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          4.1   Introduction    

 Traditional standardized standards-based assessments created by professional 
agencies and partially standardized standards-based assessments made by teachers 
for assessments at the end of a unit, chapter, or term can be reliable indicators of 
general states of pro fi ciency for groups of students. In short, they serve general 
monitoring and accountability purposes in selected key domains such as reading, 
mathematics, and science rather well. However, as Linn  (  1986  )  emphasized, they 
typically have very little or no instructional uses:

  a test that reliably rank orders students in terms of global test scores provides a teacher 
with relatively little information about the nature of a student’s weaknesses, errors, or gaps. 
For example, the knowledge that a student scores, say, in the 10th percentile on a standardized 
arithmetic test suggests the student has a general weakness in the area of arithmetic relative 
to his or her peers. However, such a score does not, by itself, indicate the source of the 
problem or what should be done to improve the student’s level of achievement; that is, it 
lacks diagnostic information. (p. 1158)   

 The seemingly increasing dissatisfaction in the  fi eld of education with the structure 
and potential uses of standardized standards-based assessments for guiding and 
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evaluating the students’  fi ne-tuned knowledge state motivated the development of 
more  diagnostic assessments . Diagnostic assessments play a key role in establishing 
an alignment between developmental theories about learning in a domain, curricular 
objectives as set forth by policy documents, teacher practice in the classroom, and 
actual learning gains made by students (e.g., Leighton and Gierl  2007,   2011  ) . 

    4.1.1   Assessment  Of ,  For , and  As  Learning 

 The current literature on modern educational measurement for diagnostic assess-
ment purposes makes a distinction between assessments  of ,  for , and  as  learning, 
which helps to differentiate the various layers of interpretations drawn from them 
and the diverse uses to which they are put (e.g., O’Reilly et al.  2008 ; Mok  2010  ) . 

 The phrase  assessment of learning  suggests that one purpose of assessments is to 
identify the achievement of the students at the end of a learning cycle to obtain a 
rich and suf fi ciently detailed picture of the degree to which students have met their 
targeted learning objectives. The information gathered from an assessment can sup-
port summative interpretations that allow for overall comparisons of how individual 
students perform relative to their peers. 

 The phrase  assessment for learning  suggests that the purpose of an assessment 
can also be to monitor the continual, ongoing learning process in order to provide 
directive and supportive feedback in a scaffolding process. The information is col-
lected to seek for answers as to what underlying mechanisms drive the problem-
solving strategies enacted by the students so as to make the learning process most 
ef fi cient, effective, and engaging for the students. 

 The phrase  assessment as learning  suggests that the purpose of assessment is to 
make students self-directed by improving their level of metacognition. The process 
of assessment thus induces the cultivation of a capacity for goal setting, self-moni-
toring of the learning process, self-assessment of achievement, self-motivation, and 
self-regulation to enhance further learning. 

 In terms of assessment for learning in particular, what many teachers seek to guide 
their day-to-day instructional practice are more  fi ne-grained descriptions of students’ 
pro fi ciency pro fi les, which are necessary to designing effective instructional inter-
ventions that make students ef fi cacious (i.e., ef fi cient and effective) in the targeted 
domains. Teachers continually collect potentially diagnostic information in informal 
or partially standardized ways on a daily basis. For instance, teachers may ask ques-
tions regarding what concepts or strategies students have mastered and which ones 
they are still struggling with; they may ask speci fi cally why some students do not 
understand a particular aspect of what they have taught in class, or they may inquire 
about whether it is necessary to create certain types of additional opportunities for 
practice in class. In short, teachers are constantly concerned with how they can con-
struct classroom environments which  fi t individual student’s current learning needs best.  
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    4.1.2   Measurement Models for Diagnostic Assessment Data 

 Traditional measurement models that can support inferences from summative 
assessments for quantitative rank-order purposes include predominantly models 
from the  fi elds of  classical test theory  (CTT) (e.g., Lord and Novick  1968 ; Crocker 
and Algina  2006  )  and  item response theory  (IRT) (e.g., de Ayala  2009 ; Yen and 
Fitzpatrick  2006  )  even though  factor-analytic  (FA) models (e.g., McDonald  1999  )  
can serve these purposes as well. However, the score reports created on the basis of 
data calibrations with these models are, at best, only partially useful for supporting 
more formative interpretations for qualitative diagnostic purposes. 

 Typically, CTT, IRT, and FA models are applied to large-scale standardized stan-
dards-based assessments of learning whose operational construct is de fi ned at a 
rather coarse level of cognitive grain size thus leading to relatively coarse descrip-
tions of students’ pro fi ciency levels in the target domain. In contrast,  diagnostic 
classi fi cation models  (DCMs) (e.g., Rupp and Templin  2008 ; Rupp et al.  2010  )  are 
models that are particularly suitable for large-scale standardized assessments for 
learning whose operational construct is de fi ned at a  fi ner level of cognitive grain size 
thus supporting more nuanced descriptions about students’ pro fi ciency pro fi les. 

 In this chapter, we present a few key ideas that are relevant to developing cogni-
tively diagnostic assessments for learning and scaling them with DCMs. Speci fi cally, 
in the next section, we present a key framework for principled assessment design 
that can be employed in powerful ways for developing cognitive diagnostic assess-
ments. In the section after that, we introduce a uni fi ed speci fi cation and estimation 
framework for DCMs and illustrate its utility for operationalizing different cogni-
tive theories of responding. In the  fi nal main section, we present a real-data analysis 
of a small section of a newly developed diagnostic mathematics assessment to illus-
trate how DCMs can be used for calibrating the instrument and classifying the stu-
dents into different pro fi ciency pro fi les.   

    4.2   Evidence-Centered Design 

 Some form of applied cognitive theory (e.g., in fl uenced by information-processing 
or socio-cognitive perspectives) is necessary to design any test whose items 
or tasks are supposed to re fl ect the essential knowledge, skills, and abilities that 
are to be measured (NRC  2001  ) . Arguably, the explicit focus on  fi ne-grained 
pro fi ciency pro fi les for students that can inform learning processes in an 
assessment for learning sense puts the explication and operationalization of 
applied cognitive theories at the forefront of diagnostic assessment design. 
In this chapter, we focus on an important design framework called  evidence-
centered design  (ECD). 
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       The ECD (   Mislevy et al.  2003 ,  2004  )  framework provides a formal structure 
for  evidence-based reasoning  that provides guidance to interdisciplinary teams of 
experts who are charged with developing a wide range of assessments for a wide 
range of purposes. Despite its generality, its power for structuring assessment 
development, implementation, and score reporting is arguably most evident for 
assessments that involve  complex performance-based tasks . The reason for this is 
that the number of decisions about designing tasks with appropriate constraints, 
identifying suitable task products, identifying individual pieces of evidence and 
scoring them, aggregating these scores with the help of modern statistical models, 
and reporting these scores back to students and stakeholders are much larger and 
arguably more complex in these contexts than in assessments that employ more 
selected-response formats. 

 The core purpose of diagnostic assessment development from an ECD framework 
perspective is the development of coherent  evidentiary arguments  in an  assessment 
narrative  about students that can serve as assessment of and assessment for learning, 
depending on the desired primary purpose of a particular assessment. The structure 
of the evidentiary arguments that are used in the assessment narrative can be 
described with the aid of terminology  fi rst introduced by Toulmin  (  1958  ) . 

 An evidentiary argument is constructed through a series of logically connected 
 claims or propositions  that are supported by data through  warrants  and  backing  and 
can be subjected to  alternative explanations . In diagnostic assessments, data consist 
of students’ observed responses to particular tasks and the salient features of those 
tasks, claims concern examinees’ pro fi ciency as construed more generally, and warrants 
posit how responses in situations with the noted features depend on pro fi ciency. Statistical 
models such as DCMs provide the mechanism for evaluating and synthesizing the 
evidentiary value in a collection of typically overlapping, often con fl icting, and some-
times interdependent observations. 

 In concrete terms, the ECD framework allows one to distinguish the different 
structural elements and the required pieces of evidence in narratives such as the 
following:

  Jamie has most likely mastered basic addition ( claim ), because she has answered correctly 
a mathematical problem about adding up prices in a supermarket ( data ). It is most likely 
that she did this because she applied all of the individual addition steps correctly ( backing ) 
and the task was designed to force her to do that ( backing ). She may have used her back-
ground knowledge to estimate the  fi nal price of her shopping cart ( alternative explanation ), 
but that is unlikely given that the  fi nal price is exactly correct ( refusal ).   

 The ECD framework speci fi es  fi ve different assessment design components, 
which are shown in Fig.  4.1  below.  

 Guided by the theory-driven process of analyzing and modeling the key facets of 
expertise in a domain, the core elements in the ECD framework include (1) the  student 
models , which formalize the postulated pro fi ciency structures for different tasks, 
(2) the  task models , which formalize which aspects of task performance are coded 
in what manner, and (3) the  evidence models , which are the psychometric models 
linking those two elements. These three core components are complemented by (4) 
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the  assembly model , which formalizes how these three elements are linked in the 
assessment, and (5) the  presentation model , which formalizes how the assessment 
tasks are being presented. 

 Speci fi cally, the  student model  is motivated by the learning theory that underlies 
the diagnostic assessment system. It speci fi es the relevant variables or aspects of 
learning that we want to assess at a grain size that suits the purpose of the diagnostic 
assessment. As many of the characteristics of learning that we want to assess are not 
directly observable, the student model provides a probabilistic or proxy model for 
making claims about the state, structure, and development of a more complex under-
lying system. This might concern a trait or a behavioral disposition in a traditional 
assessment. In more innovative diagnostic assessments in education such as a game 
or simulation, it could instead concern the models or strategies a student seems to 
employ in various situations, or the character or interconnectivity of his or her skills 
when dealing with certain kinds of situations in a discipline. 

 To make claims about learning as re fl ected through changes in the attributes in the 
student model, we thus have to develop a pair of  evidence models . The  evaluation 
component  of the evidence model speci fi es the salient features of whatever the 
student says, does, or creates in the task situation, as well as the rules for scoring, 
rating, or otherwise categorizing the salient features of the assessment. The  proba-
bility or   statistical component  of the evidence model speci fi es the rules by which 
the evidence collected in the evaluation is used to make assertions about the student 
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  Fig. 4.1    The ECD model (Adapted from Mislevy et al.  2004  )        
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model. This means that a suitable statistical model such as a DCM needs to be 
selected for summarizing observed information contained in indicator variables via 
statistically created, and typically latent, variables. The statistical model provides 
the machinery for updating beliefs about student model variables in light of this 
information. Taken together, evidence models provide a chain of inferential reason-
ing from observable performance to changes that we believe are signi fi cant in a 
student’s cognitive, social, emotional, moral, or other forms of development. 

 The  task model  provides a set of speci fi cations for the environment in which 
the student will say, do, or produce something. That is, the task model speci fi es the 
conditions and forms under which data are collected, and the variables in a task model 
are motivated by the nature of the interpretations the assessment is meant to support. 
Data collected in such models are not restricted to traditional formal, structured, 
pencil-and-paper assessments and can include information about the context, the 
student’s actions, and the student’s past history or particular relation to the setting. 

 The  assembly model  describes how these different components are combined for 
answering particular questions about learning in a given assessment situation. Using 
the analogy of  reusable design templates  within a task bank, the assembly model 
describes which task model, evidence model, and student model components are 
linked for a particular assessment or subsections of an assessment. The idea of a 
reusable design template is similar to the idea of automatic task generation within 
the general cognitive design system (e.g., Embretson,  1998 ) framework. However, 
rather than striving for an automatic generation, the ECD framework strives for 
principled construction under constraints that will result in tasks that are compara-
ble to one another, both substantively and statistically. 

 Similarly, the  presentation model  describes whether modes of task and product 
presentation change across different parts of the assessment and what the expected 
implications of these changes are. In practice, ECD models for a given assessment 
are constructed jointly and re fi ned iteratively because the full meaning of any model 
only emerges from its interrelationship with other components. 

 ECD has been successfully applied in different  fi elds.  PADI ,  ECDLarge  and 
 NetPASS  are comprehensive ongoing assessment projects that are based on ECD. 
Speci fi cally, PADI aims at developing assessments of science inquiry that combine 
new developments in cognitive psychology, science inquiry, as well as measurement 
theories and techniques (e.g., Mislevy and Riconscente  2005 ; see also   http://padi.
sri.com/index.html    ). ECDLarge is a successor to the PADI project that focuses on 
the application of the ECD framework to the development of large-scale assess-
ments (see   http://ecd.sri.com/index.html     for more information). The NetPASS proj-
ect is concerned, in part, with developing an authoring tool and simulation-based 
learning and assessment environment to train network engineers within the context 
of Cisco Networking Academy Program (e.g., Levy and Mislevy  2004 ; Mislevy 
et al.  2003 ; Rupp et al.  in press ; West et al.  2009 ; see also   http://cisco.netacad.net/
public/index.html    ). The set of applications cited here, taken together, illustrate the 
power of the ECD framework for developing a wide range of assessments that can 
support a wide range of inferences including  fi ne-grained diagnostic feedback for 

http://padi.sri.com/index.html
http://padi.sri.com/index.html
http://ecd.sri.com/index.html
http://cisco.netacad.net/public/index.html
http://cisco.netacad.net/public/index.html
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formative assessment purposes as well as more coarse-grained feedback for sum-
mative accountability purposes. 

 The previous presentation is not meant to suggest that individual teachers have to 
think about the ECD framework during their day-to-day practice. However, we believe 
that teachers may  fi nd the language, conceptualization, and key assessment principles 
embedded within the ECD framework quite accessible and useful for shaping their 
own professional understanding. The ECD framework can also be very powerful for 
professional development purposes at the district or state level because it provides a 
coherent frame for structuring evidentiary arguments about students in a common 
language. This is essential for developing effective diagnostic assessment systems 
where experts from different disciplines have to work together ef fi caciously. 

 Importantly, the ECD framework underscores, but does not overemphasize, the 
importance of the statistical models that are used in the evidence model component. 
Statistical models such as DCMs are tools for reasoning about patterns of behavior 
of students based on data patterns with differential weighting. However, the choice 
of how the behavioral patterns are modeled and, thus, which real-life elements are 
represented in a statistical model, is squarely in the hands of the diagnostic assess-
ment developer. The next section now discusses DCMs as a particular class of mod-
ern measurement models that can be useful for analyzing data from standardized 
diagnostic assessments.   

    4.3   Diagnostic Classi fi cation Models 

 Before beginning our discussion of DCMs, we want to reiterate that many modeling 
choices are driven by substantive considerations about the structure of desired 
evidence-based assessment narratives for students. That is, based on the desired 
level of precision at which a student characteristic is to be measured and interpreta-
tions are to be given as well as the real-life constraints imposed by the informational 
richness of the available data, diagnostic assessment designers have to decide which 
characteristics should be represented via variables in the DCM that is chosen for 
analysis. They need to decide which pieces of information are extracted from the 
complex performance of students and how these pieces of information are coded so 
that they can be used as input into the statistical models. The choice or construction 
of any statistical model thus emerges from a careful consideration of students, learn-
ing, situations, and theory; it does not or should not determine what interpretations 
should be or what observations must be limited to. 

 In this section, we introduce DCMs as a particular class of statistical models that 
can be useful for standardized diagnostic assessment processes. Speci fi cally, we 
 fi rst discuss key terminology, then describe a uni fi ed speci fi cation and estimation 
framework for DCMs, and  fi nally illustrate, using real data from a newly developed 
diagnostic assessment of elementary school mathematics, how one can estimate 
DCMs with a commercially available software program. 
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    4.3.1   Attributes, Attribute Pro fi les, and Q-matrices 

 The term  attribute  generically refers to unobservable (i.e., latent) characteristics of 
students. In DCMs, we will operationalize these characteristics using unobservable 
(i.e., latent) variables. We use the values on these latent variables to reason back-
wards about students’ mastery states on the attributes of interests based on students’ 
observed response patterns to diagnostic assessment items. The resulting pattern of 
attribute mastery states are known as  attribute pro fi les  in the literature; under an 
effective diagnostic assessment design, attribute pro fi les carry reliable information 
for making meaningful instructional decisions. 

 Once the targeted attributes and potential attribute pro fi les are determined based 
on an appropriate applied cognitive theory, the next step is to specify which attri-
butes are measured by each individual assessment item (i.e., which attributes are 
required by the students to obtain a maximum score on an item). The relationship 
between attributes and items is formally captured in a two-dimensional table known 
as a  Q-matrix  (Tatsuoka  1990  ) . In general, rows of the table correspond to items, 
columns of the table correspond to attributes, and entries in the table are typically 
binary (i.e., “0” or “1”), indicating which attributes are measured by which items. 

 There are a number of ways of constructing Q-matrices. In educational testing, 
Q-matrices may be constructed based on theories about learning in the domain tri-
angulated by experts’ judgment, empirical research, think-aloud protocols, factor 
analyses of existing tests, and other means of empirical validation (Buck and 
Tatsuoka  1998 ; Gierl et al.  2005  ) . To illustrate the structure of a Q-matrix in prac-
tice, we use an example scenario where  fi ve items measure four attributes in basic 
arithmetic ability; this matrix is shown in Table  4.1 .  

 According to this Q-matrix in Table  4.1 , item 2 and item 4 only measure one 
attribute, while item 1 and item 3 measure two attributes. Expressed reversely, only 
mastery of one attribute is required for item 2 and item 4 to get the maximum score 
on these items, while mastery of two attributes is required for the other two items. 

 Consequently, the attribute pro fi le (i.e., the mastery state on all attributes mea-
sured by the diagnostic assessment) of each student can be represented in the same 
way using binary indicators where “1” indicates that a student has mastered an attri-
bute, and “0” indicates that he or she has not. For instance, if a student has mastered 
only the  fi rst two attributes among the four attributes above, his or her attribute 
pro fi le can be represented as [1,1,0,0]. 

   Table 4.1    Exemplary Q-matrix   

 Item  Addition  Subtraction  Multiplication  Division 

 1  2 + 3 − 1  1  1  0  0 
 2  4/2  0  0  0  1 
 3  5 × 3 − 4  0  1  1  0 
 4  8 + 12  1  0  0  0 
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 Given the Q-matrix ( Q ) and a student’s attribute pro fi le (  a  ), an idealized response 
pattern (i.e., a response pattern that would be observed if the student responded 
without error) can be predicted through simple matrix algebra as follows:

     

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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 In this example, the student should respond correctly to item 1 and item 4 but 
not to item 2. It is not clear, however, whether or not this student would respond 
correctly to item 3 as he or she has only mastered one out of the two required 
attributes. Different DCMs are designed to operationalize different relationships 
between the mastery states on individual attributes and the probabilities of a certain 
response while allowing for imperfect responding due to random errors.  

    4.3.2   A De fi nition of DCMs 

 DCMs are statistical models that were developed to respond to the desire of diagnostic 
assessment developers to classify students in terms of their mastery states on individual 
attributes that constitute of their attribute pro fi les (for overviews see, e.g., DiBello 
et al.  2007 ; Rupp and Templin  2008 ; Rupp et al.  2010 ; Templin  2004  ) . Formally,

  Diagnostic classi fi cation models (DCMs) are probabilistic con fi rmatory multidimensional 
latent variable models. Their loading structure / Q-matrix is typically complex to re fl ect 
within-item  multidimensionality, but may also be simple. DCMs are suitable for modeling 
observable reponse variables (i.e., dichotomous, polytomous) and contain unobservable 
latent categorical predictor variables (i.e., dichotomous, polytomous). The predictor vari-
ables are combined in compensatory and non-compensatory ways to generate latent classes. 
DCMs enable multiple criterion-referenced interpretations and associated feedback for 
diagnostic purposes, which is typically provided at a relatively  fi ne grain size. This feed-
back can be, but does not have to be, based on a theory of response processing grounded in 
applied cognitive psychology. (Rupp et al.  2010 , p. 108)   

 The literature is replete with DCMs that differ in the number of parameters that 
they contain for items and attributes and the types and numbers of restrictions they 
place on these parameters; in other words, the  fl exibility with which they can handle 
various data structures. Rather than listing all of these models here, we refer to the 
overview sources cited earlier for detailed descriptions of these models. More 
importantly, current theory and practice has evolved to the point where many DCMs 
can now be parameterized as special cases of more general modeling families. 

 The three most common families in the literature are the  log-linear cognitive 
diagnosis model  (LCDM) framework by Henson et al.  (  2009  ) , the  general diagnostic 
model  (GDM) framework by von Davier  (  2005,   2010  ) , and the generalized 
deterministic inputs, noisy “and” gate (G-DINA) model by de la Torre  (  2009  ) . For the 
purposes of this chapter, we will use the LCDM framework and refer to the chapter by 
de la Torre (Chap.   5    , this    volume) for an overview of the G-DINA model framework.  

http://dx.doi.org/10.1007/978-94-007-4507-0_5
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    4.3.3   The LCDM Framework 

 As the GDM and G-DINA frameworks, the LDCM framework is a uni fi ed frame-
work for the speci fi cation and estimation of DCMs. Its development was based on 
 fi nite mixture models (e.g., McLachlan and Peel  2000  ) , log-linear models (e.g., 
Agresti  2010  ) , and generalized linear and latent mixed models (e.g., Skrondal and 
Rabe-Hesketh  2004  ) . In the following, we will focus on the simplest case of an 
LCDM, which concerns binary item scores (i.e., “1” for a correct response and “0” 
for an incorrect response), binary attribute mastery states (i.e., “1” for a mastered 
attribute and “0” for a non-mastered attribute), and binary Q-matrix entries (i.e., “1” 
for an attribute that is measured by an item and “0” otherwise); extensions are rela-
tively easily speci fi ed and estimated. 

    4.3.3.1   Model Speci fi cation 

 In the LCDM, the probability of a correct response as a function of attribute mastery 
states is de fi ned as

     ( ) ( )
( )

0

0

exp ,
,

1+exp ,

⎡ ⎤λ⎣ ⎦= =
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q
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j j j

ij i j

j j i j

P Y
i+ h

1 ,
+ h
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a

l¢ a    (4.1)  

where  i  and  j  denote student and item, respectively;    λ0 j   is an intercept and     jl    
represents a vector of coef fi cient indicating the effects of attribute mastery on the 
response probability for item  j , and     ( , )i jh qa   is a set of linear combinations of the 
attribute mastery indicators     ia    and the Q-matrix entries     jq   . Speci fi cally, the kernel 
of the above expression has the following general form:

     ( ) ( ) ( )0 0
1 1

,
k k

j j i j j ju k ju juv u v ju jv
u u v u

h q q q
= = >

+ = + + +∑ ∑∑q �λ λ λ α λ α αl a    (4.2)  

which is similar to the structure of factorial analysis of variance (ANOVA) models. 
 The intercept can be interpreted as a  guessing parameter  because it re fl ects the 

probability of providing a correct response for those students who have not 
mastered any attributes – this is the lowest probability for any attribute pro fi le. 
The   l   

 ju 
  parameters represent the main effects of each attribute on the response 

probability for item  j , and the   l   
 juv 

  parameters represent the two-way interaction 
effects of the combination of the mastery states of attributes  u  and  v  on the 
response probability for item  j ; higher-order parameters are de fi ned likewise with 
aligned meanings. In other words, the speci fi cation of the kernel follows the 
speci fi cation of factorial ANOVA models with intercept, main-effect, and 
interaction-effect parameters. 

 Depending on how many attributes are included in the item, the LCDM can 
include main effects for each attribute, two-way and three-way interactions among 
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attributes, and so forth. Simulation studies (Kunina-Habenicht, Rupp, and Wilhelm, 
 2012 ; Choi et al.  2010  )  have shown that interaction-effect parameters require very 
large sample sizes for reliable estimation, however, so that main-effect parameter 
speci fi cations are probably most appropriate for most practical contexts. 

 To illustrate the general expression for the LCDM with a concrete example, 
consider the Q-matrix from Table  4.1 . Since item 1 measures attribute 1 and 
attribute 2,  q  

11
  =  q  

12
  = 1, while  q  

13
  =  q  

14
  = 0. Consequently, the probability of a correct 

response for item 1 takes the form

     ( )( ) ( )
( )
10 11 1 12 2 112 1 2

1
10 11 1 12 2 112 1 2

exp
1 | , 1,1,0,0 ,

1 expi iP Y
+ + +

= = =
+ + + +

q
λ λ α λ α λ α α

λ λ α λ α λ α α
a    (4.3)  

with the exact probability values for each attribute pro fi le (i.e., each combination of 
attribute mastery states for attribute 1 and attribute 2) depending on the values of the 
item parameters   l   

10
 ,   l   

11
 ,   l   

12
 , and   l   

112
 , which need to be estimated in practice from 

the student response data.  

    4.3.3.2   Illustrative Special Cases 

 As the response probability for this item is in fl uenced by the mastery states on two 
attributes, we can ask several questions: What is the response probability for stu-
dents who have mastered only one attribute out of two? Does mastering attribute 1 
have a bigger impact on the response probability than mastering attribute 2? Is there 
an additional effect on the response probability for mastering both attributes once 
one of them has already been mastered? 

 These questions can be answered empirically either by specifying the most gen-
eral DCM in Eq.  4.2  and inspecting the values of the resulting parameter estimates 
a posteriori or by specifying speci fi c DCMs that re fl ect different hypotheses in 
alignment with these three questions a priori. To illustrate the  fl exibility of the 
LCDM framework, we discuss particular DCMs that would result from such a priori 
speci fi cations in the following. 

 For the  fi rst scenario, if the DCM is supposed to re fl ect the assumption that both 
attributes need to be mastered to provide a correct response, then Eq.  4.3  can be 
modi fi ed as follows:

     ( )( ) ( )
( )
10 1 2 112 1 2

1
10 1 2 112 1 2

exp (0) (0)
,1 | , 1,1,0,0

1 exp (0) (0)i iP Y
+ + +

= = =
+ + + +

q
λ α α λ α α

λ α α λ α α
a    (4.4)   

 Here, the main effects for attribute 1 and attribute 2 are set to 0, and only the 
intercept and interaction effect take on non-zero values. Thus, the response 
probabilities for this item are identical for students who have not mastered any of 
the two or only one of the two measured attributes. This model is referred to as 
the  deterministic input ,  noisy “and” gate  (DINA) model in the literature and 
substantively re fl ects a situation where the mastery of a subset of attributes cannot 
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compensate for the lack of mastery of any other attribute(s) that is not mastered 
by a student but measured by an item (e.g., Junker and Sijtsma  2001 ; de la Torre 
 2009  ) . In substantive terms for our simple example, this model re fl ects the 
assumption that students are not likely to solve item 1 if they have not mastered 
both addition and subtraction. 

 For the second scenario, consider the case where an item can be solved when 
only one of several attributes has been mastered. For example, suppose that students 
are asked to determine the interior angle of a regular pentagon. Some students may 
draw a picture to determine how many triangles there are in a pentagon. Once they 
 fi gure out that there are three triangles inside the pentagon, the answer becomes 
180 * 3 = 540 because the interior angle of a triangle is 180. Others may solve the 
same question using the analytic knowledge that for any regular polygon, the sum 
of the interior angles = 180( n  − 2) where  n  is the number of sides. Since a pentagon 
has  fi ve sides, 180(5 − 2) = 540. If both strategies were coded as attributes that this 
item measured, then mastering both attributes does not increase the probability of a 
correct response. 

 For this situation, Eq.  4.3  can be modi fi ed as follows:

     ( )( ) ( )
( )
10 1 1 1 2 1 1 2

1
10 1 1 1 2 1 1 2

exp ( )
,1 | , 1,1,0,0

1 exp ( )i iP Y
+ + + −

= = =
+ + + + −

q
λ λ α λ α λ α α

λ λ α λ α λ α α
a    (4.5)  

where the probability of getting a correct answer for those who possess the 
knowledge about triangles, those who have mastered analytic knowledge, or those 
who know both is the exactly same. This model is referred to as the     deterministic 
input ,  noisy “or”gate  (DINO) model in the literature and re fl ects the assumption that 
mastery of subset of attribute can compensate for the lack of mastery of other 
attribute(s) (e.g., Templin and Henson  2006  ) . 

 For the third scenario, consider the case where the probability of getting a correct 
response to an item increases as the number of mastered attributes increases. For 
example, suppose that a reading comprehension item with a passage regarding 
physics is presented to students. The impact of understanding the meaning of a cer-
tain vocabulary in the text and knowledge of syntactic structure may be additive on 
the probability of students’ correct answer. 

    In this case, Eq.  4.3  can be modi fi ed as follows:

     ( ) ( )
( )
10 11 1 12 2 1 2

1
10 11 1 12 2 1 2

exp (0)
1 | , ,

1 exp (0)i i jP Y
+ + +

= =
+ + + +

q
λ λ α λ α α α

λ λ α λ α α α
a    (4.6)  

where the interaction effect sets to zero, indicating no additional effect of mastering 
both attributes. This model is referred to in the literature as the compensatory 
reparameterized uni fi ed model (C-RUM) (e.g., Hartz  2002 ; Roussos et al.  2007  )  
and also re fl ects the assumption that mastery of a particular attribute can compen-
sate for the lack of mastery of any other attribute, albeit not as strongly as in the 
DINO model for scenario two above.   
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    4.3.4   Estimating DCMs via the LCDM Framework 

 To date, there exist no speci fi c software programs that are designed to specify and 
estimate DCMs within a user-friendly GUI environment. In the past, researchers 
have typically written their own estimation codes. For instance, the commercially 
available  Arpeggio  program (  www.assess.com    ) was originally developed speci fi cally 
for the RUM/Fusion model and requires sophisticated knowledge of Bayesian esti-
mation for reliable use, the code for the G-DINA model was written in the program-
ming language Ox (  http://www.doornik.com/    ) and is still under development, and 
the program MDLTM for the GDM (von Davier  2006  )  originally relied on a syntax 
interface and is available as a research license only. 

 However, since DCMs are special cases of restricted latent class models, they 
can be estimated within any commercial program for latent class models that allows 
for the imposition of parameter constraints if a uni fi ed framework like the LCDM is 
used. For example, Choi et al.  (  2010  ) , Templin et al.  (  2011  ) , Kunina-Habenicht 
et al   . (2010), and Rupp et al.  (  2010  )  have demonstrated how DCMs can be speci fi ed 
and estimated in M plus . In the following section, we present an additional example 
based on the data from Kunina et al.  (  2010  ) .   

    4.4   Illustrative Extended Example 

    4.4.1   Data Description and Q-matrix 

 The  diagnostic mathematics assessment  (DMA) that is the focus of this example 
was developed to provide information on basic arithmetic ability for students in the 
3rd and 4th grades in Germany (Kunina-Habenicht et al.  2009 ; 2010). Test items 
were constructed to measure several basic arithmetic skills such as addition, sub-
traction, multiplication, division, executing inverse operation, executing carry over, 
solving word problems, and converting measurement units. The original item pool 
consisted of 70 items and was administered to a sample of 2,032 4th grade students 
in different schools in Germany in 2008 using a complex booklet design (Frey et al. 
 2009  ) . For illustration purposes, we analyzed only a subset of 20 items, which 
re fl ected the structure of the Q-matrix of the original item pool. 

 Even though several  fi ne-grained skills were originally de fi ned and used in the 
item development process, Kunina-Habenicht et al. (2010) found that a Q-matrix 
with four attributes was most strongly supported when various FA models and 
DCMs were used for data analysis. The four resulting attributes were addition/sub-
traction (A/S), multiplication/division (M/D), modeling (model), and converting 
units (units); Table  4.2  shows the Q-matrix for our example using the same attribute 
de fi nitions. As shown in Table  4.2 , items 1–10 measure one attribute, while items 
11–20 measure two attributes.   

http://www.assess.com
http://www.doornik.com/
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    4.4.2   Model Selection and Item Parameter Estimation 

 For illustration purposes, we  fi t the four different DCMs to this data set that we 
discussed in the previous section, namely, the full LCDM, the DINA, the DINO, and 
the C-RUM. Recall that, for items that measure two attributes, the full LCDM model 
includes both main-effect parameters and the interaction-effect parameter; the 
DINA model contains only the two-way interaction-effect parameter; the DINO 
model contains both main-effect parameters and a negative two-way interaction-
effect parameter, all constrained to equality; and the C-RUM contains only main-
effect parameters. Thus, the full LCDM is the most  fl exible model, while the DINA 
model is the most restrictive model with the remaining two models representing 
special intermediate cases. All models were estimated in Mplus 6.0 (Muthén and 
Muthén  1998 –2010). 

 After  fi tting the four competing models, relative model  fi t indices were used to 
determine the best- fi tting model. We used  Akaike ’ s information criterion  (AIC) 
(Akaike  1974  )  and Schwarz’s  (  1978  )   Bayesian information criterion  (BIC) that 
were provided in the output  fi les. As is typical in practical applications, AIC and 
BIC did not always agree about the best- fi tting model because they penalize differ-
entially strong for the parametric complexity of the  fi tted models and sample size. 
As shown in Table  4.3 , the AIC suggested that the C-RUM was the best- fi tting 
model, while the BIC suggested that the DINA was the best- fi tting model; accord-
ing to the AIC, the full model is a close competitor to the C-RUM.  

   Table 4.2    Q-matrix of diagnostic mathematics assessment (DMA)   

 Item  A/S  M/D  Model  Units 

 1  1  0  0  0 
 2  1  0  0  0 
 3  1  0  0  0 
 4  1  0  0  0 
 5  0  1  0  0 
 6  0  1  0  0 
 7  0  1  0  0 
 8  0  1  0  0 
 9  0  0  1  0 

 10  0  0  1  0 
 11  0  1  1  0 
 12  0  1  1  0 
 13  0  1  1  0 
 14  0  1  1  0 
 15  1  0  0  1 
 16  1  0  0  1 
 17  1  0  0  1 
 18  1  0  0  1 
 19  1  0  0  1 
 20  1  0  0  1 
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 Which models one chooses does not matter for items 1–10 because those items 
measure only one attribute, but it matters for items 11–20 because they measure 
two attributes. To see the impact of choosing either the DINA or the C-RUM models 
for those items, we present the estimated model parameters for all 20 items in 
Table  4.4 .  

 Since parameter estimates are on the logit scale and it is easier to think in terms 
of response probabilities, it is insightful to look at the difference in response prob-
abilities for students with different attribute pro fi les under different models. Due to 
space limitations, we present here the corresponding response probabilities for item 
11 in Table  4.5 . As only the two attributes M/D and model were required for this 
item, only the mastery states for these two attributes in fl uence the resulting response 
probabilities.  

   Table 4.3    Results of  fi t indices for model selection   

 DINA  DINO  C-RUM  FULL 

 AIC  19352.16  19359.94   19314.87   19316.85 
 BIC   19649.06   19656.84  19665.75  19721.71 
 Number of parameters  55  55  65  75 

  Boldfaced entries indicate model with the smallest information criterion value     

      Table 4.4    Item parameter estimate from two models   

 Item 

 DINA  C-RUM 

 Intercept 

 Main effect  Interaction effect 

 Intercept 

 Main effect 

 A/S  M/D  Model 
 (M/D) × 
(Model) 

 (A/S) × 
(Units)  A/S  M/D  Model  Units 

 1  −0.74  2.28  −0.60  2.33 
 2  −1.09  2.40  −0.99  2.53 
 3  0.09  1.87  0.17  1.98 
 4  0.42  1.98  0.51  2.07 
 5  −2.08  2.67  −1.95  2.69 
 6  0.37  1.92  0.42  2.04 
 7  −0.26  2.85  −0.19  3.18 
 8  −0.94  3.00  −0.81  3.14 
 9  −1.85  2.04  −1.73  1.97 
 10  −1.46  2.01  −1.40  2.05 
  11    −1.69    1.91    −1.90    0.43    1.80  
 12  −2.18  2.72  −2.46  0.98  2.16 
 13  −1.18  1.79  −1.39  0.34  1.81 
 14  −2.76  2.63  −3.00  1.74  1.25 
 15  −0.67  1.92  −1.05  1.19  1.70 
 16  −1.92  2.73  −2.62  1.81  2.52 
 17  −0.70  2.09  −1.11  1.40  1.65 
 18  −0.32  1.82  −0.62  0.85  1.94 
 19  1.16  1.12  0.98  0.99  0.46 
 20  −2.17  2.17  −2.63  1.84  1.15 

  The item used for illustrative computations is shown in boldface     
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 As can be shown in Fig.  4.2 , these response probabilities were computed as 
follows. The response probability for students with different attribute pro fi les under 
the DINA model for item 11 is

     
( ) ( )

( )
−

= = =
+ −11

exp 1.69
1 0.16,

1 exp 1.69
P Y

   

for those who have not mastered any or only one of the two measured attributes, 
while the response probability for those who have mastered both measured 
attributes is 

     
( ) ( )

( )
− +

= = =
+ − +11

exp 1.69 1.91
1 0.55.

1 exp 1.69 1.91
P Y

    

 The response probability for students with different attribute pro fi les under the 
C-RUM model for item 11 is

     

( )
( )11

exp 1.90
( 1) 0.13.,

1 exp 1.90

−
= = =

+ −
P Y

   

for those who have not mastered either measured attribute,

     
( ) ( )

( )
− +

= = =
+ − +11

exp 1.90 0.43
1 0.19,

1 exp 1.90 0.43
P Y

   

for those who have mastered only one M/D,

   Table 4.5    Probability of a correct answer for item 11   

 Attribute     Model 

 A/S   M/D    Model   Units  DINA  C-RUM 

 0   0    0   0  0.16  0.13 
 0   0    0   1  0.16  0.13 
 0   0    1   0  0.16  0.48 
 0   0    1   1  0.16  0.48 
 0   1    0   0  0.16  0.19 
 0   1    0   1  0.16  0.19 
 0  1  1  0  0.55  0.58 
 0  1  1  1  0.55  0.58 
 1  0  0  0  0.16  0.13 
 1  0  0  1  0.16  0.13 
 1  0  1  0  0.16  0.48 
 1  0  1  1  0.16  0.48 
 1  1  0  0  0.16  0.19 
 1  1  0  1  0.16  0.19 
 1  1  1  0  0.55  0.58 
 1  1  1  1  0.55  0.58 

  Latent classes with identical probabilities are shown in identical shades of grey     
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  Fig. 4.2    Probability of a correct answer from each attribute pro fi le for item 11       

     
( ) ( )

( )
− +

= = =
+ − +11

exp 1.90 1.8
1 0.48,

1 exp 1.90 1.8
P Y

   

for those who have mastered only model and for those who have mastered both 
measured attributes,

     
( ) ( )

( )
− + +

= = =
+ − + +11

exp 1.90 0.43 1.8
1 0.58.

1 exp 1.90 0.43 1.8
P Y

    

 These probability computations illustrate nicely how the C-RUM allows for a  fi ner 
differentiation between students with different attribute pro fi les than the DINA 
model in terms of their resulting response probabilities. It is also worth noting that, 
for both models, the response probabilities for students who have not mastered any 
attributes are non-zero because the estimates of the intercept parameters are non-zero.  

    4.4.3   Reporting Attribute Pro fi les for Groups of Students 

 The primary purpose of DCMs is to classify students into one of a number of 
prespeci fi ed attribute pro fi les that correspond to sequences of mastery states on the 
attributes measured by the diagnostic assessment. Table  4.6  and Fig.  4.3  illustrate 
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   Table 4.6    Distribution of attribute pro fi les   

 A/S  M/D  Model  Units  Proportion (%) 

 0  0  0  0  30.4 
 0  0  0  1  6.2 
 0  0  1  1  3.4 
 0  1  1  1  2.7 
 1  0  0  0  5.7 
 1  0  1  0  4.4 
 1  1  0  0  11.2 
 1  1  1  0  6.8 
 1  1  1  1  27.7 
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  Fig. 4.3    Attribute pro fi les in sample ( left ) and inferred relationship among attributes ( right )       
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how one could display the distribution of attribute pro fi les for the DMA in our 
example. Note that with four attributes that are de fi ned in terms of mastery and non-
mastery, there exist a total of 16 possible attribute pro fi les; however, empirically, 
only nine attribute pro fi les were populated for these data. Figure  4.2  clearly shows 
that students predominantly belonged to the two attribute pro fi les that re fl ected the 
lack of mastery of all attributes (30%) and the mastery of all attributes (28%). 
Moreover, 11% of students were classi fi ed as having mastered the  fi rst two attri-
butes (A/S and M/D), and about 7% of students were classi fi ed as having mastered 
the  fi rst three attributes.   

 These results gently suggest what is known in the literature as a  linear attribute 
hierarchy  where the basic arithmetic skills (addition, subtraction, multiplication, 
division) seem to be mastered before the modeling and unit knowledge skills. 
However, it needs to be remembered that such inferences are tentative at best 
because (a) the current data are cross-sectional and not longitudinal in nature, mak-
ing developmental claims inappropriate, (b) several attribute patterns have similarly 
low membership probabilities associated with them, and (c) no additional validation 
results are presented here. 

 The item parameters and distribution of attribute pro fi les can be interesting for 
those who are in charge of test development and require summative statements of 
students’ pro fi ciencies in the assessment of learning sense, while reporting about 
each student’s attribute pro fi le may be more useful for teachers, students, and par-
ents to support assessment for learning.  

    4.4.4   Reporting Attribute Pro fi les for Individual Students 

 To illustrate how report cards for individual students could be constructed, we show 
here the attribute pro fi les for selected students in Table  4.7 . First, for each student, 
each column indicates the probability that a student should be classi fi ed as having 
each of the nine empirically observed attribute pro fi les, while the last four columns 
show the probabilities that each student possesses each of the four attributes that are 
measured by the test separately. For example, the  fi rst student is classi fi ed as having 
mastered attributes A/S and M/D but neither model nor units. This can be seen in the 
high probabilities of mastery for the  fi rst two attributes, which are 0.92 and 0.85, 
respectively, and the low probabilities of mastery for the last two attributes, which 
are.15 and.01, respectively. It can also be seen in the fact that his or her probability 
for the attribute pro fi le [1,1,0,0] is considerably higher at.72 than the probability for 
any of the other eight attribute pro fi les.  

 At the same time, note how there can be challenges in reliably classifying indi-
vidual students. The second student has a probability of mastery of .55 for the  fi rst 
attribute but is nevertheless classi fi ed as having mastered none of the attributes in 
the pro fi le with a probability of .33. This probability is rather low, however, com-
pared to the highest probability for the  fi rst, third, and fourth students and is rela-
tively close to the probability for the attribute pro fi le where only the  fi rst attribute 
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is mastered. In practice, it would not be advisable to use this student’s classi fi cation 
for high-stakes decision-making, but it may still be useful to suggest to the student 
additional practice on all attributes with a particular emphasis on the last three. 

 Based on the classi fi cation probabilities shown in Table  4.7 , one can create  diag-
nostic report cards  for each individual student; Fig.  4.4  shows a sample report card 
for the  fi rst student and a class, respectively.  

 This card shows a total score that expresses how well a student,  fi ctitiously 
named Thomas, did on the assessment overall and also his mastery states for each 
attribute that can inform him of his strengths and weaknesses in particular areas if 
he is taught how to read this information well.   

  Fig. 4.4    Exemplary report card for each student ( top ) and for each class ( bottom )       
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    4.5   Conclusions 

 Developments in the areas of diagnostic assessment design, from a procedural 
perspective, and DCMs, from a statistical perspective, have the potential to lead to 
well-aligned large-scale diagnostic assessment systems that can yield more  fi ne-
tuned and more instructionally relevant information about students’ strengths and 
weaknesses. In particular, this can be useful as assessment for learning as well as 
assessment as learning. Nevertheless, it is important to note a variety of caveats. 

 Substantively, what is crucially needed is a focus on long-term investigations of 
student progress similar to innovative work in performance-based science assess-
ment (e.g., Thadani et al.  2009  ) . Since education is an ongoing process in class and 
monitoring students’ growth is one of the primary tasks of teachers, diagnostic 
assessment needs to be carried out with a longitudinal perspective of an assessment-
intervention cycle. 

 Statistically, because of the complexity of the desired diagnostic inferences 
and the resulting parametric complexity of DCMs, the design requirements for 
diagnostic assessments are high. On the one hand, it is crucial that every effort be 
put into place to ensure that calibrations of resulting response data yield reliable 
pro fi les on multiple attributes (i.e., separable statistical dimensions). This requires 
longer assessments in general because suf fi cient information is needed for each 
attribute to achieve a reliable statistical classi fi cation with DCMs. However, the 
amount of required statistical information is somewhat smaller than when traditional 
models from multidimensional IRT or FA are used due to the discrete nature of 
classi fi cations   . On the other hand, this requires data from hundreds or thousands of 
students per assessment item because item parameters need to be estimated reliably 
in preoperational settings. Once diagnostic assessments have been calibrated with 
DCMs, however, it is much easier to score future generations of students with these 
assessments. 

 In the end, DCMs are just statistical tools that serve a larger purpose of creating 
a defensible evidence-based assessment narrative about students. Since the 
speci fi cation of DCMs is still relatively tedious, a wider implementation of these 
models will probably also not take place unless more user-friendly software is made 
available. We also want to underscore that they are also not the only models that can 
be used for diagnostic assessment purposes as the special issue of the  Journal of 
Educational Measurement  in 2007 demonstrated. For example, multidimensional 
models from IRT (e.g., Reckase  2009  )  or FA (e.g., McDonald 2009), as well as 
cluster analysis methods (e.g., Gan et al.  2007 ; Steinley  2006  ) , may provide reason-
able alternatives even though they result in multiple continuous scales rather than 
discrete attribute pro fi les. IRT and FA models in particular have been in use much 
longer than DCMs and are, thus, generally more strongly trusted by interdisciplin-
ary specialists. Cluster analysis models have a similarly long history in the social 
and behavioral sciences and are computationally more ef fi cient than DCMs. Thus, 
they represent attractive modeling alternatives for day-to-day implementations of 
diagnostic assessments (see Nugent et al.  2009,   2010     ) .      
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