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          10.1   Introduction 

 In the current educational climate, tracking students’ academic growth in subjects 
(i.e. mathematics, reading, etc.) over time is of great interest to educators, as well 
as to the public. An implicit requirement of tracking is that performance and test 
items across grades can be compared using an established framework. It is obvious 
that the scores across grades obtained in achievement tests routinely used by 
schools or large-scale assessment programs cannot be compared directly because 
the dif fi culty of such tests and programs differs between grades. Suppose students 
A and B got the same score, for example, 80 points, in Primary 1 mathematics test 
and Primary 4 test, respectively. Although they have the same score, student B 
certainly has higher mathematical ability than student A because the test for 
Primary 4 level is more dif fi cult than the test for the Primary 1 level. Such scores 
obtained from the different tests must be placed on a common scale before they can 
be compared and interpreted under the same framework. 
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 Vertical scaling places the scores obtained from tests with different dif fi culty 
levels and measures the same construct on a common scale. The scale developed 
through vertical scaling is called a vertical scale (also referred to as a developmental 
scale) (Briggs and Weeks  2009 ; Harris  2007 ; Tong and Kolen  2007  ) . 

 Vertical scaling is usually derived from a set of tests that are developed to assess 
the same domain across a range of grades. These tests are linked through common 
items (or linking items) that are shared by adjacent grades. A statistical procedure, 
usually using unidimensional item response theory (IRT), is then applied to the set 
of tests, and all of the items in those tests are calibrated on the same latent scale. The 
resulting vertical scale consists of an item pool, with each item having a  fi xed 
dif fi culty estimate.  

    10.2   Importance of Vertical Scaling 

 Vertical scales facilitate monitoring of students’ academic growth over time. This 
has proved challenging for traditional grade-by-grade assessment approaches due to 
the incomparability of scores obtained on different tests, which are comprised of 
different items with various dif fi culty levels. Vertical scales overcame this problem 
by calibrating all of the items in different tests on a common scale. It provides a 
stable framework for comparison and interpretation of students’ abilities estimated 
from different tests. Once an item is calibrated on the vertical scale, it has a unique 
estimate of dif fi culty on the scale, and this estimate remains invariant for all students 
and all test situations. Teachers, parents or anyone who wishes to measure students’ 
achievement levels can formulate a test by drawing items from the item pool provided 
by the vertical scales according to different criteria or different situations. It is just 
like selecting different “rulers” with different minimum and maximum values, while 
using the same unit of length from a ruler pool to measure the length of objects with 
different sizes. A “0–200 cm” ruler can be used to measure adults’ heights, and a 
“0–100 cm” ruler can be used to measure babies’ heights. In a similar way, a test 
can be formulated for grade 4 students by selecting items with a particular range of 
dif fi culty levels; a speci fi c item with a lower dif fi culty level can also be utilised to 
assess the ability levels of grade 2 students. What is more important and exciting is 
that students’ ability levels measured by the different tests—they are calibrated on 
the same vertical scale—can be interpreted in the same framework and compared 
along the same scale. Another important feature of vertical scales developed using 
unidimensional IRT models is that the scores obtained in the vertical scales are 
linear and equal-interval measures. The same scores re fl ect the same amount of the 
construct measured, irrespective of the source test; moreover, adding one more unit 
results in equal-size increments. For example, a score of 60 in the grade 2 test 
represents the same level of ability as that of a 60 in the grade 4 test as long as both 
tests are vertically scaled. The growth from 60 to 70 (10 points) is the same as the 
growth from 70 to 80 (10 points) on a vertical scale. Therefore, as long as the item 
pool covers a corresponding range of dif fi culty, vertical scales make it feasible to 
track students’ academic growth across a range of grades.  
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    10.3   Challenges in Vertical Scaling 

 Although vertical scaling is a promising approach for monitoring students’ 
development over time, there are concerns about the utility of these scales in a prac-
tical educational context. The most important concern probably relates to doubts 
about the validity of the unidimensionality assumption of the construct being mea-
sured across several grades (e.g. Camilli  1999 ; Lissitz and Huynh  2003 ; Yon  2006  ) . 
As vertical scales are usually developed using unidimensional IRT models, the tests 
across grades are assumed to measure the same trait, just at different dif fi culty levels. 
Violation of the unidimensionality assumption would in fl uence the vertical scaling 
results. If the assessments are designed to measure several distinct dimensions of the 
content that explains performance differences, then a vertical scale is not expected to 
produce usable data (Yen  2009  ) . Therefore, test developers need to ensure that the 
items in the tests across different grades measure the same dimension of the construct 
to satisfy the unidimensionality assumption for vertical scaling. However, in prac-
tice, this assumption may not hold in many situations. As pointed out by Yen  (  2007  ) , 
educational achievement tests are usually multidimensional, although they tend to 
have a strong principal domain. Not all of the links between different grade tests are 
strong enough to maintain a robust connection between those grades. 

 Furthermore, vertical scaling is a complex procedure. Previous research (e.g. 
Camilli et al.  1993 ; Petersen et al.  1983 ; Custer et al.  2006 ; Hanson and Béguin 
 2002 ; Hendrickson et al.  2006 ; Ito et al.  2008 ; Kim and Cohen  1998 ; Pomplun et al. 
 2004 ; Tong and Kolen  2007 ; Wingersky et al.  1987  )  has shown that vertical scaling 
results depend on many factors, such as the linking method and the IRT model used, 
the ability/dif fi culty estimation method employed and the design of the data collec-
tion used in the construction of the scale. A number of important decisions need to 
be made during the construction of the scale, and the combinations of these deci-
sions probably result in somewhat different vertical scales. 

 Ito et al.  (  2008  )  used real data from a national standardisation assessment study 
and compared two vertical scaling approaches—concurrent and separate grade-
groups linking—for grades kindergarten through 9 for reading and mathematics. 
They found that reading is more likely than mathematics to have a single prevalent 
trait across grades because similar results were generated at more grades in reading 
than in mathematics. The two approaches produced similar results in terms of item 
dif fi culties, discriminations and ability estimates. However, the separate grade-
groups scaling had better control in terms of scale expansion than did concurrent 
scaling. Thus, an increase in the score variance at the highest and lowest grades is 
more salient for concurrent scaling than for separate grade-groups scaling. Kim and 
Cohen  (  1998  )  also found that similar results were generated by concurrent and 
separate methods except that the separate method provided more accurate estimates 
when the number of common items was small. In contrast, some research (e.g. 
Petersen et al.  1983 ; Wingersky et al.  1987  )  found that concurrent estimation was 
better than separate estimation. Hanson and Béguin  (  2002  )  also found that concur-
rent estimation outperformed separate estimation by generating a lower error in 
most conditions. 
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 Pomplun et al.  (  2004  )  compared scaling results from WINSTEPS (Linacre  2011  )  
and BILOG-MG (Zimowski et al.  1996  )  with both real and simulated data. 
WINSTEPS and BILOG-MG differ in two respects: WINSTEPS uses joint maxi-
mum likelihood estimation (JMLE) as the estimation method, whereas BILOG-MG 
uses marginal maximum likelihood estimation (MMLE). BILOG-MG also has a 
group option during estimation, whereas WINSTEPS has not. The  fi ndings of con-
current calibration showed that WINSTEPS generated more accurate individual and 
mean estimates, whereas BILOG-MG produced more accurate standard deviations. 
In another similar study, Custer et al.  (  2006  )  further compared results generated 
with WINSTEPS and BILOG-MG. Based on simulated vocabulary tests, they con-
ducted vertical scaling with the Rasch model for grades kindergarten through 10. 
They used a common item block design and concurrent calibrations for scaling. 
Their results suggested that the convergence setting in the program was an important 
factor that in fl uenced the parameter estimation. BILOG-MG generated more accu-
rate individual and mean estimates than did WINSTEPS under default convergence 
settings. Tightened convergence settings enabled both programs to produce more 
accurate estimates than did default convergence settings. Furthermore, under tight-
ened convergence settings, WINSTEPS and BILOG-MG produced similar scaling 
results. They recommended using MMLE with the direct group option of BILOG-MG 
to estimate group parameters in concurrent vertical scaling. 

 Tong and Kolen  (  2007  )  employed two data collection designs: the scaling test 
(SC) design and the common-item (CI) design. Under the SC design, the scaling test 
was calibrated concurrently while the tests for different levels were separately 
calibrated, and then these calibrations for the different levels were placed on the 
common scale. In the CI design, grade 3 was chosen as the base grade, and the other 
grades were separately calibrated to the grade scale. The results, in line with 
Hendrickson et al.’s  (  2006  )  research, found that the base grade chosen for vertical 
scaling under the common-item design had no substantial impact on the scaling 
results. In other words, choosing the lowest grade or the highest grade or the middle 
grade had little impact on the  fi nal scale results. However, Tong and Kolen  (  2007  )  
noted that using as few links as possible might reduce the extent of scale shrinkage, 
which is common in vertical scaling with IRT models. Therefore, using a middle 
grade instead of the lowest or highest level as the base grade might be a better 
choice. The results also showed that the choice of scaling design has an important 
impact on the scaling result. Estimated student growth under the CI design was 
greater than that under the SC design. The parameter estimates generated by the SC 
design were more accurate. The multiple linking involved in the CI design possibly 
introduced more linking errors. The results also indicated that the real data were 
sensitive to the scaling procedure because many assumptions imposed by scaling 
methods were not met in the real data. The different scaling methods generated dif-
ferent scaling results for real data. However, the simulated data showed great toler-
ance to variation in the scaling methods. The different scaling methods produced 
very similar scaling results for simulated data. 

 In sum, vertical scaling is a complex procedure, which is in fl uenced by many 
factors. Researchers usually determine the vertical scaling procedure according to 
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their own situations and purposes. There is no agreement in the literature with regard 
to which approach generates the “best” vertical scales. Scale developers should 
make their own decisions based on their conception of estimated student growth and 
the nature of the scale to be developed.  

    10.4   Mathematics Competency Vertical Scale 

 In spite of the complexity of scale construction and the lack of consensus on the 
optimal approach, vertical scales are still attractive to researchers and test 
publishers. The Mathematics Competency Vertical Scale (MCVS) was created to 
measure the development of competency of Hong Kong students in mathe matics; 
the scale utilises real data from 9,531 students between Primary 2 (P2 or grade 
2) and Secondary 3 (S3 or grade 10). The MCVS was built using a new approach, 
the concurrent-separate approach, under the Rasch model. Both concurrent 
and separate calibrations were used at different stages of the vertical scaling 
procedure. 

 The MCVS covers a wide range of mathematical developmental competencies 
from P2 to S3. Two assessment booklets were designed for each grade to measure 
the mathematical competencies of students who had just completed their  fi rst semes-
ter (e.g. P2_1, P3_1.) and the competencies of those who had completed the second 
semester (e.g. P2_2, P3_2). The MCVS comprises 16 measurement booklets, with 
each pair of adjacent booklets (e.g. P2_1 and P2_2, P2_2 and P3_1, P3_1 and P3_2) 
having several common items through which all of the papers are interlinked. 
Figure  10.1  depicts the assessment design for the scale.  

 The number of items in each measurement booklets ranges from 29 to 42. As 
indicated by the overlap between the blocks in Fig.  10.1 , there is a set of common 
items in the adjacent booklets. The number of common items for each booklet 
ranges from 4 to 14. All of the items in the booklets were developed according to 
the Mathematics Curriculum Guide (P1–P6) (Hong Kong Education Bureau  2000  )  
and the Syllabuses for Secondary Schools–Mathematics (Secondary 1–5) (Hong 
Kong Education Bureau  1999  ) . There are three types of items: multiple-choice 
questions, short questions requiring a brief answer and open-ended questions 
requiring steps and reasons for the answer. All items in the booklets for the primary 
students are grouped into  fi ve content strata: numbers, measures, shapes and spaces, 
data handling and algebra. All of the items in the booklets for the secondary 
 students are grouped into three content strata: number and algebra, measure, and 
shape and space. 

 In the common-item design, the quality of the common items is important, and 
they should be considered carefully from both content and statistics perspectives. 
Lack of examination of the quality of the common items probably leads to unsatis-
factory scaling results. In the design of MCVS, all of the common items were 
designed according to the suggestions provided by previous research (e.g. Kolen 
and Brennan  2004 ; Patz and Yao  2007  ) . They argued that the common items should 
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(1) be appropriate in dif fi culty for the adjacent grades linked through the common 
items; (2) be representative of the whole test in terms of the representation of stan-
dards, the range of dif fi culty and the item’s format; and (3) be in a similar position 
with the same appearance across test papers. 

 All of the data were collected in the academic year 2006–2007. The tests for 
the  fi rst semester (i.e. P2_1, P3_1, etc.) were administered in December 2006 
or January 2007, and the tests for the second semester (i.e. P2_2, P3_2, etc.) 
were administered in May or June 2007. The study sample comprised 5,755 
primary students enrolled in grades P2 through P6 from 24 schools and 3,776 
secondary students enrolled in grades S1 through S3 from 11 schools in Hong Kong. 
The sample size for each booklet varied with a range from 177 to 1,405. According 
to Kolen and Brennan  (  2004  ) , most of the booklets have a suf fi cient number of 
examinees (more than 400) for vertical scaling with the Rasch model. The number of 
items for each booklet and the number of participants who completed each booklet 
are presented in Table  10.1 .  

 As discussed earlier in this chapter, both concurrent and separate linking meth-
ods have advantages and disadvantages. The separate method calibrates the param-
eters for items and individuals grade by grade and, thus, suffers from measurement 
error.    Since for the calibration at each grade, there is estimation error and the error 
might be cumulative across the calibrations for different grades, more rounds of 

  Fig. 10.1    Assessment design for the scale       
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calibrations might imply greater cumulated error. This may explain why some 
research (e.g. Ito et al.  2008  )  has reported that as the grade deviates from the 
base grade, the best- fi t linear line through the pairs of item discriminations start to 
rotate away from the identity line. In contrast, the concurrent method calibrates all 
of the parameters simultaneously in one analysis and, therefore, minimises the 
errors associated with calibrations. However, Hanson and Béguin  (  2002  )  noted that 
concurrent calibration imposes more constraints on item parameter estimates than 
the separate method, especially when calibrating many forms of tests at the same 
time, and that this might contaminate the resulting scale. Kolen and Brennan  (  2004  )  
further pointed out that although, in theory, concurrent calibration that makes full 
use of all available information might be preferable, additional considerations, 
including violation of the unidimensionality assumption, might favour separate 
calibration. 

 Considering the inherent defects of using the single method, either concurrent 
or separate, to create a vertical scale, we adopted a combination of the two 
approaches, i.e. concurrent-separate. The concurrent and separate methods were 
carried out at different stages. This approach was partially inspired by that pro-
posed by Wright  (  1996  )  and elaborated on by Wolfe and Chiu  (  1999  )  who mea-
sured the changes in person or item estimates across different times. To disentangle 
changes in persons (or items) from changes in items (or persons) in the measure-
ment context, Wolfe and Chiu  (  1999  )  stacked the data collected from different time 
occasions together and obtained a set of category threshold calibrations of a rating 
scale that were shared by all time occasions. These threshold calibrations provided 
a unique and stable framework in which person and item estimates for each time 
occasion were calibrated. In addition, in the same framework, all person and item 

   Table 10.1    The item and 
participant distribution 
for booklets   

 Booklet  Number of items  Number of participants 

 P2_1  47  659 
 P2_2  42  650 
 P3_1  31  515 
 P3_2  35  514 
 P4_1  36  380 
 P4_2  36  382 
 P5_1  36  862 
 P5_2  36  756 
 P6_1  35  495 
 P6_2  36  542 
 S1_1  29  382 
 S1_2  35  227 
 S2_1  31  1,405 
 S2_2  34  1,393 
 S3_1  31  192 
 S3_2  32  177 
 Total  562  9,531 
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estimates could be compared and the development in individual abilities or changes 
in item dif fi culty could be interpreted. 

 The procedure for constructing MCVS consists of three steps which are illus-
trated in the following section. 

    10.4.1   Step 1: Identify Quali fi ed Linking Items 

 The main purpose of this step was to identify quality linking items that are invariant 
in item dif fi culty across adjacent grades. For each grade, two rounds of analyses 
were undertaken. The  fi rst round of analysis was to identify the under fi t persons 
whose OUTFIT or INFIT MNSQ were larger than 2.0 because they have a negative 
impact on the construction of the scale (Linacre  2011  ) . The second round of the 
analysis was conducted by excluding all under fi t persons identi fi ed in the  fi rst round 
of the analysis. Each linking item has two estimates of dif fi culty, one for each of the 
two adjacent grades. Two criteria were used to examine the quality of the lining 
items: the goodness of  fi t to the Rasch model and the invariance across adjacent 
grades. The linking items were disquali fi ed and treated as different items in sub-
sequent steps if any of the criteria below was satis fi ed. 

 (1) The item’s OUTFIT or INFIT MNSQ was less than 0.5 or larger than 1.5; and 
 (2)  The standardised difference of the item dif fi culties for adjacent grades was 

larger than 2.0, and the actual difference of the item dif fi culties was larger than 
0.5 logits. 

 Any over fi t (OUTFIT or INFIT MNSQ was less than 0.5) or under fi t (OUTFIT 
or INFIT MNSQ was larger than 1.5) items were disquali fi ed as linking items 
because of their mis fi t to the Rasch model. The items identi fi ed by the second crite-
rion were also disquali fi ed as linking items because they are not invariant in terms 
of item dif fi culty across grades. 

 As a result, 37 linking items were identi fi ed as quality linking items and used in 
the following steps.  

    10.4.2   Step 2: (Concurrent Analysis) Obtain the Item 
Measures for the Quality Linking Items 

 The main purpose of this step was to obtain the dif fi culty estimates for the quality 
linking items identi fi ed in step 1. All of the data from different grades were stacked 
together. The data for the quality linking items were placed in the same column, 
and the disquali fi ed linking items were treated as different items. Rasch analysis of 
the stacked data was conducted. Similar to step 1, two rounds of analyses were 
undertaken. The  fi rst round of the analysis identi fi ed the under fi t persons whose 
OUTFIT or INFIT MNSQ were larger than 2.0, and the second round of the analysis 
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without the under fi t persons identi fi ed in the  fi rst round of the analysis calibrated 
the dif fi culty estimates for all the quality linking items.    As the quality linking items 
were calibrated based on the whole data set, the results yielded a shared framework 
for the following separate calibrations.  

    10.4.3   Step 3: (Separate Analysis) Obtain the Item 
Measures for All Items and Construct the Scale 

 In this step, separate analyses for each grade were conducted with the quality linking 
items anchored at the value that had been calibrated in step 2 to generate item 
measures for all of the items. Similar to the previous steps, the  fi rst round of the 
analysis was undertaken to identify the under fi t persons whose OUTFIT or INFIT 
MNSQ were larger than 2.0, and the second round of the analysis without the under fi t 
persons identi fi ed in the  fi rst round of the analysis was used to calibrate the dif fi culty 
estimates for all of the items. Any items showing mis fi t to the Rasch model, i.e. the 
OUTFIT or INFIT MNSQ was larger than 2.0, were removed from the scale. 
Eight items were identi fi ed by this criterion and removed. Furthermore, any items 
with extremely high or low dif fi culty were investigated by experts specialised in 
mathematics to determine whether they were appropriate for inclusion in the scale. 
Consequently, four items were removed because their dif fi culties were not appro-
priate for the corresponding grades. The remaining items comprised the MCVS. 

 The  fi nal version of the MCVS consists of 510 unique items. The details of each 
 fi nal booklet and the whole scale are presented in Table  10.2 .  

 It can be seen that the mean item measures for each booklet ranged from 27.5 
(P2_1) to 68.4 (S3_2). These values for the item measures (the second column in 
Table  10.2 ) are neither students’ raw scores on assessment booklets nor the Rasch 
calibration in logits: they are  units  in the Rasch analysis, and the    meaning of the 
units depends on the settings in the Rasch analysis. In this case, the mean of item 
dif fi culty across all items was set to 50, and one logit was divided into 10 units in 
the concurrent analysis conducted in step 2. Therefore, one unit of item measured in 
this method stands for 0.1 logit. Consequently, the mean test dif fi culty for the 
booklet ranged from 2.75 logits (27.5/10) for P2_1 to 6.84 logits (68.4/10) for S3_2. 
In other words, the whole scale covered a dif fi culty range of 4.09 logits for 7.5 
schooling years of development (from the  fi rst semester of P2 to the second semes-
ter of S3), resulting in 0.55 logits per year. This amount of advancement in dif fi culty 
level of items from year to year is consistent with children’s development because 
many studies of their development have shown that it is typical for a child to gain 
0.5 logits growth within 1 year. 

 It can also be seen from Table  10.2  that each booklet had quite good Rasch reli-
ability, ranging from 0.97 to 1.00. The separation index of the booklets ranged 
from 5.88 to 18.43. The statistical data provide strong con fi dence in the practical 
application of the MCVS scale. Figure  10.1  presents the item distribution by grades 
for the MCVS. 
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 Each dot in Fig.  10.2  stands for a single item. The items are grouped by their 
grades and placed along the  x  axis from the left to the right. The  y  axis represents 
item dif fi culty. It can be seen that, in general, the item dif fi culty advanced gradually 
from the lower grades to higher grades. The red solid line is a regression line that 
indicates that the item dif fi culty could be predicted, to some extent, by the grade 
where the item is placed. The  R  square was equal to 0.456, which is far from perfect 
prediction, but still substantial.  

 As the item dif fi culties are on the same scale as person ability, teachers, parents 
or anyone who wishes to measure students’ achievement levels in mathematics 
could use items from the scale according to the students’ mathematics abilities or 
their grades to form a test, administer the test to the students and analyse the test 
results under the Rasch model with the items anchored at the values provided by the 
scale. Thus, the students’ mathematics competencies can be calibrated along the 
scale. More importantly, the competency estimates of the students from different 
grades could be compared directly, even though they were assessed by totally differ-
ent sets of items because the items had been calibrated along the same scale, which 
provides a stable framework for the comparison. Consequently, students’ growth in 
mathematics competencies could be tracked from P2 to S3 with the MCVS. 

 As noted earlier, all of the items in the MCVS are grouped into  fi ve content 
strata for the primary levels and three content strata for the secondary levels (all of 
the strata belong to the same dimension, i.e. overall mathematics competency). It 
can be seen from Figs.  10.2  and  10.3 , which illustrate the item distribution by strata 
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  Fig. 10.2    Item distribution of the MCVS       

 



198 Z. Yan et al.

for the primary levels and the secondary levels, respectively, that the items in each 
content strata cover quite a wide range of dif fi culties. The item dif fi culty advances 
gradually with grades for each stratum. Such a trend is especially salient for strata 
at primary levels.  

 The results presented in Figs.  10.3  and  10.4  indicate that the MCVS could be 
divided into sub-scales according to the content strata. The items belonging to 
the same strata could be selected and used to measure students’ competencies in a 
particular mathematical domain, i.e. numbers, measures, shapes and spaces, data 
handling and algebra for primary levels and number and algebra, measure, and 
shape and space for the secondary levels. Thus, tracking the students’ development 
in mathematics could be done in a more detailed way.  

 In sum, the MCVS was built under the Rasch model with a concurrent-separate 
approach, which incorporates the strength of both concurrent and separate methods. 
First of all, a separate analysis was conducted to investigate the quality of all of the 
linking items and identify those items that could be  fi tted to the Rasch model and 
invariant in terms of dif fi culty. The concurrent analysis was then utilised to calibrate 
the dif fi culty estimates of the quality linking items and to provide a stable and unam-
biguous framework for the construction of the scale. With those quality linking items 
anchored at the values obtained in the concurrent calibration, a separate analysis was 
undertaken for each booklet to calibrate the dif fi culty estimates of all of the items and, 
thus, form the whole scale. Furthermore, the impact of under fi t persons was taken 
into account during the scale construction, and all persons with too large INFIT 
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or OUTFIT MNSQ were excluded from each round of the analysis, and the “best 
sample” was used to construct the scale. The resulting scale comprised 16 booklets 
with a total of 510 items, encompassing P2 to S3 grades. The mean test dif fi culty for 
the booklet ranged from 2.75 logits for the  fi rst semester of P2 to 6.84 logits for the 
second semester of S3. Each booklet showed quite good Rasch reliability (ranging 
from 0.97 to 1.00) and separation index (ranging from 5.88 to 18.43). The properties 
of the MCVS make it a suitable vertical scale for tracking Hong Kong students’ 
development in mathematics, or in particular domains of mathematics, over time. 

 Of course, this scale has some limitations in common with all other vertical scales. 
Previous research (e.g. Harris  2007 ; Kolen and Brennan  2004 ; Patz and Yao  2007  )  
emphasised that the common items determine the quality of the constructed scale 
because all item parameters are estimated based on common items. The pilot study 
of the current research also showed that a minor change in the linking items (e.g. 
adding/deleting/changing even only one linking item) has quite a large impact on the 
calibration of the other items, especially when the number of linking item is small. 
Thus, this research examined the quality of the linking items from both content and 
statistics perspectives. Only those linking items that met several prior requirements, 
such as suf fi cient goodness of  fi t to the Rasch model, invariant in terms of item 
dif fi culty across grades and appropriate in terms of content were retained. As a result, 
there were too few quali fi ed linking items for some grades, especially for P2_1 and 
P2_2. Most of the linking items had to be disquali fi ed because they were not invari-
ant across adjacent grades in terms of dif fi culty. This research highlights the fact 
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that the linking items should be trait-related but not curriculum-related. Thus, 
students’ performance on linking items should be determined by the trait measured 
but not by whether they have learned the content in the classroom. If the linking 
items are overly linked with the curriculum, the linking items will be easy for stu-
dents who studied with a curriculum that includes knowledge required to solve the 
items and dif fi cult for students who studied with another curriculum that does not 
include such knowledge. The difference in curriculum coverage will in turn lead to 
a large standardised difference in item dif fi culty. Further studies are needed on the 
characteristics of quality linking items to shed light on how researchers should 
select linking items in the construction of vertical scales.       
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