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  Abstract   The Genome of a eukaryotic cell harbors genetic material in the form of 
DNA which carries the hereditary information encoded in their bases. Nucleotide 
bases of DNA are transcribed into complimentary RNA bases which are further 
translated into protein, performing de fi ned set of functions. The central dogma of 
life ensures sequential  fl ow of genetic information among these biopolymers. 
Noncoding RNAs (ncRNAs) serve as exceptions for this principle as they do not 
code for any protein. Nevertheless, a major portion of the human transcriptome 
comprises noncoding RNAs. These RNAs vary in size, as well as they vary in the 
spatio-temporal distribution. These ncRnAs are functional and are shown to be 
involved in diverse cellular activities. Precise location and expression of ncRNA is 
essential for the cellular homeostasis. Failures of these events ultimately results in 
numerous disease conditions including cancer. The present review lists out the various 
classes of ncRNAs with a special emphasis on their role in chromatin organization 
and transcription regulation.      
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    15.1   Overview of ncRNA 

 Noncoding RNAs (ncRNAs) are a large group of functional RNA transcribed by 
RNA polymerases, but never translated into protein. A decade before the discovery 
of these noncoding transcripts, most of the sequences in our genome were believed 
to be part of “Junk DNA”. Soon the genome sequencing projects revealed that only 
a mere 2% of the human genome codes for protein coding genes and almost 98% of 
the human transcriptome represents the ncRNA. They include well-characterized 
transfer RNAs and ribosomal RNAs involved in the process of translation, as well 
as a huge class of other regulatory ncRNAs which have been shown to play a crucial 
role in gene regulation. ncRNAs in general function as adaptors for the recognition 
of a particular nucleotide sequence in the target which is later positioned into the 
enzymatic molecule associated with the speci fi c class of ncRNA. These functional 
ncRNA are involved in key cellular processes including transcriptional regulation, 
RNA processing and modi fi cation, protein traf fi cking, genome stability, mRNA 
stability, and even protein degradation (Hüttenhofer et al.  2005  ) . 

 Terminologies like “Junk DNA” and “Transcriptional noise” have been challenged 
since the discovery of regulatory RNAs that are transcribed by both Pol II and Pol 
III. The list of known ncRNAs is growing larger in numbers since the completion of 
whole transcriptome analyses like the ENCODE Pilot Project (Birney et al.  2007  ) , 
the mouse cDNA project FANTOM, and a series of other large scale transcriptome 
studies performed to  fi sh these transcribed fragments (‘transfrags’) using various 
forms of high throughput tiling arrays, ESTs, SAGE tags and RACE techniques. 
Ultimately the present scenario of the transcriptome is that ncRNA are vast in number 
covering a huge proportion of the genome consisting of overlapping, bi-directional 
transcripts. The major obstacle in the identi fi cation of these transcripts is that majority 
of them are expressed in a short spatio-temporal frame, thus it is dif fi cult to recognize 
such transcripts even after employing the most advanced deep sequencing techniques. 
Though the ncRNAs have coexisted with protein coding genes they were kept under 
curtain mainly because of the model organism taken for such studies. Also the muta-
tions that were considered were often expected to have a major impact on the phe-
notypic outcome of such genetic screens. Mutation in a protein-coding gene can 
have severe effects on the structure and function of the protein which ultimately 
shows an altered phenotype, which is often visible in the regular genetic screening 
due to the high penetrance. On the other hand recessive mutation phenotypes and 
single-base mutations are harder to identify in comparison to insertions/deletions 
(Eddy  2001 ; Kavanaugh and Dietrich  2009  ) . The reason for a shift in the focus of 
our research towards protein coding genes is that most of the genetic screening 
techniques and the methodologies followed during the early era of genomics had an 
inherent bias toward the scanning of known exons and the  fl anking sequences in that 
region. Most of the bioinformatic search tools were based on the signatures of pro-
tein coding genic regions which does not hold good for the ncRNA prediction espe-
cially when they are transcribed from the intergenic deserts. The other reason is that 
comparative studies on the sequences of ncRNA have failed to show any healthy 
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conservation among the known transcripts reported till date. However, studies 
on a handful of functional ncRNAs indicate that they carryout common functions 
via conserved secondary structures, indicating that despite having no sequence simi-
larity they seem to harbor conserved secondary structures. Even though a large 
number of genomes have been sequenced, the number and diversity of ncRNA-
encoding genes is largely unknown, especially due to the incompleteness of the list 
of various ncRNAs (van Bakel et al.  2010 ; Farh et al.  2005  ) .  

    15.2   Classi fi cation and Evolution of ncRNA 

 The existing classes of ncRNAs are in general transcribed by all three possible modes 
of transcription. The pre-rRNA (28S, 18S, 5.8S) are transcribed by Pol I, and some of 
the snRNAs and LINEs are transcribed by Pol II where as SINEs, snRNA, 7SL RNA, 
etc. are transcribed by Pol III transcription machinery. Broadly, ncRNAs can be 
classi fi ed into “housekeeping” and “regulatory” ncRNAs (Morey and Avner  2004  ) . 
Housekeeping ncRNAs are constitutively expressed and involved in processes like 
translation, RNA processing, RNA modi fi cations, protein traf fi cking and genomic 
stability required for normal cell viability, whereas the regulatory ncRNAs, often 
expressed in certain speci fi ed tissues during different stages of development or in 
response to an external stimuli and they are comprised of RNAs involved in the pro-
cess of gene expression/regulation and chromatin organization. The other way to clas-
sify ncRNA is based on the size of the functional transcripts as long (9,999–10,000nt), 
medium (200–999nt), small (24–199nt) and micro (18–31nt) ncRNAs. Noncoding 
transcripts can also be classi fi ed based on the sequence origin as sense or antisense 
transcripts from the genic, intronic and intergenic region of the genome. 

 The human genome has approximately 27,161 genes (Flicek et al.  2008  )  in total, 
of which about 4,421 are ncRNA genes. Literature on the existing ncRNAs 
indicates an unequivocal correlation between the rise in the number of noncoding 
transcripts and the complexity of an organism (Amaral and Mattick  2008  ) . Events 
responsible for such evolution are by gene duplication, mutation, horizontal transfer 
and integration of genetic material between different pathogen and host across 
various phases of evolution. Especially the non-genic deserts are more prone towards 
such events since the pressure to preserve the functionality of the protein coding 
genes does not apply to ncRNA coding intergenic regions. Also the drastic muta-
tions can be well tolerated since the constraint for most of the ncRNA is to maintain 
its secondary structure. Moreover the base change in one strand is often compen-
sated by a complementary mutation across the paired strand. Though ncRNAs in 
general are rapidly evolving they are earmarked by conservation in their secondary 
structure and are often found associated with regions spanning promoters, splice 
junctions, and other regions with speci fi c chromatin signatures in relation to the 
spatiotemporal expression and subcellular localization pattern (Pang et al.  2006 ; 
Bradley et al.  2009  ) .  
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    15.3   Housekeeping ncRNA 

 rRNAs: Generally eukaryotes have many copies of the rRNA genes organized in 
tandem repeats; in humans approximately 300–400 rDNA repeats are present in  fi ve 
clusters. All mammalian cells possess two mitochondrial (12S and 16S) and four 
cytoplasmic rRNA (the 28S, 5.8S, 18S, and 5S subunits) transcribed by RNA poly-
merase I except 5S rRNA which is transcribed by RNA polymerase III. Most of 
these rRNAs constitute the active site of ribosomes and also aids in maintaining the 
 fi delity of translation. 

 tRNAs: tRNAs are the adapter molecules that aid in sequence speci fi c incorporation 
of various amino acids according to the code present in an mRNA. According to the 
tRNADB, which is a curated database of tRNA, there are 22 known mitochondrial 
tRNA genes and 497 nuclear tRNA genes known in humans but the number varies 
a lot in different organisms (Abe et al.  2011  ) . These genes are found on all chromo-
somes, except chromosome number 22 and Y chromosome of humans (Lander et al. 
 2001  ) . tRNAs are transcribed by RNA polymerase III as pre-tRNAs in the nucleus 
(Dieci et al.  2007  )  which undergo extensive posttranscriptional modi fi cations. The 
adaptor function of tRNA lies in its three-dimensional structure wherein one end of 
the tRNA carries the anticodon that serves as a genetic code to recognize the codon 
in mRNA during protein biosynthesis. Transfer RNA-like structures (tRNA-like 
structures) are a separate class of RNA sequences transcribed from the genome of 
many plant RNA viruses, which have a tRNA like tertiary structure (Crick  1968  ) . 
These tRNA-like structures mimic some tRNA functions, such as aminoacylation, 
but only three aminoacylation speci fi cities, valine, histidine and tyrosine have been 
reported till date (Dreher  2009  ) . Such tRNA-like structures are also known to 
increase the stability of RNA viruses by encapsulating its RNA genome (Mans et al. 
 1991  ) . In addition, they act as 3 ¢ -translational enhancers (Matsuda and Dreher  2004  )  
and regulators of minus strand synthesis. 

 tel-sRNAs: Telomere speci fi c small RNAs called as tel-sRNA are found exclusively 
in the telomeric region of the genome. These small  P -like RNAs are associated 
asymmetrically to the G-rich strand of telomers which are Dicer-independent, 
2 ¢ -O-methylated at the 3 ¢  terminus, and conserved from protozoa to mammalian 
cells. tel-sRNAs were shown for the  fi rst time in mouse genome where they aid 
in the establishment and maintenance of heterochromatin in the telomeric loci 
(Cao et al.  2009  ) . 

 tmRNA: The bacterial  tmRNA  has both tRNA-like and mRNA-like function e.g., 10Sa 
RNA or SsrA.  tmRNA  engages the problematic messenger RNAs and recycles the 70S 
ribosomes ultimately that incorporates a series of alanine residues which are earmarked 
for the degradation of those incomplete peptides (Gillet and Felden  2001  ) . For more 
information about tmRNAs refer to tmRDB, an exclusive database for tmRNAs. 

 SRP RNA: The RNA component of the signal recognition particle (SRP) ribonu-
cleoprotein complex also known as 7SL, 6S, ffs, or 4.5S RNA, is a universally 
conserved ncRNA (Rosenblad et al.  2009  )  that directs the newly synthesized 
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proteins within a cell to the endoplasmic reticulum either co-translationally 
or post-translationally thereby allowing them to be secreted. 

 snRNAs: small nuclear RNAs can be broadly classi fi ed into two. Firstly, the 
Sm-class of snRNA that possess a 5 ¢ -trimethylguanosine cap, 3 ¢ stem-loop and 
heteroheptameric ring structure that binds to sm-proteins. These non-polyadenylated 
snRNAs are transcribed by Pol II and processed by integrator. The processed mature 
snRNAs  fi nally aid in splicing out introns from the pre-mRNA. Secondly, Lsm-class 
RNAs that possess a monomethylphosphate cap and a 3 ¢ stem-loop with uridine rich 
heteroheptameric ring that binds Lsm-proteins. Pol III transcribes such Lsm-snRNAs 
using external promoters and Uridine stretch as terminator (Segref et al.  2001  ) . 
Almost all Lsm-snRNPs are assembled in the nucleus within the cajal body for a 
brief period after which they diffuse out in the nucleoplasm till they reach their 
speci fi c nuclear domains like, perichromatin  fi brils and interchromatin granule 
clusters. snRNPs containing such ncRNAs form the core of the spliceosome which 
are the catalytic centers for splicing introns from pre-mRNA (Matera et al.  2007  ) . 
Among the snRNAs U7 snRNA needs a special mention which is involved in the 
processing of 3 ¢  end of histone genes of eukaryotes which possess a unique stem-
loop structure instead of a poly-A tail. However, snRNAs are not just restricted to 
splicing events alone as they have been shown to regulate transcription, independent 
of their splicing function. 7SK is one such snRNA which mediates Pol II transcrip-
tional inhibition via its interaction with P-TEFb. Apart from the above mentioned 
snRNAs there are numerous other snRNAs which carryout important biological 
functions like, RNA Pol III transcribed snaR-A RNA, Intergenic spacer RNA (IGS 
RNAs) etc., are discussed under regulatory ncRNAs section. 

 SmY-RNA: These ncRNAs belong to a Small nuclear class of ncRNAs in nematodes 
SmY-RNA were disovered in  Ascaris lumbricoides  during the year 1996 (Maroney 
et al.  1996  ) . Based on the evidence obtained from the studies carried out in a related 
species i.e.,  C. elegans  SmY-RNA is believed to be in complex with the spliced-leader 
RNA and involved in mRNA trans-splicing (MacMorris et al.  2007  ) . 

 snoRNAs: Small nucleolar RNAs, as the name implies, are retained within the 
nucleolus and aid as guide strands for incorporating the speci fi c modi fi cation like 
methylations and pseudouridylations, onto other RNA molecules like tRNA, rRNA, 
snRNA etc. snoRNAs can be further classi fi ed into C/D Box RNAs, H/ACA Box 
RNAs, composite C/D Box and H/ACA Box RNAs and Orphan snoRNAs 
(Bachellerie et al.  2002 ; Samarsky et al.  1998  ) . In general C/D box members guide 
2 ¢ O-ribose-methylations and H/ACA members guide pseudouridylation. snoRNAs 
are de fi ned by the characteristic secondary structure formed by the signature 
sequences which varies slightly in the composite snoRNAs. The composite snoRNA 
contains both C/D and H/ACA box and are retained in the cajal bodies and hence, 
named as “scaRNAs” (Jády and Kiss  2001  ) . U85 a typical example of composite 
snoRNA, functions in both 2 ¢ -O-ribose methylation and pseudouridylation of snRNA. 
On the contrary, there are snoRNAs with unidenti fi ed substrates that are grouped 
under the Orphan snoRNAs. Apart from their function in guiding modi fi cations for 
maintaining a stable pool of ncRNA, some members are even known to act like 
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miRNAs with exclusive regulatory functions and hence they are discussed under the 
regulatory RNAs section.  

    15.4   Regulatory RNAs 

 Regulatory RNAs comprise a subset of both long and small mRNAs having gene 
expression regulatory function. Regulatory ncRNAs especially the small ncRNAs in 
general, form base pairs with other RNA or DNA and constitute RNA:RNA or 
RNA:DNA duplexes. These duplexes are recognised by different complexes like 
RNA induced silencing complex (RISC), RNA induced transcriptional silencing 
(RITS) or RNA editing enzymes which act to decipher downstream consequences. 
These cis-acting regulatory sequences are generally found in non-coding regions of 
mRNAs and pre-mRNAs. Untranslated regions (UTRs) of mRNA generally act as 
binding sites for some trans acting regulatory RNAs, though they are also known to 
form secondary structures facilitating binding of regulatory proteins that in turn 
control stability, function or localization of mRNAs (Gebauer and Hentze  2004 ; 
Moore  2005  ) . Splice junctions provide yet another cis regulatory sequences which 
along with the aid of spliceosomal snRNAs and other components of spliceosome, 
a ribonucleoprotein (RNP) complex that controls splicing of the primary transcript 
(Nilsen  2003 ; Valadkhan et al.  2007  ) . Regulatory ncRNAs are generally categorized 
in two classes namely the small (<200 nucleotide) and large (>200 nucleotide) 
regulatory ncRNAs. 

    15.4.1   Small Regulatory RNA 

 There are numerous regulatory RNAs that are <200nt long and show unique spatio-
temporal expression in comparison to housekeeping ncRNAs. Some of the well 
charactreised small regulatory RNAs are discussed in this section. 

 Regulatory Small nucleolar RNAs (SnoRNAs): Some SnoRNAs show tissue 
speci fi c expression, like tandemly arranged repeated intron-encoded C/D snoRNA 
genes in the region downstream from the GTL2 gene at 14q32 show brain speci fi city. 
These snoRNA genes associate with human imprinted 14q32 domain suggesting 
their regulatory role in epigenetic imprinting process (Cavaillé et al.  2002  ) . Two 
other brain speci fi c snoRNAs, HBII-52 and HBII-85 were reported to be absent 
from the cortex of a patient with Prader-Willi syndrome (PWS), which is a neuro-
genetic disease resulting from a de fi ciency of paternal gene expression, indicating 
their role in the etiology of PWS (Cavaillé et al.  2000  ) . Further, it was shown that 
the snoRNA HBII-52 regulates alternative splicing of the Serotonin Receptor 2C. 
Lack of HBII-52 in PWS patients generate different messenger RNA (mRNA) 
isoforms which leads to the loss of high-ef fi cacy serotonin receptor, which could 
contribute to the disease (Kishore and Stamm  2006  ) . 
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 Apart from regulating mRNA transcription which is central for the regulation of 
gene expression, other biological reactions comprehending gene expression like 
mRNA turnover, gene silencing and translation are also controlled by ncRNAs like 
miRNAs and short interfering RNAs. miRNAs and siRNAs are 21–25 nt long RNAs 
derived from double stranded RNA precursors. Origin of miRNA is endogenous 
from short hairpin precursor RNAs whereas siRNA are mostly exogenous from 
double stranded RNAs or long hairpins. These small RNAs regulate gene expression 
through translational suppression (post transcriptional) and/or mRNA degradation 
(transcriptional) by perfect/non-perfect match formed between miRNA and target 
mRNA (Mattick and Makunin  2005 ; Yekta et al.  2004 ; Mans fi eld et al.  2004  ) . 
siRNA is also known to regulate gene expression by modulating chromatin structure 
(discussed in next section). MicroRNA genes are generally transcribed by RNA 
polymerase II generating primary miRNA (pri-miRNA). Pri-miRNAs are several 
kilobases long and possess stemloop structure. Pri-miRNAs are cleaved by RNase 
III, enzyme Drosha, containing multiprotein complex, producing ~70-nt hairpin 
precursor miRNA (pre-miRNA). Pre-miRNA is exported to cytoplasm where it is 
processed into ~22 nt miRNA duplex by another RNase III enzyme, Dicer (Bushati 
and Cohen  2007  for review). Dicer along with protein argonaute form a complex 
triggering the assembly of ribonucleoprotein complex called as RNA-induced 
silencing complex (RISC). One strand of miRNA gets incorporated into RISC and 
guides the complex to target RNA for base pairing. In case of perfect match with 
target RNA it is cleaved and if base pairing is imperfect and the binding is strong 
enough to hold, then the translation is repressed. Major mode of action of animal 
miRNA involves translational repression rather than RNA degradation unlike the 
plant miRNAs (   Millar and Waterhouse  2005a    ) . Target recognition of miRNA mainly 
depends on the stringency of base pair match at the 5 ¢  end of miRNA called as the 
“seed region”. Nevertheless, when the 5 ¢  sites are dominant, it can function with or 
without 3 ¢ pairing support. In case of insuf fi cient 5 ¢  pairing in some miRNAs, the 3 ¢  
compensatory sites play their part by strong pairing with the seed region sequence. 

 esiRNAs: Initially endogenous siRNAs (esiRNAs) have been detected only in organ-
isms that possess RNA-dependent RNA polymerases (RDRPs) and absent in others 
which lack endogenous dsRNA (Millar and Waterhouse  2005a,   b  ) . However, other 
sources of dsRNAs including long hairpin structures generated from the palindro-
mic sequences and dsRNAs generated by the annealing of complementary RNAs 
that are synthesized by two opposing transcription units in the same loci. Such dsR-
NAs have now proven to be the source of esiRNAs in both  D. melanogaster  and 
mice (Watanabe et al.  2008 ; Tam et al.  2008  ) . In Drosophila esiRNAs have been 
shown to play important role in the formation of heterochromatin within the somatic 
tissues (Fagegaltier et al.  2009  ) . esiRNAs have also been implicated in suppressing the 
expression of mobile genetic elements. Mice de fi cient for Dicer showed elevated 
expression of only certain transposable elements which are believed to be affected by 
the esiRNA pathway but the exact mechanism is yet to be discovered (Nilsen  2008  ) . 

 Viral miRNAs: These are the viral transcripts that are generally employed in pro-
cesses like immune recognition, cell survival, angiogenesis, proliferation and cell 



350 K. Dhanasekaran et al.

differentiation upon infection of the host cells (Pfeffer et al.  2004 ; Gottwein et al. 
 2007 ; Grey et al.  2010  ) . A recent review on viral miRNAs has listed the known viral 
miRNAs from different viral species (Plaisance-Bonstaff and Renne  2011  ) . miR-
NAs in general show a higher degree of conservation but viral miRNAs on the other 
hand shows very poor sequence homology between viruses. Viral miRNAs targets 
only a small sub population of viral transcripts and obviously they target the major-
ity of host mRNA transcripts thereby regulating their expression to substantial level 
to create a conducive, microenvironment for their survival and proliferation of 
viruses (Grey et al.  2010  ) . Virus encoded miRNAs are known to act as suppressors 
of RNAi, modulating the host miRNAs and also incorporates epigenetic changes in 
the host which may aid in the viral oncogenesis (Scaria and Jadhav  2007  ) . 

 Y RNAs: These are small noncoding RNAs that function as integral part of the Ro 
RNP. The Ro RNP was discovered by Lerner et al .  in systemic lupus erythematosus 
patients. So far four Y RNA species have been discovered in humans namely hY1 
(hY2 is a truncated form of hY1), hY3, hY4, and hY5 RNAs ranging in size from 
83 to 112 nucleotides (Hendrick et al.  1981  ) . Y RNAs are expressed in all vertebrate 
species studied (Perreault et al.  2007  ) . Among the invertebrates Y RNA orthologues 
have been reported in  Caenorhabditis elegans  (Van Horn et al.  1995 ; Boria et al. 
 2010  )  and  Deinococcus radiodurans  (Chen et al.  2000  ) , but no orthologues in yeasts, 
plants, or insects. In Deinococcus, Y RNAs are reported to be involved in 23S rRNA 
maturation (Chen et al.  2007  ) . while the human Y RNAs (hY RNAs) aid in the pro-
cess of chromosomal DNA replication which ultimately ensures a completely semi-
conservative mode of replication throughout the genome. They have been implicated 
in either the initiation steps to establish an active replication forks or for elongation 
steps during DNA replication fork progression (Christov et al.  2006  ) . Recently hY 
RNAs were shown to be even overexpressed in solid tumours, that aids in cell pro-
liferation (Christov et al.  2008  ) . Nevrethless the cause and consequences are not yet 
completely deciphered. 

 TSSa-RNAs: Transcription start site–associated RNAs as their name suggests are 
transcribed either as sense or antisense transcripts from region  fl anking the active 
promoters, with peaks of antisense and sense short RNAs peaking between nucle-
otides −100 and −300 nucleotides upstream and 0 to +50 nucleotides downstream 
of TSS, respectively. In yeast such TSSa-RNAs are called as cryptic unstable tran-
scripts (CUTs) and stable unannotated transcripts (SUTs) (Neil et al.  2009 ; Wyers 
et al.  2005 ; Xu et al.  2009  ) . TSSa-RNAs are 20–90 nt (Seila et al.  2008  )  in length 
and have been proposed to aid in maintaining poised chromatin state at the promoter 
regions for downstream transcriptional regulatory steps. The transcription initiation 
factors, RNAPII and the K4-trimethylated histone H3, occupy the same position 
over the chromatin where TSSa-RNA; whereas, K79-dimethylated histone H3, is 
located downstream of TSSs. Recently, a long promoter associated ncRNA 
(pncRNA) has been identi fi ed which repress the protein coding transcripts in cis via 
an RNA binding protein called TLS (Translocated in liposarcoma) that mediates 
transcription repression through HAT inhibition. Refer Sect.   15.4.3     for more 
details. 

http://15.4.3
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 vRNAs: vault RNAs are integral part of the vault particles that were discovered 
as a vault ribonucleoprotein complex implicated in multidrug resistance and intrac-
ellular transport. Generally these are 100 bases long and transcribed by Pol III. 
vRNAs via a DICER mechanism generate small vault RNAs (svRNAs) that act like 
miRNAs in downregulating the expression of CYP3A4, an enzyme essential for 
drug metabolism (Persson et al.  2009  ) .  

    15.4.2   Long Regulatory ncRNA 

 Long Regulatory ncRNA (lncRNAs) as mentioned earlier are greater than 200 nt 
long and both polyadenylated, and nonpolyadenylated transcripts have been 
reported. Apart from intronic and intergenic (linc RNAs) lncRNAs, they are also 
encoded from genomic regions enriched with repetitive elements, such as telomeric 
repeats (TelRNAs), long terminal repeat retrotransposon elements (LINE RNAs), 
and short interspersed nuclear elements (B2 RNA). lncRNAs often overlap with, or 
intersperse between the protein-coding and noncoding transcripts. Promoter-
associated transcripts, such as promoter-associated long RNAs (PALRs) and promoter 
upstream transcripts (PROMPTs) have been recently added to the growing list of 
lncRNAs. Often PROMPTs overlap with PALRs in terms of the size and the distance 
from promoter. Also they resemble the cryptic unstable transcripts (CUTs) seen in 
yeasts (Neil et al.  2009  ) . The major roles of most of the lncRNAs are implicated in 
transcription regulation by altering the enhancers, promoters and other regulatory 
regions of a gene. This is achieved either by modulating the chromatin structure 
around these loci or by directly binding to the transcription factors associated to 
these elements. In general most of these lncRNAs seem to act in a gene-speci fi c 
manner and recent evidence that lncRNAs themselves may have enhancer activity 
was suggested by a handful of studies which still remains open for further investigation 
(Mondal et al.  2010 ; Ørom et al.  2010  ) . 

 lincRNAs: The large intergenic non-coding RNAs (lincRNAs) are one among the 
largest members of lncRNAs which are evolutionarily highly conserved (Guttman 
et al.  2009  ) . HOTAIR, was the the  fi rst lincRNA, identi fi ed by    Rinn et al.  (  2007  ) , 
showing that HOTAIR could in fl uence gene expression in trans by binding PRC2 
and targeting it to the HOXD cluster, thereby silencing target genes in HOXD clus-
ter (Rinn et al.  2008  ) . More than 8,000 lincRNAs are known to exist and are well 
conserved across mammals (Rinn et al.  2008  ) . They are involved in diverse biologi-
cal processes, like cell-cycle regulation, immune surveillance and in the mainte-
nance of stem cell pluripotency. Often lincRNAs associate with repressive chromatin 
modifying complexes hence, act as repressors in transcriptional regulatory net-
works. The typical example being the p53 mediated global gene repression via the 
lincRNA-p21 triggering apoptosis by recruiting the hnRNP-K on to the de fi ned set 
of p53 responsive genes (Huarte et al.  2010  ) . Sabine Loewer et al. later described 
the role of lincRNA in reprogramming events during derivation of human iPSCs 
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which is presently being described as lincRNA-RoR for ‘regulator of reprogramming’ 
(Loewer et al.  2010  ) . These observations indicate that ncRNA has wide reach in 
regulation of various biological functions. 

 Totally intronic ncRNAs (TIN): E.M. Reis et al. identi fi ed the transcribed intronic 
ncRNAs (Reis et al.  2005  )  which are lncRNAs of approximately 0.6–2 kb in length. 
Later Helder I Nakaya et al. based on the  in silico  predictions available on data sets 
in different ncRNA databases and using the combined intron/exon oligoarrays 
they were able to point the intronic regions as key sources of potentially regulatory 
ncRNAs (Nakaya et al.  2007  ) . They showed that TINs have tissue-speci fi c expression 
signatures for human liver, prostate and kidney. The antisense TIN RNAs were 
transcribed from introns of protein-coding genes which are reported to be enriched 
in the ‘Regulation of transcription’ Gene Ontology category. Intronic RNAs are 
believed to regulate the abundance or the pattern of exon usage in protein-coding 
mRNAs. It has been proposed that TINs regulate the corresponding protein coding 
genes through transcriptional interference at promoters or through the epigenetic 
modulation of the chromatin architecture (Louro et al.  2009  ) . 

 T-UCRs: David Haussler et al. (Bejerano et al.  2004  )  discovered a group of highly 
conserved transcripts called T-UCRs (Transcribed Ultra Conserved Regions) which 
do not code for any protein. There are about 481 such transcripts longer than 200 
(bp) with 100% identity between the orthologous regions of the human, rat, and 
mouse genomes. Since these UCRs are often located at fragile sites in the chro-
matin and also associated to the genomic regions involved in cancers it is not 
surprising to link T-UCRs with tumorigenesis. It is also known that some of the 
UCRs’ expression is regulated by microRNAs abnormally expressed in human 
chronic lymphocytic leukemia, and the inhibition of UCR which is overexpressed 
in colon cancer could even induces apoptosis (Calin et al.  2007  ) . T-UCR expression 
landscape in neuroblastoma suggests widespread T-UCR involvement in diverse 
cellular processes that are deregulated in the process of tumourigenesis. 

 PROMPTs: In mammals certain long, unstable promoter upstream transcripts 
(PROMPTs) initiate bidirectionally ~0.5–2.5 kb upstream of transcription start sites 
that are longer than the TSSa-RNAs (Preker et al.  2008  ) . This class of RNA often 
overlaps with another class of bidirectional promoter-associated long RNAs known 
as PALRs which are longer than 200 nucleotides (Kapranov et al.  2007  )  and are distinct 
from PROMTs. Interestingly, siRNA targeted to promoter upstream regions often 
resulted in transcriptional gene silencing. Given that promoter upstream regions 
associated with bidirectional transcripts, siRNA could have mediated transcrip-
tional silencing via promoter associated transcripts targeting to RNAi pathway 
(Han et al.  2007  ) . However, the functional link between the expression of PROMTs 
and PALRs with cognate genes is not yet clear. 

 GRC-RNAs: A polypurine triplet repeat-rich lncRNAs, designated as GAA repeat-
containing RNAs, are ~1.5 to ~4 kb long and localize to numerous intra nuclear punctate 
foci that associate with GAA.TTC-repeat containing genomic regions. These foci 
drop in number with more differentiation of the cell type. GRC-RNAs are components 
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of the nuclear matrix and interact with various nuclear matrix-associated proteins. 
In mitotic cells, GRC-RNAs localize to the midbody. The interesting part of GRC-RNA 
foci is that the number increases during cellular transformation (Zheng et al. 
 2010  ) . 

 eRNAs: RNA polymerase II binding was noticed over 25% of the gene enhancers 
which later turned out that these occupancies were not mere landing pads rather 
they were more of transcription foci for the novel class of ncRNAs without polyade-
nylation called the Enhancer RNAs (eRNAs) (Kim et al.  2010 ; Ren  2010  ) . eRNAs 
synthesis requires a functional promoter but the requirement of other general tran-
scription factors or the mediator complex proteins is yet to be identi fi ed. The expres-
sion of eRNAs in the enhancer regions generally correlate with the gene activity of 
neighboring promoters, indicating that these transcripts may be necessary to acti-
vate the nearby promoters either by facilitating the formation of more open chroma-
tin or via promoting enhancer promoter communications. Currently RNAi strategies 
are employed to decipher the precise mechanism of this class of regulatory 
ncRNAs. 

 mlncRNA: The mRNA-like ncRNAs are transcribed by Pol II and poladenylated at 
3 ¢  and capped at 5 ¢  ends. Most of the members are known to be dysregulated in 
expression during the pathogenesis of multiple human diseases but their functional 
roles are yet to be assigned. Studies done so far strongly suggest that their expres-
sion is tightly regulated to speci fi c subcellular compartments of speci fi c tissues like 
brain but the exact role of these RNAs are not known (Inagaki et al.  2005 ; Jiang 
et al.  2011  ) .  

    15.4.3   Small and Long Noncoding RNAs 
in Transcription Regulation 

 ncRNAs modulating transcription are abundant and were  fi rst to be discovered. 
Noncoding RNAs as transcriptional regulators target different components of tran-
scription. Mostly such RNAs act in cis or trans and target general transcription 
factors, RNA polymerase, transcriptional activators or repressors. Here we are 
providing a few examples of ncRNA which regulate different steps of transcriptional 
process: 

 Bacterial 6S RNA: The  E. Coli  6S RNA is one among the  fi rst ncRNAs to be 
discovered. About four decades ago 6S RNA was sequenced. It is 184 nucleotide 
long RNA having a conserved secondary structure containing largely double 
stranded and a central single stranded bulge. 6S RNA forms a stable complex with 
active polymerase tangled with promoter speci fi city factor  s  70 .  E. Coli  6S RNA was 
shown to interact with RNAP- s  70  complex but not with free  s  70 , thereby suppressing 
transcription (Trotochaud and Wassarman  2005  ) . Interestingly, this repression of 
transcription was true for only a subset of promoters, as 6S RNA can activate tran-
scription at promoters requiring Enzyme-  s  S  complex (E-  s  S  is required for survival 



354 K. Dhanasekaran et al.

during stationary phase), indicating that 6S RNA regulates transcriptional process at 
multiple levels. Secondary structure of 6S RNA is essential for its activity and notably, 
single stranded bulge region was found to be critical for its RNAP binding and 
transcription modulation activity. Furthermore, 6S RNA structure mimic open promoter 
complex structure seen during transcriptional initiation (as shown in Fig.  15.1a ) and 
thus proposed to inhibit transcription incorporating competition between promoter 
DNA and the E-  s  70  (Barrick et al.  2005  ) .  

 Mouse B2 RNA: B2 RNA is RNAP III encoded transcript, which is transcribed 
from short interspersed elements (SINE) of mouse genome and it represses RNAP 
II transcription in response to heat shock (Allen et al.  2004  ) . B2 RNA is 178 nucleotide 
long and its expression increases many fold upon heat shock. B2 RNA interacts 
with a RNA docking site on RNAP II and assembles into the preinitiation complex 
at the promoter disrupting critical contacts between RNAP II and the promoter 
DNA, thereby inhibiting initiation of transcription (Espinoza et al.  2004  ) . B2 RNA 
mediated RNAP II transcription repression shows promoter speci fi city. Recent 
investigations have explored the mechanisms underlying the B2 RNA mediated 
repression of RNAPII dependent transcription and found that B2 RNA targets early 
steps of transcription initiation like the Ser 5 phosphorylation by TFIIH (Espinoza 
et al.  2007  ) . B2 RNA blocks CTD phosphorylation by TFIIH, only when RNAP II 
is in a transcriptionally repressed complex over the promoter DNA in an open state 
(Fig.  15.1b  shown in green) prior to the formation of closed (Fig.  15.1b  shown in 
yellow) complex (Yakovchuk et al.  2011  ) . 

 7SK RNA: The human 7SK RNA is an abundant (2 × 10 5  copies/cell) evolutionarily 
conserved nuclear RNA of 331 nucleotides and is transcribed by RNAP III (Murphy 
et al.  1987  and Zieve et al.  1977  ) . 7SK RNA controls RNAP II elongation by 
modulating the activity of transcription elongation factor P-TEFb (Nguyen et al. 
 2001  ) . P-TEFb activates transcriptional elongation by phosphorylating C-Terminal 
Domain (CTD) of RNAPII. P-TEFb is a heterodimer comprising CDK9 and cyclin 
T1. In addition to general elongation factor, P-TEFb also functions as an HIV-1 Tat-
speci fi c transcription factor. P-TEFb interacts with Tat and the transactivating 
responsive (TAR) RNA structure located at the 5 ¢  end of the nascent viral transcript 
thus stimulating HIV-1 transcription. 7SK RNA binds to P-TEFb and represses 
transcription by abrogating its kinase activity. Association of P-TEFb and 7SK 
RNA is found to be reversible as ultraviolet irradiation and actinomycin D treat-
ment disrupted P-TEFb/7SK RNA complex which can restore transcription 
(Yang et al.  2001  ) . Further studies showed that inactivation of P-TEFb by 7SK RNA 
requires their association with other proteins namely MAQ1/HEXIM1 (hexamethyl-
ene bisacetamide-induced protein 1) which form the essential components of 7SK 
RNP. HEXIM1 was shown to inhibit P-TEFb in a 7SK-dependent manner while 
7SK serves as a scaffold to mediate the HEXIM1:P-TEFb interaction (Fig.  15.2b ) 
(Yik et al.  2003 ; Michels et al.  2003,   2004  ) . A recent investigation has demonstrated 
that 7SK interacts with chromatin with high af fi nity (Mondal et al.  2010  ) . The latter 
observation is consistent with the suggestion that 7SK by interacting with the chromatin 
serves as a scaffold for recruiting HEXIMI:P-TEFb proteins thereby inhibiting 
transcriptional elongation.  



35515 Noncoding RNAs in Chromatin Organization and Transcription Regulation…

σ70
-35    -10

Growth phase 
transcripts

β
β'α

α

σ70responsive promoter

-35 - 10

Stationary phase 
transcripts

β
β'α

α

σSresponsivepromoter

σ70

σ70responsive promoter

6S RNA

X

σS

Pol III

Heat Shock

B2 RNA

mRNA

PIC

P
P

P
ol II

P
P

P
ol II

Abortive transcripts Elongating 

P
P

PIC

P
P

X

Paused Open PIC

a

b

  Fig. 15.1    ( a ) 6S RNA mimics open promoter complex. 6S RNA targets the speci fi city factor  s 70. 
in E. Coli during stationary phase and sequesters from the active polymerase complex and but not 
free  s 70 and hence, blocking transcription during stationary phase. On the other hand during sta-
tionary phase 6S RNA activates transcription at promoters requiring Enzyme-  s S complex essen-
tial for the survival of bacteria. ( b ) B2RNA docks with RNAP II Preinitiation complex and blocks 
transcription initiation. In response to heat shock, B2 RNA is transcribed by RNAP III which binds 
RNA docking site of RNAP II within the paused open preinitiation complex over the promoter 
prior to the formation of closed complexes. This event blocks the critical contacts between RNAP 
II and the promoter DNA, and also represses the CTD phosphorylation (depicted in  red  stars: 2 
stars and 4 stars:) by TFIIH thereby inhibiting the initiation of transcription by RNAP II       
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  Fig. 15.2    ( a ) 7SK RNA facilitates HEXIM mediated inhibition of P-TEFb. P-TEFb activates 
 transcriptional elongation by phosphorylating (depicted in  yellow  stars) C-Terminal Domain 
(CTD) of RNAP II. P-TEFb consists of a kinase CDK9 and cyclin T1 heterodimer along with 
Brd4. Upon stress, the 7SK snRNP is released from hnRNP complex and binds to P-TEFb thereby 
 abrogating its kinase activity and repression of transcription elongation. This inactivation of 
P-TEFb by 7SK RNA requires their association with other proteins namely HEXIM1 (hexamethyl-
ene  bisacetamide-induced protein 1) and LARP7 (La ribonucleoprotein domain family, member 7) 
which form the essential components of 7SK snRNP upon stress. 7SK acts as a scaffold to mediate 
the HEXIM1:P-TEFb interaction that in turn blocks transcription elongation. ( b ) U1snRNA associ-
ates with TFIIH and enhances the transcription initiation rate. U1snRNA binds directly to the 
cyclin-H subunit of TFIIH and stimulates the kinase activity of TFIIH to phosphorylate C-terminal 
domain (CTD) of RNAP II, thereby stimulating the rate of initiation       
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 U1snRNA: U1snRNA is approximately 160 nucleotide long ncRNA, transcribed by 
RNAP II. U1snRNA is one among the  fi ve small nuclear RNAs (snRNAs) U1-U6 
that exist in snRNPs. These snRNPs facilitate splicing by forming the spliceosome 
together with many other proteins (Kramer  1996 ; Burge et al.  1999 , for reviews). 
U1 snRNA has been shown to be associated with one of the general transcription 
factors TFIIH, thereby in fl uencing transcriptional initiation, a critical regulatory 
stage of gene expression. Speci fi cally it binds directly to cyclin-H subunit of TFIIH 
and stimulates kinase activity of TFIIH that phosphorylates C-terminal domain 
(CTD) of RNAP II. Association of TFIIH with U1snRNA stimulates the rate of 
initiation (rate of formation of  fi rst phosphodiester bond) by RNAP II (Fig.  15.2b ). 
Addition of 5 ¢  splice site adjacent to promoter stimulates reinitiation of transcription 
in TFIIH dependent manner indicating an important role for U1snRNA in transcriptional 
regulation by RNAP II apart from its well established role in RNA processing 
(Kwek et al.  2002  ) . 

 SRA RNA: The steroid receptor RNA activator (SRA) is approximately 700 nucle-
otide long natural ncRNA. It exists in ribonucleoprotein complexes and functions as 
transcriptional coactivators of several steroid-hormone receptors (Lanz et al.  1999  ) . 
Characterization of distinct RNA substructures within the SRA molecule reveals six 
RNA motifs critical for coactivation (Lanz et al.  2002  ) . It is not clear whether RNA 
motifs execute transactivation at the RNA level or in cooperation with RNA binding 
proteins. 

 HSR1: Heat-shock RNA-1 (HSR1) is a ncRNA which modulates the activity of heat-shock 
transcription factor 1 (HSF1) upon heat shock response. In response to heat-shock, 
HSF1 induces the expression of heat shock proteins. In unstressed conditions, 
HSF1 exist in an inactive monomeric form and upon activation they acquire trimer 
formation ability and DNA binding properties. HSR1 and translation elongation 
factor eEF1A (present as ribonucleoprotein complex) are required for HSF1 activa-
tion (Shamovsky et al.  2006  ) . eEF1A when free, is available for interaction with HSR1 
and HSF1 which as a complex can initiate the heat-shock response. HSR1–eEF1A 
complexes when formed would capture HSF1 released from the HSP90 complex 
and assist its assembly into trimers and/or increase the stability of HSF1 trimers 
which is considered as the active form, which triggers the transcription of heat shock 
responsive genes (Fig.  15.3a ).  

 NRON RNA: An RNAi based strategy employed to  fi sh out ncRNAs modulating 
the activity of nuclear factor of activated T cells (NFAT) led to the identi fi cation of 
NRON RNA (Willingham et al.  2005  ) . The nuclear factor of activated T cells 
(NFAT) refers to a family of transcription factors important in immune responses. 
These factors are sensitive to calcium signalling and upon activation calcineurin 
dephosphorylates NFAT resulting in its nuclear import essential for activating tran-
scription. NRON size ranges from 0.8 to 4 kb based on alternative splicing. NRON 
represses NFAT activity by regulating its nuclear traf fi cking probably with aid of 
various transport factors (Fig.  15.3b ). Thus, NRON ncRNA provides example of 
transcriptional regulation not via RNA-protein interactions or activity modulation 
of activator but through altering subcellular localisation of the latter. 
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 pncRNA: Cyclin D1 (CCND1) promoter is associated with lncRNAs (range in size 
between 200 and 400nt) which are induced in response to genotoxic factors like 
ionizing radiation (Wang et al.  2008  ) . The CCND1 pncRNA interacts with an RNA 
binding protein TLS (Translocated in Liposarcoma) and allosterically modify its 
activity such that this RNA-Protein interactions exert transcriptional repression by 
blocking the histone acetyl transferase (HAT) activity of CPB/p300 at the repressed 
CCND1 promoter. 

 NRSE dsRNA: Neuron-restrictive silencer element double-stranded RNA (NRSE 
dsRNA) shares sequence complementarity to promoter element that is bound by 
NRSF/REST (neuron-restrictive silencing factor/RE-1-silencing transcription factor). 
NRSF/REST is a repressor protein known to silence neuronal genes in non neuronal 
cells and restricts neuronal gene expression to neurons. NRSE is a small 20 bp 
double stranded RNA found to activate neural gene expression thus directing neu-
ronal lineage in stem cells (Kuwabara et al.  2004  ) . Interestingly, activation function of 
NRSE dsRNA is not via base pairing to promoter element with which it shares 
sequence homology. Rather, it interacts with NRSF/REST and converts this repres-
sor into transcriptional activator. It is proposed that this RNA:protein interaction 
might prevent association of NRSF/REST with other corepressor proteins thereby 
switching neuronal gene expression from repressed state in stem cells to activated 
state in differentiating cells. 

 piRNAs: Piwi-interacting RNAs (piRNAs) (24–30 nt) are yet another class of small 
regulatory RNAs whose functions are not fully understood. Piwi family proteins are a 
subtype of Argonaute proteins and forms RNA protein complex with piRNA. 
piRNA are found in both vertebrate and invertebrate class of animal kingdom. 
The best studied function of the piRNA pathway is shown in germline cells where 
it is involved in transcriptional silencing of retrotransposons (Aravin et al.  2007  ) . 
Unlike miRNAs and siRNAs, piRNA biogenesis does not involve Dicer or RISC. 
Not much is known about piRNA biogenesis however, recently it has been shown 
that a conserved primary piRNA biogenesis pathway that acts selectively on the 3 ¢  
UTRs of messenger RNAs having a functional role in gonadal and germline devel-
opment (Robine et al.  2009  ) . 

  Fig. 15.3    ( a ) HSR/HSF1/eEF1A trio complex induces transcription of heat shock responsive genes. 
In normal unstressed condition, HSF-1 exist in an inactive monomeric form along with the multi-
chaperone complex, while the translation elongation factor eEF1A (present in ribonucleoprotein 
complex) aid in translation process. Upon heat shock, the eEF1A is no more engaged in translation 
and so they are free to interact with the HSF1 pool and the HSR1-eEF1A complex could assist 
its assembly into trimers. The ncRNA HSR1 interact with eEF1A-HSF1 trimers to increase their 
stability and induce the expression of the downstream heat shock responsive genes. ( b ) NRON blocks 
NFAT shuttling and inhibits NFAT mediated transcription. In normal resting condition NFAT 
(nuclear factor of activated T cells) remains phosphorylated and associated with the ncRNA NRON 
as a complex. In response to TCR stimulation the calcium ion entry activates the phosphatase 
calcineurin. Calcineurin further dephosphorylates NFAT and exposes the NLS, resulting in its nuclear 
import essential for activating transcription. Further the cytoplasmic pool is restored upon phospho-
rylation by kinases like GSK3 b  and PKA         
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 rasiRNA : Repeat associated small interfering RNA (rasiRNA) is considered to be a 
subclass of piRNA and associate with both the Ago and Piwi Argonaute protein 
subfamily unlike piRNA which associates only with the Piwi Argonaute subfamily 
(Girard et al.  2006 ; Faehnle and Joshua-Tor  2007  ) . Like piRNAs, rasiRNAs are 
abundant in germline cells and function in silencing transposons and retrotrans-
posons as well as maintaining heterochromatin structure by controlling repeat 
sequences transcription (Matzke et al.  2004 ; Lippman and Martienssen  2004 ; Aravin 
and Tuschl  2005  ) . 

 NanoRNA: NanoRNAs are one among the most recently discovered class of functional 
small RNAs that are believed to affect gene expression through direct incorporation 
into a target RNA transcript rather than through a traditional antisense-based 
mechanism. These nanoRNAs were discovered in  Pseudomonas aeruginosa  as 2–4 
nt long oligonucleotides that function as primers for initiating transcription from a 
set of promoters (Goldman et al.  2011  ) . Still the exact molecular events of gene 
expression, regulatory role remains open for investigation.  

    15.4.4   lncRNAs in Genomic Imprinting 

 Genomic imprinting is an epigenetic phenomenon which restricts expression of 
some genes to one of the two parental chromosomes. So far more than 100 imprinted 
genes have been identi fi ed and most of them are clustered in large chromosomal 
domains. The allelic expression of imprinted genes is controlled by imprint control 
element (ICE). ICE is epigenetically modi fi ed by DNA methylation and histone 
modi fi cation to regulate the expression of imprinted genes. Only unmethylated ICE 
is active in inducing repression of  fl anking genes. ICE attains methylation during 
gametogenesis and this germline DNA methylation is established by de novo DNA 
methyltransferases DNMT3A/DNAMT3L (Bourc’his and Proudhon  2008  ) . 
Subsequent maintenance of methylation at ICE requires maintenance DNA methy-
latransferase DNMT1 (Hirasawa et al.  2008  ) . In addition, other protein factors 
(speci fi c for each ICE) also contribute to the establishment and maintenance of ICE 
methylation (Li et al.  2008  ) . Histone modi fi cations for methylated and unmethy-
lated ICEs are found different. In general, repressive marks like H3K9Me3, 
H4K20me3 are associated with DNA-methylated ICE and active marks like 
H3K4me and H3/H4 acetylation with those of unmethylated ICE. 

 The mechanism by which ICE is proposed to function is either by constituting an 
insulator region that prevents promoter enhancer interaction or by activating ncRNA 
transcription. As seen in the  Igf2  imprinted cluster, a methylation sensitive insulator 
in the ICE regulates its expression. The chromatin insulator protein CTCF (11-zinc 
 fi nger protein or CCCTC-binding factor) binds to unmethylated the ICE and prevents 
the communication between the enhancers downstream of the H19 gene and  Igf2  
promoters (   Kanduri et al.  2000a,   b ; Bell and Felsenfeld  2000 ; Hark et al.  2000  ) . 
DNA methylation of the ICE prevents CTCF binding and allows the enhancer- Igf2  
promoter communication to facilitate its transcription (Kanduri et al.  2001  ) . 
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 In most of the imprinted gene clusters there is at least one macro ncRNA gene. 
Some of the tested imprinted macro ncRNA have been shown to be indispensable 
for the imprinted expression of whole cluster (Pauler et al.  2007 ;    Braidotti et al. 
 2004 ). Macro ncRNAs are transcribed from unmethylated ICE. These RNAs possess 
some unusual features such as low intron/exon ratio i.e. reduced splicing potential, 
nuclear retention and accumulation at the site of transcription (Pandey et al.  2008 ; 
Braidotti et al.  2004 ; Terranova et al.  2008 ; Nagano et al.  2008  ) . ncRNA mode of 
regulation is seen more common in imprinted gene cluster expression in contrast 
to CTCF dependent chromatin insulation mechanism.  Igf2r  and  Kcnq1  imprinted 
clusters have been used extensively to investigate the role of macro ncRNAs in 
genomic imprinting.  Igf2r  cluster harbours four imprinted genes in about 500 kb 
region on chromosome 17: one macro ncRNA  Airn  is exclusively expressed on the 
paternal chromosome and three neighboring protein coding imprinted genes,  Ig2r , 
 Slc22a2  and  Slc22a3  expressed only from the maternal chromosome (Brandeis 
et al.  1993 ; Stoger et al.  1993 ; Lucifero et al.  2002  ) . The unmethylated ICE on the 
paternal chromosome serves as promoter for paternally expressed ncRNA,  Airn  
(Antisense Igf2r RNA) that overlaps  Igf2r  in antisense orientation.  Airn  ncRNA is 
about 108 kb long, unspliced and polyadenylated transcript. Targeted deletion of 
ICE, comprising  Airn  promoter, resulted in loss of silencing of all three neighboring 
genes on the paternal chromosome, indicating that  Airn  ncRNA plays important 
role in gene silencing (Wutz et al.  1997  ) . 

  Kcnq1  domain is a one mega-base imprinted domain containing 8–10 imprinted 
protein coding genes, which are exclusively expressed from the maternal chromosome, 
and one lncRNA  Kcnq1ot1  expressed from the paternal chromosome. Expression 
of  Kcnq1ot1  on the paternal chromosome is linked to silencing of the imprinted 
protein coding genes (Fitzpatrick et al.  2002 ; Kanduri et al.  2006 ; DiNardo et al. 
 2006  ) . However, on the maternal chromosome the imprinted protein coding genes 
are expressed due to silencing of  Kcnq1ot1  ncRNA promoter by CpG methylation. 
It has been shown that  Kcnq1ot1  itself mediates transcriptional gene silencing 
through interacting with chromatin remodeling machinery such as PRC2 complex 
members and G9a. Furthermore they are targeted speci fi cally to imprinted gene 
promoters in a tissue-speci fi c fashion thereby organizing higher order chromatin 
structure devoid of RNAP II (Pandey et al.  2008 ; Terranova et al.  2008  ) . 

 Several recent studies have linked differential ncRNA expression to developmental 
and tissue speci fi c expression of imprinted genes. One such study reveals that neurons 
do not show imprinted  Igf2r  expression due to lack of  Airn  ncRNA whereas, glial 
cells which express  Airn  ncRNA shows imprinting of  Igf2r  expression (Yamasaki 
et al.  2005  ) . Placenta is another example of tissue speci fi c imprinted expression. 
Several studies indicate the direct involvement of  Airn  and  Kcnq1ot1  macro ncRNAs 
in placental genes silencing.  Kcnq1ot1  physically localise to several silent genes 
lying away from promoter (Pandey et al.  2008  ) . It also interacts with polycomb 
group proteins and establishes repressive marks. Similarly  Airn  ncRNA bind to H3K9 
methyltransferase and lies in close proximity to silent  Slc22a3  promoter of  Igf2r  
cluster. Deletion experiments involving  G9a  and polycomb group proteins  EZH2  
and  RNF2  shows loss of placental tissue speci fi c imprinted expression in these clusters 
(Nagano et al.  2008 ; Terranova et al.  2008 ; Wagschal et al.  2008  ) .  
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    15.4.5   lncRNAs and X-chromosome Inactivation 

 A best known phenomenon involving the lncRNA is X-chromosome inactivation 
(XCI). XCI occurs in mammalian females to ensure equal X-linked gene products 
between two sexes. Inactivated X chromosome expresses a ncRNA called the inactive 
X-speci fi c transcript ( Xist ) that localizes and coats one of the X chromosome in 
cis and bring about gene silencing by establishing a higher order heterochromatic 
compartment. Recent studies have shown that  Xist  interacts with polycomb group 
proteins like  EZH2  which induces repressive marks like H3K27me and aid in gene 
silencing (Silva et al.  2003 ; Plath et al.  2003  ) . The mechanism by which these 
repressive chromatin modi fi ers are recruited to inactive X-chromosome is unknown. 
On the active X-chromosome,  Xist  is repressed and its repression is carried out by a 
long ncRNA,  Tsix  which overlaps  Xist  in antisense orientation (Wutz and Gribnau 
 2007  ) .  Tsix , unlike Xist, silences only the  Xist  promoter on the active X chromosome. 
However, the mechanisms by which  Tsix  speci fi cally regulates  Xist  repression is 
currently not clear.  Tsix  has also been shown to interact with epigenetic regulators 
such as polycomb proteins (Zhao et al.  2008  )  and DNA methyltransferases (Sun 
et al.  2006  )  and this interaction has been suggested to be crucial for the  Xist  repression 
on the active X chromosome.   

    15.5   ncRNA in Disease 

    15.5.1   An Overview 

 A wide variety of diseases have been discovered with altered expression or function 
of ncRNAs. Dyskeratosis congenita, Spinal muscular dystrophy, Autism, Alzheimer’s, 
miR96 associated Hearing loss and Prader-Willi syndrome are some of the diseases 
where the small RNPs like snRNAs, miRNAs and snoRNAs are altered. The 
Sm-class snRNPs are not properly assembled in spinal muscular dystrophy (Selenko 
et al.  2001  ) , and in dyskeratosis congenita mutations occur in telomerase RNA 
(Vulliamy et al.  2001  ) . Duplication of snRNA SNORD115 is associated with 
Autism. In Alzheimer’s disease. an antisense lncRNA (BACE1–AS) is implicated in 
increasing the steady state levels of its sense counterpart beta-secretase (BACE1) 
gene by enhancing its stability via masking certain crucial regulatory elements 
through sense and antisense interactions (Faghihi et al.  2008  ) . This results in 
increased cleavage of amyloid precursor protein into amyloid beta1-42 which is a 
critical component in Alzheimer’s disease. In case of Prader-Willi syndrome the 
paternal copies of the imprinted  SNRPN  and  Necdin  genes along with a cluster of 48 
 SNORD116  coding region are deleted (Cavaillé et al.  2000 ; Skryabin et al.  2007 ; 
Ding et al.  2008  ) . One other disorder where ncRNAs are implicated in the disease 
etiology is a rare forms of hearing disorder where the miRNA, miR-96 is aberrantly 
expressed (Lewis et al.  2009  ) . 
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 ncRNAs also mediate changes at an epigenetic level that ultimately contribute to 
certain disease etiology. In a rare form of  b -thalassemia, a translocation juxtaposes 
distantly located  LUC57L  in close proximity to the  a –globin gene  HBA2 . This 
results in transcriptional read through from the truncated  LUC57L  transcription unit 
and speci fi c methylation of  HBA2  gene thus causing transcriptional silencing of 
 HBA2  gene (Tufarelli et al.  2003  ) . BC1/BC200 an mRNA like ncRNA is known to 
be altered in the fragile X syndrome, where the loss of function of FMRP (fragile X 
mental retardation protein) occurs due to the absence of BC200 binding where the 
subsequent loss of translational repression of mRNAs in the post synaptic area 
of such patients (Zalfa et al.  2005  ) . Another related ncRNA which has ancestral 
similarity towards BC200 called as Psoriasis-related ncRNA (PRINS) (Sonkoly 
et al.  2005  )  that like BC200 possess two Alu repetitive sequences and was implicated 
in Psoriasis via the down-regulation of G1P3 (Szegedi et al.  2010  )  but the exact 
mechanism is still unkown. Recent reports have shown some SNPs within the non-
coding regions associated with certain disease conditions but the complex patterns 
of ncRNA expression makes it particularly dif fi cult to screen such SNPs (   Mattick 
 2009a,   b  ) .  

    15.5.2   ncRNA and Cancer 

 In the recent past there is an increasing appreciation in exploring the functional link 
between ncRNA expression pro fi les and cancer. Genome wide association studies 
(GWAS) have now shifted their focus towards miRNAs and lncRNAs’ expression 
patterns in various cancers. The evidences of altered ncRNAs are often correlated 
well with cancers to a great extent due to the statistically valid observations made 
from different geographic locations and gene pools. For some of the cancers, these 
ncRNAs presently, serve as markers for the diagnosis and scoring the treatment 
regime. snoRNAs, UCRs and miRNAs are some of the commonly reported class of 
ncRNAs used for such purposes in cancers (   Galasso et al.  2010a,   b,   c  ) . Numerous 
lncRNAs have been shown to be altered in multiple cancers. For further reference 
on the list of lncRNAs and the associated cancer type refer to table 3 in ref (recently 
reviewed by Gibb et al.  2011  )  and table 1 in a review by Mattick  (  2009a,   b  ) . T-UCRs 
(Transcribe ultraconserved Regions) are a class of ncRNA that have been reported 
to be altered in cancers like adult CLL, colorectal carcinoma, hepatocelluar carcinoma 
and few neuroblastomas where these RNAs are currently being used to predict the 
patient prognosis with greater con fi dence (Braconi et al.  2011  ) .  

    15.5.3   ncRNA and Therapeutics 

 As mentioned above, numerous ncRNAs have been implicated in the molecular 
pathogenesis of various human diseases, especially in cancer a special set of miRNAs 
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possess ongenic properties which are named as “OncomiRs”. Targeting these ncRNAs 
has always been a valid approach to contain such disorders. Unfortunately the existing 
information on the functional mechanism involving these ncRNAs is incomplete. 
The major obstacle for this lack of information is the technical dif fi culties faced 
by researchers while performing knock-down of the very few ncRNAs that have been 
distinctly correlated to a disease state using rigorous screening procedures. siRNA 
based knock-down does not hold good for ncRNAs but the LNA and PNA based 
AntagomiRs, and the recently developed synthetic ribozyme based enzymes that 
cleave speci fi c ncRNA population are showing encouraging results. Unfortunately 
the ef fi ciency of such molecules is poor. Also the delivery of these antagomiRs 
poses another level of complexity. Currently people are trying to solve the delivery 
issues using various vehicles like liposome conjugation, cholesterol conjugation, 
viral vector based infection and other transgenic and nanomaterial approaches 
(Galasso et al.  2010a,   b,   c  ) .   

    15.6   Outlook 

 The last decade has been a fruitful year for the investigations on noncoding portion 
of genome, which previously thought to represents a junk portion of the genome. 
With the development of several high throughput applications such as microarrays 
and massive parallel sequencing, it is realized that the majority of the noncoding 
portion of the genome is pervasively transcribed to encode several thousands of 
small and long transcripts. Though there is a discrepancy as to the extent of transcrip-
tion across noncoding portion of the genome, the evidence from several independent 
investigations provides support to the fact that noncoding transcripts are present 
in several thousands. Early estimates suggest that existence of about 28,000 lncR-
NAs and their number could grow well beyond the suggested number. Especially 
when we consider intronic, antisense and promoter associated transcripts. One of 
the major challenges associated with this huge number is that detailed physical, 
structural and functional characterization of each transcript. This will enable us to 
know the extent of transcriptional noise versus functional noncoding transcripts. 
Unlike protein coding RNA, lncRNA are expressed at very low level, thus posing a 
problem in functional annotation of lncRNAs. Hence there is a need for technologies 
to annotate lncRNAs expressed at low levels. Unlike small RNA mediated silencing 
pathways, lncRNA mediated silencing and activation pathways are ill de fi ned. Base 
pair interactions primarily de fi ne the speci fi city of small ncRNAs. Given the absence 
of sequence similarity between lncRNAs and their targets, it is not clear how 
lncRNAs speci fi cally activate or silence target genes. This is one of the outstanding 
questions that remain to be investigated. In the recent past, expression pro fi les of 
lncRNA in various cancers have been explored to identify potential prognostic 
and/or disgnostic markers. Like, small RNAs, lncRNAs show distinct expression 
pro fi les in various cancers. However, there is not much progress in the treatment of 
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cancers using ncRNAs as targets. Moreover, the molecular pathways by which 
lncRNAs induce pathogenesis are not well investigated. Hence the molecular 
pathways that are affected in response to aberrant expression of lncRNAs need to 
be well investigated in order to devise better intervention strategies using ncRNAs 
as targets. Detailed functional annotation of ncRNA transcription across the genome 
is required in order to realize the potential of ncRNAs in mammalian development 
and disease.      
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