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          3.1   Introduction 

 Enhancing formative diagnostic assessment is a clear current trend in educational 
testing. Such assessment allows determining speci fi c levels of acquisition of knowledge 
and skills and provides  fi ne-grained diagnostic information about strengths and 
weaknesses of a particular learner. Teachers are encouraged to use more formative 
assessments throughout their courses to inform their classroom instruction. 

 In a major report on educational assessment, Pellegrino et al.  (  2001  )  emphasized 
that cognitive theories should be the cornerstone of the assessment design process 
directed toward evaluating students’ schematic knowledge structures. Cognitive 
models of speci fi c domains are usually based on task analyses, expert interviews, 
and verbal protocols of thinking processes and identify cognitive attributes required 
for successful learning and performance in these domains. The need for using 
cognitive theories of learning and models of expertise as foundations for the design 
of assessment has been recognized by many educational testing theorists (Embretson 
 1993 ; Mislevy  1996 ; Pellegrino et al.  1999 ; Pirolli and Wilson  1998 ; Snow and 
Lohman  1989 ; Tatsuoka  1990  ) . 

 Cognitive diagnostic assessment is aimed at providing ongoing information 
about students’ mastery of speci fi c cognitive processes and operations required 
for learning and performing particular types of tasks. It combines cognitive models 
of corresponding domains and statistical models of students’ response patterns. 
Empirical evidence shows that cognitive diagnostic assessment is capable of 
maximizing students’ learning outcomes (e.g., Russell et al.  2009  ) . 

 However, testing learners continuously without interfering with their learning is 
a challenging task. Testing time could not be increased considerably as it would 
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inevitably reduce instruction time. Traditional standardized multiple-choice tests 
are rather time consuming and not always represent the best way of diagnosing 
learner actual levels of knowledge in a domain. With most currently used diagnostic 
assessment techniques, developing and administering the tests, obtaining data, and 
interpreting results, as well as incorporating appropriate instructional interventions 
based on these results, may require considerable amount of time. As a consequence, 
many teachers may not be inclined to use cognitive diagnostic assessment to guide 
their instructional decisions. 

 A possible solution for this problem is to make diagnostic assessment rapid in 
order to accelerate the process (rapid diagnostic assessment). Another possibility is 
to use diagnostic assessment itself as an instructional means by integrating 
seamlessly testing and learning. With this approach, students learn while being 
tested or are assessed while learning (dynamic assessment). This chapter starts with 
the description of the general idea of a rapid diagnostic assessment approach and 
its theoretical framework based on cognitive nature of expertise, schema-based 
assessment, and cognitive load theory. Then, it describes a general design approach 
and its speci fi c implementations as rapid diagnostic methods, as well as their 
possible integration with dynamic assessment methods (rapid dynamic assessment). 
A summary and directions for further research and development in this area conclude 
the chapter.  

    3.2   Theoretical Framework 

    3.2.1   Knowledge Base and the Nature of Expertise 

 Whether expertise is considered in a real professional sense (e.g., Ericsson and 
Charness  1994  )  or at a narrow task-speci fi c level (e.g., secondary school students as 
experts in solving linear algebra equations), it includes a well-organized domain-
speci fi c knowledge base as its most important component (Bransford et al.  2000  ) . 
This knowledge resides in long-term memory which represents one of the major 
components of human cognitive architecture that underlies cognition and learning. 
Another essential component of this architecture is working memory. 

 According to a contemporary model of human cognitive architecture (Sweller 
 2004 ; Sweller et al.  1998 ; Van Merriënboer and Sweller  2005  ) , working memory 
represents our immediate conscious processor of information. It is limited in both 
duration and capacity when dealing with novel elements of information (Baddeley 
 1997 ; Miller  1956 ; Peterson and Peterson  1959  ) . No more than a few elements of 
information could be processed and maintained consciously at the same time in 
working memory, and they would most likely be lost after a few seconds (unless 
intentionally rehearsed). For a simple example, consider dialing an unfamiliar 
mobile phone number after just having heard it from another person. 
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 In familiar domains, the available knowledge base in long-term memory allows 
us to chunk many elements of information in larger units that could be treated as 
single elements in working memory. For example, it would be easier to dial the 
above phone number if you notice a well-known combination of digits as a part of it 
(e.g., “2010” that could be treated as a single unit of information instead of four). 
Therefore, the long-term memory knowledge base effectively in fl uences the 
actual content and capacity of working memory and determines the ef fi ciency of 
performance. 

 Studies of expert-novice differences in cognitive science have convincingly 
demonstrated that learner knowledge base is a single most important cognitive 
characteristic that in fl uences learning and performance (e.g., Chi et al.  1981 ; 
Larkin et al.  1980 ; see Pellegrino et al.  2001 , for a review). When experts face a 
problem in a familiar area, their available knowledge structures are rapidly activated 
and brought into working memory as problem-relevant chunks of information. 
Ericsson and Kintsch  (  1995  )  called such knowledge structures associated with 
currently active working memory elements as long-term working memory (LTWM) 
structure. They are capable of holding virtually unlimited amount of information 
due to the chunking effect. In the absence of appropriate domain-speci fi c knowledge 
structures, novices have to resort to cognitively inef fi cient and time-consuming 
random search or weak problem-solving methods such as means-ends analysis or 
trial-and-error approach. 

 For example, in classical studies of chess expertise by De Groot  (  1965  )  and 
Chase and Simon  (  1973  ) , professional grand masters performed considerably better 
than amateur players in reproducing brie fl y presented chess positions taken from 
real games, although there were no signi fi cant differences when random 
con fi gurations of chess  fi gures were used. Knowledge of effective moves for a large 
number of different real game patterns held in grand masters’ long-term memory 
allowed them to reproduce chess positions by large chunks of familiar patterns 
rather than by individual chess  fi gures. During a short exposure to a real-game board 
con fi guration, they were able to form long-term working memory structures associated 
with presented con fi gurations of chess  fi gures using their available domain-speci fi c 
knowledge base. 

 The organized generic knowledge structures that we use for categorizing 
information according to familiar patterns are called schemas. Since the levels of 
learner expertise in a speci fi c domain are determined by the levels of acquisition of 
schematic knowledge structures in long-term memory, schemas should be the major 
target for diagnostic assessment of expertise. In cognitive science, laboratory studies 
using interviews, observations, and “think aloud” protocols are conducted for 
uncovering schemas held by individuals (Chi et al.  1989 ; Ericsson and Simon  1993 ; 
Magliano and Millis  2003  ) . Although highly powerful and precise, these methods 
are very time consuming, slow, and not suitable for realistic educational settings. 
Combining high levels of diagnostic power with acceptable speed of assessment 
and simplicity of its implementation is a very challenging task. The next section 
describes an idea of a potentially suitable approach.  
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    3.2.2   Rapid Schema-Based Assessment 

 Since long-term memory that contains schematic knowledge base cannot be 
accessed directly, we usually make inferences about learners’ available knowledge 
structures based on the results of their problem-solving performance (e.g., answers 
to multiple-choice items or recorded problem solutions). However, such inferences 
may not be reliable because they are based on remote and indirect results of actual 
cognitive processes and structures. They could in fact be misleading for cognitive 
diagnosis. 

 For example, based on students’ correct answers to multiple-choice items in 
solving algebra equations (e.g., 5 x  = −4), it is not possible to say exactly what 
cognitive processes were involved. Some students could apply knowledge-based 
schematic solution procedures, but others could achieve the same outcomes by 
using a random search method. Even those students who relied on knowledge 
structures could use different levels of knowledge. Some students could apply 
 fi ne-grained step-by-step procedures (dividing both sides of the equation by 5, 
5 x  / 5 = –4 / 5, then canceling the same numbers in the numerator and denominator 
on the left side of the equation), while others could use higher-level automated 
procedures by skipping intermediate steps with the  fi nal answer ( x  = –4 / 5) obtained 
immediately. Traditional multiple-choice tests would place these two groups of 
students who are at correspondingly intermediate and top levels of expertise in this 
task area, together with novices using weak problem-solving methods, in the same 
category of successful learners (Kalyuga  2006b,   d  ) . 

 A similar situation could be with traditional methods used for assessing reading 
skills that do not measure students’ actual cognitive representations constructed 
during reading (Magliano and Millis  2003  ) . Students are usually required to read 
segments of text and then answer multiple-choice questions related to the 
concurrently displayed texts. Correct answers to such multiple-choice questions 
would not indicate what actual cognitive processes were used before selecting those 
answers. Students who achieved correct answers by repeatedly searching the text 
for key question words (novice readers) and those who answered correctly by 
relying on their constructed coherent mental representations of the text (advanced 
readers) would not be distinguished. 

 Thus, obtaining evidence that is directly related to the assessed schemas is essential 
for ensuring the diagnostic validity of assessment tools. A possible approach could 
be based on directly observing what schemas (if any) learners use immediately 
when approaching a problem or trying to make sense out of the presented situation. 
Even though schema-based approaches to the assessment of students and to the 
design of test items have been suggested before (Marshall  1993,   1995b ; Singley and 
Bennett  2002  ) , the idea of registering rapidly if and how learners use their schemas 
while they approach a speci fi c problem or situation has a potential value for enhancing 
cognitive diagnostic assessment (Kalyuga  2006d ; Kalyuga and Sweller  2004  ) . 
A general design methodology and speci fi c implementations of this approach will 
be described in the following sections.  
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    3.2.3   General Design Framework 

 The rapid schema-based diagnostic approach is based on observing task-relevant 
schemas from long-term memory (if any) that are rapidly activated and brought into 
working memory as learners approach a brie fl y presented speci fi c task situation. 
Individuals who are more experienced in the task domain would be better able to 
recognize presented problem states and retrieve appropriate solution schema steps 
than less knowledgeable learners. Experts could immediately see a task situation 
within their higher-level knowledge structures and activate appropriate solution 
schemas, while novices could only locate some random lower-level components. 

 The design of a schema-based assessment may follow a general conceptual 
framework for the design of cognitive assessment containing three basic components: 
the student model, the task model, and the evidence model (Mislevy et al.  2002  ) . 
The student model (or model of expertise) describes the cognitive constructs to be 
assessed, i.e., schemas that guide cognitive processing in a speci fi c task area. The 
task model de fi nes characteristics and patterns of tasks that would allow obtaining 
evidence about assessed cognitive knowledge structures. The evidence model 
de fi nes observable variables, their scoring procedures, and a speci fi c measurement 
model to be applied to the data. 

 According to this framework, the task-relevant schemas should be described 
 fi rst, followed by a pattern of tasks that would elicit evidence about these schemas, 
and  fi nally by a scoring procedure for these tasks and a suitable measurement model 
to make statistical inferences about levels of acquisition of the assessed schemas. 
The following section describes possible implementations of the above general idea 
and examples of applying the rapid schema-based assessment to coordinate geometry 
tasks and arithmetic word problems. These two task areas differ in types of knowledge 
and levels of knowledge organization.   

    3.3   Rapid Diagnostic Assessment Methods 

 The idea of rapid schema-based assessment can be realized either as a  fi rst-step 
method or a rapid veri fi cation method. In the  fi rst method, learners are presented 
with a task for a limited time and asked to rapidly indicate their  fi rst step toward 
solution. Different  fi rst steps would indicate different levels of expertise. This method was 
validated in a series of studies using tasks in algebra, coordinate geometry, and 
arithmetic word problems. Results showed high levels of correlations between 
performance on the rapid tasks and detailed traditional measures of knowledge 
(Kalyuga  2006d,   2008 ; Kalyuga and Sweller  2004  ) , with substantially reduced 
test times. 

 The rapid veri fi cation method is a version of the  fi rst-step procedure designed for 
the use in computer-based environments. Learners are actually presented with a series 
of possible steps (some of which are incorrect) at various stages of the solution 
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procedure and asked to rapidly verify the correctness of these steps. Knowledge 
structures of more experienced learners would presumably allow them to verify 
suggested steps more successfully than novices. This method was validated using 
sentence comprehension tasks and tasks in kinematics (Kalyuga  2006a,   c,   2008  ) . 
Again, signi fi cant correlations were found between performance on the rapid 
veri fi cation tasks and extended traditional measures of expertise, with signi fi cantly 
reduced test times. 

 Since either of the above two forms of rapid assessment approach could be 
used with the same student model (model of expertise), task model, and evidence 
model, the following examples are concentrated on developing and implementing 
these components of the general design framework using areas of coordinate 
geometry and arithmetic word problems. According to this framework, a subgoal 
structure of the tasks and a sequence of corresponding solution steps should be 
established  fi rst. Then, for each step, representative subtasks could be designed 
and arranged in an appropriate ordered series to be presented to learners, each 
task for a limited time. The scoring procedure should distinguish student responses 
corresponding to different levels of expertise in the domain. To assess the level 
of acquisition of each schema, an appropriate measurement model should be  fi tted 
to the data. 

    3.3.1   Rapid Assessment of Expertise in Coordinate Geometry 

    3.3.1.1   Model of Expertise 

 A narrow task area selected for demonstrating the method could be described by 
the basic top-level task (Fig.  3.1 ) that includes a coordinate plane and two points A 
and B with given coordinates. Lines AC and BC are parallel to the  x - and  y -axes 
respectively. The task is to  fi nd the lengths of AC and BC. This task effectively 
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  Fig. 3.1    A diagram for 
the basic task used in the 
coordinate geometry area 
(Adapted from Kalyuga 
and Sweller  (  2004  ) . 
Copyright © 2004 by the 
American Psychological 
Association, Inc.)       
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requires  fi nding the distance between projections of two points on a coordinate 
axis and using the knowledge that opposite sides of a rectangle have equal lengths. 
The schemas required for solving this task include: 

   The schema for determining coordinates of a point as coordinates of projections • 
of the point on  x - and  y -axes  
  The schema for establishing equal opposite sides in a rectangle  • 
  The schema for calculating the distance between two points on a coordinate axis • 
(a number line) by subtracting the smaller coordinate value from the larger one 
(or left hand coordinate from the right hand coordinate, for  x -axis; and lower 
coordinate from the upper coordinate, for  y -axis)    

 Different levels of acquisition of these three schemas de fi ne the student model in 
this task area (Kalyuga  2006b  ) . Solving the basic task requires the sequential appli-
cations of these schemas to corresponding subtasks. However, a learner who has 
some schemas at higher levels of acquisition (e.g., automated) could skip some 
intermediate stages of the solution that would be effectively encapsulated into a 
higher-level schema. For example, a student who has suf fi cient prior experience in 
 fi nding coordinates of a point may  fi nd out the coordinates of the points immedi-
ately upon presentation of the task without drawing projection lines explicitly. 
Expert students with extensive experience in this area may immediately (as their 
 fi rst step) write a numerical expression for the length of AC as the difference between 
 x -coordinates of points B and A.  

    3.3.1.2   Task Model 

 A pattern of tasks for a rapid assessment of expertise in this task area could have 
a hierarchical structure with three types of tasks in the pattern: a top-level basic 
task (requires schemas  a ,  b , and  c ), a task corresponding to the second step in the 
solution of a basic-level task (requires schemas  b  and  c ), and a task corresponding 
to the  fi nal step in the solution of a basic-level task (requires schema  c ). To solve 
a basic-level task, a learner should acquire schemas necessary for solving each of 
these three tasks. Lack of any schema would interfere with the entire solution 
procedure. 

 Because completing a  fi rst step for each task leads directly to one of the follow-
ing task levels, and each of these levels is represented by another task in the series, 
the  fi rst-step assessment method (or an equivalent rapid veri fi cation approach) 
would diagnose the entire set of schemas in this task area. Accordingly, the tasks 
should be sequenced according to the number of schemas that are required to solve 
each of them. For the top-level basic task, no additional details are provided on the 
diagram. For each of the lower-level tasks, progressively more additional details of 
partial solutions (e.g., indications of projecting lines and coordinates of the points 
on axes) are provided on the diagram. For instance, the third task in the series should 
present most of the details and require only calculation of the differences between 
the indicated coordinates of two points on each axis. 
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 In task areas like coordinate geometry that use diagrammatic representations as 
essential components of tasks, each sequential step includes information presented 
at the previous stages of the solution process. The series of diagnostic tasks in the 
pattern is effectively a sequence of partially worked-out examples with gradually 
increasing levels of detail provided to learners. In other domains, it is possible to 
construct a different task pattern that is based on all possible relevant combinations 
of basic schemas (see an example for word problems in the next section).  

    3.3.1.3   Evidence Model 

 In a possible scoring procedure, for each step that requires application of a speci fi c 
schema, two units are allocated for completing the step and one unit for an inter-
mediate action (an un fi nished solution step). If a procedure does not have an 
intermediate stage, one unit is allocated for completing the step. A zero score is 
allocated for a wrong answer and for not providing any answer. With a rapid 
veri fi cation method, the same scores are allocated for correct veri fi cations of 
corresponding solution steps. 

    For example, for a lower-level task that requires applying only schema  c , scores 
2 and 1 are allocated respectively for providing or verifying a completed  fi nal 
answer (AC = 11; numbers correspond to Fig.  3.1  for illustrative purposes only, 
actual diagnostic tasks at different levels should vary in speci fi c numerical param-
eters) and incomplete  fi nal answer (AC = 15 − 4). 

    In contrast, for a top-level task that requires application of all three schemas  a ,  b , 
and  c , scores 5 and 4 are allocated respectively for providing or verifying the above 
responses at the stages of application of the schema  c  corresponding to the  fi nal step 
and the step that immediately precedes it. A score 3 is allocated for providing or 
verifying an answer at the stage of application of the second schema  b  (indicating 
equal sides of a rectangle; there is no intermediate action for this schema). A score 
2 is allocated for providing or verifying an answer at the stage of completed applica-
tion of the  fi rst schema  a  (e.g., indicating projections and  x -coordinates of points A 
and B). A score 1 is allocated for providing or verifying an intermediate (un fi nished) 
step when applying the  fi rst schema (e.g., indicating only a projection line without 
the coordinate of a point). Thus, an additional score is allocated for each skipped 
intermediate step in the  fi rst-step response (or integrated into an advanced step in 
the rapid veri fi cation procedure) 

 The application of the  fi rst-step method in a paper-based format in a realistic 
class environment with 20 grade 9 students (Kalyuga and Sweller  2004  )  indicated a 
high level of correlation of 0.85 between learners’ performance on the rapid test 
and traditional measures of knowledge of corresponding procedures and concepts, 
with the test time reduced by a factor of 2.5. The following instructions were 
provided to students: 

 In each of the  fi gures, A and B are two points on a coordinate plane. Lines AC and BC are 
parallel to the coordinate axes. Assume you need to  fi nd the lengths of AC and BC.
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  Some additional details (lines, coordinates) or partial solutions are provided on most 
 fi gures. For each  fi gure, spend no more than a few seconds to indicate your  fi rst step toward 
solution of the task. 

 Remember, you do not have to solve the whole task. All you have to do for each  fi gure is 
to show only your  fi rst step toward the solution (e.g., it might be just writing a number or 
drawing a line on the diagram). If you do not know your answer, proceed to the next page. 

 Do not spend more than a few seconds for each  fi gure, and do not go back to pages you 
have already inspected.     

    3.3.2   Rapid Assessment of Expertise in Solving 
Arithmetic Word Problems 

    3.3.2.1   Model of Expertise 

 The described model of expertise uses the analysis of schemas in this task area 
conducted by Marshall  (  1993,   1995a  )  that suggested  fi ve types of basic schemas. In 
order to simplify the illustration of the diagnostic method, four of these schemas are 
used: Change, Group, Vary, and Restate schemas (Kalyuga  2006d  ) . 

 The Change schema (denoted as  C -schema for convenience) applies to a situa-
tion in which there is a change over time in the value of a variable, for example, 
 After 5 students had left the class, 12 students remained. How many students were 
in the class initially?  Students who indicate as their  fi rst solution steps (or verify as 
correct steps) expressions like  X − 5 = 12, 5 + 12, 12 + 5 = 17,  or  17  demonstrate 
evidence of the Change schema. Different  fi rst steps correspond to different levels 
of the schema acquisition. For example, experienced students may recognize a 
familiar situation right away and write (or verify) the  fi nal answer ( 17 ) immediately 
due to their automated schema and do not require much conscious processing in 
applying this schema. 

 The Group schema ( G -schema) relates to situations in which a number of 
components are combined into a larger unit, for example,  John’s homework 
contains 16 tasks. John completed 11 tasks in the afternoon. In the evening, he did 
the remaining tasks. How many tasks did John complete in the evening?  Students 
who write as their  fi rst steps or verify expressions  16 = 11 + X, 16 − 11, 16 − 11 = 5 , or 
 5  demonstrate evidence of the Group schema (on different levels of acquisition). 

 The Vary schema ( V -schema) relates to situations in which a systematic relation-
ship exists between two variables: IF the amount of one variable decreases or 
increases, THEN the amount of the second variable changes in a certain way 
( IF-THEN  relationship). The task  A train traveled 120 km in an hour. If the train 
continued to travel at the same speed, then how far would it travel in 4 h?  requires 
applying the Vary schema as it could be redescribed as  IF a train traveled 120 km 
in 1 h, THEN it will travel unknown amount of kilometers in 4 h . Students who write 
as their  fi rst solution steps or verify statements like  1      * 4 → 120 * 4, 120 * 4 = 480 , 
or  480  demonstrate evidence of the Vary schema. 
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 The Restate schema ( R -schema) applies to situations where there is a known 
relationship between two variables (ratio-like situations such as  twice as ,  two more 
than , etc.) and a restatement of this relationship using different values from those 
involved in the initial statement, for example,  Water is mixed with cement in the 
proportion 2 : 1?. How many units of water are required for 5 units of cement?  
Students who write as their  fi rst solution steps or verify statements like  2 : 1 = X : 5, 
5 * 2 , or  10  would demonstrate evidence of the Restate schema. 

 As previously, the degree of schema acquisition is de fi ned by the level of granu-
larity of solution steps and the number of skipped steps. The levels of acquisition 
may range from a consciously controlled, slow, and articulated application of all 
possible  fi ne-grained solution steps (a novice level) to a  fl uent automated perfor-
mance with  fi nal answers obtained immediately after reading problem statements 
(an expert level). 

 The described schema-based model of student expertise is an attempt to impose 
a schematic structure on a relatively poorly structured task domain using a number 
of simplifying assumptions. For example, it is assumed that students have suf fi cient 
reading comprehension skills that would not introduce an interfering factor. Another 
assumption is that if a student starts solving a task by drawing a graphical represen-
tation, it could be possible to relate unambiguously this diagrammatic representa-
tion with a corresponding numerical solution step.  

    3.3.2.2   Task Pattern 

 Each    of the above four basic tasks would require applying only one corresponding 
schema. There are 4 × 4 = 16 different tasks based on all possible combinations of 
two schemas. In these combinations, the order of schema applications is important, 
and repeated applications of the same schema are also allowed. 

 For example, the task  Paul is thinking of a number. When he adds 6 to the number 
and then subtracts 9, he would get 15. What is the number John is thinking of?  
requires two sequential applications of the  C -schema (CC-task). Applying the  fi rst 
Change schema could result in such responses as  N  −  9 = 15, 9 + 15, 9 + 15 = 24,  or 
 24 . The second Change schema could be used by the students who have completed 
the  fi rst operation, producing the following possible responses:  N + 6 = 24, 24  −  6, 
24  −  6 = 18,  or  18    . Some students could also combine two schemas and write 
 (15 + 9)  −  6, 15 + 9  −  6 , etc. 

 The task  There are 15 boys in a class. The number of girls is 8 more than the 
number of boys. How many students in the class?  represents an example of the 
CG-task. The Change schema could be applied  fi rst with possible responses  15 + 8, 
15 + 8 = 23 , or  23 . Then, the Group schema could be used with possible responses 
 15 + 23, 15 + 8 + 15, (15 + 8) + 15 , or  38 . A GC task situation is different from the 
CG-task because it would require applying the Group schema  fi rst followed by the 
application of the Change schema, for example,  Two plates on a table contained 
respectively 4 and 7 apples. A third plate with apples was added making a total of 
18 apples on the table. How many apples were on the third plate?  
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 Thus, all possible task situations that are based on applying one or two schemas 
could be represented by a pattern consisting of 20 tasks. Using a similar combinatorial 
approach, it is also possible to construct three-schema tasks, four-schema tasks, and 
so on. However, for three-schema tasks, it is unlikely that even highly experienced 
students would be able to skip  fi rst two operational steps and immediately indicate 
the  fi nal third operation or its result as their  fi rst step (or immediately verify the 
 fi nal answer). Therefore, a combinatorial pattern of 20 one- and two-schema tasks 
could be effectively used to collect data on student performance in arithmetic word 
problem solving.  

    3.3.2.3   Evidence Model 

 The scoring procedure should re fl ect different levels of schemas (if any) applied by 
students while making their  fi rst solution step or verifying a suggested step. If the 
response is based on an immediate next step corresponding to the  fi rst schema in the 
detailed solution sequence for the task, a score 1 should be allocated. If the response 
is one of the more advanced steps toward the solution (or the  fi nal answer), it should 
be allocated an additional score for each skipped step. 

 For example, for the above two-schema CG-task, responses at the level of the 
 fi rst schema ( C -schema),  15 + 8  or  23 , are scored as 1 or 2 respectively. Responses 
at the level of the second schema ( G -schema) such as  23 + 15, 15 + 8 + 15, 
(15 + 8) + 15  are allocated a score 3 (as an intermediate step for the second schema). 
Responding with (or verifying) the  fi nal answer ( 38 ) would attract a score 4 because 
three intermediate-level steps were skipped in this case. 

 In a rapid veri fi cation computer-based test, students could be presented the 
following instructions:

  On the following screens, you will see 20 arithmetic problems. You will be allowed a 
limited time to study each problem. 

 For each task, several possible (correct or incorrect) solution steps will be presented one 
at a time. Spend no more than a few seconds to indicate if the provided solution step is 
correct or incorrect. Click on the “RIGHT” button if you think the step is CORRECT or 
the “WRONG” button if the step is INCORRECT. If you do not know the answer, click on 
the “DON’T KNOW” button.   

 The suggested approach was tested as the  fi rst-step technique in a realistic class 
environment (a paper-based format) with a sample of 55 grade 8 students (Kalyuga 
 2006d  )  and compared with a traditional test asking students to write complete 
solutions to 20 similar (although not identical) problems using a partial credit 
scoring procedure based on students’ written solutions. The rapid test was 2.8 times 
faster, with a signi fi cant correlation of 0.72 between scores for both tests indicating 
a suf fi cient predictive validity of the rapid test. 

 The traditional classical test theory procedures are usually focused on one-
dimensional overall performance indicators. If distinct schemas are de fi ned in the 
models of student expertise, appropriate multidimensional measurement models 
could be used to assess each construct separately. In the arithmetic word problems 
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area, two different multidimensional measurement approaches were applied to the 
data (Kalyuga  2006b,   d  ) . One approach was based on a multidimensional Rasch 
model (Adams et al.  1997  ) . Another approach was based on Bayesian conditional 
probabilities estimations using the Markov chain Monte Carlo (MCMC) estimation 
procedure (Gelman et al.  1995  ) . 

 In the multidimensional Rasch model, a student’s position in the four-dimensional 
space was de fi ned by a set of four parameters corresponding to four schemas. The 
ConQuest software for the partial credit model was used to carry out the multidi-
mensional analysis (Wu et al.  1998  ) . Model  fi t estimates generated by the software 
indicated acceptable ranges of values for most items. For each student, values of the 
knowledge variables for each schema dimension and corresponding error variances 
were determined. 

 The Bayesian conditional probability model is based on a certain assumption 
about probabilities  P ( X  |  S ) of observing a set of scores  X  for 20 tasks if the four-
dimensional set  S  of a student’s knowledge parameters (according to the student 
model) is known. If some prior hypothetical distribution  P ( S ) of these variables in 
the population of interest is de fi ned, it is possible to apply the Bayes theorem to 
calculate the probability distribution for student parameters conditional on observed 
test scores,  P ( S  |  X ) ~  P ( X  |  S )  P ( S ). Then, the updated probability distribution could 
be used as a prior distribution for the next step of updating in the iterative process. 
For a prior distribution  P ( S ), the same categorical distribution for all students and 
for all four schematic dimensions was de fi ned. The WinBUGS computer program 
(Bayesian inference Using Gibbs Sampling) was used to estimate posterior distribu-
tions conditional on the response data obtained in the experiment (Spiegelhalter 
et al.  2003  ) . For each student, posterior means and standard deviations for parame-
ters of each schema were estimated. 

 Although rough and simpli fi ed multidimensional methods were used, both mod-
els worked reasonably well and produced well-correlated (average correlation of 
0.77) estimates of the parameters of students’ schemas. Even though these results 
show that multidimensional measurement models could be used for making statisti-
cal inferences about learners’ schematic knowledge structures, their application is 
not always practically plausible in small-scale formative assessments or during 
training sessions in adaptive instructional systems. 

 For each learner, a simple data summary using total scores for each schema 
based on the learner responses to the tasks that involve the corresponding schemas 
could do equally well. For two-schema items, the score for the  fi rst schema could 
be identical to the entire item score, while the second schema could be scored 1 if 
the item score is 3, or 2 if the item score is 4. For each of the four schemas, eight 
tasks contributed to the schema’s score (e.g., tasks C, CC, CG, CV, CR, GC, VC, 
and RC contributed to the  C -schema score; the last six items in this set also 
contributed to other dimensions). The summary scores for each schema dimension 
correlated signi fi cantly (between 0.80 and 0.96) with the parameters for levels of 
acquisition of corresponding schemas estimated by the two multidimensional 
measurement models.    
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    3.4   Toward Rapid Dynamic Assessment for Learning 

 The rapid diagnostic methods could be related to dynamic assessment (Bransford 
and Schwartz  1999 ; Grigorenko and Sternberg  1998 ; Sternberg and Grigorenko 
 2001,   2002  ) . Dynamic assessment is aimed at determining a learner’s current stage 
of development at which he or she can solve a task if a certain level of guidance or 
help is provided, for example, by showing previous solution steps or hints. For 
example, if a student fails an item, she could be provided with a hint. If it does not 
help, another more detailed hint could be presented and the process repeated. 

 In rapid assessment methods, learners are presented with tasks re fl ecting various 
stages of a solution procedure with a gradually changing number of previously 
completed steps (e.g., see the previously described task model for rapid assessment 
in coordinate geometry) for making their next step or for rapid veri fi cation. Such 
task sequences effectively represent a form of scaffolding that is used to determine 
the precise level of learner expertise. This approach also effectively determines 
the learner zone of proximal development for dynamic selection of learning tasks 
that are just above the current level of expertise. Integrating the rapid diagnostic 
assessment approach with dynamic assessment into what could be called rapid 
dynamic assessment represents an important current direction of research and 
development in this area. 

 If learners are presented with incomplete intermediate stages of the task 
solution and asked to indicate the next step toward solution, they need to recognize 
both problem states and the solution moves associated with those states. Learners 
who are more advanced in the domain should be better able to recognize intermediate 
problem states and retrieve appropriate solution steps than less knowledgeable 
learners. For example, when training apprentices of manufacturing companies in 
reading charts used for setting cutting machines (Kalyuga et al.  2000  ) , replacing 
visual on-screen texts with corresponding auditory explanations was bene fi cial 
for novice learners (modality effect). However, when learners became more 
experienced in using these charts, the best way to present a new type of charts was 
to display just a diagram without any explanations (an example of the expertise 
reversal effect Kalyuga et al. ( 2003 )). 

 An appropriately designed series of rapid dynamic assessment tasks may 
allow switching instructional formats at the most appropriate time for an individual 
trainee. Such tasks may include regularly presenting trainees with a series of 
partially completed procedures in using charts with different degrees of completeness 
and asking them to indicate their next step toward solution. At the lowest level of 
completeness, no solution cues or hints are indicated on the chart. At the next level, 
only some relevant details of the task statement are highlighted. At the following 
levels, more lines and other solution details are shown. In this way, levels of expertise 
can be rapidly determined. Less knowledgeable learners then could be presented 
with comprehensive auditory explanations. In contrast, more experienced trainees, 
for whom the auditory explanations might be redundant, would learn better from a 
diagram with limited or no explanations. 
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 Dynamic tests enhance students’ learning and, at the same time, provide more 
accurate measures of current skill levels than traditional static tests.    Students learn 
when they are tested, and they are tested when they learn. Integration of learning 
and testing into dynamic assessment formats is a current trend in the educational 
assessment  fi eld. For example, Feng et al.  (  2009  )  integrated continuous assessment 
and tutoring in their web-based tutoring system ASSISTment that combined 
assistance and assessment. The immediate tutoring is provided following each 
assessment item that students could not solve on their own. In addition to traditional 
scores based solely on correctness of students’ responses to test items, the system 
collects data on its interactions with students (e.g., time taken to come up with an 
answer, response accuracy, and speed, time taken to correct an answer if it is wrong, 
help-seeking behavior as the number of requested hints, and solution attempts on 
sub-steps) that re fl ect their effort in solving the test item with instructional assistance 
in the form of hints, guidance, etc. 

 If students fail an item, they are provided with a small “tutoring” session where 
they must answer a few questions that break the problem down into steps. Thus, 
each ASSISTment task includes an  original question  and a list of  scaffolding 
questions  to coach students who fail to answer the original one. By analyzing these 
students’ performance on the scaffolding questions, the system provides  fi ne-grained 
diagnostic information. The system helps students to work through dif fi cult problems 
by breaking them into sub-steps and meanwhile collecting data on different aspects 
of student performance (Feng et al.  2009  ) . Thus, instruction is provided to students 
during the detailed evaluation of their knowledge and skills. As a result, a better 
evaluation of student abilities and prediction of their future performance is 
achieved. Since the ASSISTment system automatically provides students with 
feedback, scaffolding questions, and hints, it provides a form of embedded dynamic 
assessment.  

    3.5   Conclusion 

 The general idea of the rapid diagnostic assessment is to determine the level of 
most advanced domain-speci fi c schemas (if any) a learner is capable of activating 
immediately on presentation of a test task. This assessment approach essentially 
evaluates the degree to which the learners’ working memory capacity has been 
expanded due to available schemas in long-term memory. If a more knowledgeable 
learner is facing a task in a familiar domain, the relevant schemas are rapidly 
activated allowing the encapsulation of many elements of information (e.g., detailed 
solution operations and steps) in working memory into a single element (e.g., a 
higher-level advanced solution step). Different rapid responses would re fl ect 
different levels of acquisition of corresponding schemas. Thus, the rapidness of 
such tests is not only a means of reducing testing time, but it is essential for capturing 
schemas that learners use in speci fi c situations before they can apply lengthy random 
search processes and chains of reasoning. 
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 The rapid test tasks could be either used as stand-alone diagnostic probes or 
presented in a speci fi c sequence. In order to qualify as dynamic assessment tasks, 
they should be developed as a series with a gradually changing number of completed 
essential steps or with different levels of instructional support provided in other 
forms. The diagnostic power of this rapid dynamic assessment may approach that of 
laboratory-based concurrent verbal reports, however achieved on a considerably 
shorter time scale. 

    3.5.1   Future Developments 

    3.5.1.1   Establishing Generality of the Tool 

 The examples and studies described in this chapter were limited to relatively narrow 
task areas associated with well-structured problems. In relatively poorly speci fi ed 
domains that involve problems with multiple possible routes to solutions, the rapid 
veri fi cation method could be potentially applied by selecting only a limited number 
of situations representing different possible paths and levels of solution steps 
(including both appropriate and unsuitable steps) for rapid veri fi cation. The generality 
and limits of usability of rapid assessment, especially in poorly structured domains, 
need to be investigated in further research. 

 In addition to domain-speci fi c schemas, understanding verbally presented problems 
may also depend on reading comprehension skills and factual knowledge used in 
speci fi c problem contexts. Therefore, while such tests could be usable with relatively 
advanced learners (e.g., secondary or high school students) for whom such factors 
may not in fl uence results, their suitability for less advanced learners (e.g., primary 
school students) whose responses may depend on a wider range of factors needs to 
be further investigated.  

    3.5.1.2   Using Rapid Assessment in Adaptive Learning Environments 

 Rapid assessment methods have been applied in adaptive computer-based tutorials 
for high school students in solving linear algebra equations (Kalyuga and Sweller 
 2004,   2005  )  and vector addition motion problems in kinematics (Kalyuga  2006a  ) . 
The levels of provided instructional guidance in tutorials were based on rapid mea-
sures of learner expertise. At the beginning of each session, the initial rapid test was 
used to select the level of support. For learners with lower levels of expertise, based 
on the rapid test, additional worked-out examples were provided. For learners with 
higher levels of expertise, less worked examples and more problem-solving exer-
cises were provided. During the session, rapid tests were used to select the optimal 
learning pathway. Based on those tests, each learner was either allowed to proceed 
to the next stage with a lower level of guidance or required to repeat the same stage 
and then take the rapid test again. At each subsequent stage of the tutoring session, 
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a lower level of instructional guidance was provided to learners, and a higher level 
of the rapid diagnostic tasks was used at the end of the stage. 

 The adaptive tutorials resulted in higher learning outcomes than similar nonadaptive 
tutorials in which learners either studied all tasks that were included in the corre-
sponding stages of the training session of their yoked participants or were required 
to study the whole set of tasks available in the tutorial. The described studies pro-
vided preliminary evidence for the usability of the rapid assessment methods in 
adaptive instruction. Similar rapid test-based approaches could be used in other 
domains (including relatively less structured subject areas) for initial selection of 
the appropriate formats of learning materials according to levels of users’ prior 
knowledge in the domain, monitoring their progress during learning, and real-time 
selection of the appropriate learning tasks and instructional formats. 

 An important direction for further improvements of adaptive learning environ-
ments is using rapid dynamic assessment methods (rather than stand-alone rapid 
tests embedded into the learning sessions) that allow a full and seamless integration 
of learning and assessment. Rapid dynamic assessment methods could also be used 
for enhancing assessment oriented toward self-directed learning (Mok  2010  )  by 
providing students with real-time evaluation of their current progress in a task 
domain. To further improve self-directed learning, learner-controlled adaptive 
environments that provide learner-tailored guidance need to be developed and 
experimentally tested in future research studies.        
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