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  Abstract   Volunteered geographic information (VGI), one of the most important 
types of user-generated web content, has been emerging as a new phenomenon. VGI 
is contributed by numerous volunteers and supported by web 2.0 technologies. This 
chapter discusses how VGI provides new perspectives for computational geogra-
phy, a transformed geography based on the use of data-intensive computing and 
simulations to uncover the underlying mechanisms behind geographic forms and 
processes. We provide several examples of computational geography using 
OpenStreetMap data and GPS traces to investigate the scaling of geographic space 
and its implications for human mobility patterns. We illustrate that the  fi eld of geog-
raphy is experiencing a dramatic change and that geoinformatics and computational 
geography deserve to be clearly distinguished, with the former being a study of 
engineering and the latter being a science.     

     8.1   Introduction 

 The  fi eld of geographic information science (GIScience) is currently bene fi ting 
from the increasing availability of massive amounts of volunteered geographic 
information (VGI) (Goodchild  2007 ; Sui  2008  )  contributed by individuals in the 
form of user-generated content supported by Web 2.0 technologies. The emergence 
of VGI represents something of a paradigm shift in terms of geographic data acqui-
sition from the conventional top-down approach, mainly dominated by national 
mapping agencies, to the bottom-up approach, in which data are contributed by 
individual volunteers through crowdsourcing—a massive collective of amateurs 
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performing functions that were previously performed by trained professionals 
(Howe  2009  ) . Massive amounts of VGI of various types and the computations 
performed with these data constitute a signi fi cant part of eScience or data-intensive 
computing, which is being characterized as the fourth paradigm in scienti fi c discov-
ery (Hey et al.  2009  ) . Among many others, OpenStreetMap (OSM) is one of the 
most successful examples of VGI. 

 OSM is a wiki-like collaboration, or a grassroots movement, that provides an 
editable map of the world using data from portable GPS devices, aerial photogra-
phy, and other free sources (Bennett  2010  ) . Currently, there are more than 400,000 
registered OSM contributors or users, and this number has been growing exponen-
tially in the past few years. OSM is not owned by anyone, which is both amazing 
and unprecedented. For the  fi rst time in human history, researchers can obtain street 
data of the entire world for analysis and computation. This analysis and computa-
tion can provide deep analytical insights into cities and our environments for sus-
tainable development. This opportunity is signi fi cant and is very different from 
what is possible with Google Maps. Google Maps allows mashups, but its licensed 
and copyrighted data prevent us from obtaining analytical insights. We cannot learn 
how cities or regions have been sprawling outward by exploring only Google Maps. 
Instead, we need to perform analysis and computation to quantify the level of urban 
sprawl. In this regard, OSM, in addition to Google Maps, provides a rich data source 
for researchers (free of charge) to use to better understand our cities and environ-
ments through advanced spatial analysis and computing. This understanding can 
further be used for spatial planning, for example, redeveloping parts of a city or 
restricting further development of some parts of a country. In other words, OSM 
data can be analyzed to obtain knowledge in various forms of patterns, structures, 
relationships, and rules for spatial decision making. For instance, how is urban 
sprawl related to economic activities, population density, and public health issues 
such as obesity? 

 This chapter will discuss how geospatial analysis and computation of OSM data 
will lead to some hidden and surprising  fi ndings about the structures and patterns of 
geographic space. Our discussion is based on the assumption that OSM data, or VGI 
in general, are good enough to be used for computing and analysis. Although there 
are quality issues with VGI, this does not prevent us from uncovering hidden or 
surprising patterns about cities, environments, and human activities. The accumulation 
of evidence, as well as Linus’ law— “given enough eyeballs, all bugs are shallow” 
( Raymond  2001 , p. 30) — indicates that the quality of OSM data matches that of the 
data provided by mapping agencies, mirroring the results of studies (Giles  2005  )  
on other user-generated content such as Wikipedia. 

 This chapter will brie fl y review computational geography and its evolution 
along with other related notions emerging in the  fi eld of geographic information 
systems (GIS). We provide a new de fi nition of computational geography, and we 
differentiate it from geoinformatics. We then present some exemplars of computa-
tional geography that rely on OSM data to uncover the underlying structures and 
patterns of earth surface processes. This chapter concludes with a few remarks on 
future research.  
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    8.2   What Is Computational Geography? 

 The notion of computational geography  fi rst appeared in 1994, when the Centre for 
Computational Geography was established as an interdisciplinary initiative at the 
University of Leeds. Two years later, in 1996, an international conference series on 
computational geography (geocomputation) was established. This conference has 
since been held more than ten times. As re fl ected in the literature, geocomputation 
has apparently become a favored term, even though geocomputation and compu-
tational geography refer to the same scienti fi c undertakings and have been used 
interchangeably. 

 What is computational geography? This question has been intensively studied 
and hotly debated in the GIS/geocomputation community (e.g., Longley et al.  1998 ; 
Gahegan  1999 ; Ehlen et al.  2002  ) . The same question has been answered and examined 
by various scholars on numerous occasions. To summarize, there are three basic 
views that were put forward by early pioneers on what computational geography is. 
The  fi rst view, mainly held by Stan Openshaw  (  2000  )  and Mark Gahegan  (  1999  ) , 
recognizes the impact of increasing computing power and complex computational 
methods on geography or on geosciences in general. This view stresses dealing with 
unsolvable geographic problems using, for example, high-performance computing, 
arti fi cial intelligence, data mining, and visualization. The second view is more con-
cerned with the science of geography in a computationally intensive environment 
and expects geocomputation to offer a means of explaining geographic phenomena. 
This view is mainly held by Helen Couclelis  (  1998  )  and Bill Macmillan  (  1998  ) . 
Paul Longley and his associates, such as Mike Goodchild (Longley et al.  2001  ) , 
hold the third view that geocomputation is synonymous with GIScience, the science 
behind GIS technologies, which deals with fundamental questions raised by the use 
of geographic information and technologies. 

 The emergence of computational geography occurred at a time when GIS/geoin-
formatics as a tool underwent rapid development after a few decades of evolution 
and applications. Many GIS pioneers had started to think of certain fundamental 
issues surrounding the development of GIS. Along with computational geography, 
the widely recognized terms of GIScience (Goodchild  1992  )  and spatial information 
theory (Frank et al.  1992  )  appeared at almost the same time in the 1990s. It is no 
wonder that many GIS researchers see an overlap between GIS, geoinformatics, 
geomatics, GIScience, and spatial information theory. The coemergence of these 
terms is a clear indicator that this  fi eld has been under rapid development and evolu-
tion. Every term tried to capture some essential part of the development. In what 
follows, we offer a slightly new de fi nition of computational geography which cap-
tures the impact of data-intensive computing or eScience, and we state how it is 
different from, for example, geoinformatics. 

 Computational geography is a transformed data-driven geography that aims to 
understand the underlying mechanisms of geographic forms and processes via sim-
ulations of complex geographic phenomena and based on data-intensive computing. 
Along with the emerging  fi eld of computational social science (Lazer et al.  2009  ) , 
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computational geography is both data and computationally intensive. Computational 
geography is a science of geography that focuses on geographic forms and processes 
and that offers explanations through simulations. In other words, what computational 
geography seeks to address is not only how the world looks but also how the world 
 works . This is in contrast to the focus of GIScience on how the world  looks  rather 
than how the world works (Goodchild  2004  ) . In contrast, geoinformatics usually 
takes an engineering or geoscience approach, with the goal of developing tools and 
models for geospatial data acquisition, management, analysis, and visualization to 
deal with real-world problems. Despite the difference, both computational geography 
and geoinformatics are closely related in terms of geospatial information and developed 
tools. This view on the difference between geoinformatics and computational 
geography re fl ects a similar view about “bioinformatics” being a  fi eld of engineering 
and “computational biology” being a science. 

 Much of the appeal of computational geography in the twenty- fi rst century lies in 
the increasing availability of massive amounts of data about our environments and 
human activities in both physical and virtual spaces. With the increasing volume of 
data being generated from all types of scienti fi c instruments, often acquired on a 24/7 
basis, computational geography should adopt data-intensive geospatial computing to 
practice the science of geography. In this regard, the deployment of high-performance 
computing, grid/cloud computing, and geographically distributed sensors provides a 
powerful means of computing. At the same time, the emerging VGI contributed by 
volunteers and gathered via social media constitutes a valuable and unprecedented 
data source for researchers in computational geography. In the next section, we will 
draw upon some of our recent studies to illustrate what computational geography is 
and how VGI can support computational geography research.  

    8.3   Examples of Computational Geography 

 Here, we describe a few recent computational geography studies that use VGI or 
OSM in particular. Central to these studies are two basic concepts: topology and 
scaling. Topology refers to the topological relationships of numerous geographic 
units, while scaling is often characterized by a power-law distribution or a heavy-
tailed distribution in general. We illustrate in this section that both topology and 
scaling help uncover the underlying structures and patterns of geographic space, but 
 fi rst we must further clarify these two concepts. 

    8.3.1   Concepts of Topology and Scaling 

 Topology, initially a branch of mathematics, can be de fi ned as the study of qualitative 
properties that are invariant under distortion of geometric space. For this reason, 
topology is also called “rubber geometry.” In the GIS literature, the concept of topology 
has appeared on at least two occasions. The most familiar is probably topologically 
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integrated geographic encoding and referencing (TIGER). The TIGER data structure or 
database was created by the US Census Bureau in the 1970s. The concept of topology 
also appeared in the GIS literature with Max Egenhofer and Robert Franzosa’s  (  1991  )  
formulation of the topological relationship. Although the essence of topology is the 
same (which is about relationships), we adopt the notion of topology to refer to 
topologically based geospatial analysis. Topology, in contrast to geometric aspects such 
as locations, orientations, sizes, and shapes, is concerned with the relationship of 
geographic objects or units. To further elaborate the difference between topology and 
geometry, let us examine the London underground map as an illustrative example. 

 Figure  8.1  illustrates two versions of the London underground map: the left is 
geometrically corrected (a geometric map), while the right is topologically retained 
but geometrically distorted (a topological map). As one can see, all the locations and 
links of the stations are completely distorted in the topological map, with the excep-
tion of the relative orientations between the stations. This topological map is much 
more informative than the geometric map in terms of navigation along the tube lines. 
However, if we want to obtain in-depth structures or patterns, this topological map 
provides little information. For example, how many lines must be passed to get from 
one station to another? One can simply  fi gure out the answer with the 12 tube lines. 
What if there are hundreds of lines? Put more generally, how many intermediate 
streets must be crossed in one city to go from one street to another? This is a basic 
question that, for example, is relevant to a taxi driver who is seeking optimal routes.  

 Figure  8.2  presents two versions of a topological map. Figure  8.2b  illustrates a 
topological map showing the intersection or topology of tube lines, from which we 
can see certain in-depth structures. Among the 12 lines, 10 form an interconnected 
core in which nearly everyone is connected to everyone else, forming a sort of complete 
graph. Two lines, the East London line and the Waterloo & City line, are outside the 
core, with few connections to the others. This map indicates that if someone travels 
from the East London line to the Waterloo & City line, he or she must pass through 
another intermediate line; the two lines are not directly connected. In comparison 

  Fig. 8.1    Two versions of the London underground map: ( a ) a geometric map and ( b ) a topological 
map       
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with the geometric map, the topological map of the stations still retains certain 
geometric aspects, such as the relative positions and/or orientations of the lines and 
stations. In this regard, the topological map of the lines is purely topological: there 
are neither geometric locations for the nodes nor geometric distance for the links.  

 Scaling, or more speci fi cally the scaling of geographic space in the context of 
this chapter, refers to the fact that there are far more small things than large ones in 
a geographic space. For example, there are far more small cities than large ones, far 
more short streets than long ones, and far more low buildings than high buildings. 
This phenomenon of “far more small events than large ones” is widespread, so it 
is said to be “more normal than normal.” Scaling is the regularity behind many 
geographic phenomena. That there are far more small things than large ones also 
underscores a kind of spatial heterogeneity, i.e., there is no average thing in a geographic 
space. Because of the lack of an average thing, geographic space can also be said to 
be scale free. Note that scale in “scale free” means size, an average size or an arithmetic 
mean. “Scale free” implies that a notion of average size or mean makes little sense 
in characterizing a variable that exhibits a power-law distribution. The variation of 
things in a geographic space is highly heterogeneous or diverse. A major difference 
between the scaling of geographic space and spatial heterogeneity is that the former 
is characterized by a power-law distribution, while the latter by a normal distribution. 
In general, scaling must be characterized by heavy-tailed distributions such as a 
power-law or lognormal and exponential functions.  

    8.3.2   The First Example: Street Pattern of Sweden 

 The interconnected streets of a country constitute its basic infrastructure or back-
bone. Streets form a connected whole stretching across the county. Unfortunately, 
although the graph representation has found many applications in the computation 
of distance, routing, and tracing, the underlying structure and pattern of streets cannot 
be simply illustrated with the conventional street networks using junctions and street 

  Fig. 8.2    Two versions of topological maps: ( a ) topology of stations and ( b ) topology of lines 
(Note: the node sizes in the right image show how many other lines intersect, i.e., the degree of 
connectivity)       
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segments, respectively, as the nodes and links of a graph. We call the conventional 
street network a geometric network in the sense that (1) every junction has a unique 
geographic location and (2) every street segment is assigned a geometric distance. 
The geometric network embeds the connectivity of street junctions or that of street 
segments. Structurally, the conventional street network illustrates a monotonous 
pattern because every junction is connected by almost the same number of other 
junctions, or equivalently, every segment is connected by almost the same number 
of other segments. However, the topology of streets exhibits a very interesting pattern, 
which can be said to be universal for all types of street networks all over the world. 

 We retrieved the entire Swedish street network database from the OSM databases 
and generated individual streets to assess how they are connected to each other. 
Note that the streets can be put into two categories: streets identi fi ed by unique names 
(Jiang and Claramunt  2004  )  and natural streets generated by joining principles 
(Jiang et al.  2008  ) . In this study, we  fi rst merged adjacent street segments with the 
same names to create street units and then adopted some principle to join the street 
units into natural streets. This procedure was performed because of the missing 
names for many street segments in the OSM databases. The resulting natural streets 
are very close to named streets. Eventually, we obtained over 160,000 streets from 
over 600,000 arcs. Figure  8.3  illustrates the hierarchical levels of the street network 
and indicates that there are far more short streets (blue) than large ones (red). The least 
connected streets have a degree of 1, while the most connected streets have a degree 
of 1,040. This very high ratio of the most connected degree to the least connected 
degree is a clear indicator of a heavy-tailed distribution.  

 This  fi nding of the scaling pattern of the street network has profound implica-
tions for understanding other phenomena such as traf fi c  fl ow. For example, the 
majority of traf fi c  fl ow occurs on only in a few of the most connected streets, while 

  Fig. 8.3    Four levels of detail showing the hierarchical structure of the 160,000 streets of Sweden: 
( a ) source map, ( b )  fi rst level, ( c ) second level, and ( d ) third level       
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a vast majority of less connected streets accommodate only a small amount of the 
traf fi c  fl ow (Jiang  2009  ) . Eventually, traf fi c  fl ow and human mobility patterns 
also demonstrate this scaling pattern. We can further claim that it is the scaling of 
geographic space that shapes human movement patterns. This is the type of mechanism 
that we seek to discover through computational geography. 

 In addressing why human activities show the scaling pattern, Barabási  (  2010  )  
tried to seek an answer from the perspective of people rather than that of space. 
He explains that we conduct our affairs in bursts because we set a priority for them. 
In terms of human movement, we spend most of our time (e.g., 90% of our time) 
in one place near our home, city, or nearby, and only occasionally (e.g., 10% of 
our time or less) do we travel somewhere far from where we usually are. This is a 
traditional way of thinking—society is complicated because every individual person 
is complicated; in fact, we can think of individuals as molecules or atoms (Buchanan 
 2007  ) . In a recent study, Jiang and Jia  (  2011a  )  created two types of moving agents 
(random and purposive) and simulated their movement patterns in a street network. 
It was found that moving behaviors have little effect on the overall traf fi c patterns. 

 Given the scaling pattern or property, map generalization or mapping in 
general can be conducted in a simple manner. The head/tail division rule that we 
formulated can be applied in this case. The head/tail division rule states that any-
thing with the scaling pattern can be divided into two imbalanced parts: a low 
percentage of larger items in the head and a high percentage of smaller items in 
the tail (Jiang and Liu  2012  ) . In fact, Fig.  8.3  illustrates an application of the head/
tail division rule by simply placing larger streets in the head recursively to create 
different levels of detail (Jiang  2012  ) . We further conjecture that the scaling of 
geographic space is some fundamental underlying mechanism of map generalization 
(Jiang et al.  2011 ), which is the underlying property that makes generalization and 
mapping possible.  

    8.3.3   The Second Example: Street Block Pattern of France 

 The second exemplar concerns the scaling pattern that emerges from the numer-
ous street blocks of a country. A street block refers to a minimum ring or cycle 
formed by adjacent street segments, also called a “city block” in an urban environment. 
By street blocks, we mean both city blocks in cities and  fi eld blocks in the countryside. 
We developed a recursive algorithm to automatically derive a massive number of 
street blocks from street networks of the three largest European countries (Jiang and 
Liu  2012  ) . In this chapter, we use the French case as an example to illustrate how 
the interconnected blocks help uncover underlying patterns. First, we found that 
the sizes of the blocks show a lognormal distribution, one of several heavy-tailed 
distributions. This observed distribution implies that there are far more small blocks 
than large ones. Interestingly, using the head/tail division rule, we can partition all 
the blocks into categories: those smaller than the mean and those greater than the 
mean. In fact, the smaller blocks can be clustered into cities, while the larger ones 
constitute the countryside. 
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 Second, we de fi ned the notion of border numbers, indicating how far individual 
blocks are from the outermost border. Inspired by the notion of Bacon numbers, 
which show how far an actor or actress is from Kevin Bacon in the Hollywood universe 
(“six degrees of Kevin Bacon”), the border numbers are de fi ned as follows: the blocks 
on the outermost border have border number 1, those blocks directly connected to 
blocks with border number 1 have border number 2, and so on. The border number is 
de fi ned from a topological perspective, which is clearly different from a geometric 
perspective. Figure  8.4  illustrates the difference. Both geometric and topological 
distances are colored using a spectral color legend: the farther a block is, the more 
central it is. There are two centers: a topological center and a geometric center. Clearly, 
the topological center is the location of Paris. The geometric center is, in fact, a direct 
application of the medial axis (Blum  1967  ) . The geometric center is not what human 
beings perceive to be the center of the country but the topological center is.  

 We can extend this reasoning to de fi ne a center in biological organisms. For 
example, what is the center of the human body? Relying on Blum’s medial axis, we 
would derive the skeleton, but common sense tells us that both the heart and the 
mind are the two centers of the human body. We conjecture that if we were to take 
the topological perspective, we would be able to derive these two centers. This is 
based on the assumption that the sizes of the cells or any subunits, similar to the 
blocks, are heavy-tail distributed. We have not found any scienti fi c literature to support 
the above reasoning, but we need new geographic imaginations in the computer age 
(Sui  2004  ) ; data-intensive computing, involving a massive amount of geographic 
information, facilitates creative imagination in some unique ways.  

    8.3.4   The Third Example: Verifying Zipf’s 
Law via Natural Cities 

 The scaling property has several variants, one of which is Zipf’s law, formulated by 
the linguist George Kingsley Zipf  (  1949  ) . Zipf’s law states that the size of any city 
is inversely proportional to its rank, for example, the second largest city is 1/2 of the 

  Fig. 8.4    Centers of France: ( a ) topological center and ( b ) geometric center       
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largest one; the third largest city is 1/3 of the largest, and so on. Usually, city sizes 
are measured by their population or physical extent. Conventionally, cities are 
de fi ned legally or administratively, for example, as census-designated places, urban 
areas, or metropolitan areas. The subjective and even arbitrary nature of these 
de fi nitions poses problems for the veri fi cation of Zipf’s law. In this regard, there 
have already been studies seeking more objective de fi nitions of cities or city bound-
aries (e.g., Holmes and Lee  2009 ; Rozenfeld et al.  2011  ) . However, such studies still 
used aggregated data rather than individual-based data for de fi ning cities. 

 We propose a new approach to de fi ning cities by adopting street nodes as a proxy 
of population (Jiang and Jia  2011b  ) . We retrieved over 120 GB of OSM data for the 
USA, and we extracted 25 million street nodes. By applying a clustering algorithm, 
we grouped the nearest street nodes into individual urban settlements. We de fi ne the 
derived urban settlements as “natural cities” because the clustering was performed 
recursively and automatically. Eventually, we obtained approximately two to four 
million natural cities, depending on the chosen resolutions for the clustering process. 
The resolutions we chose were 400, 500, 600, and 700 m because they were the 
same magnitude as the city block sizes. Interestingly, the derived natural cities strikingly 
exhibit a power-law distribution, but the Zipf exponent may deviate from 1.0. 

 We conducted a comparison study by examining Zipf’s law between natural cities 
and urban areas and found that the law is remarkably stable for all natural cities, 
ranging from the largest to the smallest (with only one road node) (Jiang and Jia 
 2011b  ) . Surprisingly, the Zipf exponent remains unchanged for the entire range; one 
can refer to Fig.  8.5  for the log-log plot of the distribution. This result contrasts 
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sharply with the results for urban areas, which exhibit Zipf’s law for some of the 
largest cities; the Zipf exponent varies from one part to another of the entire range. 
This behavior may indicate that Zipf’s law, or the power law in general, underlies 
certain self-organized processes.    

    8.4   Discussions 

 We have introduced two key concepts around which three studies regarding compu-
tational geography have been presented to uncover the underlying scaling property 
and in particular to illustrate the underlying mechanism of human activity patterns 
in geographic space. Let us further elaborate the implications of these studies. 
Current geospatial analysis is very much dominated by two stubborn mindsets: one 
is geometric thinking in terms of sizes, shapes, orientations, and positions and the 
other is a Gaussian way of thinking that uses geostatistics to characterize spatial 
properties such as spatial dependence and spatial heterogeneity. Spatial dependence 
also goes by the name spatial autocorrelation, which is expressed succinctly by 
Tobler’s  (  1970  )   fi rst law of geography—“ everything is related to everything else, 
but near things are more related than distant things ” (p. 236). Spatial heterogeneity 
emphasizes that the Earth’s surface is heterogeneous, but this heterogeneity is still 
very much characterized by a normal distribution. Statistical theories based on 
scaling and heavy-tailed distributions are rarely adopted for the study of geographic 
phenomena. We, therefore, want to promote two alternative ways of thinking, 
topological thinking and scaling thinking, to get insights into geographic forms and 
processes. 

 Topological thinking is rooted in one of the two fundamental views about space—
Leibniz’s relative space, which focuses on relationships between individual objects. 
This is to be understood in contrast to geometric or topographic thinking, which is 
dominated by Newtonian ideas about absolute space. The topological focus on rela-
tionships is not particularly new, since it was well treated in geographic literature a 
long time ago (e.g., Haggett and Chorley  1969  ) . However, what is considered to be 
unique or interesting in this chapter is how topological thinking helps us appreciate 
the scaling pattern. Thinking topologically is part of thinking spatially, and it is 
becoming increasingly important at a time when most of human activities have 
shifted to virtual space and when emerging social media is coming to dominate 
everyday human activities (Allen  2011  ) . 

 It should be noted that there are at least two factors that prevent us from gaining 
insight into the scaling of geographic space: (1) how we look at geographic space 
(perspective) and (2) the size of the study areas we choose (scope). For example, the 
geometric representation of street networks is unable to demonstrate the scaling 
property. More importantly, the geometric representation is not what human beings 
perceive about street networks. The second factor is closely related to the availability 
of massive amounts of crowdsourced geographic information. In this regard, VGI 
provides an unprecedented data source enabling us to conduct this type of geospatial 
analysis and modeling. 
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 One may argue that geographic information maintained by governments or pri-
vate companies would allow us to achieve the same goal. This would indeed be true 
if the data were accessible, but this is easily said and only rarely done. First of all, 
there are many restrictions on access to data. Secondly, the data studied are rarely 
shared among all interested parties. What if some other researchers want to verify 
the results with the same data? Often there is no way to do so. This is a big constraint 
for scienti fi c research. With OSM, for the  fi rst time, we can seamlessly integrate 
publicly available geographic information and continuously keep it updated through 
volunteered efforts. 

 There are many other formats of VGI, emerging from a variety of social media such 
as Facebook, Twitter, and Flickr, which are not addressed in this chapter. These data may 
go beyond what Goodchild  (  2007  )  refer to about VGI, but their potential for studying 
spaces and places could be enormous. The convergence of GIS and social media is 
providing new ways of studying interactions among people, space, and place, which 
are fundamental to geography (Sui and Goodchild  2011  ) . We believe there are needs 
for much further studies to be conducted along these directions in the future.  

    8.5   Concluding Remarks 

 In this chapter, we brie fl y reviewed the emergence of computational geography, its 
de fi nitions, and its evolution in the past two decades. We provided an alternative 
de fi nition of computational geography that deals with simulations of geographic 
phenomena to uncover the underlying mechanisms of geographic forms and processes. 
Computational geography is distinct from geoinformatics, which is more concerned 
with the engineering side of geographic information in terms of data acquisition, 
management, analysis, and visualization. Governments have put enormous effort into 
data collection (e.g., population censuses, housing, and economic activity), but 
these data are seldom made available for research. In this regard, VGI, and OSM in 
particular, provides a valuable data source for computational geography. 

 We provided several examples of research in computational geography that relies 
on VGI and that rests on conceptualizations of relative and relational space. Despite 
of being an important way to conceptualize space, geographic studies still tend to 
examine (absolute) space in the geometric sense rather than the topological sense 
we refer to in this chapter. It is time to rethink the relative view of space in geographic 
studies, particularly in computational geography. Gatrell’s  (  1984  )  ideas remain 
valid and deserve greater attention in geographic research, especially alternative 
ways of conceptualizing and de fi ning space. We have seen in this chapter that topology 
and scaling indeed matter in geospatial analysis. We need to shift our mindsets from 
geometric to topological thinking and from the Gaussian mindset to something that 
is more “normal” than normal—the scaling property.      
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