attention to individual children’s differences. 
Teacher knowledge of different kinds (pedagogical knowledge, knowledge about 
curriculum material, knowledge about the teaching of numbers at kindergarten) 
infl uences the choice of orchestration.  
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    Teacher Resources and Orchestrations 

    Instrumental Orchestrations, Orchestration Types 

 The concept of instrumental orchestration (introduced in Trouche  2004 ) devel-
ops the instrumental approach for the study of teaching and learning of mathe-
matics to include a focus on technology integration. The instrumental approach 
(Verillon and Rabardel  1995 ) distinguishes between a given artefact (here, a 
mathematical software) and an instrument developed by the subject (here, a 
student) using this artefact. Along with one’s use of the artefact, in different con-
texts for a similar aim, one develops knowledge about the artefact itself, about its 
use, and also other kinds of knowledge (in particular, here, mathematical knowl-
edge). The instrument is composed of the artefact and the knowledge developed. 
The process of development of this instrument is called an instrumental genesis. 
Instrumental orchestration describes how a teacher guides the instrumental gen-
eses of the children, using a given piece of software. It comprises two aspects: a 
didactical confi guration and an exploitation mode. A didactical confi guration is 
an arrangement of artefacts in the environment, while an exploitation mode refers 
to the way the teacher decides to exploit this didactical confi guration. The con-
fi guration and the exploitation mode are not only material organisations, but they 
also encompass precise didactical objectives, in terms of the mathematical 
knowledge at stake in the situation. 

 Drijvers ( 2012 ) has refi ned and clarifi ed the concept of orchestration. He intro-
duces in particular a third element of orchestration, the didactical performance, in 
order to distinguish between what has been planned and what actually happens in 
class. The didactical performance “involves the ad hoc decisions taken while 
teaching on how to actually perform in the chosen didactic confi guration and exploi-
tation mode: what question to pose now, how to do justice to (or to set aside) any 
particular student input, how to deal with an unexpected aspect of the mathematical 
task or the technological tool, or other emerging goals” (Drijvers  2012 , p. 266). 
In addition, having followed several teachers, Drijvers characterises seven dif-
ferent orchestration types: Technical-demo (demonstration of tools techniques by 
the teacher); Explain-the-screen (whole-class explanation of what happens on the 
screen); Link-screen- board (explanation by the teacher of the link between the 
screen and mathematics written on the board); Discuss-the-screen (whole-class 
discussion about what happens on the computer screen); Spot-and-show (showing 
interesting student’s work); Sherpa-at-work (a student carries out actions requested 
by the teacher); and Work-and-walk-by (the children work individually on computers; 
the teacher observes their work and intervenes if necessary). 

 In our study, we adopt this defi nition of orchestration, and the idea of characterising 
orchestration types. We assume from the beginning that orchestration types observed 
at kindergarten will be different from the ones observed in previous studies, which 
all take place at the secondary school level. Some differences may arise due to the 
fact that the orchestrations are at the kindergarten level where, in France, there is 
much less whole-class teaching and less mathematics written on the board.  
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    Orchestration Choices, Resources and Geneses 

 Orchestrations can be considered as the choices made by teachers about the use of 
technology in their classrooms. Which factors are likely to infl uence these choices? 
Ruthven ( 2012 ) proposes the following fi ve dimensions related to classroom prac-
tices of a teacher integrating technology: the working environment; the resource 
system; the activity format; the time economy; and the curriculum script (described 
as a set of goals and actions). These dimensions can also enlighten the orchestration 
choices. The working environment, that is the material conditions of teacher work, 
is certainly important. In France, only a few kindergartens have a computer lab; in 
most cases, there are one or two computers in each classroom, and not always a 
digital projector. It certainly contributes to the rarity of technology use. But, as 
Ruthven demonstrates, this material aspect does not explain everything. 

 In our work, we focus mostly on the resource system and on the curriculum script, 
as well as, more generally, teachers’ professional knowledge. We use the perspective 
introduced by the documentational approach (Gueudet and Trouche  2009    ). In their 
professional activity teachers interact with a great variety of resources, including 
curriculum material, children’s work and software. Clark-Wilson ( 2010 ), when con-
sidering teachers’ use of technology, demonstrates that teacher knowledge shapes 
their use of technology and that, simultaneously, the use of technology contributes to 
teacher learning. Instrumental geneses (Verillon and Rabardel  1995 ) also occur for 
teachers engaged in their professional activity, and using technology. Similar processes 
happen when teachers interact with textbooks (Remillard  2012 ). The development of 
the documentational approach is based on accounting for this multiple resource use 
and learning. This approach considers that, for a given professional aim, the teacher 
interacts with sets of resources such as textbooks, offi cial texts, websites and software. 
If a teacher has already taught this topic, he/she certainly also uses previous notes and 
children’ worksheets in preparing future lessons. When he/she creates the lesson in class, 
children’ productions and reactions also constitute resources. All this belongs to what 
we call the  teacher’s documentation work . Teacher knowledge intervenes in this work. 
On the one hand, the knowledge infl uences the use of resources (this part of the pro-
cess is called  instrumentalisation,  referring to the instrumental approach); on the other 
hand, the use of resources leads to evolution of the knowledge  (instrumentation ). We 
call this process  a documentational genesis . Within such geneses, for different teach-
ing objectives, in different classes, the teachers constitute a resource system, which is 
an organised set of resources, transformed in the course of their use in class (Gueudet 
and Trouche  2012 ). We consider that orchestration choices are infl uenced by teacher 
professional knowledge and by their resource system. We especially focus on the 
knowledge linked with the mathematical content (but we do not refer to precise cate-
gories, like those proposed by Ball et al. ( 2008 )). 

 Within this perspective, the research questions addressed in this paper are:

•    Which orchestrations do kindergarten teachers choose when using technology in 
their teaching of mathematics? Is it possible to identify ‘orchestration types’? 
If so, do these resonate with those that Drijvers ( 2012 ) identifi ed at the secondary 
school level?  
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 –   Which of the following factors infl uence these choices of orchestrations: the 
resources and their features (the software in particular) within an instrumentation 
process? or the teacher knowledge within an instrumentalisation process (and if 
so, which kind of knowledge)?    

 In order to answer these questions, we draw on data gathered during a design and 
research project that we now present.  

    The ‘Mathematical Package’ Project 

 Our work takes place in the frame of a contract with the French education ministry 
and the French Institute for Education (IFÉ), ‘the mathematical package’ project, 
which aimed to design mathematical tools and situations for the teaching of mathe-
matics at the kindergarten level and in grades 1 and 2. In France, kindergartens 
reside within primary schools and most children attend from the age of three. They 
comprise three classes: young section, middle section and older section. Our work 
for kindergarten concerns only the older section (children aged 5–6). 

 The study presented here draws on the work of a group of teachers and researchers 
where the teachers created lessons in their classes that were observed and videotaped 
by researchers and subsequently discussed during working group meetings. The 
teachers wrote descriptions of their lessons, with the aim of sharing them with other 
colleagues. As researchers, we participated in the group. We presented several 
pieces of software to teachers, including those considered in this paper, but we did 
not intervene in the teachers’ choices or on their lessons with this software. Our 
intervention in the design concerned more the format of the lesson descriptions in 
particular, the relevant categories. At the same time we studied the material produced 
by the group with the aim of analysing orchestrations and documentational geneses. 
This process was supported by the completion of a questionnaire by the teachers 
that asked about their use of resources and, in particular, the technological ones. 

 The data we gathered for each teacher were:

•    Notes from the group meetings (always taken by a researcher);  
•   Videos of the lessons, with accompanying fi eld notes of the observing researcher;  
•   Resources used by the teacher in her preparation, produced by the teacher for the 

children, and produced by the children during the lesson;  
•   Lesson plans elaborated by the teacher for colleagues (some of these descriptions 

are written individually and others by several teachers working together);  
•   Questionnaires completed individually by the teachers;  
•   Children’s work.    

 The data was analysed with two specifi c aims. Firstly we wanted to describe the 
orchestrations developed by the teachers. The observations, videos and lesson descrip-
tions provided us with information about the teachers’ confi gurations, exploitation 
modes and their didactical performances. An orchestration can correspond to a short 
amount of time spent in class (some of the orchestrations described by Drijvers 
( 2012 ) lasted only 10 min). In our work we generally considered longer time periods 
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because we were interested in the descriptions produced by the teachers. Naturally 
these descriptions cannot exist within a timescale of a few minutes. 

 Secondly, we wanted to understand the factors shaping these orchestrations, 
especially those linked with teacher professional knowledge and with teacher 
resource systems. Hence we analysed the teachers’ questionnaire responses 
alongside their lesson descriptions and the other resources. The lesson descriptions 
were essential data because the teachers themselves wrote them, so they did not 
contain the researchers’ interpretations. They also provided evidence of what the 
teacher thought important to emphasise to their colleagues. We consider that 
such descriptions are linked with a teacher’s knowledge, and in particular the 
knowledge developed during the use of the software. Naturally, descriptions pro-
posed by teachers carry specifi c biases as they correspond more to the view of the 
teacher on his/her teaching than to the actual practice. However, a comparison of the 
descriptions alongside the videos shed light on the teachers’ orchestration choices. 

 We worked with seven teachers during the whole academic year 2011–2012. In 
this chapter we select the cases of three of these seven teachers; all of whom have 
12-15 years experience at kindergarten level. None of them had used software in 
their mathematics teaching before the beginning of the research. One teacher used 
the abacus, both material and virtual and the other teachers both used a specially 
designed software program.   

    Instrumental Orchestrations: Two Case Studies 
at the Kindergarten Level 

    Learning Numbers with the Virtual Abacus 

 In this section we focus on Deborah, a kindergarten teacher and a member of the 
research group. The classroom work with the abacus (which we will refer to as the 
abacus-lessons) lasted 12 sessions and involved number sense. After presenting an 
outline of these lessons, we focus on specifi c aspects of it: the introduction of the 
virtual abacus and the interaction between the teacher and the children. 

 The Chinese abacus, both virtual and material, was the central resource in the 
lessons we followed. The virtual version used by Deborah was developed by 
Sésamath – IREM of Lille and is available online. 1  On the virtual abacus, the children 
can move one or several beads by clicking on a bead with the mouse. They have 
some feedback from the software as they can verify their work by using the icon 
‘see number’, which is written in numeral form. One important feature of the soft-
ware is that there is no possibility for the teacher to save student work. The teachers 
have three opportunities to fi nd out what the children have done: they can observe 
them manipulating the abacus, they can ask a child to show a manipulation on the 
board using the digital projector or interactive white board (IWB, see below) or they 
can offer a paper and pencil task as the only way to keep a record of the work done. 

1   http://cii.sesamath.net/lille/exos_boulier/boulier.swf 
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    The Abacus-Lessons in Deborah’s Class 

 During the sequence of lessons, the general classroom organisation was the same: 
the 24 children sat in three groups of eight and Deborah spent 20 min with each 
group, thereby repeating the session three times. The school had a computer room 
with an IWB but Deborah thought this solution would be too complicated for young 
children. The    [  http://cii.sesamath.net/lille/exos_boulier/boulier.swf    ] abacus-lessons 
took place in Deborah’s regular classroom. However, the classroom equipment 
changed in April 2012, about half way through the lessons. From November to 
March, the classroom was equipped with a digital projector (session 1–7, Fig   .  1 ), 
and from April to June with an IWB and eight laptops (session 8–12, Fig.  2 ).

    This change in the material environment resulted in changes in Deborah’s exploitation 
mode, which we identify as a process of instrumentation. During sessions 1–7, the chil-
dren learned to show and read numbers on the Chinese abacus, with one physical abacus 
per student. They manipulated the physical abacus to show a number and the digital 
projector allowed the teacher to show a correction with the virtual abacus. Deborah also 
asked the children to read numbers shown on the virtual abacus. So, for the fi rst seven 
sessions, the children did not manipulate the virtual abacus. For the last fi ve ses-
sions (8–12), the resources available were the virtual abacus, the IWB and also student 
worksheets ( Appendix 2 ). The sessions were organised in two phases. The fi rst phase 

  Fig. 1    Deborah’s class organisation before the IWB: teacher using a digital projector ( left ) and the 
children manipulating the physical abacus ( right )       

  Fig. 2    Deborah’s classroom organisation with the IWB and laptops ( left ) and the children 
manipulating the virtual abacus ( right )       
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was an introduction during which Deborah asked the children to show numbers on 
the virtual abacus displayed on the IWB, and a discussion about the different possibili-
ties for showing numbers was organised. This phase is what we call an ‘investigation 
approach’ (Poisard and Gueudet  2010 ), when the children are asked to show their work 
and to argue about the validity of suggestions. During the second phase, the children 
were asked to show and read numbers on a hand-out given by the teacher. Each 
student has a computer and can use the virtual abacus as a help to answer questions 
( Appendix 2 ). During the last two sessions, Deborah introduced a paper ‘abacus-book’ 
in the class representing numbers on the abacus and the equivalent numbers in numeral. 
When a number was shown on the virtual abacus, the page concerning the number was 
put on the board as a record of different ways to show numbers when needed.  

    Introduction of the Software 

 We observed two important moments during the initial introduction of the soft-
ware in the classroom. The fi rst moment occurred during session 1, when the 
children worked with the physical abaci. They did not directly manipulate the soft-
ware but they were asked to read numbers projected using the software. Some 
children had diffi culties connecting the horizontal physical abacus and the verti-
cal virtual one. Moreover, the gestures needed are different between the two 
abaci. For example, to show seven on a physical abacus, only one gesture is 
needed (beads are carried on the central bar, pinching them between the fore-
fi nger and the thumb) while two gestures are needed on the virtual abacus (two 
moves with the mouse, above and below the central bar). The children overcame 
these diffi culties quickly. 

 During sessions 1–7, Deborah planned a didactic confi guration and an associated 
exploitation mode, where the children used the physical abacus. After organising a 
discussion and argumentation session between the children, Deborah used the 
virtual abacus as a means of collective explanation and correction (because it 
permits a projection, visible for all, and also because of the ‘display the number’ 
facility). There was in this case, in session 1, a short Technical-demo orchestration, 
where the teacher presented the features of the virtual abacus. Then most of the 
abacus use during sessions 1–7 corresponded to an ‘Explain-the-screen’ orchestration 
(Drijvers  2012 ), since explanations given by Deborah exceeded the technical aspects 
and also comprised mathematical knowledge. The following extract corresponds to 
such an Explain-the-screen orchestration in Deborah’s class (the French version of 
the extracts is provided in  Appendix 3 ; this is our translation). This discourse took 
place at the beginning of session 3 and it was stimulated by the children discussed 
how to show 5 on the physical abacus. Deborah was sitting with the children and she 
moved to the screen to show the children’ suggestions.

  Deborah:  You suggested to me… Laurie, you suggested to me to move the fi ve beads 
on the red rod, ok. Why? [ The unit rod is red on the virtual abacus and others 
are green. Deborah moves 5 as fi ve 1-unit counters on units ]. 

 Laurie:  Because, the ones above, they are useless. 
 Deborah:  Because you think the above beads, they are useless. Do you agree with 

Laurie’s choice? 
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 Some children:  No! 
 Deborah:  No? 
 A student:  Because the above beads, they mark 5. 
 Deborah:  We are going to check, What did I ask to show? 
 A student: Five! 
 Deborah:   Very well. [ Deborah activates the icon “see number” and 5 appears on 

screen ] 
 Some children: Five. 
 Deborah:  So, is Laurie’s choice right? 
 Few children: Yes! 
 Deborah:   Now, there is another possibility for fi ve. Some children moved one 5-unit 

counter that means one above bead. [ Deborah shows on screen number 5 as 
one 5-unit counter, the icon “see number” is inactivated. ] So, how many 
ways can we show fi ve? Maëlle? 

 Maëlle:  Two. 
 Deborah:  Yes, two ways. Either we activate the fi ve lower beads, or I activate one of 

the higher beads. [ Deborah shows on screen the two possibilities. ] 

   In this extract, Deborah’s didactical performance corresponds to what she had 
planned before the lesson. Her aim was to elicit the two ways to show fi ve: with fi ve 
1-unit beads or with one 5-unit bead. The children participated in the discussion and 
Deborah used their suggestions; but their responsibility remains limited, which means 
that this orchestration is more teacher-centred. We observed an evolution towards the 
children having more responsibility during the second half of the abacus lessons.  

    Using the Software on Laptops and on the IWB 

 In session 8, the children started to manipulate the software using the laptops and 
the IWB and they discovered specifi c features of the virtual abacus software. We 
identify in session 8 a Technical-demo orchestration (Drijvers  2012 ), which involved 
the demonstration of tool techniques by the teacher (not for the whole class, but for 
the group of eight children involved). This was very quick as children were able to 
manipulate the virtual abacus with no technical obstacles. The only technical point 
concerned the use of the IWB pencil, which they overcame with ease. 

 During sessions 8–12, Deborah circulated amongst children and watched their 
individual work, on the laptops or on paper, providing help if needed. This corre-
sponded to Drijver’s ‘Work-and-walk-by’ orchestration, when the teacher follows 
the individual work of the children. We can also identify a ‘Discuss-the-screen’ 
orchestration as children were asked to come to the IWB to display and argue in 
support of their suggestions as to how to show eight, as in the following extract:

  Deborah:   I would like you to show… Eight! We think about… How do we do eight? 
[ Some children want to immediately give answer ] Eight is? - 

 Some children:  Five and three! 
 Deborah:    Show me with your hands. Five and three! Kevin. [ Kevin goes to the board and 

he activates one 5-unit counters and three 1-unit counters (the third bead, one 
gesture). ] Five and three. Yes, you activated fi ve and three. [ Deborah goes 
closer to the board to show the activated beads .] Do you agree with his choice? 
Is there another solution? Another way to show number eight? Number eight? 

 Some children:   Yes. 
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 Deborah:    Yes Anaïs. [ Anaïs goes to the board and takes the pencil ]. Go on, you did not 
push hard enough, I think. [ Anaïs activates three 1-unit counters, within 
three gestures: one, two, three, and one 5-unit counter. ] So, it is because you, 
you activated the beads one after the others. It is very well. Maëlle. [ Maëlle 
goes to the board and activates three 1-unit counters in the tens and one 
5-unit counter in the units, it marks 35, the icon “see number” is activated. ] 
No. [ Maëlle tries with three 1-unit counters in the tens, and fi ve 1-unit coun-
ters in the units, it marks 35 as well .] You activated indeed eight beads, but 
did you show number eight? 

 Maëlle:  No. [ Looking at number 35 written in numeral on board ] 
 Deborah:  Did you understand your mistake? 
 Maëlle:  Yes, three and fi ve, it makes 30 and 5! 
 Deborah:   Three and fi ve, it makes 35. [ Showing the two different rods ]. And above all, 

they are not located on the same rod. 

   In this extract, Deborah’s didactical performance partly corresponds to what she 
planned, which was to fi nd different ways to display 8 on the abacus. Nevertheless, 
the children participated more than in the previous extract as they display the numbers 
for themselves on the board. We also observe that she reacts in the moment to a 
mistake (anticipated, on a general level, because it is a classical diffi culty with the 
abacus) arising from a confusion between the number of beads and the value they 
represent. We will focus below on the interactions between Deborah and the children 
in terms of how children’s reactions constitute resources for Deborah.  

    Interactions Between Children and the Teacher 

 Clark-Wilson ( 2010 ) demonstrates how hiccups, in mathematics lessons using 
technology, lead to evolutions in the teacher practice and thus form part of a teacher’s 
professional development. She proposes a classifi cation of such hiccups, several 
categories of which correspond to unplanned teacher-children’ interactions. We do 
not use the concept of hiccup here. Nevertheless, we obtain similar results, which 
we interpret as documentational geneses, with the children’s productions and 
reactions constituting central resources for the teacher. We presented above the 
example of a local adaptation to a student’s answer. Over a longer timescale, 
Deborah also changed her plans for progression within the abacus-lessons as a 
result of her observations of the children’s work. 

 Deborah fi rst centred the tasks proposed to the children on ‘show a number on 
the abacus’. Her observations of the children over several sessions led her to also 
propose work on the task ‘read a number shown on the abacus’. From sessions 
8–12, children were asked to achieve two tasks on paper ( Appendix 2 ): to read numbers 
(from abaci images on printed hand-outs) and write them in numerals; and to draw 
beads on empty abaci, corresponding to a number written as a numeral. Deborah 
fi rst thought to ask children to complete both paper-based tasks at each session. 
But it appeared to be too diffi cult for the children when the numbers were above 5, 
so Deborah chose to alternate the paper tasks in the following sessions (session 
9–12). The computer was then used as a possible means of support to the children 
alongside this paper and pencil task. Hence, Deborah modifi ed her plans as a result 
of the knowledge she gained from her interactions with children. 
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 During sessions 8 and 9, she observed that some children were still encountering 
diffi culties. For this reason, she elaborated an ‘abacus book’, which was fi rst 
used within session 11. This book (on paper) presented all of the possibilities to 
show numbers up to 10 on the abacus. This kind of book, generally used as a 
record of class work, is commonly used at this level in French classrooms. This 
can be considered as part of the process of instrumentalisation. Deborah has pro-
fessional knowledge about the possibility to use such books in order to keep a 
collective record of class work, which she applies to the abacus, as a result of the 
diffi culties encountered by some children. After the introduction of this book, it 
appeared that most children were able to read numbers proposed by the teacher 
for paper work (without using the virtual abacus). A few children manipulated 
the virtual abacus to verify their results. More precisely, in session 11 all of the 
children were able to recognise a 15 shown in the three different ways on the 
abacus. Deborah considered that the abacus lessons were useful for the children 
in learning about numbers. She planned to use the abacus next year and even to 
dedicate more than 12 sessions to it. In her opinion, it should be an everyday tool 
for the children. 

 We now consider a second case study, which involved a different software 
program, used over a much shorter time period.   

    Learning Numbers with the ‘Passenger Train’ 

 This section considers another software program, Passenger Train [  http://python.
bretagne.iufm.fr/docenligne/marene/Train_des_Lapins_Online_2012-10-05.html    ], 
which    was chosen by two other teachers, Chloe and Mia, who were also members 
of the project group. The related classroom observations began in January 2012. 
Mia had a ‘double level’ class, with eight children aged 3 (young section) and 
twenty children of 5–6 years (older section). Chloe had a class of older children 
(5–6 years). The Passenger Train program was designed as a game and it corre-
sponds nevertheless to a precise mathematical learning situation. We claim that the 
children will develop mathematical meanings within this playful context, which 
is set within a perspective that is relevant for young children as evidenced by 
previous research (Van Oers  2010 ). 

    Main features of the Passenger Train program 

 This freeware program was designed to focus on the specifi c function of numbers as 
indicators of a position on a number line. The children’s task was to seat one to 
three passengers (rabbits) in the same passenger car of an empty train and to match 
those in a reference train. The freeware program enables two modes of use: 
‘discovering’ mode (the reference train remains visible, Fig.  3 ) and ‘learning’ mode 
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(the reference train disappears when the empty train arrives). The discovering mode 
corresponds to the appropriation of the task, whereas the learning mode is designed 
for the learning of the mathematical knowledge.

   In a previous research study (Bueno-Ravel and Gueudet  2009 ), we have shown 
that software features that provide teachers with  instrumented teaching techniques  
for managing the students’ heterogeneity promoted its integration into teachers’ 
practices. Two main technical aspects supported this integration: the possibility to 
personalise through the choice of different settings for different children; and having 
access to the outcomes of the children’s work on the computer. When working with 
the passenger train program the settings of the software can be customised by 
choosing: the number of passenger cars (from 10 to 30); the position of the rabbit in 
the train (near a locomotive, in the middle of the train, random); and the number of 
rabbits to place (from 1 to 3). Students’ choices are not stored, so teachers do not yet 
have access to the outcomes of the children’s activity unless they are observing 
them. Nevertheless, to progress from one attempt to another, the children have to fi ll 
in a score sheet (Fig.  4 ). The results of the last ten attempts appear in this score 
sheet, which provides some information for the teacher.

  Fig. 3    The ‘passenger train’, ‘discovering’ mode       

  Fig. 4    Student ‘score’ sheet       
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       The Passenger Train Lessons 

 In Chloe and Mia’s classrooms, the working environment and activity format 
(Ruthven  2012 ) were very similar. In both cases, the computer equipment was lim-
ited; one computer in Chloe's classroom, one to three computers in Mia’s one and 
neither classroom had a digital projector. The activity format followed a typical 
approach in French kindergarten classrooms, involving whole-class discussion and 
group work. The groups, comprising of 4–6 children, practise the same activities in 
succession. There are two adults in the class, the teacher and an assistant so it is 
usual for two of the groups to have adult supervision, whilst the two remaining 
groups work by themselves. Chloe's and Mia’s Passenger Train lessons are described 
in detail within  Appendix 4 . These lessons lasted fi ve or six sessions. Each session 
was repeated four times during a week (in France, children go to school 4 days a 
week so teachers usually organise a group rotation each day for a same session, and 
a session lasts 1 week).  

    Introduction of the Software 

   Chloe’s Class 

 Chloe introduced the mathematical situation, and the associated tools (paper materi-
als and the software) simultaneously. She began by manipulating the software while 
the children watched. Then each student, in turn, tried to use the software, with the 
teacher nearby to help in case of diffi culties. Within the software, each rabbit must 
be moved precisely using the mouse, which can be diffi cult for some children. 
When Chloe was not with a group of children in which some children had diffi culty 
when moving a rabbit, she ‘left’ part of the responsibility of the technical 
knowledge to the children who had mastered the movement. They were in charge of 
helping others if needed.  

   Mia’s Class 

 Mia introduced the mathematical situation with the paper material alone and she 
chose to start using the software in session 2. Even though she had organised group 
work for this session, she decided to introduce the software in a whole classroom 
setting. She sat near the computer and manipulated the mouse while all the children 
watched the computer screen, sitting on two rows of benches and on tables, in front 
of the screen, with the lights off (Fig.  5 ). Mia decided to introduce the software in a 
whole classroom setting because she thought that if she introduced it in a work 
group, the children working autonomously on other tasks would be more interested 
by the software than by the work they had to do.

   For the introduction of the software (S1 for Chloe and S2 for Mia), the didactical 
confi gurations used were different, but we identify nevertheless the same two types 
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of orchestration  Technical-demo  and  Explain-the-screen  (Drijvers  2012 ): Our 
analysis points out that, contrary to the conclusions of Drijvers et al. ( 2010 ), the 
didactical confi guration of the Technical-demo orchestration does not necessarily 
include “facilities for projecting the computer screen and a classroom arrangement 
that allows the children to follow the demonstration” (p. 219). What is clearly at 
stake, for this orchestration, is to design a didactical confi guration allowing each 
student to follow the demonstration. Mia and Chloe both overcame the lack of a 
digital projector through their choices of classroom arrangement. In both cases, the 
main didactical objective that influenced the didactical configuration was that 
in order for the children to work independently of the teacher with the software, 
the teachers have to ensure that the children are ‘technically’ autonomous and that 
they understand how to realise the tasks on their own. So, as exploitation modes, 
teachers pay particular attention to the explanation of the tasks, the features of 
the interface and the related actions. The emphasis on the task explanation is 
necessary as the children are not able to read yet and must not see the software 
merely as a game. 

 We have shown that Mia and Chloe created different didactical confi gurations 
even though their working environment was similar. These choices were dependent 
on each teacher’s professional knowledge about student behaviours and the 
pedagogical organisation of the classroom. Nevertheless, we notice that they both 
had anticipated the importance of guiding children’s geneses by providing good 
 explanations, even though the use of the software did not seem too complex.   

    Orchestrating Student Heterogeneity: Fostering Autonomy 

 We have identifi ed two new orchestrations types in Chloe and Mia’s classes: 
 Autonomous-use  and  Supported-use . These orchestrations appeared more noticeably 
during sessions 3 and 4 in Chloe’s class and during sessions 2 and 3 in Mia’ class 

  Fig. 5    Mia introduced the software in whole class (S2)       
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( Appendix 4 ). Chloe and Mia designed these orchestrations in order to solve 
professional problems, which were how to manage the children’s heterogeneity 
and, more precisely, how to provide support to the children most in need? In both 
cases, they responded by making themselves available for the children most in need. 
This implies that their main didactical objective in relation to these two new orches-
trations was to design an orchestration that allows the teacher to be near the children 
most in need. 

   Autonomous-Use 

 As the children who do not have any diffi culties are able to work autonomously with 
the software, the teacher is ‘discharged’ and can devote herself to the children who 
were most in need. The didactical confi guration comprises at least one computer, a 
prior identifi cation of the children who do not have diffi culty through a diagnostic 
evaluation (instrumented or not) and individual or paired-work with the software. 
As an exploitation mode, the teacher mainly needs to anticipate and organise rotation 
(if needed) of the children working autonomously with the software. Of course, teach-
ers do not leave the older children in complete autonomy. They occasionally check 
their work and intervene, when necessary, in relation to the mathematical or technical 
content. When teachers check the work of these children, the orchestration is similar 
to Drijver’s ( 2012 ) ‘Work-and-walk-by’ orchestration type.  

   Supported-Use 

 For the children most in need the teacher stays nearby and provides help to the children 
as they work on the software. The didactical confi guration comprises at least one com-
puter, a prior identifi cation of the children who do have diffi culties through a diagnostic 
evaluation (instrumented or not) and teacher’s presence (Fig.  6 ). In an exploitation 
mode, the teacher has to anticipate the main diffi culties children can encounter and the 
remediation needed. These diffi culties can concern the manipulation of the software, 
the mathematical content being addressed or the prerequisite mathematical content. In 
this orchestration, the teacher usually intervenes individually with children. However, 
we do not include this orchestration in a  Work-and- walk-by  type. Indeed, the didactical 
objectives of these two orchestrations differ signifi cantly. For the  Supported-use  
orchestration, the didactical objective is an explicit choice to support children most in 
need. For the  Work-and-walk-by  orchestration, Drijvers ( 2012 ) shows that the fact that 
“many teachers seem to prefer individual interactions to whole-class teaching” (p. 271) 
explains the high frequency of this orchestration. He does not take into account the 
possibility that handling the children’s heterogeneity might explain such an orchestra-
tion choice.

   The professional problem we have identifi ed (how to deal with children’s 
heterogeneity and precisely how to support children most in need) is very general. 
The pedagogical organisation of the class divided into four groups working in 
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parallel on different tasks can be interpreted as part of the teachers’ answers to this 
problem. So  Autonomous-use  and  Supported-use  orchestrations are not specifi c of 
the use of software. However, we have identifi ed two features of the Passenger Train 
program that facilitates such orchestrations:

•    Passenger Train (paper or software) is a self-validating situation, supporting 
autonomous use;  

•   The Passenger Train provides the validation for the children’s answers 
(Bueno- Ravel and Gueudet  2009 ) and allows many attempts, which also sup-
ports the autonomous work of children.    

  Autonomous-use  orchestration leads Chloe and Mia to think about the design of 
resources that will enable them to keep a trace of the children’s autonomous work 
as the Passenger Train software does not store their results. Within the teachers’ 
joint description of their lessons that was written for colleagues, they proposed three 
resources that might overcome this problem:

•    A worksheet on which children note each attempt, and whether they succeed 
or not;  

•   A road map on which children note each attempt, if they succeed or not, and 
indicate the parameters of the software (number of rabbits, number of passenger 
cars);  

•   An observation grid for teachers that highlights the main procedures and 
mistakes children might encounter.    

 We interpret this process as a genesis, encompassing intertwined instrumentation 
and instrumentalisation processes. Chloe and Mia know how important it is to have 
access to the children’s work, particularly for children who cannot yet write.   

  Fig. 6    Mia is helping a student who has been identifi ed as ‘most in need’, while a student on her 
left is working autonomously       
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    Infl uence of a Digital Projector or IWB: Planned Orchestrations 

 In our analysis of the abacus-lessons, we have mentioned that the installation of an 
IWB in Deborah’s classroom led her to modify her orchestration choices. (Chloe’s 
and Mia’s schools were not equipped with IWBs or digital projectors). We assume 
that had Chloe and Mia had access to projection facilities they would have modifi ed 
their orchestrations. Within their lesson descriptions they suggested ‘Sherpa-at- 
work’ orchestrations for colleagues who had projection facilities. Indeed at inter-
view, when asked how they would adapt the Passenger Train lessons, they said 
that having a digital projector or an IWB facilitated the introduction of the software, 
“At least one and a half hours and three work groups are saved during the software 
presentation phase if you have a digital projector […] The large screen caught the 
attention of the children […]” (our translation). However, most of their writings 
are centred on joint work concerning procedures or synthesis phases, instrumented 
by the Passenger Train software. “(digital projector and IWB) are interesting 
for synthesis and institutionalisation phases; the different strategies can be illus-
trated by the children, and, the attractiveness of the Passenger Train is a real 
context to facilitate talk […]” (our translation). They developed three variations 
of  Sherpa-at-work  orchestration: (1) one Sherpa-student, ‘guided’ by the teacher, 
(2) one Sherpa-teacher, following on the computer actions that a student shows on 
the wide screen and (3) a Sherpa- pair, one student following on the computer actions 
that the other student shows on the wide screen (or the student near the wide screen 
follows the actions of the student on the computer). 

 The didactical objective of this orchestration is to foster verbal and non-verbal 
interactions (e.g. showing how to count the passenger cars with a fi nger) in the whole 
classroom setting in order to institutionalise expert procedures. Chloe and Mia have 
been led to develop such exploitation modes to make sure that children will learn 
something using this software and not only remember their successes or failures at 
the game: ‘the teacher must be vigilant about the joint verbalisation (between 
the computer screen and the wide screen) and the reproduction of the counting 
mode on the wide screen […]. Without such precautions, only the fi nal result (the 
place of the rabbit and the validation) will be visible to the eyes of the whole 
class’ (our translation). 

 Drijvers et al. ( 2010 ) have pointed out that, in a working context offering 
projection facilities, even though teacher guidelines describing  Sherpa-at-work  
orchestration are given to teachers before their lessons, this type of orchestration is 
ignored ‘to a certain extent’. They report that teachers’ orchestration choices 
are consistent with ‘their regular habits and their view on mathematics teaching’. 
In order to follow the lesson descriptions elaborated by Mia and Chloe it is necessary 
to be aware of research specifi c to the kindergarten school context. We will return to 
this perspective in our conclusion. In the next section, we discuss central issues 
emerging from both case studies.    
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    Discussion 

 In this section we draw on the case studies in order to enlighten general issues about 
teachers’ use of software in mathematics at the kindergarten level and, in particular, 
with 5–6-year-old children. Naturally, the scope of our study remains limited as we 
observed only a few teachers who are experienced and involved in a design and 
research group. Nevertheless, some of the facts that we observed are not restricted 
to their specifi c case. We fi rst present issues which are directly linked with specifi c 
aspects of this level of schooling and then others concerning orchestration more 
generally. 

    Articulation of Resources 

 Kindergarten teachers in France usually use textbooks for their teaching of mathematics, 
which include a teacher’s guide and specifi c worksheets for the children. These 
textbooks suggest exercises and some of them also include mathematical situations, 
developed in the course of collaborations between teachers and researchers. 
Moreover, diverse physical materials such as games, cards, tokens, cubes and 
fi gurines are also included. In previous studies we noticed that for the secondary 
school teachers’ resource system, the articulation between a textbook and a software 
program is an important factor for technology integration (Gueudet and Trouche 
 2012 ). We observe the same here at the kindergarten level. For Chloe, the ‘passenger 
train’ is associated with a game on paper that she had already used before and for 
Deborah, two exercises from textbooks are associated with the work on the abacus 
(sessions S3 to S6). Moreover, many other kinds of material are included and the 
virtual abacus is naturally articulated with the physical abacus, whilst the Passenger 
Train software is used alongside the corresponding situation on paper. In fact the 
computer becomes one of many artefacts living in the classroom, which probably 
contributes to the richness and complexity of the didactical confi gurations, and thus 
of the orchestrations.  

    Types of Orchestration at Kindergarten Level 

 From the outset, we expected the orchestrations at this very early level to be signifi cantly 
different from the orchestrations observed by Drijvers ( 2012 ) at the secondary 
school level. Some differences are linked with the available material. On the one 
hand, there are often only a few computers available in the classrooms; on the other 
hand, as mentioned above there is a wide variety of material used by the teachers at 
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this level. So the computer is one resource, amongst many others. Nevertheless, the 
projection facilities seem to lead to a central role played by an image on the computer 
screen, projected for the whole class, or at least for a half-class. Differences are also 
linked with the importance of verbalisation in these class levels; it seems to foster 
orchestrations encompassing this verbalisation such as  Discuss-the-screen . 

 The blackboard remains an important resource in the classroom, but for children 
aged 5–6 who cannot read, it is mostly fi lled with images, only some of these being 
connected to mathematics, which can explain the absence of the  Link-screen-board  
orchestration. The material is not the only cause for the differences we observed. 
As mentioned in the previous section, there is much less whole classroom teaching 
and much more group work at this level. For the introduction of a new software 
program, the  Technical-demo ,  Explain-the-screen  and  Discuss-the-screen  orches-
tration types introduced by Drijvers ( 2012 ) are still present, if we assume that we 
can adapt them to groups of children (while they were introduced with a whole 
classroom presentation). But we also observed new orchestration types linked with 
the usual group work organisation, where children work on different tasks: the 
 Autonomous-use  and the  Supported-use . We do not claim that these types of orches-
trations are absent at the secondary school level. Nevertheless, they are probably 
much more frequent at the kindergarten level because of the usual  activity format  
(Ruthven  2012 ), which includes group work on a regular basis and also because of 
the importance of managing heterogeneity at this school level.  

    The Software, Shaping the Orchestration Choices? 

 One of the questions raised by Drijvers in his work is the infl uence of the software’s 
features on the orchestration choices. Our data clearly demonstrate such an infl uence, 
in several directions. Concerning the presence of the teacher with children working 
on the software, we noticed that it clearly depends on the feedback offered, or not, 
by this software. Naturally, if the software provides feedback, the teacher’s presence 
is needed less. With the virtual abacus, the number inscribed is displayed, and children 
can compare it to the number they want to reach. Nevertheless, they will never 
receive a message such as ‘wrong number displayed’, so the teacher may still need 
to intervene. Another important aspect of the orchestration that depends on the 
software features is the presence of recording worksheets to complement the work 
on the computer. If the software provides access to the children’s answers, these 
written notes are needed less, especially at this very early level. As the children 
cannot write, there is no objective linked with the writing of a mathematical procedure, 
but only the need for the teacher to have access to potential mistakes (if the rabbit 
has been misplaced, in which carriage was it? If a number has not been correctly 
inscribed, was there confusion between the rods etc.). We assume that a change in 
the software, permitting the recording of children’s productions, would certainly 
change the orchestrations, requiring less written records.  
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    Orchestration and Teacher Knowledge 

   Teacher Knowledge Shaping Orchestration Choices 

 The issues discussed above provide evidence that orchestration choices depend on 
the available material, the number of computers and the features of a software 
program. Orchestration choices also depend on the teacher’s resource system and 
activity format. We argue that these are also linked with teacher knowledge and 
beliefs and give some important examples below. In these examples, we infer 
teacher knowledge by comparing the notes taken during the group’s meetings, the 
lesson plans designed by the teacher, for herself and for colleagues, and the 
classroom videos. 

 Deborah has professional knowledge about number sense and its diffi culty for 
children.  In her orchestrations, she plans exploitation modes where she emphasises 
the different values of the beads depending on the particular rods, using the virtual 
abacus projected on a screen. This orchestration choice is clearly a consequence of 
teacher knowledge about number sense, about children’s diffi culties with it, and 
about the abacus. 

 For Chloe and Mia, their knowledge about the children’s need to learn to use 
numbers as indicators of both quantity and position, determined their choice of the 
Passenger Train software, especially as only a few situations exist that enable work 
on the second aspect. Chloe and Mia placed great importance on the management 
of heterogeneity within the classroom. Thus they used the software as a resource 
to support this management. They developed a document, with a ‘resource’ part 
including the software, the associated children’s worksheets, and all the material 
elements of the didactic confi guration. This document also included professional 
knowledge about the management of heterogeneity as they considered that the 
skilled children could work by themselves whilst the teacher has to stay with the 
others, a choice that can also be considered as pedagogical knowledge.  

   Teacher Learning 

 During the lessons we observed unplanned elements within the teachers’ didactical 
performances. We also observed evolutions in their creation of the orchestrations. 
The teacher-children’s interactions were a major source for these evolutions 
alongside the major resource provided by the children’s outputs. We consider this 
as evidence of teacher learning, involving different kinds of knowledge. The 
teachers certainly learned about children’s reasoning. For example, in the case of 
the abacus, Deborah noticed that there were three possible explanations for how to 
display fi ve on the abacus:

•    Counting reasoning: Five one-unit counters are activated and displayed by fi ve 
gestures by counting: one, two, three, four, fi ve.  
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•   Grouping reasoning: Five one-unit counters are activated and displayed in one 
gesture: the fi fth bead is activated.  

•   Calculating reasoning: One fi ve-unit counter is activated.    

 Deborah planned to revise her lesson plan for the abacus-lessons to include an 
additional objective to hold a discussion with the children to encourage them to 
reason in these three ways and make the connection with the calculations. In the 
case of the Passenger Train Chloe discovered that the children used two correct 
procedures, which were to use the number of the passenger car hosting the rabbit 
or to count the empty passenger cars on the left. In fact the use of number as 
memory of position is always linked with its use as memory of quantity. She also 
plans to discuss with the children these two possibilities during her next Passenger 
Train lessons. 

 In Deborah’s class, the evolutions also concerned the responsibility given to the 
children, with a tendency towards giving them more responsibility. This evolution, 
from teacher-centred to children-centred orchestrations, can be a consequence of 
the participation of the teachers in the group (Drijvers observes that the teachers 
involved in his experiment proposed more student-centred orchestrations than in 
their usual practice). We consider anyway that it provides evidence for teacher 
learning and about the possibility to leave some responsibilities to the children 
when working in mathematics with technology. 

 Our focus here was not on teacher knowledge evolution and documentational 
geneses. Additional research would be needed to study these geneses and the links 
with the orchestration evolutions. Geneses are indeed long-term processes and a 
follow-up of teachers during several school years is necessary for their analysis. 
This will be the subject of another study; the same holds for the appropriation, by 
other teachers, of the resources designed during this project.    

    Conclusion: Orchestrations at the Kindergarten Level 

 In her review of research papers about the use of technology in the teaching of 
mathematics, Joubert ( 2013 ) identifi es ‘orchestrating learning’ as the central theme, 
present in 74 % of the papers she considers. She also observes that less than 5 % 
of the papers concern primary school or kindergarten. Levy and Mioduser ( 2010 ) 
demonstrate that, in the context of kindergarten children learning mathematics with 
digital artefacts, the learning environment is of vital importance. Thus answering 
the question proposed here (§ 1.2) (which orchestrations are chosen by kindergarten 
teachers when using technology in their teaching of mathematics and which factors 
shape these choices of orchestrations?) is of central importance within mathematics 
education research. 

 Most of the orchestration types introduced by Drijvers from the secondary school 
context can also be observed at the kindergarten level, with adaptations resulting 
from the available material or from a usual activity format. In our work, the  Link-
screen- board  orchestration does not intervene, but this might be a specifi c feature of 
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the kindergarten context. We identifi ed new types of orchestrations:   Autonomous- use  
and  Supported-use . These two types of orchestrations are linked with one of the 
teacher’s objectives when orchestrating the teaching of mathematics, which is 
to take account of individual children’s differences. The study of kindergarten, 
or primary school classrooms has shown that the teachers seem to focus their 
orchestrations more towards these differences. This issue resonates with a recom-
mendation formulated by Hoyles et al. ( 2004 ), in their comments about the use of 
orchestration, to study the integration of digital technologies: “the individual differ-
ence is not something to be minimized or avoided, it is an inevitable part of orches-
tration itself” (p. 320). Our work certainly supports this claim. 

 The teachers also proposed variations on the  Sherpa-at-work  orchestration. We 
hypothesise that, at least in the French teaching context, the kindergarten (or 
primary school) level permits the development of more orchestration types than at 
the secondary school level. Kindergarten teachers follow the children for the whole 
day (a school day lasts 6 h), and are free to organise this time. They also teach 
several subjects which, in turn, certainly leads to different activity formats. This can 
foster the development of a specifi c teacher agency concerning orchestration; this 
hypothesis naturally needs to be investigated further. 

 Concerning factors shaping the orchestrations, we recorded infl uences from the 
material environment, the available resources (in particular from the software 
features), the usual activity formats, and from teacher knowledge, with all of these 
being tightly intertwined. Different kinds of teacher knowledge come into consider-
ation: pedagogical knowledge about the management of heterogeneity; knowledge 
about curriculum material (mathematical exercises available in textbooks, for 
example); and knowledge about children’s possible mistakes and diffi culties. 
Knowledge about the teaching and learning of numbers at this school level (impor-
tance of number sense, distinction between number as memory of quantity and as 
memory of position) was especially important for the teachers’ choice of a given 
software program. The kindergarten teachers involved in our study were not spe-
cialists in mathematics. In spite of this, the mathematical content and its didactical 
aspects were central in their choices. In this chapter we did not focus on profes-
sional development. Nevertheless, we point out that our observations are coherent 
with those of Erfjord et al. ( 2012 ), who comment that when involved in a research 
group concerning the orchestration of mathematical activities, kindergarten teachers 
adopt an inquiry stance. It seems to contribute, in particular, to the development 
of their awareness of the mathematical ideas involved. However, the identifi cation 
of the specifi c interventions of different kinds of teacher professional knowledge, 
and how they articulate with instrumental knowledge about the possible use of a 
given software program, requires an additional study. 

 Much research about the use of technology for the teaching of mathematics to 
young children, in particular at the kindergarten level, is still needed. We consider 
that the perspective of the documentational approach is fruitful for these studies. 
Especially at the kindergarten level and in primary school, technology is only 
one teaching resource amongst many others, and investigating teachers’ work and 
professional development requires taking into account their interactions with these 
resources.     
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     Appendix 1: The Abacus-Course in Deborah’s Class 
(5–6 Years Old) 

 Session title 

 Resources used by the teacher and 
children 

 Exploitation mode 

 S1  Discovering the abacus: setting numbers up to 6  Resources: 
 S2  Discovering the abacus: setting and reading 

numbers up to 6 
  Virtual abacus and digital projector 

(teacher) 
 S3  Setting and reading numbers (up to 12). Adding 

(1 + 2, 3 + 1, etc.) with the game greli-grelo 
(from teacher textbook): teacher has beads in 
hands and children are asked to say the total 
number of beads. Verifi cation is made on 
physical abacus by children 

  Physical abacus (children) 
  Teacher textbooks for preparation 
 Exploitation: 
  One physical abacus per student 
  Children have to set numbers on the 

physical abacus and correction is 
made on the virtual abacus by 
teacher. Children do not use the 
virtual abacus before S8 

 S4  Setting and reading numbers (up to 25). Adding 
with the game greli-grelo 

 S5  Setting and reading numbers. Adding with the 
treasure game (from teacher textbook): 
children win golden coins with a dice and they 
are asked to say the total number of coins. 
Verifi cation is made on the physical abacus by 
children 

  Children have to read numbers set on 
the virtual abacus by teacher 

 S6  Setting and reading numbers. Adding with the 
treasure game 

 S7  Setting and reading numbers. Adding with the 
treasure game 

 S8  Setting and reading numbers (0–5)  Resources: 
  Virtual abacus and IWB for both 

teacher and children 
  Pencil and paper work prepared for 

children 
 S9  Reading numbers (5–10) 

  Sessions 11 and 12: the ‘abacus 
book’ 

 Exploitation: 
  One computer per student with the 

virtual abacus (to help children to 
fi ll the paper work) 

 S10  Setting numbers (5–10) 
 S11  Reading numbers (10–15) 

  Sessions’ introduction on the virtual 
abacus by teacher and children (set 
numbers in different ways with the 
IWB) 

 S12  Setting numbers (10–15) 

  Individual work for children 
(pencil-paper and virtual abacus 
on computer) 
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            Appendix 2: Examples of children’ Work on the Chinese 
Abacus, Deborah’s Class (5–6 Years Old) 

 Session 8

    1.    Read a number: the examples of 5 and 0    

      
      

 This student recognises number 5 set on the 
abacus but wrote it in ‘a mirror form’ 
which is usual at this level 

 Children learn to recognise a particular number 
that is 0 

     2.    Set a number: the example of 5    

            

 This student drew the beads between two rods 
and after on the unit rods, activating fi ve 
one-unit-counter 

 This student fi rst wrote the numeral 5 on the 
unit rod and the teacher asked to draw the 
beads 

            
 This student drew the activated beads and the 

non activated as well. Most children drew 
only activated beads spontaneously 

 This student drew one fi ve-unit-counter on 
the units rods to set 5 

   Session 9

    1.    Read a number: the example of 6    

      
 This student recognised number 6 set on the abacus but wrote it in the wrong way (see session 8) 
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     2.    Set a number: the examples of 5 and 10 (for the same student)    

            

 Here the number 5 is set as 5 one-unit counters 
and 10 as 2 fi ve-unit counters. Only 
activated beads are drawn 

 Here the number 5 is set as 1 fi ve-unit 
counter and a non activated bead is drawn. 
The number 10 is set in the economical 
inscription i-e 1 one-unit counter in the 
tens. To represent beads, this student 
draws a short line 

            

 Here beads are circles (not fi lled) and the two 
numbers are set in the economical way 

 To set number 5, 5 beads are activated: there 
is a misunderstanding between quantity of 
activated beads and the quantity 
represented by the 5-unit counters. To set 
10, it seems that the seven beads per rod 
are activated 

          Appendix 3: Deborah’s Class Transcriptions in French 

 Session3: Beginning of the session. A discussion about how to set 5 on the physical 
abacus raised between children. Deborah was sitting with the children and goes to 
the screen to show children’ propositions.

  Deborah:   Vous m’avez proposé… Laurie, tu m’as proposé d’activer les cinq boules 
de la tige rouge, d’accord… Pourquoi ?  [La tige des unités est rouge sur le 
boulier virtuel, les autres sont vertes, Deborah active 5 comme cinq 
unaires dans les unités].  

 Laurie : Parce que celles du haut, elles servent à rien. 
 Deborah:   Parce que tu penses que celles du haut, elles ne servent à rien. Est-ce que 

vous êtes d’accord avec le choix de Laurie? 
 Quelques élèves:  Non! 
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 Deborah:  Non? 
 Une élève :  Parce que les boules du haut, elles valent 5. 
 Deborah : On va vérifi er, j’avais demandé de faire combien ? 
 Une élève :  Cinq ! 
 Deborah :  Très bien.  [Deborah active l’icône « voir nombre » et le chiffre 5 apparaît à 
l’écran]  
 Plusieurs élèves :  Cinq. 
 Deborah:  Alors, est-ce que le choix de Laurie est juste? 
 Quelques élèves :  Oui ! 
 Deborah :   Maintenant, il y a une autre possibilité par cinq. Certains élèves ont activé 

une quinaire, c’est-à-dire une boule du haut.  [Deborah montre à l’écran le 
chiffre 5 comme une quinaire, l’icône « voir nombre » est désactivé].  
Alors, combien on a de possibilités pour inscrire cinq ? Maëlle ? 

 Maëlle :  Deux. 
 Deborah :   Oui, deux façons. Soit on active les cinq boules du bas, soit j’active une 

boule du haut.  [Deborah montre à l’écran les deux possibilités]  

   Session 9. Children come to the IWB to set 8. « Discuss-the-screen » orchestra-
tion raises.

  Deborah:  Je voudrais que vous activiez… Huit ! On réfl échit, comment est-ce qu’on 
fait huit ?  [Certains élèves veulent donner immédiatement la réponse] . 
Huit c’est ? 

 Quelques élèves :  Cinq et trois ! Montrez-moi avec vos mains. Cinq et trois ! Kevin. 
  [Kevin va au tableau, il active une quinaire et trois unaires (3   ème    boule, un 
geste)]  

 Deborah :   Cinq et trois. Tu as bien activé cinq et trois  [Deborah s’approche du tab-
leau pour montrer les boules activées ]. Vous êtres d’accord avec son choix 
? Est-ce qu’il y aurait une autre solution ? Une autre façon d’inscrire le 
chiffre trois ? Le chiffre huit ? 

 Quelques élèves : Oui 
 Deborah :   Oui, Anaïs. [Anaïs va au tableau et prend la crayon]. Vas-y, tu n’as pas 

appuyé assez fort, je pense. 
 [Anaïs active trois unaires, en trois gestes : un deux, trois, puis une 
quinaire] 

 Deborah :   Alors, c’est parce que toi, tu as activé les boules les une à la suite des 
autres. C’est très bien. Maëlle. 
  [Maëlle va au tableau et active trois unaires dans les dizaines et une 
quinaire dans les unités, ce qui fait 35, l’icône « voir nombre » est activé.]  

 Deborah :  No 
  [Maëlle essaie avec trois unaires dans les dizaines et cinq unaires dans les 
unités, ce qui fait également 35.]  

 Deborah :  Ah, tu as activé en effet huit boules, mais est-ce que tu as inscrit le nombre huit 
? 
 Maëlle :  Non.  [Regardant le nombre 35 écrit en chiffres au tableau]  
 Deborah :  Est-ce que tu as compris ton erreur ? 
 Maëlle :  Ah oui, trois et cinq, ça fait 30 et 5 ! 
 Deborah :  Trois et cinq, ça fait 35. [Montrant les deux différentes tiges. ]  Et surtout 

elles ne sont pas situées sur la même tige. 
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           Appendix 4: The ‘Passenger Train’ in Chloe and Mia’s 
Classes (5–6 Years Old) 

 The ‘passenger train’ in  Chloe’s class  (5–6 years old)

 Confi guration/Exploitation mode 
 Resources used by the 
teacher 

 S1   Presentation  of ‘passenger train’ on paper (by the teacher, 
for a group of six children) 

 Trains and rabbits on 
paper 

 Computer with the 
software 

  Presentation  of the ‘passenger train’ on the computer, by the 
teacher, then successively by each student, working in a pair 
(the four other children are spectators) 

 S2   Learning phase  (30 min): The children are grouped by six and 
organised in pairs inside the group 

 Trains and rabbits on 
paper 

  Synthesis : whole class, when all the groups have done the 
‘passenger train’ situation 

 S3   Learning phase  (30 min): The children are grouped by six and 
organised in pairs inside the group 

 Trains and rabbits on 
paper 

 One computer with the 
software 

  Training on the software : individual work for advanced children 
  Synthesis : whole class, when all the groups have done the 

‘passenger train’ situation 
 S4   Training on the software  (10 min): pair work for most of the 

children, in autonomy, rotation each 10 min. Morning 
 One computer with the 

software 
 Trains and rabbits on 

paper + Computer 
with the software 

  Scaffolding  (30 min): group work for children who have diffi culties, 
with the teacher. Afternoon 

  Synthesis : whole class, when all the groups have done the 
‘passenger train’ situation 

 S5   Training on the software  (10 min): pair work (homogeneous), in 
autonomy, rotation each 10 min. Teacher chooses the diffi culty 
level (numbers of passenger cars, numbers of rabbits) according 
to the level of the ‘pair’ 

 One computer with the 
software 

 S6   Training on the software  (10 min): pair work (homogeneous), in 
autonomy, rotation each 10 min. Teacher chooses the diffi culty 
level (numbers of passenger cars, numbers of rabbits) according 
to the level of the ‘pair’ 

 One computer with the 
software 

   The ‘passenger train’ in  Mia’s class  (5–6 years old)

 Confi guration/Exploitation mode  Resources used by the teacher 

 S1   Diagnostic assessment:  children in groups of fi ve or six 
and work individually 

 Trains and rabbits on paper 
 One computer with the 

software (Diagnostic 
assessment was made on 
computer for one group of 
fi ve children) 

(continued)
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 Confi guration/Exploitation mode  Resources used by the teacher 

 S2   Presentation  of the ‘passenger train’ on the computer, by 
the teacher, for the whole class 

 One computer with the 
software 

 Three computers with the 
software 

  Learning phase  (30 min): children in groups of fi ve or six. 
Children with no diffi culties work in pairs taking turns on 
the computer (in autonomy). The others (one or two 
children) work individually, teacher is nearby 

  Synthesis : whole class, when all the groups have done the 
‘passenger train’ situation 

 S3   Training on the software  (30 min): pair work for most of 
the children, in autonomy, rotation each 10 min 

 Three computers with the 
software 

  Scaffolding  (30 min): group work for children who have 
diffi culties, with the teacher 

 S4   Training on the software : pair work (homogeneous), in 
autonomy, rotation. Teacher chooses the diffi culty level 
(numbers of passenger cars, numbers of rabbits) 
according to the level of the ‘pair’ 

 Three computers with the 
software 

 Training sheet created by Mia 

  Training on the paper:  individual work (homogeneous) 
 S5   Training on the software  (10 min): pair work (homoge-

neous), in autonomy, rotation each 10 min. Teacher 
chooses the diffi culty level (numbers of passenger cars, 
numbers of rabbits) according to the level of the ‘pair’ 

 One computer with the 
software 
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    Abstract     The spreadsheet is not  a priori  a didactical tool for mathematics  education. 
It may progressively become such an instrument through the process of professional 
geneses on the part of teachers. This chapter describes the beginning of such a gen-
esis, and presents some results concerning teachers’ professional development with 
ICT by examining the outcomes of two different sets of data. Theoretical notions, 
such as instrumental distance and double instrumental genesis supported the analysis 
of data leading to a comparison of a teacher integrating spreadsheets, for the fi rst 
time in her practices, with the practices of teachers who are more expert with 
spreadsheets. The similarities found in the ways they use the tool leads to some 
hypotheses on the importance of these common elements as key issues in teachers’ 
ICT practices.  

  Keywords     Mathematics teaching and learning   •   Teaching practices   •   ICT integration   
•   Professional learning of mathematics teachers   •   Technology-mediated classroom 
practices   •   Spreadsheet   •   Professional/personal instrument   •   Double instrumental 
geneses (professional/personal)   •   Instrumental distance   •   Novice/expert teacher  

        Introduction 

 Around the 1980s, the idea that ICT could serve school learning, in particular math-
ematical learning, began to develop. Nowadays the use of ICT in classrooms is 
prescribed in the curricula of many countries and it includes detailed recommenda-
tions for teachers (Eurydice  2004    , p. 24). However, many reports comment upon the 
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poor integration of ICT in mathematics teaching. After an enthusiastic period in 
which the benefi ts of the use of ICT for learning mathematics have been claimed, 
researchers now describe a phenomenon of disappointment. It is a fact that the 
potential for ICT use in mathematics is rather poorly exploited and that ultimately, 
technology integration is very limited. For example, using data from PISA 2003, 
Eurydice ( 2005 ) reported that fewer than half of the students (from a more than 
90 000  students survey) were familiar with activities with spreadsheets such as 
plotting a graph. One reason for this, which has been suggested by many studies, is 
the ‘teacher barrier’ (see for instance Ruthven  2007  or Balanskat et al.  2006 ). 
Hence it seems crucial to advance our knowledge of teachers’ ‘usual practices’ 
alongside their technology-mediated ones: How do ICT practices develop and 
evolve in time? What do we know about the instrumental geneses with ICT and 
about teachers’ resistances? My own doctoral research (Haspekian  2005a ) led me to 
look for  reasons beyond those that are often cited: lack of time, lack of training, lack 
of material, conservatism etc. Without denying these factors, my research claimed 
that there are deeper reasons for teachers’ resistance, related to the  impact  that 
technology has on the mathematics to be taught, and the diffi culty, for teachers in 
managing this impact. Therefore, it remains important to advance our understanding 
of this impact and the ways that teachers account for it. 

 With this purpose in mind, this chapter aims to provide an insight into teachers’ 
practices with technology by comparing the results of different studies concerning 
a common technology, the spreadsheet (Haspekian  2005a ,  2006 ,  2011 ). The fi rst 
study formed different elements of my doctoral study. These were: an observation 
of a teacher, called Ann, 1  who was integrating spreadsheet for the fi rst time in her 
practices; and an inquiry interviewing and comparing pre-service teachers with 
teachers who were considered ‘experts’ with spreadsheets. 2     The second and third 
studies resulted from a different research project observing ICT sessions in ordinary 
classrooms, during which I happened to return to Ann’s classroom. Thus, I had the 
opportunity to observe her practice a year later. Consequently, these three studies 
provided an opportunity to make an interesting comparison concerning teachers’ 
practices with spreadsheets at different stages of integration within mathematics 
teaching:

•    Pre-service teachers that were novice in teaching and in using spreadsheets in 
mathematics teaching,  

•   Teachers who are expert with spreadsheets and teaching mathematics using 
spreadsheet;  

•   A teacher who is neither a novice, nor an expert with ICT in general.    

 This comparison involved two theoretical frameworks. The instrumental 
approach (Artigue  2002 ; Guin et al.  2004 ), which was developed around the  concept 

1   The name taken in the initial French research is ‘Dan’; in this chapter, it is translated to ‘Ann’ as 
the teacher is a woman. 
2   This term is explained in section 3. 

M. Haspekian



243

of instrumental genesis, supported an analysis of the impact of the spreadsheet on 
mathematics. This led me to determine both the didactical potential of spreadsheets 
and the diffi culties that might occur as the spreadsheet changed the mathematics to 
be taught. The second framework was the didactic and ergonomic approach (Robert 
and Rogalski  2002 ), which helped to describe teachers’ activity. In the second sec-
tion of this chapter, this is used alongside the instrumental approach to understand 
Ann’s evolution over two years. The third section probes Ann’s practices more 
deeply by comparing her evolution with the practices of the ‘expert’ teachers. This 
will highlight some results about the development of ICT use in teachers’ practices 
concerning the way that their practices evolve and the diffi culties they encounter 
when integrating spreadsheet technology.  

    ICT and Mathematics Education: The Case 
of the Spreadsheet 

 An increasing number of technologies can be found in today’s mathematical school 
landscape, from pocket calculators adapted for the elementary school through to 
universities’ virtual learning environments that include interactive exercises and 
complete courses for various domains of mathematics. In France, the spreadsheet is 
offi cially prescribed for use in junior high and high schools, especially for the teach-
ing and learning of algebra. However, this tool was neither created for, nor has it 
been adapted to, mathematics learning. The origins of the spreadsheet are, quite 
remote from the educational world, in accountancy (see Bruillard and Blondel  2007  
for a historical and economical approach of the creation of the spreadsheet). Yet, to 
know how to calculate with a spreadsheet, in particular by using a formula, is a 
competency required in the curricula of an increasing number of countries world-
wide (Pelgrum and Anderson  2001 ). Prior to the existence of spreadsheets, the use 
of computer tools required competencies in programming and thus, the learning of 
a programming language. The spreadsheet provided, for the fi rst time, a way to 
avoid the need to program, leading Baker and Sugden  (  2003 , p. 18) to say, “Nowhere 
is its application becoming more marked than in the fi eld of education”. However, 
in spite of some isolated experiments to adapt them for education, the spreadsheet 
remains a tool for the business world, with an increasingly sophisticated set of func-
tionalities that have been designed in response to business rather than educational 
demands. 

 The poor integration of spreadsheets within mathematics teaching contrasts with 
other educational software such as dynamic geometry software. 3  This seems to offer 
a contradiction in that, even if some researchers question the relevance of 

3   There is no research at world scale comparing integration of geometry software and spreadsheets, 
but all local studies that can be found indicate a better penetration of geometry software than 
spreadsheets (see the examples cited in Haspekian  2005a ). 
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spreadsheets in mathematics education, the majority of the research highlights the 
potential benefi ts of the spreadsheet for students. A brief synthesis on this theme 
turns the attention to the teaching and learning of algebra. The next section examines 
these tendencies in the light of the instrumental approach in order to analyse further 
the characteristics and complex relations of the spreadsheet with mathematics. 

    Potential Uses of the Spreadsheet for Mathematics Learning: An 
Overview of Research Literature 

 I begin by asking “What mathematical topics can be engaged through the use of 
spreadsheets at school?” The fi eld that comes to mind most naturally is that of sta-
tistics. However, a closer examination of the operations of the spreadsheet reveals 
the algebraic nature of such activity. Without going into technical details, 4  one can 
note that from a historical point of view, the relation with algebraic concepts had 
been long identifi ed. According to Bruillard and Blondel ( 2007 ):

  le premier tableur connu serait le ‘calcolatore tabulare meccanico automatico’ ou calcula-
teur tabulaire mécanique automatique de Giovanni Rossi (1870), qui a permis une avancée 
décisive dans la relation entre l’algèbre matricielle et les matrices comptables. (Cilloni and 
Marinoni 2006; Cilloni 2007) 

 The fi rst known spreadsheet would be the ‘calcolatore tabulare meccanico automatico’ 
or automatic mechanical tabular calculator from Giovanni Rossi (1870), who permitted a 
key advance in the relationship between matrix algebra and fi nancial matrices. (Cilloni and 
Marinoni 2006; Cilloni 2007) 

   The ability to link cells by formulas is an effective feature of the spreadsheet that 
many research studies have affi rmed to offer potential to support the learning of 
algebra (algebraic objects, modes of treatment, problem solving) by analysing the 
new opportunities that spreadsheets offer alongside the operational constraints of 
their use. The new possibilities concern:

•    The interactivity, allowing feedback richer than paper and pencil (for example, 
the numeric feedback of a formula helps students to conjecture or detect errors);  

•   The capacity for calculation (automatic recopying of formulas, and instanta-
neous display of results);  

•   The articulation of multiple registers of representation (natural language, formu-
las, numbers and graphics).    

 The benefi ts of spreadsheets, which can derive from the constraints of use, relate 
to both the symbolic language and the methods for solving mathematical problems 
with them. The symbolic requirement is due to the tool itself as opposed to didactic 
contract that is usually entered into when students begin to encounter algebra 
involving the unmotivated use of letters that competes with non-algebraic 

4   The reader can fi nd a brief explanation of the basic functionalities, in a didactic approach, in 
Haspekian  2005a , pp.18–23. 
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strategies. 5  Spreadsheets also compel students to plan their work, organise their 
 worksheet and, in doing so, anticipate the possible feedback from the technology. 

 For most researchers (Ainley et al.  2003 ; Arzarello et al.  2001 ; Capponi  2000 ; 
Dettori et al.  2001 ; Rojano and Sutherland  1997 ), these potential benefi ts place the 
spreadsheet between arithmetic and algebra. This intermediate position is seen to be 
ideal for the learning of algebra. For instance, Rojano and Sutherland ( 1997 ) con-
clude that the spreadsheet supports a smooth transition for pupils’ initial numeric 
methods towards algebraic ones. In a previous study I showed that by comparing 
arithmetic, algebraic and spreadsheet solution methods for the same problem, 6  the 
spreadsheet adds some algebraic characteristics to an arithmetic procedure 
(Haspekian  2005b ). For others, spreadsheets could help to overcome the semantic/
syntactic diffi culties of algebra. In Arzarello et al. ( 2001 ), the complexity of algebra 
is interpreted as a diffi culty for pupils to enter the ‘game of interpretation’ between 
the algorithmic and symbolic functions of algebra. The various registers of repre-
sentation of the spreadsheet are then seen as a tool helping the pupils to enter this 
‘game’ through the construction and interpretation of formulae. 

 These potential benefi ts of spreadsheets contrast with the previous discussion of 
their weak integration. In the reality of the classroom, after having been introduced 
to them within the study of algebra, students use them rarely during their time at 
secondary school. The results of the DidaTab project (Bruillard et al.  2008 ) showed 
that the high school students from regions where the spreadsheet is most used do not 
have higher competences than average, except for the competencies of selecting and 
formatting cells. More generally, the research concludes that all of the 288 students 
involved in the study:

  seem to manage the ‘surface’ components, such as formatting the cells and the tables, but 
the mastery of the essential functioning of the spreadsheet, the writing of formulas, and the 
knowledge of its constituent elements (operators, operands, references, functions…) is not 
demonstrated by the large majority of students. 

   Capponi ( 2000 ) adopts a more moderate position about the potentiality for 
spreadsheets. His view is that the intermediate position of the spreadsheet between 
arithmetic and algebra may allow the pupil remain entirely on the arithmetic side 
without ever noticing the algebraic aspects. 7  Capponi quotes, for example, the 
display or editing of a formula which centres the user on the numeric aspects 
(computation results, designation of numbers) to the detriment of the underlying 
algebraic aspects (formulas, and cell references that play the role of variables). 

 So the question becomes, how can we support pupils to build algebraic 
knowledge with this tool? All of the above-mentioned researchers underline the 

5   One can see in Coulange ( 1998 ) at which point the algebraic methods rest on rules of didactic 
contract and remain fragile for pupils ages 15–16 who, facing atypical problems, provide correct 
answers in rupture with the algebraic rules of the didactic contract. 
6   Analyse/synthesis, trial/refi nement and equations. 
7   because the algebraic character of the formulas is restricted to their utility in carrying out and 
automating calculations, the focus is not on providing an operational language to analyse and 
handle relations (Capponi and Balacheff  1989 ). 
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importance of the didactical design of the situations but say little about these 
situations, such as how to create them, and on which variables to focus the 
teaching. In many spreadsheet resources that have been published on profes-
sional websites one can identify the mathematical variables used, while the 
‘instrumental’ variables (the tool features) remain mostly implicit. Yet, if these 
elements are not examined, they may generate misunderstandings, resulting in 
the pupils using spreadsheets in ways ‘other than’ what is expected. The organ-
isation of the teaching (didactical and mathematical), the way the tool is intro-
duced, its links to mathematics, the techniques taught, their links with the 
mathematical techniques already learned (or to be learned) in paper and pencil 
environment, the role of the teacher and her didactic managements are all ele-
ments that must be created by the teacher. For instance, how and when does the 
teacher introduce into the lesson the important technical specifi cities of spread-
sheets, such as the functionality of dragging? How does the teacher structure the 
teaching so that the ideal didactic potential of the spreadsheet becomes actual? 
Again, the question of linking the tool features with mathematical concepts 
arises, revealing that the work will be different from work in the paper and pencil 
environment. What exactly are these differences and what impact could they 
have? These questions echo those that were central to research leading to the 
instrumental approach (Artigue  2002 ; Lagrange  1999 ; Drijvers  2000 ; Guin et al. 
 2004 ). This particular theory showed the importance of instrumentation and its 
relation to conceptualisation within CAS environments, another type of tool, 
like spreadsheets, that was not initially created for teaching. These issues lead 
directly to the theoretical construct that is  instrumentation , which allows us to 
understand more clearly the problems of technological integration, by showing 
the need to take account of the process of  instrumental geneses .   

    The Instrumental Approach: Some Theoretical Elements 

 ICT use in mathematics education is a domain within the more general area of tech-
nology use in human activity, which has been studied within the fi eld of cognitive 
ergonomics. A psychological and socio-cultural theory of instrumentation, devel-
oped in this fi eld, provides a frame for tackling the issue of learning in complex 
technological environments (Vérillon and Rabardel  1995 ; Rabardel  1993 ,  2002 ). 
The instrumental approach in didactics took some elements of this frame, including 
two of its key ideas: the artefact/instrument distinction, and the fact that using a tool 
is not a one-way process; rather, there is dialectic between the subject acting on/her 
personal instrument and the instrument acting on the subject’s thinking. 8  Within the 

8   Because of this dialectic “it is not possible to clearly distinguish between these two processes” 
(Trouche  2004 ). 
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activity of a subject, an artefact 9  becomes an instrument through a long  individual 
process of instrumental genesis, which combines two interrelated processes: 
‘intrumentalisation’ (the various functionalities of the artefact are progressively 
discovered, and may be transformed in personal ways) and ‘instrumentation’ (the prog-
ressive construction of cognitive schemes of instrumented actions). 

 The two processes also indicate that the instrumental geneses are not  neutral  for 
the subject: instruments have impact on  conceptualisation . For example, using a 
graphic calculator to represent a function may play on pupils’ conceptualisations 
of the notion of limit. This idea of non-neutral ‘mediation’ provides a way to report 
on the strong overlaps that exist, and have always existed, between mathematics and 
the instruments of the mathematical work. This idea has been used in several 
research studies on symbolic calculators in mathematics education (Artigue  2002 ; 
Lagrange  1999 ; Drijvers  2000 ; Guin et al.  2004 , Trouche  2004 ). 

 In what follows I articulate in more detail the two notions that were used.
    Instrumental distance  (Haspekian  2005b ), which will be used to analyse  relations 

between spreadsheet and mathematics.  
   Instrumental genesis  which will give more precisely a phenomenon of  doub l e 

instrumental genesis  within the context of analysing teaching practices. Indeed, for 
students, the spreadsheet may become a mathematical instrument through an 
instrumental genesis. However, as a spreadsheet is not by defi nition a didactical tool 
to serve mathematics education, it also has to progressively become such an instru-
ment during a professional genesis on the part of teachers (Haspekian  2006 ). These 
are two different instruments, which both exist for the teacher.    

    Instrumental Distance 

 In French curricula, dynamic geometry software is prescribed with as much empha-
sis as spreadsheets. However, the former fi nd a better integration in mathematics 
classrooms than the second does. The notion of  distance  to the referential environ-
ment seems to play an important role in the explanation of this phenomenon 
(Haspekian  2005a ). It intends to take into account, beyond the ‘computer transpo-
sition’ (Balacheff  1994 ), the set of changes (cultural, epistemological or institu-
tional) introduced by the use of a specifi c tool in mathematics ‘praxis’. For a given 
tool, if the distance to the ‘current school habits’ is too great, this acts as a con-
straint on its integration (Haspekian  2005b ). On the other hand, the didactical 
potential of technology relies on the distance it introduces regards to paper-pencil 
mathematics as, for instance, by providing new representations, new problems, 
increasing calculation possibilities, etc. This is the case for the dynamic fi gures 
in geometry software, with respect to the static fi gures in paper-pencil geometry. 

9   We limit ourselves to the case of the material artefacts, but the ergonomic approach is extended to 
‘psychological’ artefacts: symbols, signs, cards, etc. 
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The didactic potential of these dynamic objects and their benefi ts for students’ 
learning have been evidenced by many research studies, (see for example Laborde 
 2001 ). For the concept of ‘fi gure’, a central object in geometry, the dynamic 
geometry does not only broaden the conception of such objects but it offers a repre-
sentation that corresponds more closely to the abstract concept of ‘fi gure’ than its 
paper-pencil equivalent. The dynamic dimension helps to realise the famous 
distinction of  spacial drawing / geometrical fi gure  (Laborde  2001 ; Parzysz  1988 ; 
Laborde and Capponi  1994 ). One can also consider the interesting possibility of 
creating new types of geometrical problems for students by varying the different 
tools available in the toolbars of this software. Geometric construction problems 
can be completely different as a result of the suppression of traditional geometric 
tools or through the addition of new tools by the creation of macro-constructions. 

 Four types of elements have been brought out that can generate such instrumen-
tal distance (Haspekian  2005a ). Some of these elements relate directly to the 
 computer transposition , such as the representations and the associated symbolism. 
Some others are of different nature:  institutional , or  didactical  (vocabulary, fi eld of 
problems whose solution they allow, etc.), and  epistemological  (i.e. what gives a 
tool an epistemological legitimacy). For example, the vocabulary in spreadsheets is 
far from the mathematical one; teachers must even create it for themselves. 10  There 
is no offi cial reference to help the mathematics teacher to relate this vocabulary (and 
the objects within spreadsheets) to their mathematical equivalents. Many questions 
arise for teachers, such as:

•    What is a cell?  
•   Is it a variable?  
•   What is a column (or a row)?  
•   Is it a set of several variables, or another representation of a  unique  variable?  
•   What is a relative address? Is there an algebraic equivalent?  
•   What is ‘fi lling/dragging down’ (a gesture embodying the concept of formula?)  
•   Is the numeric feedback: a number? a result of a formula? the permanent appear-

ance of the cell containing a formula whereas the formula itself would be its 
temporary appearance? etc.    

 In fact, beyond the computer transposition that modifi es the mathematical 
objects, the modifi cation, from an institutional point of view, actually concerns the 
whole ecology of these objects as the tasks, techniques, and theories can all be 
modifi ed. The idea of ‘ distance ’ refl ects this gap between the praxeologies 11  associ-
ated to two different environments (considering paper-pencil as a peculiar environ-
ment of mathematical work). As for the epistemological aspect, distance relates to 
the teachers’ personal component (their representations of mathematics, of teaching, 

10   This raises diffi culties for teachers, see the experiment described in Haspekian  2005b . 
11   Mathematical objects are not isolated, in educational institutions they live through mathematical 
and didactical organisations that are praxeologies: a quadruplet composed of tasks, techniques, 
technologies (discourse about the techniques: explanations, justifi cations…) and theories. See 
(Chevallard  2007 ). 
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of the role this tool plays in the development of mathematics etc.). This idea is 
developed later in the chapter. 

 In what follows, I apply this instrumental approach to the spreadsheet for the 
teaching and learning of algebra in order to study the impact of the spreadsheet on 
algebra (the objects, techniques and symbolisations) through the notion of  distance  
between paper-pencil algebra and algebra with spreadsheets. The relationship 
between spreadsheets and mathematics is not simple as mathematical knowledge is 
needed to achieve spreadsheet mastery.  

    Mathematics Within Spreadsheet Objects 

 Some computer characteristics within spreadsheets do not strictly correspond to 
mathematical knowledge transposed to a computer environment, or even to a computer 
transposition of school knowledge, however they are linked with mathematics. The 
basic principle of the spreadsheet, which consists of connecting cells by formulas, 
gives an example of these objects, linking spreadsheets to the domain of algebra. 
This particular relationship with mathematics is precisely the reason why many 
 studies in didactics from different countries give spreadsheets a positive role in the 
learning of elementary algebra, identifying them as tools of an arithmetic-algebraic 
nature (Ainley ( 1999 ); Arzarello et al. ( 2001 ); Capponi ( 2000 ); Dettori et al. ( 1995 ) 
or Rojano and Sutherland ( 1997 )). But, in spite of the apparent simplicity of use of 
speadsheets, it is not so evident for teachers to take advantage of their characteris-
tics. In (Haspekian  2005a ) I showed that the tool generates some complexity as it 
transforms the objects of learning and the solution strategies by creating new 
modalities of actions, new objects, and by modifying the usual objects, such as: 
variable, unknown, formula; and equation. 

 For example, in the paper and pencil environment, variables in formulae are writ-
ten by means of symbols (generally a letter for the school levels concerned here). 
This ‘letter variable’ relates to a set of possible values (here numerical) and it exists 
in reference to this set. In a spreadsheet, let us take for example the formula for 
square numbers. Figure  1  shows a cell argument A2 and a cell B2 where the formula 
was edited, referring to this cell argument.

   Here again the variable is written with symbols (those of the spreadsheet 
language) and exists, as with the paper and pencil environment, in reference to a set 
of possible values. But this referent set (abstract or materialised by a particular 
value, e.g. 5 in Fig.  1 ) appears here through an intermediary, the cell argument A2, 
which is simultaneously:

•    An abstract, general reference: it represents the variable (indeed, the formula 
does refer to it, making it play the role of variable);  

A B
1
2 5 = A2^2

  Fig. 1    A2 is the cell 
argument, B2 calculates the 
square of the value in A2       
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•   A particular concrete reference: here, it is a number (in case nothing is edited, 
some spreadsheets attribute the value 0);  

•   A geographic reference (it is a spatial address on the sheet);  
•   A material reference (as a compartment of the grid, it can be seen as a box).    

 So, whereas in a paper and pencil environment, we would place a set of values, 
here we have an overlapping cell argument, bringing with it, besides the abstract/
general representation, three other representations that do not have an equivalent 
representation in paper and pencil (Fig.  2 ). Other examples of spreadsheets’ impact 
on algebra are given in Haspekian  2005a .

   From an institutional point of view, these changes have different impacts depend-
ing on the range of ways that algebra is introduced. As one of the previous ICMI 
studies has showed (Stacey et al.  2004 ), different aspects of algebra can be focused 
on: a tool of generalisation; a tool of modelling; or a tool to solve arithmetical, geo-
metrical or everyday life problems through the, so called, Cartesian  analytical 
method . Depending on the focus, different mathematics are brought to the fore: 
variables, formulae and functions on one hand; unknowns, equations and inequali-
ties on the other hand. The traditional French school culture adopts the analytic 
approach. The resolution of various problems through the solving of equations is 
emblematic of pupils’ introduction to algebra. Table  1  provides a brief insight into 
the distance between the algebraic culture in the French secondary education and 
the algebraic world that is characteristic of spreadsheets.

Abstract
variable

Numerical
content

Address

Compart-
ment of the 

sheet

(the only part
that corresponds 
to the paper-pencil)

  Fig. 2    The ‘cell variable’       

   Table 1    The distance between different ‘algebraic worlds’   

 ‘Values’ of algebra  In paper-pencil environment  In the spreadsheet environment 

 Objects  Unknowns, equations  Variables, formulae 
 Pragmatic potential  Tool for resolution of problems 

(sometimes involving proof) 
 Tool of generalisation 

 Process of resolution   Algorithmic  process, application 
of algebraic rules 

 Arithmetical process of trial 
and improvement 

 Nature of solutions  Exact solutions  Exact or approximate solutions 
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   Beyond the vocabulary, it is the whole set of the ‘valued algebraic’ objects that 
is modifi ed in the spreadsheet environment. Within the paper and pencil algebra of 
junior high schools in France, the move is from algebra as a tool of resolution where 
equations and unknowns are valorised, towards the algebra of variables and  formulae 
in their functional aspect, where algebra is more seen as tool of generalisation. 

 Overall, the mathematical culture sustained by spreadsheets is an ‘experimental’ 
one of approximations, conjectures, graphical and numerical resolutions, imple-
menting everyday life/concrete problems, statistics, etc. Thus, this vision does not 
fi t with the one usually attached to traditional mathematics in the secondary school 
of the French education system.  

    What Are the Consequences of Such Changes for the Teaching? 

 The idea of  distance  allows one of the conditions of viability of an instrument in 
teaching to be translated by considering the whole set of modifi cations that it intro-
duces, not only at the level of computer transposition, but also through the cultural, 
epistemological and institutional aspects (Haspekian  2005b ). 

 In the case of the spreadsheet for algebra, this distance seems to play a role in the 
teachers’ resistances to its use because they have to grant to it a personal legitimacy, 
as the institutional legitimacy (the programs) or the social legitimacy (stemming 
from it as a modern tool that is used widely in industry) are not suffi cient. Hence, the 
mediative, cognitive and personal components of the teachers (their history, percep-
tions of teaching, of algebra, etc.) come into play here. This also partly explains why 
not all instruments are treated alike in mathematics teaching and learning! Do teachers 
consider this distance ‘legitimate’ with regard to their epistemology of mathematics 
on the one hand, and to the didactic potential they foresee on the other hand? The 
interviews carried out with novice teachers (Haspekian  2005a ) show that this is not 
self-evident. Furthermore, if a certain distance is necessary for the tool be seen to be 
interesting, this distance involves a mathematical and didactic reorganisation and 
thus an additional workload for the teacher. As we saw above, not only are there new 
praxeologies to create (that the programs and the resources, however many, are not 
enough to release) but additional tasks arise for teachers as they consider the man-
agement of pupils’ instrumental geneses in a new environment. Last, but not least, 
this management should lead pupils to mathematical concepts (variable, formula, 
etc.) that remain relevant to the traditional paper-pencil environment. 

 Finally, the integration (or not) of a new tool requires equilibrium between the 
various elements. Do the teacher’s own convictions about the expected benefi ts and/
or the offi cial directions to use the tool counterbalance the additional workload he/
she can foresee in that task of integration? Moreover, a phenomenon of  double 
genesis  can come into play and add further complexities for teachers who are not 
very familiar with the tool, which is described later in the chapter. For the spread-
sheet, one can assume that the praxeologies are far from the mathematical and 
didactic organisations currently practiced within early algebra in France. 

Teachers’ Instrumental Geneses When Integrating Spreadsheet Software



252

 This idea of  instrumental distance  prompts a number of questions concerning 
spreadsheet integration within mathematics education such as: do the many 
resources available to teachers consider it? and How do teachers who have  integrated 
spreadsheets take advantage of this distance in their practices? 

 The next section reports on a case study involving an experienced teacher during 
the fi rst two years of her integration of spreadsheets into her teaching, showing that 
the evolution during the second year moves precisely in the direction of reducing 
this distance.   

    Understanding Practices with ICT: A Case Study 
on Integrating Spreadsheets 

 Taking into account the idea of distance, I turn to the question of the teaching prac-
tices, with some additional tools to support the associated analysis. 

 In a study concerning teachers’ initial training involving the integration of CAS 
calculators, Trouche ( 2004 , p. 307) had already noticed the importance of two fac-
tors relative to the teachers themselves: their degree of mastery of the tool and the 
range of their positivity or negativity of the representation/conception of its integra-
tion. 12  In the same way, the numerous works analysing practices inspired by the 
 double approach  (Robert and Rogalski  2002 ) underline that teachers’ activity is not 
only related to the mathematical content to be taught or the learning experiences of 
the students but also to a number of teacher-related factors such as individuals exer-
cising a job which has its own constraints and freedoms. When considering ICT 
integration, it is relevant to take this personal component into account. 

    Additional Theoretical Elements to Analyse teachers’ Practices 

 The didactic and ergonomic approach (Robert and Rogalski  2002 ) is an interesting 
theoretical support for the analysis of teachers’ practices as it frames teacher’s activ-
ity through different components, one of which is this important  personal compo-
nent . By turning the spotlight onto this personal component and because we want to 
take into account teachers’ apprehension of the instrumental issues, I distinguish a 
professional instrument from a personal one (Haspekian  2006 ) and consider their 
corresponding instrumental geneses, professional and personal. 

    Didactic and Ergonomic Approach 

    The didactic and ergonomic approach analyses practices by means of fi ve compo-
nents:  cognitive, mediative, institutional, social  and  personal  (Robert and Rogalski 
 2002 ). The  cognitive  and  mediative  components relate to the choices made by the 

12   The words ‘representation’ and ‘conception’ are not problematised in this chapter and used in 
their common senses. 
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teacher in the spatial, temporal and mathematical organisation of the lessons. These 
choices are made according to the teacher’s  personal component . The personal com-
ponent relates to the teacher as a singular subject with his/her own history, practices, 
vision of mathematics, way of conceiving mathematics learning, teaching, etc. Yet, 
the personal factor is not the only one to consider. Teachers are not completely free 
in their choices as they are more or less constrained by  institutional  and  social  
dimensions. The    institutional and social dimensions relate to the curricula, lesson 
duration, school social habits, mathematics teachers’ habit, etc. 

 In the case of ICT practices, instrumental aspects seem to interfere with each of 
these components (Haspekian  2005a ). In particular, the personal component plays 
a crucial role in determining whether ICT in mathematics teaching is supported. 
For example, teachers integrate ruler and compass without any problem as they are 
accepted as part of the mathematical culture. This might be because historically, 
the ruler and compass played an essential and epistemological role in the develop-
ment of mathematics. (Chevallard  1992 ) This role and the number of mathematical 
problems generated by these traditional tools serve to legitimise their place in 
mathematics education. Is it the same for spreadsheets? How is their introduction 
in mathematics teaching justifi ed? Do teachers feel this tool relevant to their mathe-
matics and the ways they learned, learn, do and teach mathematics? 

 The consideration of these questions led to the use of the instrumental approach 
to analyse more locally some of the phenomena observed with ICT practices, in 
particular the teachers’ professional instrumental genesis with the spreadsheet.  

    Professional Instrumental Genesis 

 This case study shows that, at the early stages, the way that teachers orchestrate and 
support pupils’ instrumental geneses evolves year by year. Starting from the premise 
that the spreadsheet as an instrument for the teacher, which allows her to achieve some 
teaching goals, the process of instrumental genesis is considered  from the teacher’s 
perspective  (Haspekian  2006 ). The same artefact, the spreadsheet, becomes an 
instrument for pupils’ mathematical activity and an (other) instrument for teacher’s 
didactical activity. Thus, when applying the instrumental approach to the spreadsheet 
as a  teaching  instrument created by the teacher through a professional genesis, two 
processes are highlighted:

•    A process of instrumentalisation as teachers instrumentalised the tool in order 
to serve didactic objectives. It is transformed from its initial functions and its 
didactical potential is progressively created (or discovered and adapted in the 
case of an educational tool).  

•   A process of instrumentation in which the teacher, as a subject, is required to 
incorporate within her (already stable) teaching schemes some new schemes that 
integrate the use of the tool. Progressively, the teacher will specify the use of the 
tool for a particular class of situations (like, for example, “take advantage of 
spreadsheet for algebra learning”) and organise her activity in a way progres-
sively stable for this class of situation (Ann’s case already shows some regularities 
from year 1 to year 2).    
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 The instrument that is created as a result of this process of professional genesis (for 
instance the ‘spreadsheet as a tool to teach algebra’) is different from the instrument 
built through a  personal  genesis (the spreadsheet as a tool of personal work of cal-
culation, plotting, data treatment, etc.). From the same artefact, two instrumental gen-
eses (that may have interferences/interactions on each other) lead to two different 
instruments. The spreadsheet in these two situations is not at all  the same instrument . 
The second one is close to the instrument we want pupils to build. The teacher’s 
professional genesis with the tool is much more complicated as it includes the pupils’ 
instrumental geneses. Here again, the phenomena are imbricate and interfering. 

 This notion of  double instrumental genesis  together with the  didactic and 
ergonomic approach  is used in the next section to analyse the observation of a 
teacher who is integrating the use of a spreadsheet in mathematics. The case of 
the spreadsheet provides a good amplifi cation of the phenomena that play in the 
development of ICT practices for at least two reasons. Firstly, the spreadsheet is 
a professional tool without any  a priori  didactical functionality. In this case, the 
instrumental distance is not negligible and plays a considerable role in the diffi -
culties surrounding the integration of spreadsheets. Secondly, the teacher has to 
turn this non-educational tool into a didactical instrument through a process of 
professional genesis, a process made more complex by this instrumental distance .    

    A Case Study: Ann’s Practices and Evolution in ICT Integration 

 The next section reports the data and subsequent analyses of a study that observed 
how a very experienced teacher integrated spreadsheets within her practices for the 
fi rst time and the evolution of this integration during the subsequent year. 

    The Data 

 Ann is not a trainee; she has taught mathematics for more than 10 years but is not an 
expert in the use of technology within mathematics teaching and learning. She has 
already some experience of dynamic geometry software and now she is beginning to 
integrate spreadsheets in her classroom. In this fi rst year, Ann’s choices were moti-
vated by her participation in a 1-year research project that focused on spreadsheet use 
for learning  algebra  (Haspekian  2005a ). The data that was collected included: obser-
vations of all of her spreadsheet lessons (6 sessions); teacher interviews before and 
after each session; and the students’ spreadsheet fi les. At the end of the research, an 
interview collected Ann’s thoughts and feelings about this experience. 

 After the completion of the research, Ann continued to use spreadsheets in the fol-
lowing year. During this second year, I observed and recorded her fi rst spreadsheet 
session and the subsequent session in a paper and pencil environment. I collected 
the problems as they were given to the students and the associated homework, 
and I  carried out some interviews concerning her intentions for this second year. 
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The resulting analyses showed an evolution of her practice. This evolution converges 
towards the characteristics of experts’ practices described in the next section. 

 During the second year, Ann introduced the spreadsheet not within algebra but 
within statistics (headcounts, frequencies and cumulative frequencies), after having 
seen these notions in paper and pencil environment. In this context, some of the 
observed elements were surprising as the lesson revealed very little statistical con-
tent and mostly centred on the tool use and functionalities, revealing unexpected 
mathematics such as notions of variable, formula and the distinction between 
numeric and algebraic functions. Of course, this refl ects the infl uence of the fi rst 
year of her experience, centred on algebra, but this does not explain the complete 
evolution (variations and regularities) summarised in Table  2  of Ann’s choices for 
introducing spreadsheets.

   In both years, Ann met the institutional demand to integrate spreadsheets within 
her mathematics teaching but the way that she did this was different in each year. 
Table  2  shows an evolution of two components. The mediative and cognitive 
components have evolved with respect to the chosen mathematical domain, the way 
that the spreadsheet was introduced and the level of the class that was chosen. This 
prompts the questions: Why did she evolve, and how can we state more specifi cally 
her professional genesis with the tool?  

    Ann’s Professional Genesis with the Spreadsheet as a Didactical Tool 

 In both years, Ann’s activity with the spreadsheet is oriented by the goal of using it to 
teach algebraic concepts such as variables and formulae, for example, by using the 
copy function, or by profi ting from the numerical feedback to infer the equivalence 
of two formulae. 

    Table 2    Ann’s approach to the introduction of spreadsheet in her teaching   

 Use of spreadsheet 
 Year 1 of the introduction 
of the spreadsheet 

 Year 2 of the introduction 
of the spreadsheet 

 Variations 
 Class level  7th Grade (12 year old)  8th Grade (13 year old) 
 Old/new content  New  Old 
 Mathematical domain  Algebra  Statistics 
 Spreadsheet location  Limited to computer 

classroom 
 Computer/ordinary classroom 

 Synthesis  No  Yes 
 Interactions teacher-students  Mostly individual  Individual and collective 
 Use of the video and collective 

presentation 
 Piloted by teacher, 

limited role 
 Teacher and student. 

Important role 
 Students confi guration  Work by pairs  Work by pairs + collective work: 

one student at the board 

 Regularities 
 Maths objectives, teacher aims  Algebra 
 Additional material  Worksheet for pupils and pre-organised spreadsheet fi le 
 Institutionalisation  In an ulterior lesson, in ordinary classroom 
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 This brings into play some usage schemes 13  concerning the material and 
organisational aspects that are being developed from one session to another 
towards a more stable set of practices that concern: integrating the tool within a 
larger set of instruments (with the data projector); using the data projector at the 
beginning of the lesson to make collective explanations; requiring the pupils to 
communicate and work in pairs; giving an instruction sheet and a pre-built fi le to 
save time and regularly clicking on a cell to check whether pupils have edited a 
formula or numerical operation, or the numerical result. 

 In Ann’s case, this professional genesis was not independent from her personal 
genesis with spreadsheet as the observations show how these interfered (i.e. they 
interacted in a relational sense) with each other. 14  These interferences were made 
more complex by the fact that she wanted her pupils to manipulate the spreadsheet 
for themselves (one could imagine a spreadsheet usage only under a teacher’s con-
trol) and learn mathematics as a result of this activity. As already stated, as the 
pupils’ instrumental geneses forms part of the teacher’s professional genesis with 
the tool this leads to another interference. 

 Observation of some of Ann’s activity in these fi rst two lessons in her second 
year result from these interferences and an example of this now follows.  

    The Interferences Between the Teachers’ Double Instrumental Genesis 
and the Pupils’ Instrumental Geneses 

 As already mentioned, Ann chose to introduce the spreadsheet to a different class within 
the domain of statistics. Figure  3  is an abstract of the task she developed for her pupils 
that shows the corresponding spreadsheet fi le with the pre-edited formula built by Ann:

   It is interesting to notice that Ann modifi ed this fi le three times. In its fi rst ver-
sion, the formula calculating the frequency (in B7) was  = B6*100/50 . This formula, 
if copied along row 7 calculates the correct frequencies for the corresponding data 
of row 6. But it is not adequate regarding the question b   . 15  

 The day before the lesson, Ann realised the mistake and changed the formula 
to  = B6/F6*100 . She confi ded that she did not yet feel very comfortable with spread-
sheets. Her own instrumental genesis with spreadsheets as a mathematical instru-
ment probably plays a role here as we also see that the key point of the problem 
comes from the spreadsheet as a  didactic-oriented  instrument. From the point of 
view of the spreadsheet as a  calculation-oriented  instrument, the formula was 
adequate. The didactical aim (showing the mathematical dependency between 

13   Rabardel ( 2002 ) distinguishes the  usage schemes  (related to the  material  dimension of the tool) 
from the  schemes of instrumented action  (related to the global achievement of the task, with goals 
and intentions). 
14   It may not be the case for all teachers: unlike Ann’s case, the fi rst instrument can be already 
constituted in a more advanced way, long before trying to make it a didactical instrument. 
15   The formula refers to the value 50 for the total. If one changes the value of any headcount, then 
the total will change and the formula becomes wrong. 
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numbers and frequencies) led Ann to ask the question b which resulted in an incorrect 
formula. She did not realise this when she fi rst constructed her formula. At that 
moment, the personal instrument stands at the front of the scene, and obscures the 
professional instrument and its associated didactical aims (the question b.). 

 Interference between the personal and the professional instrument can be seen again 
within the continuation of the story. The new formula, =B6/F6*100, is now adequate 
for question b, but still not convenient if we consider the next question (Fig.  4 ) for 
inverse reasons! Ann wants pupils to copy the formula in order to fi ll row 7 and meet 
this fi lling functionality with the automatic increasing of cell references (B6 becomes 
C6…). This time, this is part of her goals for students’ instrumental geneses.

   The formula above, if copied along row 7, is no longer valid, as the cell referring 
to the total, F6, will change into G6, H6… along the row. A solution to this problem 
is to fi x the cell F6 in the recopy by using the $ symbol. But Ann did not want this 
functionality to appear in the fi rst spreadsheet session as it was above the level of 
instrumentation she wanted for her pupils at that moment. When she built her 
new formula for question b, the $ symbol was not in her mind and she did not 
include it, forgetting that it would create false results at question 3. The day before 
the session, we had a phone call to fi nalise our meeting during which she realised 
the new issue and included the $ symbol as a last-minute decision. 

 Thus, this time the formula was ‘wrong’ with regards to an instrumental goal, that is 
the use of the $ symbol was above Ann’s instrumental objectives and she did not have it 
in her mind. It is neither easy nor trivial to adapt to meet all of the  constraints, 

  Fig. 3    Ann’s fi nal version of the formulae       
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particularly as she had already changed her very fi rst version of formula for a 
mathematical aim and now she had to change it again for an instrumental aim. This 
time, the professional-oriented instrument overrode the personal one, by taking into 
account pupils’ geneses and the level of instrumentation that she wanted them to reach. 

 These successive formulae disrupted the session and fi nally Ann put the $ sign 
into the formula but expected to avoid speaking about it with the pupils. 
Unfortunately, it arose of course during the session! Being compelled by pupils’ 
questions to explain, she only said that it is not important to write it with a paper and 
pencil environment. Then, when a pupil came to the board to write the spreadsheet 
formula, he forgot the $, the ‘division by zero Error’ appeared after fi lling and Ann 
said “ now you’re happy?”  but did not explain the message nor the division by zero. 16  
In that sense, the perturbation due to the ‘$’ sign appears as one of Clark-Wilson’s 
lesson hiccups (Clark-Wilson  2010b    ) defi ned as:

  These were the perturbations experienced by the teachers during the lesson, triggered by the 
use of the technology that seemed to illuminate discontinuities in their knowledge and offer 
opportunities for the teachers’ epistemological development within the domain of the study 
(Clark-Wilson  2010b , p. 138). 

         Interpretation of the Complex and Divided Geneses 
on the Part of the Teacher 

 The example above shows how the double genesis on the teacher side may interfere 
with pupils’ geneses. The spreadsheet’s constraints interacted with the teacher’s 
goals and didactical expectations (she wanted to introduce a basic level of spread-
sheet functionalities but did not want to go any further). This is evidence that she has 
not yet turned her personal instrument into a mathematics-teaching instrument. This 
process is made more complex by the different geneses at stake. As we saw in the 
example, it is constrained by:

•    The teachers’ aims for the mathematical learning, i.e. concerning statistics and 
algebra.  

•   The pupils’ instrumentation that is, how to support pupils’ mathematical work 
through their interactions with the spreadsheet i.e. the mathematical headcount- 
frequency dependence through the change of the frequency cell after changing 
the value of the headcount cell.  

16   Increment of references after fi lling makes the formula refer to empty cells. By default, empty 
cells are treated in formulas as if they contain the value 0, this option that can be changed. 

3) Complete the table using the formula in B7:

Recopy the formula on the right. (see instructions below for the “cell recopy”)

What is the formula contained in C7? D7? E7?

  Fig. 4    The next stages of the task       
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•   The pupils’ instrumentalisation, that is the choice of functionalities to be used, 
the desired schemes of use, i.e. relative references and the automated increments 
for cell references using the copy function, but not yet the absolute references, 
the $ sign and its specifi city in the fi lling of formulae.    

 The simultaneous management of these constraints is not easy as the spreadsheet is 
not  a priori  a didactical instrument. According to Rabardel’s theory (Rabardel  2002 ) 
Ann’s case study on making the spreadsheet a didactic instrument shows that such an 
instrument is, as any instrumental genesis, only developed progressively in a long-term 
and complex process. Here, the teacher’s and the students’ personal instrumental gen-
eses are elements that are adding complexity to this professionally oriented genesis. 

    How to Understand Ann’s Evolutions? 

 The way that Ann evolved from the fi rst year to the second is related to this profes-
sional instrumental genesis. 

 In the previous section, using both the notions of distance and double instrumental 
genesis, I have described the beginning of such a genesis and analysed locally the associ-
ated complexity through the case of Ann’s use of spreadsheet. In particular, the way that 
teachers orchestrate and support pupils’ instrumental geneses evolves year after year. 

 Ann’s goal is to use the spreadsheet to teach algebraic concepts and she  develops 
some instrumented schemes of action for this that concern the material aspects, the 
organisation of the sessions and the orchestration of pupils’ instrumental geneses. 
Ann’s practice with speadsheets includes, for instance, the following elements that 
emerged during the fi rst year (not necessarily since the beginning) and seemed to 
stabilise in the second year:

•    Using a data projector at the beginning of the session to make collective 
explanations;  

•   Requiring pupils to communicate and work in pairs;  
•   Giving pupils a sheet of instructions and a pre-built computer fi le to save time;  
•   Regularly ‘click’ on individual cells to check whether pupils have edited a 

formula or numerical operation, or even directly the numerical result.    

 Some other elements of her orchestrations were modifi ed during the second year:

•    The use of the spreadsheet with a higher level of class, i.e. with Grade 8 instead 
of Grade 7;  

•   Fewer ‘new’ concepts were introduced at one time, i.e. the introduction of the 
spreadsheet and the introduction of new mathematical notions;  

•   She changed the mathematical domain, i.e. it was introduced within with statistics, 
which seemed to Ann to be more appropriate than algebra;  

•   A deeper articulation was made between social and individual schemes, some-
thing that Trouche ( 2005 ) has stressed the importance of within the process of 
instrumental geneses. In the interview, Ann said she had not organised enough 
moments of ‘mutualisation’ (whole class discussions) and she explicitly wished 
to take care of this point in the second year.    
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 The next section observes these evolutions more closely, and shows that they all 
appear to converge in the direction of  reducing  the instrumental distance. 

    Changing the Class Level: Higher Level of Class 

 This modifi cation comes with the change of the mathematical domain. In the French 
curriculum the spreadsheet is explicitly mentioned for the teaching and learning of 
statistics for Grade 8 pupils. In the Grade 7 curriculum the spreadsheet appears in a 
more general and vague way and teachers are required to refl ect more deeply to 
defi ne its potential for the learning of mathematical notions. These notions appear 
more distant from spreadsheet mathematics than within the Grade 8 curriculum, 
where the spreadsheet is more clearly specifi ed with respect to precise mathematical 
notions. Thus, by choosing this level Ann was able to reduce the distance and match 
the offi cial prescriptions more easily. In addition, during year 1 Ann did not fi nd the 
Grade 7 pupils’ instrumentalisation process easy. The pupils had diffi culty in fi lling 
cells, selecting a single cell and editing a formula. Older pupils seemed to be more 
skilful and problems that were linked to instrumentalisation should interfere less 
with the mathematical work. With Grade 7, the manipulations of the tool seemed 
more diffi cult and the tool appeared less transparent.  

    The ‘Old/New’ Knowledge Game with Respect to the Mathematical 
and Instrumental Content 

 During year 1, Ann introduced a new instrument at the same time as she introduced 
some new mathematical content (algebraic notions). The relationship between the 
old knowledge and the new knowledge is different in year 2, which tends to reduce 
the instrumental distance by lessening the amount of newness. For example, all of 
the mathematical notions at stake in the spreadsheet session (headcounts, frequency, 
cumulative frequency) had already be seen previously by the pupils in the paper 
and pencil environment. This experience (new environment with ‘already-seen’ 
concepts) will then serve Ann as a base to introduce algebraic notions (new concepts 
in an ‘already-seen’ instrument).  

    Domain Changing 

 There are at least three reasons why the mathematical domain chosen by Ann in 
year 2 also reduces the distance with respect to algebra. The domain of statistics 
is usually seen to conform more closely to the representations within a spread-
sheet than the domain of algebra. Furthermore, institutional pressure is less 
important in statistics than algebra, which is a more classic and traditional domain 
that is strongly linked to paper and pencil mathematics. On the contrary, nowadays 
statistics is more aligned to the use of technology. Finally, within the language of 
the spreadsheet, one can fi nd terms that are more commonly used within statistics 
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whereas the distance to the traditional vocabulary of algebra is wider (and more 
important) (Haspekian  2005b ).  

    Moments of Mutualisation and Articulation with Paper and Pencil 
Mathematics 

 In her second year, Ann introduced some moments of mutualisation during her 
spreadsheet sessions. In the interview, she affi rmed her will to increase the similar-
ity between these sessions and the traditional ones. She felt that it was necessary to 
increase the links to the paper and pencil mathematics. For example, she started the 
sequence with a paper and pencil session, then revisited the same notions in a 
spreadsheet session, and then returned to the work done with spreadsheet within a 
subsequent paper and pencil session. 

 Thus, at a range of different levels, Ann’s modifi cations tended to minimise the 
spreadsheet’s instrumental distance. All of these actions contributed to reduce the 
distance with paper-pencil and to mix in a greater proximity the mathematics within 
these two environments. 

 Another notable development is that Ann’s evolution gains some character-
istics of experts’ practices, as evidenced in the research. This is explored in the 
next section.    

    Bringing Together the Results from Different Research 

 In this section, I am bringing together Ann’s case study with the results of a second 
research study. This latter research studied the practices of what we have called 
 expert  teachers, that is, non-novice teachers who have been integrating ICT and 
spreadsheet for a long time and who are also ‘ICT trainers’ and ‘spreadsheet trainers’ 
within the context of mathematics teacher training. By comparing the practices of 
these expert teachers alongside the practices of pre-service teachers, I have high-
lighted some overarching characteristics of practices with ICT. 

 An interesting outcome of this cross analysis is that Ann’s evolution with the 
spreadsheet converges towards the characteristics of experts’ practices. The next 
section presents this in more detail by fi rst giving some results and regularities 
found in the data collected with  expert  and novice teachers. 

    Some Characteristics of Experts’ Practices with ICT 

 Are there regularities of practice amongst teachers who have successfully integrated 
the spreadsheet? In making a comparison with novice teachers, what are the charac-
teristics of the expert teachers’ practices that seem to contribute fundamentally to 
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their success? How do they manage the pupils’ instrumental geneses? And how do 
they take into account the instrumental distance generated by the spreadsheet? In 
order to answer these questions, I looked for regularities at the following levels: in 
teachers’ conceptions; in the evolution of their practices; and in the changes that 
resulted from this evolution. The notions of  coherence  and  stability  as defi ned by 
Robert & Rogalski can enlighten these questions:

  the coherence of the system of the practices of a teacher (…) would prevent the introduction 
of inconsistent elements with this system (Robert and Rogalski  2002 , p. 521). 

   Within an alternative theoretical framework, the considerations of Lagrange are in 
the same direction. Lagrange ( 2000 ) underlines that the introduction of a tool into 
mathematics lessons generates an upheaval of the  praxeologies , which may hinder its 
integration into the practices. How did expert teachers deal with these obstacles? 

 As said in the introduction, I carried out questionnaires and interviews with train-
ees and expert teachers. The questionnaire for trainees contained 41 questions divided 
in three parts (see  Appendix ). The fi rst was general information about the teacher 
(age, training, etc.), the second concerned their general opinions about the use of tech-
nology and the third concerned their use of spreadsheet in mathematics classroom and 
their opinions about this. There were 23 questionnaires returned by the trainees 
and four additional group discussions (in groups of 3 or 4) were held in which we 
allowed the trainees to discuss their answers to parts 2 and 3 of the questionnaire in 
order to gain a better understanding of their opinions. The questionnaire given to the 
expert teachers was an identical one and six individual interviews lasting 2–3 h were 
conducted about their effective practices with ICT and spreadsheets. We also  collected 
all of their teaching materials, which evidenced their progression in use of the spread-
sheet, examples of tasks, frequency of use, etc. 

 The research study compares the trainees with the experts (Haspekian  2005a ) and 
outlines some common fi ndings about the novices, such as their obvious diffi culties 
in perceiving the tool’s potential and to conceive mathematical and classroom 
organisations, which as yet they had not seen or experienced. It also suggested 
some convergence of practice amongst the experts that can be connected to their 
successful integration of spreadsheets. 

 The fi rst result concerns the nature of the tasks chosen for a spreadsheet use. 
Parts 2 and 3 of the questionnaire included a set of different spreadsheet tasks that 
included very basic use of the spreadsheet as a calculator to a more interesting use 
that took greater advantage of the spreadsheet’s potential. These latter tasks were 
based on research situations mentioned in Capponi  2000 , Arzarello et al.  2001 , 
and Rojano and Sutherland  1997 , and they had been analysed by their authors 
as being positive for mathematics learning. In the questionnaire we presented 
different ways of using spreadsheets and asked the teachers to choose which of 
these situations they found interesting for mathematics teaching and learning. The 
results of this study concurred with those from other research (Laborde  2001 ; 
Monaghan  2004 ), that is novice teachers who are non-expert in the use of the 
spreadsheet have diffi culty in realising the potential of the tool and in identifying 
interesting situations for its use. The choices and underlying rationales of the 
beginner teachers were  systematically opposed  to those of the expert teachers, 

M. Haspekian



263

which corresponded to the interesting situations. Thus, the teachers’ fi rst approach 
to the use of spreadsheets did not take advantage of the tool’s potential. As Artigue 
recalls, the observed (and quite understandable) tendency amongst novice users is 
to use technological tools not for their epistemic value (as a support to understand 
mathematical objects) but only for their pragmatic value (to produce results 
quickly and easily) within tasks that are very similar to those given in traditional 
paper and pencil tasks (Artigue  2002 ). 

 In the analysis of the expert teachers’ practices and the subsequent comparison of 
these fi ndings with the novice practices, a set of common characteristics appears (for 
more detail on this see Haspekian, ( 2005a )). This prompts the question as to whether 
there are fundamental elements contributing to teachers’ success in the integration of 
spreadsheets. The fi rst element is the importance of taking into account not a single 
tool but a system of instruments. This confi rms the importance of the  instrumental 
distance  as these characteristics are a way to minimise the distance imposed by the 
spreadsheet. Another common characteristic was the fact that, using this system of 
instruments, these teachers play an  old/new game  concerning the mathematical con-
tent with equal attention to the various technological tools that they integrate. This 
means that they alternate new/old instruments with new/old content and do not try to 
introduce, for example, a new instrument with new concepts. This game also helps to 
articulate the work involving the technology with the paper and pencil work. 

 These two characteristics provide an economic way to both manage the class in 
ICT sessions, and to manage the pupils’ instrumental geneses. For example, con-
cerning the mathematical content, one teacher said that it offered “a way of making 
revisions by bringing something more”. Another said that he had “the same notions 
presented in two different environments”. A third  expert  teacher who was interviewed 
said that she systematically works on the same notion using by hand methods after 
an ICT session, and combines paper-calculator-spreadsheet and so on: “I make links 
non- stop, again and again…” 

 For all of these expert teachers, the integration of the spreadsheet is based upon 
this orchestration of a whole system of instruments. As they perceive the spreadsheet 
as more complex, they introduce it to their pupils after other software. This allows:

•     Time saving  on the management of the class in ICT sessions (introduce the 
classroom, organise the didactic contract, etc.);  

•    Time saving  with respect to the instrumental geneses with the spreadsheet as some 
aspects have been addressed through other technological tools (physical manipula-
tion of the materials, the computer room, virtual manipulation of fi les, etc.).    

 Within the common characteristics, we also found an increased attention paid to 
the questions of  mutualisation  and  socialisation , which was accomplished in two 
ways. Firstly, the expert teachers all organised their sessions with the pupils work-
ing in pairs and secondly, the teachers have developed the habit to use the data 
projector in order to mutualise or bring together the scattered knowledge of the 
pupils leading to more homogenous mathematical and instrumental knowledge. 

 Table  3  resumes the common characteristics that appear to contribute fundamentally 
to the expert teachers’ successful integration of the spreadsheet:
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   What is noticeable is that some connections can be seen then between these 
 characteristics and Ann’s evolution of practice as a result of the changes she intro-
duced in the second year.  

    Reducing Instrumental Distance: Towards Experts’ Practices 

 In the analysis of the expert teachers, there were some common characteristics in their 
successful integration of ICT, in particular concerning spreadsheets. In this section, 
I will show that Ann’s evolution, as analysed previously,  tends towards  some of these 
characteristics and gives an indication of the importance of these characteristics. 

 First, as seen in both cases, we fi nd the tendency to minimise the instrumental 
distance. Actually, some of Ann’s evolutions can be explained in terms of a  reduc-
tion  of the distance, either by making this distance more explicit or by increasing the 
times when she alternated the work in both the spreadsheet and paper and pencil 
environments, which enriched both of them. This mixing of different environments 
and, in particular, the articulation within the paper and pencil environment, appeared 
precisely as a common characteristic of the teachers who have integrated the spread-
sheet successfully. Thus, it is interesting to notice that Ann’s professional genesis 
follows the same path (even though she did not achieve a level of expert practice 
with respect to all characteristics). For instance, the moments of mutualisation and 
articulation with paper and pencil mathematics by Ann are more successful in the 
second year, whereas she did not pay much attention to this in the fi rst year. 

 The  old/new  game mentioned above is another characteristic found in the expert 
teachers’ practices. They manage ICT integration by adjusting and adapting the 
degree of novelty to incorporate a degree of complexity of the tool. When introduc-
ing a complex artefact such as the spreadsheet, they choose familiar content, which 
has already been introduced within the paper and pencil environment. Once the 
students have more familiarity with the spreadsheet with more familiar mathemati-
cal content, they use it subsequently to develop new mathematical knowledge. 

 Again, it can be noted that Ann’s evolution is moving in that direction. In the fi rst 
year, she introduced both the spreadsheet and a  new  mathematical domain (algebra), 
whereas in the second year she changed her approach to introduce spreadsheets by 
choosing an  old  mathematical domain, statistics. The pupils, having already seen 
statistics in a paper and pencil environment, then meet the new instrument, a 

the taking into account of a system of instruments, including the articulation with the paper and

pencil environment;

a game of old/new, which is played at both the level of the mathematical content and at the level of

the instrument;

a certain art/skill to know how to mix these two games,

the use of mutualisation and socialisation (students work in pairs, use of the data projector).

     Table 3    Some common elements found in experts’ practices       
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spreadsheet, in the context of old content. Ann’s long term intention, as stated in her 
interview, is to use the spreadsheet within the context of algebra, but now she 
intended to do this after the pupils have seen spreadsheets in another area of math-
ematics (an  old  one) to avoid introducing both new artefact and new contents. 

 Of course, when I observed Ann at the beginning of the second year, she had not 
achieved all of the common characteristics of the expert teachers as listed in Table  3 , 
but this is not surprising. She was at a stage within her professional genesis with the 
spreadsheet where she was integrating it for the second time in her career. It is pre-
dictable that her practices are not completely stabilised and that these will continue 
to evolve. For instance, for the expert teachers, the game ‘old/new’ concerns not only 
the mathematical content and not only one tool, but a complex system of instruments 
that incorporate paper and pencil articulations. Expert teachers do not expect pupils 
to fi rst meet computers through the use of spreadsheets but with other software, such 
as dynamic geometry software, which presents a smaller instrumental distance than 
the spreadsheet. In that way, pupils meet the computer classroom, the basic instruc-
tions about the use of the computers, the fi les, the opening and closing sessions, the 
articulation within the paper and pencil environment, the work in pairs, and so on, 
with a software that seems easier to integrate than the spreadsheet. Once they are 
used to these basic manipulations and orchestrations on a more familiar  old  instru-
ment, they are ready to meet a new, more diffi cult one, such as the spreadsheet.   

    Discussion and Perspectives 

 In the section, I will come back to the general purpose of this work, which was to 
gain a better understand of teachers’ practices with technology and the process of 
their instrumental geneses. To this aim, the previous sections have introduced some 
important elements and lead me to draw conclusions on their instrumental 
 professional geneses with ICT, which I will discuss here. 

 I have analysed Ann’s evolutions in terms of a  reduction  of the instrumental dis-
tance, either by making this distance more explicit, or by multiplying the opportuni-
ties to alternate work in the two environments, enriching both of them. This distance 
is more or less important, depending upon the tool. The integration of spreadsheets 
in the teaching and learning mathematics constitutes a signifi cant creative task for 
teachers as the tool is not given with any didactical functionality. It requires a 
professional instrumental genesis on the teacher’s side that differs from the teacher’s 
personal genesis with the tool (even if they interfere) and different again from that of 
the pupils. Here again, one can hypothesise that a professional instrumental genesis 
with dynamic geometry software is easier. 

 These combined considerations helped the analysis of Ann’s genesis and the 
conclusion that Ann tended to acquire in her evolution some of the characteristics 
found as commonalities among the expert teachers as follows:

•    Articulation with paper-pencil mathematics;  
•   Moments of mutualisation and socialisation;  
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•   The game old/new, concerning the mathematical content (not yet on the 
instruments for Ann).    

 These are all included in the experts’ characteristics Table  3 . The inverse is not true 
because Ann did not demonstrate all the characteristics of the experts. For example, in 
her evolution, this exploitation of different instruments to facilitate the introduction of 
spreadsheets does not appear yet, but it seems reasonable to think that one does not 
gain all of the characteristics of the expert teachers after only 1 year. This instrumental 
professional genesis is a long process, as is any instrumental genesis. This raises ques-
tions for the professional training of teachers such as: How to take into account the 
importance of working within a system of instruments instead of the isolated tools? 
How to take into account the  socialisation  dimension? Is it possible through these 
improvements to shorten the time needed for the instrumental professional genesis? 

 I conclude on the fact that these results are at the stage of hypotheses, as key 
issues in ICT integration. To extend this result, a larger scale study is needed with 
more than six expert teachers, and with some observations of their actual practices 
in the classrooms. The fact that Ann’s evolution tends towards some of their com-
mon characteristics is a simple indication that these elements may constitute good 
 candidates  of ICT practices, but this hypothesis does requires further research. 

 Other questions remain for research. For example, concerning ICT integration 
and evolutions of teachers’ practices, a criterion which we have seen as important in 
this chapter is the notion of instrumental  distance . If it does reveal itself as a source 
of diffi culty for teachers, then it is crucial to advance in the comprehension of ICT 
impact on mathematics and the way teachers take into account instrumental dis-
tance, drawing some important characteristics from experts’ practices. However, it 
is also necessary to determine which elements may counterbalance this distance and 
may support the process of tool integration, such as institutional injunctions, or the 
tool’s epistemic value and its didactical design. As technology evolves, the instru-
mental distance can thus be important for educational tool designers. As for the 
epistemological legitimacy, it also relates to teachers’ representations and beliefs 
about ICT and mathematics. This dimension has been investigated in other research, 
see for instance Norton et al. ( 2000 ), who conclude that teachers’ resistance is 
related to their beliefs about mathematics teaching and learning. If knowledge and 
beliefs about teaching mathematics with ICT are actual barriers, can this dimension 
be considered in teachers’ training and how? 

 Finally, the issue of ‘isolated’ potential of technology for mathematics education 
does not solve the problem of their integration in teaching practices (for example in 
teaching algebra in the case of the spreadsheet), due to this instrumental distance. 
Several questions remain and a better understanding of the characteristics of experts’ 
practices and of course the way to develop these, may be important also in a training 
perspective. This remains an open fi eld for further research.     

  Acknowledgments   I would like to thank Rebecca Freund, and the anonymous second reviewer, 
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      Appendice-Extract of the Questionnaire Trainees and Experts 
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    Abstract     This chapter details the methodological approach adopted within a 
doctoral study that sought to apply and expand Verillon and Rabardel’s ( European 
Journal of Psychology of Education ,  10 , 77–102, 1995) triad of instrumented activity 
as a means to understand the longitudinal epistemological development of a group 
of secondary mathematics teachers as they began to integrate a complex new 
multi-representational technology (Clark-Wilson,  How does a multi- representational 
mathematical ICT tool mediate teachers’ mathematical and pedagogical knowledge 
concerning variance and invariance?  Ph.D. thesis, Institute of Education, University 
of London, 2010a). The research was carried out in two phases. The initial phase 
involved fi fteen teachers who contributed a total of sixty-six technology-mediated 
classroom activities to the study. The second phase adopted a case study methodology 
during which the two selected teachers contributed a further fourteen activities. 
The chapter provides insight into the methodological tools and processes that were 
developed to support an objective, systematic and robust analysis of a complex set 
of qualitative classroom data. The subsequent analysis of this data, supported by 
questionnaires and interviews, led to a number of conclusions relating to the nature 
of the teachers’ individual technology-mediated learning.  
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        Introduction 

 The research that is reported in this chapter had the broad aim to articulate the 
nature of secondary mathematics teachers’ epistemological development as they 
began to use a complex new multi-representational technological tool with students 
in their classrooms. The chosen technology was new in the sense that it offered 
linked multiple representations between numeric, syntactic and geometric domains 
(See Arzarello and Robutti ( 2010 ) for a more in-depth description). I defi ned a 
teacher’s epistemological development as the trajectory of their growth in mathe-
matical, pedagogic and technological knowledge within the context of the design 
and teaching of activities that privileged their students’ explorations of variance and 
invariance. The research was carried out in two phases, July 2007 – Nov 2008 and 
April 2009 – December 2009, when groups of teachers were selected, and a series 
of methodological tools developed, to capture rich evidence of the teachers’ uses of 
the technology in their classrooms to enable the aims of the study to be realised. The 
fi rst phase of the project was located within a professional development setting, 
which blended opportunities for the teachers to learn about the affordances of the 
technology alongside time for the teachers to design activities and give subsequent 
feedback about the outcomes of their lessons. The second phase of the study was 
wholly situated within the participating teachers’ mathematics classrooms.  

    Theoretical Background 

 The theoretical foundations for the study concerned three domains: coming to know 
new technologies and the role of technology in developing subject and pedagogic 
knowledge; the concept of variance and invariance in a multi-representational 
technological setting; and making sense of the process of teacher learning. 

 The theoretical framework that was developed for the study was rooted in 
Verillon and Rabardel’s ( 1995 ) theory of instrumented activity systems as a model 
to describe the processes involved in human-instrument interactions. In this framework 
a distinction between artefact and instrument is introduced in order to distinguish 
between the object itself (as an independent artefact), and the same object as 
used by a subject. The object is referred to as an artefact when it is used by a person 
during an activity. The same object is referred to as an instrument when it has been 
endowed with specifi c utilisation schemes that have been introduced by the subject. 
Consequently, as these schemes of use are introduced by the subject, the relation 
between the artefact and its uses evolve, giving rise to the process of instrumental 
genesis. While the artefact is an object that can be considered statically, in the 
sense that it does not change its features over time, the instrument can be conceived 
dynamically, in the sense that it can change its features, according to the schemes 
of use that are activated by the user. Therefore, the same artefact can become 
different instruments, related to the purpose of the subject’s actions. In their original 
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model, the Subject-Instrument-Object triad assumed that the subject’s primary 
consideration was to evolve uses of the instrument for some clear purpose, which is 
to carry out a particular, specifi ed task. This model has been applied to a number 
of situations within mathematics education research where the lens has been 
trained on  students  of mathematics who were beginning to use chosen technologies 
for the purpose of solving mathematical problems (Guin and Trouche  1999 ; Artigue 
 2001 ; Ruthven  2002 ). However, the context for my own study brought another 
consideration to the fore. As the subjects within my study were  teachers , there were 
two facets to the object for their subsequent use for the technology. It was obviously 
necessary for them to become familiar with the affordances of the technology 
but also, a simultaneous consideration for them was whether and how these 
affordances could be integrated into educationally legitimate classroom activities 
for mathematics. 

 Within my study, subjects were ‘teachers as learners’ and the objective for their 
technology-related activity concerned the processes of designing, teaching and 
evaluating explorations of mathematical variance and invariance. My research was 
interested in the teachers’ epistemological development over several years as they 
were engaged in these processes. By epistemological development, I mean the 
development of their personal knowledge, which would incorporate mathematical, 
technological and pedagogic aspects. For my context, the instrument incorporated 
the mediating artefact, that is, the TI-Nspire handheld and software alongside 
the emergent utilisation schemes developed individually by each teacher or socially, 
where collaboration was involved. Hence the study sought to gain deeper insight 
into the mediating role of the technology. This sense of  double instrumentation  
resonates with the fi ndings of Haspekian’s ( 2005  and Chap.      9     in this volume) 
research within the context of a spreadsheet environment in which she concludes 
that the spreadsheet is one instrument for teacher’s personal mathematical work 
and  another  instrument for the teacher’s professional didactical work (Haspekian 
 2006 ). This led to the notion of  double instrumental genesis  from the teacher’s 
perspective. 

 The mathematical focus for the study concerned activities that privileged the 
students’  explorations of variance and invariance . This is the approach whereby 
the technology is being used in an exploratory way, with the intention that the 
students will  discover  some mathematical generalisation(s) by varying some sort of 
input and observing the output provided by the technology. Essentially, this meant 
that the teachers were privileging explorations of variant and invariant properties 
within a chosen mathematical context. This focus was a constraint of the project’s 
methodology in response to the teachers favouring the design of tasks that encour-
aged student autonomy by requiring them to make inputs to the technology and 
draw conclusions in relation to the resulting outputs. 

 The multi-representational features of TI-Nspire (Arzarello and Robutti  2010 ) 
prompted a review of key texts and research that had considered both the mediating 
role of technology in supporting such explorations alongside a review of literature 
on the nature of a mathematical variable (Bednarz et al.  1996 ; Moreno-Armella 
et al.  2008 ; Sutherland and Mason  1995 ; Kaput  1986 ; Kaput  1998 ; Kieran and 
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Wagner  1989 ). This review led me to defi ne mathematical learning as being 
predominantly concerned with the privileging of students’ opportunities to generalise 
and specialise as a means to constructing their own mathematical meanings. 

 Within the context of this study, the teacher’s role was to design and orchestrate 
classroom activities and approaches, using the various functionality of the multi- 
representational technology to achieve this. However, as teachers’ individual belief 
systems (in the usual sense) about mathematical learning (and the role of technology 
within this) would undoubtedly infl uence their decisions and actions, the trajectory of 
teacher development to which I refer also revealed evidence of these preconceptions. 

 Finally, as the study was concerned with the nature and processes of mathematics 
teachers’ epistemological development, two areas of related literature were reviewed. 
The fi rst area concerned defi nitions and interpretations of mathematics teachers’ 
personal knowledge, subject knowledge for teaching and pedagogic knowledge 
(Shulman  1986 ; Rowland et al.  2005 ; Zodik and Zaslavsky  2008 ; Polanyi  1962 , 
 1966 ). The second area examined constructs concerning the process of teacher 
learning (Schön  1984 ; Thompson  1992 ; Mason  2002 ; Jaworski  1994 ; Ahmed and 
Williams  1997 ). The review of literature referring to the content, nature and process 
of teacher learning led me to adopt a broad interpretation of knowledge as proposed 
by Shulman’s  knowledge for teaching . It also highlighted the complexities of the 
process of teacher learning and supported the development of methodological tools 
that would capture the evidence of this learning in line with my desire to describe 
teachers’ trajectories of epistemological development. I use the word epistemology 
in a deliberate sense to indicate that I was most concerned with how their knowl-
edge developed over time. This had implications for the methodological approach 
that was adopted as, although some of these theoretical ideas gave a framework for 
describing teachers’ knowledge, they did not necessarily lend themselves to the 
development of a useful set of methodological tools and techniques.  

    Methodology 

 An extensive data collection period between July 2007 and November 2009 resulted 
in the participating teachers contributing eighty  lesson bundles  to the study. During 
the fi rst phase of the study, a lesson bundle comprised all or some of the following:

•    A compulsory lesson evaluation questionnaire – (see Clark-Wilson  2008b );  
•   An activity plan in the form of a school lesson planning proforma or a hand- 

written set of personal notes;  
•   A lesson structure for use in the classroom (for example a Smart NoteBook or 

PowerPoint fi le);  
•   A software fi le developed by the teacher for use by the teacher (to introduce the 

activity or demonstrate an aspect of the activity);  
•   A software fi le developed by the teacher for use by the students, which would 

normally need to be transferred to the students’ handhelds in advance or at the 
beginning of the lesson;  

A. Clark-Wilson



281

•   An activity or instruction sheet developed by the teacher for students’ use;  
•   Students’ written work resulting from the activity;  
•   Students’ software fi les captured during and/or at the end of the activity;  
•   Audio or video clips of the activity;  
•   Notes or slides from presentations made by the teachers about the activity.    

 These lesson bundles resonate with the idea of the teachers’  documentation system  
(See Aldon    Chap.      12     this volume) that capture the complete set of resources 
developed (or made use of) such that teachers can make use of technologies for 
mathematics within classroom settings (Gueudet and Trouche  2009 ).  

    Summarising Lessons 

 The sets of raw data were imported to the qualitative data analysis software package, 
Nvivo8 (QSR International  2008 ), where they were subsequently scrutinised 
and coded to elicit three elements: a broad description of the lesson; an inference 
concerning the teacher’s interpretation of variance and invariance within the 
designed activity; and the implied instrument utilisation scheme that the students 
were expected to use. 

 An example of this for a lesson ‘Prime factorisation’, submitted by one of the 
teachers early at the beginning of the fi rst phase of the study is shown in Table  1 .

   The subsequent cross-case analysis of these individual lesson data led to the 
development of nine  instrument utilisation schemes , which sought to generalise the 
fl ow of an activity in relation to the intended interactions by the student as they used 
the technology, using a constant comparison method. The resulting instrument utili-
sation schemes considered the broad representational input or output as being either 
numeric, syntactic or graphic. For example, the lesson Prime factorisation described 
in Table  1 , would lead to the instrument utilisation scheme in Fig.  1  below.

   In this activity the input was a combination of a syntactic entry (i.e. factor(n)) 
and a numeric entry (i.e. n) and the output was syntactic in that the representation 
2 2 •5 implies a mathematical syntax that is adopted by the technology. 

 A numeric input might involve entering numeric values into a spreadsheet or 
changing an input for a numeric variable. A syntactic input is considered to encom-
pass both the syntactic forms of conventional mathematical notation in addition 
to the syntax required when using specifi c functionalities of the technology such as 
the need to use the specifi c syntax of the built-in ‘Factor’ command. In this respect, 
the word syntactic is not being interpreted in a wholly linguistic sense but it does 
embrace Shulman’s sense of  syntactic structures  (Shulman  1986 ). As I began to 
classify the nature of the ‘outputs’ I initially used the same three categories. 
However, it quickly became apparent that the analysis became more informative if 
some sub-divisions of the initial three categories were made. Hence the  numeric  
category was subdivided into  measured ,  calculated  and  tabulated ; the  geometric  
category was subdivided into  graphical (data points) ,  graphical (function graphs)  
and  geometric (positional) . 
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  Instrument utilisation scheme  type one (IUS1) was the simplest of all of the 
schemes, and it was also the most frequently used scheme by the teachers in the fi rst 
phase of the study, with over half of the reported lessons being classifi ed as IUS1. 

 By contrast, as the project progressed, there were three teachers who developed 
a diverse set of IUS. As the nature of the activities that the teachers created were all 
exploratory, they all had an initial input and output phase. However, a more diverse 
set of IUSs developed as teachers began to design tasks that elaborated on this initial 
phase by requiring different forms of interaction with the technology such as 
dragging or the inclusion of an additional representational form. One such example 
was the lesson activity developed by Eleanor, ‘Perpendicular functions’ which is 
described in detail in Table  2 .

   The instrument utilisation scheme for this lesson (IUS7) is shown    in Fig.  2 .
   The second phase of the study still required the teachers to design, teach and 

evaluate lesson activities using the technology and, additionally, it involved lesson 
observations, which were all audio-recorded (with key sequences also video- 
recorded). The two case study teachers (Eleanor and Tim) were also interviewed 
before and after the classroom observations. This more substantive data was initially 
used to write a detailed description of the lesson (8–10 pages), interspersed with 
mediating screen shots from the teacher’s and students’ fi les. This process was 
greatly supported through the use of the handheld classroom network system 

  Fig. 1    The Instrument Utilisation Scheme (IUS1) for the lesson ‘Prime Factorisation’       
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TI-Navigator, which facilitated the real-time data collection process without 
interrupting the fl ow of the lessons. Following this, I used elements of Pierce and 
Stacey’s ( 2008 ) pedagogical map as a tool to support the writing of a summary of 
each lesson from the three perspectives they describe as ‘layers of pedagogical 
opportunities’, namely the task layer, the classroom layer and the subject layer. This 
led to a detailed set of interpretations of the teachers’ actions within the individual 
lessons alongside a map of their enacted instrument utilisation schemes as observed 
during the second phase of the study. 

 Hence, over time, evidence of the individual teacher’s development began to 
emerge. The development of each teacher’s instrument utilisation schemes was 
made visible by overlaying the individual lesson analyses from the Phase One and 
the Phase Two of the study (Figs.  3  and  4 ).

    It was immediately apparent that Eleanor’s activities incorporated a greater 
diversity of representations and each activity had its own sequential fl ow. This was 
suffi cient evidence to conclude  that  Eleanor’s practice had developed but it gave 
little indication of  how  this development had evolved. 

 Whilst I was writing the detailed narratives of the observed lessons, I became 
aware of the incidents within the lessons where the teachers experienced perturbations, 
triggered by the use of the technology, which seemed to illuminate discontinuities 

  Fig. 2    The instrument utilisation scheme (IUS7) for the lesson ‘Perpendicular functions’       
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  Fig. 3    The summary of Eleanor’s Instrument Utilisation Schemes produced from the analysis of 
her Phase One lesson data (5 lessons, coded CEL1 to CEL5) (The codes that begin with IUS refer 
to the different categories of instrument utilisation scheme that emerged during the whole study. 
These are described more extensively in Clark-Wilson ( 2010 ))       

  Fig. 4    The summary of Eleanor’s Instrument Utilisation Schemes produced from the analysis of 
her Phase Two lesson data. (4 further lessons, coded CEL6 to CEL9)       
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in their knowledge. I defi ned these as the lesson  hiccups  and I viewed these hiccups 
as opportunities for the teachers’ epistemological development within the 
domain of the study. They were highly observable events as they often caused the 
teacher to hesitate or pause, before responding in some way. Occasionally the teachers 
looked across to me in the classroom in surprise and, particularly in the case of 
hiccups relating to what they considered to be unhelpful technological outputs, they 
sometimes expressed their dissatisfaction verbally. Consequently, I also started to 
code each activity for hiccups within NVivo.  

    Identifying, Coding and Categorising Hiccups 

 In order to make sense of what follows, it is necessary to include a detailed descrip-
tion of a lesson activity. For this purpose I have selected an early activity that was 
designed and taught by Eleanor during the second phase of the study, which I called 
 Transformations of functions . This activity took place during a single one hour les-
son with a group of 29 higher achieving girls aged 14–15 years working from the 
English and Welsh General Certifi cate of Secondary Education (GCSE) higher tier 
examination syllabus. Eleanor’s lesson objective was for students to develop ‘An 
understanding of standard transformations of graphs’ and she expanded on this by 
saying ‘I wanted the students to explore the effects of different transformations of 
linear and quadratic functions to enable them to make generalisations for them-
selves’. In the lesson the students were given a worksheet devised by Eleanor that 
included six sets of linear, quadratic and cubic functions laid out as three pairs. Each 
pair was intended to encourage students to compare particular transformations, for 
example the fi rst set compared the effects of y =f(x)±a with y=f(x±a). There were 
thirty-nine different functions in total and the activity sheet did not label the sets of 
functions in any way (Fig.  5 ).

   The students were asked to enter the functions syntactically into a Graphing 
application on their handhelds and to describe the transformations they observed 
within each set of functions. Eleanor questioned the students about different 
types of transformations (refl ection, translation, rotation and enlargement) and 
encouraged them to use these words when describing their observations. They were 
not instructed as to how they should communicate their observations, however, 
it seemed to be an established classroom practice that they would discuss their 
outcomes with their neighbours. The Smart Notebook fi le that Eleanor developed 
to present the activity to the students included the suggestion that the students 
should ‘use 2 graphs per page’. A typical student’s response to the fi rst stage of the 
activity is shown in Fig.  6 .

   During the lesson Eleanor moved around the classroom and responded to 
questions initiated by the students. These were mainly related to instrumentation 
issues concerning graphing the functions such as, “where is the squared key?” and 
“how do I insert a new page?”. Ten minutes prior to the end of the lesson, Eleanor 
instigated one episode of whole class discourse in which she asked the students 
to open “your page where you’ve explored this set” whilst gesturing to the set of 
functions shown in Fig.  7 .
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  Fig. 5    The student task sheet 
for the activity ‘Transforming 
functions’       

  Fig. 6    A student’s TI-Nspire 
screen in response to the task 
‘Transformations of 
functions’       

   The resulting screen capture view (see Fig.  8 ) was on public display in the 
classroom. Eleanor attempted to use Mason’s idea of  funnelling  (Mason  2010 ) in 
order to elicit from the students the key generalisation for this transformation, i.e. 
that it resulted in a ‘sideways shift’ of ±a. No other mathematical representations 
were used during this discussion to justify or explore why this was true.
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       Hiccups Identifi ed from the Lesson Data: 

 During this lesson a total of nine hiccups were observed and they were grouped into 
the six broad categories as shown in Fig.  9 .

   The omission of any labelling of the sets of functions as they were laid out on the 
worksheet (or related teacher explanation) seemed to trigger the following hiccups 
during the lesson:

•    Diffi culties experienced by the students in making global sense of the activity 
and noticing the invariant properties as Eleanor had intended through her 
activity design.  

  Fig. 7    Function set selected 
for whole class display       

  Fig. 8    The students’ handheld screens on public display during the class plenary       
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•   Whilst the students were competent with entering the functions into the technology, 
they did this in different combinations on different pages.  

•   The large number of different functions that the students were being asked to 
plot focused the students’ activity on entering as many of them as they could, 
rather than looking closely at any individual set and discussing or making written 
notes in relation to the outcomes. Some students had worked very diligently to 
input all thirty-nine functions into the technology, but had failed to appreciate the 
‘sets’ as Eleanor had envisaged.    

 As a consequence, Eleanor experienced diffi culties in identifying any specifi c 
generalities on which to focus the whole-class discourse in the plenary session that 
she convened as the lesson came to a close. 

 There were of course many other types of hiccups that occurred during lessons 
other than those prompted by the technology. These concerned general classroom 
management issues, for example, resulting from students’ off-task behaviour. 
However, these were outside of the domain of the study.  

    Evidence of Situated Learning 

 In response to the identifi ed hiccups, there was evidence for the teachers’  situated 
learning  (as defi ned by Lave and Wenger,  1991 ) in the form of the list of seven 
actions taken by Eleanor during the lesson, which are summarised in Fig.  10 .

   Although the actions were observed during or shortly after the lessons, it was 
only through our discussions in the subsequent interview that the evidence for the 
situated learning was clarifi ed. 

 Eleanor was confi dent in her responses to the students’ instrumentation diffi cul-
ties, giving quick tips such as ‘control escape to undo’ and ‘press escape’ and load-
ing the teacher edition software to demonstrate how to input functions. However, 
the hiccups experienced by Eleanor in this lesson led her to refl ect on aspects that 
she felt she would change, which she articulated during our post-lesson discussion. 
Refl ecting on her activity design, Eleanor commented, 

 I did not need all of the students to work through many similar problems – it was actu-
ally much more memorable to look at screens that appeared different, but, because of 

  Fig. 9    The observed hiccups and their raw codes for the activity ‘Transformations of functions’ as 
captured within Nvivo8       
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an underlying mathematical concept had something similar about them. This meant 
that I could have let the students choose their own functions to transform in particular 
ways – something that I will try next time. [Interview transcript] 

 Eleanor and I agreed that the underlying approach for the lesson was sound. 
However we discussed a redesigned format for the lesson, which responded to 
Eleanor’s comment that she could allow the students to explore their own functions. 
We also incorporated an element of the lesson that I had felt was a constituent part in 
developing the students’ understanding of the outcomes of each of the transforma-
tions. To exemplify this, when the function y=f(x) is compared with y=f(x±a), the 
visible horizontal shift in the graph is linked with the apparent shift in the corre-
sponding values of x within the table of values for the functions when viewed side-
by-side. This is shown for the function y= x  2  and y=(x+2) 2  in Fig.  11 .

  Fig. 10    Evidence of the teacher’s actions in response to the hiccups (‘wrt’ is an abbreviation of 
‘with respect to’ and ‘TE’ is an acronym for ‘Teacher Edition’, the TI-Nspire software that the 
teachers used for whole class display)       

  Fig. 11    Using the multi-representational technology to explore the function table       
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   In our discussion, when I showed this to Eleanor, she commented that she had 
never thought about this connection before, partly because she had learned the vari-
ous transformations herself by rote. As she considered how she would approach this 
topic next time, Eleanor suggested that she might ask pairs of students to focus on 
particular transformation types with a view to them being able to summarise and 
justify the outcomes of their explorations to other members of the class. Eleanor’s 
epistemological development concerned: her reconceptualisation of the nature of 
the variant and invariant properties within her chosen example space; the use of 
the technology to represent an appropriate set of functions; and the way in 
which she could coordinate the whole-class discourse to support the students to 
notice the chosen generality. 

    Global Categories of Hiccups 

 By repeating the process described previously for each of the lessons observed 
during the second phase, the cross-case analysis, supported by the functionality 
within Nvivo8, led to a conclusion that all of the hiccups could be attributed to one 
of seven considerations (Table     3 ).

   This set of classifi cations has implications for the ways in which we consider 
both the formal and informal support for teachers as they begin to use multi- 
representational technology in the classroom. For example, the emphasis within 
most professional development support and training, when introducing new 
mathematical technologies to teachers, concern the technical steps to achieve the 
desired functionality or ‘key pressing’ with a view to avoiding the occurrence of 
students’ instrumentation issues (Hiccup type 7). However, often far less time is 
spent considering the mathematical and pedagogical implications of the activities 
that teachers design and the implications of their design decisions on the possible 
student outcomes. 

 The implications for these fi ndings concern the nature of in-class support for 
teachers in addition to the global design of professional development initiatives 
concerning new technologies.   

    Conclusion 

 In conclusion, the study provided deep insight into teachers’ technology-mediated 
epistemological development over a 24 month period as they began to integrate a 
complex new technology within their classroom practices. Their mathematical, 
pedagogical and technical knowledge developed through a multifaceted journey, 
which was centralised on their classroom-based experiences and the professional 
exchanges that we had before and after their lessons. The longitudinal nature of the 
research enabled the fragments of this epistemological development to be pieced 
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together to show how their actions changed over time as they re-encountered  known 
hiccups  but had developed appropriate  response repertoires . 

 Moreover, the adaptation of Verillon and Rabardel’s framework provided a 
useful construct for the research as it focused the research lens onto teachers’ 
classroom practices and demanded a robust set of methodological tools to evi-
dence the different interactions. However, the key purpose of this chapter was to 
provide insight into one researcher’s approach to the study of teachers’ epistemo-
logical development through a detailed description of the methodology that led 
to the conclusion that it was the  contingent moments  or  hiccups  that the teachers 

   Table 3    The emergent types of hiccups experienced by secondary mathematics teachers learning 
to use a multi-representational technology.   

 Hiccup type  Exemplifi cation 

 1.  Aspects of the initial activity design:  Choice of initial examples 
 Sequencing of examples 
 Identifying and discussing objects displayed by the 

technology 
 Unfamiliar pedagogical approach for the students 

 2.  Interpreting the mathematical generality 
under scrutiny: 

 Relating specifi c cases to the wider generality 
 Appreciating the permissible range of responses 

that satisfy the generality 
 The students fail to notice the generality 

 3.  Unanticipated student responses as a 
result of using the technology: 

 The students’ prior understanding is above or 
below the teacher’s expectation 

 The students’ interpretations of the activity’s 
objectives differ from the teachers 

 The students develop their own instrument 
utilisation schemes for the activity that differ 
from the teacher’s planned scheme 

 4.  Perturbations experienced by students 
as a result of the representational outputs 
of the technology: 

 Resulting from a syntactic output 
 Resulting from a geometric output 
 Doubting the ‘authority’ of the syntactic output 

 5.  Instrumentation issues experienced 
by students when making inputs to 
the technology and whilst actively 
engaging with it: 

 Entering numeric and syntactic data 
 Plotting free coordinate points 
 Grabbing and dragging dynamic objects 
 Organising on-screen objects 
 Navigating between application windows 
 Enquiring about a new instrumentation 
 Deleting objects accidentally 

 6.  Instrumentation issue experienced by 
one teacher whilst actively engaging 
with the technology: 

 Displaying the function table 

 7.  Unavoidable technical issues:  Transferring fi les to students’ handhelds 
  The teachers were using prototype 

classroom network technology that did 
result in some equipment failures 
during some lessons  

 Displaying teacher’s software or handheld screen to 
the class 
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experienced when integrating the multi-representational technology into their 
classroom practices that provided both rich contexts for their situated learning and 
fruitful foci for professional discourse.     
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    Abstract     This chapter presents a synthesis of a set of studies focusing on teachers’ 
technology-based activity at the classroom level. Each of the studies is contextualised, 
singular and deals with individual teachers. Cross-analysing the fi ndings of these 
separate situations aims to identify common characteristics in terms of common 
responses to shared constraints (in the French context) related to the use of technology 
by  ordinary  mathematics teachers. The synthesis is developed with the aim of analysing 
regularities in the practices of ordinary teachers integrating  technologies into their 
teaching. These regularities are structured along three issues: How to simultaneously 
teach mathematics and use technology in class? (cognitive axis); How to teach 
mathematics in new teaching environments? (pragmatic axis); How to manage the 
time of teaching and learning when using technology? (temporal axis).  

  Keywords     Technology integration   •   Teachers’ practices   •   Mathematics teaching   
•   Teaching environments   •   Didactical approach   •   Professional constraints  

        Introduction 

 In recent years, an increasing interest has been paid by educational research to 
teachers’ practices in technology environments. Constraints and diffi culties encoun-
tered by mathematics teachers’ integration of technologies has also been an on- 
going issue. Researchers have investigated different aspects of teachers’ practices in 
technology-rich classrooms by using or developing different theoretical frames. 
Kendal and Stacey ( 2002 ) studied the discrepancies and variability in the ways 
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teachers use technology in their mathematics classrooms. Ruthven and Hennessy 
( 2002 ) investigated teachers’ ideas about their own experience surrounding lessons 
incorporating the use of digital technologies and developed a model that included 
different levels of teachers’ expectations and ideals. In order to understand the key 
factors of teachers’ activities and roles through a holistic approach, Monaghan 
( 2004 ) used Saxe’s cultural model centred on emergent goals under the infl uence of 
four parameters. Drijvers et al. ( 2010 ) investigated, within the general frame of the 
instrumental approach (Vérillon and Rabardel  1995 ), the types of orchestrations 
that teachers develop when using technology. More generally, in the latest ICMI 
study (Hoyles and Lagrange  2010 ), research studies addressing the theme of teach-
ers and technology revealed that integrating technology is not an easy task for teach-
ers who have to cope with an increasing complexity in preparing lessons and 
managing the classroom while taking into account several features going beyond 
familiar formats and routines in a paper and pencil environment. 

 The aim of this paper is not to present the results of a single research study 
related to these same concerns, but rather to offer a synthesis of a set of studies that 
I have conducted over the past decade and that have yielded outcomes focusing on 
the teacher’s activity at the classroom level. Each of these studies is contextualised, 
singular and deals with individual teachers. Through the study of these singular 
situations, I aim to identify common characteristics related to the integration of 
technology by  ordinary  1  mathematics teachers, to analyse certain regularities in 
teaching practices and to investigate the factors that determine them. Of course, 
the professional group ‘secondary mathematics teachers who use technology’ is not 
homogeneous. My goal is to try to identify, beyond this heterogeneity, some 
 homogeneity in responses to shared constraints and various institutional incentives 
(in the French context) to integrate digital technologies in mathematics teaching.  

    Three Research Studies 

    Background 

 In the early nineties I was engaged in a project where researchers worked with a 
group of teachers, who were experts in digital technology, to identify the potential 
offered by Computer Algebra Systems for teaching and learning (Artigue  1997 ). 
One of the results of this work was that technology-expert teachers have a poor 
sensitivity to the changes that technology integration implies, due essentially to 
their technology expertise. We highlighted a complex balance between achieving 
learning goals and working with technology that is unfamiliar to students, where the 

1   ‘Ordinary teachers’ means in this chapter, teachers who are not technology-experts and who are 
not involved in experimental projects. 
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role of the ‘expert teacher’ is essential in maintaining the mathematics activity and 
management of students in a satisfactory manner. 

 A few years later, I was a member of a group of French researchers leading a 
review of research literature that looked at more than 600 international publica-
tions (published before 2000) dealing with Information and Communication 
Technology (ICT) in the teaching and learning of mathematics (Lagrange et al. 
 2003 ). My own contribution within this group was to examine publications that 
focused on the ‘teacher dimension’. The major fi nding was the relative paucity 
of systematic studies investigating mathematics teachers’ integration of ICT 
into their classroom practices. Most of the existing studies aimed at studying 
beliefs and knowledge of teachers regarding technology integration or at examin-
ing innovative technology- based activity of teachers working in experimental 
situations. 

 The fi ndings of these two research studies and the questions they raised led me 
to focus on investigating ordinary teachers’ use of digital technology in their lessons 
with an emphasis on their classroom practices. By ordinary teachers, I mean teach-
ers who are neither technology-experts nor participating in experimental research 
projects but whose daily professional contexts refl ect real school conditions. I then 
participated in several studies about teaching practices in technology environments 
that involved experienced teachers using either dynamic geometry or online exer-
cises and trainee teachers who experimented with several technological tools during 
their fi rst year of teaching. The three studies presented in this paper are qualitative 
in nature and are based on direct observation of classroom practices or on traces of 
classroom practice, as reported by teachers.  

    First Study: An Experienced Teacher’s Practice 

 The fi rst study involved an ordinary teacher using dynamic geometry (Abboud- 
Blanchard  2009 ). The teacher observed was not engaged in any innovation or 
research project and had an episodic, as opposed to signifi cant use of technology 
with her students. The lesson was on spatial geometry with a grade 9 class (fourth 
year of the lower secondary level, aged 14/15 years) and it took place in the com-
puter room. The students used dynamic geometry software in assigned groups of 
two or three working with one computer. The lesson observation was videotaped. 
The topic concerned the cutting of a pyramid by a plane parallel to the base, and the 
teacher used an activity that was pre-designed by the software developers. 

 This case study sought to investigate the approaches that an experienced 
teacher develops when using dynamic geometry system in an ordinary classroom 
context in order to characterise the teacher’s activity and its impact on students’ 
learning with technology. The analysis provided fi ndings that related to: the tasks 
proposed for the students’ learning; the management of the students’ groups; and 
the teacher’s discourse and the interaction with students. These fi ndings were 
contrasted with the results of a similar analysis of a non-technology-based lesson 
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with a class of the same level, on the same aspect of problem solving in order to 
highlight the  characteristics of a technology-based lesson (Abboud-Blanchard 
and Paries  2008 ).  

    Second Study: Experienced Teachers’ Practices 

 The second study involved fi ve secondary mathematics teachers using online 
Electronic-Exercise-Bases (EEB) with grade 10 students (fi rst year of the upper 
secondary level, aged 15/16 years). These specifi c technological tools are software 
applications that mainly consist of classifi ed practice tasks within a tutoring envi-
ronment that can include guidance, corrections, explanations and sometimes 
reminders of mathematics courses. 2  The research questions were addressed within 
the context of a regional French project focused on encouraging mathematics teach-
ers to use the EEB (Artigue and al.  2008 ). The aim of the project was pragmatic in 
that it involved observing the potential of such tools in ordinary classes, with an 
emphasis on helping the weaker students (Abboud- Blanchard et al.  2007 ). 

 The general issues related to the investigation of teachers’ practices within the 
project were: Why and how do teachers use EEB?; What effect does this use have on 
their teaching activity? To answer these questions, we observed volunteer teachers 
using EEB over a period of 3 years. Most of the teachers were familiar with classroom 
use of technology at the beginning of the project (Abboud-Blanchard et al.  2009 ). 
The data analysis was qualitative and it related to: lessons preparations; class obser-
vations and answers to questionnaires and interviews. All of the observed lessons 
were EEB lessons on the topic of algebra and took place in the computer room. The 
students worked on a common on-line worksheet that had been prepared by the 
teacher before the session.  

    Third Study: Beginner Teachers’ Practices 

 The aims of this third study were to investigate the initial professional uses of technol-
ogy by pre-service mathematics teachers in order to understand the conditions in 
which these uses take place. In France, pre-service mathematics teachers benefi t from 
a one year professional course in order to obtain their master’s degree in secondary 
education. They teach mathematics, advised by a tutor, in one or two classes through-
out the year. Over the last few years training teachers to the use of technologies has 
become more and more signifi cant and a set of competences in the area of ICT for 
teaching have to be fulfi lled by the trainees at the end of the training year. However, 
obstacles to technology use still persist even if, during their pre-service training, the 

2   See for example:  http://mathenpoche.sesamath.net/ . 
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trainees benefi t from conditions that might help them develop professional uses of 
technology (Abboud-Blanchard and Lagrange  2006 ). 

 The study focused on fi ve pre-service mathematics teachers as case studies 
(Abboud-Blanchard et al.  2008 ). The data was of two types: professional dissertations 
about using technology in the classroom and interviews carried out with them at the 
end of the training year. During this period, pre-service teachers have to write a pro-
fessional dissertation about their teaching practices as part of their fi nal assessment 
and they are free to choose the topic. Some trainees, as in these fi ve cases, choose to 
deal with the use of technology in the classroom. In this study, these professional 
writings are considered as  traces  of genuine practices (Van Der Maren  2003 ), as a 
way to approach what the pre-service mathematics teachers consider as signifi cant 
practices and also their refl ections on these practices. The interviews provide com-
plementary information on how they deal with technology-related potential and 
possible restraints within technology-based lessons. 

 The fi ve mathematics pre-service teachers considered in the research had various 
profi les with regard to technology (profi les drawn throughout the analysis of the 
interviews). The training in the use of technology had various effects depending on 
the one hand on these profi les, and on the other hand on differences relating to their 
original didactical concerns. 

 The analysis of the lessons reported in the dissertations enabled an exploration 
of the uses of technology by trainees in two phases of the teacher’s work, which 
are preparation work and classroom work. Thus, the research provided a closer 
look at what pre-service mathematics teachers’ technology-based activity devel-
oped throughout the year of training and how they refl ect on these fi rst teaching 
experiments.   

    Theoretical and Methodological Considerations 

 The studies presented above used the same theoretical frame as a route to better 
understand the complexity of teachers’ technology-based practices within the general 
frame of the  double approach , developed in France by Robert and Rogalski ( 2005 ). 
It is this frame that is presented in the fi rst sub-section. My aim is to build on these 
studies by synthesising their results in order to emphasise the regularities in the way 
that teachers integrate technology into their classroom practices. This gives rise to a 
new theoretical construct introduced in the second sub-section. 

    The Double Approach Framework Used in the Three Studies 

 The general framework used is the  double approach , which combines both a 
didactical and an ergonomic perspective in analysing the teacher’s activity in class-
rooms, as well as the factors that determine it. Rogalski ( 2008 ) argues that the frame 
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of reference for the  double approach  is that of  activity theory , which was initiated 
by Leontiev ( 1978 ), enriched by Vygotsky ( 1986 ), and then exploited and developed 
within the context of ergonomic psychology (Leplat  1997 ; Rogalski  2004 ) before 
being articulated within the context of teaching mathematics. 

 The  double approach  was introduced and developed by Robert and Rogalski ( 2002 , 
 2005 ) to incorporate, on the one hand, a didactical perspective, which views the 
 teachers’ activities that involve task choices and classroom management as a key to 
accessing students’ activities, and on the other hand an ergonomic perspective, which 
considers that in order to study their activity, teachers must be seen as professionals 
having craft knowledge, beliefs and previous experience whilst working in given 
institutional and social  conditions. On a methodological level, Robert and Rogalski 
distinguish fi ve components that can be observed or questioned, and whose recon-
stitution provides access to the teacher’s practices. The  didactical perspective  takes into 
consideration the fact that there are two main types of channels used by the teacher for and 
during  classroom activity; the organisation of tasks prescribed to students (cognitive 
component) and the direct interactions through verbal communication (mediative 
component). The  ergonomic perspective  of analysis is associated with the teaching 
profession. It considers the teacher as performing a given professional activity. His/her 
performance depends on a multiplicity of factors, the main ones being:  professional 
history, knowledge and beliefs (personal component); institutional constraints and 
rules (institutional component); and social interactions in the work environment (social 
component). The fi ve components of the double approach are thus:

    1.    The  cognitive component  is linked to the mathematical intentions and goals of 
the teacher. The analysis relating to this component focuses mainly on the sce-
nario the teacher sets for students in terms of mathematical tasks. These scenar-
ios include the time allocated for the students to work on tasks, the form of this 
work and the tools to be used, such as paper-and-pencil, technological tools and 
blackboards.   

   2.    The  mediative component  is related to all of the interactions, verbal or not, 
observed as the lesson progresses, such as the interactions between teacher and 
students (explaining the tasks or giving aid), and interactions between students. 
The data analysis focuses on how the teacher engages and maintains the stu-
dents’ activities and on the type of help he/she provides to enable the students to 
achieve the tasks. Robert ( 2008 ) distinguishes two types of help, depending on 
whether they modify the activities scheduled or promote directly mathematical 
knowledge. The fi rst type,  procedural help , deals with the prescribed tasks by 
modifying activities with regard to those planned from the presentation of the 
task. It corresponds to indications that the teacher supplies to students before or 
during their work. The second,  constructive help,  adds something between the 
strict activity of the student and the expected construction of the mathematical 
knowledge that could result from this activity.   

   3.    The  personal component  deals with the teacher’s conception of mathematical 
knowledge, of teaching processes and of the way students learn mathematics, as 
well as his/her own professional history. In the case of using technology, more 
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specifi c features could be added to the former, such as familiarity with  technology 
or beliefs related to the impact of technology on mathematics learning.   

   4.    The  social component  is about how teacher adapts to the conditions of the work 
environment in a given school, to the habits of the class, to the colleagues as 
individuals and also as a community. For instance, if it is not a rule of action in 
the school, the teacher might not let the students work in small groups although 
he/she is convinced of the usefulness of this type of class management.   

   5.    The  institutional component  mainly concerns the infl uence of institution, for 
example, via the curriculum, institutional guidelines, hierarchy requirements, 
and so on. It might also concern compulsory textbooks or assessment forms. 
In the case of pre-service mathematics teachers, it could also depend on what 
is highly recommended by teacher educators or training programmes. These 
factors are often considered by the teacher as constraints to deal with while 
practicing the teaching profession.    

  An analysis using the double approach aims to locate the characteristics of each 
component within the activity of the teacher in situ. The recombination of these 
components provides access to a teacher’s practices. The double approach postu-
lates that these practices are both complex and stable, that is, a teacher’s activity in 
classroom has its own logic and consistency, and practices do not change easily. For 
pre-service teachers. It is less clear whether their practices have stabilised but we 
assume that the coherence of their practices is already established. Indeed, Lenfant 
( 2002 ) shows that the practices of pre-service mathematics teachers develop and 
organise into a coherent system in the early months of teaching career and stabilise 
quickly during the fi rst year. Stability does not, however, mean invariance as prac-
tices evolve over time, especially depending on external constraints, but in a coher-
ent manner specifi c to each individual teacher. 

 In my work, I consider the complex articulation between the stability of practices 
and the evolution of the activity in the classroom due to the use of technology. 
My study of technology-based lessons focuses on the analysis of tasks and scenarios 
(cognitive component) and on the development of the lesson in the classroom (mediative 
component). This analysis makes it possible to understand what occurs in classroom 
when integrating technologies. The interpretation of the regularities and discrepancies 
of the fi ndings relates to the three other components that refl ect the personal determi-
nants of the teaching practices and those related to the teaching situation. These com-
ponents are accessed indirectly since they are mainly deduced from what the teachers 
declare (through interviews or questionnaires) about their activity and work conditions.  

    Synthesising the Results: An Emerging 3-Axis Structure (CPT) 

 The practices analysed in the three studies are certainly shaped by the socio- 
educational and institutional conditions in which each teacher accomplishes his/her 
job as well as by the personal trajectory. Even though the research questions and 
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contexts were diverse, a close examination of the results discloses some regularities 
that go beyond this factual diversity. These regularities seem to be directly related 
to the common constraints and diffi culties that teachers face when using technology 
and the way that they handle them. Variety does certainly exist as it could be related 
in the fi rst place to personal history and professional experience (personal component) 
but also to belonging to a professional group (institutional and social component), 
such as for the pre-service mathematics teacher group. 

 This view of the outcomes as a whole aims to provide a means to analyse both 
the constraints felt by the teachers in their work and the responses they give in their 
technology-based practices that are consistent with the usual paper and pencil prac-
tices. These responses reveal what seems possible with regard to the stability and 
coherence of practices. In other words, these are choices (though certainly related to 
the personal component) that refl ect how teachers invest the few options left, given 
the institutional and social constraints. 

 The cross-analysis of the fi ndings of the studies shows regularities that crystallise 
around three major issues:

•    How to simultaneously teach mathematics and use technology in the classroom?  
•   How to teach mathematics in new teaching environments?  
•   How to manage the time for teaching and learning when using technology?    

 In other words, the search for regularities in the results lead to a structure along 
three axes that relate to: the mathematical content taught with technology; what the 
teacher does and says when implementing a class situation using technology; and 
different aspects of time management of this situation. The synthesis is therefore 
organised in accordance to this structure:  Cognitive axis, Pragmatic axis  and 
 Temporal axis . 

 The results referring to the fi rst two axes are derived from the analysis of the 
cognitive and mediative components of practices. Although the fi rst axis is naturally 
named cognitive, the second one’s name (pragmatic) refl ects that it is fi rst based on 
the effective observation of teacher classroom activity, i.e. what really happened and 
not what might have, enabling subsequent access to its interpretation. Examining 
the results with respect to this axis certainly incorporates elements of the mediative 
component (articulated with the other four components). Nevertheless, the study of 
practices in technological environments shows ubiquity of transversal aspects in the 
lesson management that go beyond the single achievement of tasks, which is the 
primary objective of analysis within the mediative component. 

 As to the third axis, class observation analyses and teacher interviews reveal the 
complexity of teaching in technology environments with respect to time. This com-
plexity concerns several aspects: the length of time needed for the organisation of 
teacher’s work (preparing lessons, planning lessons, evaluating the outcomes of les-
sons); the dynamic time of the class; and the didactical time of learning. Of course, 
the question of time is recurrent in education research and it is present either as an 
explicit object of study or as an implicit element in the analysis. In our work, the 
issue of time was a study parameter that was taken into account during the analysis. 
Cross-analysing the results brings me to highlight the crucial role that time plays 
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when it comes to technology-based lessons, and which sometimes allows a better 
understanding of the choices and actions that relate to the other two axes. 

 This synthetic structure is therefore a means to describe, in a global way, the 
results obtained from the analysis of practices by successively following each of the 
three axes. Moreover, these three axes are intertwined and some interpretations 
relating to one of them could relate to the other. In the next section, I will defi ne 
each axis and corresponding results more precisely.   

    Result Synthesis According to the Three Axes 

 How does an ordinary teacher cope with the increased complexity that arises 
from the implementation of technology? The outcomes of the three studies are 
synthesised in terms of individual or collective responses to conditions and con-
straints related to technology integration. What regularities emerge from studies 
in various contexts in dealing with different technology tools? What are the pos-
sible determinants of these regularities? What remains variable among teachers 
and why? The synthesis that follows will emphasise these considerations within 
the descriptions of the three structuring axes. 

    Cognitive Axis: How to Simultaneously Teach Mathematics 
and Use Technology in Class? 

 The institution has various means to encourage teachers to use technology, such as 
the curricula, assessment recommendations, training and institutional resources. 
This kind of incentive determines some of teachers’ choices when preparing 
student tasks and the way that teachers address the role of technology in learning 
activities. The results would then refl ect the balance that teachers achieve, con-
sciously or not, between institutional incentives to use technology, interpretations 
they make of curricula, and their own routines of teaching mathematical topics 
(or even their own experience as learners in the case of pre-service mathematics 
teachers). 

 In our studies, and despite the diversity of tools and contexts, all of the observa-
tions showed that the tasks in technology environments are essentially identical to 
those in paper and pencil environments. These fi ndings concur with other research 
fi ndings that have addressed similar issues. They are close to what Kendal and 
Stacey ( 2002 ) underline about CAS, which is that mathematical knowledge and 
skills stay globally within the range of those expected in non-technological environ-
ments. Moreover, research dealing with experienced teachers shows that they view 
the use of technology fi rstly through the lens of their usual practices (Ruthven and 
Hennessy  2002 ) and tend to integrate it  a minima  in their classroom sessions 
(Lagrange and Erdogan  2009 ). Of course, many studies have recently shown teachers 
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implementing challenging related-technology situations into their teaching (Hoyles 
and Lagrange  2010 ). Still, the teachers investigated in almost all of these studies 
were involved in collaborations with researchers or educators, and therefore could 
not be considered as ‘ordinary’ teachers as stated previously. 

 In the case of teachers using EEB, student tasks are usually the same as those 
proposed in paper and pencil environments, although facilitated in the EEB environ-
ment which contributes by improving the graphic and geometric dimension and 
providing fewer repetitive exercises on the same mathematics topic. Moreover, only 
knowledge in development or previously acquired knowledge is the topic of such 
tasks. It seems unlikely to make students work on wholly new knowledge with EEB 
because such tools are essentially designed only for skills practice activities. 
However, we observed similar phenomena with more open software that embodied 
different principles of design and architecture. Teachers who use dynamic geometry 
set tasks where the contribution of the software is limited to improving spatial 
awareness through the dynamic manipulation of more familiar paper and pencil 
fi gures, so as to support the proof process. Laborde ( 2001 ) examining the tasks that 
teachers made with Cabri, noted also that they started by using the software mainly 
as an amplifi er for visualising properties, but not really as the source of the tasks 
that they gave to students. 

 In the case of trainee teachers, analyses show that they almost all choose 
dynamic geometry environments to carry out their fi rst technology-based lessons, 
which might be because dynamic geometry has been emphasised in their training 
programmes. We note on the one hand, referring to the discourse of teacher-
educators, the potential abundance of these environments for student activity, 
especially for the visualisation of mathematical phenomena. But on the other 
hand, this declarative intention does not necessarily translate into actual uses in 
classrooms. Indeed, when a pre-service mathematics teacher uses dynamic geometry 
software with the intention of allowing the student to make the right conjectures 
by himself/herself through experimentation, observations show that this supposed 
experimental activity of the student is often reduced to him/her following a well-
guided worksheet, with manipulation instructions, thus considerably lessening the 
potential of the software in the student activity. 

 More generally, we observe that in order to take full advantage of technology 
tools, teachers prepare mathematical tasks that are globally more complex since 
they require many adaptations, such as the construction of stages in geometric 
 reasoning with dynamic geometry software or the articulation of algebraic and 
graphical frames with EEB. However, analyses of classroom observations reveal 
that the teacher’s interventions almost always lead to a division of the tasks into 
simple sub-tasks, thereby reducing the opportunities for students to achieve 
enriched mathematical tasks with technology tools. This last observation can 
also be attributed to the diffi culties related to classroom and time management 
(pragmatic and temporal axes). This issue is discussed in the next sections. 

 However, long-term studies of EEB and pre-service mathematics teachers (see 
also Laborde  2001 ) show that changes will take place and seem to affect mainly the 
cognitive component of teachers’ practices. These trends emerge from a perceived 
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need to fi nd a better articulation between technology-based sessions and paper and 
pencil sessions in order to reduce the student’s perception of the former as an 
unusual session and to take advantage of the potential of technologies to improve 
learning in the latter. 

 For example, pre-service teachers do not feel this need early in their training 
year, but highlight it at the end of the year, as was the case for this pre-service 
mathematics teacher interviewed at the end of the training year: 

 at the beginning, I did not see usefulness of technology, in the sense that, for me, it was 
doing the same exercise using computer instead of using paper-and-pencil. To me, it was 
nothing more than a change of tool without any other change. Now I see that I can do 
something else with technology and thus complete what I do with paper-and-pencil . 

 All of the observations emphasise the fact that teachers promote quickly the use 
of paper records within the students’ activity involving technology. For instance, 
teachers using EEB insist that students use a sheet to keep notes and some of them 
promote the use of a specifi c notebook devoted to technology sessions. This use of 
paper evidences an aspect of the articulation of technology activity with the ordi-
nary activities. The written forms enable work which has been completed with tech-
nology to remain accessible within the whole learning process. The integration of 
technology activities in the ordinary sessions can also infl uence the assessment 
phase, i.e. most teachers who develop signifi cant uses of EEB also incorporate 
similar EEB exercises within their traditional tests.  

    Pragmatic Axis: How to Teach Mathematics 
in New Teaching Environments? 

 Technology-based lessons often involve changes in the working environment, par-
ticularly when technology facilities are not available in classrooms (Ruthven  2007 ). 
The observations on which this synthesis relies all took place in a computer room 
with generally two students to a computer. In addition, the use of technological tools 
is, by itself, a source of diffi culty, especially when teachers are not familiar with its 
handling. What infl uence does this specifi c environment have on the lesson in 
progress? One can assume that the management of the lesson will combine both 
the diffi culties of organising work in small groups and those of technical work with 
the computer, the implications of which will now be examined more closely. 

    The Teacher’s Role 

 In general, computer environments seem motivating for students and the teacher’s 
interventions may be much less frequent than those observed in paper and pencil ses-
sions. Nevertheless, we note that the teacher’s presence is essential for the students to 
get started in their work even with software designed to be used autonomously (EEB, for 
example). Indeed, many students could not progress without the teacher’s assistance, 
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but also because they have diffi culty interpreting the feedback of the software, 
which sometimes does not correspond with their expectations. Thus the teacher is 
kept very busy interacting with students, often in response to their diffi culties, 
throughout the session. Indeed, when the software itself incorporates guidance to 
solve exercises (e.g. EEB), one might expect to see teachers acting more as observers 
of students’ work and being less interactive with them. The observations show this is 
not the case. It is the same when it comes to more open software such as dynamic 
geometry, where the teacher is constantly asked to help interpret the phenomena 
observed on the screen in terms of geometric conjectures, although it was planned 
that students would discover the conjectures for themselves. 

 However, even if this heightened interactivity with students seems to be preva-
lent amongst the experienced teachers, we note that trainee teachers prepare highly 
structured worksheets, allowing them to lessen their interventions while students 
interact directly with the software without their mediation. This role of beginner 
teachers might be due to several factors including the fact that (these teachers) have 
not yet developed classroom management routines enabling them to incorporate a 
new environment. That is to say that the mediative component of practices is in 
progress but not yet stabilised. Another factor is the low degree of familiarity with 
the use of the technology tool, which does not allow teachers to have confi dence in 
their ability to know how to manage learning using software that they have not yet 
fully mastered. Indeed, didactic research in the fi eld of technology has shown that 
supporting the instrumental genesis of students is a complex task for the teacher 
(Trouche  2004 ). A teacher’s degree of familiarity in the use of the tool is one of the 
factors inherent in this complexity. Our research has shown that teachers who are 
unfamiliar with the software organise the students’ tasks in a fairly guided way. The 
low level of students’ instrumentation reinforces this trend. This is particularly 
observable amongst trainee teachers. The student tasks are often specifi ed in a writ-
ten worksheet distributed to students at the beginning of the session. This document 
typically includes a large number of technical tips for the handling of the software 
as well as questions related to mathematical issues to guide the individual student’s 
work. In the case of EEB, because of the apparent simplicity of these tools, teachers 
tend not to consider the instrumentation question as a central obstacle to their uses. 
However, during the fi rst uses of EEB by experienced teachers, we observe similar 
phenomena as above, that is, when using EEB for the fi rst time the teachers propose 
guided worksheets for their students. 

 Finally, when some experienced teachers planned a marginal role relative to stu-
dents’ interaction with the software, this was due to an expressed desire to give 
more autonomy to students. It is in fact consistent with a feature of the personal 
component of these teachers who perceive that the teacher’s role is to help students 
be more autonomous in their learning. Let us examine, for example, the case of a 
teacher working with EEB. She tries to make the students commit themselves to 
solving a mathematical task by using the software as a privileged partner that con-
trols and validates answers. She considers that her primary role is to help the 
students to use the software correctly in order to perform mathematics tasks. Her 
intervention within mathematical tasks consists of providing only constructive help 
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to students. This fi nding relates to her desire to help the students be more autonomous. 
Indeed, when she started to work with EEB, she stressed that her main goal was to 
enable students to work by themselves without any external intervention, in order to 
acquire ‘good solving processes’.  

    The Teacher’s Interventions 

 Analyses of observations show few collective interventions and a majority of indi-
vidual interventions to assist the students’ work. The teacher focuses on providing 
local mathematical help without decontextualising the students’ work, that is, his/her 
assistance consists almost exclusively in procedural help aiming at simplifying the 
students’ activities. They are of various kinds: controlling the solutions to problems 
and associated calculations; validating an answer or helping to fi nd the error (often at 
the request of students); and structuring the solution or asking students to do it. They 
sometimes reduce the effi ciency of a student’s activity, for instance, when the teacher 
indicates the theorem to be used or questions the student about the mathematical rule 
referred to by the exercise. 

 In some cases, breaking tasks into simple sub-tasks is so evident that sometimes 
the teacher has practically dictated the work that the students needed to do. Often, 
when the teacher is interacting with a group, students only follow his/her instruc-
tions or even fi nish a sentence that he/she begins. This type of support is partly 
motivated by the teacher’s concern about the progress of the students’ work, in 
order to ensure that all the tasks prepared for the session are completed. This echoes 
a strong trend in teaching practices in the computer room highlighted by several 
researchers (see, for example, Monaghan  2004 ). It is worth noting that the teacher 
stays with every group for a very short time and thus his/her assistance must allow 
the students to pursue their work on their own. This last issue is also related to time 
constraints which are discussed in the next section (the temporal axis). 

 Some interventions are rather technical and related to the use of the software. 
They consist primarily of explaining how to resolve a technical problem such as how, 
in EEB, to switch from one exercise to another. They are usually brief, local, and 
allow the student to continue towards a solution. Other interventions consist of help-
ing the student in the meticulous execution of a set of software commands (which are 
sometimes even provided in the worksheet) in order to perform a mathematical task. 
The latter could not be qualifi ed as procedural help, since there is no modifi cation/
simplifi cation of the planned student activity. It is not characterised in the typology 
defi ned within the frame of the double approach. This leads me to defi ne a new type 
of help (add to the existing procedural and constructive types):  handling help  that 
consists of supporting the student to use the software in order to achieve the planned 
mathematical task without modifi cation. This type of help is directly dependent on 
the use of tools. It is present in technology-based lessons (but it also can be observed 
in a non-technology environment when a tool is used for the fi rst time), especially 
when the students cannot all handle the software with ease. The frequency of this 
type of help, which is not common in a mathematics course, disrupts the usual class 
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management and adds to the previous diffi culties that teachers have encountered in 
technology environments. 

 Furthermore, to provide effective help the teacher must be familiar with the tasks 
proposed in both their dimensions related to the technical use of the software and to 
doing mathematics with the software. Indeed, to understand the diffi culty encoun-
tered by the student, it is often not enough to look at the computer screen, notably 
when there are few traces providing information on the progress of the student prior 
to the arrival/intervention of the teacher. 

 Finally, the use of support materials or teaching aids is less frequent. These 
aids provide an opportunity to support the students to accomplish the tasks on 
which they are working and, at the same time, to retain knowledge that goes 
beyond what is directly mobilised to solve the problem. The analysis of the aims 
of this kind of help often shows that the need for these aids is motivated by the fact 
that the sole didactic interaction implemented within the software is insuffi cient for 
the students to achieve the learning objectives set by the teacher. It also shows that these 
aids are all the more diffi cult to predict by the teacher as they should be adjusted 
to the particular path of each pair of students working with machine. Moreover, 
within computer based sessions, the generalisation of constructive help to the 
whole class, as it is often the case within a paper and pencil environment, seems 
very diffi cult for teachers to achieve, as explained in the following paragraph.  

    The Class Split into ‘Mini-Classes’ and the Disappearance 
of Collective Phases 

 Working in a computer room generally entails students working together in groups of 
two or three per machine. After an initial collective phase (where the teacher explains 
the work to be done), which is frequently very brief, we observe that the class splits 
into several ‘mini-classes’ (one, two or three students per computer) with whom 
the teacher interacts separately from the remainder of the class. For each of the 
mini-classes, the teacher adapts to whatever the students are doing and to their current 
reasoning, whereas in paper and pencil lessons, it is more often the students who have 
to adjust themselves to the teacher’s path (Abboud-Blanchard and Paries  2008 ). This 
appears to be an important characteristic of the class management of a technology-
based lesson which differentiates it from a non-technology one. Monaghan ( 2004 ) 
also pointed out this difference by specifying that the teacher’s talk is generally 
directed to groups of students around a computer. 

 Moreover, the analysis of the teacher’s discourse shows similarities in the successions 
of his/her interventions among the mini-classes that could be described as follows:

•    The teacher arrives at a mini-class;  
•   The teacher fi nds out how far the students have progressed;  
•   The teacher tutors the students in their problem solving activity by structuring 

the reasoning and introducing sub-tasks;  
•   When students start to execute these sub-tasks correctly, the teacher moves on to 

another mini-class.    
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 Indeed, the time the teacher spends with each mini-class is actually limited 
(see below temporal axis), which might explain this systematic division of tasks 
in order to enable students to have clear work to be completed even in the teach-
er’s absence. This mode of student management seems to be a feature of computer 
room sessions, which can be tiring and uneconomical for the teacher. We observe 
teachers repeating the same comment several times, making the same suggestion, 
giving the same help. 

 It is also to be noted that working in the computer room implies a special pattern 
of how the teacher moves around the classroom and manages students’ work. 
Drijvers ( 2011 ) identifi es this type of teaching practice as the  work-and-walk-by  
practice, that is the students work individually, or in pairs, and the teacher walks 
around the room and monitors the students’ progress. Of course, this pattern is not 
specifi c to ICT environments. However, we agree with Drijvers when he stresses 
that within an ICT environment, this practice puts high demands on the diagnostic 
skills of the teacher. Indeed, a look at the computer’s screen is not always enough to 
understand what the student has already done and to determine the most appropriate 
form of help. 

 Consequently, there is a quasi-disappearance of collective phases when technol-
ogy based-lessons take place in the computer room. The students work at different 
paces and the teacher cannot, in certain cases, generalise the support that is given 
only to some mini-classes whereas they could be useful to many others. Artigue 
and al. ( 2008 ) encountered the same feature, notably that individual interactions 
substitute for collective interactions and that institutionalisation phases are non-
existent because of the different trajectories of students. Furthermore, the fi nal 
stages of the sessions do not give rise to any institutionalisation of knowledge. 
However, this regularity has a relative signifi cance given that the  sessions we 
observed did not aim to introduce new knowledge and were designed as revision 
sessions by the teachers. 

 Looking through the lens of evolutions of practice we note that teachers, after 
only a few sessions, move towards an awareness of the absence of these phases. 
Indeed they tried to compensate for this void when it seemed necessary, by returning 
in the following session to collective phases in order to unify the students’ knowledge 
that was involved in the previous technology-based lesson.   

    Temporal Axis: How to Manage the Time of Teaching 
and Learning When Using Technology? 

 The issues concerning time management need to be taken into account when analysing 
the teacher’s activity, whether within one lesson or several lessons organised over 
time. It concerns not only what happens in the classroom but also includes the time 
outside the class, i.e. preparing lessons, searching for resources, collaboration with 
other teachers, and so on. The notion of time requires a distinction between two 
types of time, didactic time and physical (clock) time. Didactic time is the time that 
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regulates the learning process and involves knowledge  construction, which can be 
one of two kinds,  meso time  and  micro time  (Chevallard and Mercier  1987 ). Meso time 
is somewhat linear and relates to the scheduling by the teacher of the learning objectives 
in a sequential way whereas micro time takes into account the dynamics of practices in 
the context of the classroom (Chopin  2005 ). Our analyses of classroom observations 
lead us to consider the micro didactic time in relation to the physical time and in our 
analyses of the evolution of practices we also consider the meso didactic time. 

 First, we observe that preparing technology-based lessons with new software, or 
software not yet enough explored could be costly because it requires a time of 
appropriation, to determine its potential for learning and to anticipate the aid to 
provide to students both at mathematical and technical levels. For example, teachers 
using EEB declare that they had to test all messages and feedback displayed by the 
software for nearly every task. Thus, even teachers who became familiar with this 
type of technology stated, during interviews, that the preparation and updating of 
work plans is very time consuming. 

 Secondly, on investigating the time management during the sessions, we observe 
in all cases a difference between the time expected by the teacher and the actual 
time taken. In addition to the technical problems that can sometimes interfere within 
the session, disparities in the students’ pace when performing the tasks are magni-
fi ed in technology based lessons in particular, as shown above, because of the mini-
classes and the multiplicity of individual paces. In the French context, classes are 
usually mixed ability classes. Thus, teachers generally plan long lists of tasks in 
order to keep fast learners fully occupied until the end of the session. It is slow 
learners who are responsible for the low pace of the class. This slowness may be due 
to less able students who experience diffi culty in performing mathematical tasks, 
which often leads the teacher to support them, to help them and sometimes to even 
execute the task with them so they can reach what he/she considers to be the mini-
mum objective of the lesson. This slowness can also be the result of meticulous 
students who are interested in detailed tasks not planned by the teacher. For example, 
students try to draw precise geometric fi gures although the objective of the teacher 
is rather to explore properties of this fi gure, regardless of its conformity to precise 
measures. Often, when the teacher realises the gap between the planned and actual 
time, he/she reminds the students that they have to speed up or asks them to skip 
some tasks and move on to others. This observation of class management seems 
characteristic to technology-based lessons where the different paces of students 
determine the pace of the whole class. This contrasts with the management of paper 
and pencil tasks where the pace of the lesson prescribed by the teacher impacts on 
the pace of individual students. (Abboud-Blanchard and Paries  2008 ). 

 Let us examine the case of the teacher from the dynamic geometry study. She had 
prepared simple technology based tasks in the form of a guided worksheet in order 
to help the students to move on quickly to mathematical tasks. The time devoted to the 
former was intended to be limited to 5–10 min. Perceiving that these tasks were taking 
more time than expected, she tried to accelerate their completion by doing the work 
herself or by coaching students step by step in the execution. We note, however, that the 
teacher failed to reach the goal of students doing all the mathematical tasks within the 
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allotted time. Indeed, some of them were still trying to accomplish the fi rst tasks at 10 min 
from the end of the session. This is also due to the division of the class into groups and 
the fact that she could not stay with each group for more than a few minutes at a time. 

 As to trainee teachers, the time issue turned out to be very important in their 
refl ection on their fi rst steps within the teaching profession. They quickly realised 
that the preparation and implementation of a technology-based lesson are time- 
consuming, especially in terms of scheduling mathematics lessons over the year. 
It seems diffi cult for them to reach an acceptable balance between two kinds of insti-
tutional incentives, namely integrating technology-based sessions on a regular basis 
and fulfi lling all of the curriculum recommendations over the course of the year:

“ ICT lessons, while remaining useful and interesting, are diffi cult to implement and costly 
in both time and energy ”. “ On one side I am told to advance in my learning program, and 
on the other to do ICT. Where could I fi nd time to do all this? ” (Interview of pre-service 
mathematics teachers at the end of the training year). 

At the same time, exploring the potential of software leads pre-service mathe-
matics teachers to perceive a time economy of didactical time over the long term: 

“ If I wanted to do exactly the same thing with paper-and-pencil, it would have taken a much 
longer time ”. “ I realised all the time I can gain by using dynamic 3D geometry ” (Interview 
of pre-service mathematics teachers at the end of the training year). 

 Finally, changes observed in practices are consistent with a search for a cost- 
benefi t balance between time gain in terms of learning when the potential of tech-
nology is well exploited and time loss in the preparation and management of 
sessions (see also Ruthven  2007 ). The impact of the latter, however, tends to 
decrease with an improved appropriation of technologies. Evolutions of technology 
uses considered relative to the issue of time are also present at an economic or an 
institutional level, that is to say teachers invest in the development of technology- 
based lessons only when they estimate the existence of real benefi t for learning or 
when they are strongly encouraged or prompted by the institution.   

    Discussion 

 The challenge in doing this synthesis was, and still is, to understand better what 
characterises ordinary teachers’ technology-based-practices, what is shared, what is 
different, what may evolve and under what conditions? Aiming to investigate teach-
ers’ practices in a qualitative way gives rise to local and contextualised research. 
This is true for the studies presented in this text and of others quoted throughout the 
synthesis, which could limit the generalisation of results to other teachers working 
in other contexts and using other technologies. Despite such limitations, I believe 
that the similarities between the fi ndings of all of these studies is a good argument 
for such a generalisation. 

 Furthermore, trying to synthesise the results of a set of research, beyond the 
issues, contexts and theoretical frameworks that produced them, seems legitimate at 
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the current time. It is supported on the one hand by the fact that the integration of 
technology in mathematics teaching is still weak and problematic, and on the other 
hand by the existence of a body of research on teachers’ practices which brings 
insightful analyses and outcomes which can help understand the barriers to a wider 
integration. In addition, identifying the collective dimension in teachers’ responses 
to constraints that do exist in professional  ordinary contexts  and pointing out com-
mon features and routines which take place, could have a direct impact on teacher 
education by enriching the body of knowledge available to teacher educators 
(   Abboud-Blanchard  2011 ). 

 In my development of the 3-axis synthetic structure (CPT) there are some aspects 
that bear a similarity to the  double approach , but with an emphasis on the technology- 
based practices. From the consideration of a wide literature base, Ruthven ( 2009 , 
 2010 , chapter 14 of this volume) has developed a conceptual framework that identi-
fi es fi ve key structuring features shaping patterns of technology integration into 
classroom practice:  working environment; resource system; activity format; cur-
riculum script ; and  time economy . How may these structuring features relate to my 
original theoretical frame (the double approach) and to the structuring of my result-
ing synthesis? The fi rst two key features (working environment and resource sys-
tem) are not explicitly present in the double approach but could be related in 
particular to institutional and social components of practices. Indeed, the physical 
environment in which the lesson takes place and the resources used affect directly 
the cognitive and mediative components. Work environment and technology 
resources are, however, generally dependent 3  on the school equipment and the insti-
tutional decisions and on collective decisions of the group of mathematics teachers 
of the school. In the studies presented in this text, the nature of the technology envi-
ronment was considered in the sense of an environment in which teachers and stu-
dents act, and how that impacts on the activity of each of them. In the synthetic 
stucture (CPT), the new teaching environment indicates an environment in which 
teacher develops his practices and it surrounds the issues raised in the three structur-
ing axes. It therefore may refer to both the work environment and resources system 
defi ned by Ruthven. My understanding of the second two key features (activity 
format and curriculum script) lead me to relate them to a central idea in the double 
approach, which is the stability of practices. According to Ruthven, experienced 
teachers repeat general models for action in the classroom and their lessons are 
constructed and conducted around these familiar patterns. This observation refers, 
within the double approach, to the stability of mediative and cognitive components. 
In addition, Ruthven considers the curriculum script feature from a cognitive perspec-
tive, globally similar to some aspects of the cognitive component defi ned within the 
double approach. However, Ruthven’s construct relates more specifi cally to aspects of 
technology. The application of the double approach in the three studies to technology 
environments, examined not only the scenarios related to a given mathematical topic 
and the nature of the tasks prescribed to students, but also the considerations specifi c 
to technological aspects. In the synthetic structure, the cognitive and pragmatic 

3   At least in the French context. 
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axes, both specifi ed to technology environments, might be seen as a sort of meshing 
of these two features from Ruthven’s frame and the cognitive and mediative compo-
nents of the double approach. Finally, the time economy feature of Ruthven’s frame 
within the double approach refers mainly to the study of mediative component, but 
it could also relate to the study of the institutional component. In the synthesis 
above, I was also sensitive to time issues in teachers’ practices that related to pre-
paring the lesson and to carrying it out in the class, and also to programming lessons 
over the year, which led me to defi ne a temporal axis. 

 More generally, Ruthven’s frame is structured around fi ve key features, each 
illustrating the professional adaptation on which technology integration into class-
room practice depends. Starting from the hypothesis that it is not suffi cient to study 
technology integration through the lens of learning objectives and technology affor-
dances, my synthetic stucture (CPT), organised along three interrelated axes, aims 
also to shed light on these adaptations. The fact that these two approaches for the 
synthesis of research on the practices of teachers who are integrating technology 
lead to a convergence of views, regardless of the difference of cultural and theoretical 
contexts, is encouraging considering their common aim to provide a ‘meta-view’ of 
teachers’ practices. However, I join Ruthven when he points out that this type of 
conceptualisation, which describes developments that are closer to the teachers’ 
experiences, may be of limited theoretical scope. It aspires, rather, to fulfi l a mediating 
role helping to translate insights from more decontextualised theories into practical 
ideas and action (ibid.). 

 Other researchers have also tried to overcome the local contextualised view of their 
own research with the ambition of creating a coherent lens for looking at teachers’ 
technology-based practices. Lagrange and Monaghan ( 2009 ) associated, in a useful 
way, the double approach and Saxe’s four parameter model in an attempt to understand 
the diffi culties which the teachers they were researching experienced. Drijvers et al. 
( 2010 ) found some of the concepts within the double approach helpful to underpin 
their fi ndings about orchestrations types. These kinds of initiatives could be a fruitful 
way to gain greater insight into the complexity of technology- based practices. 

 The last point I would like to make is with regard to teachers’ evolutions in prac-
tice. This synthetic presentation not only indicated homogeneity in the answers 
brought by the teachers to some shared professional constraints, but also served to 
stress common evolutions of practice. Do these answers and evolutions occur at the 
same time in a trajectory of technology integration in practices? Or are they rather 
milestones in this trajectory which do not correspond to a temporal order common to 
all the teachers? Indeed, the specifi city of technology integration sometimes requires 
long-term studies to make it possible to identify regularities in the evolutions of 
practices, to interpret them and to fi nd their corresponding determinants. To inves-
tigate these evolutions, we are currently developing a new frame based on the 
concept of ‘geneses of technology uses’ (Abboud-Blanchard and Vandebrouck 
 2012 ; Abboud-Blanchard et al.  2012 ). This perspective assumes that the teachers’ 
uses of technologies develop via a dynamic path linked to both a personal and pro-
fessional appropriation of these technologies and to a growing awareness of their 
potential and limitations.     
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    Abstract     In    this chapter the professional development of teachers is observed 
through the joint work of researchers and teachers. In the particular context of the 
European project EdUmatics, which focuses on mathematics education in a com-
puter environment, the collaboration between researchers and teachers has helped 
both to build innovative situations and also to better understand the diffi culties 
involved in the introduction of technology in classrooms. The theoretical frame-
work of the theory of didactic situations, didactic incidents and documentational 
genesis allows the construction of analyses in order to better understand the stu-
dents’ and teacher’s joint action and so to enhance teachers’ professional develop-
ment. We highlight both the consistency of the framework and the contributions of 
our fi ndings to the professional development of teachers.  

  Keywords     Didactics incidents • Documentational genesis • Milieu • Theory of 
didactic situations  

        Introduction 

 The EdUmatics project 1  was a place of multiple collaborations: collaboration 
between researchers; collaboration between researchers and teachers; and collabo-
ration between teams of different European countries. At the beginning of the project 
these collaborations could not be taken for granted and their achievement has depended 
on a set of local and global conditions. One of the most important challenges was to 

1   50324-UK-2009-COMENIUS-CMP; European Development for the Use of Mathematics 
Technology in Classrooms,  http://www.edumatics.eu . 
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take into account the professional development of teachers involved in the project. 
As full partners of the project, the schools play an important role in the development 
of the EdUmatics resources, and the teachers not only experimented in their class-
rooms with new and original lessons, but also  participated to the global construction 
of an in-service on-line course for others. The particular context of technology 
added a complexity even if most of the teachers involved in the project were, from 
the beginning, highly experimental teachers. 

 In this chapter, I would like to emphasise the relationship between professional 
development and analysis of classroom situations. To this end, I will present the 
frameworks of didactic incidents and perturbations, which describe and help under-
stand the dynamics of the relationship between teaching and learning in a perspec-
tive of documentary genesis of teacher and students.  

    Theoretical Framework to Approach the Complexity 

 The starting point of the EdUmatics project resided in the premise that ‘ recent studies 
in Mathematics Education show that, despite many national and institutional 
actions within the EU aiming to integrate ICT into mathematics classrooms, such 
integration in secondary schools remains weak. ’ Research has shown that beyond 
some contextual problems (computer availability, technical diffi culties…), the pro-
fessional activity of teachers who integrate technology in their lessons is complex, 
both in terms of internal reasons (linked to the mathematical and technological 
knowledge, to the conceptions of mathematics as well as of teaching mathematics) 
and external ones (institutional, social or material constraints) (Rodd and Monaghan 
 2002 ; Lagrange and Degleodu  2009 ). In order to understand and describe this com-
plexity and to facilitate the dissemination of professional skills leading to integra-
tion of technology into mathematics classes, the two theoretical approaches of the 
Theory of Didactic Situations (TDS) and of documentational genesis appeared to be 
appropriate. The fi rst, through the concepts of milieu and of didactic incidents, 
makes it possible to take both the point of view of teachers and students in a given 
situation, from the design of the situation to its implementation in the class. The 
second considers the technology, not only as an artefact tending to become an 
instrument, but also more widely as a resource tending to become a document. 

    The Concept of Milieu 

 The Theory of Didactic Situations (Brousseau  1986 ,  2004 ) provides powerful tools 
to describe the dynamics of the interactions between teacher and students in the 
classroom. This theory develops a model of teaching and learning of mathematics 
through the description of a ‘game’ where teachers and students win when students 
learn, that is to say, when students modify their knowledge. The game must lead to 
new knowledge that replaces or completes a previous knowledge, and the game 
must encompass all the possibilities of the teaching situation. Obviously, speaking 
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of game involves speaking of players, of playground and of rules; the players are 
both the teachers and the students, with different roles. The rules are modelled by 
the  didactic contract , that is to say the part of the relationship between students and 
teachers concerning the knowledge and the responsibility of each of them in the 
construction of this knowledge. In a Piagetian perspective, knowledge is built in a 
process of adaptation and equilibration in response to environmental constraints. 
The environment, the playground in which (and against which) the players play is 
called the  milieu ; the  milieu  is thought of, designed, organised and observed by the 
teacher and when students play the game, the  milieu  responds to the students’ 
actions. The didactic situation can initially be defi ned as the description of the inter-
actions between players in a particular playground. The model gives the situation a 
central role and, obviously, the  milieu  is an important part of the success of the 
game. But the previous defi nition of situation is not suffi cient to describe the activ-
ity of the actors and their positions within the milieu. Different paradoxes become 
apparent: a student can develop knowledge in some situations without knowing that 
this knowledge is socially shared; the role of the teacher is then to recognise and to 
institutionalise this knowledge (in a phase of institutionalisation) and this important 
and often neglected part of the situation will be revisited later in the chapter. A sec-
ond paradox of teaching situations is that all didactic systems possess the project of 
their extinction, the built knowledge having to be used outside the interactions with 
the teacher in the particular institution of the school. To this end,  a-didactic  situa-
tions are, in a sense, a model in a didactic situation of the real interactions between 
subject and environment. In such a situation, students are face to face with the 
milieu and act on it in a situation of action, formulating the knowledge in a situation 
of formulation and building relationships between mathematical objects in a phase 
of validation. Defi ned for the fi rst time as “ the antagonist system of the previously 
taught system ” (Brousseau  1986 , p. 340), the milieu appears to be more complex 
when the positions of teachers and students are included within the model. “ But a 
milieu without didactic intentions is clearly insuffi cient to infer all of the student 
cultural knowledge that you want it to achieve ” (Brousseau  1986 , p. 297). 

 A didactic situation is, by defi nition, not static and the dynamic has to be repre-
sented relative to the position of the players in the playground. This shows the 
necessity of structuring the milieu relative to these positions. The concept of milieu 
and its structuring is well adapted to understanding the situation from its design to 
its implementation in classrooms (Margolinas  2004 ) and makes it possible to analyse 
‘ordinary’ classrooms. We speak of ordinary classrooms to distinguish didactic 
engineering where the construction of the situation is devolved to the researcher in 
contrast to those where the construction of the situation is devolved to the teacher. 
At each level, the milieu includes not only material objects but also  naturalised 
knowledge , conceptions, beliefs, artefacts, numerical tools and so on. The naturalised 
knowledge is defi ned as the knowledge which is familiar enough to be used 
naturally, for example elementary arithmetic for students starting to learn algebra, 
or Euclidean geometry in the context of learning hyperbolic geometry. 

 A didactic situation is thus defi ned as the interactions between players (teacher 
and students), and the playground, including knowledge and other artefacts, and it 
responds according to the position of players. The construction of knowledge moves 
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through a dynamic process that takes into account both students and teacher in 
 different positions, from the teacher in the situation of designing activities to the 
situation of the student confronted with the  material milieu . At almost every level, 
teacher and students have a role to play. Table  1  summarises the structuring of the 
milieu. It is a nested structure, the level  n  situation being the milieu of the level  n +  1 
situation. Thus, for example, the didactic situation (S0) is the description of the inter-
actions between the teacher in the position of teaching, the students and the milieu. 
The milieu is, in that case, the learning situation where the teacher in the position of 
observer (T − 1) interacts with a student (St − 1) in the position of learner, discover-
ing new knowledge through the interaction with the reference situation.

   It is possible to read this table from the bottom, taking the point of view of  students 
who face a material milieu made up of objects (fi les, geometrical tools, calculators…), 
knowledge or conceptions, and which is devoid of any didactic intention. Typically, 
when students come into the classroom and discover the theme of the lesson, from a 
sheet of paper with the wording of a problem or exercises, or a fi le uploaded on a com-
puter, all this is part of the material milieu. Before any interaction, this milieu has no 
didactic intention. The interactions with the teacher, the feedback of this material milieu 
make sense when the students are confronted with knowledge and are able to access 
a reference situation, which is the situation of experiments with material objects 
(computer, calculator, ruler, compass etc.) and mathematical objects (circle, equality, 
equation, operation, which are constitutive of the mathematical situation or problem). 
In the learning situation, students relate the result of the experiments with knowledge, 
the milieu of this situation being constituted of the relationships of the mathematical 
experiments, their results and the student’s knowledge. The didactic situation, S0, is the 
situation in which the teacher’s teaching intentions encounter the student’s learning will. 
It is the place of institutionalisation where the operational knowledge becomes a social 
and shared knowledge in a particular institution. 

 Symmetrically, the situation S + 3 is called the ‘ noospherian ’ situation. The word 
‘noosphere’ (from the Greek νόoζ: intellect or intelligence and σφαίρα: fi eld, social 
circle), originating from the theory of didactic transposition (Chevallard  1985 ) desig-
nates a level of institutional organisation where knowledge to be taught is defi ned 
separately from academic knowledge in a social construction. The S + 3 situation, as 

    Table 1    The structuring of the milieux (From Margolinas  2004 )   

 Level  Student  Teacher  Situation  Milieux 

 M + 3: Design  –  T + 3: Noospherian  S + 3: Noospherian 
situation 

 Upper-didactic 
levels 

 M + 2: Project  –  T + 2: Developer  S + 2: design situation 
 M + 1: Didactic  St + 1: Refl exive  T + 1: Projector  S + 1: Project situation 
 M0: Learning  St0: Student  T0: Teacher  S0: didactic situation 
 M − 1: Reference  St − 1: Learner  T − 1: Observer  S − 1: Learning situation  Lower didactic 

levels  M − 2: Objective  St − 2: Acting  –  S − 2: Reference 
situation 

 M − 3:  St − 3: Objective  –  S − 3: Objective 
situation 
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well as the S − 3 situation is not fi nalised, that is to say it is not directly linked to a 
particular situation, but more generally refers to the teachers’ conceptions both of 
mathematics (epistemological conceptions, mathematical knowledge) and of teaching 
(learning hypothesis: constructivism, situated learning, transfer of learning). 

 The S + 2 situation or design situation is the situation in which the teacher designs 
an activity for generic students building on work already done in the classroom. It 
is the situation where the teacher makes choices (didactic variables, elements of the 
material milieu) using his/her set of resources (see below). The S + 1 situation takes 
into account the actual students’ interpretations of the didactic intentions alongside the 
mathematical knowledge of concern. In this situation, the student is conceptualised 
as an actor engaged in his/her own learning and this position is directly linked to the 
didactic contract built between the didactic intentions of the teacher and the stu-
dent’s desire to learn as illustrated in the abstract of Fig.  1 . This description of the 
 milieux  provides an opportunity to conduct two kinds of analysis: one, starting from 
the point of view of the teacher, called the descendant analysis; and the second start-
ing from the point of view of the student, called the ascendant analysis.

   This table has to be considered in a dynamical way, each actor moving from one 
position to another in and outside school. The three situations S − 1, S − 2 and S − 3 
constitute what Margolinas called the  lower didactic levels  which differ from the 
 a-didactic  situations in the context of ordinary classrooms. The lower didactic lev-
els of a situation may lead students to meet new knowledge but sometimes, lead 
students to operate with almost consolidated knowledge without encountering the 
new knowledge. In that case, the situation brings into play only two levels of the 
situation, the levels −3 and −2 in which the confrontation with the material and 
objective milieu involves only naturalised knowledge and a stationary or static pro-
cess. Such situations are called  nil-didactic situations  and can be illustrated by the 
following episode in which students try to solve the following problem: Is it possible 
to fi nd two different natural integers  a  and  b  such that 1/ a  + 1/ b  = 1? 

Ca: […] What are you doing? 

JC: I don't know, I try... you must find something... (He is calculating with letters.)

Ca: ab minus a minus b over ab; a square, 2 is missing...

[…] 

JC: b minus a equals ab, well... No, b plus a equals ab, so minus b minus a equals minus ab

S: That doesn't get us anywhere!

JC: Hence, um, then... (he continues the calculation and writes a=b/(b-1) and b=a/(a-1)...)

S: What are you doing? 

JC: I don't know. 

S: It's impossible to find something!

 

 

 

 

 

  Fig. 1    Three students exploring the problem of Egyptian fractions       
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 The three students Ca, JC and S try to calculate algebraically without success 
because their algebraic knowledge is not suffi cient, for example it should be possi-
ble to extend the reasoning of JC:

    a  =  b /( b  − 1) but  b  and  b  − 1 are relatively prime because of the Bezout’s relation:  
  b + (−1)(b − 1) = 1 hence b − 1 divides b if and only if b = 2 and a = 2 which cannot be 
kept because a and b are distinct.    

 The material milieu of students does not allow them to carry on calculating and 
the objective milieu lets them calculate without any chance of reaching an algebraic 
solution. They continue to calculate with no result but they are not in contradiction 
with the didactic contract because this kind of calculation can be considered as 
legitimate in the classroom. This particular phenomenon is called  didactic bifurca-
tion  and results from a gap between the teacher’s intention and what comes to the 
students’ minds to do. When the teacher gives students a problem, he/she plans on 
his/her teaching intentions, that is to say his/her will to modify the system of knowl-
edge of students. He/she builds a didactic situation by designing the milieu of the 
situation. In their position as objective students, students may ignore or be ignorant 
of the teacher’s intentions but may, however, guess them as refl exive students and in 
turn project their own objective situation. There is bifurcation when, confronted 
with this material milieu, students invest a different reference situation from that 
specifi ed in the teacher’s intentions as illustrated in the previous analysis.  

    Documentational Genesis and Incidents 

 Resources taken in a general meaning “not limited to curriculum material, but 
including everything likely to intervene in teachers’ documentation work: dis-
cussions between teachers, orally or on line; students’ worksheets, etc.” (Gueudet 
and Trouche  2009 , p. 200) are part of the milieu either for teachers in the upper 
levels and for students in the lower levels. The documentational genesis is an 
extension of instrumental genesis (Rabardel  1995 ; Rabardel and Pastré  2005 ), 
which has been adapted to mathematics education (Artigue et al.  1998 ; Artigue 
 2007 ; Drijvers and Trouche  2008 ). In this model an artefact (a tool, a thing…) 
becomes an instrument as the result of a long process in which the artefact 
modifi es the activity of the actor (instrumentalisation) while the actor shapes the 
artefact for his/her use (instrumentation). 

 Considering the available resources as artefacts, documentational genesis mod-
els a process where instrumentalisation conceptualises the appropriation by the 
 subject of the resource and the instrumentation describes the infl uence of the 
resources on the subject’s activity. At a given time, resources become a docu-
ment when  combined with schemes of utilisation. However, the process is ongoing 
and the document becomes a resource for the ongoing process. Combining  docu-
mentational genesis  and the concept of  milieu  provide an opportunity to follow 
two dynamical processes, making it possible to better understand the game of 
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knowledge construction. Particularly, new types of calculators are artefacts tending 
to become instruments but also resources tending to become documents because the 
internal properties are more than mere properties of calculation or representation. 
For example, the possibility to organise and share fi les within the machine and with 
other calculators or computers adds to the calculator documentational properties. In 
our experiments, students worked with TI-Nspire CAS, which is a novel handheld 
device for several reasons:

•    The handheld exists as an extension of the software available on computer;  
•   Files can be organised into a directory tree;  
•   Different representational environments (graphical, geometrical, CAS, spread-

sheet) can be easily connected.    

 When considering a dynamic process, it is natural to focus on moments of rup-
ture or of clashes, moments where the dynamics changes, where a new direction is 
followed. Such an event can be seen as an event that the actors did not foresee. 
Clark- Wilson ( 2010 ) has introduced the concept of ‘hiccup’. “The hiccup is defi ned 
as a perturbation experienced by the teachers during lessons that is stimulated by their 
use of the technology and which illuminates discontinuities in their knowledge” 
(p. 217). In the perspective of professional development, the hiccups conceptualise 
the moment where a teacher becomes aware of a phenomenon. This notion appears as 
a methodological tool to emphasise an epistemological rupture in the development 
of professional skills of mathematics teachers in connection with an IT environment 
based on multi-representation. Either the teacher does not have an available answer 
and simply postpones the treatment of the hiccup or seeks to provoke a dialogue in 
order to overcome the diffi culty, or alternatively has a  well-rehearsed  repertoire of 
responses that are used to deal with the problem. This repertoire is built over time 
and can be considered as a part of the teacher’s set of resources. Sabra ( 2011 ) distin-
guishes between individual and community incidents and explores the relationship 
between the individual and community documentations of mathematics teachers. 
He defi nes and  individual documentary incident  as an event, which can be seized by 
the teacher, leading to a reorganisation of his/her system of resources, and  collective 
documentary incident  as an event bringing in a community documentation system 
as a resource that leads to the reorganisation of the community documentation. 
While building on this work, I diverge from it by considering the incident from the 
point of view of the teacher and the student or, more precisely, from the point of 
view of the interactions within the couple (teacher, student) in relationship with the 
didactic milieu. 

 Another difference builds on the fact that a didactic incident can be ‘invisible’ for 
both teachers and students and the  didactic perturbations  that follow can be a source 
of misunderstanding between them. The concept of  didactic incident  (Aldon  2011 ) 
has been defi ned as an event of the didactic system that modifi es the dynamics of the 
situation. I have distinguish different types of didactic incidents:

•    An  outside incident  corresponds to an event not directly linked to the situation 
but often important in the classroom, for example the presence of an observer in 
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the classroom, the mobile phone of a student that is ringing. This type of incident 
can amplify a previously caused perturbation;  

•   A  syntactic incident  linked to the conversion between semiotic registers of rep-
resentations; in a technological environment, the incidents mainly come from 
feedback from the machine, or from the conversion of a register into the specifi c 
language of the software;  

•   A  friction incident  corresponds to the confrontation of two situations of different 
levels (cf. Table  1    ); such an incident may be caused by a change in the position 
of the teacher who moves from a position T- n  to a position T- n + 1  or T- n − 1  or 
when, in the interactions, students’ positions are different;  

•   A  contract incident  occurs when an event breaks or modifi es signifi cantly the 
didactic contract; this modifi cation disrupts the trajectory of the dynamics and is 
strongly correlated with the appearance of didactic bifurcations where students 
invest a nil-didactic situation;  

•   A  mathematical incident  when a mathematical question is asked without answers.    

 Following the incidents, and in a perspective of joint action (Sensevy  2007 ), 
actors (students and/or teacher) may have different answers, modifying the milieu, 
or reorganising the development of the lesson or changing responsibilities within 
the situation. In the relationship between student and teacher, the kind of answer 
(or the absence of an answer) can deeply change the dynamics of the class and 
lead to a didactic bifurcation. 

    Analysis of a Situation 

      The Context and the Methodology 

 Methodology can be defi ned as the shape that is given to research to try to answer a 
question in a given framework. Choices have to be made and are interrelated with 
context and research questions. In the research presented in this Chapter, I wanted 
to: observe an ‘ordinary’ classroom in the sense that the responsibility for the teach-
ing lies with the teacher; and focus on the uses of the technology in the class without 
being distracted by mathematics teaching diffi culties. 

 I also wanted a  micro-view , allowing me to capture events as they happened and a 
 macro-view , allowing me to track changes over time. It is the reason the methods were 
chosen in order to address this challenge, that is to say, to catch incidents that are unpre-
dictable and to follow their dynamics during the school year. Three different classes 
from two schools have been observed over a period of 3 years. Classes have been chosen 
from 16–18 year old students on a scientifi c course (last two grades of high school in 
France). In each school, one teacher was observed. The teachers were both  experienced. 
In the fi rst school, the teacher did not have much expertise of technology integration 
but in the second school, the teacher was an expert at teaching with technology. 
The timeframe for the data collection is summarised in Table  2 . Two kinds of data were 
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collected, the fi rst by direct classroom observations during the year and the second by 
asking the teacher and students to provide additional data that included:

•     Teachers were asked to fi ll in a small journal and agreed to answer interviews 
before and after observations in class;  

•   Students agreed to send me the content of their handhelds at regular intervals and 
were interviewed at the end of the year.    

 The following analysis integrates the interviews (students and teacher), the con-
tent of the handheld device and classroom observations with a focus on one particu-
lar lesson that was conducted during the European project EdUmatics. In this project 
a university-school pairing in one country worked closely with a university-school 
pairing from a second country. The pair ENS de Lyon-Lycée Parc Chabrière was 
coupled with the pair University of Torino-Liceo Scientifi co Copernico. From a per-
spective of international experimentation, a classroom activity was designed by the 
Italian team and adapted to the French context. In the text that follows, Jean, the 
(male) French teacher started from the original idea to build his own didactic situa-
tion, taking into account the French curriculum and his 16–17 years old students 
(who were all following a scientifi c pathway). Before and after the lesson Jean took 
part in an interview and the lessons were videotaped. The analysis has been con-
structed from these interviews and on the transcripts of the lessons. 

 The mathematical situation was developed around the notion of sequences, aiming to 
lead students to fi nd a mathematical description of sequences of natural numbers from 
the following prompt, which was presented in the written scenario shown in Table  3 .

    Table 2    Data collection’s timetable   

 First year (T: teacher, St: student, Obs: Observation in the classroom) 

 Dec.  Jan.  Feb.  March  April  May  June 

 Observations  –  Obs 1  Obs2  Obs3  Obs 4  – 
 Handheld contents  X  x  x  x  X  x  x 
 Interviews  –  T  –  T  T  T  St 
 Questionnaires (St)  Q1  –  –  –  –  –  Q2 

 Second year (T: teacher, St: student Obs: Observation in the classroom) 

 Dec.  Jan.  Feb.  March  April  May  June 

 Observations  –  –  –  –  Obs1  Obs2  – 
 Obs 3 

 Handheld contents  –  –  X  X  X  X  X 
 Interviews  –  –  –  T  T  T  St 

 Third year (T: teacher, St: student Obs: Observation in the classroom) 

 Oct.  Nov.  Dec  April 

 Observations  Obs1  Obs 2  Obs 3  –  – 
 Handhelds contents  X  X  X  –  X 
 Interviews  T  T  T  –  St 
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   The students were invited to discuss in groups the solution and answer some 
supplementary questions leading to a more formal defi nition of the sequences. The 
complete scenarios in Italian and in French are available in Appendices     1  and  2 .  

    The Analysis 

 In this section, we develop the analysis of the French situation, starting from descen-
dant and ascendant analysis (an  a priori  analysis) and continuing with the analysis 
of the incidents (and  a posteriori  analysis). 

    Descendant Analysis 

 In the situation level S + 3 the teacher considers that each new concept requires a 
process of discovery on the part of students and a preliminary research problem will 
highlight the students’ knowledge and their diffi culties. This research problem and 
the class situation aim at supporting a future lesson by providing a point of refer-
ences within the students’ memories throughout the sequence of lessons. In the 
interviews, Jean said: “Later in the class; I just have to refer to the problem and for 
students it makes sense”. 

   Table 3    Task given to the students   

 Alberta (A), Bruno (B), Carla (C), Dario (D), Elena (E) and Federico (F) (pseudonyms) are 
exploring the set of natural numbers and each one identifi es a sequence. Here are the 
sequences identifi ed 

 A: 1, 2, 3, 4, 5, …, … 
 B: 3, 6, 9, 12, 15, …, … 
 C: 5, 8, 11, 14, 17, …, … 
 D: 1, 3, 6, 10, 15, …, … 
 E: 3, 9, 27, 81, 243, …, … 
 F: 2, 3, 5, 7, 11, …, … 

  Individually  
 What is, in your opinion, the sixth number that each of the six friends will insert next and how do 

you fi nd it? 
 Do your previous answers change if we ask you to write the tenth number in each sequence? And 

the fortieth? Why? 

  By groups  
 Explain your answers to your friends. Discuss the different solutions and give a common answer 

for the group. If you can’t, express your disagreement 
 In your opinion, will someone among A, B, C, D, E, F, eventually fi nd the number 1275 in his/

her sequence? If yes, after how many steps? 
 Describe the method you use 
 Can you answer the same questions with the number 2187? 
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 In addition, T + 3 considers that technology has to be integrated into the everyday 
functioning of the classroom. All students in his classroom possess a TI-Nspire TM  
handheld and students have the opportunity to use them in almost every lesson as a 
natural and familiar tool. As Jean explains: “I use calculators very often, not neces-
sarily for a long time, but just to verify something or to illustrate a property, or… 
Students are used to working with it”. 

 In his role as T+2: Developer the teacher is in a particular position because of 
his work in the EdUmatics project since he agreed to adapt the activity proposed 
by the Italian team. T + 2 organised the situation as a research problem based on 
the initial wording and adapted to his students’ knowledge according to the French 
curriculum. In the French curriculum students had not had any formal lessons on 
sequences previously, but this kind of problem (What is the next term?) is often 
used in magazines for young people. The teacher therefore organised the wording 
as a challenge, taking into account this cultural familiarity, but with precise ques-
tions in order to lead students to a formal defi nition of the concept of sequence. 
He also sought different mathematical possibilities to answer the questions, noticing 
in particular that there is no unique answer. For example, the fi rst sequence 1, 2, 
3, 4, 5 can be continued with the number 7 considering the sequence of prime power 
p k  (p prime and k ≥ 0) and the second sequence (3, 6, 9, 12, 15) can be continued 
with 20 considering the sequence defi ned by a(1) = 3 and a(n) = a(n − 1) + greatest 
prime factor of a(n − 1) and so on. 

 The teacher in the position of T + 1, within the project, chose to conduct this 
lesson in a particular room where computers were available along with space for 
group work. Computers as well as calculators were available but with no direct 
instruction about how to use them. It is interesting to note that the material milieu 
that the teacher wanted for students included different kinds of tools but also the 
freedom to consider these tools as useful or not for the resolution of the problem 
and for the documentation. Also, the teacher in position T + 1 wrote worksheets for 
students in order to allow and to encourage them to write their answers individu-
ally and in groups; these sheets are part of the material milieu as well as the com-
mon knowledge about sequences described above.  

    Ascendant Analysis 

 In the material milieu of students there are digital artefacts, namely the two-page 
description of the problem and sheets on which they would produce their report. 
Knowledge of students in the position St − 3 on the subject of sequences is non-existent 
in the school context, but as already said, present in a cultural and emotional con-
text. The students’ ability regarding the technology is suffi ciently high to consider 
the artefact as an instrument permitting calculation in a familiar context. It is also a 
part of the set of resources that students may use if needed. 

 In the reference situation, it is possible to think that St − 2, playing with sequences, 
is going to construct criteria for a valid response and confront them with the objec-
tive situation at level S − 3. The material milieu in itself is unable to validate the 
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answer (and the validation is impossible because of the different possible answers). 
However, the wording asking for an answer for large numbers or questioning the 
presence in the sequence of large numbers (1275, 2187, …) is an element of the 
material milieu that generates feedback, not on the values but on the process of 
calculation. In particular, the use of software (spreadsheet, computer algebra sys-
tem, numerical calculating) brings immediate feedback inasmuch as the correct 
syntax can be implemented in the machine. There is a necessary translation in S − 2 
from the semiotic register of representation of natural language into the semiotic 
register of representation of the software, if software is used, or of the algebra, if 
specifi cations are algebraically performed. 

 In the learning situation, the interactions ‘against’ the reference milieu permit 
both individual validation (it is possible to fi nd a method of calculation to obtain the 
nth term of the sequence) and collective validation (it is possible to clarify and to 
explain this process). In the S − 0 situation, the intentions of the teacher may meet the 
learning acquisition of students accomplished during the a-didactic phase. Formalising 
and institutionalising results can then restart the problem in a new situation that 
includes, within the material milieu the institutionalised knowledge that has to be 
assimilated in order to promote its naturalisation.  

    Analysis of Key Incidents in the Classroom 

 The two previous analyses are  a priori , but now I turn to analyses made after observa-
tions in the classroom. This approach reveals a potential gap between the analysis and 
the contingency and makes it possible to analyse the cause of the bifurcations and the 
role of the teacher in maintaining the dynamics of the situation. The complete analysis 
is not reported in this chapter but concentrates on the different kinds of incidents, in an 
attempt to illustrate the different types and the perturbation that follows. 

 The teacher’s introduction was short, less than 3 min. During this time, Jean gave 
out the fi rst worksheet (Appendix     1 ) and students worked individually for 5 min. 
Before asking students to work in groups, Jean placed the calculator and the soft-
ware in the material milieu of students, saying, “The software is installed on com-
puters, OK, you can use either computers or your handheld ” . 

 The research observation within this lesson concerns a group of four students, 
two boys (B1 and B2) and two girls (G1 and G2) working as shown on Fig.  2 

   The observation in the group of students shows that the devolution of the prob-
lem is properly executed, even if the goal is not yet clear (Fig.  3 ):

   The word ‘people’ designates here the future readers of the report, including the 
teacher, of course, but also other students and this refers to the established didactic 
contract in Jean’s classroom. It is interesting to see in this short extract different 
positions in the structure. B2 seems to be in the S + 1 situation, thinking about the 
situation given by the teacher (‘we must explain’, ‘It helps explain!’) whereas G2 
and G1 focus on the objective situation (‘the gap between numbers’) which is char-
acteristic of an incident of friction. 
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 The fi rst incident of contract occurs very quickly when B1 gives an answer for 
the sequence D (Fig      .  4 ):

   In this episode, B1 is seeking a closed formula whereas G2 is seeking a recursive 
defi nition. They cannot understand each other and this might be due to a discrep-
ancy between their individual understandings of the aim of the problem. But the 
perturbation offers possibilities of discussions and lasts a long time until they realise 
that the two defi nitions are possible (Fig.  5 ):

   The consequence of these incidents is a discussion in the group about the prob-
lem itself, which helps the students to make the goal of the problem clearer and 
contributes to the devolution of the situation. The proposed milieu is suffi ciently 
adapted to support changes in the position of students but also strong enough to 
interact with students and to facilitate discussions. In this case, incidents encoun-
tered in the lower didactic levels were the driving force behind the dynamic making 
it possible for the students to engage thoughtfully on the problem. 

B1G1

G2 B2

  Fig. 2    The group working 
together       

B2: People will say, yes but how many, we must explain!

G1: No matter!

G2: Yes, precisely, we explain, just here, the gap between numbers.

[…]

G2: But, the difference between two numbers, we found it, at the beginning of the sequence.

B2: Yes, but people don't know,... It helps to explain! […]

  Fig. 3    The devolution and the negotiation of the didactic contract       

B1: You do the first gap, it's equal to three minus two, and after, little by little, you add.

G2: The next one is easy because we just have to multiply by three.

  Fig. 4    An incident of contract       

B2: I don't find anything, at least we can say one, one, two, two, four four...

G2: I conclude like that, but... perhaps is it one, two two, four, six six. Perhaps there is

only one four as there is only one one.

  Fig. 5    A discussion as a consequence of the incident       
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 Another interesting and important set of incidents comes in the phase of 
action when students try to answer the question: “is 2187 present in the different 
sequences?” B1 and B2 try to use the calculator whereas G1 and G2 work with 
paper and pencil. The diffi culty for B1 and B2 is to translate the recursive defi nition 
of sequences given in the register of natural language into an algebraic register and 
fi nally into the register of the calculator’s syntax. Figure  1  shows the gesture that 
goes with the trial of translation (Arzarello & Robutti  2010 ) (Fig.  6 ).

     B1 takes his calculator: I’m sure, there are sequences in it…   
   B2: Yes sure!   

   B1: But where?     

 The calculator is part of the material milieu and the syntactic incident leans towards 
a nil-didactic situation: B1 and B2 use their calculator to evaluate 3 40  and digress by 
talking about the huge number they obtain and reading the number aloud (Fig.  7 ):

   The consequences of the incident diverts the students from the aim of the 
problem and the diffi culties of translation between registers of representation 
lead students back to the objective situation. 

 In the lower didactic levels, didactic incidents play two different roles depending 
on whether the milieu reacts. In the fi rst example, the feedback of the milieu consti-
tutes a guide and the incidents present an amplifi cation of the dynamic whereas in 
the second example, the technical incidents bring the students back to the objective 
situation. The calculator’s syntax is not suffi ciently naturalised to become the place 
of experiments and remains an obstacle to reaching the learning situation. 

  Fig. 6    The mime with 
fi ngers to indicate the 
recursion       

G2: It is not billion, million, perhaps? […] What comes after billion?

B2: There's a trillion?

  Fig. 7    A digression as a nil-didactic situation       
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 The second part of the observation concerns a common phase where Jean wants 
to institutionalise, fi rstly the two possible defi nitions of a sequence (recursive or 
using a closed formula) and, secondly, the possibility of having several different 
and correct answers for a problem. Despite all his efforts, Jean does not succeed in 
the second aim with the fi rst fi ve sequences. From the point of view of students, 
there is only a unique possibility: 

 A: 1, 2, 3, 4, 5,  6  
 B: 3, 6, 9, 12, 15,  18  
 C: 5, 8, 11, 14, 17,  20  
 D: 1, 3, 6, 10, 15,  21  
 E: 3, 9, 27, 81, 243,  729  

 On the other hand, the discussion is strong when the sixth sequence comes up for 
discussion; students have never formally studied the prime numbers even if they know the 
defi nition. The result is that different responses emerge around the classroom (Fig.  8 ).

St1: Thirteen!

St2: Fourteen!

Teacher (joking): Thirteen, fourteen, well, good prices!

St3: Fifteen!

Teacher: Another answer? ''What do you say St''?

St4: We can't know...

Teacher: We can't know? Well, what does it mean, we can't know? (Hubbub) Wait, wait, one 

after the other!

St1: We don't have enough information.

Teacher: Why do you have enough information for the others?

St1: They were linear.

Teacher: You say, they were...?

St1: Linear.

Teacher: Linear?

St3: Yes, you know, at the beginning there's two, then...

St2: It's always the same thing...

St5: Constant.

Teacher: It is always the same thing. It is constant, … yes?

St6: For the others, there was a logical sequence

Teacher: And now, why are you sure it is not a logical sequence?

St: We are not sure. We have not enough information.

  Fig. 8    The debate about the prime numbers’ sequence       
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   The debate is about the place of different didactic incidents, which are all visible 
and allow Jean to institutionalise the second point even if he does not take into 
account the vagueness of vocabulary. Linearity is seen as regularity or a logical 
sequence as a result of a known formula. The incident of contract occurs because of 
the distance of the students from the mathematical thinking; in a ‘typical’ mathe-
matics class each problem has a unique answer and thinking about the possibility of 
having different answers goes against the students’ conceptions of mathematics. 
This conception is unsettled by the prime number sequence which is not suffi ciently 
familiar to students to remain in the material milieu and the experiments on numbers 
lead to negotiation about the incident of contract to a new didactic contract. 

 Even if all the details of the analysis of incidents cannot be reproduced here, it is 
possible to draw a conclusion that is illustrated by the previous extracts. An impor-
tant issue that is raised by this observation is the confi rmation of the constructive 
dimension of didactic incidents, which in several cases have revived the students’ 
work. Mathematical incidents, provided that they become visible for students and 
teacher, appear as prompts that link knowledge and experiments on mathematical 
objects and they facilitate the transition from the objective situation to the learning 
situation. Incidents of contract allow a renegotiation of the contract in the classroom 
and promote a step back in relation to the didactic situation. In contrast, syntactic 
incidents have not been able to be overcome and instead have played out, in this 
observation, as a brake on the dynamics of research. This conclusion points to the 
need to better understand the place of technology in the set of resources of both the 
teacher and the students.   

    Technology in the Set of Resources 

 In previous research, I concluded that:

  […] the documentational geneses become distinct and separated processes for teacher and 
students. These processes are confronted with each other only in a collective domain and 
concern mainly the property of the creation. The communication and cognitive properties 
(memorization and organization of ideas) seem to remain private but are important parts of 
the documentational genesis .  (Aldon  2010 , p. 746) 

   Incidents created by the gaps between the private, collective and public use of 
calculators had been highlighted by looking at the content of calculators and the 
activity of students working on a task. It is quite clear that the calculator belongs to 
the set of resources of the teacher and in this sense, it is part of the milieu of design. 
At the same time, it belongs to the material milieu of the objective situation. More 
precisely, the calculator can become a document useful in the situation of reference 
and the situation of learning if, and only if, it belongs, for the teacher, to the milieu 
of the project and to the didactic milieu. In other words, in the perspective of the 
integration of the calculator in the mathematics lesson, it remains compulsory to 
negotiate the didactic contract, including the different properties of calculators, not 
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only as a tool becoming an instrument in specifi c situations, but also as a resource 
becoming a document available in the set of resources of students and the teacher. 

 In the following example, the global consequence of an incident is illustrated. E5 and 
E6 are two students who do not want to use the TI-Nspire and prefer their old calculator, 
in fact a TI-82 (E5) and a Casio Graph 35 (E6). See (Fig.  9 ):

   It is interesting to set this dialogue against the observation which took place at 
the beginning of the year where the teacher is speaking to the whole class whilst 
students work with their calculator (Fig.  10 ):

   The discrepancy between the talk of the teacher and the students’ diffi culties is 
clear. The syntactic incident is caused by students’ incomprehension of the machine’s 

E6: Well, for the functions, with my old calculator, I type the function, Graph and I have

the curve, whereas, with this one, I don't know, you must define it...

E5: There are many steps...

E6: Yes, there is a lot of things to do, just for one result, whereas with my calculator, you

type your calculation, you have your result, that's all!

E5: It's faster...

I: And do you remember the moment you said: I don't want this calculator!

E5: Very quickly, yes, we must use menu, then this place, then click everywhere, we had a

long course to do a calculation that can be done very quickly with our calculator.

E6: Yes, it was a lesson at the beginning of the year, about functions, we spent two hours

with the calculator, it really bugged me. It put me off this calculator.

  Fig. 9    Interview of two students who do not use the TI-Nspire technology       

T: Then you open the catalogue

and type the first letter of the com-

mand, well for the moment, R and

you just have to go down, OK, you

see Randint, it's here. Well. (he is do-

ing on the computer whilst speaking)

T: Well. I have simulated the throw

of a dice. The question now is: how

are you going to simulate the throw of

two dice and how will you obtain the

value of the difference of the greater

minus the smaller?

E1: We have to type a blank.

E2: Do you think that?

E1: It's six.

E2: Yes, randint one six minus randint one six?

E1: And, how do you type the absolute value?

E1: It doesn't work.

E2: (watching to the screen of E1's calculator) Missing?

E1: and now it gives six, Ahhh!

E2: Ahhhh!

E1: It doesn't work!

E2: Too many arguments!

E1: I can't do that!

  Fig. 10    Crossed dialogues of teacher and students       
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feedback. At fi rst, instead of typing randint(1,6), E1 typed randint 1 6. The feedback 
of the machine was  Missing ), but the bracket was not read by the students. E1 tried 
to type brackets but fi nally obtained fresh feedback, which he could not interpret. 
This kind of incident may lead to a rejection of the technology, as E5 and E6 said. 

 Clearly the syntactic incidents are inherent in the use of technology in the class-
room. Taking into account the perturbations, consequences of incidents are essential 
to limit their long-term effects from the point of view of:

•    teachers’ professional development by increasing the  response repertoire  (Clark-
Wilson  2010 );  

•   students by increasing the registers of representation of studied mathematical 
objects.    

 The classroom management and the orchestration of a mathematical situation in 
a digital environment (Trouche  2004 ) accentuate the importance of the teachers’ 
responsibilities with respect to the instruments and show the necessity of including  
the analyses of such situations’ in the process of teacher development.   

    Teacher Development 

 In this section, I would like to emphasise the links between the analysis, the obser-
vation, the feedback and the professional development of teachers. Starting from 
observations in the classroom and interviews with Jean, a French teacher involved 
in the EdUmatics project, I will show how and why the collaborations introduced at 
the beginning of the chapter contribute to the professional development of teachers 
as well as to strengthening theoretical approaches. 

    Collaboration Between Researchers and Teachers 

 One of the important aspects of the EdUmatics project was to enable teachers and 
researchers to work together on the implementation of lessons using technology. 
Even though these work habits are already widely implemented in France in the 
network of IREM (Institut de Recherche sur l’Enseignement des Mathématiques/
Research Institute on Mathematics Education), the particular experience of the 
EdUmatics project provided valuable information for the professional develop-
ment of teachers. The confrontation of teachers’ professional skills with analyses 
based on theoretical frameworks helped both to increase the skills and refi ne the 
theoretical tools. 

 An  a priori  analysis suffi ciently complete to embrace the mathematical aspects, 
the didactic characteristics and the pedagogical modalities give the design of a 
lesson a new dimension, as Jean says: “To predict, to analyze and to fi nd solutions 
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to all the diffi culties, pedagogical as well as technical is something demanding 
and interesting”. The contrast between this  a priori  analysis and the reality of the 
classroom shows that the theoretical tools are consistent and the possibility to see 
‘ live ’ the occurrences of predicted events modifi es signifi cantly the teaching 
approach. During the interviews with Jean, before and after the class observa-
tions, the two analyses ( a priori  and  a posteriori ) were shared and discussed with 
him; as shown in Table  2 , the data collection tended to catch the evolution either 
for students or the teacher over the long term. Jean commented on the benefi ts of 
this  a priori  analysis “When I see in the classroom some attitude that the  a priori  
analysis had predicted and for which a solution was already ready, it’s reassuring 
and very satisfying in my professional practice […] Several times, later, in my 
classroom, I surprise myself in remembering this moments and I modifi ed my 
attitude to take into account the observations”. 

 The work done in the project and the collaboration between researchers and 
teachers developed an awareness of professional gestures. The analysis using the 
concept of incidents illuminates different processes occurring in the classrooms 
and, more particularly, the place and the role of technology in the development 
of both teaching and learning. In addition, the observations highlight the role 
of didactic incidents in the students’ construction of knowledge, particularly in 
the lower didactic levels. But in order to become shared knowledge in the class-
room and, more generally, to become a potential naturalised knowledge, the 
knowledge that students encounter must be recognised as legitimate. The insti-
tutionalisation of knowledge in the course of acquisition is essential and this 
institutionalisation is typically the responsibility of the teacher who needs to 
recognise, to interpret, to organise and to transform the  knowledge in action  from 
what the teacher at level T − 1 observed in the learning situation into what students 
must know and learn. Players win not only because they reach the end of the 
game but also because they know how and why they win. Students have to 
transform their  knowledge in action  into shared knowledge and teachers have to 
understand the key elements of the situation allowing this knowledge construc-
tion, or perhaps the key elements that prevent them reaching their  initial didactic 
intentions. 

 Working in a technological environment adds to this institutionalisation 
knowledge, being directly linked with the technology in use. One of the main 
diffi culties is surely to recognise the different knowledge that students act upon 
during the phase of action in lower level situations. The  a priori  analysis and the 
feedback of what happens in real classrooms shine light on the actual activity of 
students and the knowledge that has to be institutionalised. In the last interview, 
Jean said: “In fact, when you are in my classroom I see things that I didn’t see 
usually. Sometimes, I’m not happy with my lesson, but you say that a student 
or a group of students work on this or that; I know then that I’ve not wasted 
my time.” 

 Giving teachers this opportunity, at least once, is surely a fundamental aim of 
teacher development, but in an ‘ordinary’ classroom this awareness is a key element 
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of the modifi cation of schemes. Giving tools which make it possible to observe and 
analyse what happens in the class can augment the  response  repertoire  of teachers. 
The framework of  didactic incident  may increase the awareness of teachers inter-
pretations of students’ work when they are in a position of observer (T − 1) and 
facilitate the institutionalisation of knowledge directly linked with the actual activ-
ity of students. The design of our part of the EdUmatics course takes into account 
the common analysis. Future research should concern the construction of tools 
facilitating the incident analysis by teachers themselves.  

    The Documentational Genesis 

 A second aspect that occurs from the observations in Jean’s school concerns the 
documentary role of the digital artefacts. The different properties of digital docu-
ments are described by Pédauque ( 2006 ):

  The two cognitive functions, mnemonics and organization of ideas, seem to be the funda-
mental basis for the documentary production. […] The function of creativity comprising 
enrichment due to the domain of interest related to the document surpasses that kind of 
organization just mentioned. […] The third and last constituting function of the documen-
tary production is the transmission function. (pp. 5–6). 

   The technological context shows the four dimensions present in this handheld 
device seen as a resource, and the phenomenon of documentational genesis 
builds on these properties in different meditational contexts. The cognitive prop-
erties of storage and organisational ideas are built in parallel and remain in a 
private domain, both for teachers and for students. On the other hand, the proper-
ties of creation and communication are built in the collective domain. The 
method(ology) allows the researcher to follow the joint documentational genesis 
of teacher and students by entering into private domains, particularly regarding 
the contents of handheld devices. The handheld with its computational and rep-
resentational properties, along with its properties of storage and communication, 
prefi gures digital resources that may be available in coming years. The documen-
tational genesis of such an artefact may not be understood without  taking into 
account the domains of mediation, whether private, collective or public. The 
handheld appears then to be at the crossroads between the teacher’s teaching 
intentions and the students’ learning intentions, that is to say, at the core of the 
didactic game. Different trajectories are sources of tension and generate didactic 
incidents that deeply affect interactions in the classroom, interactions between 
teacher and students, and also interactions between teacher, students and arte-
fact. The integration of digital resources in the mathematics classroom cannot be 
achieved by considering only one property but, on the contrary, by thinking glob-
ally about the integration of all properties in the learning game. In the upper 
didactic levels, incidents call into question the teacher’s personal epistemology 
and contribute to professional development.   
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    Conclusion 

 The exploitation in teacher education of the frameworks of the Theory of Didactical 
Situations (TDS), didactic incidents and documentational genesis, should make 
it possible to build a detailed analysis of situations in ordinary classrooms in a tech-
nological environment. The observation of interactions within the classrooms 
through didactic incidents and the understanding of joint documentational geneses 
of students and teachers are two parts of the same methodological tool aiming at 
 better understanding the didactic game. 

 The descendant and ascendant analyses assist the  a priori  analysis to take into 
account the role and the place of both teacher and students in the didactic game, and 
the incident analysis refi nes the  a posteriori  analysis. Inter-connecting the two anal-
yses constitutes a tool for teachers in the preparation of lessons and in the under-
standing of what happens in the classroom. The typology of didactic incidents can 
be extended and refi ned to allow easy and more operational identifi cation for new 
teachers in a perspective of understanding the dynamics of the classroom. It can also 
become a tool for regulating those dynamics within the classroom. Finally ,  connect-
ing local incidents to global phenomena resulting from differences in the documen-
tational geneses of teachers and students makes it possible to better understand the 
place of digital artefacts in the classroom. 

 New hypotheses that result from this research are about documentational geneses 
and the possible confl icts between the point of view of students, teachers and soci-
ety as a whole. Further research might involve clarifying the role and the learning 
potential of digital artefacts in a digital age and reorganising the importance of 
teacher development in their usage.      

      Appendix 1 

 N.B. In questa attività, sia nei lavori individuali, sia in quelli di gruppo, potrai utiliz-
zare, se lo desideri, gli strumenti informatici che ritieni più opportuni. Nei lavori di 
gruppo, nel caso in cui opinioni discordanti dovessero rimanere tali anche dopo un 
confronto, riportatele sul foglio di lavoro.  

    Situazione 

 Alberta (A), Bruno (B), Carla (C), Dario (D), Elena (E) e Federico (F) stanno esplo-
rando la successione dei numeri naturali, studiando le proprietà dei numeri che la 
costituiscono. Le modalità di esplorazione, pero, sembrano molto diverse fra loro, 
anche se tutte sono caratterizzate da una forte sistematicità. Ecco i numeri che i sei 
amici prendono in considerazione:

   A: 1, 2, 3, 4, 5, …, …  
  B: 3, 6, 9, 12, 15, …, …  
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  C: 5, 8, 11, 14, 17, …, …  
  D: 1, 3, 6, 10, 15, …, …  
  E: 3, 9, 27, 81, 243, …, …  
  F: 2, 3, 5, 7, 11, …, …     

    Proposta di lavoro 

    Attività 1 (individuale) 

 Qual è, secondo te, il sesto numero che ciascuno dei sei amici prenderà in 
 considerazione? In caso di risposta affermativa scrivilo e cerca di spiegare 
come/cosa hai fatto. In caso di risposta negativa, spiega perché non riesci a 
individuarlo. 

 Le tue precedenti risposte cambierebbero se ti venisse chiesto di individuare il 
decimo numero? E il quarantesimo? Spiega perché.  

    Attività 2 (di gruppo: 3 studenti) 

 Parlando uno alla volta, spiegate ai vostri compagni di gruppo come avete risposto 
alle domande dell’attività 1. Discutete sulle eventuali differenze. Riuscite a pro-
durre una risposta condivisa di gruppo? In caso di risposta affermativa, riportatela 
sul vostro foglio; in caso di risposta negativa, riportate i punti di dissenso rimasti 
dopo la discussione.  

    Attività 3 (di gruppo) 

 C’è qualcuno, fra A, B, C, D, E, F che, secondo voi, prima o poi, troverà, nella 
sua successione, il numero 1275? In caso di risposta affermativa, dopo quanti 
passi? 

 Giustifi cate la risposta e precisate le strategie utilizzate per rispondere. Come 
cambierebbero le vostre risposte se le domande fatte sul numero 1275 fossero fatte 
sul numero 2187? 

 È possibile trovare un numero naturale diverso da 0 tale che nessuno, fra A, B, 
C, D, E ed F, prenderà mai in considerazione? Giustifi cate la vostra risposta. 

 Esiste almeno un numero naturale che non potrà mai essere raggiunto da B, né da 
C, né da D, né da E, né da F? In caso di risposta positiva, trovatelo e spiegate come 
avete fatto. In caso di risposta negativa, spiegate perché, secondo voi, tale numero 
non esiste.     
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     Appendix 2 

 À suivre… 

    Partie 1 

 En travaillant sur l’ensemble des nombres naturels, Alberta (A), Bruno (B), Carla 
(C), Dario (D), Elena (E) et Federico (F) ont chacun créé une suite de nombres. Ils 
ont tous suivi un processus de construction différent mais systématique. 

 Voilà les cinq premiers nombres que chacun des six amis a écrit:

•    A : 1, 2, 3, 4, 5, …, …  
•   B : 3, 6, 9, 12, 15, …, …  
•   C: 5, 8, 11, 14, 17, …, …  
•   D: 1, 3, 6, 10, 15, …, …  
•   E: 3, 9, 27, 81, 243, …, …  
•   F: 2, 3, 5, 7, 11, …, …   

    1.    Êtes-vous capable d’écrire le sixième nombre qui selon vous a été créé par cha-
cun des six amis ? 
 Si oui, expliquez comment vous avez fait. 
 Si non, expliquez les raisons qui vous empêchent de répondre.   

   2.    Vos réponses précédentes changeraient-elles si on vous demandait d’écrire le 
dixième nombre ? Et le quarantième ? Pourquoi ?   

   3.    Y a t-il quelqu’un parmi A, B, C, D, E, F qui selon vous, tôt ou tard, trouvera dans 
sa suite le nombre 1275 ? Si oui, lequel (ou lesquels) et après combien d’étapes ? 
 Justifi ez votre réponse et décrivez la méthode qui vous a permis de répondre. 
 Pouvez-vous alors répondre aux mêmes questions avec le nombre 2187 ?    

  À suivre…  

    Partie 2 

     4.    Les méthodes que vous avez utilisées précédemment vous permettent-elles de 
calculer le 70 ème , le 200 ème , le 1000 ème  nombre de chaque suite ? 
 Si oui, calculez ces nombres, si non essayez de modifi er vos méthodes pour les 

obtenir.   
   5.    Essayez, en utilisant la calculatrice, de donner une représentation graphique de 

ces suites.   
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   6.    Les méthodes que vous avez utilisées précédemment vous permettent-elles de 
demander à votre calculatrice de calculer ces nombres ? Si oui, écrivez le calcul 
demandé. 
 Sinon, dire pourquoi ces méthodes utilisées ne le permettent pas.        

      References 

      Aldon, G. (2010). Handheld calculators between instrument and document. Dans P. Drijvers & H. 
-G. Weigand (Éd.),  The role of handheld technology in the mathematics classroom  (Vol. 42, pp. 
733–745). ZDM Mathematics Education, Karlsruhe.  

   Aldon, G. (2011 ). Interactions didactiques dans la classe de mathématiques en environnement 
numérique :  construction et mise à l’épreuve d’un cadre d’analyse exploitant la notion 
d’incident . Doctorat, Université Lyon 1.  

   Artigue, M. (2007). Conference: Teaching and learning mathematics with digital technologies: 
The teacher perspective. In  International meeting Sharing Inspiration.  Brussel.  

   Artigue, M., Defouad, B., Dupérier, M., Juge, G., & Lagrange, J. -B. (1998). L’intégration de cal-
culatrices complexes à l’enseignement des mathématiques au lycée.  Cahier DIDIREM, IREM 
Paris VII ,  Spécial no 4 .  

   Arzarello, F., & Robutti, O. (2010). Multimodality in multi-representational environments. Dans 
P. Drijvers & H. -G. Weigand (Éd.),  The role of handheld technology in the mathematics class-
room.  (Vol. 42, pp. 715–731). ZDM Mathematics Education, Karlsruhe.  

     Brousseau, G. (1986).  Théorisation des phénomènes d’enseignement des Mathématiques.  Doctorat, 
Université Bordeaux 1.  

   Brousseau, G. (2004).  Théorie des situations didactiques . La pensée sauvage éditions.  
   Chevallard Y. (1985).  La transposition didactique – Du savoir savant au savoir enseigné,  La 

Pensée sauvage, Grenoble (126 p.). Deuxième édition augmentée 1991.  
    Clark-Wilson, A. (2010).  How does a multi-representational mathematical ICT tool mediate 

teachers’ mathematical and pedagogical knowledge concerning variance and invariance?  
Ph.D., Institute of Education, University of London.  

      Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind 
the orchestra metaphor. Dans G. W. Blume & M. K. Heid (Éd.),  Research on technology and 
the teaching and learning of mathematics  (Vol. 2, pp. 363–392). Charlotte: IAP (Information 
Age Publishing).  

    Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teach-
ers?  Education Studies in Mathematics, 71 , 199–218.  

    Lagrange, J.-B., & Degleodu, N. C. (2009). Usages de la technologie dans des conditions 
ordinaires. le cas de la géométrie dynamique au collège.  Recherches en Didactique des 
Mathématiques, 29 (2), 189–226.  

    Margolinas, C. (2004).  Points de vue de l’élève et du professeur Essai de développement de la 
théorie des situations didactiques . Habilitation à Diriger des Recherches, Université de 
Provence.  

    Pédauque, R. T. (2006).  Le document à la lumière du numérique . Caen: C & F éditions.  
   Rabardel, P. (1995). L’homme et les outils contemporains. A. Colin, Paris  
   Rabardel, P., & Pastré, P. (2005).  Modèles du sujet pour la conception . Octares, Toulouse.  
    Rodd, M., & Monaghan, J. (2002). Graphic calculator use in Leeds schools: Fragments of practice. 

 Journal of Information Technology for Teacher Education, 11 (1), 93–108.  

G. Aldon



343

   Sabra, H. (2011, en cours).  Contribution à l’étude du monde et du travail documentaire des ensei-
gnants de mathématiques :  les incidents comme révélateurs des rapports entre individuel et 
collectif . Université Lyon 1.  

   Sensevy, G. (2007). Des catégories pour décrire et comprendre l’action didactique. Dans G. Sensevy 
& A. Mercier (Éd.), (pp. 13–49). Presses Universitaires de Rennes.  

    Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learn-
ing environments: Guiding students’ command process through instrumental orchestrations. 
 International Journal of Computers for Mathematical Learning, 9 , 281–307.     

Didactic Incidents: A Way to Improve the Professional Development…



   Part III
    Theories on Theories        



347A. Clark-Wilson et al. (eds.), The Mathematics Teacher in the Digital Era, 
Mathematics Education in the Digital Era 2, DOI 10.1007/978-94-007-4638-1_15, 
© Springer Science+Business Media Dordrecht 2014

    Abstract     We propose a new model for framing teacher education projects that 
takes both the research and the institutional dimensions into account. The model, 
which we call  Meta-didactical Transposition , is based on Chevallard’s anthropo-
logical theory and is complemented by relevant elements that focus on the specifi city 
of both researchers’ and teachers’ roles, while enabling a description of the  evolution 
of their praxeologies over time. The model is illustrated with examples from differ-
ent Italian projects, and it is discussed in light of current major research studies in 
mathematics teacher education.  

  Keywords     Meta-Didactical Transposition   •   Communities of inquiry   •   Research 
for innovation within institutions • Teacher education practices   •   Meta-didactical 
praxeologies   •   Mathematics laboratory  

        Introduction 

 The education of teachers is a relevant issue in the evolution of a society and is even 
more signifi cant at particular historical moments of social or political change. Since 
the 1960s, with the progressive diffusion of socio-constructivism as a cognitive 
model, social interaction in the classroom came to the fore, resulting in an increased 
attention to the social dynamics of learning. This progressive change of attention, 
from the individual to the social construction of meaning, along with an increasing 

      Meta-Didactical Transposition: A Theoretical 
Model for Teacher Education Programmes 

             Ferdinando     Arzarello     ,     Ornella     Robutti    ,     Cristina     Sabena    ,     Annalisa     Cusi    , 
    Rossella     Garuti    ,     Nicolina     Malara    , and     Francesca     Martignone   

        F.   Arzarello      (*)  •     O.   Robutti     •     C.   Sabena    
  Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10 ,   Turin 10123 ,  Italy   
 e-mail: ferdinando.arzarello@unito.it   

    A.   Cusi     •     R.   Garuti     •     N.   Malara     •     F.   Martignone    
  Università di Modena e Reggio Emilia ,   Modena ,  Italy    



348

use of technological artefacts, led to a corresponding interest in teacher education. 
Particularly in the last decade, attention to teacher education has increased (Ball and 
Bass  2003 ; Ball et al.  2008 ; Clark and Hollingsworth  2002 ; Even and Ball  2009 ; 
Wood  2008 ) and digital technologies have an increasing relevance in this context 
(Drijvers et al.  2010 ; Hoyles and Lagrange  2009 ; Lagrange et al.  2003 ). In Italy, we 
have witnessed the multiplication of teacher education programmes involving digital 
technology at the European, 1  national, regional, and local levels. As researchers, we 
are involved both at the level of teacher education programme development and man-
agement, and in studying teaching and learning processes in the classroom. This has 
prompted the emergence of a deeper refl ection on the resulting complexity. 

 We began to recognise the importance that institutions play in the school context, 
including the national curriculum, national assessment tools and the constraints of 
teachers’ time and space, and textbooks. Our attention was directed toward the theo-
retical elements that could adequately frame these, which we found in Chevallard’s 
( 1985 ,  1992 ,  1999 ) Anthropological Theory of Didactics (ATD), particularly with 
respect to his notion of  didactical transposition . 

 The complexity arising from the intertwining of the processes involved during a 
teacher education programme has led us to introduce a descriptive and interpretative 
model, which considers some of the main variables in teacher education (the com-
munity of teachers, the researchers, the role of the institutions), and accounts for 
their mutual relationships and evolution over time. We call the overall resulting 
process  Meta-didactical Transposition . We offer the model as a tool for studying the 
complexity of teacher education as a research problem that involves a transposition 
from the practice of research to that of teaching. 

 In the following sections, after some theoretical background on teacher education, 
we present the Italian context in which our research is situated. Then we present the 
 Meta-Didactical Transposition  model (in short, MDT). We use this model to analyse 
the different variables listed above and their dynamic relationship, contextualised 
within three Italian teacher education programmes that use digital technologies. 
The three programmes are used as ‘generic examples’ that we hope will fi nd resonance 
within other international contexts. Finally, we discuss the results of our analysis, 
pointing to the model’s potential with respect to current research in the fi eld.  

    Teacher Education and the Italian Context 

 In 2000, the International Commission on Mathematics Instruction (ICMI) commis-
sioned a study that was coordinated by Anna Sfard on the relationships between 
research and teaching practice in mathematics education. The results of this study 
were presented at ICME in Copenhagen, 2004. It highlights three main periods in 

1   One of the European projects in which we have been involved is the EU funded project  EdUmatics  
( 50324-UK-2009-COMENIUS-CMP; European Development for the Use of Mathematics 
Technology in Classrooms) ,  http://www.edumatics.eu . 
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the evolution of issues addressed by mathematics education research: the  era of 
the curriculum , mainly focused on the study of education programmes; the  era of 
the learner , focused on student’s learning and diffi culties; and, the  era of the teacher , 
focused on teachers and teacher education. 

 Sfard ( 2005 ) stresses that the advent of  the era of the teacher  has brought about 
a re-conceptualisation of the relationship between the teacher and the researcher, 
which constitutes “a big leap toward research that plays a genuine role in shaping 
and improving practice” (p. 405). She argues that in most of the international 
research studies, the question is not  what  is taught in classrooms, but  how  it is 
taught: “rather than trying to arrive at a mechanistic view of ‘what works in class-
rooms’, I focus on how things work and try to make myself aware of alternative 
possibilities” (p. 406). This shift of attention to teaching practices is due in part to 
international comparative tests (TIMSS, PISA), which often show poor results, 
despite the quantity of resources devoted to curricular changes. 

 In the last years, many publications have focused on teacher education. They have 
been concerned with teachers of different school levels, addressing issues such as the 
relationship between teachers and both curricular or methodological innovation and 
technology integration. In particular, research on teacher education programmes has 
intensifi ed, gradually changing the focus from pre-service to in-service education, 
with an emphasis on the role played by specifi c tools and methods on the professional 
development of teachers. An overview on this wide-ranging research can be found in 
the 15th ICMI study on teacher education (Even and Ball  2009 ) and the four volumes 
of the  International Handbook of Mathematics Teacher Education  ( 2008 ). 

 Much of the research on teacher education has focused on identifying the 
knowledge that is necessary for the teaching of mathematics. Researchers gener-
ally agree that this knowledge consists of three main components, which progres-
sively interrelate to each other: knowledge about mathematics content; general 
pedagogical knowledge; and the mathematical-didactical knowledge. These com-
ponents can be related to those introduced by Shulman ( 1986 ), who was the fi rst 
to identify the notion of  pedagogical content knowledge  (PCK) as the particular 
knowledge for teaching: “the particular form of content knowledge that embodies 
the aspects of content most germane to its teachability” (p. 9). In the case of the 
teaching of mathematics, PCK concerns the intertwining of mathematics and ped-
agogy in relation to the different conditions for and ways of teaching and learning 
specifi c content. 

 Taking Shulman’s studies as a starting point, Ball and Bass ( 2003 ) propose a 
fi ner and more effective characterisation of what they refer to as the  mathematical 
knowledge for teaching  (MKT), which Bass ( 2005    ) defi nes as “the mathematical 
knowledge, skills, habits of mind, and sensibilities that are entailed by the actual 
work of teaching” (p. 429), that is “the daily tasks in which teachers engage, and 
the responsibilities they have to teach mathematics, both inside and outside the 
 classroom”. Ball et al. ( 2008 ) highlight the fundamental difference between math-
ematics and mathematics for teaching. While the former has the capability of 
compressing the information into abstract forms, the latter requires a sort of 
decompression, in that the main ideas pertaining to the mathematical content is 
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made more explicit. These authors choose to characterise MKT through the analysis 
of the daily practice of teachers:

  Instead of starting with the curriculum, or with standards for students learning, we study the 
work that teaching entails. […] We seek to unearth the ways in which mathematics is 
involved in contending with the regular day-to-day, moment-to-moment demands of teach-
ing. Our analyses lay the foundation for a practice-based theory of mathematical knowledge 
for teaching. (p. 395) 

   They thus analyse the typical features of mathematics that are involved in teach-
ing and identify the main components of MKT in relation to Shulman’s subject mat-
ter knowledge (SMK) and pedagogical content knowledge (PCK). They distinguish 
three sub-domains of PCK: (a)  knowledge of content and students ; ( b) knowledge of 
content and teaching; (c) knowledge of content and curriculum.  Referring to SMK 
they identify  specialised content knowledge  (SCK) as an important sub- domain of 
mathematical knowledge. Bass ( 2005 ) stresses that SCK

  is strictly mathematical knowledge (not about students or about pedagogy) that profi -
cient teachers need and use, yet is not known by many other mathematically trained 
professionals, for example, research mathematicians. Contrary to popular belief, the 
purely mathematical part of MKT is not a diminutive subset of what mathematicians 
know. It is something distinct, and, without dedicated attention, it is not something 
likely to be part of the instruction in content courses for teachers situated in mathematics 
departments. (p. 429). 

   Another important element that characterises the main studies on teacher educa-
tion is their involvement of teachers in the joint analysis and refl ection on the main 
features of the didactical projects being researched. Within the research literature, 
this involvement is described in terms of communities of practice, communities of 
inquiry, adaptive systems, collective participation, sustained conversation and 
egalitarian dialogue. The cornerstone of these studies is the notion of critical refl ec-
tion, conceived not only as a fundamental attitude to be instilled in teachers but 
also as a professional responsibility. Drawing on Schön’s studies ( 1987 ), many 
researchers stress the value of critical refl ection as well as the importance of shar-
ing refl ections amongst teachers and between teachers and researchers (e.g. Mason 
 1998 ,  2002 ; Jaworski  1998 ,  2003 ; Schoenfeld  1998 ). These studies suggest that 
teachers should share their interpretations of teaching and that observing different 
ways of acting can lead them to re-conceiving their ideas about their role in the 
classroom as well as the nature of their profession. As we will show, this philoso-
phy permeates the practice developed by Italian mathematics education research 
since the 1980s. 

 With respect to the evolution of the research on teacher education, another essen-
tial aspect is its strict interrelation with the research on the integration of new tech-
nologies in the teaching of mathematics. The focus of this research has shifted from 
the study of new programming languages for the implementation of algorithms (in 
the 1980s and 1990s), to the exploration of didactical software expressly conceived 
for education (in the 1990s and later), to the more recent use of new technologies 
not only for the teaching of mathematics but also as tools for communication and 
education in general, which led to the constitution of a specifi c research area on 
 educational technology  (Guin et al.  2005 ). 
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 Arzarello and Bartolini Bussi ( 1998 ) provide a synthesis of the Italian research 
in the 1960s–1990s, which refl ects the different dynamics and the changes that 
occurred. The authors identify four different trends, the fourth of which repre-
sents the dominant Italian research paradigm of  research for innovation . 
According to this paradigm, the main features that characterise the work carried 
out during teacher education programmes by the teachers and the researchers are 
collaboration, mutually supportive and integrative of knowledge and skills. This 
collaboration links theory and practice, and is fundamental for the professional 
development both of teachers and researchers in mathematics education. A pecu-
liar feature of  research for innovation  is the important role played by the ‘teacher-
researchers’, that is, teachers that are deeply involved in all phases of the research 
process, from planning to implementation to data analysis to dissemination 
(Malara and Zan  2002 ). Whereas only a relatively small number of teachers 
become teacher-researchers, a greater number of them have been involved in 
institutions (e.g. Ministry of Education), in research communities within pre-
service and in-service teacher education programmes, or as tutors or trainers for 
other teachers. 

 The model we present is strongly culturally framed in the Italian context, from 
which we identify the main variables. However, we are confi dent that it is pos-
sible to extend this model to other contexts, because of its fl exibility in describ-
ing teacher education as a complex system and in highlighting the interaction 
between its variables.  

    A New Paradigm: Meta-Didactical Transposition 

 The model we propose, which takes into consideration the practices of mathematics 
educators (researchers) and those of teachers, when both communities are engaged 
in teachers’ education activities, is based on the Chevallard’s Anthropological 
Theory of Didactics (Chevallard  1985 ,  1992 ,  1999 ; Bosch and Chevallard  1999 ) It 
adapts and extends ATD to the context of teacher education. This model, called 
 Meta-Didactical Transposition,  considers:

     (i)     the complex dynamic interplay, which develops in activities involving different 
communities (e.g. between the teachers and the mathematics educators);   

  (ii)     the constraints imposed by the institutions that promote such activities (includ-
ing schools and Ministry of Education) in view of some specifi c goals (e.g. 
promoting teachers’ knowledge of new curricula or of new technologies);   

   (iii)     other ‘institutional’ constrains, including the tradition of the school(s), the 
related (intended, implemented, attained) curricula and the textbooks used by 
the teachers.     

    Meta-Didactical Transposition  involves fi ve intertwined features: the  institu-
tional aspects , the  meta-didactical praxeologies , the  double dialectics , the  broker-
ing  processes and the dynamics between  internal and external components . We 
describe each aspect in the next sections. Our model thus complements the MKT 
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model described above insofar that it focuses on these main aspects of teachers’ 
education programmes: their dynamicity; the dialectic between the communities 2  ,  3  
of teachers and those of the researchers who coach them; and the infl uence of the 
institutional components and their relationships to the communities. 

    Institutional Aspects 

 ATD focuses on the institutional dimension of mathematical knowledge, placing 
mathematical activity, hence the activity of studying in mathematics, within the 
bulk of the human activities and of the social institutions (Chevallard  1999 ). In our 
view, it is important to consider such an institutional dimension in teacher education 
activities since these activities are fully situated within and constrained by the con-
text of social institutions (research communities, schools, the Ministry of Education, 
the policy makers, the teachers associations, etc.). In Italy, as in many other European 
countries, the whole educational system (from kindergarten to university) is public 
and is governed by several institutions at different levels (national, regional, local). 
Within this context, the importance of the institutional dimension is also at play 
within the politics of the European Union. As lifelong education is considered a 
strategic element for development in Europe, community programmes are promoted 
for prospective or in-service teacher education. These programmes assume a 
clear cooperation between the research world and the institutional-political world 
(see   http://ec.europa.eu/education/llp/offi cial-documents-on-the-llp_en.htm    ). 

 Chevallard ( 1992 ) stresses the fact that the very nature of mathematical objects in 
school is dependent on the person or the institution with which it is related: “An object 
exists since a person, or an institution acknowledges that it exists (for it itself)” (p. 9). 
With respect to teacher education, our model focuses on two types of communities, 
which sometimes intertwine: (a) the  communities of the researchers , who design and 
coach the educational programmes, generally as an offi cial task commissioned 
by the responsible authorities (e.g., School administration, Ministry of Education); 

2   We refer to this term in tune with the following characterisation of communities of inquiry pro-
posed by Jaworski ( 2008 ): “ In terms of Wenger’s ( 1998 ) theory, that belonging to a community of 
practice involves engagement, imagination and alignment, we might see the normal desirable state 
as engaging students and teachers in forms of practice and ways of being in practice with which 
they align their actions and conform to expectations…In an inquiry community, we are not satisfi ed 
with the normal (desirable) state, but we approach our practice with a questioning attitude, not to 
change everything overnight, but to start to explore what else is possible; to wonder, to ask ques-
tions, and to seek to understand by collaborating with others in the attempt to provide answers to 
them. In this activity, if our questioning is systematic and we set out purposefully to inquire into 
our practices, we become researchers. ” 
3   It derives from the Chevallard’s notion of didactical transposition (Chevallard  1985 ), which 
roughly speaking, consists in the relationships between the production, the use and the teaching of 
the scientifi c knowledge and in the ways, according to which it adapts itself in order to ‘work’ in 
different types of institutions (compare for example a theorem as expressed in the Journal where it 
is proved by a mathematician, what Chevallard calls “le savoir savant”, with the same theorem as 
it is written in a textbook, “le savoir enseigné”). 
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(b) the c ommunities of the teachers , who participate within the projects, either on a 
voluntary basis or because of an offi cial duty. Both of these communities are in rela-
tionship with the school: the actual schools where the teachers teach, and the School 
as an institution with its curricula, its teaching traditions, the textbooks used, etc.  

    Meta-Didactical Praxeologies 

 ATD proposes a general epistemological model of mathematical knowledge, con-
ceived as a human activity developed for the purpose of addressing specifi c families 
of tasks. Its main theoretical tool is the notion of  praxeology  (or mathematical organ-
isation), which is structured in terms of two main levels (García et al.  2006 ): (a) The 
‘know how’ ( praxis ), which includes a family of similar  problems  to be studied, as 
well as the  techniques  available to solve them (e.g. 2nd degree equations and the 
formulae for their solution); (b) The ‘knowledge’ ( logos ), which is the ‘discourses’ 
that describe, explain and justify the techniques that are used within a more or less 
sophisticated frame and may even produce new techniques (e.g. the justifi cation of 
the formula for 2nd degree equations through the completion of squares or even the 
theory of algebraic equations and how it encompasses 2nd degree equations). 4  
A praxeology consists of a task, a technique, and a more or less structured argument 
that justifi es or frames the technique for that task. Hence, it encompasses both the  
know-how  and the  knowledge , with respect to a family of tasks. 

 In constructing our model, we consider the  meta-didactical praxeologies , which 
consist of the tasks, techniques, and justifying discourses that develop during the 
process of teacher education. For example, consider the teacher training course 
described by Sullivan ( 2008 ), in which he used the question “which is bigger, 2/3 or 
201/301?” (p. 3) in order to prompt teachers for ideas that might be used as the basis 
of a lesson. The discussion with the teachers made evident at least three points of 
view, according to which one can answer the question: the mathematics knowledge, 
the knowledge specifi c for teaching and the pedagogical knowledge. According to 
such knowledge, specifi c interventions could be designed to introduce the students 
to the task, e.g. to think of baseball statistics: if a player passes from 200/300 to 
201/301 his score increases. All of this can be considered as an example of a  meta- 
didactical praxeology  in that the task is stimulating the teachers’ refl ection, and the 
techniques are those that Sullivan used in the course to promote discussion. During 
this discussion, it is possible that the two communities of mathematics educators 
and teachers, respectively, shared a common theoretical framework, which would 
justify the techniques being discussed. For example, based on one’s professional 
experience, the teachers might discuss why the initial question presents diffi culties 
for many students and why the baseball example makes sense in a classroom and 
thus help overcome these diffi culties. Moreover, the teachers may scaffold their 

4   The ‘knowledge level’ can be further decomposed in two components, i.e.  Technologies  and 
 Theories . The provided description is enough for our purposes. 
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 arguments within specifi c pedagogical discourses, for example stressing the necessity 
to foster the transition from everyday to scientifi c and formal concepts, according to 
a Vygotskian approach. The theoretical side of the  meta-didactical praxeology  also 
includes the refl ection made by Sullivan on the possible reasons why the activity 
was a good illustration of the way teachers can become aware of MKT, an aspect 
that may have been highlighted within Sullivan’s exposition. 

 Within  meta-didactical praxeologies , what is under scrutiny is not the didactics 
in the classroom but the practices and the theoretical refl ections developed in teacher 
education activities. Of course, they are the result of the interaction between the 
refl ections of the community of researchers about the didactic praxeologies previ-
ously designed and developed, and the concrete practices used by the teachers in 
their professional activities. 5  

 We now have the basic ingredients that allow us to introduce the core of our model. 
Looking at teacher education processes from a dynamic point of view, we initially 
identify two communities: that of researchers, who design and coach the activities, 
and that of the teachers, who are engaged in an education process. For the modeling 
purpose, let us distinguish two kinds of praxeologies: the  researcher praxeologies  6  
and the  teacher praxeologies . The researchers and teachers praxeologies in some 
cases may be shared, but we assume that in general, when the teachers encounter the 
researchers for the fi rst time at the beginning of the education process, they are not. 
Teacher education programme aim to develop teachers’ existing praxeologies towards 
new ones, which consist of a blending of the two initial praxeologies. This evolution 
is the result of an interaction with the community of researchers and, for this reason, 
we call it a s hared praxeology . For example, from the discussion of different 
techniques to address a problem, new ones can be acquired by the teachers, with 
a suitable theoretical justifi cation, thus replacing or integrating old techniques 
and so as to change the nature of the teacher’s MKT. Also within this dynamic 
evolution are some external components, which may play a crucial role. A typical 
example is when the activity is developed in response to changes in the offi cial 
curriculum or in external assessment expectations for students. 

 The community of researchers generally refl ects upon the nature of, and reasons 
for, the changes produced by the teacher education programme and possibly shares 
such refl ections with the community of teachers. This can result in  new researcher 
praxeologies . Also the teacher praxeologies may change, and develop into  new 
teacher praxeologies , a process that can repeat and further refi ne itself. A global 
illustration of this is provided in Fig.  1 .

5   This is true for activities with in-service teachers; in the case of prospective teachers, the second 
component may be missing but their beliefs are active and still constitute a powerful part of the 
component. 
6   Of course there may be more than one praxeology referring to researchers, as well as referring to 
teachers: in the text we will use either singular or plural (researchers praxeologies; teachers prax-
eologies). In particular the researchers have their own praxeologies as researchers, which concern 
the praxis and the logos of their researches; but they have also their praxeologies as teachers’ 
educators, where the praxis and the logos concern the concrete way they coach these activities, 
because of their theories about teachers’ educational processes. 
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   Meta-didactical Transposition consists of a dynamic process through which, 
thanks to the dialectical interactions between two communities, both the didactic 
praxeologies of the community of researchers and of the teachers’ community 
change within the institutional environment in which the two communities reside. 
This dialectical interaction leads to the development of a shared praxeology, which 
represents the core of our model. One of the main results of the dialectical interac-
tion is the teachers’ development of both a new awareness (on the cultural level) and 
new competences (on the methodological-didactical level, i.e. that of teaching prac-
tice), which lead them to activate, in their classrooms, a didactical transposition in 
line with recent educational trends. Therefore, the term ‘meta-didactical’ refers to 
the fact that important issues related to the didactical transposition of knowledge are 
faced at a meta-level.  

    Internal and External Components 

 An important feature of Meta-didactical Transposition is that some of the compo-
nents of the two communities’ praxeologies change their status over time. Typically 
they move from being  external  to becoming  internal  with respect to the community 
under scrutiny. To clarify this crucial point, which will be further discussed in the 
following sections, we give a brief example. Consider a community of teachers 
that starts an educational programme in which, due to some institutional situation 
(e.g. curriculum changes), a community of researchers introduces a specifi c ICT 
tool (e.g. a dynamic geometry software). Initially, the tool is an external component 
for the teachers (and possibly also for the researchers). However, at the end of the 

  Fig. 1    The Meta-didactical Transposition model       
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educational programme, it has become an internal component in their praxeologies, 
albeit possibly at different levels. Such an internalisation process, which happens 
via a Meta-didactical Transposition, defi nes a  meta-didactical trajectory , 7  that 
is, the dynamic evolution of the teachers’ education programme. For example, a 
technique (and the theory that justifi es it) is initially in the hands of the researchers. 
Their aim is to make it shared within the community of inquiry as a technique and 
possibly, in addition, build an understanding of the theoretical arguments that justify 
its use. At the end of the process, the initial techniques (and possibly also the 
theoretical part) has become a new a set of shared techniques, as a result of the 
actions taken by the researchers and teachers. 8  As we will point out in the next section, 
this evolution is fostered by a dialectic interaction between these components. 

 The internal/external distinction is adapted from Clark & Hollingsworth ( 2002 ). 
They distinguish an external domain, located outside the teacher’s personal world, 
from the internal domains, which “constitute the individual teacher’s professional 
world of practice, encompassing the teacher’s professional actions, the inferred conse-
quences of those actions, and the knowledge and beliefs that prompted and responded 
to those actions” (, p. 951). Compared with their approach, our model emphasises the 
process of the teachers’ professional evolution, according to which some of the external 
components become internal as a result of the process of Meta- didactical Transposition. 

 A Meta-didactical Transposition produces a dynamic change in the praxeologies 
of the community of teachers. Some components of the praxeologies of the com-
munity of researchers enter the praxeologies of the community of teachers as an 
outcome of the Meta-didactical Transposition. Presumably, also, the researcher 
praxeologies change as well, as a result of their encounters with the community of 
teachers. It is possible that some of these components may be external to both 
communities and it is the educational process that produces their transformation 
into internal components of the communities. 

 We will see below that this change is only one of the possible transformations 
that Meta-Didactical Transposition can produce within the praxeologies of the two 
interacting communities.  

    Brokering 

 The Meta-didactical Transposition model integrates the ideas of ATD with ele-
ments coming from other frameworks. The notion of brokering is an example; it is 
introduced because it describes the role that teachers and researchers often fi nd 

7   The choice of this term to refer to teachers’ education programmes is in tune with Simon defi nition 
of Learning Trajectory: “The Hypothetical learning trajectory consists of the goal for the students’ 
learning, the mathematical tasks that will be used to promote students’ learning and hypothesis 
about the process of the students’ learning” (Simon  1995 ). 
8   This process has a common feature with the processes of instrumental genesis, as described by 
Trouche ( 2005 ). Space does not allow us to develop this issue. 
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themselves playing within the different communities. According to Rasmussen 
et al. ( 2009 ), a  broker  belongs to more than one community. Typically a teacher 
belongs to the community of mathematics experts, to that of her/his school teachers 
and to her/his classroom community:

  Brokers […] are able to make new connections across communities of practice, enable 
coordination, and – if they are good brokers – open new possibilities for meaning (p. 109). 

   Brokers facilitate the transition of mathematical concepts from one community 
to the other ( boundary crossing ), which is accomplished by drawing on  boundary 
objects :

  boundary objects are those objects that both inhabit several communities of practice and 
satisfy the informational requirements of each of them. (Bowker and Star  1999 , p. 297) 

   Within Meta-didactical Transposition, brokering is a common habit and, fre-
quently, researchers play a brokering role between the two communities involved. A 
good example of a typical boundary object is the baseball score used by Clark (cited 
in Sullivan  2008 ). Teachers can use such a boundary object to move students’ think-
ing from the usual meaning of the score to a more mathematical comparison between 
two fractions (2/3 and 201/301). At the same time, used within an episode of teacher 
education, this example is a boundary object used by the researcher to move the 
teachers from the standard mathematical meaning of fractions to an everyday con-
textualised meaning that is useful for teaching. In this sense, the researcher makes a 
brokering action with respect to the teachers.  

    Double Dialectic 

 Another important element of our model is the double dialectic involved in the 
 Meta-Didactical Transposition.  The fi rst dialectic is at the  didactic level  in the 
classroom in that it is between the personal meanings that students attach to a 
didactic situation, to which they are exposed in the didactic activity, and its 
scientifi c, shared sense (Vygotsky  1978 ). The second dialectic is at the  meta-
didactic level , which lies between, on the one hand, the interpretation that the 
teachers give to the fi rst dialectic as a result of their personal meaning, which is 
a result of their praxeology and, on the other, the meaning that the fi rst dialectic 
has according to the community of researchers, which results from researcher 
praxeology. The second dialectic corresponds to the  scientifi c shared meaning  
of the fi rst dialectic. 

 Typically, the second (meta-didactical) dialectic arises from a contrast 
between researcher praxeologies and teacher praxeologies and the fi rst dichot-
omy engenders the second one as an outcome of a suitable meta-didactical tra-
jectory, which is designed by the researchers. It is through this double dialectic 
that teacher praxeologies can change and align with the praxeologies of the 
researchers, which may cause a signifi cant evolution of the teacher professional 
competences.   
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    Examples from the Italian National and Regional Programmes 

 We will now discuss three different Italian teacher education programmes, which 
will show how the  Meta-didactical Transposition  model can help describe and anal-
yse some important aspects of these programmes that that have not been adequately 
addressed in existing approaches. These aspects relate to the relationships between 
the Research, the Institutions, and Mathematics Education research. In particular, 
the three examples are meant to highlight different aspects of the model. 

 The fi rst example aims to illustrate the various components of the model and 
the relationships between them. It concerns an ongoing Italian programme for 
teacher education called M@t.abel, which is based on an extensive use of ICT 
and, in particular, a purposeful, dedicated internet-based platform. We will show how 
the  Meta-Didactical Transposition  model allows the role of ICT to be adequately 
framed within teacher education. In particular, we will highlight the dynamics 
between the internal and external components and the brokering function of the 
tutors within the transposition. 

 The second example, MMLab-ER (Laboratories of Mathematical Machines for 
Emilia Romagna), shows how to exploit the potential of the  Meta-Didactical 
Transposition  in order to analyse the  development  of the project. In particular, the 
model allows us to identify and describe when, how and why the different compo-
nents of the praxeologies changed during a teacher education programme. 

 The third example, which refers to the teacher education programme within the 
ArAl Project, is aimed at showing how, through the planning of an appropriate 
 meta-didactical trajectory, it is possible to both highlight a fi rst-level dialectic (didacti-
cal dialectic) and engender a second-level dialectic (meta-didactical dialectic), which 
enables teachers to develop a new awareness of their role in the classroom. 

 The three examples have been chosen being very different in scope, activities, 
and modalities of action. Considering the specifi c aspects that each example 
highlights can give a taste of the potential value of the MTD model in objectifying 
complex and different situations of teacher education projects. 

    A National Example of Meta-Didactical Transposition: 
The M@t.abel Project 

 The M@t.abel Project is a national teacher education programme for in-service 
mathematics teachers supported by the Ministry of Education. It started in 2006 and, 
to date, it has involved more than 10,000 secondary school teachers distributed across 
the whole of Italy. M@t.abel has its roots in the Italian  research for innovation  
paradigm and, in particular, a previous project called ‘ Matematica per il citta-
dino ’ (Mathematics for the citizen, 9  2001–2005), which was elaborated within an 

9   http://www.umi-ciim.it/in_italia--28.html . 
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innovative curriculum in mathematics, from primary to secondary school (Anichini 
et al.  2004 ). The  Matematica per il cittadino  curriculum is based on the idea of the 
 mathematics laboratory , intended as a methodology based on varied and structured 
activities. These activities aim toward the construction of meanings, in which the 
students can learn by doing, seeing, imitating and communicating with each other, 
under the guidance of the teacher, as in a Renaissance workshop. This methodology 
fosters close interaction between novices and experts, in the context of  cognitive 
apprenticeship . This phrase “refers to the fact that the focus of the learning-through- 
guided-experiences is on cognitive and meta-cognitive, rather than on physical, skills 
and processes” (Collins et al.  1989 , p. 458). 

 Although the current Italian National Curriculum mirrors in some respects the 
infl uence of the project  Matematica per il cittadino , the school reality is quite far 
from being broadly infl uenced by the new perspectives, and the innovation is 
restricted to isolated cases (teachers, schools, or networks of schools) and to primary 
or middle, rather than secondary schools. For this reason, the M@t.abel project aims 
to improve school mathematics education at the secondary level, through the wide-
scale dissemination of the ideas and didactic activities (i.e. the didactic praxeologies) 
of the  Matematica per il cittadino  curriculum. To reach this aim, a fundamental part 
of the M@t.abel project requires that teachers try out activities in their own class-
rooms that involve new didactic praxeologies (using a problem solving approach, 
tasks that involve discovering-conjecturing-arguing and proving, group work and 
discussions, and digital technologies). 

 In the M@t.abel Project, the institutional aspects are fundamental, because the 
Ministry of Education (MIUR), along with the Agency of School (Indire), is respon-
sible for the project, which also includes researchers as members of the Scientifi c 
Committee. Researchers are called upon to plan all of the components of the teacher 
education programme as described above, to implement the educational meetings 
for the tutors and to prepare materials for the teachers. 

 In the project, the praxeologies of the researchers encounter teacher praxeologies 
by means of a two-step process. Each step can be considered as a Meta-Didactical 
Transposition process, where the fi rst step concerns the tutors’ education and the 
second one the teachers’ education. The  tutors  are a small number of expert teachers 
who take part in research projects with University researchers. In many cases, tutors 
have previously participated in the  Matematica per il cittadino  project. In some 
cases, they may be teacher-researchers. The whole tutor community is formed at the 
beginning of their involvement in the project. In this fi rst Meta-Didactical 
Transposition, the researchers play the role of  brokers  between the two communi-
ties (see Fig.  2a ). In the second and far-reaching steps of the project, tutors them-
selves play the role of brokers in the Meta-Didactical Transposition that is directed 
toward a large number of teachers (see Fig.  2b ).

   Due to the limitations of space, in this Chapter we only describe this second 
process in more detail. 

 In order to develop shared praxeologies, the teachers are organised into  commu-
nities of inquiry , composed of 15–20 teachers and supervised by tutors. Within this 
context, the tutors act as  brokers  between the two communities of teachers (involved 
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as learners in the educational programme) and of researchers (involved as designers 
of the programme). The tutors are confi dent with the innovative paradigms that 
emanate from research, 10  and they share with teachers their experience. 

 The communities of teachers work both remotely through an e-learning platform 
and during face-to-face meetings with tutors. Initially, the tutor outlines the spirit of 
the project, presents the activities during some meetings and asks the teachers to 
analyse them from a didactical point of view. Then, the tutor coordinates the groups 
of teachers remotely through synchronous meetings (using screen sharing) and 
asynchronous discussions (emails, forums). Having shared activities and methods, 
the teachers choose four activities and experiment with them in their own class-
rooms. These trials are a fundamental part of the teacher education programme and, 

10   According to the Italian paradigm of ‘research for innovation’, in this second step the tutors 
praxeologies may be assimilated to the researchers ones: as said above, in many cases the tutors are 
teachers-researchers, i.e. are experienced with research studies and methodologies, having been 
part of research teams in mathematics education for many years. Of course this is not always the 
case. For the purpose of the paper, we privilege clarity, taking the risk of over-simplifi cation. 

  Fig. 2    ( a ,  b ) The two Meta-didactical Transpositions of the M@t.abel project       
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during the experimentations, the tutor asks the teachers to carefully observe their 
students’ processes, 11  and to record their notes in a logbook, which is uploaded on 
the platform. More precisely, in the logbook the teacher is asked to:

•    Make explicit the principal conceptual points of the activity;  
•   Describe the classroom experience and the methodology followed (worksheets, 

groupwork, software, …);  
•   Monitor how the students participate in the activities and appreciate them;  
•   Signal the main student diffi culties;  
•   Comment on the evaluation of the tasks and their conclusions.    

 In the researcher praxeologies, the logbook is meant to be a tool that helps the 
teachers plan, monitor, and control their own work and, in particular, organise the 
observation of what happens in the classroom, focusing their attention on processes 
rather than on products. In this sense, it can enable the teachers to orient or re-orient 
their didactic practice, and contribute to improving their teaching practice by means 
of self-refl ection. Furthermore, logbooks can be a valuable means of exchange 
between teachers working around the same mathematics topic, or at the same school 
level, and may provide information tools for external observers. As an institutional 
constraint, the project enables the participating teachers to gain certifi cation that is 
useful within their career progression; also, the completion of the logbook is a 
required element of this accreditation. 

 Over their years of practice, each teacher has developed her/his own individual 
praxeologies comprising tasks, techniques and theoretical discourse. Depending on 
the individual teachers, the initial praxeologies of the researchers and the teachers can 
be far apart. For instance, some of the teachers involved in the programme often used 
quite traditional tasks and techniques, consisting of lectures, exercises and applica-
tions. Their (often implicit) theoretical discourse that justifi ed these choices was based 
on traditional textbooks and an old curriculum. During the educational programme, 
the praxeologies could evolve and change through meta-didactical trajectories, and 
develop toward shared praxeologies (e.g. laboratory practices and use of ICT). 

 Figure  3  contains a portion of a teacher’s logbook, in which the teacher presents 
a synthesis documenting her consciousness about the changes in her praxeologies 
related to the teaching of geometry. The choice of the tabular format for the logbook 
is made to this particular teacher. In the third column we can get some evidence of 
a shared praxeology. We can notice technical terms originating from the researcher/
tutor praxeology, which are also expressed in the  Matematica per il  cittadino  
curriculum, such as ‘guiding students in discovering properties’ (see the reference 
to cognitive apprenticeship above), ‘discussing with them about descriptions, defi -
nitions, properties’, ‘institutionalising knowledge’, and so on.

   Unfortunately, many teachers involved in the project did not or could not anno-
tate daily their logbook (Rapporto PON M@t.abel  2009–10 ). These teachers only 
wrote up their logbook at the end of their experience in the project, as a sort of 
compulsory homework that was required by the system (Institutional constraint). 

11   Contrasted with their products. e.g. students’ reasoning, arguments, diffi culties, and so on. 
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For some, time pressures seem to have prevented thoughtful writings. They describe 
concisely the experiment as a fi nished product. Consequently, there is no important 
information in the log books about the real processes occurring during the develop-
ment of the teaching experiment and there are only few refl ections about the diffi -
culties encountered and the planned changes. For these teachers, the interaction 
with the tutor was less dialogic and limited to the use of forums, email, and online 
resources in the platform. 

 As mentioned above, the Meta-didactical Transposition in the case of the M@t.
abel Project has its strength in the use of a  platform  for synchronous and asyn-
chronous activities among teachers. The platform is the environment that gives 
new techniques to teachers, infl uencing and supporting them in changing their 
praxeologies. In particular, if a teacher has worked for many years in a traditional 
and isolated way, now she is forced to discuss new methodological issues through 
ICT. For instance, the GeoGebra software (and the fi gure constructed with the 
software, like the one in Fig.  3 ) can be used as a boundary object between the 
community of tutors and that of teachers. 

 The platform, together with the brokering function of the tutors, aims to build a 
community of teachers with  shared praxeologies . Besides being a  communication 
infrastructure , allowing synchronous and asynchronous interactions, for sharing 
ideas, materials and methods, the platform works also as a  representational infra-
structure  (Hegedus and Moreno-Armella  2009 ), fostering the use of a shared 

What I thought before the teaching
experiment on quadrilaterals What I think now

Working modalities
with students

Work in pairs with concrete materials Work in pairs in laboratory with
GeoGebra software

Teacher’s role Teaching, explaining, exemplifying Guiding students in discovering
properties of quadrilaterals
Discussing with them about description,
definition, properties,
Coordinating discussions giving stimuli,
ordering conjectures
Institutionalising knowledge

Tools and their
functions

Concrete materials (paper and pencil) as
a model where constructing
quadrilaterals according to their
symmetry properties

Software GeoGebra for constructing the
same model of concrete materials (Fig 4)

Paper sheets forevery activity
Instruction for constructing quadrilaterals
in GeoGebra

  Fig. 3    Excerpt from a teacher’s logbook       
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desktop where the teachers can work together on-line on the same topic or mathe-
matical object. In the Meta-didactical Transposition model, the platform constitutes 
an example of an  external component  (for both researchers/tutors’ and teachers’ 
initial Praxeologies) that becomes an  internal  one over the course of the Project. 
Finally, the model includes two important effects of Meta-Didactical Transposition, 
which are the changes brought about by the project both in the researcher praxeolo-
gies and in teacher praxeologies. The change in the researcher praxeologies occurs 
through the researchers’ ongoing refl ection, which is prompted by considering the 
evolution of the system over time and the analysis of the internal/external compo-
nents. Figure  4  provides an overall picture of the Meta-didactical Transposition 
within the M@t.abel project (the second step):

   As a picture of a dynamic process, Fig.  4  cannot capture temporal evolution. 
If we imagine the model evolving over time, we can focus our attention on 
 occurred  and  not-yet-occurred evolutions . Concerning the  occurred evolutions  in 
M@t.abel, we fi nd two external components that become internal ones: the platform 
(as described above), and the  Matematica per il Cittadino  curriculum (which was 
internal for researchers/tutors’ praxeologies but not for those of the teachers). 
The fi rst component is a technical component and the second is a part of the theo-
retical discourse, which justifi es certain tasks and techniques. 

 As mentioned above, unfortunately the logbook often constitutes a case of  not-
yet- occurred   evolution on a large scale. For many teachers in fact the logbook did not 
function as a helpful day-to day observation tool, which means that it did not become 
an internal component in their praxeology. Instead, for a small number of them, it 
was a component that became internal thanks to their participation in the project. 

 In general, by looking at the evolutions in terms of the internal and external com-
ponents, researchers can identify those features of the teacher education process that 

  Fig. 4    Internal and external components in the Meta-didactical Transposition of M@t.abel       
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are in need of further refl ection and work. For instance, the logbook tool is currently 
under investigation by the researchers, in order to understand why it did not work as 
expected and to set up suitable changes. This kind of consideration is part of a  new 
researchers’ praxeology . Further considerations of this aspect of the model will be 
presented in the next examples.   

    The Evolution of Researcher Praxeologies Over Time: 
The Example of the MMLab-ER Project 

 In this second example of a teacher education programme, we show the potential of 
the  Meta-didactical Transposition  model for studying the  evolution of praxeologies 
over time . Specifi cally, we use the model to identify and describe when, how and 
why some different components of praxeologies changed during the MMLab-ER 
teacher education programme. We also use the model to plan and control the 
variation in praxeologies. 

 MMLab-ER (  http://www.mmlab.unimore.it/site/home/progetto-regionale- emilia-
romagna.html    , Martignone  2010 ) is a regional project that responds to national and 
international standards on IBSE (Inquiry Based Science Education; see Rocard 
et al.  2007 ). It aims to construct a network of competent practising teachers using 
the  mathematics laboratory  method (in the sense introduced in the previous sec-
tion). In this project, old and new tools are involved (for example, reconstructions 
of historical mathematical tools and technologies). The compass is a well- known 
mathematical tool but, in the history of mathematics, several other mathematical 
machines (e.g. pantographs for geometric transformations, curve creators, perspec-
tographs) have been designed and used for theoretical and practical purposes 
(Bartolini Bussi et al .   2010 ). In the MMLab-ER project, teachers and students work 
both with real mathematical machines and with virtual reconstructions of them, 
created by means of dynamic geometry software. 

 The laboratory sessions with mathematical machines, guided by a specifi c meth-
odology and particular tasks (Bartolini Bussi et al.  2011 ; Martignone  2011 ), are 
suitable environments for the development of fundamental mathematical activities 
such as problem solving, production of conjectures, argumentation processes and 
generation of proofs within Euclidean geometry. This is one of the underlying 
assumptions of the MMLab-ER project. To date, approximately 200 teachers have 
participated in the fi rst cycle (mainly grades 4–8) and the second cycle (grades 
9–12, in high schools and vocational schools). The researchers worked as teacher 
educators with small groups of teachers (15–25 teachers from each of the eight 
Italian provinces involved) in both face-to-face sessions (28 h) and through an 
e-learning platform and email. The project began in 2008 with a 2-year period of 
regional fi nancial support and then, at the beginning of 2012, as a result of new 
fi nancial support, it recommenced with other teachers and schools. 

 This development over 3 years, which includes a 1-year break during which time 
the researchers analysed the project results, enables study of the evolution of 
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praxeologies in the MMLab-ER project. By means of the  Meta-Didactical 
Transposition  model, we analysed how the different components of the  researcher 
praxeologies  have developed from the beginning of the project until now. The 
MMLab research group analysed the experiences carried out both during the teacher 
education programmes and the teaching experiments, and have modifi ed some of 
their praxeologies. The  researcher praxeologies  arose from a dynamic evolution of 
the relation between research and teaching that characterises the  Italian Research 
for Innovation  (Arzarello and Bartolini Bussi  1998 ). At the beginning of the Meta-
Didactical Transposition process, the researchers had their own praxeologies linked 
to their studies of students’ activities in the classroom and their experiences with 
and studies of teacher education. In the former, the  task  is to study the educational 
potential of the laboratory activities with mathematical machines and the  techniques  
involve the design and analysis of activities for primary and secondary school stu-
dents. In the latter, the  task  is to design activities that shift teachers’ attentions to the 
processes of exploration, the resulting conjectures and the constructions of proof by 
means of laboratory sessions involving the mathematical machines. The  techniques  
concern the development of tasks for teachers that include, for example, the selec-
tion of suitable educational paths to be discussed and the analysis of different teach-
ing experiments. The  theoretical discourse  that describes, explains and justifi es the 
techniques of these praxeologies is based on studies of mathematics teaching and 
learning by means of laboratory activities with mathematical machines (within the 
theoretical framework of  semiotic mediation  (Bartolini Bussi and Mariotti  2008 ). 
The  Meta-didactical Transposition  model is useful in describing and analysing the 
evolution over time of the different components of these researcher praxeologies. 
We can identify the aspects that do not change and describe how the levels of praxis 
and logos are modifi ed. Concerning the level of praxis, some  techniques  were 
improved, such as: how new activities were introduced and elaborated with the 
teachers; the modifi cation of some tasks for teachers; modifi cation of the classroom 
tasks, taking into account what was discussed during the teacher education programme 
(s hared praxeologies ); and refi ning the tools for analysing teachers’ and students’ 
worksheets, logbooks, video, etc. In addition, the  theoretical discourse  was 
improved by refi ning some theoretical tools. After the fi rst year, in order to study the 
exploration of the mathematical machines carried out by teachers and students in 
more depth, cognitive studies concerning mathematical machines were developed 
that identifi ed and analysed the argumentation processes involved (Antonini and 
Martignone  2011 ). After 2 years of the project, the researchers analysed all of the 
documentation, which included the videos, worksheets about the laboratory activi-
ties carried out by teachers and students, teachers’ refl ections collected in the 
logbooks, and the fi nal reports of the teaching experiments. New research was carried 
out in order to identify, study and characterise the main features of the MMLab-ER 
teacher education programme (Garuti and Martignone  2010 ). These studies showed 
that the project’s main results were not only the dissemination of innovative teaching 
methods, but also the design and testing of activities that seemed to develop 
teachers’ skills in analysing the cultural aspects involved in the laboratory activities 
with mathematical machines. In order to interpret the kind of  teacher knowledge  the 
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MMLab-ER programme had developed, the researchers referred to the aforementioned 
studies about  Mathematical Knowledge for Teaching  (MKT) (described earlier). 
This construct was used to identify specialised teacher knowledge related to the 
non-pedagogical content. In particular, we found that the teachers’ Specialised 
Content Knowledge (SCK), which is linked to the  cultural analysis of contents  
(Boero and Guala  2008 ), improved through the development of new praxeologies 
involving refl ection on teaching and learning activities. A teacher has (or can 
acquire) SCK linked to the cultural analysis of contents if s/he come to appreciate 
the potential of, and can analyse the cultural aspects (e.g. attention and analysis of 
historical-epistemological and cognitive aspects) related to some specifi c mathe-
matical content (Garuti and Martignone  2010 ). The identifi cation of this specialised 
content knowledge modifi ed the  logos  level of  researcher praxeologies,  enriching 
them with a new theoretical construct. Today, these new praxeologies, with the 
praxeologies of the new teachers involved, are the starting point of the  Meta- 
didactical Transposition processes  that are going on in the second part of the 
MMLab-ER teacher education programme.  

    The Double-Level Dialectic: The Teacher Education 
Programme Within the ArAl Project 

 As we stated before, this third section is aimed at exemplifying how the  Meta- 
didactical Transposition  model highlights a typical aspect of teacher education 
programmes, which is the activation, through appropriate  meta-didactical 
trajectories , of a  fi rst-level dialectic  and, at the same time, the engendering of a 
 second-level dialectic  that enables teachers to acquire a new awareness of their 
role in the classroom. 

 The teacher education programme we present here is the  ArAl Project , whose 
main objective is to foster a linguistic and constructive approach to early algebra 
(Malara and Navarra  2003 ) within an integrated teacher education programme (Cusi 
et al.  2010 ). The model for teacher education developed within the ArAl project 
resonates particularly with research carried out by Mason ( 1998 ,  2002 ) and Jaworski 
( 1998 ,  2003 ,  2006 ). This programme is based on the hypothesis that observation 
and critical-refl ective study of class processes, activated both individually and 
among communities of inquiry, is a necessary condition to foster teachers’ develop-
ment of awareness (Mason  2008 ) about the ‘subtle sensitivities’ that could guide 
their future choices and determine their effective action in the classroom. Another 
fundamental hypothesis is that giving teachers the possibility to analyse and inter-
pret the activities they conduct in their classrooms, referring to specifi c theoretical 
lenses for the observation of the role they play, can foster a shift of attention for 
teachers as they refl ect on their own practice, enabling them to focus not only on 
students’ diffi culties, but also on the interrelation between the attitudes and behav-
iours of teachers and students. 
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 For this reason, the chosen methodology for our work with the teachers, which 
refl ects the chosen  meta-didactical trajectory , is characterised by these main three 
aspects: (1) in order to foster the development of a  community of inquiry , the teach-
ers involved in the same teaching experiment are associated with a mentor-researcher 
with whom the teachers engage in face-to-face work as well as email exchanges, 
which becomes the starting point of a  dialectic interaction between the two com-
munities ; (2) teachers are involved in activities of theoretical study, aimed at provid-
ing them with theoretical and methodological tools useful for interpreting, through 
new lenses, their own actions in the classroom (in this way, teachers and researchers 
start to refer to a  shared praxeology ); (3) teachers are involved in a complex activity 
of critical analysis of the transcripts of audio-recordings concerning classroom pro-
cesses and associated refl ections, which is carried out by developing what we call 
 Multi-commented transcripts  (MT). The experimenters-teachers send the tran-
scripts, together with their own comments and refl ections, to mentors-researchers, 
who make their own comments and send them back to the authors, to other teachers 
involved in similar activities, and sometimes to other researchers (at this level, the 
dialectic interaction between the two communities is particularly intense). Often, 
the authors make further interventions in this cycle, commenting on comments or 
inserting new ones (see Malara  2008 ; Cusi et al.  2010 ; Malara and Navarra  2011 ). 

 The MT methodology, which helps teachers refl ect on the activities they carried 
out in their classrooms, reveals their attitudes and behaviours as well as the effects 
of their interventions on their students. Thus, they highlight: the contrast/interaction 
between the personal sense their students attribute to the activities and the institu-
tional meaning of the same activities (the  fi rst-level dialectic ); and the role they play 
in fostering (or not) students’ development of a personal sense, which is in tune with 
the institutional meaning of the activities. 

 At the same time, the researchers’ analyses of the refl ections proposed by teach-
ers in the MT and the identifi cation of a possible contraposition between teachers’ 
and researchers’ comments, enable a  second-level dialectic  to be highlighted in 
relation to both: (a) the possible different interpretations of the dynamics realised 
during class activities and (b) the possible different uses of the same theoretical 
lenses made by teachers and researchers in their analysis of classroom processes. 
Moreover, through the  a posteriori  analysis of the different comments proposed on 
the MT, the teachers can also become aware of this second-level dialectic. 

 The refl ection carried out with the teachers involved in the project provides an 
opportunity to notice how the tension developed as a result of this  double-level dia-
lectic  produces an evolution in the interrelations between the different components 
of the praxeologies involved within the process of  Meta-didactical Transposition . 
In particular: it fosters the development of  new teachers’ praxeologies , related both 
to roles they should activate in their classrooms and to ways of pursuing their pro-
fessional development; it enables researchers to hypothesise a possible refi nement 
of the theoretical lenses for the observation of class processes and the possibility for 
further evolutions of the methodology to be adopted in the work with teachers, 
therefore fostering an enhancement of the chosen  meta-didactical trajectory .  
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    Discussion 

 In this chapter, we introduced the  Meta-didactical Transposition  model as a 
theoretical tool to objectify and describe the complex dialectic between research 
and institutional dimensions of teacher education programmes. This model is based 
on Chevallard’s ATD, but was complemented by additional constructs in order to 
account for some dynamic features occurring when teachers and researchers are 
engaged in teacher education activities. We outlined and analysed three examples 
from the Italian context, in order to illustrate how this model can be productively 
used to analyse diverse types of teacher education programmes. 

 The fi rst example discussed is the M@t.abel Project. By means of the Meta- 
didactical Transposition model, we were able to observe the dynamics between 
external and internal components (Fig.  2 ), and to identify strong and weak points of 
the project that we had not noticed as clearly before. We found two relevant  occurred 
evolutions  from external to internal components in the Meta-didactical Transposition: 
the  Matematica per il cittadino  curriculum and the platform. The curriculum was at 
fi rst internal to the researcher praxeologies, and external to the teacher ones. The 
passage from external to internal was fostered by the brokering actions of the tutors. 
The platform is a technological device, which is initially external to both teacher 
and researcher praxeologies. This platform not only enabled the communication of 
ideas, feelings and didactic plans between teachers and tutors, but it also opened up 
a concrete space for the development of didactic activities that involved the use of 
software. The logbook constitutes a more delicate element. It too was initially an 
external component to the teacher praxeologies. Throughout the project, for some 
teachers, the logbook became an internal component of the shared praxeology as 
they used it to organise their classroom observation and plan their work better. This 
dynamic transformation from an external to an internal component did not occur for 
all teachers. Many of them, in fact, wrote their logbook at the end of the whole 
project, despite the constant prompts of their tutors, and for these teachers the 
 logbook remained an external component that did not alter their praxeologies. 

 In the second example, we highlighted how the Meta-didactical Transposition 
model offers a framework that enabled us to analyse the evolution of praxeologies 
over time in the MMLab-ER project. In particular, we focused on the researcher prax-
eologies related to the changing of logos and praxis. The Meta-didactical Transposition 
model was useful in analysing not only how the praxeologies changed, but also why 
they were modifi ed in relation to the teacher education programme development. 
Furthermore, the model allowed us to objectify, through the identifi cation of the 
researcher and teacher praxeologies, their evolutions over time, while also maintain-
ing a systemic view. At the end of the Meta-didactical Transposition process, both 
researchers and teachers developed new praxeologies, changing some of their tech-
niques as well as their ways of explaining and justifying these techniques. This could 
become the new starting point of a fresh Meta-didactical Transposition process. 

 The third example revealed the essential role played by an appropriate ‘meta- 
didactical trajectory’ in: helping teachers become aware of the fi rst-level dialectic 
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related to the contrast/interaction between the personal sense their students attribute to 
the activities and the institutional meaning of the same activities; and in enabling 
researchers and teachers highlight the second-level dialectic which is related to the 
contrast/interaction between the different interpretations of the dynamics realised in 
the classrooms, given by teachers and researchers, in relation to specifi c theoretical 
lenses. Moreover, this example showed that the tension developed out of this to the 
double-level dialectic could foster the evolution of both researcher and teacher 
 praxeologies. In particular, it highlighted the strict interrelation between this evolu-
tion and the chosen methodology of work with teachers. Involving teachers in 
the critical-refl ective study of class processes, in fact, means, as Jaworski ( 2003 ) 
states, making them shift from a context of perpetuation of existing practices (the 
 communities of teachers within a school) to a new context, typical of communities 
of inquiry, characterised by “the importance attached to meta-knowing through 
refl ecting on what is being or has been constructed and on the tools and practices 
involved in the process” (p. 256). 

 Globally, the three examples must be conceived as pieces of a puzzle, which shed 
light on specifi c aspects of the model. They illustrated how the Meta-didactical 
Transposition model responds to the challenge of studying “how different approaches 
to teacher development have different effects on particular aspects of teachers’ ped-
agogical content knowledge” (Ball et al.  2008 , p. 405). We have already noticed that 
a similar construct was used by Clark & Hollingsworth ( 2002 ) to underline that 
teacher education programmes can produce changes in teachers’ teaching strategies, 
“that represented in themselves new pedagogical knowledge” ( ibid.,  p. 953) for 
those teachers and that “were subsequently put into practice” ( ibid.,  p. 954). In other 
words, teacher education programmes can produce changes in teacher praxeologies. 
In fact, our model is similar but not identical to that of Clark & Hollingsworth, 
since ours underscores the interdependence of such changes with the institutions 
(according to the ATD approach), and focuses on the Meta-didactical components 
of the processes, which remain more implicit in Clark & Hollingsworth’s approach. 

 The Meta-didactical Transposition model is deeply related also to the MKT 
construct. Both models focus on the intertwining of the theoretical knowledge and 
the common practices needed by teachers in their work, but each stresses different 
aspects of this intertwining. The MKT focuses on the structure of the mathematical 
knowledge for teaching while the Meta-didactical Transposition stresses more the 
dynamic evolution of its components. In particular, as illustrated in the examples 
above, it shows the relevance of the double-level dialectic and of the evolution 
from external to internal components in promoting and supporting the processes of 
teacher education. 

 As the MKT model refi nes Shulman’s PCK model (Pedagogical Content 
Knowledge, 1986), so the Meta-didactical Transposition model enriches the MKT one. 
In fact, it essentially adds dynamicity to its description, allowing a transition from the 
snapshot illustrated by the fi xed categories of MKT to the fi lm of the Meta- didactical 
Transposition model as shown in Fig.  1 . More precisely, our model introduces the tem-
poral dimension, the double level dialectic and the internal-external dynamics, which 
are all elements that allow us to focus on the dynamic evolution of teachers’ 
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educational programmes, which eventually produce the specifi city of the  different 
“domains of mathematical knowledge for teaching”, to use Ball’s terminology (Ball 
et al.  2008 , p. 403). The lens of the meta-didactical praxeology allows the dynamicity 
of the process to be made evident. In fact, the model helps reveal the evolution of MKT, 
which can be hard to see because it is so imbedded in its particular institutional context. 
In the researchers’ and teachers’ hands, the MDT model can become a conscious tool 
in order to plan, develop and accomplish teacher educational programmes taking 
into account the complex interplay and dynamics between their components. 

 The study of this potential effi cacy also introduces a fresh and promising strand 
of future investigation, which could produce further results concerning the nature of 
the domains of mathematical knowledge for teaching and the underlying processes 
of teachers’ education.     
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between them: the Technological, Pedagogical and Content Knowledge (TPACK) 
framework (Koehler & Mishra,  Contemporary Issues in Technology and Teacher 
Education, 9 (1) ,   2009 ); the Instrumental Orchestration framework (Trouche, L. 
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        Introduction 

    Although the uptake of digital technologies in mathematics teaching continues to 
be inhibited by factors such as poor resourcing of schools, limited recognition 
in curricula, and lack of acceptance in examinations, such barriers are slowly 
diminishing. This brings to the fore what is perhaps the most crucial infl uence on 
the successful integration of digital technologies into everyday teaching practice: 
relevant expertise on the part of the teacher. This paper will examine three 
contemporary frameworks for analysing such expertise, and explore commonali-
ties, complementarities and contrasts between them: the Technological, Pedagogical 
and Content Knowledge (TPACK) framework (Koehler and Mishra  2009 ); the 
Instrumental Orchestration framework (Trouche  2005 ); and the Structuring Features 
of Classroom Practice framework (Ruthven  2009 ). To concretise the discussion, the 
use of digital technologies for algebraic graphing, a now well established form 
of technology use in secondary school mathematics, will serve as an exemplary 
reference situation. Each of the frameworks will be illustrated through its application 
in a study of teacher expertise relating to this topic.  

    The Technological, Pedagogical and Content 
Knowledge (TPACK) Framework 

    Core Ideas 

 The fi rst of these frameworks, originally Technological Pedagogical Content 
Knowledge [TPCK] (Mishra and Koehler  2006 ), now Technology, Pedagogy and 
Content Knowledge [TPACK] (Koehler and Mishra  2009 ), represents an extension 
of the now classic conceptualisation of the types of knowledge and reasoning that 
underpin successful subject teaching (Wilson et al.  1987 ). The core argument is that 
teachers develop a special type of ‘pedagogical content’ knowledge (PCK) which is 
more than a simple combination of subject content knowledge and generic peda-
gogical knowledge. Typically this knowledge is developed through solving dis-
tinctive problems that arise in the course of teaching a particular topic. These 
problems raise considerations both of content and pedagogy, and solutions to them 
are typically not reducible to the logic of either knowledge domain alone. Moreover, 
while solutions to such teaching problems may become crystallised as stable 
professional knowledge, they may equally be subject to continuing adaptation and 
refi nement, and they will vary between teachers and across teaching settings. 
Finally, for reasons both of ecological adaptation and cognitive economy, such 
knowledge is typically organised around prototypical teaching situations. For these 
reasons, the subsequent development of this line of work has been criticised for an 
unproductive focus on a logical demarcation of types of teacher knowledge rather 
than on its functional organisation (Ruthven  2011a ). 
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 The idea of TPCK was introduced to draw attention to the way in which new 
technological resources reshape pedagogical knowledge, content knowledge and 
pedagogical content knowledge. Of course, there are already traditional forms of 
technology associated with established knowledge of these types, although the ways 
in which these technologies, such as those of written recording, routine computation 
and even didactic organisation, mediate thinking and action tend to be invisible to 
us because we take them so much for granted. It is not surprising, then, that this 
technological dimension is not recognised in the original PCK framework. However, 
the contemporary expansion in the technological media through which thinking, 
learning and teaching take place calls for corresponding evolution, even if still 
tentative, of teachers’ knowledge of content, pedagogy and their interaction. The 
idea of TPACK seeks to make the need for such evolution visible by highlighting the 
existence of ‘intersections’, according to the Venn-diagram metaphor (shown in 
Fig.  1 ), between knowledge of technology and knowledge of pedagogy and/or content.

   There are, however, some ambiguities in the way in which TPACK is – and has 
been – used. First, the acronym is sometimes employed to focus attention on 
the whole system of two- and three-way interactions between these components (as 
when the standard fi gure is referred to as ‘the TPACK image’); at other times, the 
term is used to pick out the three-way intersection at the core (as is done within 
the version of the image shown in Fig.  1 ) that might otherwise be referred to as 
TPCK (following the labelling pattern for the other intersections). Second, the 
character of the ‘intersections’ or ‘interactions’ between knowledge domains 
remains underanalysed, mirroring the differing strengths of defi nition found in 
current usages of pedagogical content knowledge (PCK): from a weak defi nition 
requiring no more than some simple combination of common knowledge of content 

  Fig. 1    Venn-diagram 
metaphor for the TPACK 
model as shown at   http://
tpack.org/           
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with generic pedagogical knowledge, to a stronger defi nition that insists that PCK 
be underlain by some distinctive content-specifi c pedagogical reasoning. Third, there 
is a hierarchy implicit in the labelling rules under which content is more fundamental 
than pedagogy, and both of these than technology. In particular, under the strong 
defi nition, an unexamined amalgamation takes place of what might have been 
termed PTCK – pedagogical knowledge relating specifi cally to the development 
(by students) of particular forms of technological content knowledge – with what 
might have been termed TPCK – technological knowledge relating specifi cally to 
particular aspects of pedagogical content knowledge. Finally, there is ambiguity 
about the level at which the pedagogical and the technological are conceived: 
between a more concrete level at which knowledge is taken as relating to some particular 
pedagogy or technology, and a more refl exive meta-level at which these terms are 
reserved for knowledge about pedagogical or technological alternatives. 

 Perhaps recognising some of these ambiguities, Koehler and Mishra have pro-
posed more elaborated characterisations of those components of the model relating 
to technology (as shown in Table  1 ) which could serve to operationalise them more 

    Table 1    Elaboration of TPACK components by Mishra and Koehler ( 2006 )   

 Component  Elaborated characterisation 

 TK  Knowledge about standard technologies, such as books, chalk and blackboard, and 
more advanced technologies, such as the Internet and digital video. Includes: 

  The skills required to operate particular technologies 
  Knowledge of operating systems and computer hardware 
  Ability to use standard sets of software tools such as word processors, 

spreadsheets, browsers, and e-mail 
  Knowledge of how to install and remove peripheral devices, install and remove 

software programs, and create and archive documents 
 TCK  Knowledge about the manner in which technology and content are reciprocally 

related. Includes: 
  Knowledge of how technologies afford particular representations and fl exibility in 

navigating across them 
  Knowledge of the manner in which the subject matter can be changed by the 

application of technology 
 TPK  Knowledge of the existence, components, and capabilities of various technologies 

as they are used in teaching and learning settings, and conversely, knowing how 
teaching might change as the result of using particular technologies. Includes: 

  Understanding that a range of tools exists for a particular task 
  Ability to choose a tool based on its fi tness and strategies for using the tool’s 

affordances 
  Ability to apply pedagogical strategies for use of technologies 

 TPCK  Emergent form of knowledge that goes beyond all three components (content, 
pedagogy, and technology). Includes: 

  Understanding of the representation of concepts using technologies 
  Pedagogical techniques that use technologies in constructive ways to teach 

content 
  Knowledge of what makes concepts diffi cult or easy to learn and how 

technology can help redress some of the problems that students face 
  Knowledge of how technologies can be used to build on existing knowledge and 

to develop new epistemologies or strengthen old ones 
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effectively (Mishra and Koehler  2006 ; Koehler and Mishra  2009 ). Nevertheless, 
some ambiguities remain. First, where technologies are content specifi c, such as 
dynamic algebra or geometry software, it can be particularly diffi cult to differenti-
ate between TK and TCK. While knowledge of features and techniques that are 
generic to much software (such as the basic use of menus and pointers) clearly 
should be classed as TK, it can be hard to decide when knowledge becomes so con-
tent specifi c (such as the individual operations listed on menus and the particular 
functions for which the pointer is used) that it should be assigned to TCK. Likewise, 
given that understanding of certain types of representation forms part of CK, it is 
problematic to assign ‘understanding of the representation of concepts using tech-
nologies’ in general to TPCK rather than TCK. There may be a risk of confusion 
here with the more specifi c usage of ‘representation’ found in Shulman’s original 
characterisation of pedagogical content knowledge, based on the idea that there are 
specifi cally ‘pedagogical’ forms of representation, or specifi cally ‘didactical’ organ-
isations of representations, that go beyond those canonical forms of representation 
that form part of subject content knowledge. Indeed, pursuing the logic of Shulman’s 
original argument, the constructs of CK, TK and TCK should be free of any specifi -
cally pedagogical aspect and applicable as much to the knowledge of students as 
that of teachers.

   Turning more specifi cally now to mathematics, the US Association of Mathematics 
Teacher Educators (AMTE) has developed a Mathematics TPACK Framework 
(AMTE  2009 ), organised around four major themes: designing and developing 
technology-enhanced learning experiences; facilitating technology- integrated 
instruction; evaluating technology-intensive environments; and continuing to 
develop professional capacity in mathematics TPACK. Just as the way in which T is 
interpreted in TPACK refl ects a preoccupation with new digital technologies, the 
way in which P is interpreted here refl ects a broadly neoprogressive orientation 
to pedagogy, a longstanding type of association (Cuban  1989 ). By way of example, 
the second theme includes:

•    Incorporat[ing] knowledge of learner characteristics, orientation, and thinking to 
foster learning of mathematics with technology;  

•   Facilitat[ing] technology-enriched, mathematical experiences that foster 
creativity, develop conceptual understanding, and cultivate higher order thinking 
skills;  

•   Promot[ing] mathematical discourse between and among instructors and learners 
in a technology‐enriched learning community;  

•   Us[ing] technology to support learner‐centered strategies that address the diverse 
needs of all learners of mathematics; and  

•   Encourag[ing] learners to “become responsible for and refl ect upon their own 
technology‐enriched mathematics learning.” (AMTE  2009 )    

 It seems, then, that both the ‘technological’ and the ‘pedagogical’ components of 
TPACK are open to narrower and broader interpretations: as highlighting, even 
valorising, a specifi c form of pedagogy or technology, or as acknowledging the 
existence of a range of pedagogies and technologies. 

 Let us turn now to an example of TPACK in use.  
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    An Example 

 Amongst a number of recent studies employing the TPACK framework to analyse 
the professional learning of teachers of algebra, I have chosen the one which makes 
use of the full system of TPACK categories. In this study of middle-school teachers 
participating in a professional development programme (Richardson  2009 ), obser-
vational records of interactions and discussions between participants and entries 
extracted from their professional journals were classifi ed as relating variously to 
TPK, TCK, PCK or TPCK. The study reports that it did not prove straightforward 
to demarcate these categories and indicates that they tended to acquire narrower 
operationalisations specifi cally related to the particular guiding rationale for the 
professional development programme. It appears, then, that TPACK may have been 
more valuable as a holistic construct inspiring the professional development course 
than as a research tool for analysing the process or product of knowledge construction. 

 Within the programme, the novel technology (graphing calculator) was viewed 
as supporting greater emphasis on a particular representational medium (graphic 
fi gure). Accordingly, the guiding hypothesis for the professional development was 
that this technology provides an effective means of supporting deeper pedagogical 
engagement with the content (“To make meaning of certain problem situations, it is 
imperative that students model these situations graphically and use graphing to fi nd 
solutions to these problems”). Inasmuch as this idea invokes interaction between 
considerations of technology, pedagogy and content, it could reasonably be classed 
as technological pedagogical content knowledge. The most developed algebraic 
example provided in the study report arose from a project session in which project 
teachers were asked to solve the inequality 2(x – 4) ≥  3 / 2  (2x + 1) using only sym-
bolic, then only graphic, methods. This led to some teachers broadening what could 
be classed as their content knowledge of algebra (taken as transcending use of any 
particular tool system) beyond familiar symbolic methods (“to solve the inequality 
in algebraic form”) to include unfamiliar graphic methods (“to solve the same 
inequality in graphic form”). Teachers also displayed what could be classed as tech-
nological content knowledge (taken as technology-specifi c content knowledge) 
relating to graphing with the two tool systems in play (“to graph… inequalities… 
by hand and with a graphing calculator”). 

 Drawing on transcripts of discussion between participating teachers, the study 
seeks to identify what types of knowledge are under exchange and/or development, 
interleaving the resulting classifi cation of specifi c contributions in terms of the 
TPACK framework:

  Teacher B: We already have the graphs. We need to fi gure out the answer. 
 Teacher A:   No…we already know the solution to the inequality. We found that using basic 

algebra. This is different. How can we verify it using only the graph? What strat-
egy would you use to explain this to your students? 
 [This is an example of the teacher’s PCK. She explores ways to make this 
notion comprehensible to her students.] 

 Teacher C:   Let’s start over. Graph the inequality on the Nspire. Well … I don’t know how to 
graph it with the inequality.… But we can graph the two sides separately but on 
the same page. 
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 [This is an example of the teacher’s TCK. She explores how to graph an inequal-
ity using a graphing device.] 

 Teacher A:   I’m not sure if that will help but at least we will be able to actually see the lines 
and move them to make one bigger than the other. 
 [This is an example of the teacher’s TCK. She understands technological con-
tent.] (Richardson  2009 ) 

   The two suggestions embedded in this extract about where the exchange and/or 
development of technological content knowledge has been displayed by participating 
teachers are rather more persuasive than the one relating to pedagogical content 
knowledge. Teacher A’s utterance (“What strategy would you use to explain this to 
your students?”) certainly could be framing the emergent problem as being one of 
pedagogical content rather than plain content, but there is no clear indication of this 
framing being sustained; although, by taking ‘we’ to serve as a projection onto 
‘they’ a later contribution (“I’m not sure if that will help but at least we will be able 
to actually see…”) could be interpreted in such terms. 

 Likewise in the extract below, classing Teacher B’s concluding contribution as 
technological pedagogical content knowledge involves a high level of inference 
from an anticipation of PCK (“So how would I explain this to my students?”), fol-
lowed by a more refl exive expression of TCK (“The solution could be obtained 
quicker from the [calculator] graph than when we solved the inequality by hand in 
the beginning”) that might be taken as appealing implicitly to some pedagogical 
notion of didactical time, before returning to what might represent crystallised PCK 
rather than just CK (“It makes so much sense. “Greater than” means…”). However, 
it is not clear why this utterance from Teacher B is taken as indicative of TPCK 
whereas that from Teacher A, which alludes specifi cally to content (“no matter 
how I move the lines, this part of this one is always on top of this one”) is classed as 
TPK. It may be that these classifi cations draw on evidence beyond the transcript, as 
suggested by what appears to be categorisation of Teacher C’s contribution as TCK 
on the basis of supporting observation rather than words spoken (“She understands 
how to use the graphing device to explore the effect altering either graph has on 
changing x values”).

  Teacher A:   Showing students this with computer software would be great. OK, so look … no 
matter how I move the lines, this part of this one is always on top of this one. 
 [This is an example of the teacher’s TPK. She understands that more than one 
technology tool exists to help students make connections between effects of 
manipulating graphs and solving inequalities.] 

 Teacher C:   Right. Yes. You are right. Well, that’s what we need to know. Right? Look – values 
on this line are bigger than that line anytime x is at least… 
 [This is an example of the teacher’s TCK. She understands how to use the graphing 
device to explore the effect altering either graph has on changing x values.] 

 Teacher B:  … Negative 9 and a half. So how would I explain this to my students? The solution 
could be obtained quicker from the graph than when we solved the inequality by 
hand in the beginning. It makes so much sense. “Greater than” means “When is 
the left bigger than the right?” 
 [This is an example of the teacher’s TPCK. She refl ects on how a teacher can 
show students how to perform the technological procedures and relate solving 
inequalities in a coherent way during her teaching.] (Richardson  2009 ) 
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   The example provided by this study suggests that trying to use the detailed 
TPACK framework to analyse naturally occurring teacher discourse is likely to founder 
because such utterances often provide insuffi cient evidence to draw inferences with 
confi dence and to make clear discriminations about the character of the underlying 
knowledge in play or in the course of development. The framework might, however, 
prove more effective if it were employed to design a focused interview protocol 
and analyse the discourse arising from in-depth pursuit of specifi c aspects of 
teachers’ knowledge. 

 Another recent study employed the TPACK framework to identify the develop-
mental needs of a school-based lesson-study group. Over the course of two planning 
cycles, the researchers examined the group’s evolving lesson plans for teaching the 
topic of systems of equations through making use of graphic calculators (Groth 
et al.  2009 ). Analysis of this evidence led to the researchers identifying various lines 
of development needed in the TPACK of the lesson-study group:

•    How to use the graphing calculator as a means for effi ciently comparing multiple 
representations and solution strategies;  

•   How to avoid portraying graphing calculators as black boxes;  
•   How to pose problems that expose the limitations of the graphing calculator.    

 In this study, it is notable that TPACK serves simply as a basic heuristic to raise 
questions about the interaction between technology, pedagogy and content in 
mathematics teaching, with the detailed framework of component intersections not 
used at all. 

 All in all, then, it seems that the idea of TPACK is used to signal the need to 
consider technological, pedagogical and epistemological aspects of the knowledge 
underpinning subject teaching and their interaction in general terms. Beyond 
that, the more detailed framework of TPACK components provides a rather coarse- 
grained tool for conceptualising and analysing teacher knowledge; one that generally 
needs to be supplemented by other systems of ideas to accomplish analysis to the 
depth required for effective professional development and improvement.   

    The Instrumental Orchestration Framework 

    Core Ideas 

 A further system of ideas that has attracted considerable interest as a means of 
analysing technology-mediated teaching and learning in mathematics is the ‘instru-
mental approach’ (Artigue  2002 ; Guin et al.  2005 ). This approach was developed in 
cognitive ergonomics to study the typically non-propositional and action-oriented 
knowledge involved in making use of tools (Rabardel  2002 ). The focus of the 
approach is on the process of ‘instrumental genesis’ in which tool and person 
 co- evolve so that what starts as a crude ‘artefact’ becomes a functional ‘instrument’ 
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and the person who starts as a naive operator becomes a profi cient user. It was taken 
up in mathematics education as a means of analysing developmental processes 
underpinning the introduction of digital technologies into teaching and learning. 
For the student learner, in particular, development of technological and mathematical 
profi ciency are intertwined in the process of instrumental genesis. Although some 
aspects of its conceptual apparatus are rather convoluted, the broad thrust of the 
instrumental approach has proved valuable in highlighting these processes of co-
evolution and so challenging the dissociation of conceptual and technical develop-
ment characteristic of much neoprogressive thinking about mathematics teaching 
(Ruthven  2002 ). 

 The extension of the instrumental approach through development of the idea of 
‘instrumental orchestration’ (Guin and Trouche  2002 ; Trouche  2004 ,  2005 ) seeks to 
address a central issue of technology integration in classroom teaching and learning: 
the management by the teacher of what could potentially be very disparate instrumental 
geneses on the part of individual students so as to ensure that technico- mathematical 
development within a class follows a more collective path by means of which 
emergent knowledge is socialised into a shared form aligned with wider conven-
tions and practices. This calls for the teacher to ‘orchestrate’ activity across the 
class with this collective development in mind. The idea of ‘instrumental orchestra-
tion’, then, served for Trouche as a construct covering a range of mechanisms 
directed towards such collective knowledge-building. Each mechanism was charac-
terised in terms of a particular ‘didactical confi guration’ – some disposition of 
tools within the classroom and allocation of user roles to participants – and the 
varied ‘exploitation modes’ – the patterns of tool use and user interaction – that 
could be associated with it. 

 The fullest account of the original construct of instrumental orchestration (Trouche 
 2005 ) incorporates four examples (Table  2 ). It seems that it is the didactical confi gu-
ration which represents the core feature of an orchestration with the exploitation 
modes indicating a range, even system, of didactical variables that underpin versatile 
use of the confi guration in ways that can be tailored to a specifi c stage of a planned 
collective instrumental genesis. In particular, the system of exploitation modes may 
include options to not use the confi guration (as in the fi rst mode for ‘Sherpa student’), 
or to use it only in some limited way. Nevertheless, the fi rst of these examples 
(‘Customised calculator’) appears somewhat different in character from the other 
three. As Trouche points out, this fi rst example involves adaptation of the tool itself, 
whereas the other three all attend to the organisation of activity and assignment of 
roles associated with use of the tool. Equally, the fi rst example depends much more 
explicitly on analysis of what might be described as a specifi c ‘instrumental trajec-
tory’ of the class towards intended technico- mathematical learning outcomes, 
whereas this dimension is more implicit in the latter three examples. The most widely 
presented example has been that of the ‘Sherpa student’ (Guin and Trouche  2002 ; 
Trouche  2004 ; Trouche  2005 ), and so that has tended to become the prototype of an 
instrumental orchestration taken up by other researchers.
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    Table 2    Examples of instrumental orchestration from Trouche ( 2005 )   

 Orchestration 
example  Didactical confi guration  Exploitation modes 

 Customised 
calculator 

 Classroom calculators are ‘fi tted 
out’ with a guide affording 
three levels of study of the 
limit concept 

 These are designed to support the 
shift from a kinetic concept of 
limit to an approximative 
concept 

 Guide can be available always or only 
during a specifi c teaching phase 

 Students can use guide freely when 
available, or be constrained to follow 
the order of the levels 

 Components can be fi xed, or updated in 
response to classroom lessons 

 Recording of steps of instrumented 
work, can be required, or not 

 Sherpa 
student 

 A  sherpa  student operates a 
calculator projected to the 
whole class under the guidance 
of, and subject to checking and 
questioning by, the teacher, 
intended to provide a common 
reference in addressing the 
collective instrumental genesis 
of the class 

 Calculators and projector off: work with 
pencil and paper only 

 Calculators and projector on: work 
strictly guided by the sherpa- student 
under the supervision of the teacher, 
with other students supposed to 
replicate the projected display on 
their own calculator 

 Calculators and projector on: students 
work freely but are able to view the 
work of sherpa-student 

 Calculators on and projector off: 
students work without being able to 
view work of sherpa-student 

 Paired 
practicals 

 Each student is equipped with 
calculator and pencil and paper. 
Students work in pairs to solve 
an assigned problem 

 Each pair then has to explain and 
justify their reasoning and 
results, noting observations and 
dead-ends in a written research 
report 

 Students can be free, or not, to form 
pairs 

 Students can be free, or not, to choose 
which one will write the research 
report 

 The teacher can offer help to students 
during the practical, or only at the 
end of it, or a week after 

 Written research reports can be handed 
in at the end of practical, or a week 
later 

 After reading students’ research reports, 
the teacher can give a problem 
solution, or only give pointers to new 
strategies for students to pursue 

 Mirror 
observations 

 Students work in pairs 
 While one pair tackles a mathemati-

cal task, another pair, guided by 
an observation protocol, notes 
the actions carried out for later 
discussion and refl ection 

 May be used only exceptionally, or be a 
regular tool for regulation of 
students’ tool-using activity 

 May fi x, or not, the role of each student 
in the working pair (e.g. one can be in 
charge of the calculator, the other 
in charge of the report) 

 Protocol can be modifi ed according 
to the type of mathematical 
problem set 

K. Ruthven



383

       An Example 

 A recent study has adapted the notion of instrumental orchestration to develop a 
typology of forms of organisation of classroom activity around use of a tool system 
(Drijvers et al.  2010 ). The context for this study was one of trialling a teaching 
sequence at early-secondary school level on the concept of mathematical function. 
The researchers write that the sequence “aimed at the development of a rich function 
concept, whereby functions are conceptualised as input–output assignments, as 
dynamic processes of co-variation and as mathematical objects with different 
representations” (p. 216). Their design of a Java applet called Algebra Arrows (Fig.  2 ) 
matches this agenda.

   It is possible to implicitly discern the tool-adaptive form of instrumental orches-
tration (by analogy with Trouche’s fi rst example of the Customised calculator) in 
the didactical confi guration of the applet to provide options to display or not display 
the Table and Graph components, affording the possibility of constraining lesson 
tasks so as to focus attention on particular types of representation and the relations 
between them. The applet is embedded in a Digital Mathematics Environment 
(DME) through which the tasks forming the teaching sequence are made available, 
and which allows students to access their work from any location, and the teacher to 
access this work in order to monitor progress and track development. 

 However, in Drijver’s study, the notion of ‘instrumental orchestration’ is explicitly 
employed in the second activity-structuring sense to designate some particular 

  Fig. 2    A screen display showing the Algebra Arrows tool in use       
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organisation of classroom activity around use of a tool system (following the pattern 
of Trouche’s last three examples). Thus, while Drijvers et al. take over Trouche’s 
constructs of ‘didactical confi guration’ and ‘exploitation mode’, these become 
more closely tied to concerns with the organisation of classroom activity around 
use of a tool. In particular, because Drijvers et al. wish to differentiate patterns of 
organisation, they take an ‘instrumental orchestration’ to be the combination of a 
particular ‘didactical confi guration’ with a specifi c ‘exploitation mode’. Equally, by 
characterising ‘exploitation mode’ as “the way the teacher decides to exploit a 
didactical confi guration for the benefi t of his or her didactical intentions” (p. 215), 
Drijvers et al. give greater prominence to such intentions. Consequently, I have 
added ‘didactical intention’ to ‘didactical confi guration’ and ‘exploitation mode’ 
in summarising their typology (Table  3 ). Likewise, because Drijvers et al. are seek-
ing to describe observed patterns, they report that they felt obliged to modify 
Trouche’s defi nition of instrumental orchestration to acknowledge the way in which 
plans are elaborated and adapted in performance, through adding a further 
component:

   A  didactical performance  involves the ad hoc decisions taken while teaching on how to 
actually perform in the chosen didactic confi guration and exploitation mode: what question 
to pose now, how to do justice to (or to set aside) any particular student input, how to deal 
with an unexpected aspect of the mathematical task or the technological tool, or other 
emerging goals. (Drijvers et al.  2010 ) 

   The development of the typology was infl uenced both by prior examples of instru-
mental orchestration that the developers included in the guidance materials for teachers 
(notably ‘Sherpa-at-work’ and ‘Link-screen-board’) and by templates identifi ed through 
subsequent observation of teachers at work. While, in principle, it seems possible that 
there could be clashes within the typology – for example, if an episode revolved around 
the thinking displayed in a piece of work selected by the teacher (‘Spot-and-show’), 
with that student nominated to act as the sherpa student (‘Sherpa-student’), in effect a 
particular version of a more generic form (‘Explain-the- screen’), in practice Drijvers 
et al. report that inter-rater reliability of the codings was good, although gradual 
shifts in classroom activity could create some diffi culties of demarcation. Likewise, the 
researchers acknowledge that the range of orchestration types that emerged from the 
study might well have been conditioned by factors particular to the trialling situation 

 Nevertheless, developing this typology helped to identify overall patterns in 
classroom activity, and to pinpoint differences between the profi les of teachers, and 
between one teacher’s enactments of the same sequence with different classes. While 
‘Technical-demo’ was a common orchestration (in the sense both of being used by 
all teachers and frequently so), there were differences in the degree to which teachers 
made use of the more student-centred ‘Discuss-the-screen’, ‘Spot-and- show’ and 
‘Sherpa-at-work’ orchestrations as opposed to the more teacher-led ‘Explain-the-
screen’ and ‘Link-screen-board’. This suggests that the way in which such expertise 
develops is also shaped by broader personal orientation to teaching mathematics. 

 Finally, this typology makes visible an important dimension of the professional 
knowledge that teachers participating in trialling had employed or developed in 
order to incorporate use of these digital technologies into their practice. In effect, 
these six orchestration types also represent the core of a collective system of 
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    Table 3    Typology of whole-class instrumental orchestration from Drijvers et al. ( 2010 )   

 Orchestration 
type  Didactical intention 

 Didactical 
confi guration  Exploitation modes 

 Technical- 
demo  

 Demonstration by the 
teacher of techniques 
for using the tool 

 Provision to project 
DME 

 Teacher employs new 
situation or their own 
solution or earlier 
student work as a point 
of departure 

 Classroom arrangement 
allowing students to 
view the projected 
screen 

 Explain-the- 
screen  

 Explanation by the 
teacher going beyond 
technique, involving 
mathematical content 

 Provision to project 
DME 

 Teacher employs new 
situation or their own 
solution or earlier 
student work as a point 
of departure 

 Classroom arrangement 
allowing students to 
view the projected 
screen 

 Link-screen- 
board  

 Instruction by the teacher 
relating the represen-
tations of mathemat-
ics in different media 

 Provision to project 
DME 

 Teacher employs new 
situation or their own 
solution or earlier 
student work as a point 
of departure 

 Classroom arrangement 
allowing students to 
view both the 
projected screen and 
the board 

 Discuss-the- 
screen  

 Discussion between 
teacher and students 
about what is 
happening on the 
screen 

 Provision to project 
DME and 
preferably to access 
student work 

 Teacher employs new 
situation or their own 
solution or earlier 
student work as a point 
of departure  Classroom arrangement 

allowing students to 
view the projected 
screen and favouring 
discussion 

 Spot-and-show  Discussion between 
teacher and students 
in which student 
reasoning is brought 
to the fore through 
deliberate use of 
carefully chosen 
student work 

 Access to student work 
in the DME during 
lesson preparation 

 Teacher chooses earlier 
student work in 
advance of the lesson 
as a point of departure 
for the student to 
explain their reasoning, 
or for other students to 
give reactions, or for 
the teacher to provide 
feedback 

 Provision to project 
DME 

 Classroom arrangement 
allowing students to 
view the projected 
screen 

 Sherpa-at-work  Activity in which a 
sherpa-student uses 
the technology to 
present his or her 
work, or to carry out 
actions that the 
teacher requests 

 Provision to project 
DME 

 Teacher has work 
presented or explained 
by the sherpa-student, 
or poses questions to 
the sherpa-student and 
asks them to carry out 
specifi c actions in the 
technological 
environment 

 Classroom arrange-
ment enabling 
sherpa to use the 
projected tool and 
other students to 
view the projected 
screen and follow 
contributions of 
sherpa and teacher 
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professional expertise, making the typology of particular interest to teacher educa-
tors seeking to help teachers develop practical strategies for the organisation of 
classroom lessons using such digital technologies.   

    The Structuring Features of Classroom Practice Framework 

    Core Ideas 

 The Drijvers et al. study emphasises how integration of new technologies depends 
on teachers adapting and developing appropriate craft knowledge to underpin their 
classroom work. A third framework has been explicitly designed to support the 
identifi cation and analysis of this type of teaching expertise. The Structuring 
Features of Classroom Practice framework (Ruthven  2009 ) was devised by bringing 
a range of concepts from earlier studies of classroom organisation and interaction 
and of teacher craft knowledge and thinking to bear on this specifi c issue of technology 
integration. Thus this framework synthesises and extends concepts that have already 
proved valuable in analysing classroom practice (Table  4 ).

   The framework identifi es fi ve structuring features of classroom practice which 
shape the ways in which teachers integrate (or fall short of integrating) new technologies: 
working environment, resource system, activity structure, curriculum script, and 
time economy. The introduction of new technologies often involves changes in the 
 working environment  of lessons in terms of room location, physical layout, and 
class organisation, requiring modifi cation of the classroom routines which enable 
lessons to fl ow smoothly. Equally, while new technologies broaden the range of 
tools and materials available to support school mathematics, they present the challenge 
of building a coherent  resource system  of compatible elements that function in a 
complementary manner and which participants are capable of using effectively. 
Likewise, innovation may call for adaptation of the established repertoire of activity 
formats that frame the action and interaction of participants during particular types 
of classroom episode, and combine to create prototypical  activity structures  or 
cycles for particular styles of lesson. Moreover, incorporating new tools and 
resources into lessons requires teachers to develop their  curriculum script  for a 
mathematical topic. This ‘script’ is an event-structured organisation of knowledge, 
forming a loosely ordered model of goals, resources and actions for teaching the 
topic, incorporating potential emergent issues and alternative courses of action; it 
interweaves mathematical ideas to be developed, appropriate topic-related tasks to 
be undertaken, suitable activity formats to be used, and potential student diffi culties 
to be anticipated, guiding the teacher in formulating a suitable lesson agenda, and in 
enacting it in a fl exible and responsive way. Finally, the introduction of new technolo-
gies may infl uence the  time economy  within which teachers operate, changing the 
‘rate’ at which the physical time available for classroom activity can be converted 
into a ‘didactic time’ measured in terms of the advance of knowledge. 

 The status of this conceptual framework remains tentative. It prioritises and 
organises previously disparate constructs developed in earlier research, and has 
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    Table 4    Components of the structuring features framework (Ruthven  2009 )   

 Structuring 
feature  Defi ning characterisation 

 Examples of associated craft 
knowledge related to incorporation 
of digital technologies 

 Working 
environment 

 Physical surroundings where 
lessons take place, general 
technical infrastructure 
available, layout of facilities, 
and associated organisation 
of people, tools and materials 

 Organising, displaying and annotating 
materials 

 Capturing or converting student 
productions into suitable digital 
form 

 Organising and managing student 
access to, and use of, equipment 
and other tools and materials 

 Managing new types of transition 
between lesson stages (including 
movement of students) 

 Resource system  Collection of didactical tools and 
materials in use, and coordina-
tion of use towards subject 
activity and curricular goals 

 Establishing appropriate techniques 
and norms for use of new tools to 
support subject activity 

 Managing the double instrumentation 
in which old technologies remain 
in use alongside new 

 Coordinating the use and interpreta-
tion of tools 

 Activity structure  Templates for classroom action and 
interaction which frame the 
contributions of teacher and 
students to particular types of 
lesson segment 

 Employing activity templates 
organised around predict-test- 
explain sequences to capitalise on 
the availability of rapid feedback 

 Establishing new structures of 
interaction involving students, 
teacher and machine and the 
appropriate (re)specifi cations of 
role 

 Curriculum script  Loosely ordered model of goals, 
resources, actions and expectan-
cies for teaching a curricular 
topic including likely diffi culties 
and alternative paths 

 Choosing or devising curricular tasks 
that exploit new tools, and 
developing ways of staging such 
tasks and managing patterns of 
student response 

 Recognising and responding to ways 
in which technologies may help/
hinder specifi c processes and 
objectives involved in learning a 
topic 

 Time economy  Frame within which the time 
available for class activity is 
managed so as to convert it into 
“didactic time” measured in 
terms of the advance of 
knowledge 

 Managing modes of use of tools so as 
to reduce the “time cost” of 
investment in student learning to 
use them or to increase the “rate 
of return” 

 Fine-tuning working environment, 
resource system, activity 
structure and curriculum script 
to optimise the didactic return 
on time investment 
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proved a useful tool for analysis of already available case-records. While it has been 
noted that “the differing provenance of the fi ve central constructs raises some issues 
of coherence” (Ruthven  2011b , p. 97), such eclecticism is characteristic of the 
powerful intermediate theory that effective analysis of issues of teaching requires. 
However, further studies are now required in which data collection (as well as 
analysis) is guided by the conceptual framework, so that it can be subjected to fuller 
testing and corresponding elaboration and refi nement. To adequately address issues 
of professional learning, such studies need to be longitudinal as well as cross- sectional, 
and to focus on teachers’ work outside as well as inside the classroom. Likewise, 
the current reach of this conceptual framework is deliberately modest; it simply 
seeks to make visible and analysable certain crucial aspects of the incorporation 
of new technologies into classroom practice which other conceptual frameworks 
largely overlook.  

    An Example 

 A study of teachers’ use of graphing software to teach about algebraic forms at 
lower-secondary level used the Structuring Features of Classroom Practice framework 
to help identify various types of adaptation of teaching practices and development 
of craft knowledge associated with use of such technology through lesson observa-
tions supplemented by post-lesson interviews with teachers (Ruthven et al.  2009 ). 

 In terms of  working environment , many of the aspects observed were not specifi c 
to graphing software. Relocation of lessons from the normal classroom to the computer 
suite required teachers to modify their managerial routines, notably those concerned 
with handling the start of lessons, to include getting students seated appropriately, 
and their computer workstations and resources opened for use. Equally, adaptation 
was required to routines for securing the attention of students during periods of 
independent work, so as to make important points to the class as a whole. Teachers 
also had to develop fallback strategies to cope with any non- functioning of components 
of the technological infrastructure. 

 Typically the  resource system  for lessons consisted of graphing software and 
printed worksheets: the latter set out tasks and often provided a means of recording 
results by hand. Making students’ use of graphing software functional required 
teachers to develop strategies to familiarise them with (and later to review) core 
techniques, and to allow students to explore (and then to share their discoveries of) 
a wider range of technical possibilities. Teachers themselves were developing 
expertise regarding the forms of technico-mathematical guidance that students 
might require: such as explaining how to enlarge a point to make it more visible, or 
how to enter  x  2  in the equation editor; helping students to understand why their 
graph was a horizontal line rather than the expected sloping one (as a result of entering 
 y  = 5 + 4 rather than  y  = 5 x  + 4), or a straight line rather than the expected curve 
(as a result of entering  y  =  x  + 2 2  rather than  y  = ( x  + 2) 2 ); prompting students to drag 
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the displayed image to expose more of a particular graph, or to pursue the limiting 
trend of a graph. 

 In terms of  activity structures , a distinctive type of activity format was emerging 
for individual or paired student work on a new type of ‘target practice’ task which 
capitalised on the interactivity of the software to centre investigative activity 
around a process of trial and improvement of posited solutions. For example, in two 
investigations of this type, students were tasked with using the software to fi nd 
equations – of straight lines in the fi rst investigation, quadratic curves in the second – 
passing through some specifi ed point or pair of points. In a similar way, teachers 
had adapted a conventional whole-class exposition and questioning activity format 
to incorporate use of the software to provide immediate feedback on student sugges-
tions, for example through students ‘taking the stage’ to use the projected computer 
to test their predictions. 

 These preceding elements of adaptation had all been interwoven into teachers’ 
 curriculum scripts  for the topic of algebraic forms. At the core of these scripts, 
teachers had had to fi nd or devise tasks (such as the ‘target practice’ type already 
alluded to) which productively employed graphing to investigate the topic of algebraic 
forms. On the basis of classroom experience of the ways in which these tasks played 
out in the classroom, teachers were both refi ning them and developing a repertoire 
of strategies to support students in tackling them, concerned with prompting strate-
gic action and supporting mathematical interpretation. One example involved 
prompting students to zoom out on the displayed image of 0.00000009 x  2  +  x  + 1 to 
test whether it was a straight line (as it had appeared to be to students), then introducing 
the comparison with 0 x  2  +  x  + 1. Another example involved supporting a student who 
had graphed  x  = − yx  and wondered why it looked the same as  y  = −1, by helping him 
to rearrange and simplify the fi rst equation. Such examples illustrate how a gradual 
accretion of teachers’ expert knowledge, and its organisation within their curriculum 
script, takes place through their responding to, and refl ecting on, classroom 
incidents. There was also evidence of certain technology- supported lines of 
questioning becoming invariant elements of teachers’ curriculum scripts for the 
topic. A recurring pattern across one teacher’s lessons arose when, after examining 
graphs of the form  y  =  x  + c, she consistently posed the question “How would you 
draw the diagonal line going the other way… from top left to bottom right?” with a 
view to using the software to test student responses. 

 While they had to devote time for students to learn to graph both by hand and by 
machine, teachers reported that use of the software helped to ease and effect the 
production of graphs and so to accelerate such activity and elevate students’ attention 
to focus on the mathematical relationships involved. In particular, teachers consid-
ered that having students make use of graphing software made investigative lessons 
much more viable. These changes in  time economy  had required corresponding 
adaptation of curriculum sequences on this topic and recalibration of their timing.   
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    Commonalities, Complementarities and Contrasts 
Between the Frameworks 

 The title of this chapter refers to the ‘expertise’ rather than the ‘knowledge’ that 
underpins successful integration of digital technologies into everyday teaching 
practice. This is a deliberate choice to emphasise that – put another way – much of 
the knowledge that teachers use is ‘tacit’ and resides in schemes of perception and 
action which they are typically unable to articulate, and may even be unaware of. 
Nevertheless, an important contribution that researchers can make to the enterprise 
of professional education and development is to identify such expertise and provide 
means of representing and analysing it. Typically they have done so by refi ning 
techniques of observation-based analysis supported by introspective interview that 
support inferences about such expertise. The resulting fi ndings are particularly valuable 
when then taken up and used in teacher education for purposes of structuring and 
scaffolding the refl exive appropriation and development by teachers of the expertise 
that has been identifi ed. 

 There are three conceptualisations of the relations between pairs of perspectives 
that I fi nd particularly illuminating. The fi rst relates to the contrasting models of 
knowledge or expertise underlying the Technological, Pedagogical and Content 
Knowledge framework and the Structuring Features of Classroom Practice frame-
work. If we look back at the descriptors used for elements of TPACK (shown in 
Table  1 ), while the term ‘knowledge’ predominates, there is also reference in the 
entries under TK to ‘skills’ and ‘ability’, under TPK to ‘ability’ and ‘understanding’, 
and under TPCK to ‘understanding’ and ‘techniques’, indicating that the TPACK 
model does acknowledge such broader components of expertise. By comparison, 
the way in which the examples of ‘craft knowledge’ are formulated in the Structuring 
Features model (shown in Table  4 ) frames these as practical competences without 
seeking to differentiate either between tacit and articulate knowledge or into 
technology-, pedagogy- and content-based categories. Perhaps, then, the crucial 
difference between these frameworks is that the organising concept for the TPACK 
model is one of epistemological demarcation between different classes of knowledge 
relevant to teaching, whereas the organising concept for the Structuring Features 
model is one of how material-cultural factors structure the functional organisation 
of teaching expertise. 

 The second illuminating comparison is between the Technological, Pedagogical 
and Content Knowledge framework and the Instrumental Orchestration framework. 
The forms of teaching expertise implied by the Instrumental Orchestration frame-
work are those related to the management of the collective instrumental genesis of a 
class of students. Because this construct is used in a manner that emphasises the way 
in which development by students of mathematical content knowledge is, to some 
signifi cant degree, intertwined with development of knowledge of the mediating 
technology, the process of classroom instrumental genesis is taken as having the 
growth of students’ TCK at its core, even if some components of the knowledge to 
be developed might be classed as simple CK or TK alone. As well as this technologi-
cal content knowledge linking topic and tool, the teacher must also have the 
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pedagogical knowledge necessary to manage its development by students. This 
includes knowledge of how to coordinate the introduction and use of particular fea-
tures of the tool with a task sequence capable of supporting an effective learning 
trajectory (as shown by the example of Trouche’s ‘Customised calculator’ orchestra-
tion – which might be classed as TPCK) – and of how to exploit a range of more 
generic classroom confi gurations in enacting the various stages of such a sequence 
– (as shown by Trouche’s other orchestrations which might be classed as TPK). 

 The third illuminating comparison is of the Instrumental Orchestration frame-
work and the Structuring Features of Classroom Practice framework. The 
Structuring Features framework provides a more differentiated characterisation of 
several key aspects of Instrumental Orchestration. First, it highlights the matter of 
incorporating a new tool into the resource system (e.g. Establishing appropriate 
techniques and norms for use of new tools to support subject activity). Alongside 
that, there is the matter of adapting activity structures to better support the devel-
opment and use of this tool (e.g. Establishing new structures of interaction involving 
students, teacher and machine and the appropriate (re)specifi cations of role). 
Finally, there is the matter of devising task sequences and associated narratives to 
incorporate use of the tool within the curriculum script for a topic (e.g. Choosing 
or devising curricular tasks that exploit new tools, and developing ways of staging 
such tasks and managing patterns of student response). Equally, the different 
types of instrumental orchestration identifi ed by Drijvers et al. (shown in Table  3 ) 
all correspond – in the terms of the Structuring Features framework – to specifi c 
activity formats that exploit a particular resource (sub)system. However, Trouche’s 
instrumental orchestration for development of the limit command (shown in 
Table  2 ) corresponds – in the terms of the Structuring Features framework – to 
customisation of a specifi c part of the resource (sub)system linked to development 
of an innovative pathway within the curriculum script for the topic. Moreover, the 
network of teaching possibilities for a topic that makes up the curriculum script – 
in the Structuring Features framework – underpins both the advance planning of a 
‘lesson agenda’ – linked to ‘didactical intention’ in the Instrumental Orchestration 
framework – and its interactive enaction and adaptation by the teacher – linked to 
‘didactical performance’ in Drijver’s extension of the Instrumental Orchestration 
framework. 

 In their current state, then, each of these three frameworks provides an over-
arching set of ‘top level’ constructs that refl ects a particular orientation towards 
the phenomenon of technology integration in subject teaching. By comparing 
these differing systems of base constructs I have sought to provide a more coordi-
nated overview that shows how their different perspectives on technology integra-
tion in subject teaching are inter-related. I have also highlighted how each of these 
frameworks provides a more tentative listing of elements and examples at the 
more concrete level necessary to support the operational use of its main constructs 
as analytic tools. This points to a crucial need for fuller and more systematic 
investigation of the phenomenon of technology integration into subject teaching 
at this intermediate level. Indeed, close examination of each of the studies pre-
sented here as an example of the application of a particular framework in use has 
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shown that it required supplementation by other ideas in order to generate illumi-
nating fi ndings. More intensive research work at this more concrete level could 
serve to better operationalise the existing frameworks or to fuel the development 
of a single more powerful one. My own view is that any more powerful framework 
is likely to be organised along functional lines closer to those of Instrumental 
Orchestration and Structuring Features, but in a way capable of incorporating 
intermediate level elements from all three existing frameworks. A synthesising 
framework of this type would provide an overarching system of constructs driven 
by the need to organise systematically a much richer and fuller inventory of the 
kinds of intermediate level elements that these three frameworks have started to 
identify.     
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    Abstract     This chapter provides an overview of the book’s content in relation to the 
‘grain size’ of the focus and analysis of the different methodologies contained 
within the constituent chapters. In addition it offers some classifi cation in terms of 
static, dynamic and more evolutionary approaches to researching teachers’ uses of 
digital technologies in classrooms, whilst emphasising the importance of the differ-
ent approaches. The chapter ends by suggesting some possible approaches to the 
use of the book’s content for academic teaching scenarios, particularly those that 
involve practising mathematics teachers. The examples that are provided give ideas 
on how to engage teachers in both refl ective thought alongside the provision of use 
of theoretical constructs that may support the ongoing development of their class-
room practices with technology.           

     The current    research interest in teacher education (which Sfard has called the  era of 
the teacher ) is a relatively new domain when compared to other research themes 
relating to mathematics content, curriculum, students, learning, cognitive processes, 
policy and equity. This era marks an important milestone in the evolution of math-
ematics education, toward the teacher having an important role to play within the 
classroom. No theoretical approach, whether it is constructivist or participationist 
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and no innovation, whether it concerns new digital technologies or new forms of 
assessment, can shade the importance of the teacher in current and future research. 

 Sfard ( 2005 ) stresses that the advent of  the era of the teacher  has brought about 
a re-conceptualisation of the relationship between the teacher and the researcher, 
arguing that in most of the international research studies, the question is not  what  is 
taught in classrooms, but  how  it is taught. The chapters in this book bear witness to 
the role of the teacher, and many of them look at the different activities, both within 
professional development and in the daily activities in the classroom. In this role, the 
teacher organises and anticipates the main actors in the classroom, which includes 
the students and the digital technologies. Without the coordination of the teacher, it 
is hard to develop students’ mathematical understanding as, however sophisticated 
the digital tools, putting them into the students’ hands does not automatically or 
transparently result in meaning. The teacher’s intervention is necessary at different 
levels: designing activities with instruments; planning teaching practices according 
to the activities; developing them in the classroom; and making choices about and 
observing students’ learning. 

 Within the classroom, researchers have choices to make with respect to the ‘grain 
size’ of their focus and analysis, which can range from the individual analyses of 
teachers/lessons involving particular technologies, to studies of the evolution of 
teaching/learning processes over time. 

 In this book, readers can fi nd different types of analyses: Bretscher’s socio- 
cultural approach distinguishes between the use of software and hardware, con-
trasting teacher-centred and student-centred uses of technology, offering some 
reasons that explain these differences. Mason’s chapter, by suggesting three differ-
ent web- based  e-screens , invites the reader to engage in challenging mathematical 
experiences. These experiences can be useful ways for pre-service and in-service 
teachers to refl ect on how using digital technology shapes and changes the personal 
mathematical experience. 

 Trigueros and colleagues examine different uses of technology that can occur in 
the classrooms, as  replacement ,  amplifi cation  and  transformation  activities, and 
relate them to aspects of the role of the teacher in terms of communication of math-
ematics, interaction with students, validation of mathematical knowledge, the 
source of mathematical problems, and the actions and autonomy of students. 
Drijvers and colleagues use the notion of  instrumental orchestration,  combined 
with elements of TPACK, to describe seven different orchestrations that teachers 
may develop when they use digital technologies in their classrooms. The metaphor 
of the teacher as the conductor of an orchestra, where students are the players of 
instruments under his or her coordination, is useful to help focus attention on a 
teacher’s responsibility in planning and managing the use of digital technologies in 
a classroom. Gueudet and colleagues use the same frame of orchestrations at the 
kindergarten mathematics classroom level and fi nd new orchestrations related to 
this school context. Their chapter shows the need for theory development that is 
attentive to the age and grade level of the students. Haspekian, using the instrumen-
tal approach within the context of teachers’ professional development, introduces 
 instrumental distance  and  double instrumental genesis  to analyse the use of 
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spreadsheets as a mathematical and pedagogical resource. Also Abboud-Blanchard, 
adopting a meta-level approach in empirical research concerning the use of a com-
puter algebra system, dynamic geometry program and web-based resources, shows 
how it is possible to identify the characteristics of ordinary teachers’ uses of tech-
nology, classifying them in terms of the different components of their practice, with 
the use of the  double approach . These approaches give deep insights into the vary-
ing ways that teachers integrate digital technologies in the classroom, plan activities 
with them and use them with students. Thomas and colleague, with the help of PTK, 
consider the obstacles to secondary teachers’ use of digital technologies, and 
 introduce some indicators of teachers’ progress in their implementation, namely, 
profi ciency and understanding of the techniques required to build didactical situa-
tions incorporating digital technologies. 

 All the chapters described above take into account the complexity of the teaching/
learning situations from the point of view of different modes of teaching, designing 
activities, and using technologies to improve the learning of mathematics. The next 
two chapters, in contrast, still focused on the classrom, inquire into how particular 
events change the course of a lesson. Clark-Wilson and Aldon use the instrumental 
approach to analyse unexpected situations in the classroom and  teachers’ responses 
to them. Their approaches are similar, but give different insights: Clark-Wilson uses 
the notion of a  hiccup , as perturbations experienced by the teachers during the les-
son that triggered by the use of a digital technology, to highlight discontinuities in 
teacher knowledge. Aldon uses the notions of  didactic incident  (an event of the 
didactic system that modifi es the dynamics of the teaching situation) and  perturba-
tion , which is what follows the incident. Hiccups and incidents are theoretical 
 constructs that help to explain the dynamic relationship between teaching and learning, 
and their evolution and change over time. These constructs help reveal the complexity 
of teaching/learning processes in terms of choices, changes, and discontinuities. 

 Other chapters concentrate on the process of the evolution of teachers’ professional 
development, teaching practices, relations with institutions, use of technology and 
interactions with colleagues and researchers. The chapter by Goos presents the con-
struct of  teachers’ pedagogical identities  to direct attention to the process of developing 
teacher identities when teachers begin to use digital technologies in their classrooms. 
To explain how these beginners are able to develop practices with technology, the 
author uses a socio-cultural approach (Valsiner’s zone theory) and introduce the notions 
of a teacher’s  zone of free movement  and  zone of free action  as part of the complex 
system that overlaps with the teacher’s  zone of proximal development . 

 Bellman and colleagues examine teachers’ progression as they use a particular 
digital technology that makes students’ assessment more transparent and their 
longitudinal observations provide evidence of the increased teacher control of the 
technology over time. 

 At university level, it is also possible to analyse the progression in the use of 
digital technologies, as Buteau and Muller do, in the context of an under graduate 
mathematics course. These authors describe the design and implementation of a 
course that supported their students experience with, and use of, digital 
technologies.  
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 Arzarello and colleagues describe the complexity of teacher education in relation 
to institutions, and analyse the evolution over time of the teaching processes, seen 
from the point of view of teacher education and professional development. The 
variables involved in this analysis are explained in the context of a model, the  Meta- 
Didactical Transposition , through which it is possible to take account of the com-
plexity of teacher education as a process, in which communities of teachers have to 
relate with institutions on the one hand, and on the other, with the community of 
researchers as well as that of teacher educators/tutors. 

 One interesting conclusion that can be drawn from the book in its entirety is that 
it offers evidence for the emerging cumulative knowledge of teachers’ professional 
development concerning new technologies, and discusses the impact that the 
different variables might have on the personal development process. 

 The chapters of the book, summarised here, evidence and try to account for 
the great complexity of teaching processes, both in terms of teaching practices in 
the classroom and teacher education, that involve the use of digital technologies. 
This complexity can be explained using different frameworks, and can be showed 
in either a static or dynamic way, according to the framework chosen and the 
research aims. The fi rst set of chapters described in this summary examine the 
complexity in a more static way, highlighting features, indicators and elements 
of the context of teaching with digital technologies that are important. The next 
pair of chapters direct attention to the decisions teachers make when they encoun-
ter unexpected tensions with respect to the use of digital technologies. The last 
group of chapters describe the complexity in terms of evolution in teaching 
processes and in professional development. 

 These three main axes of research can be seen in corresponding theoretical frame-
works, as exemplifi ed in the last chapter by Ruthven, which demonstrates how  varying 
frameworks function as research tools. The frame of TPACK enlarges the widely-used 
PCK introducing the technological variable (T) and gives insight on the knowledge 
that mathematics teachers need to teach. With TPACK, it is possible to consider tech-
nology as a component with others, to have a “coarse-grained tool for conceptualising 
and analysing teacher knowledge” (p. 380), and to describe teaching with digital tech-
nology in a static way, depicting its main features. The Instrumental Orchestration 
approach (which provides a more fi ne-grained analysis), based on the instrumental 
approach, can be used (alone or in conjunction with TPACK – see Drijvers) for a clas-
sifi cation of teaching practices either in the classroom or in teacher professional devel-
opment (see Clark-Wilson). Another approach – the Structuring Feature of Classroom 
practice – has a different purpose, which is to support the identifi cation and analysis 
of teaching-with-technology expertise, but offers a more differentiated classifi cation 
of some of the key features of the instrumental orchestration approach. 

 In terms of future research, we anticipate that more work will be carried out to refi ne 
current theories so that they are more useful to particular contexts that have been less 
researched, such as the teaching of mathematics at the elementary school level using 
digital technologies. Along these lines, most studies are done in the context of particular 
kinds of digital technologies and we anticipate the new developments, such as touch-
screen devices, will also affect the kinds of practices we see in the classroom, the 
incidents or hiccups they give rise to and the evolution of their integration over time. 
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Given the international fl avour of this book, it is also important to consider how par-
ticular studies conducted in particular countries might inform the work of colleagues in 
other countries. The ReMath project (  http://remath.cti.gr/    ), which focused on studies 
of learning mathematics using digital technologies, clearly showed that contextual 
factors, including culturally-specifi c interpretations of theoretical constructs and goals 
of education, made research results diffi cult to carry over from one context to the other. 
However, the opportunities that current and future international projects provide for 
collaborative research and resource development should not be underestimated. 

 As digital technological tools become more ubiquitous in the classroom, many 
national educational systems are beginning to grapple with the complexities of scal-
ing students’ access through different approaches to wide-scale implementation. 
Experiences suggest that, although many successful classroom implementations 
are reported within small scale studies, further research is necessary to build 
knowledge concerning the best conditions for scalabilty and the retention of episte-
mological fi delity as practices become more mainstream. 

 This book has been compiled and edited as an essential text for any teachers and 
researchers interested in the fi eld of digital technologies within mathematics educa-
tion, with particular emphasis on the teacher’s role. As such, the editors envisage 
that there are a number of ways in which the reader or groups of readers might 
engage productively with the text. These are offered as suggestions and they do not 
constitute an exhaustive list. 

 Interactions Between Teacher, Student, Software and Mathematics: Getting a 
Purchase on Learning with Technology by Mason is placed early in the book as an 
orienting text that will serve to ground the reader, by requiring him or her to engage 
in mathematical thinking within a digital environment. By considering the personal 
experience, it is anticipated that some criteria can be established for the worthwhile 
use of technology within mathematics education. Consequently, whether working 
individually or as a small group, there is a productive sequence of activities whereby 
groups come together to: discuss their experiences; debate Mason’s structuring 
ideas and discuss the implications of these on the nature of  students’ activities with 
digital technologies within (and outside of) the school mathematics setting. 

 Ruthven’s chapter (Frameworks for Analysing the Expertise That Underpins 
Successful Integration of Digital Technologies into Everyday Teaching Practice) 
would be a useful addition to a course reader (or compilation of papers) as it offers 
a concise summary of the main theoretical constructs that are relevant to mathemat-
ics classrooms which incorporate digital tools. This could provide a helpful bridge 
to the original research papers, whilst also encouraging students and teachers to 
engage with the constructs in more depth. 

 Alternatively, selected chapters in the book could be used in a chosen sequence 
to form part of an academic or professional course in which students or teachers are 
encouraged to explore their own practice with a view to critiquing and expanding 
their repertoire of technology use for both teaching and learning mathematics. For 
example, Fig.  1  illustrates such as pathway.

   This pathway might be suitable for a group of practicing teachers who have some 
experience of using technology for teaching and learning mathematics and who 
need support to refl ect on their existing practices from different perspectives. 
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 An alternative route is shown in Fig.  2 , which might be to focus initially on a 
particular pedagogic construct, such as Bellman, Foshay and Gremillon’s ‘adaptive 
and differentiated instruction’ as a means to challenge current practices with tech-
nology, whilst offering participants a framework against which they can audit and 
develop their practices.

   In this context the chapter contributions from Aldon and Clark-Wilson both 
provide an insight into secondary mathematics classrooms in which opportunities 
for the formative assessment of students’ learning have been provided by the 
technology. 

 These are just two possible pathways, however the book’s index and the accom-
panying online Glossary (  http://extras.springer.com     * ) offer a supportive mechanism to 
construct some relevant pathways for different academic and professional purposes.    

*   Log in with ISBN 978-94-007-4638-1 

Mason – reflect on the
personal experience of using

technology to engage with
some mathematics

Bretscher – reflect on the
current choices of

technologies, and discuss the
associated personal

rationales

Drijvers et al – reflect on the
different classroom

orchestrations when using
technology

Aldon – discuss some of the
issues that arise when using

technology – and what is
learnt through these

experiences 

  Fig. 1    A pathway through 
the text for practicing teachers       
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Bellman et al – reflect on
existing practices with a view
to auditing them against the

levels described by the authors

Aldon – gain an insight into 
particular lessons that use 

technologies to support 
formative assessment 

Clark-Wilson – discuss how it 
might be neccessary to prepare 
for some of the unanticipated 

events that happen in the 
classroom situation.

  Fig. 2    An alternative 
pathway through the text 
for practicing teachers       

      Reference 

    Sfard, A. (2005). What could be more practical than good research? On mutual relations between 
research and practice of mathematics education.  Educational Studies in Mathematics, 58 (3), 
393–413.    
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                     Glossary 

  Broker    Brokers make connections across communities of practice, enable 
coordination, and open new possibilities for meaning. Brokers facilitate the 
transition of mathematical concepts from one community to the other.   

  Community of Inquiry    Group of individuals involved in a process of empirical or 
conceptual inquiry into problematic situations.   

  Curriculum Script    An event-structured organisation of knowledge, forming a 
loosely ordered model of goals, resources and actions for teaching the topic, 
incorporating potential emergent issues and alternative courses of action. It inter-
weaves mathematical ideas to be developed, appropriate topic-related tasks to be 
undertaken, suitable activity formats to be used, and potential student diffi culties 
to be anticipated, guiding the teacher in formulating a suitable lesson agenda, 
and in enacting it in a fl exible and responsive way.   

  Didactic Incidents    An event of the didactic system that modifi es the dynamics of 
the situation.   

  Didactical Performance    A didactical performance involves the ad hoc decisions taken 
while teaching on how to actually perform in the chosen didactic confi guration and 
exploitation mode: what question to pose now, how to do justice to (or to set aside) 
any particular student input, how to deal with an unexpected aspect of the math-
ematical task or the technological tool, or other emerging goals.   

  Documentational Genesis    The transformation of a resource in a document.   
  Double Approach    The didactic and ergonomic approach, which analyses teachers’ 

practices by the mean of fi ve components: cognitive; mediative; institutional; 
social; and personal.   

  Double Dialectic    The fi rst dialectic between the personal students’ meanings of 
a didactic situation and its scientifi c meaning and the second dialectic between 
the teachers’ personal interpretation of the fi rst dialectic and the researchers’ 
interpretation.   

  Double Instrumental Genesis    From the same artefact, two instrumental  geneses 
lead to two different instruments, one as a result of teacher’s professional genesis, 
the other as a result of personal genesis.   



404

  Hiccup    The incidents within lessons where teachers experience perturbations, 
triggered by the use of the technology, which seemed to illuminate discontinui-
ties in their knowledge.   

  Instrumental Distance    The set of changes (cultural, epistemological or institu-
tional) introduced by the use of a specifi c tool in mathematics ‘praxis’.   

  Instrumental Genesis    The process through which humans transform artefacts into 
instruments.   

  Instrumental Orchestration    The intentional and systematic organisation and 
use of the various artefacts available in a learning environment by the teacher 
in a given mathematical task situation, in order to guide students’ instrumental 
genesis.   

  Instrumentalisation    The process through which humans transform tools into 
instruments.   

  Instrumentation    The process through which humans learn to use technological 
tools.   

  Meta-didactic Transposition    The model that describes the dynamic process that 
occurs, during a teacher education programme, in the dialectical interactions 
between the community of teachers and that of researchers and their evolution 
over time, in the context of the institutions involved.   

  Mutualisation    The construction of shared knowledge in the classroom that results 
from individual or group work and often involves joint action between teacher 
and students.   

  Pedagogical Technology Knowledge    The construct of pedagogical technology 
knowledge (PTK) is used as a lens for examing crucial variables related to teach-
ers’ use (and non-use) of technology in mathematics. It includes the need to be a 
profi cient user of the technology, but more importantly, to understand the prin-
ciples and techniques required to build didactical situations incorporating it, and 
to enable mathematical learning through the technology.   

  Praxeologies    The tasks, techniques, and justifying discourses that develop during 
the process of teacher education.   

  PTK    See Pedagogical Technology Knowledge.   
  Structuring Features Framework    A framework design to support the identifi -

cation and analysis of teaching expertise. It contains the following elements: 
working environment; resource system; activity structure; curriculum script; and 
time economy.   

  Teachers’ Pedagogical Identities    The embodiment of a teacher’s knowledge, 
beliefs, values, life history, and experiences of participating in diverse profes-
sional communities that infl uence how that person has learned ‘how to think’, 
‘how to act’, and ‘how to be’ as a teacher.   

  Technical, Pedagogical and Content Knowledge (TPACK)    Originally 
Technological Pedagogical Content Knowledge [TPCK], now Technology, 
Pedagogy and Content Knowledge [TPACK] represents an extension of the now 
classic conceptualisation of teacher knowledge PCK to include Technology.   

Glossary
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  Theory of Didactic Situations    A model that describes the dynamics of the 
interactions between teacher and students in the classroom as a ‘game’ where 
teachers and students win when students learn.   

  Zone of Free Action    The zone of free action (ZFA) refers to the set of activities, 
objects, or areas in the environment that promote an individual’s actions.   

  Zone of Free Movement    The zone of free movement (ZFM) describes the 
constraints that structure the ways in which an individual accesses and interacts 
with elements of the environment.   

  Zone of Proximal Development    The zone of proximal development (ZPD) refers 
to the current extent to which an individual can develop new knowledge, beliefs, 
goals and practices.        

Glossary
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  A 
  Abacus , 234  

 children and teacher interactions , 221–222  
 Chinese abacus , 217, 235–236  
 digital projector , 217, 218  
 interactive white board , 217, 218, 220–221  
 laptops , 220–221  
 lessons , 218–219  
 software , 219–220  

   Abboud-Blanchard, M. , 6, 7, 297–315, 397  
   Abrahamson, D. , 168  
   Actions-Processes-Objects-Schemas 

(APOS) , 168  
   Adaptive and differentiated instruction, 

three-level model , 4  
 ability grouping/setting , 93  
 defi nitions , 92  
 developmental progression , 96  
 expert level model 

 defi nition , 97  
 PCK , 101  
 pedagogy , 100  
 TPACK and TI-Nspire Navigator , 

104–109  
 formative assessment, defi nition of , 92  
 immediate (entry-level) model 

 defi nition , 96–97  
 PCK , 99–100  
 pedagogy , 99  
 TPACK and TI-Nspire Navigator , 105  

 master-level model 
 defi nition , 97–98  
 PCK , 103  
 pedagogy , 101–102  
 TPACK and TI-Nspire Navigator , 

106–107  

 phases , 94–96  
 requirements , 92–93  
 supplemental educational 

services , 93  
   Adler, J. , 49  
    Advanced Mathematical Thinking 

and the Computer  , 168, 181  
   Ainley, J. , 22  
   Aldon, G. , 7, 319–342, 397, 400  
   Animation 

 fractions , 123–124  
 metric units of volume , 120–121  
 Rolling Polygon 

 affordances , 30–31  
 aligning student attention , 30  
 extensions , 31  
 implications for teaching , 32  
 mental imagery , 13–14  
 phenomenal mathematics , 30  
 variation theory , 30  
 ways of working , 31  

   Anthropological Theory of Didactics (ATD).  
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