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Foreword

The climate is changing owing to human activities. The predominant effect is
from the changing atmospheric composition mainly from burning of fossil fuels
that produces both visible pollution that blocks the sun and carbon dioxide. The
particulates have a short lifetime as they are washed out of the atmosphere by
rainfall, but carbon dioxide has a very long lifetime: typically over a 100 years
and so it builds up and accumulates. Indeed carbon dioxide amounts have increased
by over 40% since pre-industrial times and over half of this increase has occurred
since 1970. Carbon dioxide is a greenhouse gas and produces a blanketing effect
that results in a warming planet.

As well as increasing temperatures, a warming world is expected to alter
precipitation in several ways. A warmer atmosphere can hold more water vapor, and
will as long as there is a water supply nearby, as there always is over the oceans. The
result is that more atmospheric moisture is pulled into storms resulting in heavier
rains – or snows. But where it is not raining, the warmer atmosphere sucks moisture
out of the soils and vegetation, promoting drought. Indeed, it is expected that a
warming world alters the occurrence and magnitude of extremes such as droughts,
heavy rainfalls and floods, as well as the geographic distribution of rain and snow.
The winter snow season is likely to get shorter at each end and more precipitation
events are apt to be rain. But snow events in winter can also be larger, as long
as temperatures remain below about freezing. All of these changes are related to
an acceleration of the hydrologic cycle and atmospheric circulation changes, and
they include the direct impact of warmer conditions on atmospheric water vapor
amounts, rainfall intensity, and snow-to-rain occurrence. However, extremes are
inherently rare and difficult to observe reliably. But they are exceedingly important
because of their nature and the tremendous damage that can ensue as conditions
exceed those previously experienced. Key scientific issues relate to determining the
statistics of extremes and how they are changing, and whether those changes are
indeed caused by the human-induced changes in climate. These are very much the
topic of this book.

A key issue then is what will happen in the future? For this we use climate models
along with statistical approaches. But there are questions of how well models are
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vi Foreword

able to handle extremes and how we can improve their capabilities. New improved
and updated data sets at high frequency (e.g., hourly) are needed to properly
characterize many of these facets of our climate and to allow for assessment against
comparable model data sets. Then analyses are required that quantify which changes
are consistent with our expectations and how we can best contribute to improving
their prediction in a future climate. Confronting models with observationally-based
products can lead to new metrics of performance and highlight shortcomings and
developmental needs that may focus field programs, process studies, numerical
experimentation, and model development. New applications should be developed
for improved tracking and warning systems, and assessing changes in risk of
drought, floods, river flow, storms, coastal sea level surges, and ocean waves. This
book provides a welcome entrée into all of these areas.

Addressing the topic of changes in hydrologic extremes has been and continues
to be one of the priorities of the World Climate Research Programme and especially
the Global Energy and Water cycle Experiment (GEWEX). Indeed the workshop
that is the focus of the material in this book grew directly from these interests.

National Center for Atmospheric Research Kevin E. Trenberth



Preface

The observed increase in weather and hydroclimatological extremes, particularly
in the past decade, has brought much needed attention to the subject. In 2011,
Texas experienced the driest year on record resulting in economic losses exceeding
$7 billion. The Texas drought was by far the costliest drought on record with an
approximately 90% increase from the previous global record set in 2006. In the past
few years, major drought events have been recorded in Ethiopia, Australia, United
States, Eurasia, Middle East, and southern Europe. At the other end of extreme, in
2010, Pakistan experienced the worst flooding in 80 years resulting in over 2,000
casualties, four million people displaced, and 20 million people affected directly
or indirectly. The number of people suffering from this extreme event exceeds the
combined total of the Indian Ocean tsunami (2004), Kashmir earthquake (2005), and
Haiti earthquake (2010). Similar to droughts, every continent, in the past few years,
has experienced major floods. For example, Australia, United States, Thailand, and
China have set local records in flooding and the resulting economic losses. New
records in terms of number of tornadoes in the United States in 2004 (1817) and
2011 (1691) and heat waves in 2003 (Europe) and 2010 (Russia) suggest that
we should get used to climate extremes of all kinds and get more serious about
developing better mitigation and adaptation strategies.

A question that has unfortunately become political and controversial is whether
the observed changes are due to anthropogenic causes or whether our observations
are just within the expected climate variability. Perhaps more important is the
question of how climate extremes might change in the future. The first step to
address these questions is detecting extremes and their variability. Predicting how
weather and climate extremes might change in the future requires an understanding
of their changes and behavior in the past. In fact, mitigating climate extremes
requires a comprehensive and reliable study of statistics of extremes.

The main motivation for this book stems from the demand for more extensive and
reliable methods for analyzing climate extremes in a nonstationary world. Given the
limitations in the spatial and temporal resolutions of global climate data records,
substantial progress in understanding extremes will largely rely on improvements in
stochastic methods suitable for analyzing extremes. This book provides a collection
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viii Preface

of the state-of-the-art methodologies and approaches suggested for detecting ex-
tremes, trend analysis, accounting for nonstationarities, and uncertainties associated
with extreme value analysis in a changing climate. This volume is designed so that
it can be used as the primary reference on the available methodologies for studying
climate extremes.

The first chapter introduces several statistical indices designed for detecting
and diagnosing changes in climate extremes. Most statistical methods currently
being used in engineering design are based on the stationary assumption (i.e.,
an unchanging climate in a statistical sense). Chapter 2 describes how extremal
distributions can be retained under the nonstationary assumption. Chapter 3 extends
the discussion by introducing a Bayesian framework for nonstationary analysis of
extremes and their associated uncertainties. The chapter also provides a discussion
of the so-called regional parameter concept using Bayesian hierarchical modeling.
Chapter 4 is devoted to return-periods and return-levels estimation under climate
change. The chapter examines two different definitions of return-period under the
nonstationary assumption. Chapter 5 illustrates the application of Copula functions
to multivariate extreme value analysis. Chapter 6 presents several parametric and
nonparametric methods for tail dependence analysis. Chapter 7 discusses the the-
oretical framework, observational evidence, and related developments in stochastic
modeling of weather and climate extremes. Chapter 8 surveys methods of projecting
changes in extreme weather and climate statistics. Chapter 9 examines the simulated
and observed short-term climate variability and weather extremes that have occurred
over the last three decades with a focus on the winter hemispheres. Chapter
10 explores uncertainties in observed changes in climate extremes. Chapter 11
assesses uncertainties in the projection of future changes in precipitation extremes.
Chapter 12 presents various data sets that are suitable for examining changes in
extremes in the observed record. Finally, Chap. 13 is devoted to the concept of
nonstationarity in extremes and engineering design.

Acknowledgment

Completing this book could not have been accomplished without the assistance and
support of many individuals. First and foremost, the Editors wish to express sincere
appreciation to the authors who shared their knowledge and expertise in climate
extremes. We thank Kevin Trenberth for his thoughtful views on Extremes in a
Changing Climate. We convey our gratitude to Professor Vijay Singh, Editor-in-
Chief of the Springer’s Water Science and Technology Library, and the members of
the Editorial Advisory Board. Without their encouragement and support this work
would not have been realized. We offer special thanks to the many reviewers of
the book for their thoughtful comments and suggestions which led to improvements
in the quality of the book. Appreciation is expressed to Scott Sellars and Andrea
Thorstensen for reviewing some of the manuscripts and offering suggestions for
improvement. We praise the professional service provided by the publication



Preface ix

team of Springer Hermine Vloemans and Petra van Steenbergen throughout the
preparation of this book. We wish to acknowledge that the idea for the book
was motivated by discussions from a workshop on precipitation sponsored by the
Army Research Office held in 2010. We thank Russell Harmon who has been
instrumental in the planning and organization of the ARO workshop. Finally, the
first author (Amir AghaKouchak) acknowledges the support from the US Bureau of
Reclamation (Award No. R11AP81451).

Amir AghaKouchak
David Easterling

Kuolin Hsu
Siegfried Schubert

Soroosh Sorooshian





Contents

1 Statistical Indices for the Diagnosing and Detecting
Changes in Extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Xuebin Zhang and Francis W. Zwiers

2 Statistical Methods for Nonstationary Extremes . . . . . . . . . . . . . . . . . . . . . . . . 15
Richard W. Katz

3 Bayesian Methods for Non-stationary Extreme Value Analysis . . . . . . . 39
Benjamin Renard, Xun Sun, and Michel Lang

4 Return Periods and Return Levels Under Climate Change . . . . . . . . . . . 97
Daniel Cooley

5 Multivariate Extreme Value Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Gianfausto Salvadori and Carlo De Michele

6 Methods of Tail Dependence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Amir AghaKouchak, Scott Sellars, and Soroosh Sorooshian

7 Stochastic Models of Climate Extremes: Theory and Observations . . 181
Philip Sura

8 Methods of Projecting Future Changes in Extremes . . . . . . . . . . . . . . . . . . . 223
Michael Wehner

9 Climate Variability and Weather Extremes: Model-
Simulated and Historical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Siegfried D. Schubert and Young-Kwon Lim

10 Uncertainties in Observed Changes in Climate Extremes . . . . . . . . . . . . . 287
Kenneth E. Kunkel

11 Uncertainties in Projections of Future Changes in Extremes . . . . . . . . . . 309
Levi D. Brekke and Joseph J. Barsugli

xi



xii Contents

12 Global Data Sets for Analysis of Climate Extremes . . . . . . . . . . . . . . . . . . . . 347
David R. Easterling

13 Nonstationarity in Extremes and Engineering Design . . . . . . . . . . . . . . . . . 363
Dörte Jakob

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419



Contributors

Amir AghaKouchak Department of Civil and Environmental Engineering,
University of California Irvine, Irvine, CA, USA

Joseph J. Barsugli Cooperative Institute for Research in Environmental Sciences,
University of Colorado at Boulder, Boulder, CO, USA

Levi D. Brekke Bureau of Reclamation (U.S. Department of the Interior),
Research and Development Office, Denver, CO, USA

Daniel Cooley Department of Statistics, Colorado State University, Fort Collins,
CO, USA

Carlo De Michele Department of Hydraulic, Environmental, Roads and Surveying
Engineering, Politecnico di Milano, Milano, Italy

David R. Easterling National Climatic Data Center, National Oceanic and
Atmospheric Administration (NOAA), Asheville, NC, USA

Kuolin Hsu Department of Civil and Environmental Engineering, University of
California Irvine, Irvine, CA, USA

Dörte Jakob School of Earth Sciences, Melbourne, Australia and Bureau of
Meteorology, Climate and Water Division, University of Melbourne, Melbourne,
Australia

Richard W. Katz Institute for Mathematics Applied to Geosciences, National
Center for Atmospheric Research, Boulder, CO, USA

Kenneth E. Kunkel Department of Marine, Earth, and Atmospheric Sciences,
North Carolina State University, Raleigh, NC, USA

Cooperative Institute for Climate and Satellites, National Climatic Data Center,
National Oceanic and Atmospheric Administration (NOAA), Asheville, NC, USA

Michel Lang Irstea, UR HHLY, Hydrology-Hydraulics, Lyon, France

xiii



xiv Contributors

Young-Kwon Lim Global Modeling and Assimilation Office, NASA Goddard
Space Flight Center (GSFC), Greenbelt, MD, USA

Goddard Earth Sciences Technology and Research (GESTAR), Greenbelt, MD,
USA

Benjamin Renard Irstea, UR HHLY, Hydrology-Hydraulics, Lyon, France

Gianfausto Salvadori Dipartimento di Matematica e Fisica “E. De Giorgi”,
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Chapter 1
Statistical Indices for the Diagnosing
and Detecting Changes in Extremes

Xuebin Zhang and Francis W. Zwiers

Abstract This chapter introduces statistical indices that have been used to quantify
the past changes in weather and climate extremes. These indices can also be
used to assess changes in future extremes as projected by climate models. We
also present examples in which the influence of anthropogenic climate change has
been identified on extreme daily temperature, extreme daily precipitation, and the
probability of occurrence for a specific extreme event.

1.1 Introduction

Weather and climate extremes have always played an important role in shaping
the natural environment and pose significant challenges to society. For example,
extremely cold winter temperatures strongly regulate over-winter survival of the
spruce beetle in the Yukon and the mountain pine beetle in British Columbia,
Canada. The insect freezes and dies below a threshold temperature of about�40ıC,
therefore, the occurrence of such very cold temperature events in winter affects the
abundance of the beetle population in the following spring. Another example is the
availability of water: too much or too little water can both pose strong challenges to
society. As climate changes, weather and climate extremes will also change. Given
their importance and the prospect of changes in the future, it is very important to
understand how and why weather and climate extremes have changed in the past,

X. Zhang (�)
Climate Research Division, Environment Canada, Toronto, Canada
e-mail: Xuebin.Zhang@ec.gc.ca

F.W. Zwiers
PCIC, University of Victoria, Victoria, Canada
e-mail: fwzwiers@uvic.ca

A. AghaKouchak et al. (eds.), Extremes in a Changing Climate, Water Science
and Technology Library 65, DOI 10.1007/978-94-007-4479-0 1,
© Her Majesty the Queen in Right of Canada 2013
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2 X. Zhang and F.W. Zwiers

and how they will change in the future. One approach towards such an understanding
would be to develop metrics with which weather and climate extremes can be
characterized, quantified and monitored. However, there are no universally accepted
metrics for such a purpose.

The word “extreme” can refer to many different things in the climate litera-
ture, and consequently, there is no unique climatological definition for extreme
(Stephenson 2008). This occurs in part because the word “extreme” can be used to
describe either a characteristic of a climate variable or that of an impact. In the case
of a climate variable, such as surface air temperature or precipitation, an extreme
can be reasonably well defined referring to values in the tails of the variable’s
distribution that would be expected to occur infrequently. In the case of an impact,
an extreme may be less well defined since there may not be a unique way to quantify
the impact. The linkage between an extreme event in the sense of a climate variable
and an extreme event in the sense of the impact of a climate or weather event is not
straightforward. A rare weather or climate event may not necessarily cause damages.
For example, a strong wind associated with a tropical cyclone over the ocean may
not result in any damage if there are no ships nearby. Similarly, not all damages are
caused by rare weather and climate events. For instance, while the 2011 Thailand
flood caused more than eight billion US dollars in insured damages, the amount of
rain that fell in the region was not very unusual (van Oldenborgh et al. 2012).

In this chapter, we define some indices that can be derived from daily weather
data. These indices allow the characterization of historical and future changes in
extremes of weather variables. We will also provide some examples in which
anthropogenic influence on weather and climate extremes can be detected and
attributed. Our discussion will focus on weather and climate variables rather than
impacts resulting from weather or climate events.

1.2 Indices of Extremes for Weather and Climate Variables

The Intergovernmental Panel on Climate Change in its 4th Assessment (Hegerl et al.
2007) defines an extreme climatic event as one that is rare at a particular place
and time. The IPCC Special Report on Managing the Risks of Extreme Events and
Disasters to Advance Climate Change Adaptation refines this definition, stating that
“an extreme (weather of climate) event is generally defined as the occurrence of a
value of a weather or climate variable above (or below) a threshold value near the
upper (or lower) ends of the range of observed values of the variable” (Seneviratne
et al. 2012). The idea of defining extremes as events in the tail(s) of a probability
distribution is illustrated in Fig. 1.1. Figure 1.1 also shows, schematically, how warm
or cold extremes are affected by changes in the mean or standard deviation of daily
temperature and how extreme precipitation is affected by an increase in precipitation
intensity. Exactly what constitutes an extreme event will depend on the context of
usage.



1 Statistical Indices for the Diagnosing and Detecting Changes in Extremes 3

When designing infrastructure, the engineering community accounts for climate
extremes that occur only infrequently and are generally not expected to recur
each year. Examples include the estimates of long period return values of annual
maximum amount of rainfall within 5, 20 min, or within 1, 2, 6, 12, and 24 h
to derive design rainfalls for sewage systems, or of annual maximum wind gust
speed or annual maximum (accumulated) snow depth to derive codes for building
design. In this case, the concept of extremes corresponds well to that used in
statistical science, and thus powerful statistical tools based on extreme value theory
are available to aid in the analysis of historical and future extremes (e.g. Coles 2001;
Katz et al. 2002). Such tools were developed to infer extreme values that might
occur beyond the range of the observed sample, such as the problem of estimating
the 100 year return value on the basis of a 30-year sample. Increasingly, these tools
are being used in the evaluation of extreme events simulated in climate models (e.g.
Kharin et al. 2007; Wehner et al. 2010), in the characterization of the influence
of large scale atmospheric circulation variations on extreme rainfall (Zhang et al.
2010), and in the detection of anthropogenic influence on temperature extremes
(Zwiers et al. 2011).

To address the needs of various aspects of climate research on extremes
as illustrated above, and to facilitate the monitoring of extremes, the Joint
CCl1/CLIVAR2/JCOMM3 Expert Team on Climate Change Detection and Indices
(ETCCDI) defined a set of descriptive indices of extremes (Frich et al. 2002;
Alexander et al. 2006; Klein Tank et al. 2009; Zhang et al. 2011). The indices were
based on the European Climate Assessment indices (Klein Tank and Können 2003).
They were chosen to sample a wide variety of climates and included indicators
such as the total number of days annually with frost and the maximum number
of consecutive dry days in a year (see Table 1.1). They can be derived from daily
values of maximum and minimum temperatures, and daily precipitation amounts,
and are designed to be easily updatable as more data become available, so as to
facilitate monitoring. When developing those indices, it was realized they need to
be as comparable as possible across different regions. Some of these indices have
been used for the detection and attribution of changes in extremes.

The ETCCDI indices generally fall into three different types. One type of index
measures the monthly and/or annual maxima or minima of daily temperature or
annual maximum daily precipitation amounts. These types of extreme indices,
like annual maximum 12 or 24 h precipitation amounts mentioned earlier, have
been widely used in engineering applications to infer design values for engineered
structures. Another type of index involves the calculation of the number of days

1The World Meteorological Organization (WMO) Commission for Climatology (CCl).
2The World Climate Research Program (WCRP) Climate Variability and Predictability Project
(CLIVAR).
3The WMO and the UNESCO’s Intergovernmental Oceanographic Commission (IOC) Joint
Technical Commission for Oceanography and Marine Meteorology (JCOMM).
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Fig. 1.1 (continued)



1 Statistical Indices for the Diagnosing and Detecting Changes in Extremes 5

in a year exceeding specific thresholds that are relative to a fixed base period
climatology. An example of this type of index is the number of days with daily
minimum temperature below the long-term 10th percentile in the 1961–1990 base
period for the respective calendar days. As the 10th percentile differs from one
calendar day to another, extremes defined this way are a relative characteristic.
Therefore, a minimum temperature of �10ıC in Toronto in winter would not be
considered as an extreme, but the same event would be very extreme in other
seasons. Applying such a definition to data makes it possible to compare the indices
from different places with different climates as the same part of the probability
distribution of daily temperature is sampled at each location. A third type of
index involves the calculation of the number of days in a year exceeding specific
thresholds that are fixed across the space. The thresholds are typically impacts
related. An example is the number of frost days per year (i.e., minimum temperature
below 0ıC). The phenomena may in itself not be an extreme in either the absolute
or relative sense. The number of frost days and the number of growing season days
are such examples. While such indices may not be applicable everywhere on the
earth, and the phenomena may not occur in some places on the earth (e.g. a frost
day would never occur in the tropics except perhaps in high mountains), they have
a long history in many applications such as agriculture in many places.

1.3 Detection and Attribution of Changes
in Climate Extremes

The identification of past changes in climate extremes is important. Understanding
the possible causes of those changes is even more important. For example, under-
standing whether external forcing of the climate system, such as that due to human
induced greenhouse gas emissions, had caused an observed change in extremes
would affect confidence in the projection of future changes that are obtained from
climate models that are driven with future emissions scenarios. One would have a

J
Fig. 1.1 Schematic representations of the probability density function of daily temperature, which
tends to be approximately Gaussian (exceptions can be caused by soil freezing, energy balance
constraints, and other factors such as snow or soil moisture feedbacks, e.g. Fischer and Schär 2009;
Hirschi et al. 2011), and daily precipitation, which has a skewed distribution. The probability of
occurrence, or frequency, of extremes is denoted by the shaded areas. In the case of temperature,
changes in the frequencies of extremes are affected by changes in the mean, in the variance, and in
both the mean and the variance. In a skewed distribution such as that of precipitation, a change in
the mean of the distribution generally affects its variability or spread, and thus an increase in mean
precipitation would also likely imply an increase in heavy precipitation extremes, and vice-versa.
In addition, the shape of the right hand tail could also change, affecting extremes. Furthermore,
climate change may alter the frequency of precipitation and the duration of dry spells between
precipitation events. Figure 1.1a, b, c modified from Folland et al. (2001) and Fig. 1.1d modified
from Peterson et al. (2008)
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Table 1.1 The extreme temperature and precipitation indices recommended by the ETCCDI
(some user defined indices are not shown). Precise definitions are given at http://cccma.seos.uvic.
ca/ETCCDI/list 27 indices.html

ID Indicator name Indicator definitions Units

TXx Max Tmax Monthly maximum value of
daily max temperature

ıC

TNx Max Tmin Monthly maximum value of
daily min temperature

ıC

TXn Min Tmax Monthly minimum value of
daily max temperature

ıC

TNn Min Tmin Monthly minimum value of
daily min temperature

ıC

TN10p Cool nights Percentage of time when daily
min temperature <10th
percentile

%

TX10p Cool days Percentage of time when daily
max temperature <10th
percentile

%

TN90p Warm nights Percentage of time when daily
min temperature >90th
percentile

%

TX90p Warm days Percentage of time when daily
max temperature >90th
percentile

%

DTR Diurnal temperature range Monthly mean difference
between daily max and min
temperature

ıC

GSL Growing season length Annual (1st Jan to 31st Dec in
NH, 1st July to 30th June in
SH) count between first
span of at least 6 days with
TG> 5ıC and first span
after July 1 (January 1 in
SH) of 6 days with
TG< 5ıC

days

FD0 Frost days Annual count when daily
minimum temperature
<0ıC

days

SU25 Summer days Annual count when daily max
temperature >25ıC

days

TR20 Tropical nights Annual count when daily min
temperature >20ıC

days

WSDI Warm spell duration indicator Annual count when at least 6
consecutive days of max
temperature >90th
percentile

days

CSDI Cold spell duration indicator Annual count when at least 6
consecutive days of min
temperature <10th
percentile

days

(continued)

http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.html
http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.html
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Table 1.1 (continued)

ID Indicator name Indicator definitions Units

CSDI Cold spell duration indicator Annual count when at least 6
consecutive days of min
temperature <10th
percentile

days

RX1day Max 1-day precipitation amount Monthly maximum 1-day
precipitation

mm

RX5day Max 5-day precipitation amount Monthly maximum consecutive
5-day precipitation

mm

SDII Simple daily intensity index The ratio of annual total
precipitation to the number
of wet days (� 1 mm)

mm/day

R10 Number of heavy precipitation days Annual count when
precipitation �10 mm

days

R20 Number of very heavy precipitation days Annual count when
precipitation �20 mm

days

CDD Consecutive dry days Maximum number of
consecutive days when
precipitation <1 mm

days

CWD Consecutive wet days Maximum number of
consecutive days when
precipitation �1 mm

days

R95p Very wet days Annual total precipitation from
days >95th percentile

mm

R99p Extremely wet days Annual total precipitation from
days >99th percentile

mm

PRCPTOT Annual total wet-day precipitation Annual total precipitation from
days �1 mm

mm

good reason to expect a change in extremes to continue in the future if the underlying
cause of the change is well understood and is expected to continue into the future.
In the climate literature, the identification of the changes and attribution to possible
causes is usually termed detection and attribution. The good practice guidance paper
on detection and attribution that was developed for the use by lead authors for
the Intergovernmental Panel on Climate Change assessments (Hegerl et al. 2010)
provides detailed definitions and outlines standard procedures for detection and
attribution.

Detection is defined as the process of demonstrating that the climate or a
system affected by climate has changed in some defined statistical sense without
providing a reason for that change. An identified change is detected in observations
if its likelihood of occurrence by chance due to variability generated by the
climate system itself alone is determined to be small, for example, less than 10%.
Attribution is defined as the process of evaluating the relative contributions of
multiple causal factors to a change or event with an assignment of statistical
confidence. Identification of a statistically significant trend in a time series of
climate observations is a simple example of detection. Attribution is usually more
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complicated and can be conducted in several ways, though confidence in attribution
will be differ from one approach to anther.

The observed climate variations, such as those that are seen by monitoring
indices of extremes, generally reflect both natural variations internal to the climate
system and the responses to external forcing such as changes in solar radiation
and human induced changes in greenhouse gases. As the observed climate is only
one realization of the climate system, it is difficult to separate internal variation
from the response to external forcing using observations alone (Hegerl and Zwiers
2011). However, a climate model can be used to generate many realizations of the
climate under the same forcing, enabling the estimation of both the response to
external forcing, or signals, and the spatial and temporal structure of natural internal
variation of the climate as represented by the climate model. As a result, a typical
detection and attribution analysis involves the comparison of signals simulated by
multiple climate models with the observations. A standard statistical approach to
the detection and attribution problem is the optimal fingerprinting method (e.g.,
Allen and Stott 2003). This method is essentially a generalized regression, in which
observed climate variations are regressed onto model simulated signals with the
residual compared with model simulated variability.

Detection and attribution methods were first developed to consider changes
in the mean of the distribution of climate variability, and because extremes are
events that occur in the tails of such distribution, the detection and attribution
of changes in extremes creates new challenges. Approaches that have been used
either transfer the data into a form that allows the standard optimal fingerprinting
method to be used, or explicitly considers the distributional properties of the
extremes being analyzed. In the following, we illustrate, through examples, some
detection/attribution approaches that have been employed in the context of extremes.

1.3.1 Changes in Extreme Temperatures

Zwiers et al. (2011) evaluated whether there has been an anthropogenic influence
on long return period daily temperature extremes. In this study, they used observed
1961–2000 annual extreme temperatures, including annual maximum values of
daily maximum (TXx) and daily minimum (TNx) temperatures, and annual min-
imum values of daily maximum (TXn) and daily minimum (TNn) temperatures,
to characterize past changes in extreme temperatures. Recognizing that the real
response to external forcing may have a different magnitude but similar spatial-
temporal patterns to that simulated by climate models and that the distribution
of annual maxima or minima temperatures is reasonably well approximated by
the Generalized Extreme Value (GEV) distribution, they fit non-stationary GEV
distributions (see Chap. 2 for details) for extreme temperatures with location
parameters that vary in time according to climate model simulated responses. They
found that the climate model simulated pattern of warming response to historical

http://dx.doi.org/10.1007/978-94-007-4479-0_2
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anthropogenic forcing in cold extremes fits observations best when its amplitude
is scaled up by a factor greater than one, and that in warm extremes the fit to
observations is best when the amplitude is scaled down. They quantified that
globally, waiting times for extreme annual minimum daily minimum and daily
maximum temperature events that were expected to recur once every 20 years in
the 1960s are now estimated to exceed 35 and 30 years, respectively. In contrast,
waiting times for circa 1960s 20-years extremes of annual maximum daily minimum
and daily maximum temperatures are estimated to have decreased to fewer than
10 and 15 years, respectively. Figure 1.2 displays estimated return periods and their
5 and 95% uncertainty limits for circa 1960s 20-year return values of annual extreme
daily temperatures in the 1990s climate for many sub-continental regions and the
global land area in total.

Morak et al. (2012) analyzed global and regional long-term trends in the
frequency of hot and cold temperature extremes defined as the number of days
exceeding the 90th percentile or not reaching the 10th percentile of daily minimum
(TN90, TN10, see Table 1.1 for definitions) and daily maximum (TX90 and TX10)
temperatures. They compared the observed trends with those simulated by a climate
model using the optimal fingerprinting method. The signals (or fingerprints) were
obtained from an ensemble of historical forcing simulations conducted with a
climate model developed at the UK Met Service Hadley Centre (HadGEM1). Both
observations and the means of ensemble simulations under combined natural and
anthropogenic forcings show an increase in the frequency of warm extreme and a
decrease in cold extremes in both boreal warm and cold seasons, though there are
regional differences. They also found that anthropogenic influence is detectable in
the frequency of warm and cold temperatures.

1.3.2 Anthropogenic Influence on Annual Maximum
1- or 5-Day Precipitation

Detection and attribution of possible anthropogenic influence on extreme precipita-
tion has proven to be a substantially bigger challenge. Observed daily precipitation
is highly variable from place to place, and exhibits spatial scales of variations that
are smaller than climate models can represent. This means that large numbers of
densely spaced precipitation observing stations are required to be able to isolate
the component of observed precipitation that is directly comparable to simulations.
Unfortunately, there are few regions globally with a sufficiently dense observing
network to enable this kind of comparison. Min et al. (2011) therefore tried to
circumnavigate this scale issue by transforming the observed and simulated annual
maximum 1- or 5-day precipitation amounts into probability based indices (PI)
before applying the standard optimal detection method. To do this they used
separate transformations based on the GEV distribution for observations and model
output, thereby bringing both onto a dimensionless scale on the unit interval.
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Fig. 1.2 (continued)
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Figure 1.3 shows trends of extreme precipitation indices for annual maximum
1-day precipitation amounts during 1951–1999 from observations, and from model
simulations under anthropogenic forcing or under combined effect of anthropogenic
and natural forcings. They found evidence of human influence in observed changes
in precipitation extremes during the latter half of the twentieth century .It was found
that a best fit with observations required that the magnitude of the climate model
simulated responses to external forcing be increased by a large factor, which limits
confidence in the attribution of observed changes.

1.3.3 Event Attribution

When a rare and catastrophic meteorological extreme event occurs, a question that
is often posed is whether such an event is due to anthropogenic influence. Because it
is very difficult to rule out the occurrence of low probability events in an unchanged
climate, and because the occurrence of such events usually involves multiple factors,
it is very difficult to attribute an individual event to specific causes (Hegerl et al.
2007). However, in this case, it may nevertheless be possible to estimate the
influence of external forcing on the likelihood of occurrence of such an event. Such
estimates of how the likelihood of events has changed are especially useful from risk
management point of view. The infamous 2003 European heat wave caused huge
impacts in Europe, with an estimated 40,000 heat related deaths Garcı́a-Herrera
et al. 2010). To address the question whether anthropogenic contributed to the
severity/occurrence of the 2004 European heat wave, Stott et al. (2004) used an event
attribution method. With this method, they first detected anthropogenic influence on
mean summer temperature in southern Europe; they then estimated the effect of
anthropogenic forcing on the likelihood of a warm summer, and finally inferred an
anthropogenic influence on the likelihood of the 2003 European heat wave. Note
that the attribution result for one event may not necessarily extend to another event.
Using another method, Dole et al. (2011) suggest that the 2010 Russian heatwave
could have occurred without anthropogenic influence. This finding is not necessarily
inconsistent with the possibility that human influence may have increased the odds
of this occurrence of the event.

J
Fig. 1.2 Estimated return periods (years) and their 5 and 95% uncertainty limits for 1960s
20-years return values of annual extreme daily temperatures in the 1990s climate (see text for more
details). ANT refers to model simulated responses with only anthropogenic forcing and ALL is both
natural and anthropogenic forcing. Error bars are for annual minimum daily minimum temperature
(red: TNn), annual minimum daily maximum temperature (green: TXn), annual maximum daily
minimum temperature (blue: TNx), and annual maximum daily maximum temperature (pink:
TXx), respectively. Grey areas have insufficient data
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Fig. 1.3 Geographical distribution of trends of extreme precipitation indices (PI) for annual
maximum daily precipitation amounts (RX1D) during 1951–99. Observations (OBS); model
simulations with anthropogenic (ANT) forcing; model simulations with anthropogenic plus natural
(ALL) forcing. For models, ensemble means of trends from individual simulations are displayed.
Units: per cent probability per year (From Min et al. (2011; see paper for details))

1.4 Summary

In this chapter, we introduced some concepts for definition of statistical indices
with which past changes in weather and climate extremes may be quantified. These
indices can also be used to monitor ongoing changes in extremes, and they can
be used to assess changes in future extremes as projected by climate models. We
also present a few examples in which influence of anthropogenic climate changes
on extremes has been identified. It should be noted that there appears to be no
unique method to define what constitutes a weather or a climate extreme. While
it is vastly important to understand how and why weather and climate extremes may
have changed in the past and how they will behave in the future, there are significant
challenges towards a full understanding.
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Chapter 2
Statistical Methods for Nonstationary Extremes

Richard W. Katz

Abstract There is a long tradition of the use of methods based on the statistical
theory of extreme values in hydrology, particular for engineering design (e.g., for
the proverbial “100-yr flood”). For the most part, these methods are based on the
assumption of stationarity (i.e., an unchanging climate in a statistical sense). The
focus of this chapter is on how the familiar distributions that arise in extreme
value theory, namely the generalized extreme value (GEV) and generalized Pareto
(GP) distributions, can be retained under nonstationarity. But now the extremal
distribution is allowed to gradually shift by introducing time as a covariate; that
is, expressing one or more of the parameters of the distribution as a function of
time. At least for the parameter estimation technique of maximum likelihood, it is
straightforward to fit such statistical models. Some detailed examples are provided
of how the proposed methods can be applied to the detection and statistical modeling
of trends in hydrologic extremes, such as for stream flow and precipitation.

2.1 Introduction

There is a long tradition of the use of methods based on the statistical theory
of extreme values in hydrology, particular for engineering design (e.g., for the
proverbial “100-yr flood”). For the most part, these methods are based on the as-
sumption of stationarity (i.e., an unchanging climate in a statistical sense). In recent
years, the specter of global climate change has been raised in conjunction with the
enhanced greenhouse effect. Physical considerations suggest an intensification of
the hydrologic cycle, with increases in the frequency and intensity of extreme high
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precipitation events (Allen and Ingram 2002; Emori and Brown 2005; Trenberth
et al. 2003) and the possibility of more severe floods (Milly et al. 2008). So the
question naturally arises of how the statistical theory of extreme values can be
extended to the case of nonstationarity, the subject of the present chapter.

Although the influence of global climate change on hydrologic extremes such
as high stream flow can be quite difficult to detect (Villarini et al. 2009), it is
straightforward to find hydrologic examples in which nonstationarity is present
because of more local, direct human influence. In particular, Fig. 2.1 shows the
annual time series of mean and peak flow at Mercer Creek, WA, a relatively
small drainage basin experiencing a period of rapid urbanization starting about
1970. Although no trend is evident in mean flow, a marked increase in peak flow
occurred during the 1970s and early 1980s (Gilleland and Katz 2011). Such behavior
concurs with our understanding of land use effects on stream flow, with development
resulting in more rapid runoff (i.e., higher peak flows) even without any change in
total flow (Konrad 2003).

When confronted with nonstationarity in extremes, hydrologists have tended to
abandon methods based on extreme value theory (an inconsistency pointed out, for
instance, by Clarke 2002). Instead, they have resorted to statistical methods either
inappropriate or, at least, inefficient for extremes. While nonparametric techniques,
such as a Mann-Kendall test for trend or a Pettitt test for a change point (e.g.,
Helsel and Hirsch 1993), have a long tradition of use in hydrology and have been
applied in the case of extremes (e.g., Villarini et al. 2009), they were not designed
for dealing with extremes per se. Given the necessarily quite limited observations
available for extremes, it can be persuasively argued that making use of a theory,
albeit approximate, would be at least potentially more efficient. Further, such a
method can produce information about trends in a form desirable for water resource
management (i.e., in terms of shifts in return levels).

An alternative approach common in hydrology has been to apply regression
analysis with a trend variable to hydrologic time series transformed to an approxi-
mate normal distribution. For instance, Vogel et al. (2011) applied the logarithmic
transformation to stream flow, as consistent with a lognormal distribution. From the
perspective of extreme value theory, a fundamental limitation of this approach is the
failure to permit a heavy tail, despite much evidence indicating that variables such
as stream flow and precipitation can be heavy-tailed (e.g., Katz et al. 2002).

In the present chapter, we focus on how the familiar distributions that arise in
extreme value theory, namely the generalized extreme value (GEV) and generalized
Pareto (GP) distributions, can be retained under nonstationarity. But now the
extremal distribution is allowed to gradually shift by introducing time as a covariate;
that is, expressing one or more of the parameters of the distribution as a function of
time. At least for the parameter estimation technique of maximum likelihood, it is
straightforward to fit such statistical models.

The chapter is organized as follows. Section 2.2 deals with statistical methods
for modeling nonstationary extremes, namely by means of the block maxima and
point process approaches. Each technique is first reviewed under stationarity, before
showing how it can be generalized to handle nonstationarity as well. Section 2.3
then provides some detailed examples of how the proposed methods can be applied
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Fig. 2.1 Annual time series of mean (top) and peak (bottom) flow (cfs) at Mercer Creek, WA
during 1956–2006 (Note: peak flow is missing for year 2003)

to the detection and statistical modeling of trends in hydrologic extremes. Finally,
Sect. 2.4 consists of a discussion of outstanding issues in the statistical modeling
of nonstationary extremes, including the challenging problem of extending regional
analysis to allow for a common or smoothly varying trend across space.
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2.2 Statistical Methods

Under the assumption of stationarity, the GEV and GP distributions arise as
approximations for block maxima (e.g., annual peak stream flow) and for excesses
over a high threshold, respectively. The GP distribution is utilized as part of the
peaks over threshold (POT) or partial duration series (PDS) approach (Coles 2001),
which can be formulated in terms of a two-dimensional, nonhomogeneous Poisson
process (Davison and Smith 1990; Smith 1989).

The stationarity assumption does not necessarily require temporal independence,
with the GEV approximation for block maxima still holding under a wide range
of dependence conditions (Leadbetter et al. 1983), including clustering at high
levels (a characteristic clearly exhibited by stream flow) and long-range dependence
(a characteristic for which there is some evidence that hydrologic variables possess;
Hurst 1951). With an adjustment such as declustering, the POT technique can still
be applied under temporal dependence as well (Coles 2001).

Except under quite limited circumstances, it does not appear possible to directly
extend extreme value theory to nonstationary time series (Leadbetter et al. 1983).
Rather, we adopt a more pragmatic approach, with one or more of the parameters
of the extremal distributions being expressed as functions of time (Coles 2001). In
other words, at any given time, an extreme value distribution would still be used,
but the distribution itself would shift over time. At least in this limited sense, the
statistical model remains interpretable in terms of extreme value theory.

2.2.1 Block Maxima

The block maxima approach is predicated upon the Extremal Types Theorem.
Let the time series, denoted by fX1, X2, : : : , Xng, be independent and identi-
cally distributed (iid) with common cumulative distribution function (cdf) F. Let
MnDmaxfX1, X2, : : : , Xng and suppose there exist normalizing constants, an> 0
and bn, such that

Pr f.Mn � bn/ =an � xg ! G.x/ as n!1: (2.1)

Then the cdf G must be the GEV; that is,

G.xI�; �; �/ D exp
n
�Œ1C � .x � �/ =���1=�

o
; 1C � .x � �/ =� > 0 (2.2)

(Coles 2001). Here �, � > 0, and � denote the location, scale, and shape parameters,
respectively. With this notational convention (not always followed in hydrology),
the GEV has three types: (i) � > 0 corresponds to a heavy-tailed or Fréchet type; (ii)
� < 0 to a bounded tail or Weibull type; and (iii) �D 0 [obtained by taking the limit
as �! 0 in (2.2)] to the light-tailed or Gumbel type. The location parameter� is not
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the mean, but does represent the “center” of the distribution, and the scale parameter
� is not the standard deviation, but does govern the “size” of the deviations about�.

Under temporal clustering at high levels (i.e., dependence among extremes close
together in time), (2.1) still holds with an adjustment to the location and scale
parameters depending on the mean cluster length (i.e., the shape parameter is not
affected; Coles 2001). Under long-range temporal dependence (i.e., dependence
among extremes far apart in time), no adjustment necessarily need be made.
Nevertheless, the rate of convergence might well be affected by either temporal
clustering or long memory. In practice, one fits the GEV distribution directly
to block maxima, so the parameters are automatically adjusted for any temporal
clustering (Coles 2001).

Nonstationarity is introduced by expressing one or more of the parameters of
the GEV as a function of time, say �(t), �(t), and �(t), tD 1, 2, : : : . Here t would
typically denote the year (or season) over which the maximum is taken. For instance,
one might consider as a candidate model the nonstationary GEV distribution with

�.t/ D �0 C �1t; ln �.t/ D �0 C �1t; �.t/ D �: (2.3)

That is, the model consists of a GEV distribution with linear trends in the location
and log-transformed scale parameters [to constrain �(t)> 0], but no trend in the
shape parameter. So at any point in time t, the distribution of the maximum remains
the GEV consistent with the Extremal Types Theorem. The parameter �1 can be
interpreted as the slope of a linear trend in the center of the distribution, and the
transformed parameter exp(�1) as the proportionate rate of change in the scale (or
size) of the distribution.

Such trends can be more readily interpreted in terms of the corresponding time
varying quantile (or “effective” return level), which would reduce to a conventional
return level (with return period 1/p) if it did not vary with time. The (1 – p)th quantile
of the GEV distribution, as a function of time t, can be obtained by inverting (2.2):

G�1Œ1 � pI�.t/; �.t/; �.t/� D �.t/C Œ�.t/=�.t/�

�
n
Œ�ln .1 � p/���.t/ � 1

o
; 0 < p < 1: (2.4)

In particular, if the location and/or scale parameters have linear time trends, then the
effective return level would also change linearly.

2.2.2 Excesses Over High Threshold

The analogue to the GEV distribution for block maxima is the GP distribution for
excesses over a high threshold. For now, we make the same assumption that the time
series fX1, X2, : : : , Xng is iid with common cdf F. For sufficiently high threshold u,
the distribution of the excess YiDXi – u, conditional on Xi> u, has an approximate
GP distribution with cdf
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HŒyI �.u/; �� D 1 � f1C � Œy=�.u/�g�1=� ; 1C � Œy=�.u/� > 0; y > 0 (2.5)

(Coles 2001). Here �(u)> 0 and � denote the scale and shape parameters, respec-
tively. The shape parameter has the same interpretation as for the GEV, with the GP
having three types: (i) � > 0 corresponding to the heavy-tailed or Pareto type; (ii)
� < 0 to the bounded tail or beta type; and (iii) �D 0 [obtained by taking the limit
as �! 0 in (2.5)] to the light-tailed or exponential type. The scale parameter �(u)
is not the standard deviation, but does govern the “size” of the excesses.

The notation �(u) is intended to emphasize the dependence of the scale parameter
on the threshold. That is, if the distribution of the excess Yi has an exact GP
distribution (rather than only approximate), then increasing the threshold from u to
u* would result in another GP distribution with the same shape parameter �, but an
adjusted scale parameter given by

�.u�/ D �.u/C � �u� � u
�
; u� > u (2.6)

(Coles 2001). In particular, the scale parameter would increase [i.e., �(u*)>�(u)]
if � > 0, decrease if � < 0. Consistent with the “memoryless” property of the
exponential distribution, there would be no change in the scale parameter if �D 0.

The selection of the threshold u involves a delicate trade-off, high enough for
the GP approximation to be fairly accurate, but not so high to make the number
of exceedances of the threshold too small for parameter estimation to be reliable.
Accounting for temporal dependence is a further complication, with one approach
being to decluster the data (e.g., identifying flood peaks in stream flow) and fitting
the GP distribution only to cluster maxima (Coles 2001).

2.2.3 Point Process Approach

To fully model extremes, the GP distribution for the excess over a high threshold
u needs to be combined with the rate at which the threshold is exceeded. By what
is sometimes called the Law of Small Numbers (i.e., the Poisson approximation to
the binomial distribution for rare events), it is natural to approximate the time series
of exceedances by a one-dimensional Poisson process with rate parameter �> 0.
In particular, the number of exceedances of u, Nu(T) say, within a time interval
of length T would be approximately Poisson with mean E[Nu(T)]D�T. The POT
technique combines these two components, the GP and Poisson, also being termed
a Poisson-GP model, with parameters �, �(u), and �.

A closely related approach consists of modeling both of these processes, the
exceedances and the excesses, simultaneously as a two-dimensional point process,
with the horizontal dimension corresponding to time and the vertical dimension to
the excess over the threshold. For sufficiently high threshold u, the points in this two-
dimensional space would be approximately distributed as a nonhomogenousPoisson
process. Even though the process might well be homogenous in the time dimension,



2 Statistical Methods for Nonstationary Extremes 21

it would be inherently nonhomogeneous in the vertical dimension because larger
excesses should be less likely than smaller ones (Coles 2001; Smith 1989).

For notational convenience, suppose that the sequence of observations fX1,
X2, : : : , Xng over which the maximum is taken corresponds to a time interval of
length T. Because Nu(T)D 0 (i.e., no exceedances of u) if and only if Mn � u (i.e., the
maximum of the sequence of observations does not exceed u), the two-dimensional
point process can be parameterized in terms of the GEV distribution for block
maxima. Specifically, the parameters of the Poisson-GP model, �, �(u), and �, can
be expressed as functions of the parameters of the GEV distribution, �, � , and �, as
follows:

ln � D � .1=�/ ln Œ1C � .u � �/ =�� ; �.u/ D � C � .u � �/ ; (2.7)

with the shape parameter � being identical. The expression for � closely resembles
the exceedance probability for a GP distribution, that for �(u) the effect on the scale
parameter when the threshold of a GP distribution is changed. Because the GEV
distribution corresponds to the approximate distribution of block maxima (with
block size n), strictly speaking the Poisson rate parameter � depends on the block
size as well (e.g., Katz et al. 2002). This parameterization has the advantage that the
scale parameter � of the GEV, unlike that of the GP �(u), does not depend on u.

If the parameterization in terms of the GEV distribution is used, then nonsta-
tionarity can be introduced into the point process model in the same way as for the
block maxima approach, again with parameters, �(t), �(t), and �(t), dependent on
time t [e.g., as in (2.3)]. But now the unit of time could be days or hours, rather
than years. In particular, the interpretation of the parameters remains the same as
for those in (2.3). If the nonstationarity were substantial enough in magnitude, then
the threshold could be a function of time as well, u(t) say, to ensure that the extreme
value approximation remains valid over the entire time span.

Note that the point process approach, at least in terms of the GEV parameteriza-
tion, is still not commonly used to model trends in climate or hydrologic extremes;
rather, nonstationarity is typically introduced separately into the two components
of the Poisson-GP model (one exception is Brown et al. 2008). Any such trends
over time in these parameters, �(t), �(u, t), and �(t), can be converted into the
corresponding trends in the GEV parameters through the inversion of (2.7). But
one disadvantage is that the direct interpretation of any trends in the parameters of
the Poisson-GP model is not nearly as straightforward.

2.2.4 Parameter Estimation

2.2.4.1 Maximum Likelihood

We adopt the technique of maximum likelihood for estimating the parameters of
extremal distributions (e.g., Coles 2001). This technique is first illustrated for the
block maxima approach under stationarity, further assuming that the distribution of
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Mn is GEV with parameters �, � , and � (i.e., that the block size n is sufficiently
large). Let G 0(x; �, � , �) denote probability density function (pdf) corresponding
to cdf G given by (2.2) [i.e., obtained by differentiating the expression (2.2) for G
with respect to x]. Suppose a sample of size T of block maxima (i.e., effectively an
original sample of size nT before taking block maxima), denoted by Mn(1)Dm1,
Mn(2)Dm2, : : : , Mn(T)DmT , is available. It need not be assumed that the original
observations are temporally independent, only that the resultant block maxima are
approximately so.

The likelihood function, denoted by L(m1, m2, : : : , mT ; �, � , �), can be thought
of as a measure of how likely these T observed block maxima, m1, m2, : : : , mT ,
are as a function of the unknown GEV parameters �, � , and �. The maximum
likelihood estimates (MLEs) are those values of the parameters, �, � , and �, that
maximize the likelihood function. In practice, it convenient to work in terms of the
log likelihood function, with the logarithmic transformation converting a product to
a sum (equivalent, but more tractable for the purpose of optimization), maximizing
the expression

ln L.m1;m2; :::; mT I�; �; �/ D ln G0.m1I�; �; �/C � � � C ln G0.mT I�; �; �/;
(2.8)

with respect to �, � , and �. Instead of maximization, it is more convenient to
minimize the negative log likelihood (nllh) function�ln L(m1, m2, : : : , mT ; �, � , �).

With this formulation, the extension of the optimization problem to the nonsta-
tionary case, in which the parameters of the GEV distribution depend on time t, �(t),
�(t), and �(t), tD 1, 2, : : : , T, is immediate. For instance, with the nonstationary
model (2.3), the likelihood function, denoted by L[m1, m2, : : : ., mT ; �(t), �(t), �(t)],
can be expressed as a function of five parameters; namely, �0, �1, �0, �1, and �,
with the optimization problem now entailing minimizing the negative log likelihood
function with respect to these five parameters.

Although the details are not provided here, the MLEs for the parameters in the
point process model, or in the Poisson-GP model, can be obtained in the same
manner (for an expression for the log likelihood function, see Katz et al. 2002).
It should be noted that another estimation technique, namely probability-weighted
or L-moments (Hosking and Wallis 1997), remains more popular than maximum
likelihood in hydrologic applications. But it is not as straightforward to apply under
nonstationarity.

2.2.4.2 Model Selection

Maximum likelihood also has the advantage of facilitating approximate tests of
significance in the comparison of “nested” models. For instance, consider a possible
linear trend in the location parameter of the GEV distribution; that is,

�.t/ D �0 C �1t; �.t/ D �; �.t/ D �: (2.9)
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The alternative model with no trend can be obtained as a special case of (2.9) by
setting the slope �1D 0. For such a comparison of models, the likelihood ratio
test provides an approximate procedure for large sample size (e.g., Coles 2001). In
particular, the test of the null hypothesis of no trend (i.e., �1D 0) can be performed
by comparing the minimized negative log likelihood function for the two competing
models (one with �1 constrained to be zero, the other with �1 unconstrained). That
is, a comparison of

nllh.3/ � �lnL.m1;m2;:::;mT I O�; O�; O�/ vs:

nllh.4/ � �lnL.m1;m2; :::; mT I O�0; O�1; O�; O�/: (2.10)

Here the simplified notation nllh(k) denotes the minimized negative log likelihood
for a model requiring the estimation of k parameters, and a caret over a parameter
denotes the corresponding MLE.

Under null hypothesis of �1D 0, the likelihood ratio test statistic, based on
twice the difference between nllh(3) and nllh(4), has an approximate chi squared
distribution [with one degree of freedom (df), denoted by �2(1)] for large sample
size T. That is, the test is based on

2 Œnllh .3/ � nllh .4/� � �2 .1/ (2.11)

(Coles 2001). This test statistic has one df, because the more complex model
requires the estimation of one additional parameter (namely, �1).

When a number of candidate models are involved (still all nested), a model se-
lection criteria would be more appropriate than repeated tests of significance whose
outcomes lose their interpretibility. Two popular criteria are Akaike’s information
criteria (AIC) and the Bayesian information criterion (BIC) (e.g., Venables and
Ripley 2002), both penalizing the minimized negative log likelihood function for
the number of parameters estimated. From a collection of nested candidate models,
AIC (or BIC) selects the model that minimizes the quantity

AIC.k/ D 2 nllh.k/C 2 k; BIC.k/ D 2 nllh.k/C k ln T; (2.12)

respectively.

2.2.4.3 Diagnostics

Quantile-Quantile (Q-Q) plots are a popular technique for checking the fit of
stationary extremal distributions, as they are particularly effective at highlighting
apparent discrepancies in the extreme upper tail. To apply this technique to a fitted
nonstationary model, it is first necessary to transform the data to stationarity. For
example, if the random variable Mn(t) is distributed as a nonstationary GEV with
parameters �(t), �(t), and �(t), then the transformed variable
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"t D Œ1=�.t/� ln f1C �.t/ ŒMn.t/ � �.t/� =�.t/g (2.13)

has a standard Gumbel distribution (i.e., �D 0, � D 1) (Coles 2001). Substituting
the MLEs into (2.13), a conventional Q-Q plot for block maxima can be gener-
ated in terms of the transformed variable "t as compared to a standard Gumbel
distribution. Because this approach ignores the fact that the GEV parameters in
(2.13) are actually unknown, such a Q-Q plot should only be viewed as a rough
diagnostic.

For the nonstationary point process model with the GEV parameterization, the
corresponding scale parameter �(u, t) of the GP distribution for the excess over a
high threshold can be obtained using (2.7). If a random variable Yt has a nonstation-
ary GP distribution with parameters �(u, t) and �(t), then the transformed variable

"t D Œ1=�.t/� ln f1C �.t/ ŒYt=�.u; t/�g (2.14)

has a standard exponential distribution [i.e., �(u)D 1] (Coles 2001). So, analogous
to (2.13), a conventional Q-Q plot for excesses can be generated in terms of the
transformed variable "t, defined by (2.14), as compared to a standard exponential
distribution.

2.3 Examples

To obtain MLEs of the parameters of extremal distributions such as the GEV,
minimizing the negative log likelihood function requires iterative numerical proce-
dures. In the following examples, we use the R packages “extRemes” and “ismev”
(Gilleland and Katz 2011; R Development Core Team 2011) that rely on “brute
force” optimization. More efficient numerical optimization could be implemented
using, for instance, vector generalized linear models (VGLM) (Yee and Stephenson
2007). For a review of statistical software to analyze extremes, see Stephenson and
Gilleland (2006).

2.3.1 Trend in Block Maxima

2.3.1.1 Annual Peak Flow at Mercer Creek, WA

We now return to the example of annual peak flow at Mercer Creek, briefly men-
tioned in the Introduction (recall Fig. 2.1, lower panel). Motivated by information
about the rapid urbanization in this drainage basin during the time period of roughly
1970–1985, the nonstationarity in peak flow is modeled in terms of piecewise linear
trends in the location and log-transformed scale parameters of the GEV distribution.
That is, a model of the following form is fitted:

�.t/ D �0 C �1 z.t/; ln �.t/ D �0 C �1 z.t/; �.t/ D �; t D 1; 2; :::; T:
(2.15)
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Table 2.1 Parameter estimates and standard errors for two forms of nonstationary
GEV distribution, along with those for stationary GEV, fitted to annual time series
of peak flow (cfs) at Mercer Creek, WA during 1956–2006

Model Parameter estimate Standard error nllh P-value

Stationary 318.67
Location � 264:20 18:00

Scale � 101:51 15:51

Shape � 0:311 0:185

Nonstationary (�) 309.78 <10�4

Location �0 219:17 22:28

�1 8:91 2:76

Scale � 97:33 12:70

Shape � 0:064 0:141

Nonstationary .�; �/ 294.43 <10�7

Location �0 194:05 8:01

�1 14:67 2:15

Scale (log) �0 3:419 0:193

�1 0:109 0:018

Shape � �0:034 0:112

Minimized negative log likelihood (nllh) and P-value for likelihood ratio test (i.e.,
comparing a model with the one immediately above) also included

Here the piecewise linear time covariate z(t) is defined by

z.t/ D 1; t � t1I z.t/ D t � t1; t1 C 1 � t � t2I z.t/ D t2 � t1; t2 C 1 � t � T I
(2.16)

with tD 1 corresponding to the year 1956, t1D 15 to the year 1970, t2D 30 to the
year 1985, and T D 51 to the year 2006. Rather than fill in the missing value for
year 2003, it can be appropriately handled in the statistical software through simply
omitting the record for that year from the data file.

Table 2.1 gives parameter estimates, along with standard errors, for three
different forms of GEV distribution:

(i) Stationary GEV in which none of the parameters depend on time [i.e.,
�1D �1D 0 in (2.15)];

(ii) Nonstationary GEV in which the location parameter, but not the scale parame-
ter, depends linearly on time during 1971–1985 [i.e., �1D 0 in (2.15)];

(iii) Nonstationary GEV in which both the location and log-transformed scale
parameters depend linearly on time during 1971–1985 [i.e., general form of
(2.15)].

Table 2.1 also includes the minimized negative log likelihood for these three
candidate models. The likelihood ratio test (2.11) for comparing model (i) versus
model (ii) (i.e., whether �1D 0) gives a P-value smaller than 0.0001, whereas
the likelihood ratio test for comparing model (ii) versus model (iii) (i.e., whether
�1D 0, given �1¤ 0) yields an even smaller P-value. In other words, there is strong
evidence that model (iii) fits the data better than model (i) or (ii).
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Fig. 2.2 Q-Q plot (based on transformation to standard Gumbel distribution) for nonstationary
GEV distribution with piecewise linear trends in location and log-transformed scale parameters
fitted to annual time series of peak flow (cfs) at Mercer Creek, WA during 1956–2006

Figure 2.2 shows a Q-Q plot for model (iii) based on the transformation to the
standard Gumbel distribution (2.13), with the fit appearing reasonable. Figure 2.3
shows the corresponding trends in a few example time varying quantiles for the
fitted nonstationary GEV of model (iii) [i.e., substituting the estimated parameters
into (2.4)], along with the observed time series of annual peak flow. The quantile
curves increase nonlinearly during 1971–1985 because of the scale parameter being
modeled as an exponential function of time (2.15), with the increase being more
rapid the higher the quantile. Figure 2.4 shows the fitted GEV pdfs for annual
peak flow during the time periods of 1956–1970 and 1985–2006, with substantial
increases in both the center and the spread of the distribution being associated with
the changes in land use.

2.3.1.2 Winter Maximum Daily Precipitation at Manjimup,
Western Australia

This example concerns the statistical modeling of trends in daily precipitation
extremes at Manjimup, a site in southwest Western Australia. This region has
experienced an overall drying trend in recent decades (Bates et al. 2010), particularly
during the winter season and including a decrease in extreme high daily precipitation
amounts (Li et al. 2005). Figure 2.5 shows the winter (May–October) time series of
maximum daily precipitation amounts, with an extended period of markedly lower
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Fig. 2.3 Annual time series of peak flow (cfs) at Mercer Creek, WA during 1956–2006, along
with selected quantiles [0.5 (dashed curve), 0.75 (dotted curve), 0.9 (dot-dashed curve)] for fitted
nonstationary GEV distribution with piecewise linear trends in location and log-transformed scale
parameters
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Fig. 2.4 Fitted GEV pdfs for annual peak flow at Mercer Creek, WA during time periods 1956–
1970 (solid curve) and 1985–2006 (dashed curve)
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Fig. 2.5 Winter (May–October) time series of maximum daily precipitation amount (mm) at
Manjimup, Western Australia during 1930–2004

extremes starting in the mid or late 1960s. Bates et al. (2010) found a gradual
decline in variables such as mean stream flow, whereas Li et al. (2005) argued for an
abrupt shift (or “change point”) in extreme precipitation. Although some long-term
changes in atmospheric/oceanic circulation patterns have been detected (Bates et al.
2010), attempts to relate the decreases in extreme high precipitation to, for instance,
an apparent trend an index of the Antarctic Oscillation (AAO), remain inconclusive
(Li et al. 2005).

A nonstationary GEV distribution of the general form

�.t/ D �0 C �1 t C �2 t2; ln �.t/ D �0 C �1 t C �2 t2; �.t/ D �; (2.17)

is fitted; that is, with possible quadratic trends in the location and log-transformed
scale parameters. To avoid numerical problems, time has been rescaled to the
interval [�1, 1], with tD�1 corresponding to the year 1930, tD 0 to the year 1967,
and tD 1 to the year 2004. This form of nonstationarity would be consistent with a
gradual decline in precipitation extremes at Manjimup.

Starting with the stationary case, trends of increasing complexity are fitted as
follows:

(i) Stationary GEV distribution [i.e., �1D�2D �1D �2D 0 in (2.17)];
(ii) Linear trend in location parameter [i.e., �2D �1D �2D 0 in (2.17)];

(iii) Quadratic trend in location parameter [i.e., �1D �2D 0 in (2.17)];
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Table 2.2 Model selection for nonstationary GEV distributions fitted to winter (May–October)
time series of maximum daily precipitation amount (mm) at Manjimup, Western Australia during
1930–2004

Model
Number of
parameters nllh AIC BIC

Stationary 3 285.93 577.87 584.82
Linear trend in � 4 280.55 569.10 578.37
Quadratic trend in � 5 278.23 566.45 578.04
Quadratic trend in �, linear trend in ln � 6 275.79 563.57a 577.48a

Quadratic trends in � and ln � 7 274.80 563.61 579.83

Minimized negative log likelihood (nllh), along with AIC and BIC values, are listed for each
candidate model
aDenotes minimum value

Table 2.3 Parameter estimates and standard errors for nonstationary GEV distribu-
tion, with quadratic trend in location parameter and linear trend in log-transformed
scale parameter, fitted to winter (May–October) time series of maximum daily
precipitation amount (mm) at Manjimup, Western Australia during 1930–2004

Parameter estimate Standard error P-value

Location parameter
Constant �0 35:241 1.292
Linear trend �1 �7:688 1.787 0.001
Quadratic trend �2 4:582 2.513 0.031
Scale parameter (log)
Constant �0 2:050 0.102
Linear trend �1 �0:414 0.170 0.027
Shape parameter
Constant � 0:107 0.092

P-values for likelihood ratio tests also included (i.e., comparing a model with the
one immediately above)

(iv) Quadratic trend in location parameter and linear trend in log-transformed scale
parameter [i.e., �2D 0 in (2.17)];

(v) Quadratic trends in location and in log-transformed scale parameters [i.e.,
general form of (2.17)].

Because of so many candidate models being fitted, the AIC and BIC (2.12)
are first applied instead of the likelihood ratio test. For each candidate model,
Table 2.2 lists the minimized negative log likelihood, along with the AIC and BIC
values. Model (iv), with a quadratic trend in the location parameter and a linear
trend in the log-transformed scale parameter, is selected by both the AIC and BIC.
A likelihood ratio test comparing this model to model (v), with quadratic trends in
both the location and log-transformed scale parameters, yields a P-value of 0.161, in
agreement with the AIC and BIC. Table 2.3 gives parameter estimates and standard
errors for model (iv), along with P-values for likelihood ratio tests again consistent
with the outcomes of the AIC and BIC given in Table 2.2. The fit appears reasonable
according to a Q-Q plot (not shown) based on the same method as Fig. 2.2.



30 R.W. Katz

1940 1960 1980 2000

40

60

80

100

Year

M
ax

im
um

 d
ai

ly
 p

re
ci

pi
ta

tio
n 

(m
m

)

Fig. 2.6 Winter (May–October) time series of maximum daily precipitation amount (mm) at
Manjimup, Western Australia during 1930–2004, along with selected quantiles [0.25 (dashed
curve), 0.5 (dotted curve), 0.75 (dot-dashed curve)] for fitted nonstationary GEV distribution with
quadratic trend in location parameter and linear trend in log-transformed scale parameter

Figure 2.6 shows the corresponding trends in a few example time varying
quantiles for the fitted nonstationary GEV of model (iv) [i.e., substituting the
estimated parameters into (2.4)], along with the observed time series of winter
maximum daily precipitation. The quantile curves decrease nonlinearly, along with
decreasing spread in recent decades. Still the actual time series exhibits more abrupt
shifts on a decadal time scale, especially one starting in the mid or late 1960s, not
well captured by the fitted model.

2.3.2 Trend in Point Process

2.3.2.1 Poisson-GP Model for Manjimup Winter Daily Precipitation

We continue with the example of trends in precipitation extremes at Manjimup,
Western Australia, but now modeling trends in the daily extremes instead of only
block maxima. First, the Poisson-GP model is fitted to the time series of daily
precipitation amount in winter at Manjimup, including possible linear trends in the
log-transformed rate parameter of the Poisson component for the exceedance of a
threshold and in the log-transformed scale parameter of the GP component for the
excess over the threshold. That is, models of the form

ln �.t/ D �0 C �1 t; ln �.u; t / D �0 C �1 t; �.t/ D �; (2.18)
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Table 2.4 Parameter estimates and standard errors for Poisson-GP
model, with linear trends in log-transformed Poisson rate parameter and
in log-transformed GP scale parameter using a threshold of 30 mm, fitted
to winter (May–October) time series of daily precipitation amount (mm)
at Manjimup, Western Australia during 1930–2004

Parameter estimate Standard error P-value

Poisson component
Rate parameter (log):
Constant �0 �3:564 0.123
Linear trend �1 �0:021 0.004 <10�9

GP component
Scale parameter (log):
Constant �0 2:265 0.155
Linear trend �1 �0:0086 0.0038 0.029
Shape parameter � 0:111 0.079

P-values for likelihood ratio tests for trends also included

are fitted, where the time variable tD 1 corresponds to the year 1930 and tD 75 to
the year 2004. Note that the index of time is only allowed to shift from one winter
to the next, rather than gradually within a given winter, consistent with the approach
taken above for block maxima. It turns out that this form of nonstationary Poisson-
GP model produces a gradual decline in extremes of approximately the same shape
as that of (2.17) in terms of block maxima.

For a threshold of uD 30 mm as used by Li et al. (2005), Table 2.4 give parameter
estimates, standard errors, and P-values for the two trend models in (2.18). There
is strong evidence of a trend in the rate of threshold exceedance, with the fitted
nonstationary mean of the Poisson distribution being shown in Fig. 2.7. The trend in
the GP scale parameter is statistically significant at the 5% level, with a few example
quantiles of the fitted nonstationary GP distribution being shown in Fig. 2.8. The fit
appears reasonable according to a Q-Q plot (not shown), based on the transformation
from nonstationary GP to standard exponential distribution (2.14).

The GEV parameters, �(t) and �(t), can be expressed as functions of the
Poisson-GP parameters, �(t) and �(u, t), by solving the system of equations
(2.7). Derived from the fitted nonstationary Poisson-GP model, the corresponding
trends in quantiles of the GEV are remarkably similar to those shown in Fig. 2.6,
notwithstanding the different approaches (i.e., block maxima versus Poisson-GP)
and different functional forms (i.e., quadratic versus exponential trends).

2.3.2.2 Point Process Applied to Manjimup Winter Daily Precipitation

As a closely related alternative to the Poisson-GP model, a two-dimensional point
process is fitted to the same time series of daily precipitation extremes during winter
at Manjimup. Consistent with Li et al. (2005) who detected a change point in
precipitation extremes at Manjimup, the nonstationarity is modeled as an abrupt
shift in the parameters of the point process, starting in 1966, from one stationary
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Fig. 2.7 Winter (May–October) time series of frequency of daily precipitation amount greater
than a threshold of 30 mm at Manjimup, Western Australia during 1930–2004, along with mean of
fitted nonstationary Poisson distribution (dashed curve) with linear trend in log-transformed rate
parameter
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Fig. 2.8 Winter (May–October) time series of daily precipitation amount over a threshold of
30 mm at Manjimup, Western Australia during 1930–2004, along with selected quantiles [0.5
(dashed curve), 0.9 (dotted curve), 0.95 (dot-dashed curve)] for fitted nonstationary GP distribution
with linear trend in log-transformed scale parameter



2 Statistical Methods for Nonstationary Extremes 33

Table 2.5 Parameter estimates and standard errors for point process model, with
different parameters for time period 1930–1965 (using a threshold of 30 mm) and
1966–2004 (using a threshold of 22 mm), fitted to winter (May–October) time series
of daily precipitation amount (mm) at Manjimup, Western Australia

Parameter estimate Standard error P-value

Time period: 1930–1965
Location parameter � 42:419 1.437
Scale parameter � 9:829 1.050
Shape parameter � 0:143 0.094
Time period: 1966–2004
Location parameter � 32:297 0.961 < 10�13

Scale parameter � 6:893 0.505 0.040
Shape parameter � �0:093 0.058 0.027

P-values also included for likelihood ratio tests of equality of parameters in two time
periods

model to another. With the time covariate z(t) now being defined by z(t)D 0 if
t� 36; z(t)D 1 if t� 37 instead of (2.16) and the time index t remaining as in
(2.18), this shift in parameters can be expressed in the same way as in (2.15). If
all the parameters change, then the point process could be fitted separately to the
data for the two time periods, 1930–1965 and 1966–2004. The advantage of fitting
a nonstationary model, via the time covariate, to the entire data set is that constraints
can be readily imposed (e.g., allowing the location and scale parameters to shift, but
not the shape parameter).

Table 2.5 gives the parameter estimates and standard errors for the point process
with shifts in all three GEV parameters between the two time periods. To keep the
rate of exceeding the threshold roughly the same for the two time periods, the results
are based on a threshold of 30 mm during the first time period, 22 mm during the
second. As explained in Sect. 2.2.3, the use of a time varying threshold does not
create any difficulties in interpretation, provided the point process is parameterized
in terms of the GEV. Also included in Table 2.5 are P-values for the likelihood
ratio tests of equality of parameters in the two time periods. The strongest evidence
is for a shift in the location parameter, as compared to a fully stationary model,
with a P-value of virtually zero. The evidence for a shift in the scale parameter, in
addition to the location parameter, or for a shift in the shape parameter, in addition
to the location and scale parameters, is weaker with P-values of about 0.04 and 0.03,
respectively. A physical explanation for this apparent shift in the shape parameter,
from a heavy to a bounded tail, would be desirable.

The fit appears reasonable according to a Q-Q plot (not shown), again based
on the transformation from nonstationary GP to standard exponential distribution
(2.14). Figure 2.9 shows a few example quantiles of the fitted point process, as
compared to the time series of observed winter daily maxima. As in the case of
quadratics being used to model nonstationarity in the block maxima approach (see
Fig. 2.6), the present model still does not necessarily capture all of the apparent
variations on a roughly decadal time scale in precipitation extremes during winter
at Manjimup.
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Fig. 2.9 Winter (May–October) time series of maximum daily precipitation amount (mm) at
Manjimup, Western Australia, along with selected quantiles (0.25, 0.5, and 0.75 indicated by dotted
lines) for fitted nonstationary point process with different parameters for time periods 1930–1965
(threshold D 30 mm) and 1966–2004 (threshold D 22 mm)

2.4 Discussion

In the examples presented, only relatively simple forms of nonstationarity have
been considered which can be implemented through linear models. For examples
of fitting more flexible forms of nonstationarity to climate or hydrologic extremes,
see Chavez-Demoulin and Davison (2005), Davison and Ramesh (2000), and
Ramesh and Davison (2002). Techniques for fitting such possibly nonlinear models
include vector generalized additive models (VGAM; Yee and Stephenson 2007) and
generalized additive models for location, scale, and shape (GAMLSS; Rigby and
Stasinopoulos 2005).

Instead of, or in addition to, time trends, physically based covariates could be
introduced into extremal models as well. For instance, annual peak flow could be
fitted by a GEV distribution conditional on the state of an index of the El Niño-
Southern Oscillation (ENSO) phenomenon (e.g., Katz et al. 2002). Similarly to the
trend examples presented here, the location and log-transformed scale parameters
of the GEV might be varied with the ENSO index, keeping the shape parameter
constant. Among other things, the unconditional distribution of annual peak flow
would be a mixture of GEV distributions, providing a chance mechanism by which
more complex forms of extremal distributions could naturally arise.
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Our applications have only dealt with data for one site at a time. Trend detection
would be more powerful if applied to multiple sites within a relatively homogenous
region. The rationale being that nonstationarity driven by global climate change
should be of a similar magnitude at adjacent sites. The idea of “borrowing strength”
across space in trend analysis is an natural extension of the technique of regional
analysis commonly applied in hydrology under stationary to estimate high flood
quantiles (Hosking and Wallis 1997). For instance, the location and scale parameters
of the GEV distribution could be site-dependent, with the shape parameter site-
independent, and a linear trend in the location parameter having the same slope
across the region. Hanel et al. (2009) constitutes one example of such an approach
applied to the output of a regional climate model.

Quantile regression is an alternative approach, not based on extreme value theory,
with the quantiles of a distribution being directly modeled as functions of covariates.
As such, it would produce trends in quantiles that could be directly compared to
those obtained in the examples presented here. Nevertheless, the question remains
of how well quantile regression performs in practice for high quantiles. See Yu et al.
(2003) for a general review of quantile regression and Friederichs and Hense (2007)
for a hydrologic-related application.

In many climate change applications, information is needed not only about
extremes, but about the low to moderate levels of the hydrologic variable as well.
As clear in the example shown in Fig. 2.1, it would not necessarily be reasonable
to assume the same form of trend for extremes as for the remainder of the process.
Attempts to unify the modeling of high levels of a hydrologic variable with lower
levels include Furrer and Katz (2008) and Vrac and Naveau (2007). But these
attempts have not yet focused directly on the issue of trends.

Lastly, an important issue concerns how to convey information about the risk
of extreme events under nonstationary. The familiar concepts of return level and
return period are predicated upon the assumption of stationarity. One way to treat
nonstationarity is to evaluate the model in terms of time varying quantiles. In the
present chapter, the graphical displays of the fitted nonstationary extremal models
have been constructed using these quantities. Yet, for some applications, it would
be unrealistic to provide a measure of risk that shifts from one year to the next. For
example, it would not necessarily be feasible to change the width of the flood plain
on an annual basis. So an alternative measure of risk would be needed; for instance,
based on the expected waiting time until the next event (Olsen et al. 1998). This
topic is the focus of the next chapter in this book.
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Chapter 3
Bayesian Methods for Non-stationary Extreme
Value Analysis

Benjamin Renard, Xun Sun, and Michel Lang

Abstract Non-stationary models for extremes have attracted significant attention in
recent years. These models require adapted estimation methods. Bayesian inference
offers an attractive framework to estimate non-stationary models and, importantly,
to quantify estimation and predictive uncertainties.

This chapter therefore focuses on the application of Bayesian inference to
non-stationary extreme models. It is organized as a step-by-step building of non-
stationary models of increasing generality. The principles of Bayesian inference are
introduced using the simple case of a univariate and stationary distribution. The
construction of at-site non-stationary models, using regression functions linking
parameter values with time-varying covariates, is then presented. The difficulty
of identifying non-stationary components based on the sole use of at-site data is
also discussed, and motivates the construction of regional non-stationary models.
Such models are based on the concept of “regional parameters”, i.e. parameters
being assumed identical for all sites within a homogeneous region. The inference of
regional models poses an additional difficulty compared to the at-site approach: the
existence of spatial dependences makes the derivation of the inference equations
challenging. A practical solution, based on the use of spatial copulas, is briefly
presented. Lastly, a generalization of the “regional parameter” paradigm, based on
Bayesian hierarchical modeling, is discussed.

3.1 Introduction

Non-stationary models for extremes have attracted significant attention in recent
years. The most common approach has been to introduce non-stationarity through
the parameters of the extreme distribution, by using regression models linking
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parameter values with some time-varying covariate. This approach requires develop-
ing adapted estimation methods. In most cases, inference based on the likelihood has
been favored over e.g. moment-based methods, due to its generality and flexibility
to introduce various forms of non-stationarity (e.g., Coles et al. 2003). In particular,
Bayesian inference offers an attractive framework to estimate non-stationary models
and, importantly, to quantify estimation and predictive uncertainties.

This chapter therefore focuses on the application of Bayesian inference to
non-stationary extreme models. It is organized as a step-by-step building of non-
stationary models of increasing generality (and, as a consequence, of increasing
complexity). We start in Sect. 3.2 by a short introduction to Bayesian inference
and related tools. This introduction is illustrated using the simplest possible
case of estimating the parameters of an univariate and stationary distribution.
In particular, Sect. 3.2 will define the basic pieces forming Bayesian inference
(likelihood function, prior, posterior and predictive distributions) and will briefly
describe Monte-Carlo Markov Chain samplers, which are in practice the inseparable
companions of the Bayesian Hydrologist. Section 3.3 will then illustrate the
construction of at-site non-stationary models, using regression functions linking
parameter values with time-varying covariates. The generality of this approach will
be illustrated using several examples of non-stationary models. The difficulty of
identifying non-stationary components based on the sole use of at-site data will
also be discussed, and will motivate the construction of regional non-stationary
models. Such models are presented in Sect. 3.4, and are based on the concept of
“regional parameters”, i.e. parameters being assumed identical for all sites within
an homogeneous region. The idea behind this assumption is to enable using data
from several sites simultaneously in order to “share information” between sites and
make the identification of non-stationary components more robust. The inference
of regional models poses an additional difficulty compared to the at-site approach:
the existence of spatial dependences makes the derivation of the inference equations
challenging. A practical solution, based on the use of spatial copulas, will be briefly
presented. Lastly, Sect. 3.5 discusses the generalization of such regional models, in
order to make a less stringent assumption than the regional parameter assumption.
This generalization is based on Bayesian hierarchical modeling, which has been
recently applied in hydrological extreme analyses, and whose use is likely to grow
in the future in the authors’ opinion.

3.2 What Is Bayesian Inference?

3.2.1 Basics of Bayesian Inference

This section presents the general principles of Bayesian inference. We consider the
simple case of estimating the distribution of a one-dimensional random variable,



3 Bayesian Methods for Non-stationary Extreme Value Analysis 41

based on an independent and identically distributed (iid) sample of observations.
Further refinements (e.g. non-stationarity, multivariate case, non-independence,
hierarchical modeling, etc.) will be explored throughout the chapter to address the
issues posed by the modeling of non-stationary data. Moreover, readers interested
in a more in-depth discussion of the Bayesian paradigm may refer to Gelman et al.
(2004), amongst many other textbooks on this subject.

3.2.1.1 Notation

Let Yt denote the random variable of interest (e.g. annual maximum of year t
recorded at some site). Observations are denoted by yt and are considered as
realizations from Yt. Bold letters are used to denote the observation vector y D
.yt /tD1WNt and the corresponding random vector Y D .Yt /tD1WNt . The following
assumptions are made in the remainder of this section:

• Independence: Random variables .Yt /tD1WNt are mutually independent. In partic-
ular, this implies that there is no serial correlation between consecutive values.

• Identical distribution: All random variables .Yt /tD1WNt have the same distribu-
tion, parameterized by some vector � . The probability density function (pdf) of
this distribution, evaluated at some value y, is noted p.yj�/.
Note that the second assumption implies stationarity, since the distribution of Yt

does not evolve with time.

3.2.1.2 Likelihood

The likelihood is a central concept in several inference paradigms, including the
Bayesian one. It quantifies the information brought by the data. Loosely speaking,
the likelihood corresponds to the probability of observing what was actually
observed, according to the probabilistic model. More correctly, the likelihood of
observations y is equal to the joint pdf of the random vector Y D .Y1; :::; YNt /,
evaluated at observations y. In standard Bayesian notation, the likelihood is therefore
noted as p.y j�/. Given the independence assumption, the joint pdf of the random
vector Y is equal to the product of its marginal pdfs, yielding:

p.yj�/ D
NtY
tD1

p.yt j�/ (3.1)

The likelihood in Eq. (3.1) may suffice to infer the parameters: for instance,
the maximum likelihood estimate is derived by maximizing the likelihood viewed
as a function of � . However, Bayesian inference requires the specification of an
additional piece of information: the prior distribution.
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3.2.1.3 Prior Distribution

This distribution aims at encoding any prior knowledge on parameters � the modeler
may have. Its pdf is denoted by p(�). As suggested by this notation, the prior
distribution does not depend on the observations y, and should therefore be specified
without using observations, but rather using any external source of knowledge. Note
that in general, the parameter vector � is multi-dimensional, which implies that the
prior distribution is also a multi-dimensional distribution.

The following Sect. 3.2.1.4 will describe how this prior distribution is used
together with the likelihood to produce the inference. Independently of this technical
derivation, the existence and the utilization of a prior distribution makes an
important difference between Bayesian and frequentist (e.g. maximum likelihood)
inferences. It can be viewed as both a strength and a weakness of the Bayesian
paradigm. On the one hand, it can be argued that the prior distribution introduces a
form of subjectivity in the inference: modelers using different prior assumptions
will make different estimations and predictions. On the other hand, it can also
be argued that prior knowledge frequently exists, especially in hydrology, and
that the Bayesian framework offers an opportunity to openly and rigorously
include it to the inference. This topic has been the subject of extensive debates
in the statistical community (see e.g. Clark 2005; Efron 2005; Gelman 2008
for recent discussions). However, Bayesian inference is now pragmatically con-
sidered as a valuable tool to solve practical problems by most statisticians and
hydrologists.

The specification of the prior distribution can be made in numerous ways. In
hydrology, the following approaches have been used (this list is not exhaustive):

• Using “expert knowledge”: the “geophysical prior” of Martins and Stedinger
(2000) is a prior distribution restricting the range of possible values for the shape
parameter of a GEV distribution, based on past experience in hydrological case
studies. Note that in many cases, expert knowledge may be difficult to express in
terms of parameters, but might be easier to elicit once cast in terms of quantiles.
Coles and Powell (1996) therefore proposed to use rough quantile estimates made
by expert hydrologists, and to transfer this knowledge on quantiles into a prior
distribution for parameters.

• Using regional information: data from sites similar to the target site may be
used to derive a prior distribution. This has been implemented by e.g. Ribatet
et al. (2006).

• Non-informative priors: perhaps surprisingly, the definition of a prior distribu-
tion that reflects a complete lack of knowledge is not straightforward. Jeffreys
(1946) proposed a general rule to construct such prior for a given inference
problem. Note that it is also a current practice to use “flat” distributions to denote
a lack of knowledge, e.g. a uniform distribution with wide support or a Gaussian
distribution with large variance.

• Conjugate priors: in some cases, the choice of a particular family of prior
distribution facilitates computations, by avoiding the use of MCMC sampling
(see subsequent Sect. 3.2.2). Such priors are known as “conjugate priors”.
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Fig. 3.1 Illustration of a simple Bayesian inference, based on annual maxima of daily rainfall (a)
with a Gumbel distributional assumption. Contour plots of the likelihood function (b), the prior
pdf (c) and the posterior pdf (d) are shown

However, such families are rarely tractable for extreme value distributions (but
see Parent and Bernier 2003 for an exception), and will therefore not be further
considered in this chapter.

3.2.1.4 Posterior Distribution

The Bayes theorem combines the knowledge brought by the prior distribution and
the data (through the likelihood) into the posterior distribution of parameters � ,
whose pdf is noted p.� jy/:

p.�jy/ D p.y j�/p.�/R
p.y j�/p.�/d� (3.2)

Note that the denominator in Bayes theorem is a normalizing constant since it
only depends on y, but not on � , which is integrated out. As we shall see later on,
computing this multi-dimensional integral is in general not required. Consequently,
Bayes theorem is often written in the following simple form:

p.� jy/ / p.y j�/p.�/ (3.3)

where the symbol ‘/’ denotes proportionality.
Equation (3.3) shows how Bayes’ theorem combines prior and data knowledge

through a disarmingly simple multiplication. The resulting posterior distribution
summarizes what is known about parameters � whose inference is sought.

As an illustration, consider annual maxima of daily rainfall represented in
Fig. 3.1a. Let us assume that these data are realizations from a Gumbel distribution
with unknown location and scale parameters �D (�, �). This example will be used
throughout Sect. 3.2 to illustrate the basics of Bayesian inference.

Figure 3.1b shows the likelihood function, viewed as a function of parameters,
and derived as:

p.y j�; �/ D
NtY
tD1

pGumbel .yt j�; �/ (3.4)
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where pGumbel .yt j�; �/ is the pdf of the Gumbel distribution evaluated at yt. The
likelihood function shown in Fig. 3.1b quantifies the information on the parameters
brought by the data.

Figure 3.1c shows the prior distribution, specified using two independent log-
normal distributions as follows:

p.�; �/ D pLogN .�j log.80/; 0:2/pLogN.�j log.40/; 0:15/ (3.5)

where pLogN .zja; b/ is the pdf of a Log-Normal distribution with parameters a and
b, and evaluated at value z. Note that we use the parameterization where a and b are
the mean and the standard deviation of the log-transformed variable, respectively.
This prior distribution corresponds to assuming that the location parameter is about
80, with a standard error of about 20%, and that the scale parameter is about 40,
with a standard error of about 15%.

Lastly, Fig. 3.1d shows the (unnormalized) posterior pdf resulting from the
application of Bayes’ theorem in Eq (3.3). The posterior distribution combines
the knowledge brought by the data (through the likelihood) and prior information
(through the prior distribution).

Subsequent Sect. 3.2.3 will describe in details several ways of using the
posterior distribution for parameter estimation and prediction. For instance, the
posterior mode (i.e. parameters maximizing the posterior distribution), or marginal
means/medians yield point-estimates of the parameters. However, this would be
a somewhat restrictive use of the posterior distribution: indeed, the posterior also
quantifies the uncertainty in the estimation of � . Consequently, Bayesians favor a
more thorough exploration of the posterior distribution (i.e. not restricted to optimal
values or moment characteristics). However, this becomes challenging when the
dimension of the inference increases: for instance, graphical representations like
Fig. 3.1c, d are impossible in dimension 3 and above. Consequently, this exploration
is achieved in practice by generating a large number of realizations from the
posterior distribution, using a Markov Chain Monte Carlo (MCMC) sampler.

3.2.2 MCMC Samplers

3.2.2.1 General Principles

The basic aim of MCMC sampling is to generate values from a target distribution.
In particular, it is useful in the following cases:

(i) The target distribution is multi-dimensional, making it impossible to use
standard cdf-inversion techniques.

(ii) The target distribution does not belong to any standard family (e.g. Gaussian,
Exponential, Elliptical, etc.), leaving little hope to find an existing simulation
algorithm.

(iii) The target distribution is only known up to a constant of proportionality.
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Typically, posterior distributions are characterized by all three points (i)–(iii)
above, which make MCMC samplers a natural tool for their exploration.

A detailed description of the general theory of MCMC sampling lies well beyond
the scope of this chapter. Textbooks are entirely devoted to this topic, for instance
Robert and Casella (2004). We therefore restrict ourselves to a description of
general principles, and briefly present the most widely used sampler, the Metropolis-
Hastings algorithm (Metropolis and Ulam 1949; Metropolis et al. 1953; Hastings
1970). The interested reader may refer to existing textbooks for more information,
and use existing software and packages implementing MCMC samplers, for instance
packages mcmc (http://www.stat.umn.edu/geyer/mcmc/) and MCMCpack (Martin
et al. 2011) in R, or the WinBugs (Lunn et al. 2000) and JAGS (http://www-ice.iarc.
fr/�martyn/software/jags/) software.

3.2.2.2 A General-Purpose Sampler: The Metropolis-Hastings Algorithm

The idea behind MCMC sampling is to generate a random walk whose asymp-
totic distribution is the target distribution (e.g. the posterior distribution). More
accurately, this random walk is constructed as a Markov Chain with the target dis-
tribution as equilibrium distribution (see Robert and Casella 2004 for more details).

Let f (x) denote the (possibly unnormalized) pdf of the target distribution. In most
cases, this distribution is multidimensional and x is hence a vector. Since it is in
general not possible to generate values directly from f, the basic idea behind MCMC
samplers is to use another distribution, called the proposal or the jump distribution,
to propose candidate values. Those candidate values will then be accepted or
rejected, according to a given acceptance rule. A well-chosen acceptance rule
ensures that the asymptotic distribution of generated values is the target distribution.

More accurately, let J(zjx) denote the pdf of the jump distribution (evaluated at z),
which is conditional on x and is used to generate a candidate x*. This distribution
should be chosen so that one can easily generate a value from it. A common choice
is to use a Gaussian distribution centered on x and with covariance matrix˙ (whose
choice will be discussed later on). In this case, J.zjx/ D pN .zjx;˙ /.

With this notation, the Metropolis-Hastings algorithm can be described as
follows:

Algorithm 1. Metropolis-Hastings

Initialization: choose a starting value x(0)

For iD 1: Niter

step 1 Generate a candidate value x* from the jump distribution with pdf
J(zjx(i�1))

step 2 Compute the acceptance ratio � D f .x�/
f .x.i�1//

J.x.i�1/jx�/
J.x�jx.i�1//

step 3 Accept the candidate (x(i)D x*) with probability max(1;£); otherwise,
reject the candidate (x(i)D x(i�1)).

http://www.stat.umn.edu/geyer/mcmc/
http://www-ice.iarc.fr/~martyn/software/jags/
http://www-ice.iarc.fr/~martyn/software/jags/
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Fig. 3.2 MCMC-sampling from the posterior distribution: (a) time series of generated values for
the location (black) and scale (red) parameters; (b) scatterplot of generated (location,scale) pairs,
overlaying a contour plot of the posterior pdf

The generated values .x.i//iD1WNiter form a Markov Chain: the distribution of x(i)

solely depends on previous value x(i�1) given the definition of the jump distribution.
Moreover, the Metropolis-Hastings acceptance rule ensures that its equilibrium
distribution is the target distribution (Hastings 1970).

Before discussing some properties of this sampler, a simple illustration is given
in Fig. 3.2, based on the same setup as in previous Sect. 3.2.1 (see Fig. 3.1).
Algorithm 1 is applied with the unnormalized posterior (3.3) as target distribution.
The jump distribution is a Gaussian distribution centered on previous valuex.i�1/ D
.�.i�1/; �.i�1// and with covariance matrix equal to identity. Figure 3.2a shows the
chains generated for the location and scale parameters, while Fig. 3.2b shows the
scatterplot of .�.i/; �.i// pairs. A comparison with the contour plot illustrates that
those values are realizations from the target posterior distribution.

3.2.2.3 Monitoring Convergence

As explained in the previous section, MCMC-generated values can be considered as
realizations from the target distribution only asymptotically. This raises the question
of monitoring the convergence of the simulated chain toward the target distribution.
In particular, a poor choice of starting points may result in generating values that
are not realizations from the equilibrium distribution during the first iterations.
This is illustrated in Fig. 3.3, which shows the evolution of three parallel chains
sampled from the same posterior distribution but with different starting values. The
poorly-chosen starting values result in the chains not reaching convergence before
several hundreds iterations. However, all three chains converge after a few hundreds
iterations. Consequently, the influence of starting values is in general minimized
by using a burn-in period, i.e. by discarding a sufficient number of iterations at the
beginning of the chain.
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Fig. 3.3 Illustration of the influence of starting values on MCMC convergence

Several methods have been proposed to monitor MCMC convergence (see El
Adlouni et al. 2006 for a review and comparison). They are based on running
several chains in parallel (e.g. Gelman et al. 2004) or using subsequences of a single
chain (e.g. Geweke 1992), and verifying that they generate values from a similar
distribution. Note that the R package CODA (Plummer et al. 2006) implements
numerous diagnostics for MCMC convergence.

3.2.2.4 Building Efficient Samplers

As most numerical methods, MCMC samplers require some tuning that strongly
affects numerical efficiency. It is difficult to provide universal guidelines for
efficiently tuning MCMC samplers, but the following points are important:

• Choice of starting values: choosing starting values located in a high-density area
of the posterior space will limit the length of the burn-in period. If informative
priors are used, the prior mean or mode can be chosen as a first approximation.
Applying an optimization algorithm to the posterior distribution is another
possibility.

• Choice of the jump distribution: this is the most important point, since a poorly-
chosen jump distribution may result in a prohibitively slow algorithm. As a
general rule of thumb, the jump distribution should be “similar” to the target
distribution in terms of size and orientation. When a Gaussian jump distribution
is used, these are controlled by the choice of the covariance matrix:

• The diagonal terms (jump variances) should be neither too small nor too
large: large jumps will result in candidate values being generated far from
the high density region, thus leading to a very low acceptance rate and a high
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number of iterations to visit the whole parameters space. Alternatively, small
jumps will result in a too high acceptance rate, with the parameter space being
visited too slowly.

• The off-diagonal terms (covariances) should be chosen so that the correlations
of the jump distribution are similar to the posterior correlations. This will
ensure that jumps are made preferentially in a direction consistent with the
orientation of the posterior distribution.

• Let us also mention that non-Gaussian jump distributions may be interesting,
in particular fat-tailed distributions (e.g. Student). Indeed, such jump
distributions will occasionally generate a candidate far from the current
location of the chain, thus limiting the risk of the chain being stuck in a local
mode in the case of multi-modal posterior distributions.

• Adaptive algorithms: The specification of an adequate covariance matrix for the
jump distribution is in general difficult, since little is known about the posterior
distribution before sampling from it. A possibility to overcome this issue is
to change the characteristics of the jump distribution during iterations, so that
the algorithm can “learn” from previous iterations to adapt the jump size and
orientation. Such algorithms are known as adaptive samplers (see e.g. Haario et
al. 2001, 2005; Renard et al. 2006).

• Block Sampling: In multi-dimensional problems, it is possible to split the
inference space into several blocks, and to perform a Metropolis update on a
block-by-block basis, rather than attempting to update the current vector in one
single step. This strategy increases the complexity of the algorithm (since several
jumps and acceptance/rejection steps are performed at each iteration), but may
facilitate the specification of “good” jump distributions and fasten convergence.
Marshall et al. (2004) provide a detailed description of such samplers.

Finally, note that there exist other Monte-Carlo methods that may be useful to
the Bayesian Hydrologist (e.g. importance sampling, acceptation-rejection sam-
pling, see Robert and Casella 2004). However, MCMC samplers, when properly
tuned, are in general the most efficient way to generate values from a posterior
distribution.

3.2.3 Using the Posterior Distribution for Inference
and Prediction

For simplicity, we will assume in this section that the posterior distribution has been
explored using a MCMC sampler, yielding a large sample of values .�.i//iD1WNsim
that can be considered as realizations from the posterior distribution p.� jy/. This
is not a restrictive assumption given that cases where results can be derived
analytically are the exception rather than the rule, especially in the context of
extreme value distributions.
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Fig. 3.4 Marginal posterior pdf of the location and scale parameters, estimated from the MCMC
samples using a kernel density. The data used for inference are shown in Fig. 3.1a

3.2.3.1 Posterior-Based Inference

In a first step, MCMC samples are usually used to derive parameter estimates. The
notation � D .	1; :::; 	ND / is used to denote each component of the parameter
vector. Marginal estimates (i.e. estimates of each individual parameter 	 k) are

simply obtained by considering values
�
	
.i/

k

�
iD1WNsim

, which are realizations from

the marginal posterior distribution of parameter 	 k. As an illustration, consider
the values plotted in Fig. 3.2a: a histogram of those values will approximate the
marginal posterior pdf of each parameter. This is implemented in Fig. 3.4 (smooth-
ing has been performed using a Gaussian kernel), and yields an estimation of each
inferred parameter. Importantly, this estimation is not a single value, but a whole
distribution. This is an important characteristic of Bayesian inference: it directly
provides the uncertainty in parameter estimates. By contrast, consider standard
estimation approaches (e.g. moment-based, maximum likelihood ML): in a first
step, point-estimates are sought using some “optimality” criterion (e.g. maximizing
the likelihood or recovering empirical moments). In a second step, the sampling
distributions of these point-estimates are derived, either using some resampling
technique (e.g. bootstrapping) or some asymptotic approximation (e.g. asymptotic
normality of ML estimates). Note that the latter option can be problematic when
short samples are used (which is frequent when analyzing hydrological extremes).

Note that it is still possible to obtain point-estimates from the posterior distri-
bution. For instance, computing the marginal mean or median from the samples
.�.i//iD1WNsim yields point-estimates for each parameter. Alternatively, a modal esti-
mate (i.e. a “maximum posterior estimate”, mimicking the idea behind maximum
likelihood estimation) can be derived by selecting the parameter vector �.imax/

corresponding to the largest posterior value. Note that since MCMC methods are
not optimization procedures, such modal estimate might be refined by using an
optimization method to get closer to the posterior mode.

Estimates for quantities that can be expressed as functions of the parameters
can easily be derived in a similar way. This is in particular the case for quantiles,
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Fig. 3.5 Posterior pdf of 0.9- and 0.99-quantiles estimated from the MCMC samples using a
kernel density

which are of primary interest in extreme value analyses. Indeed, quantiles (whose
probability of exceedance is often prescribed by regulation) are used to design civil
engineering structures (e.g. reservoirs, dam spillways, etc.) or to map flood-prone
areas where building restrictions may be enforced.

The p-quantile qp is a function of the parameters, qp D Q.p;�/ (e.g. for a
Gumbel distribution, qp D � � � log.� log.p//). Consequently, the posterior dis-
tribution of qp can be approximated by computing the p-quantile corresponding to

each MCMC-generated parameter, yielding
�
q
.i/
p

�
iD1WNsim

D
�
Q.p;�.i//

�
iD1WNsim

.

Figure 3.5 shows the corresponding posterior pdf for 0.9- and 0.99-quantiles

obtained by applying a kernel density estimation to
�
q
.i/
p

�
iD1WNsim

. As for parameter

estimates, Bayesian inference directly yields a full distribution – i.e., it directly
yields the uncertainty in quantile estimates.

The quantile curve is a standard representation used in extreme values analyses.
Figure 3.6a shows the quantile curve estimation resulting from the Bayesian
inference. In this figure, quantiles (also termed return levels) are expressed as
a function of the return period T instead of the non-exceedance probability p
(TD 1/(1-p)). Each light gray line is a particular quantile curve corresponding to a
MCMC-generated parameter vector. A “median quantile curve” (dashed line) can
be plotted by computing, for each return period T, the median of the posterior
distribution of qT . Note that the resulting curve joins posterior medians but does
not correspond to any of the light gray lines. Alternatively, the “modal quantile
curve” (thick solid line) corresponds to the modal parameter estimate. As seen
from Fig. 3.6a, both estimates are in general similar. Estimation uncertainties can
be represented using posterior 90% intervals (dotted lines). Those are obtained by
computing 5 and 95% quantiles from the posterior distribution of qT . Note that
the terminology “confidence interval” is in general not used in a Bayesian setting,
because the interpretation of such interval is different in Bayesian and frequentist



3 Bayesian Methods for Non-stationary Extreme Value Analysis 51

2

a

b

5 10 50 200 500 2000

return period (year)

re
tu

rn
 le

ve
l (

m
m

)

2 5 10 20 50 200 500 2000

0
10

0
20

0
30

0
40

0
50

0
0

10
0

20
0

30
0

40
0

50
0

return period (year)

re
tu

rn
 le

ve
l (

m
m

)

Fig. 3.6 Quantile curves obtained with Gumbel (a) and GEV (b) distributional assumption. Each
light gray line corresponds to a MCMC-generated parameter vector. Dotted lines represent a 90%
posterior interval for the return level, while the dashed line is the median of the return level
posterior distribution. The thick red line corresponds to the modal parameter estimates

contexts (see e.g. Gelman et al. 2004 for additional discussion on this topic).
Bayesians favor the terminology “posterior interval”, or “credibility interval”.

It is important to keep in mind that the posterior distribution only quantifies
estimation uncertainties. However, the posterior distribution remains conditional on
the modeling assumptions (here, assumption of a Gumbel distribution). To illustrate
this point, consider Fig. 3.6b, which shows the quantile curve derived with a



52 B. Renard et al.

Generalized Extreme Value (GEV) distributional assumption. Overall, using a GEV
assumption yields higher quantiles and, even more markedly, higher uncertainties.
Consequently, model checking and validation remains a vital task in Bayesian
inference, as in any other estimation approach.

3.2.3.2 The Predictive Distribution

The ultimate aim of a statistical inference is sometimes (even frequently) not pa-
rameter estimation, but rather prediction of an unobserved value. As an illustration,
when statistical estimates are used for designing some civil engineering structures
or for hazard mapping, the operational objective is to predict upcoming events, as
opposed to describe past events or provide an “optimal” parameter value.

The standard approach to estimate the distribution of an unobserved outcome is to
use the assumed distribution with some “good” value of the parameters, i.e. the pdf
of a future outcome would be p.zj O�/, where O� corresponds for instance to the modal
estimate or to the vector of marginal means/medians. The drawback of this approach
is that it does not account for the uncertainty in estimating the parameters � .

To overcome this limitation, Bayesians often use the predictive distribution,
which is constructed by “integrating out” (or “marginalizing”) the parameters. More
accurately, the pdf of the predictive distribution, noted p.zjy/, is defined as follows:

p.zjy/ D
Z
p.z;� jy/d�

D
Z
p.zj�;y/p.�jy/d�

D
Z
p.zj�/p.�jy/d�

(3.6)

In the equation above, p.zj�/ corresponds to the pdf of the assumed distribution,
while p.� jy/ corresponds to the pdf of the posterior distribution. Consequently, the
predictive distribution can be interpreted as follows: while the standard approach
for prediction is to use the assumed distribution p.zj�/ with a value of � that
(for instance) maximizes the posterior pdf, the predictive distribution uses the
assumed distribution p.zj�/ integrated over possible posterior realizations of � .
Since the posterior distribution describes the estimation uncertainty, the predictive
distribution directly accounts for uncertainties in prediction mode. If the uncertainty
if very small, the predictive distribution will be very close to the standard “modal”
predictor.

In practice, the integration in Eq. (3.6) is rarely performed analytically. Instead,
it can be approximated using the MCMC samples .�.i//iD1WNsim from the posterior
distribution. Algorithm 2 shows how this approximation can be performed. In some
cases, it may be more practical to directly generate values from the predictive
distribution. This can be achieved using Algorithm 3.
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Algorithm 2. Estimation of the Predictive pdf

• Initialization: choose a grid z1; :::; zm where the predictive pdf will be evaluated
• For iD 1: Nsim

• Compute g.i/k D p
�

zkj� .i/
�

for kD 1:m

• The predictive pdf at value zk can be approximated by Op.zkjy/ D 1
Nsim

NsimP
iD1

g
.i/

k

for kD 1:m

Algorithm 3. Generating Values from the Predictive Distribution

• For iD 1: Nsim

• Generate a sample of size m from the assumed distribution with parameters

� .i/ W
�

z.i/1 ; :::; z
.i/
m

�
 
i id
p
�

zj� .i/
�

• The sample
�

z.i/k

�
kD1Wm;iD1WNsim

is a realization from the predictive distribution

Figure 3.7 provides an illustration of the predictive distribution and compares
it to more standard predictions using an “optimal” predictor augmented with an
uncertainty interval. In the Gumbel case (Fig. 3.7a), both estimates are similar: this
is because uncertainties are relatively small in this case, and integrating them do
not markedly change the “optimal” prediction. However, the GEV predictive distri-
bution yields markedly higher quantiles than the “optimal” prediction (Fig. 3.7b),
which is a consequence of the large estimation uncertainties.

Although the use of predictive distributions has been proposed by several authors
in the research literature (in particular, Stedinger 1983; Kuczera 1999; Coles 2001,
chapter 9; Cox et al. 2002; Meylan et al. 2008, chapter 7), it remains scarcely
used (if at all) in operational applications of extreme value analyses. This is
surprising given the current emphasis on uncertainty analysis and the need to
communicate uncertainty. We claim that the benefits of predictive distributions
should be thoroughly evaluated and, if proven beneficial, the use of predictive
distributions in operational applications should be encouraged.

Finally, the principles underlying the derivation of predictive distributions have
strong link with decision theory and the concepts of loss (or cost) functions. The
reader interested in these additional developments may refer to the books by Bernier
et al. (2000) or Robert (2001) for additional details.

3.2.3.3 Model Comparison and Bayesian Model Averaging

An interesting property of Bayesian inference is the possibility to associate prob-
abilities to competing models. Let us assume that fM1, : : : , Mqg is a collection of
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Fig. 3.7 Comparison of modal (dashed black lines) and predictive (solid red lines) distributions.
Dotted lines represent a 90% posterior interval. (a) Gumbel assumption; (b) GEV assumption

candidate models for describing the data y. Each model Mj uses a parameter vector
�Mj (whose dimension may differ from model to model). Moreover, let p(M1), : : : ,

p(Mq) denote prior probabilities assigned to each model, so that
qP
iD1

p.Mi/ D 1.

Note that the latter condition implies that the model collection is considered as
exhaustive.
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Bayes theorem can then be applied in its discrete form to define the posterior
probability of each model Mj given observations y as follows:

p.Mj jy/ D p.y jMj/p.Mj /
qP
iD1

p.yjMi/p.Mi/

(3.7)

The term p(yjMj) in Eq. (3.7) is the marginal likelihood of observations, and can
be computed using standard conditional probability algebra as follows:

p.y jMj/ D
Z
p
�
y j�Mj ;Mj

�
p
�
�Mj jMj

�
d�Mj (3.8)

One can recognize in Eq. (3.8) the denominator in the Bayes theorem (3.2),
i.e. the normalizing constant of the posterior distribution. Although computing this
quantity is not necessary for posterior sampling and prediction (see Sects. 3.2.2,
3.2.3.1 and 3.2.3.2), it is required if one wishes to compute model posterior
probabilities.

Computing the marginal likelihood is in general difficult, and strongly suffers
from the curse of dimensionality. However, practical solutions exist and give good
results, at least when the size of the parameter vector remains moderate. Bos (2002)
compares various methods for computing marginal likelihoods. One of the most
efficient methods was proposed by Chib (1995) and is described in an Appendix to
this chapter. We refer to Bos (2002) and references therein for alternative methods.

Once model posterior probabilities have been computed, they can be used
both for model comparison and for prediction. One possible approach to model
comparison is to use Bayes factors (Kass and Raftery 1995; see Perreault et al.
2000a, b for an hydrological application), which provide a measurement of the
relevance of one model compared to another. The Bayes factor between models
Mi and Mj is defined as follows:

Bi;j D p.Mi jy/
p.Mj jy/

�
p.Mi/

p.Mj /
D p.y jMi/

p.y jMj/
(3.9)

The Bayes factor Bi,j can be compared to 1, with stronger confidence in model Mi

for high values of Bi,j. Kass and Raftery (1995) provide guidelines for interpreting
Bayes factors, together with additional developments. In particular, it is possible to
compute composite Bayes factors between two sets of models (e.g., several station-
ary models vs. several non-stationary models). Let S1 and S2 denote two disjoint
sets of models, the composite Bayes factor between sets S1 and S2 is defined as:

BS1;S2 D

P
M2S1

p.M jy/
P
M2S2

p.M jy/

, P
M2S1

p.M/

P
M2S2

p.M/
(3.10)
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Posterior probabilities of models can also be used to perform multi-model
predictions. This can be achieved by computing a weighted average of individual
model predictions, with the posterior model probabilities used as weights. As an
illustration, let us consider the case of predicting the value of some p-quantile qp.
Each model Mi provides the posterior pdf of the p-quantile, noted as p.qpjy;Mi /.
The marginal posterior distribution of qp (i.e., unconditional on the model) can
be derived as the following weighted average (which corresponds to the total
probability law):

p.qpjy/ D
qX
iD1

p.qpjy ;Mi/p.Mi jy/ (3.11)

Notice that other predictive quantities (in particular, predictive distributions) can
also be averaged in a similar way.

Bayesian model averaging allows accounting, at least partly, for model un-
certainty. It is particularly useful when distinct models provide a comparably
acceptable description of the data, but yield markedly different predictions in
extrapolation. However, it makes the assumption that the model collection is
exhaustive, since prior model probabilities sum up to one. Consequently, averaging
models does not exempt from evaluating the performance of individual models. In
particular, it would be unreasonable to expect that averaging a set of poor models
may result in anything else than poor predictions.

3.3 Local Inference of Non-stationary Models

In this section, the standard Bayesian framework described in Sect. 3.2 is gener-
alized in order to account for non-stationarity. A general non-stationary modeling
framework is first described, before presenting several illustrations using distinct
non-stationary models. The limitations of describing non-stationarity using at-site
data only are also illustrated.

3.3.1 Introducing Non-stationarity Using Covariate Modeling

In a non-stationary context, the assumption of identical distribution made in
Sect. 3.2.1.1 does not hold any more: by definition, non-stationarity refers to the
fact that the distribution of the variable of interest is time-dependent. A pragmatic
solution to account for this time-dependence has been proposed and explored by
many authors (Coles 2001; Strupczewski and Kaczmarek 2001; Strupczewski et al.
2001; Katz et al. 2002; Khaliq et al. 2006): data are still assumed to be realizations
from a given distribution family (e.g. Gumbel, GEV, etc.), but whose parameters
may vary with time.
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More formally, the random variable Yt is assumed to follow a distribution with
pdf p.yj�.t//, which will be noted as follows in the sequel of this chapter:

Yt � p.yj�.t// (3.12)

In a nutshell, Eq. (3.12) simply means that the parameter values are different at
each time step. However, Eq. (3.12) cannot be used in this basic form in practice:
indeed, estimating one different parameter vector at each time step based on a
single series of observations is impossible, simply due to a lack of degrees of
freedom. Consequently, additional hypotheses on the form of the non-stationarity
are required.

This can be achieved by assuming a regression model linking the parameter value
at time t with the value of some time-varying covariate(s). More formally, denoting
by �.t/ D .	1.t/; :::; 	ND .t// the ND-dimensional parameter vector at time t, a
regression model for each component 	k.t/ can be written as follows:

gk .	k.t// D hk .xk.t/Iˇk/ (3.13)

Equation (3.13) is constructed with the following components:

• The one-to-one function gk is a simple parameter transformation, termed the “link
function” by analogy with generalized linear models (Dobson 2001). The identity
function may be used in cases were no transformation is desired. However, non-
trivial functions may be useful for some parameters, e.g. a logarithm function to
ensure the positivity of a scale parameter, or a logit function for the parameter of
a Binomial distribution which should be comprised between zero and one.

• The vector xk(t) contains the values of a set of covariates varying in time, and
used to describe the temporal evolution of the distribution of the variable Yt.
Such covariate could simply be the time itself, xk(t)D t. It may also be augmented
with additional information, for instance the value of some climate index CI(t)
(e.g. the Southern Oscillation Index, see El Adlouni et al. 2007). In this case,
xk(t)D (t,CI(t)).

• The function hk.:Iˇk/ is the regression function, parametrized by a vector
ˇk, and linking the values of parameter 	 k(t) with the values taken by the
covariates xk(t). The most common regression function is the linear function,
hk .xk.t/Iˇk/ D xk.t/:ˇTk , but other functions may be used.

The regression model in Eq. (3.13) is a very general tool to introduce different
forms of non-stationarity, e.g. linear trend, step-change, seasonal cycle, or some
combination of them (see e.g. Maraun et al. 2010). This will be illustrated through
several examples in following Sect. 3.3.3.

3.3.2 Inference

Parameter estimation follows the steps outlined in Sect. 3.2.1. The main difference
is that instead of directly inferring the parameters �(t), estimates are sought for the
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regression parametersˇ D �ˇ1; : : : ;ˇND
�

in Eq. (3.13). In order to avoid confusion,
we introduce the following naming: D-parameters (Distribution parameters �(t))
correspond to the parameter of the distribution in its original parameterization, while
R-parameters correspond to the Regression parametersˇ. Inference is performed for
R-parameters, and D-parameters can then be retrieved by applying the regression
model in Eq. (3.13), i.e. 	k.t/ D g�1

k .hk .xk.t/Iˇk// for kD 1:ND.
The shorthand notation x D .xk.t//kD1WND;tD1WNt is used to denote the set of all

covariates values. The posterior distribution of R-parameters is given by the Bayes’
theorem as follows:

p.ˇjy;x/ / p.y jˇ;x/p.ˇjx/ (3.14)

In Eq. (3.14), the term p.yjˇ;x/ is the likelihood of observations y D
.yt /tD1WNt . To compute this term, let us first consider the pdf of the variable Yt at
a given time step t. This pdf is derived as follows:

p.yjˇ;x.t// D p .yj	1.t/; : : : ; 	ND .t//
where 	k.t/ D g�1

k .hk .xk.t/Iˇk// for k D 1 W ND (3.15)

Assuming independence between observations y D .yt /tD1WNt , the likelihood
function is then equal to:

p.y jˇ;x/ D
NtY
tD1

p.yt jˇ;x.t// (3.16)

The second term in Eq. (3.14), p.ˇjx/, is the prior distribution of R-parameters
ˇ D �

ˇ1; :::;ˇND
�
. As suggested by the notation, the covariates x may be used for

prior specification, but not observations y.

3.3.3 Example: Extreme Rainfalls

An illustration of the “covariate modeling” approach presented in Sects. 3.3.1 and
3.3.2 is provided using a series of extreme rainfall. Annual maxima are extracted
from the series of daily rainfall at the raingauge of Marignane, in South-East France.
Data are available over the period 1946–2004 and are shown in Fig. 3.8 (source:
Meteo France). In all three subsequent examples, a GEV distribution is used to
describe observations. For the sake of simplicity, time is the sole covariate, but
the general principle would remain identical with other, possibly more meaningful,
covariates.
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Fig. 3.8 Annual maxima of
daily rainfall at the
Marignane raingauge

3.3.3.1 Trend Model

In this first example, non-stationarity is introduced through a trend on the location
parameter, with the scale and shape parameters remaining constant:

�.t/ D �0 .1C �1t/
�.t/ D �0
�.t/ D �0 (3.17)

Compared with the general Eq. (3.13), the trend model for location parameter in
Eq. (3.17) corresponds to:

• Using the identity as link function, g(u)D u
• Using time as the sole covariate, x(t)D t
• Using the regression function h(t;ˇ)Dˇ0(1Cˇ1t)

Inference is hence sought for the four R-parameters (�0, �1, ¢0, �0), through the
posterior distribution in Eq. (3.14).

Prior distributions are specified using expert knowledge as follows:

�0
prior� LogN.log.40/I 0:25/

�1
prior� N.0I 0:02/

�0
prior� LogN.log.20/I 0:25/

�0
prior� N.0I 0:25/ (3.18)
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Fig. 3.9 Posterior pdf of R-parameters: location (�0), scale (�0), shape (�0) and trend (�1)
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Fig. 3.10 Annual maxima of
daily rainfall and evolution of
quantile estimates in time.
The blue lines refer to the
estimated median, the red
lines to the estimated
0.99-quantile. Dotted lines
represent 90% posterior
intervals

Priors for the location (�0) and scale (�0) parameters are based on the consider-
ation of typical values found in this area of France. Similarly, the prior distribution
for the shape parameter (�0) encompasses typical shape values found in hydrology.
This prior distribution can be compared with the “geophysical prior” proposed
by Martins and Stedinger (2000). Lastly, the Gaussian prior distribution for the
trend (�1) parameter is centered on zero and has a standard deviation of 0.02,
which corresponds to a rather vague prior. Indeed, a trend with value 0.02 would
correspond in the parameterization of Eq. (3.17) to a doubling of the location
parameter only 50 years after the beginning of the series.

Figure 3.9 shows the posterior pdf of each R-parameter. The posterior pdf of the
shape parameter mostly corresponds to negative values, suggesting a heavy-tailed
distribution. Moreover, a positive trend may be suspected, with parameter�1 having
its pdf mostly concentrated on positive values.

These estimates are easier to interpret once transformed into quantile estimates.
Figure 3.10 hence shows the evolution of the median (blue line) and the 0.99-
quantile (red line). The median is precisely estimated, and its value very slightly
increases from about 47 mm to about 54 mm between the beginning and the end of
the record. This trend is also discernible for the 0.99-quantile estimates. However,
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Fig. 3.11 pp-plot obtained
with modal parameters

the magnitude of this trend has to be compared with the very large uncertainty in
the 0.99-quantile: while the posterior median of the 0.99-quantile increases of about
10 mm, the width of 90% posterior intervals exceeds 100 mm! This observation
illustrates that even with relatively long series (59 years), estimating extreme
quantiles based on the sole use of at-site values yields considerable uncertainty,
especially in a non-stationary context.

Note that model checking becomes more challenging in a non-stationary context.
For instance, graphical diagnostics like Fig. 3.7 are not possible since all observa-
tions have distinct distributions. One possibility is to transform all observations into
probability space by applying the corresponding cdf:


t D OFYt .yt / (3.19)

In Eq. (3.19), OFYt corresponds to the estimated cdf of the variable Yt. The cdf
obtained with the modal parameter estimates may be used for example (but note
that other choices are possible, for instance the cdf of the predictive distribution).
Under the assumption that observations can be considered as realizations from the
distribution with cdf OFYt , the transformed values 
 t should be realizations from
a uniform distribution. This can be evaluated graphically by using a probability-
probability plot (pp-plot), as illustrated in Fig. 3.11.

3.3.3.2 Step-Change Model

An alternative representation of non-stationarity can be obtained by assuming a
sudden change at an unknown date in the location parameter. The corresponding
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Fig. 3.12 Posterior pdf of parameters of the step-change model. For the location parameter, the
solid/dashed lines represent the parameter values before/after change, respectively

model in Eq. (3.20) results in five unknown R-parameters: the change point �0, the
location parameter before (�1) and after (�2) change, the scale parameter �0 and
the shape parameter �0. Priors similar to previous section are used, with the addition
of a uniform prior for the change point parameter �0.

�.t/ D
(
�1 if t � �0
�2 otherwise

�.t/ D �0
�.t/ D �0 (3.20)

Figure 3.12 shows the posterior pdf of each R-parameter. The most likely change
point is located around the 24th value, but this estimation is not precise, since
the posterior pdf is not peaky and spans over all possible change point values.
This suggests a difficulty to locate a marked change point in this series. This is
further confirmed by considering the location parameter values before and after
change, which are fairly similar. Lastly, the evolution of 0.5- and 0.99-quantiles
shown in Fig. 3.13 is rather small. Note that the width of the 90% posterior
interval for the 0.99-quantile now exceeds 110 mm, which is slightly higher than in
previous Sect. 3.3.3.1. This might be due to the inclusion of a fifth parameter in the
change-point model.

3.3.3.3 Model Comparison and Model Averaging

The trend and step-change models can be compared with a standard stationary GEV
model using the approach described in Sect. 3.2.3.3. Table 3.1 shows the results of
this model comparison exercise. The stationary model is assigned a prior probability
of 0.5, while each non-stationary model (trend and step-change) is assigned an
identical prior probability of 0.25. This prior elicitation aims at assigning an equal
prior probability to the stationarity and non-stationarity assumptions.
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Fig. 3.13 Annual maxima of
daily rainfall and evolution of
quantile estimates in time.
The blue lines refer to the
estimated median, the red
lines to the estimated
0.99-quantile. Dotted lines
represent 90% posterior
intervals

Table 3.1 Comparison between models M0 to M2

M0: stationary M1: trend M2: step-change

Prior: p(Mi) 0:50 0:25 0:25

Marginal Likelihood: log(p(yjMi)) �260:44 �261:06 �261:69
Bayes Factor: B0,i 1:00 1:86 3:48

Posterior: p(Mijy) 0:71 0:19 0:10

The marginal likelihood of each model is then computed using Chib’s approach
(see Appendix). This allows computing pairwise Bayes Factors (BFs) between: (i)
the stationary model in the one hand; (ii) The trend or the step-change model in the
other hand. Pairwise BFs are equal to 1.86 and 3.48 for the trend and step-change
models, respectively. The BF values larger than one suggest that the stationary
model may be more relevant. According to Raftery’s scale (1996), this evidence
is “not worth more than a bare mention” for the trend model, and is “positive” for
the step-change model. A composite BF fstationaryg vs. ftrend, step-changeg can
also be computed and yields a value of 2.43, which is “not worth more than a bare
mention”. Overall, these BFs values suggest that there is no strong evidence to favor
or reject any of the three models. In particular, although the stationary model cannot
be firmly rejected, it does not mean that there is no change: we may just be unable
to detect it, due to the strong natural variability of those extreme data.

The posterior probabilities of each model shown in Table 3.1 support this
interpretation, with no probability being close to zero or one, indicating the absence
of strong evidence to reject or favor any particular model, respectively. This
uncertainty in the choice of a particular model can be at least partly accounted for
by deriving a composite prediction using Bayesian model averaging, rather than
using only one particular model. Figure 3.14 shows an example of such prediction
for the 0.99 quantile. This prediction shows a barely noticeable increase of the
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Fig. 3.14 Prediction of the 0.99-quantile using Bayesian model averaging. Dashed lines corre-
spond to a 90% probability interval

0.99-quantile, even when extrapolated well beyond the period of availability of
data. As in previous Sects. 3.3.3.1 and 3.3.3.2, the most noticeable characteristic
of this prediction is its considerable uncertainty, with the width of the 90% interval
exceeding 115 mm.

3.3.3.4 Identifiability Issues

Both previous examples introduced non-stationarity through the location parameter
only. However, one may also wish to investigate trends in scale or shape characteris-
tics. Although the general framework described in Sect. 3.3.1 enables such analysis
in principle, its practical feasibility is questionable. Indeed, given the limited amount
of data and the considerable uncertainties existing even with simple trend or step-
change models like (3.17) and (3.20), there might be a limit to what can be identified
from the data.

This issue is explored by considering a “trend on everything” model, where the
location, scale and shape parameters are all affected by a linear trend:

�.t/ D �0.1C �1t/
log.�.t// D �0.1C �1t/

�.t/ D �0.1C �1t/ (3.21)

Vague priors are used for all six R-parameters in Eq. (3.21). The resulting
posterior distribution is explored using the same MCMC sampler than in previous
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Fig. 3.15 Illustration of MCMC convergence failure due to a lack of identifiability. For each
inferred parameter, two parallel chains obtained from the same posterior distribution using an
identical MCMC sampler are shown

Sects. 3.3.3.1 and 3.3.3.2. However, the MCMC sampler was still far from conver-
gence after 106 iterations (whereas convergence was readily achieved in previous
examples). Figure 3.15 illustrates this convergence failure, using two parallel chains
that are exploring distinct regions of the parameter space, and do not converge to an
identical distribution.

Confronted to such convergence failures, the first reaction of most modelers is to
blame the inefficiency of the MCMC sampler or some other numerical difficulty. For
instance, one of the chains might be stuck in a secondary mode, and might therefore
generate values from a low-density region that could be discarded.

However, results reported in Fig. 3.16 demonstrate that the two distinct regions
explored by the two chains correspond to similar posterior density values: both
regions are hence equally acceptable according to the posterior values. Moreover,
running additional chains results in exploring other regions of the parameter space,
but still with similar posterior density.

The lack of MCMC convergence is therefore not a mere numerical issue, but
is rather symptomatic of a more profound problem affecting the inference we are
trying to perform: the parameters are not identifiable from the data. In a nutshell,
this means that the information content of the data is not sufficient to support
the estimation of all parameters. More technically, non-identifiability manifests
itself by the likelihood function being constant over infinite-size subspaces of the
parameter space. Since non-informative priors are used in this example, the posterior
distribution is also constant over such subspaces, yielding an ill-posed problem (see
e.g. Gelfand and Sahu 1999; Renard et al. 2010 for further illustrations of non-
identifiability and ill-posedness).
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Fig. 3.16 Unnormalized posterior values corresponding to the two parallel chains in previous
Fig. 3.15

Overcoming this ill-posedness issue can only be made in two ways. The first
way is to use informative priors to constrain the inference and avoid exploring
regions of the parameter space that are deemed unrealistic. Note that this strategy
has the potential to make the inference well-posed, but does not make parameters
identifiable from the data: instead, the inference becomes controlled by the prior
assumptions. In this situation, it becomes of primary importance that the prior
information represents genuine knowledge, rather than be considered as a mere
numerical trick to ensure MCMC convergence.

The second strategy is to use more data. Unfortunately, this is easier said than
done, since the length of hydrological series is limited. However, it might still
be possible to include data from other “similar” sites through a regionalization
procedure. This will be thoroughly discussed in the subsequent sections.

3.4 Regional Inference of Non-stationary Models

Previous Sect. 3.3 described a general Bayesian framework for building and infer-
ring site-specific non-stationary models. Although several examples demonstrated
the feasibility of this approach to describe non-stationarity, they also illustrated
that resulting uncertainties are considerable. This section explores one possibility to
reduce these uncertainties, through the derivation of regional non-stationary models
that enable sharing information between sites.
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Fig. 3.17 Raingauges location. The thin lines represent six homogeneous regions defined by Pujol
et al. (2007)

3.4.1 Motivation: Looking at Local Results at a Regional Scale

The interest of regional modeling is motivated using an example based on extreme
rainfall in the French Mediterranean region (Fig. 3.17). Sixty raingauges, repre-
sented as blue dots, are used (source: Meteo France). The thin lines in Fig. 3.17
represent six homogeneous regions defined by Pujol et al. (2007). Annual maxima
series are extracted over the period 1955–2004.

Each of the 60 series of annual maxima is studied with the trend model of
Sect. 3.3.3.1. The posterior distributions of 0.9- and 0.99-quantiles are shown as
boxplots in Fig. 3.18. Those quantiles are computed at the end of the period, i.e.
at tD 2004. The spread of each boxplot confirms the considerable uncertainties in
such estimates. Moreover, quantiles show significant spatial variability, with values
varying by a factor of more than 2 from site to site. Figure 3.19 shows similar
boxplots for the shape and trend parameters. Both parameters have a high level
of uncertainty, which propagates to quantiles.

Such a considerable level of uncertainty is a fundamental limitation to the
modeling of non-stationary extremes using local models. It makes the identification
of non-stationary components a very challenging task. Similarly, it confuses the
comparison between competing models (e.g. differing by the covariate used to intro-
duce non-stationarity). Lastly, it is a strong limitation to the transfer of information
from gauged to ungauged sites. In particular, the use of standard statistical methods
like regression and/or kriging may be inadequate because uncertainties are not only
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Fig. 3.18 Boxplots of the posterior pdf of 0.9- and 0.99-quantiles in 2004 for 60 raingauges

large, but they are also significantly varying from site to site (as an illustration, see
the generalized least squares approach developed by Stedinger and Tasker 1985;
Reis et al. 2005 to account for contrasted errors at different sites).

However, another indication from Fig. 3.19 is that the shape parameters are fairly
similar across sites, which suggests that the spatial variability in quantiles does not
result from the spatial variability in the shape parameters. This further suggests that
some assumption constraining the spatial variability of this parameter is possible –
this provides a basis for the construction of regional models.

3.4.2 Notation

The notation introduced in previous Sect. 3.2 is slightly modified to include a
mention of the site. More precisely, Y(s, t) represents the random variable of
interest at time t and site s. Observations are denoted by y(s,t) and are considered
as realizations from Y(s,t). y D .y.s; t//tD1WNt ;sD1WNs may for instance represent
a set of annual maxima recorded at Ns sites during Nt years, and considered as
realizations from the random variables Y D .Y.s; t//tD1WNt ;sD1WNs .

The random variable Y(s,t) is assumed to follow a distribution with pdf
p.yj�.s; t//:

Y.s; t/ � p .yj�.s; t// (3.22)
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Fig. 3.19 Boxplots of the posterior pdf of shape and trend parameters for 60 raingauges

Note that compared with the at-site modeling framework presented in Sect. 3.3,
the D-parameters �.s; t/ now varies in both space and time.

3.4.3 The Notion of Regional Parameters

Following the general principle of previous Sect. 3.3, variations in time are
described using a regression model for each D-parameter 	 k(s, t) (kD 1:ND) as
follows:

gk .	k.s; t// D hk .xk.s; t/Iˇk.s// (3.23)

Comparing Eq. (3.23) with the at-site regression in Eq. (3.13), the following
comments can be made:

• Both the link function gk and the regression function hk are assumed identical for
all sites.
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• The covariate vector xk.s; t/ may now depend on both space and time. Indeed,
while some covariates may be identical for all sites (e.g. the time or the value
of some climate index), site-specific covariates may be useful (e.g. the “weather
pattern” corresponding to the annual maximum at each site).

• The vector of R-parameters ˇk(s) may also depend on site, allowing for site-
specific relationships between D-parameters 	 k(s, t) and covariates xk(s, t).

The construction of a regional model is then based on assumptions regarding
the spatial variability of R-parameters ˇk(s). More precisely, two different kinds of
R-parameters can be considered:

• Local R-parameters denote site-specific parameters ˇk(s). This is the most
flexible assumption, but it does not allow sharing information between different
sites.

• Regional R-parameters denote parameters that will be assumed identical for all
sites within the region, i.e. ˇk(s)Dˇk. This assumption enables the sharing of
information between sites. However, it also restricts the flexibility in describing
spatial variability. As any assumption, its adequacy should be carefully assessed.

An example of such a regional model can be given by considering the trend
model presented in Sect. 3.3.3.1:

�.s; t/ D �0.s/.1C �1.s/t/
�.s; t/ D �0.s/
�.s; t/ D �0.s/ (3.24)

In Eq. (3.24), all R-parameters are local (i.e. site-specific). One may wish to
make some of these R-parameters regional. For instance, Fig. 3.19 suggests that
the shape parameter values are similar across sites. It might therefore be possible
to assume a regional shape parameter, i.e. �0(s)D �0. Similarly, if the interest is to
describe climate-related trends, one might expect some consistency across sites. The
trend parameter could hence also be assumed regional, i.e. �1(s)D�1. Those two
additional assumptions yield the following regional model:

�.s; t/ D �0.s/.1C �1t/
�.s; t/ D �0.s/
�.s; t/ D �0 (3.25)

In model (3.25), all sites will contribute to the estimation of regional parameters
�0 and �1. Hopefully, this might reduce their uncertainty, at the cost of making a
restrictive assumption on their spatial variability.

Finally, note that model (3.25) is just one amongst many other possible regional
formulations. For instance, it would be possible to use a non-stationary model
complying with the popular index flood formalism (Dalrymple 1960), by forcing
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the ratio between the scale and location parameters to remain constant is space.
Such model could take the following form:

�.s; t/ D �0.s/.1C �1t/
�.s; t/ D ı � �0.s/
�.s; t/ D �0 (3.26)

Note that in model (3.26), the ratio between the scale and location parameters is
constant in space but not in time. An alternative model, forcing this ratio to remain
constant in both space and time, could be:

�.s; t/ D �0.s/.1C �1t/
�.s; t/ D ı � �0.s/.1C �1t/
�.s; t/ D �0 (3.27)

Several other examples of non-stationary regional models can be found in the
literature (Perreault et al. 2000c; Cunderlik and Burn 2003; Renard et al. 2006;
Hanel et al. 2009).

3.4.4 Inference

3.4.4.1 The Spatial Independence Case

Parameter inference is based on the posterior distribution:

p.ˇjy;x/ / p.y jˇ;x/p.ˇjx/ (3.28)

where we use the shorthand notation x D .xk.s; t//kD1WND;sD1WNs;tD1WNt to denote
the set of all covariates, and ˇ D .ˇk.s//kD1WND;sD1WNs to denote the set of all R-
parameters. The second term in Eq. (3.28), p.ˇjx/, is the prior distribution of R-
parameters. As in previous Sect. 3.3.2, the covariates x may be used for specifying
the prior distribution, but not observations y.

The derivation of the likelihood p.y jˇ;x/ is more challenging than in previous
Sect. 3.3.2, due to the spatial nature of the data. Let us start by considering the
pdf of the spatial random vector Y .t/ D .Y.s; t//sD1WNs at a given time step t.
This pdf corresponds to a Ns-dimensional distribution, whose marginal (i.e. at-site)
distributions are known from the regression model in Eq. (3.23):

p.yjˇ.s/;x.s; t// D p .yj	1.s; t/; :::; 	ND .s; t//
where 	k.s; t/ D g�1

k Œhk .xk.s; t/Iˇk.s//� for k D 1 W ND (3.29)
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The following task is to combine those marginal distributions to derive the joint
distribution of random vector Y(t). In the case where data can be assumed spatially
independent, this combination is straightforwardly achieved by multiplying the
marginal pdfs in Eq. (3.29):

p .y1; :::; yNs jˇ;x.t// D
NsY
sD1

p .ysjˇ.s/;x.s; t// (3.30)

Finally, the full likelihood of data y is derived by assuming temporal indepen-
dence between successive time steps, yielding:

p.yjˇ;x/ D
NtY
tD1

p .y.1; t/; :::; y.Ns; t/jˇ;x.t// (3.31)

3.4.4.2 Accounting for Spatial Dependence

When the spatial independence assumption does not hold (which is likely to happen
in many spatial extreme analyses), another combination of marginal distributions
needs to be implemented. One possible way is to use a copula for this purpose.
Indeed, copulas are flexible tools to derive a NS-dimensional joint distribution by
combining a set of NS marginal distributions.

An entire book could be devoted to this topic (see e.g. Salvadori et al. 2007).
Moreover, given that this subject is discussed in details in Chap. 5 of this book, we
restrict ourselves to a brief description of two particular copulas belonging to the
family of elliptical copulas, which is well suited to the context of regional inference
(see e.g. Bárdossy and Li 2008 for alternatives).

The elliptical copula family is described in details by Genest et al. (2007).
It has the particularity of being parameterized by a NSxNS dependence matrix,
describing the strength of dependence between pairs of variables (pairs of sites
in a spatial context). This is of particular interest because it provides an interface
with geostatistical tools, where pairwise dependences are expressed as a function of
intersite distance.

We restrict ourselves to the description of two particular members of the elliptical
copula family: the Gaussian and the Student copulas. Both copulas are derived in
a similar way: let F1.y/; :::; FNS .y/ denote the marginal cumulative distribution
functions (cdf). The cdf of the joint distribution built using a Gaussian/Student
copula can be written as follows:

F .y1; :::; yNS / D G
�
g�1.F1.y1//; :::; g�1 .FNS .yNS //

�
(3.32)

In Eq. (3.32), g is the cdf of a univariate Gaussian/Student distribution, while G
is the cdf of a multivariate Gaussian/Student distribution. More precisely:

http://dx.doi.org/10.1007/978-94-007-4479-0_5
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Fig. 3.20 Schematic of the Gaussian and Student copulas
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Student distribution with mean 0, covariance

matrix˙ and � d.o.f:

Equation (3.32) shows that the Gaussian and Student copulas combine marginal
distributions as a two-step procedure, illustrated in Fig. 3.20:

• Marginal values are transformed from original space (yi) to Gaussian/Student
space (ui), using the transformation uiD g�1(Fi(yi))

• Transformed values are then modeled using a multivariate Gaussian/Student
distribution.

Note that the transformation uiD g�1(Fi(yi)) ensures that the transformed vari-
able ui has a Gaussian/Student distribution. However, it does not imply that the
joint distribution of u1; :::; uNS is a multivariate Gaussian/Student distribution (since
marginal normality does not imply joint normality, and similarly for the Student
case). Consequently, using a Gaussian/Student copula corresponds to making an
assumption on the nature of dependence between data. As any assumption, it
requires to be assessed based on all available evidence.

The joint pdf of a distribution constructed with a Gaussian/Student copula can
easily be obtained by differentiating the cdf in Eq. (3.32), yielding:
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NSQ
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where:

fi .y/ marginal pdfs

 .u/ standard Gaussian pdf

‰˙ .u1; :::; uNS / multivariate Gaussian pdf with mean 0 and correlation matrix ˙

t�.u/ pdf of a Student distribution with � d.o.f:

T˙;� .u1; :::; uNS / multivariate Student pdf with mean 0, covariance

matrix˙ and � d.o.f:
(3.33)

Note that although the Gaussian and Student copulas are derived in a very similar
way, their characteristics are different. In particular, the Gaussian copula is an
asymptotically independent model (see e.g. Coles et al. 1999; Renard and Lang 2007
for discussions), while the Student copula can describe asymptotic dependence,
whose strength is controlled by the d.o.f. parameter �.

Both copulas are parameterized by a symmetric dependence matrix˙ describing
pairwise dependences. The dimension of this matrix grows quadratically with the
number of sites. In order to simplify the model, it is further assumed that the
dependence between data from two sites solely depends on the intersite distance.
An analogy can be drawn with the common treatment of stationary and isotropic
spatial random fields in geostatistics (e.g. Chiles and Delfiner 1999). It follows that
the elements of the pairwise dependence matrix ˙ can be expressed as a function
of the intersite distance, parameterized by some vector � :

˙.i; j / D ‰ ���si � sj
�� I � (3.34)

3.4.4.3 Inference with Spatially Dependent Data

Accounting for spatial dependences introduces additional parameters into the
inference, namely the vector� used in the dependence-distance function (3.34) and
the d.o.f. parameter � in the case of the Student Copula. Consequently, the inference
equations used in the spatial independence case (see previous Sect. 3.4.4.1) need to
be modified. The posterior distribution of all inferred quantities becomes:
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p.ˇ; ; �jy;x/ / p.y jˇ; ; �;x/p.ˇ; ; �jx/ (3.35)

In order to compute the likelihood p.y jˇ; ; �;x/, the first task is to derive
the marginal distributions, which remain identical to previous Eq. (3.29). Those
marginal distribution are then combined using one of the joint pdf f in the copula
Eq. (3.33):

p .y1; :::; yNs jˇ; ; �;x.t// D f .y1; :::; yNs / (3.36)

Finally, the full likelihood of data y can be derived by assuming temporal
independence, identically to previous Eq. (3.31).

3.4.5 Example: Extreme Rainfalls

This case study uses the same rainfall data as in previous Sect. 3.4.1. Annual maxima
series are modeled with a GEV distribution:

Y.s; t/ � GEV .�.s; t/; �.s; t/; �.s; t// (3.37)

Let r(s) denotes the region of site s. The following regional trend model is used:

�.s; t/ D �0.s/ .1C �1.r.s// 	 t/
�.s; t/ D �0.s/
�.s; t/ D �0.r.s// (3.38)

In Eq. (3.38), location and scale parameters are assumed local, while the trend
and shape parameters are assumed constant within each homogeneous region (see
Fig. 3.17 for the delineation of these regions).

Dependence between data is accounted for using a Gaussian copula, whose
dependence matrix is parameterized as follows:

˙.i; j / D  0 exp
�� 1

��si � sj
���C .1 �  0/ exp

�� 2
��si � sj

��� (3.39)

Figure 3.21 shows the estimated dependence-distance relationship, and confirms
that there exists a significant level of spatial dependence at least within a short
distance range. Moreover, the 90% posterior interval is quite narrow, which indicates
that the spatial dependence structure can be precisely identified. These observations
indicate that elliptical copulas are a viable way to account for the existence of spatial
dependence in regional models. However, note that although elliptical copulas
are useful to describe dependence at observed levels, they might be inadequate
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Fig. 3.21 Estimated dependence-distance relationship, with 90% posterior interval. Dots represent
empirical pairwise correlations, computed between pairs of raingauges

when used in extrapolation (i.e. when the dependence structure is used to predict
rare multivariate events, far beyond the observation range). This topic is further
discussed in Sect. 3.6.2.

Figures 3.22 and 3.23 show the posterior distributions of 0.9- and 0.99-quantiles
(at tD 2004). These posterior distributions can be compared with those obtained
using purely local models estimated independently at each site (cf. previous
Fig. 3.18). To ease this comparison, the latter posterior distributions are represented
in light pink.

0.9-quantiles are fairly similar, both in terms of spatial pattern and uncertainty.
This indicates that the regional model has no clear advantage over local models
for the estimation of such a “low” quantile. However, stronger differences appear
for the 0.99-quantiles. In particular, uncertainties are markedly reduced with the
regional model (Fig. 3.23). This indicates that regional modeling may be beneficial
in terms of uncertainty reduction for higher quantiles.

This reduction of uncertainty is primarily explained by the use of regional
parameters. Indeed, Fig. 3.24 shows the posterior distributions of the regional shape
parameter (black box). The box range is strongly reduced compared to the local
estimates (light pink boxes). This reduction is even more noticeable for the trend
parameter (Fig. 3.25), with its range being reduced by a factor of about 10 for
some regions! This result indicates that a robust identification of non-stationary
components may be difficult to achieve using local models, but that regional
modeling has the potential to improve this identification.

Although these results are encouraging, it has to be kept in mind that the reduc-
tion of uncertainties has been obtained at the cost of making strong assumptions on
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Fig. 3.22 Boxplots of the posterior pdf of 0.9-quantiles in 2004 for each region. Light pink boxes
represent estimates using the local model, black boxes represent estimates using the regional
model

the spatial variability of some parameters. If these assumptions are unrealistic, the
reduction of uncertainties might be unduly optimistic – i.e. uncertainties could be
under-estimated.

Consequently, it is important to verify that the regional model is supported by
the data. To this aim, the pp-plot diagnostic presented in Sect. 3.3.3.1 is applied to
all 60 sites. Overall, results shown in Fig. 3.26 indicate a good fit of the model to
the data for most sites. However, a few systematic departures from the 1:1 line may
be suspected, indicating that the regional model is not flexible enough to describe
observed data for a few sites. In particular, the assumption of strict equality of
regional parameters might be too restrictive. A possibility to remedy such departures
is to allow for an additional source of variability in the regional model in order to
cope with local peculiarities. The following Sect. 3.5 proposes a practical solution
based on Hierarchical modeling.
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Fig. 3.23 Boxplots of the posterior pdf of 0.99-quantiles in 2004 for each region. Light pink boxes
represent estimates using the local model, black boxes represent estimates using the regional model

3.5 Hierarchical Modeling

3.5.1 Principles of Hierarchical Modeling

3.5.1.1 Motivation

Previous Sect. 3.4 described a general framework for building regional non-
stationary models. In this framework, inferred parameters are assumed to be of one
of the following two types:

• “Regional parameters”, i.e. parameters being assumed identical for all stations
of a given homogeneous region. The advantages of this assumption are that
(i) all sites will contribute to the estimation of the regional parameter, thus
reducing estimation uncertainty; (ii) regional estimates can be used at an
ungauged site within the region. However, these advantages come at a cost: the
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Fig. 3.24 Boxplots of the posterior pdf of shape parameters for each region. Light pink boxes
represent estimates using the local model, the black box represent the regional estimate

regional parameter assumption is very strong since it reduces (indeed, annihilate)
spatial variability. If such assumption proves unrealistic, the uncertainty may be
significantly underestimated.

• “Local parameters” are site-specific parameters. Such parameters can obviously
not be directly transferred to an ungauged site (it would requires additional
regression and/or kriging steps, with the difficulties described in Sect. 3.4.1).
Moreover, it does not enable sharing information between sites. The main
advantage of local parameters is their ability to comply with the observed
spatial variability. However, this flexibility comes at the cost of considerable
uncertainties.

This description highlights that local and regional parameters have complemen-
tary advantages and drawbacks. It raises the following question: is it possible to
define a third parameter type that would be somehow in between local and regional
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Fig. 3.25 Boxplots of the posterior pdf of trend parameters for each region. Light pink boxes
represent estimates using the local model, the black box represent the regional estimate

parameters, and hence cumulate the advantages of both assumptions while limiting
their drawbacks? For instance, would it be possible to assume that parameter
values are indeed different at each site, but should still show some form of spatial
consistency, with nearby sites having closer parameter values than sites located
further away?

The objective of this section is to discuss a possible solution, using the notion
of stochastic parameters. It is based on Bayesian Hierarchical modeling, which
constitutes a very flexible framework to implement models where parameters can
be either local, regional or stochastic.

Hierarchical modeling is a useful tool when the inference problem requires
using several modeling layers. In general, the first layer describes the data, by
assuming observations are realizations from a given distribution family, depending
on some parameters. The second layer describes the variability of the parameters,
by assuming they are themselves realizations from some stochastic process. For
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Fig. 3.26 pp-plots obtained with modal parameters for 60 sites

instance, in the regional problem described in the previous Sect. 3.4.5, the spatial
variability in parameters may be described by assuming they are realizations from
some Gaussian spatial field. This section elaborates on the derivation of hierarchical
models in a regional context.

3.5.1.2 A Simple Example

Following the notation defined earlier, observations y(s,t) are considered as re-
alizations from Y(s,t). For simplicity, we will first consider a single-parameter
and stationary example, i.e. the random variable Y(s,t) is assumed to follow a
distribution with pdf p.yj	.s//. This represents the first layer (data layer) of the
hierarchical model. The second layer (process layer) describes the spatial variability
of parameter 	 . We will assume here that 	 values are realizations from a Gaussian
spatial field:

.	.1/; :::; 	.Ns// � N.�;˙ / (3.40)

This Gaussian distribution is called the hyper-distribution, and its parameters �
and˙ are called the hyper-parameters.

In this hierarchical setup, unknown quantities are the parameter values
.	.1/; :::; 	.Ns// and their hyper-parameters controlling spatial variability � and



82 B. Renard et al.

˙ . Inference of these quantities is based on the following posterior distribution,
derived by applying Bayes’ theorem:

p .�.1 W Ns/;�;˙ jy/ / p .yj�.1 W Ns/;�;˙ / p .�.1 W Ns/;�;˙ / (3.41)

The first term in Eq. (3.41) is the likelihood of observations y. Since observations
are realizations from the distribution with pdf p.yj	.s//, the likelihood solely
depends on the parameter values 	(1: Ns), but not on hyper-parameters � and ˙ .
Consequently:

p.y j�.1 W Ns/;�;˙ / D p.y j�.1 W Ns// (3.42)

The second term in Eq. (3.41) is the joint prior pdf of parameters and hyper-
parameters. It can be decomposed by applying conditional probability algebra:

p.�.1 W Ns/;�;˙ / D p.�.1 W Ns/j�;˙ /p.�;˙ / (3.43)

Combining Eqs. (3.42) and (3.43), the posterior distribution can be written as
follows:

p.�.1 W Ns/;�;˙ jy/ / p.yj�.1 W Ns//„ ƒ‚ …
Likelihood

p.�;˙ /„ ƒ‚ …
prior

p.�.1 W Ns/j�;˙ /„ ƒ‚ …
Hierarchical component

(3.44)

Let us now compare the “hierarchical” posterior distribution (3.44) with the
“standard” posterior in Eq. (3.3). In addition to the likelihood and prior terms, a
new term appears in the hierarchical setup: the “hierarchical component” p.�.1W
Ns/j�;˙ /, corresponding to the pdf of parameters according to their hyper-
distribution. This term exerts an additional constraint on 	(s) values, compared
to the standard setup where 	(s) are purely local parameters. It forces the spatial
consistency of parameter values, by forcing them to comply with the spatial model
expressed by the hyper-distribution. On the other hand, this constraint is far weaker
that the constraint induced by assuming a regional parameter, since 	(s) values
are not strictly equal on all sites. Consequently, this hierarchical setup fulfills
the objective expressed in previous Sect. 3.5.1.1 by defining a third “stochastic
parameter” type, which lies “in between” local and regional parameters in terms
of inference constraints. Moreover, note that prediction at an ungauged site is still
possible for stochastic parameters. Indeed, an estimate at an ungauged site can be
obtained by using the estimated hyper-distribution as predictor.

3.5.2 Regional Hierarchical Modeling

This section illustrates the use of stochastic parameters to build regional hierarchical
models.
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3.5.2.1 Regional, Local and Stochastic Parameters

We still consider a stationary regional model, with the random variable Y(s,t)
following a distribution with pdf p.yj�.s//. We assume that the parameter vec-
tor �(s) can be partitioned into f�.I/.s/;� .II/.s/;� .III/.s/g, representing the three
possible parameter types:

• Type-I parameters are regional parameters, i.e. �.I/.s/ D � .I/8s
• Type-II parameters are local parameters, i.e. �.II/.s/ values are different at each

site.
• Type-III parameters are stochastic parameters. We will assume here that they

are realizations from a Gaussian spatial field, i.e. .�.III/.1/; :::;� .III/.Ns// �
N.�;˙ /.

It is further assumed that the hyper-mean vector� is constant (i.e. all components
are equal) and that the elements of the covariance matrix ˙ can be expressed as a
function of the intersite distance:

˙.i; j / D ‰.jjsi � sj jjI / (3.45)

3.5.2.2 Inference

In this regional hierarchical model, unknown quantities requiring inference are the
following:

• Regional parameters � (I)

• Local parameters � (II)(1:Ns)
• Stochastic parameters � (III)(1:Ns)
• Hyper-parameters� and �

The posterior distribution of these quantities is derived in a similar way than
previous Sect. 3.5.1.2, yielding:

p
�
� .I/;� .II/.1W Ns/;� .III/.1 WNs/;�; jy

�
/ p.y j�.I/;� .II/.1 WNs/;� .III/.1 WNs//„ ƒ‚ …

Likelihood

� p.� .I/;� .II/.1 W Ns//p.�; /„ ƒ‚ …
priors

�p.� .III/.1 W Ns/j�; /„ ƒ‚ …
Hierarchicalcomponent

(3.46)

3.5.3 Case Study

3.5.3.1 Model Specification

The same rainfall dataset as in Sect. 3.4 is used. In the first layer of the hierarchical
model, the following assumption is used for at-site data:
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Fig. 3.27 Posterior pdfs of regional parameters and hyper-standard deviation

Y.s; t/ � GEV.ı.s/�; ı.s/�; �/ (3.47)

Equation (3.47) corresponds to a standard “index flood” model, with all sites
having an identical shape parameter, and the ratio between location and scale
parameters remaining constant (see e.g. Ribatet et al. 2006). The joint distribution
of a spatial vector of annual maxima Y .t/ D .Y.s; t//sD1WNs is derived using
a Gaussian copula, with the same dependence-distance model as in previous
Sect. 3.4.5:

˙.i; j / D  0 exp.� 1jjsi � sj jj/C .1 �  0/ exp.� 2jjsi � sj jj/ (3.48)

The second layer of the hierarchical model assumes that the “index flood”
coefficients ı.s/ are realizations from the following spatial process:

log.ı.1 W Ns// � N.0;� / (3.49)

The covariance matrix � is parameterized as follows:

.i; j / D �2 ��0 exp.��1jjsi � sj jj/C .1 � �0/ exp.��2jjsi � sj jj/
	

(3.50)

In this hierarchical model, three parameters are considered as regional (�, �
and �) while a fourth parameter is considered as stochastic (ı(s)), with a log-normal
hyper-distribution.

3.5.3.2 Estimation

Figure 3.27 shows the posterior pdfs of regional parameters (location, scale and
shape). The posterior pdf of the shape parameter has its mode around �0.14 and
ranges between �0.18 and �0.08, which is consistent with the estimates obtained
in local and regional models (see Figs. 3.19 and 3.24). The last plot in Fig. 3.27
shows the posterior pdf of the hyper-standard deviation (i.e. the standard deviation of
log.ı.s// values, see Eq. (3.50)). This term is of primary importance since it controls
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Fig. 3.28 Data and parameter dependences

the spatial variability in the stochastic parameter ı(s) and hence the uncertainty
for prediction at ungauged sites. The mode of this posterior distribution roughly
corresponds to a 25% coefficient of variation in ı(s) values. The regional location
and scale parameters will be modulated by these ı(s) values to derive at-site location
and scale values (see Eq. (3.47)).

Figure 3.28 shows the estimated dependence-distance relationships, for both
the data dependence model (3.48) and the parameter dependence model (3.50).
Note that both spatial dependence structures arise from distinct processes, as
discussed by Cooley et al. (2007): in a nutshell, the former relates to weather spatial
dependence, while the latter relates to climate spatial dependence. They also have
contrasted impacts on regional modeling: while climate spatial dependence allows
transferring information from gauged to ungauged sites, the main effect of weather
dependence is to diminish the information content of data collected at nearby
sites. Figure 3.28 shows that the dependence between data is precisely estimated,
while the dependence between ı(s) values is far more uncertain (see 90% posterior
intervals).
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3.5.3.3 Prediction

As stated in Sect. 3.5.1.2, an attractive property of stochastic parameters is that
they can be transferred from gauged to ungauged locations by using the hyper-
distribution. As an illustration, the hierarchical model is used to predict the
0.99-quantile on a 40*50 grid. Note that high-elevation areas from the Alps and
the Pyrenees (whose maximal elevations reach 4,810 and 3,404 m, respectively)
were excluded from the prediction (white areas in Fig. 3.29). Figure 3.29a shows
the contour plot of the 0.99-quantile estimated on the grid. An area with higher
quantiles appears distinctly: it corresponds to the Cevennes mountain range, a region
in France well known for its extreme rainfall events.

The Bayesian framework also enables a direct assessment of the uncertainties
affecting predictions using the posterior distribution. Figure 3.29b shows the
uncertainty in 0.99-quantiles, measured by the posterior coefficient of variation. The
spatial pattern is governed by the location of gauged sites (dots). In particular, un-
certainty is smaller nearby gauged sites, and increases in poorly-gauged areas. This
is a consequence of the spatial dependence identified for the stochastic parameter
ı(s): this dependence favors the transfer of information between nearby sites.

3.5.4 Towards a Complete Spatiotemporal Modeling
of Extreme Values

The previous section aimed at illustrating the potential of Hierarchical models
to study extremes at a regional scale, without necessarily making the strong
assumption that regional parameters are strictly equal for all sites. However, the
proposed example remains incomplete and would benefit from several additional
developments to improve the description of both temporal and spatial variability:

• Spatial variability: The assumption that the stochastic parameter ı(s) is a
realization from a homogeneous Gaussian process is unrealistic – elevation is
likely to play an important role in the spatial variability of ı(s). This remark
illustrates the need to include spatial covariates in the hierarchical model. For
instance, this could be implemented by using a regression model to link the value
of the hyper-mean� in Eq. (3.40) with spatial covariates (e.g. elevation, distance
to sea, etc.).

• Temporal variability: In principle, the introduction of non-stationarity into the
hierarchical model could be made in a similar away, by using time-varying
covariates. However, this task is not straightforward because temporal effects
may vary in space. As an illustration, consider the simple trend model used
throughout this chapter: the value of the trend parameter is likely to vary in space,
and may also depend on spatial covariates like elevation. Note that variability in
space and time do not play symmetric roles in this respect: while spatial effects
will usually be considered as stationary in time, temporal effects are likely to
vary in space.
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Fig. 3.29 Contour plots of: (a) estimated 100-year daily rainfall; (b) corresponding uncertainty
(measured by the posterior coefficient of variation)
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A general modeling framework to jointly describe the variability of hydrological
extremes in space and time therefore remains to be defined. Note that the recent
research literature suggests significant advances toward this goal, with several
applications of Bayesian hierarchical models in a hydrological context. For instance,
Perreault (2000) proposed such a model to detect a regional step-change into several
series of annual runoff. Thyer and Kuczera (2000, 2003a, b) used a hierarchical
model based on a hidden Markov process to describe temporal variability. Micevski
(2007, 2006) proposed a Bayesian hierarchical regional flood model, while Cooley
et al. (2007) described the spatial variability of extreme rainfall. Aryal et al. (2009)
extended this description to both spatial and temporal variability. Similarly, Lima
and Lall used Bayesian hierarchical models to describe daily rainfall occurrences
(Lima and Lall 2009) or runoff extremes (Lima and Lall 2010) in a regional context.

3.6 Conclusion

This chapter proposed an overview of possible applications of Bayesian concepts to
the modeling of non-stationary extremes. We conclude with a summary of the main
benefits of Bayesian inference, and a discussion of important topics that require
further developments.

3.6.1 Benefits of the Bayesian Inference for Describing,
Understanding and Predicting Extremes

Bayesian inference presents several appealing properties, amongst which we con-
sider the following are of particular relevance in the context of non-stationary
extremes:

• Taking advantage of prior knowledge: the prior distribution offers an op-
portunity to include information beyond that brought by the data used for
inference. We claim that such knowledge often exists in hydrology. This is
illustrated by the recent discussions by Merz and Bloschl (2008a, b), who
investigate ways of doing a better use of existing hydrological knowledge by
using temporal, spatial or causal information beyond the sole flood sample. Note
however that transforming such information into a proper prior distribution may
be challenging.

• Taking advantage of MCMC samplers: the need to use MCMC samplers
in most practical applications of Bayesian inference might lead to some ini-
tial reluctance to step into the Bayesian world. MCMC theory is indeed not
straightforward. Moreover, understanding, implementing and optimizing MCMC
samplers certainly requires time and efforts. However, once those initial diffi-
culties are overcome, MCMC samplers turn out to be very robust and general
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tools, even in relatively high-dimensional problems. Note that the existence of
several packages and software (see Sect. 3.2.2) is of great help, even if specific
problems may still motivate the implementation of specific samplers to gain more
efficiency.

• Focusing on the probabilistic model: Bayesian inference offers a very general
and flexible framework to the estimation problem. As an illustration, this chapter
has shown that introducing non-stationarity was fairly easy, and required only
minimal adaptation to the overall inference mechanism. While some estimation
frameworks (in particular, maximum likelihood inference) also offer similar
generality and flexibility, others are less suited to the introduction of non-
stationary components. As an illustration, using moment-based estimators would
require deriving theoretical moments for each new non-stationary model. In
addition to the technical tediousness of such endeavor, it may distract from the
arguably more important objectives of building realistic models for describing
non-stationarity, and assessing them based on all available evidence.

• A natural framework for uncertainty quantification and prediction. The
direct outcome of Bayesian inference is a (posterior) distribution. This makes
the quantification of estimation uncertainties in parameters, or any function
of the parameters (e.g. quantiles), straightforward. Moreover, Bayesian model
averaging offers an opportunity to account for model uncertainty, at least to
some extent (since a finite collection of models can hardly be exhaustive).
Moreover, the Bayesian paradigm naturally handles uncertainty in predicting a
future realization by means of the predictive distribution, which averages out the
uncertainty in parameters.

• Modeling complex systems using hierarchical models. Hierarchical models
appear naturally in a Bayesian framework: since parameters are considered as
random variables, they can themselves be modeled using some probabilistic
process. This is of particular interest because some problems encountered in
Hydrology are intrinsically hierarchical. In particular, this is the case of regional
estimation: data are assumed to be realizations from some distribution (level 1),
whose parameters are themselves realizations from some spatial process (level 2).
Bayesian hierarchical modeling offers an elegant and general way of estimating
such models, without unnecessarily separating the inference process in several
steps.

3.6.2 Challenges and Future Research

The context of non-stationary extremes raises a number of important challenges.
Although the use of Bayesian inference is undoubtedly useful for implementing
non-stationary models, it does not solve all issues. In particular, we would like to
highlight three topics deserving further research in our opinion (this list being far
from exhaustive): model comparison, model validation and spatial extremes.
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Model comparison cannot be solely based on goodness-of-fit considerations.
Indeed, increasing model complexity will in general result in a better fit to obser-
vations. However, model complexity may come at the cost of reduced predictive
ability. Consequently, a trade-off between descriptive and predictive abilities has to
be found. There exists no unique way of performing this trade-off: the approach
presented in this chapter using Bayes factors is one possibility, but many others
exist. As an illustration, numerous model comparison criteria exist in the literature,
e.g. the AIC (Akaike 1973), BIC (Schwarz 1978), DIC (Spiegelhalter et al. 2002),
etc. Such comparison is even more difficult when hierarchical models are used:
indeed, the number of parameters is not a good description of the complexity of
a hierarchical model, because stochastic parameters are constrained by the hyper-
distribution and are therefore not independent parameters (see Spiegelhalter et al.
2002 for a thorough discussion on this topic). The difficulty in model comparison
and selection is problematic in the context of non-stationary extremes, because
distinct models may yield a similar fit to the data but result in dramatically different
predictions when extrapolated.

The topic of model validation is also challenging in an extreme value context,
all the more so if non-stationarity is considered. Note that the term validation
refers to the assessment of the predictive performance of a model (as opposed
to its descriptive performance as measured by goodness-of-fit), which can only
be evaluated using data not used for estimation purposes (see discussion in
Gunasekara and Cunnane 1992). The fundamental limitation to model validation is
the scarcity of extreme values. However, this scarcity does not mean that validation
is impossible: ambitious validation studies have been implemented using extensive
datasets (see e.g. Interagency Advisory Committee on Water Data 1982, Appendix
14; Garavaglia et al. 2011). In addition, despite the growing emphasis on the
importance of quantifying uncertainties, the issue of questioning the validity of
such estimated uncertainties has received less attention in extreme value modeling.
However, estimated uncertainties depend on the assumptions made in the model, and
may therefore be unreliable if those assumptions are unrealistic. Further research is
needed to develop tools for scrutinizing uncertainty estimates, and could build on
progresses achieved in other fields (see e.g. Laio and Tamea 2007 in the field of
probabilistic forecasting).

Lastly, modeling spatial extremes is a major challenge for the hydrologic com-
munity. Indeed, the relevant scale of many hydrological variables includes a spatial
component (e.g. the areal rainfall over a catchment). Understanding the development
of hydrological extreme events in space may therefore result in significant advances.
However, one needs to make a distinction between this objective and the perhaps less
ambitious objective of accounting for spatial dependence in a given spatial dataset
to avoid biasing the inference. In the latter case, the dependence model is solely
used to describe data dependence at observed levels – in particular, this dependence
model is not extrapolated. The analyses carried out in this chapter belong to this
second objective, and relatively simple elliptical copulas may be sufficient for this
purpose. However, more advanced tools are required for a deeper understanding
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of spatial extremes. This area of research is rapidly evolving, both in Hydrology
(Genest et al. 2007; Renard and Lang 2007; Bárdossy and Li 2008; Keef et al.
2009; AghaKouchak et al. 2010a, b, c, d, 2011) and in Statistics (Diggle et al. 1998;
Schalther and Tawn 2003; Heffernan and Tawn 2004; Mikosch 2005; Naveau et
al. 2005; De Haan and Pereira 2006; Padoan et al. 2010). Significant advances are
therefore foreseeable in this topic in the next future.
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A.1 Appendix

A.1.1 The Chib Method for Computing Marginal Likelihoods

The marginal likelihood is the normalizing constant of the posterior distribution.
For a given model M (omitted from the notation for simplicity), it can therefore be
written as follows:

p.y/ D p.y j�/p.�/
p.�jy/ D f .�/

p.�jy/ (3.51)

In this equation, the numerator is the unnormalized posterior pdf and can
therefore be computed for any � . The difficulty is to compute the denominator,
i.e. the normalized posterior pdf p.�jy/.

Chib’s approach (1995) to this problem is first based on the observation that
relation (3.51) holds for any � value. For a given value ��, it is then possible to
decompose the normalized posterior pdf p.��jy/ evaluated at �� as follows:

p.��jy/ D p.	�
1 jy/p.	�

2 j	�
1 ;y/ � ::: � p.	�

k j	�
1 ; :::; 	

�
k�1;y/ � :::

� p.	�
ND
j	�
1 ; :::; 	

�
ND�1;y/ (3.52)

Equation (3.52) decomposes the computation of a ND-dimensional pdf into the
multiplication of ND one-dimensional pdfs. Each term p.	�

k j	�
1 ; :::; 	

�
k�1;y/ is the

first marginal distribution of the distribution p.	k; 	kC1:::; 	ND j	�
1 ; :::; 	

�
k�1;y/,

evaluated at 	�
k . Consequently, Chib’s proposal is to perform additional MCMC

sampling from the conditional distributions p.	k; 	kC1:::; 	ND j	�
1 ; :::; 	

�
k�1;y/

for kD 2:ND, and to use the first marginal sample to compute each term
p.	�

k j	�
1 ; :::; 	

�
k�1;y/. Since the latter is a one-dimensional distribution, estimating

its normalized pdf based on MCMC samples poses no difficulty, either using a
kernel density estimate or one-dimensional numerical integration.

https://extraflo.cemagref.fr/
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Although Chib’s approach is computationally demanding in high-dimensional
problems, it remains one of the most stable approximations of the marginal
likelihood (Bos 2002). Note that �� should preferably be chosen in a high-density
area of the posterior distribution (e.g. the posterior mode) to improve the efficiency
of the approximation.
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Chapter 4
Return Periods and Return Levels
Under Climate Change

Daniel Cooley

Abstract We investigate the notions of return period and return level for a
nonstationary climate. We discuss two general methods for communicating risk. The
first eschews the term return period and instead communicates yearly risk in terms
of a probability of exceedance. The second extends the notion of return period to the
non-stationary setting. We examine two different definitions of return period under
non-stationarity. The first, which appears in Olsen et al. (Risk Anal 18:497–510,
1998), defines the m-year return level as the level for which the expected waiting
time until the exceedance ism years. The second, which appears in Parey et al. (Clim
chang 81(3):331–352, 2007) and Parey et al. (Environmetrics 21:698–718, 2010),
defines them-year return level as the level for which the expected number of events
in an m year period is one. We illustrate the various risk communications with an
application to annual peak flow measurements for the Red River of the North.

4.1 Introduction

4.1.1 Return Periods and Return Levels Under Stationarity

In many disciplines, return levels and return periods are used to describe and
quantify risk. Classical work in probabilistic hydrology risk, precipitation frequency
analysis, and other fields assumes a stationary climate. There is a general consensus
in the scientific community that climate change has accelerated over the past few
decades and that climate will continue to change in the coming decades primar-
ily due to anthropogenic modifications of the Earth’s atmosphere (IPCC 2007).
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Consequently, there is growing interest to consider and account for non-stationarity
when assessing risk. However, the assumption of stationarity has pervaded all areas
of the above disciplines, including even the basic terminology. Two fundamental
terms to these disciplines are return level and return period. These terms are
relatively easily understood given stationarity, but become ambiguous in the non-
stationary setting. The aim of this chapter is to explore these concepts under
non-stationarity.

Because we will illustrate by analyzing an annual maximum series in Sect. 4.3,
let us define the m-year return level as the high quantile for which the probability
that the annual maximum exceeds this quantile is 1=m. Under an assumption of
stationarity, the return level is the same for all years, and this gives rise to the notion
of the return period. Under stationarity, the return period of a particular event is the
inverse of the probability that the event will be exceeded in any given year. Thus,
them-year return level is associated with a return period ofm years. A return period
can be interpreted in different ways, and we will explore different interpretations
shortly. For now, let us simply acknowledge that in the stationary case there is a
one-to-one relationship between a return level (the quantile) and a return period (the
associated time interval).

The above definition in which return period is defined in terms of the annual
maximum’s probability of exceedance is not universal. Mays (2001, p. 317) equates
the definition of return period with “average recurrence interval”; that is, the
time between exceedance events. The difference between the two definitions
arises because of the probability of having more than one exceedance in a given
year. Because of the ambiguity of the definition of return period, NOAA’s latest
precipitation atlas effort (Bonnin et al. 2004) avoids using the term return period
altogether. NOAA, like Mays, uses the terms average recurrence interval (ARI) and
“annual exceedance probability” (AEP) to speak of return period as we defined it
above. NOAA notes that the difference between the return levels associated with
ARI and AEP is noticeable only for time intervals shorter 20 years, as the probability
of multiple exceedances of very high thresholds in any year becomes negligible
(Bonnin et al. 2004, Sect. 3.2). For the purposes of discussing the implications of
non-stationarity in this chapter, the definitions of return period and return level in
terms of the annual maximum are sufficient.

Due to the one-to-one relationship between return level and return period, in
the stationary case it is straightforward to solve for either quantity given the value
of the other. Design criteria may specify that a structure be built to withstand the
(say) 100-year event, or regulations may require the designation of the 100-year
floodplain, and the corresponding return level can be found for this period. A less
common calculation is to find the return period associated with a particular level.
An individual could wish to calculate the return period associated with his or her
particular structure being flooded, or after a large event has occurred, one might
wish to ascertain the event’s associated return period.
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4.1.2 Statistical Models for the Distribution’s Tail

In practice, one does not know the exact distribution of the individual events or
annual maximum, and one must estimate the upper tail of a distribution to assess
risk. From the estimated distribution one can calculate the return period or return
level of interest and additionally provide measures of uncertainty.

In the application in Sect. 4.3, we will rely on probabilistic results from extreme
value theory to model the distribution of the annual maximum observation. There
is a rich literature which describes the fundamental probability results of extreme
value theory as well as the resulting statistical practice for modeling the tail derived
from these results. Some recent references are de Haan and Ferreira (2006), Beirlant
et al. (2004) and Coles (2001). Let fXtg denote a time series of our quantity of
interest, for example, daily maximum streamflow or daily total precipitation. Let
Mn D maxtD1;:::;n Xt . The foundational result of extreme value theory states that if
Xt are iid, and Mn can be linearly renormalized in such a way that its distribution
converges as n grows, then it will converge to an extreme-value (equivalently, max-
stable) distribution (Fisher and Tippett 1928; Gnedenko 1943). Further theoretical
results state that the distribution of exceedances P.Xt > x C ujXt > u/ should
be well approximated by a generalized Pareto (GP) distribution above a sufficiently
high threshold u (Balkema and De Haan 1974; Pickands 1975). If fXtg are not
independent but are still identically distributed, the asymptotic distributions do not
change, so long as certain relatively weak mixing conditions are met (Leadbetter
et al. 1983).

In practice, an extreme value statistical analysis extracts a subset of data deemed
extreme, and then fits a theoretically-justified distribution to this data subset. One
approach is to construct a time series of block (e.g. annual) maxima, and another
approach is to construct a subset of data which exceed a previously defined threshold
(deemed a partial-duration series in hydrology). When the block-size n is fixed and
large enough to assume that the asymptotic results provide a good approximation,
the above theory suggests modeling Mn with a generalized extreme value (GEV)
distribution. Threshold exceedance data can be modeled with GP distribution or
an equivalent point process representation (Davison and Smith 1990). Traditional
extreme value results assume the data are identically distributed, but methods have
been developed enable construction of non-stationary models based on the GEV and
GP distributions or the point process representation of threshold exceedances (Katz
2012; Smith 1989).

The GEV and GP distributions’ advantage is their asymptotic justification which
is particularly useful for extrapolating the tail beyond the range of the data. However,
risk analyses are not always based on distributions derived from extreme value
theory. The log-Pearson type III distribution is widely used in hydrology and its
use is sometimes mandated by government agencies (Vogel and Wilson 1996). This
chapter’s discussion of return levels and periods is not inherently tied to the GEV
distribution that is used in Sect. 4.3; any model for the distribution’s tail can be used.
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4.1.3 Interpretations of Return Periods Under Stationarity

In the stationary case there is a one-to-one relationship between the m-year return
level and m-year return period which is defined implicitly as the reciprocal of the
probability of an exceedance in any 1 year. Return periods were assumedly created
for the purpose of interpretation: a 100-year event may be more interpretable by the
general public than a 0.01 probability of occurrence in any particular year. But this
implicit definition gives rise to at least two interpretations of “anm-year event”. The
first interpretation is that the expected waiting time until the next exceedance is m
years. The second is that the expected number of events in m years is 1. We show
below that both of these interpretations are correct under a stationary assumption.

LetMy denote the random variable representing the annual maximum for year y.
Note that we have omitted the notational dependence on block size n and now
include a year index y. For now, assume fMyg are iid with distribution function
F . Given a return period of interest m, we can solve the equation

F.rm/ D P.My � rm/ D 1 � 1=m

for rm, the associated return level. The first interpretation of the m-year event is
the expected waiting time until an exceedance occurs. Let T be the year of the first
exceedance. One recognizes

P.T D t/ D P.M1 � rm;M2 � rm; : : : ;Mt�1 � rm;Mt > rm/

D P.M1 � rm/P.M2 � rm/ : : : P.Mt�1 � rm/P.Mt > rm/

D P.M1 � rm/t�1P.M1 > rm/

D F t�1.rm/.1 � F.rm//
D .1 � 1=m/t�1.1=m/;

where the second line follows from the independence assumption and the third from
stationarity. T is a geometric random variable, and it is well known that its expected
value is m. That is, the expected waiting time for an m-year event is m years.

An alternative interpretation of an m-year event is that the expected number of
events in m years is 1. Let N be the random variable representing the number of
exceedances in m years; that is N D Pm

yD1 I.My > rm/ where I is the indicator
function. Each year can be viewed as a trial, and since we have assumedMy are iid,
N has a binomial distribution:

P.N D k/ D
 
m

k

!
.1=m/k.1 � 1=m/m�k: (4.1)

It is straightforward to show that the expected value of N is 1.
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4.1.4 Outline

The outline for the remainder of this chapter is as follows. In the next section,
we discuss several options for communicating risk in the non-stationary case. In
Sect. 4.3, we fit a stationary model and some non-stationary models to a time series
of annual maximum river flows and convey the different risk measures for these
various models. We conclude with a discussion in Sect. 4.4 where we touch on both
implications of non-stationary models and expressions of risk.

4.2 Communicating Risk Under Non-stationarity

In this section we outline two general ideas for conveying risk when the process is
assumed to be non-stationary. We start by explicitly conveying the changing nature
of the risk by expressing the yearly probability of exceedance given a fixed level,
or conversely the yearly exceedance level for a fixed probability of exceedance.
Later, we extend the notion of return period to the non-stationary setting via both the
expected waiting time and the expected number of events interpretations of return
period. Throughout Sect. 4.2, we keep the independence assumption, but drop the
assumption that the sequence fMyg is identically distributed.

4.2.1 Communicating Changing Risk

The most straightforward approach to communicating risk in the non-stationary
setting is to give yearly estimates of risk. However, the idea of a yearly return period
seems illogical, and it makes more sense to communicate risk via probabilities. Let
Fy denote the distribution function of My . In any particular year, there still exists a
one-to-one correspondence between a probability of exceedance and a high quantile.

Given a particular level of interest r , it is straightforward to express yearly risk in
terms of probability. Letting p.y/ D P.My > r/ D 1�Fy.r/, onceFy is estimated
it is simple to provide yearly point estimates of the probability of an exceedance
p.y/. These point estimates could be supplemented by employing the delta method
(Casella and Berger, 2002, Sect. 5.5.4) to obtain a confidence interval.

Generally risk calculations proceed in the opposite direction: one starts with
a measure of risk (e.g., a return period in the stationary case) and finds the
corresponding level. Simply inverting the procedure in the previous paragraph
allows one to start with a probability of exceedancep and solve Fy.rp.y// D 1�p.
As the exceedance level rp.y/ changes with year, it clearly conveys to the user
the changing nature of risk. Again, there are existing methods to obtain confidence
intervals to convey uncertainty associated with rp.y/.
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4.2.2 Return Periods and Return Levels Under
Non-stationarity

Structures are designed for certain return periods based on the economic and human
impacts of their failure. The dynamic risk valuations in Sect. 4.2.1 must be extended
to make lifespan calculations in the non-stationary setting. Below we extend the
expected waiting time and expected number of events interpretations of return
period given in Sect. 4.1.3 to the non-stationary setting.

4.2.2.1 Return Period as Expected Waiting Time

One interpretation of return period given in Sect. 4.1.3 is the expected waiting time
until an exceedance occurs. Olsen et al. (1998) use this definition to compute an
m-year return level for non-stationary time series and compare this to the 1=m
probability-of-exceedance level described above. Olsen et al. (1998) illustrate the
difference in the definitions using simulated data. Here, we extend the basic
definition set forth in Olsen et al. (1998) and discuss computational aspects.
Specifically, we aim to find the level rm for which the expected waiting time for
an exceedance of this level is m years.

Let T be the waiting time (from y D 0) until an exceedance over a general level
r occurs. Starting as before,

P.T D t/ D P.M1 � r/P.M2 � r/ : : : P.Mt�1 � r/P.Mt > r/

D
t�1Y
yD1

Fy.r/.1 � Ft .r//

) EŒT � D
1X
tD1

t

t�1Y
yD1

Fy.r/.1 � Ft .r// (4.2)

D 1C
1X
iD1

iY
yD1

Fy.r/;

where (4.2) is the definition that appears in Olsen et al. (1998) and the last line
results from expanding the sum in the previous line and then collecting terms (shown
in the appendix).

Defining the m-year return level rm as the level which the expected waiting time
until an exceedance occurs is m years, then rm is the solution to the equation

m D 1C
1X
iD1

iY
yD1

Fy.rm/: (4.3)
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Because (4.3) cannot be written as a geometric series, solving for rm is not
straightforward. However, in the case that Fy.r/ is monotonically decreasing as
y !1 (that is, the extremes are getting more extreme), it is possible to bound the
right-hand side of (4.3). For any positive integer L,

m D 1C
LX
iD1

iY
yD1

Fy.rm/C
1X

iDLC1

iY
yD1

Fy.rm/

) m > 1C
LX
iD1

iY
yD1

Fy.rm/: (4.4)

Furthermore,

m D 1C
LX
iD1

iY
yD1

Fy.rm/C
LY
yD1

Fy.rm/

1X
iDLC1

iY
yDLC1

Fy.rm/

m � 1C
LX
iD1

iY
yD1

Fy.rm/C
LY
yD1

Fy.rm/

1X
iDLC1

.FLC1.rm//i�L

D 1C
LX
iD1

iY
yD1

Fy.rm/C
LY
yD1

Fy.rm/
FLC1.rm/

1 � FLC1.rm/
; (4.5)

where the inequality follows from the fact that FLC1 � Fy if y > LC 1. One can
achieve bounds to any desired width by choosing L to be large enough. Solving
for rm must be done numerically, but this is done relatively easily since m is
monotonically increasing with rm.

4.2.2.2 Return Period as Expected Number of Events

The other interpretation of an m-year return period given in Sect. 4.1.3 is that the
expected number of events in m years is one. Parey et al. (2007, 2010) extend this
definition to the non-stationary case.

We aim to find the level rm for which the expected number of exceedances in
m years is one. Let N be the number of exceedances that occur in the m years
beginning with year y D 1 and ending with year y D m. As the probability of an
exceedance is no longer constant from year to year, the distribution ofN is no longer
binomial. Letting I be an indicator variable and r be a general threshold level, one
obtains
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N D
mX
yD1

I
�
My > r

�

) EŒN � D
mX
yD1

EŒI
�
My > r

�
�

D
mX
yD1

P.My > r/

D
mX
yD1

.1 � Fy.r//: (4.6)

Setting (4.6) equal to one and solving, we define them-year return level rm to be the
solution to the equation

1 D
mX
yD1

.1 � Fy.rm//: (4.7)

4.3 Illustrative Example: Red River at Halstad

We examine annual peak flow measurements from the Red River of the North at
Halstad, Minnesota, USA (station #05054500). Data were obtained from the US
Geological Survey’s National Water Information System.1 The Halstad site has an-
nual maximum data from 1942–2010. Additionally, we include the highest reading
for 2011 (61,600 cfs, 7:00 a.m., April 12) from the site’s real-time data archive.2

The Red River was selected because it has experienced recent newsworthy floods
in 1997, 2009, and 2011. In Sect. 4.4, we further discuss possible implications of the
selection of the Red River.

Figure 4.1 shows the annual maximum flow measurements at Halstad. There is
some indication that the annual maximum flows have increased over this period. The
highest measurements tend to occur in the latter part of the series, and the magnitude
of the lowest annual maximum flows for the last 15 years seems to be higher than
previous years.

As we have annual maximum data, we fit various stationary and non-stationary
GEV distributions to the data. We assume

Fy.r/ D P.My � r/ D exp

(
�


1C �

�
r � �y
�y

��1=�)
; (4.8)

1http://nwis.waterdata.usgs.gov/nwis
2The real-time data is marked as “Provisional and subject to revision”

http://nwis.waterdata.usgs.gov/nwis
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Fig. 4.1 Annual peak flow measurements for the Red River at Halstad, MN

where �y and �y are (possibly time-varying) location and scale parameters repec-

tively, � controls the tail behavior, and
h
1C �

�
x��y
�y

�i
> 0. A positive � indicates

a heavy tail. We restrict ourselves to the case where � is not time-varying, although
the model could be generalized to allow this parameter to vary with time as well.

4.3.1 The Stationary Model

We begin by fitting a stationary model to this annual maximum series. Via numerical
maximum-likelihood, we fit the stationary GEV; that is, �y D � and �y D � in

(4.8). Our estimates are O� D 10; 392, O� D 7; 924 and O� D 0:323 with respective
standard errors of 1,095, 944, and 0.137. The log-likelihood of the fitted model
is �751:59. We note that the MLE for � seems a bit higher than tail parameter
estimates typically associated with river flow data. Also note the large uncertainty
associated with this difficult-to-estimate parameter.

Given a return periodm, plugging O�, O� , and O� into (4.8), setting equal to 1�1=m
and solving yields the estimated m-year return level. We will focus on the 50-year
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return period, however, analogous analyses could be performed any return period.
Our point estimate for the 50-year return level is 72,306 cfs, and we note the largest
observation in our 70-year record is 71,500 cfs.

Approximate confidence intervals for the return level can be obtained by the
delta method (Casella and Berger, 2002, Sect. 5.5.4) which relies on the asymptotic
normality of maximum-likelihood estimators and produces a symmetric confidence
interval. Alternatively, profile likelihood methods (Coles 2001, Sect. 2.6.6) provide
asymmetric confidence intervals, which better capture the skewness generally
associated with return level estimates. For later comparison with the non-stationary
cases we employ only the delta method procedure here, as profile likelihood
methods for non-stationary measures of risk have not been developed. The delta
method yields a 95% confidence interval of (33,324, 111,286).

4.3.2 A Nonstationary Model

We next fit a non-stationary model to the data. We allow the location parameter in
(4.8) to be a linear function of time; that is, �y D ˇ0 C ˇ1.y � 1942/, where y
denotes year. Later we will consider other non-stationary models.

Again we fit the model using numerical maximum likelihood and use the
maximum likelihood estimates from the stationary model and ˇ1 D 0 as the
initial values for the numerical optimization procedure. Our estimates are Ǒ0 D
7; 976; Ǒ1 D 106; O� D 8; 630; and O� D 0:216, with respective standard errors of
2,247, 65, 1,024, and 0.132. The log-likelihood of the model is �749:90. Model
selection procedures such as the AIC (Akaike 1974) would select the model with
time-varying � as the better model (AIC scores of 1509.2 and 1507.8 respectively
for the stationary and time-varying � models, lower is better). Interestingly, the
standard error associated with ˇ1 would fail to reject a test with the null hypothesis
that the slope is 0, as a Gaussian-based 95 % confidence interval for this parameter
estimate is (�21:4; 233:4).

4.3.2.1 Communicating Changing Risk

Next, we find the level for each year which has a 0.02 probability of exceedance
(that is, a 1-in-50 chance) according to our fitted non-stationary model. Substituting
our estimates for O�y D Ǒ0 C Ǒ1y; O�; and O� into (4.8) and setting equal to 1 � 0:02,
we obtain

Or0:02.y/ D 106.y � 1942/C 60; 821:
The only peak flow to exceed the 0.02 probability-of-exceedance level is that
of 1997 where the measurement of 71,500 exceeds model’s point estimate of
Or0:02.1997/ D 66; 651. The 2009 peak flow of 67,400 nearly exceeds Or0:02.2009/ D
67; 923.
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It is interesting that Or0:02.y/ does not exceed the stationary model’s 50 year return
level estimate of 72,306 until the year 2050. The fact that the non-stationary model’s
estimated 0.02 probability-of-exceedance levels for the entire data record (1942–
2011) are lower than the 50-year return level estimate of the stationary model can
largely be attributed to the difference in the estimates of �.

Confidence intervals for the 0.02 probability-of-exceedance level for any par-
ticular year can be obtained via the delta method. The 95 % confidence interval is
(28,989, 92,652) for the year 1942, is (39,183, 97,148) for 2011, and extrapolating
the model into the future yields (44,996, 101,978) for 2061.

4.3.2.2 Return Period as Expected Waiting Time

As explained in Sect. 4.2.2, design criteria may require that a return level be
estimated for a given return period. In the non-stationary setting, any definition
of return period has to be associated with a specific time. The expected waiting
time definition of return period has a specific starting time, as it is an infinite
sum beginning in a particular year. The expected number of events definition has
a specific time interval corresponding the years over which the sum is calculated.

We extrapolate the trend in our model and use the expected waiting time
definition of return period to calculate the 50-year return level beginning in 2011.
So that the equations in Sect. 4.2.2.1 make sense, we redefine y to be the number
of years since 2011. We let L D 200, and get an estimated 50-year return level of
73,150 cfs. That is, beginning in 2011, the expected waiting time until we see an
exceedance of 73,150 cfs is 50 years. With L D 200, the difference between the
upper and lower bounds on our expected waiting time is less than 0.1 years.

Olsen et al. (1998) does not consider the uncertainty associated with the return
level calculated from (4.3). We wish to employ the delta method to produce a
confidence interval, but cannot do so directly since (4.3) does not yield an explicit
expression for the m-year return level rm. In the appendix, we show how the delta
method can be used implicitly to obtain the variance of the return level. Using this
method, we obtain a 95 % confidence interval of (44,383, 101,916) for the 50-year
return level beginning in 2011.

4.3.2.3 Return Period as Expected Number of Events

We now change our definition of return period in the non-stationary case to be the
amount of time for which the expected number of events is one. Again extrapolating
the trend in our model into the future, we calculate the return level associated
with the 50-year return period from 2012–2061. Using (4.7), setting m D 50 and
numerically solving yields Orm D 70; 950 cfs. That is, in the 50-year period from
2012–2061, the expected number of exceedances of 70,950 cfs is one.

Parey et al. (2010) employ a bootstrap method to obtain confidence intervals for
return periods defined in this manner. We will instead resort to the implicit delta
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method outlined in the appendix. The advantage of the bootstrap approach is that it
will likely result in an asymmetric confidence interval, better capturing the skewness
likely in the distribution of the return level estimate. The disadvantage of the
bootstrap is that since we are dealing with only annual maximum data, our sample
is rather small for bootstrapping. Bootstrapping heavy-tailed phenomena such as
this river-flow data is particularly difficult, and Resnick (2007, Sect. 6.4) gives a
thorough investigation. Our opinion is that any method for generating confidence
intervals has drawbacks, but most methods provide the user a useful measure of
uncertainty for the return level estimate. The implicit delta method yields a 95 %
confidence interval of (42,458, 99,441) for the 50-year return level associated with
the period from 2012–2061.

4.3.3 Other Possible Non-stationary Models

The model in Sect. 4.3.2 is not the only way to model non-stationary behavior in
the annual maximum time series. We consider two additional models. In the first,
we hold the location parameter �y constant and allow the scale parameter �y to
vary linearly with year. In the second, we allow both �y and �y to vary linearly
with year. One could also consider other parametric forms for the behavior of these
parameters or could consider non-parametric representations such as the work done
by Chavez-Demoulin and Davison (2005). However, extrapolating non-parametric
approaches to consider future risk could prove challenging. Additionally, one could
consider allowing the tail parameter � to vary with time, which would imply that the
fundamental behavior of the tail is changing. Cooley and Sain (2010) and Schliep
et al. (2010) construct models where � is allowed to vary spatially, but not in time.
Knowing that � is difficult to estimate even when held constant, we choose to allow
only �y and �y to vary in time.

Table 4.1 gives the parameter estimates for these new models as well as the
stationary and non-stationary models fit in Sects. 4.3.1 and 4.3.2. All parameters
estimated via numerical maximum likelihood. If the AIC is used as a strict model-
selection criterion, each successive model is an improvement over the previous
model. Figure 4.2 shows the QQ plot for each of the four models after transfor-
mation to standard Gumbel to account for non-stationarity (Katz 2012) as well as
the occurrence year of the largest five empirical quantiles (after transformation).
That the largest empirical quantiles for the non-stationary model (Fig. 4.2, upper-
left) all occur after 1997 is some indication that the stationary model is failing to
capture changing behavior, although the largest three quantiles for each of the non-
stationary models are 1997, 2009, and 2011.

For each of the four models, we fit the 0.02 probability-of-exceedance level
for the years 1942–2061. We also use the delta method to obtain 95 % confidence
intervals for these levels. Figure 4.3 shows the results for each of the four models.
Clearly, the different non-stationary models give very different risk estimates over
this period.
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Table 4.1 Maximum likelihood parameter estimates, log-likelihood values, `.�Im/, and AIC
values for the four models fit to the annual maximum series

Model O�y O�y O� `.�Im/ AIC

1 10,392 7,924 0.323 �751.59 1509.18
2 7; 975C 106.y � 1942/ 8,630 0.216 �749.90 1507.80
3 9,681 4;480C 109.y � 1942/ 0.189 �748.70 1505.40
4 8;854C 78.y � 1942/ 4;060C 133.y � 1942/ 0.133 �746.53 1503.06
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Fig. 4.2 QQ plots based on transformation to a standard Gumbel distribution for the stationary
model (top left), time varying � model (top right), time-varying � model (bottom left), and time-
varying � and � model (bottom right). The occurrence year of the largest five empirical quantiles
(after transformation) are also shown

4.4 Discussion

The aim of this chapter has been to investigate the concept of return period in
the context of non-stationarity due to climate change. Our example is drawn from
hydrology, but the ideas for conveying risk under non-stationarity can be used
for most any application, for instance precipitation or temperature data. Also, the
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Fig. 4.3 Yearly 0.02 probability-of-exceedance levels for the stationary model (top left), time
varying � model (top right), time-varying � model (bottom left), and time-varying � and � model
(bottom right)

methods for conveying risk are not tied to fitting annual maximum data with a GEV
distribution. Equations (4.3) and (4.7) require only estimates ofFy.rm/, which could
be obtained from fitting a GP or a log-Pearson type III distribution. Nor are the
methods tied to the notion of return period being defined in terms of the annual
maximum. Equations (4.3) and (4.7) could be adapted for use with the ARI rather
than the AEP.

The Red River data example not only illustrates the different ways to commu-
nicate risk under non-stationarity, but also illustrates the questions that arise from
fitting a non-stationary model and using it to convey future risk. A question that
naturally arises regards extrapolating the fitted trend into the future. Figure 4.3
shows there is a significant effect on our risk measures based on which trend we
choose. One of the basic lessons taught in an introductory regression course is
the danger of extrapolating a model beyond the range of the data. Like it or not,
estimating future risk requires extrapolation. All one can do is be clear in the
assumptions made, and convey the uncertainty as best as one can.
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Throughout, we have used a data-based approach. One can assess the fit of
the four models by using tools such as the AIC, but we would be hesitant to
select a model based solely on this or similar model selection criteria. One should
always keep in mind that because extremes are rare, we are always data-poor when
analyzing extremes, and thus it may be helpful to include outside expert knowledge
into the model selection process.

The Red River example is interesting because, to our knowledge, the recent flood
activity has not been directly linked to climate change. The Red River flows north,
and floods most often occur in the spring when snow and ice begins melting in the
south and the river remains frozen in the north. The recent floods do not seem to
be caused by the exact same circumstances. The 1997 flood is largely attributed to
snowmelt and extreme temperatures. The 2009 flood resulted from a combination
of saturated and frozen ground, and snowmelt excerbated by rainfall. And the 2011
flood is at least partially blamed on high soil moisture in the previous year.

In part because we have used a data-driven approach, we have chosen our
parameters to be linear functions of time. If extreme behavior is changing due
to climate change, it is unlikely that they are behaving linearly. The recent mean
temperature record, for example, does not appear to be increasing linearly but rather
seems to have periods of rapid increase followed by plateaus. Still, linear trends
may still be useful as models for long-term behavior and this is especially useful for
extrapolation.

Another approach would be to use something other than time as the covariate
in the model. For instance, one could imagine linking temperature data directly to
CO2 level rather than time. However, linking to a climatological covariate makes
extrapolation into the future more difficult, as one would need to extrapolate the
covariate as well. No obvious climatological covariate comes to mind for the Red
River application.

There are other questions that arise with our particular application. The Red
River was selected specifically because we were aware of recent flood activity. It
is natural to ask if the non-stationarity we are seeing is due to selection bias and
results from chance alone. Another question deals with the data itself. There is a
well-documented flood in 1950, but the peak flow for this year is recorded as 18,700
cfs, a rather unremarkable level. If this data point is in error and the 1950 level is in
fact much higher, this would drastically impact our non-stationary model.

Finally, one can ask which method of communicating risk is best? The yearly
probability-of-exceedance level communicates most clearly the changing nature of
risk, but is less useful for design criteria. The two return period definitions each
have their advantages. The expected waiting time definition is more closely linked
to a lifespan calculation than the expected number of events definition. However,
the expected waiting time definition extrapolates the trend indefinitely, whereas the
expected number of events definition only extrapolates over the m years used in the
calculation.
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A Appendix

A.1 Expansion of (4.2)

Here we show how the expansion of (4.2) results in (4.3).

EŒT � D
1X
tD1

t

t�1Y
yD1

Fy.r/.1 � Ft .r//

D 1.1� F1.r//C 2F1.r/.1 � F2.r//C 3F1.r/F2.r/.1 � F3.r//C
4F1.r/F2.r/F3.r/.1 � F4.r// : : :

D 1 � F1.r/C 2F1.r/ � 2F1.r/F2.r/C 3F1.r/F2.r/ � 3F1.r/F2.r/F3.r/C
4F1.r/F2.r/F3.r/ � 4F1.r/F2.r/F3.r/F4.r/C : : :

D 1C F1.r/C F1.r/F2.r/C F1.r/F2.r/F3.r/C F1.r/F2.r/F3.r/F4.r/C : : :

D 1C
1X
iD1

iY
yD1

Fy.r/:

A.2 Implicit Delta Method

Let � be a d -dimensional parameter vector for a particular model, let O� be
the maximum likelihood estimates, and let V. O�/ be the approximated covariance
matrix of these estimates, obtained by inverting the hessian from the numerical
optimization procedure.

Them-year return level is a function of the parameter vector: rm D f .�/. Denote
by rrm the gradient of this function. The delta method says the variance of rm is
approximately

rrTmV. O�/rrm:
Unfortunately, we do not have explicit expressions for the function f for either

of the m-year return level definitions in the non-stationary case. Rather, Eqs. (4.3)
and (4.7) can be generalized as m D g.�; rm/. Let m0 be our desired return period
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and let rm0 denote the corresponding return level. Knowing g we are able to find
@m=@rm, and @m=@	i for i D 1; : : : ; d . Thus

@r

@	i

ˇ̌
ˇ̌
�D O�;mDm0

D @r

@m

ˇ̌
ˇ̌
�D O�;mDm0

@m

@	i

ˇ̌
ˇ̌
�D O�;mDm0

D
 
@m

@r

ˇ̌
ˇ̌
�D O�;rDrm0

!�1
@m

@	i

ˇ̌
ˇ̌
�D O�;mDm0

;

which allows us to calculate the needed gradient.

References

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control
19(6):716–723

Balkema A, De Haan L (1974) Residual life time at great age. Ann Probab 2(5):792–804
Beirlant J, Goegebeur Y, Segers J, Teugels J, Waal DD, Ferro C (2004) Statistics of extremes:

theory and applications. Wiley, New York
Bonnin G, Todd D, Lin B, Parzybok T, Yekta M, Riley D (2004) NOAA Atlas 14, precipitation

frequency Atlas of the United States, vol 1. U.S. Department of Commerce, National Oceanic
and Atmospheric Administration, National Weather Service, Silver Spring

Casella G, Berger R (2002) Statistical inference, 2nd edn. Duxbury, Pacific Grove
Chavez-Demoulin V, Davison A (2005) Generalized additive models for sample extremes. J R

Stat Soc Ser C (Appl Stat) 54(1):207–222
Coles SG (2001) An introduction to statistical modeling of extreme values. Springer series in

statistics. Springer, London
Cooley D, Sain SR (2010) Spatial hierarchical modeling of precipiation extremes from a regional

climate model. J Agric Biol Envrion Stat 15:381–402
Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J R Stat Soc B

52:393–442
de Haan L, Ferreira A (2006) Extreme value theory. Springer series in operations research and

financial engineering. Springer, New York
Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the larges or

smallest members of a sample. Proc Camb Philos Soc 24:180–190
Gnedenko B (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math
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Chapter 5
Multivariate Extreme Value Methods

Gianfausto Salvadori and Carlo De Michele

Abstract Multivariate extremes occur in several hydrologic and water resources
problems. Despite their practical relevance, the real-life decision making as well
as the number of designs based on an explicit treatment of multivariate variables
is yet limited as compared to univariate analysis. A first problem arising when
working in a multidimensional context is the lack of a “natural” definition of
extreme values: essentially, this is due to the fact that different concepts of
multivariate order and failure regions are possible. Also, in modeling multivariate
extremes, central is the issue of dependence between the variables involved: again,
several approaches are possible. A further practical problem is represented by the
construction of multivariate Extreme Value models suitable for applications: the task
is indeed difficult from a mathematical point of view. In addition, the calculation of
multivariate Return Periods, quantiles, and design events, which represent quantities
of utmost interest in applications, is rather tricky. In this Chapter we show how the
use of Copulas may help in dealing with (and, possibly, solving) these problems.

5.1 Introduction

Multivariate extremes occur in several hydrologic and water resources problems
including, among others: (1) flood and drought at different sites (Singh 1986; Pons
1992; Kim et al. 2003; Keef et al. 2009); (2) the precipitation dynamics (rain and
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snow) (Wilks 1998; Herr and Krzysztofowicz 2005); (3) the link between water
quality and quantity in a river section (Grenney and Heyse 1985); (4) the hydraulic
conductivity in porous media (Journel and Alabert 1988; Russo 2009). In recent
years, the number of articles on multivariate methods in hydrology has exploded.
However, despite the practical relevance of multivariate extremes, the real-life
decision making, as well as the number of designs based on an explicit treatment of
multivariate variables, are yet limited as compared to univariate analysis.

In applications, the notion of extreme event in a multidimensional context is
closely related to that of failure region in structural design, as defined in Coles and
Tawn (1994). Practically, the multivariate observation x D .x1; : : : ; xd / is extreme
if it falls into some failure region F 
 Rd having a “small” probability of being
reached. For instance, F can be defined as

F D
�
.x1; : : : ; xd / 2 Rd W max

1�i�d fxi g > x
C
�

or

F D
�
.x1; : : : ; xd / 2 Rd W min

1�i�d fxi g < x
�
�
;

for given large, or small, thresholds xC and x�.
A first problem arising when working in a multidimensional context is the

lack of a “natural” definition of extreme values: essentially, this is due to the
fact that different concepts of multivariate order and failure regions are possible
(see later). In addition, both model validation and computation may be difficult
in multidimensional spaces, and models are less fully prescribed by the general
theory. Furthermore, in two and more dimensions, there does not exist a simple
distinction in three basic Extreme Values domains of attraction as in the univariate
case (namely, Type I, II, and III laws): in fact, there is no reason for the univariate
marginals of a multivariate distribution to share the same type of limiting Extreme
Value probability law.

In modeling multivariate extremes, central is the issue of association between the
variables involved. Actually, the degree of association may change by considering
different “intensities” of the process under investigation: for instance, it may become
weaker for more extreme events, to the extent that the most extreme ones are
practically independent. In addition the notion of association can involve two or
more dimensions: in the former case we refer to a pair-wise association, while in
the latter one to a cluster association. We shall see later how to properly quantify the
multivariate degree of association.

Another important issue is represented by the construction of multivariate
Extreme Value models. In the past, the joint probability distributions were often
assumed to be Multinormal (or its extensions, such as the multivariate Lognormal, t-
Student’s, and Fisher’s distributions—see, e.g., Alexander (1954), Stedinger (1983),
Hosking and Wallis (1988), Pons (1992) and Kottegoda and Natale (1994)), or
multivariate logistic Gumbel (see, e.g., Raynal-Villasenor and Salas 1987; Bacchi
et al. 1994; Yue 2000). Unfortunately, quite a few multivariate distributions present



5 Multivariate Extreme Value Methods 117

in literature, which are direct extensions of well known univariate ones, suffer
from several limitations and constraints (see later). Only recently, new multivariate
Extreme Value models were introduced to overcome some of these limitations (see
below, and also Tawn 1990; Coles and Tawn 1991; Joe 1994; Rootz and Tajvidi
2006; Durante and Salvadori 2010; Salvadori et al. 2010).

A further fundamental question is represented by the estimate of the mean
occurrence (viz., the Return Period) of a multivariate event. While the theory is
clear in the univariate case, it requires some care in the multivariate one, where
different definitions are possible (see below, and also Zhang (2005) and Singh
et al. (2007), and references therein). Similarly, the absence of a “natural” order in
multidimensional Euclidean spaces allows for the introduction of various definitions
of multivariate quantile (see below, and also Serfling 2002; Chebana and Ouarda
2009a,b, 2011).

This chapter is articulated as follows. In Sect. 5.2 we introduce some basic
notions concerning the concepts of Copulas, multivariate measures of dependence,
asymptotic dependence, and the simulation of multivariate probability distributions
via copulas (a tool of great importance in applications). In Sect. 5.3 we introduce the
Extreme Value copulas, as well as special techniques for constructing multivariate
Extreme Value models of practical utility. In Sect. 5.4 we address the problems
regarding the calculation of the multivariate Return Periods, quantiles, and design
events, which represent quantities of utmost interest in applications. Finally, in
Sect. 5.5 we outline some open problems, and discuss the perspectives of the
research in the area of multivariate extremes.

5.2 Copulas

The use of copulas in environmental sciences is recent and rapidly growing. For
a thorough theoretical introduction to copulas see Joe (1997) and Nelsen (2006);
for a practical approach see Salvadori et al. (2007) and Jaworski et al. (2010).
In order to avoid troublesome situations, hereinafter we shall assume that the
multivariate distribution F is continuous (but not necessarily absolutely continuous),
and strictly increasing in each marginal: these regularity constraints are rather weak,
and satisfied by the majority of the laws used in applications. Clearly, pathological
cases can also be addressed, but they require suitable techniques that go beyond the
scope of this short introduction.

For the sake of clarity and simplicity, hereinafter we shall mainly deal with
the bivariate case: a thorough practical introduction can be found in Genest and
Favre (2007). However, extensions to the general d -dimensional case (d > 2)
are usually possible, and easy to derive from the point of view of probability
theory, although the statistical side of things may become far more challenging as
d gets larger and larger, and is still an open research area of mathematical statistics
(this includes the construction of flexible parametric families of high-dimensional
copulas, estimation procedures, simulation algorithms, etc.). The main result is



118 G. Salvadori and C. De Michele

represented by Sklar’s Theorem (1959)—see Theorem 1 below, which splits any
multivariate distribution into two different components: the univariate marginals,
and a global dependence function (i.e., the Copula) ruling the joint behavior of the
different variables involved.

An advantage of using copulas is that even complex marginal distributions, such
as finite mixtures (Titterington et al. 1985), can be applied easily to the model of
interest (for practical examples see, e.g., Favre et al. (2004) and De Michele et al.
(2007)). Incidentally, we stress that all the multivariate distributions currently used
in applications can be described (and generalized) in a straightforward manner
in terms of suitable copulas. In addition, the copula approach does not suffer
from several drawbacks of standard families of multivariate distributions (e.g.,
the multivariate Gaussian, Student, etc.), such as, for instance, the facts that the
marginals may belong to the same probability family, or the parameters of the
marginals also rule the dependence between the variables considered. For an
exhaustive list of models see, e.g., Hutchinson and Lai (1990), Joe (1997), Nelsen
(2006) and Salvadori et al. (2007), and references therein. Clearly, a note of caution
is necessary here: using a copula corresponds to making a parametric assumption
on the nature of dependence, and this may have important consequences in terms of,
e.g., prediction and extrapolation (an issue that is sometimes overlooked in practical
applications).

5.2.1 Basic Features

In this Section we outline briefly the mathematics of 2-copulas needed in the sequel.
All the theoretical justifications can be found in Joe (1997), Nelsen (2006) and
Salvadori et al. (2007). Hereinafter we shall write “i.i.d.” for independent identically
distributed, and “r.v.” for random variable or vector.

Definition 1 (2-Copula). Let I D Œ0; 1�. A 2-copula is a bivariate function CW I �
I! I such that:

1. (Uniform marginals) for all u; v 2 I,

C .u; 0/ D 0; C .u; 1/ D u; C .0; v/ D 0; C .1; v/ D vI (5.1)

2. (2-increasing) for all u1; u2; v1; v2 2 I such that u1 � u2 and v1 � v2,

C .u2; v2/ �C .u2; v1/� C .u1; v2/C C .u1; v1/ � 0: (5.2)

A 2-copula C is uniformly continuous on its domain. In applications, it is often
quite useful to consider 2-copulas as restrictions to I2 of joint distribution functions
whose marginals are Uniform laws on I. The following definition is a natural
consequence of this fact.
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Definition 2. A 2-copula C induces a probability measure �C on I2, called
C-measure, given by

�C fŒ0; u� � Œ0; v�g D C .u; v/ : (5.3)

Often C-measures are also called doubly stochastic measures.

Intuitively, the C-measure �C of a (measurable) subset A of I2 is the probability
that two r.v.’s .U; V / Uniform on I, and having joint distribution function C, take
values inA. Practically,�C fAg is the probability that a simulation of the pair .U; V /
belongs to A.

The link between 2-copulas and bivariate distributions is provided by the follow-
ing fundamental result (Sklar 1959). Henceforth FX; FY (respectively,FU ; FV ) will
denote the marginal distribution functions of the r.v.’sX; Y (respectively,U; V ), and
Ran their Range.

Theorem 1 (Sklar’s Theorem). LetFXY be a joint distribution function with mar-
ginals FX and FY . Then there exists a 2-copula C such that

FXY .x; y/ D C .FX.x/; FY .y// (5.4)

for all reals x; y. If FX; FY are continuous, then C is unique; otherwise, C is
uniquely defined on Ran.FX/ � Ran.FY /.

Conversely, if C is a 2-copula and FX; FY are distribution functions, then the
function FXY given by Eq. (5.4) is a joint distribution with marginals FX and FY .

Note 1. As anticipated above, although no theoretical constraints exist on the
choice of FX and FY , for the sake of simplicity we shall limit our investigation
to continuous strictly increasing marginals: this is the case of most interest in
applications. As a consequence, by virtue of Theorem 1, the copula representation
will always be unique. However, only minor changes (involving the use of suitable
quasi-inverses, written as F .�1/� or F Œ�1�� —see Nelsen (2006)) are required in case
FX; FY do not satisfy such an assumption: for instance, this may be the case of daily
rainfall, with a probability mass at zero, or integer-valued variables like occurrence
(or number) of floods at several locations. In this Chapter the quasi-inverse will
coincide with the ordinary inverse, i.e. the quantile function.

The following “inversion” result plays an important role in applications.

Corollary 1 (Sklar’s Inversion). Let C, FXY , and FX; FY be as in Theorem 1,
and suppose that FX; FY are continuous. If F .�1/

X and F .�1/
Y denote, respectively,

the quasi-inverses of FX and FY , then

C .u; v/ D FXY
�
F
.�1/
X .u/; F .�1/

Y .v/
�

(5.5)

for any .u; v/ 2 I2.
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As a matter of fact, Theorem 1 (as well as Corollary 1) has a natural extension to
a d -dimensional framework (d > 2) as follows:

FX1;:::;Xd .x1; : : : ; xd / D C
�
FX1.x1/; : : : ; FXd .xd /

�
(5.6)

for all reals x1; : : : ; xd (and similarly for Corollary 1). Here the function C (i.e., the
d -copula) is only required to be a d -dimensional probability distribution on the unit
hyper-cube Id , with Uniform marginals over I. The following example shows the
properties of three fundamental 2-copulas.

Example 1. Three special 2-copulas deserve a particular attention, since they
provide the so-called Fréchet-Hoeffding bounds.

1. The Fréchet-Hoeffding lower bound W2 given by

W2.u; v/ D max fuC v � 1; 0g : (5.7)

2. The Fréchet-Hoeffding upper bound M2 given by

M2.u; v/ D min fu; vg : (5.8)

3. The independence (or product) 2-copula˘2 given by

˘2.u; v/ D uv: (5.9)

A family of 2-copulas which includes W2, M2 and ˘2 is called comprehensive.
The copulas W2 and M2 provide general bounds, since for any 2-copula C and any
pair .u; v/ 2 I2

W2.u; v/ � C .u; v/ �M2.u; v/: (5.10)

When X and Y are continuous r.v.’s, the following characterization holds.

1. The variable Y is almost surely a strictly decreasing function ofX if, and only if,
CXY DW2. In particular, W2 is the distribution of the random vector .U; 1�U /,
where U is Uniform on I. Random variables with copula W2 are often called
counter-monotonic.

2. The variable Y is almost surely a strictly increasing function of X if, and only
if, CXY D M2. In particular, M2 is the distribution of the random vector .U; U /,
where U is Uniform on I. Random variables with copula M2 are often called
co-monotonic.

3. The 2-copula˘2 describes the absence of dependence betweenX and Y : in fact,
if FXY D ˘2 .FX; FY /, thenFXY D FXFY . Therefore,X and Y are independent
if, and only if, their 2-copula is ˘2.

While both M2 and ˘2 can easily be extended to a multidimensional framework
by considering the d -copulas (d > 2)
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Md .u1; : : : ; ud / D min fu1; : : : ; udg (5.11)

and
˘d.u1; : : : ; ud / D u1 � � � ud ; (5.12)

the function W2 does not have a multivariate copula extension: indeed, for a
consistency problem, it is impossible to have more than two variables which are
decreasing functions of the others.

A fundamental feature of copulas is that they are invariant under strictly
increasing transformations, as stated by the following result in the bivariate case.

Proposition 1 (Invariance). Let X and Y be continuous r.v.’s with 2-copula CXY .
Also let ˛ and ˇ be strictly increasing functions on, respectively, Ran.X/ and
Ran.Y /, and set A D ˛.X/ and B D ˇ.Y /. Then

CAB D C˛.X/ˇ.Y / D CXY : (5.13)

The following important properties hold for 2-copulas.

Proposition 2. Let X and Y be continuous r.v.’s with 2-copula CXY , and let ˛ and
ˇ be strictly monotonic functions on, respectively, Ran.X/ and Ran.Y /.

1. If ˛ is increasing and ˇ decreasing then

C˛.X/ˇ.Y / .u; v/ D u �CXY .u; 1� v/ : (5.14)

2. If ˛ is decreasing and ˇ increasing then

C˛.X/ˇ.Y / .u; v/ D v � CXY .1 � u; v/ : (5.15)

3. If ˛ and ˇ are both decreasing then

C˛.X/ˇ.Y / .u; v/ D uC v � 1C CXY .1 � u; 1� v/ : (5.16)

Given these invariance properties, and using the Probability Integral Transform,
we may restrict our attention to the pair of r.v.’s .U; V / given by

.U D FX.X/; V D FY .Y // ” .X D F .�1/
X .U /; Y D F .�1/

Y .V // (5.17)

where F .�1/
X ; F

.�1/
Y are the quasi-inverses of the corresponding distribution func-

tions. Clearly, U and V are Uniform on I, i.e. U � U.0; 1/ and V � U.0; 1/,
and .U; V / has the same 2-copula as the pair .X; Y /, i.e. .U; V / � CUV D CXY .
This may turn the original problem into a marginal-independent one, which may be
less difficult to solve. The extension of Eq. (5.17) to the general d -dimensional case
(d > 2) is obvious.
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Interestingly enough, any finite convex linear combination of 2-copulas Ci ’s is
itself a 2-copula. In fact, for k 2 N, let C be given by

C .u; v/ D
kX
iD1

�i Ci .u; v/ ; (5.18)

where �i � 0 for all indices, and
Pk

iD1 �i D 1. Then C is a proper 2-copula.
This can be made more general, e.g. by considering d -dimensional copulas, and

extended to the case of a continuous mixing parameter as follows. Let fC�g be
an infinite collection of copulas indexed by a continuous parameter � 2 R. Now,
suppose that � is the observation of a continuous r.v. with cumulative distribution
function L. Then, setting

C .u; v/ D
Z

R
C� .u; v/ dL.�/; (5.19)

it can be shown that C is a copula. Usually,L is referred to as the mixing distribution
of the family fC�g, and C is called the convex sum of fC�g with respect to L.

In the univariate case, the empirical distribution function represents a useful
tool for investigating the behavior of the variables of interest. Similarly, the
empirical copula (Deheuvels 1979; Genest and Favre 2007) defined below provides
valuable information about the joint behavior of pairs of r.v.’s associated via a
2-copula C.

Definition 3 (Empirical Copula). Let f.Rk; Sk/g be the ranks associated with the
sample f.Xk; Yk/g, k D 1; : : : ; n. The corresponding empirical copula Cn is defined
as

Cn .u; v/ D
1

n

nX
kD1

1
�
Rk

nC 1 � u;
Sk

nC 1 � v

�
; (5.20)

where u; v 2 I and 1 is an indicator function. The extension to the general d -
dimensional case (d > 2) is obvious.

As in the univariate case, the empirical copula practically counts the number
of pairs that satisfy given constraints, in order to provide an approximation of the
copula linking the pair .X; Y /—incidentally, this may provide preliminary hints for
performing visual fitting and model choice. Most importantly, the construction of
the empirical copula is non-parametric, since only the ranks of the data are involved.
Actually, the use of ranks in copula analysis is quite common (Genest and Favre
2007)—see also Sect. 5.2.2.

Example 2. As an illustration, we consider here the case study investigated in De
Michele et al. (2005). The data are given by the pairs .Q; V /, where the maximum
annual flood peaks Q and volumes V are collected at the Ceppo Morelli dam
(Northern Italy) from 1937 to 1994 (for a total of 49 observations). As a result of
a thorough investigation, almost all of the occurrence dates of the Q’s and the V ’s
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Fig. 5.1 Plot of the available .Q; V / observations, and fits of the marginal distributions—see
text. Also shown is the rank-plot of .Q; V /, as well as the estimates of the Kendall’s � and the
Spearman’s �, and the corresponding p-values (derived from non-parametric tests of independence
based on rank statistics)

were the same: viz., they happened during the same flood event. Concerning the
univariate analysis of the marginals, both FQ and FV are fitted by means of GEV
distributions. In Fig. 5.1 we plot the available observations .Q; V /, and the marginal
fits (including 95 % confidence bands): the results are valuable, since standard
Goodness-of-Fit tests (namely, Kolmogorov-Smirnov and Anderson-Darling) are
passed at all usual levels (viz., 1 %, 5 %, and 10 %).

The very first step of the copula analysis concerns the non-parametric study of the
joint behavior of the variables .Q; V /: traditionally, the study is carried out (Genest
and Favre 2007) by showing the ranks of the data normalized into the interval .0; 1/.
The bivariate rank-plot shown in Fig. 5.1 provides some rough indications about the
global dependence structure (i.e., the copula) linking the two variables .Q; V /. Note
that this graph is not equivalent to the simple bivariate plot of the original pairs of
interest shown in Fig. 5.1, since it is not affected by the behavior of the marginals
FQ and FV .
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Fitting copulas to empirical observations is still an open problem in Statistics,
and several Goodness-of-Fit procedures have recently been proposed. Apparently,
at present the most feasible, practical, and realistic solution is represented by
multivariate Goodness-of-Fit tests based on the empirical copula process (Genest
et al. 2009; Berg 2009; Kojadinovic et al. 2011). However, the research is in
progress, and further methods are expected in the near future.

Another notion of interest is represented by the Kendall’s measure function KC

Genest and Rivest (1993) and Genest and Rivest (2001) given by

KC.t/ D PfW � tg D PfC.U1; : : : ; Ud / � tg; (5.21)

where t 2 I is a probability level, W D C.U1; : : : ; Ud / is a univariate r.v. taking
value on I, and the Ui ’s are Uniform r.v.s on I with copula C. In the bivariate
Extreme Value case, KC is given by Ghoudi et al. (1998)

KC.t/ D t � .1 � �C/ t ln t; (5.22)

where �C is the value of the Kendall’s � associated with the copula C (see
Sect. 5.2.2). Clearly, bivariate Extreme Value copulas with the same value of � share
the same functionKC.

Unfortunately, at present no useful expressions similar to Eq. (5.22) are known
for the general multivariate case d > 2, and it is necessary to make recourse to
simulations. For the sake of convenience, we report below the algorithm explained
in Salvadori et al. (2010) for the calculation of KC (see also Genest and Rivest
1993), which yields a consistent Maximum-Likelihood estimator of KC. Here we
assume that the copula model is well specified, i.e. it is available in a parametric
form.

� ALGORITHM 1.

1. Generate a sample u1; : : : ;um from copula C.
2. For i D 1; : : : ; m calculate vi D C.ui /.
3. For t 2 I estimate bKC.t/ D 1

m

Pm
iD1 1.vi � t/.

The Kendall’s measure KC is a fundamental tool for introducing a mathemati-
cally consistent (copula-based) definition of the return period for multivariate events
(see also the discussion in Salvadori (2004), Salvadori et al. (2004), Salvadori et al.
(2007), Durante and Salvadori (2010) and Salvadori et al. (2010)). In fact, Eq. (5.21)
represents a multivariate quantile relationship, since it corresponds to a multidi-
mensional Probability Integral Transform (Genest et al. 2006). Since empirical
estimators of KC are available (Genest et al. 2009) (simply use Algorithm 1, where
the sample u1; : : : ;um in Step 1 is the one given by the available observations), we
shall see later how to use the Kendall’s measure function to perform return period
analyses of practical utility. As an illustration, in Fig. 5.4a we plot the function
KC associated with the copula CQV , as well as its empirical estimate—see the
discussion in Sect. 5.4.1.
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5.2.2 Multivariate Association Measures

The problem of measuring the amount of association between the variables involved
is a central issue when modeling multivariate phenomena. For instance, in literature
the pair-wise dependence is generally measured via the canonical Pearson’s corre-
lation coefficient. However, it may not be the best measure of dependence when
dealing with extremes (Joe 1997), since it does not exist for heavy-tailed variables
with infinite variance, and only involves a linear kind of dependence. Indeed, other
quantities can be considered (Nelsen 2006) to measure the association between pairs
of r.v.’s: among others, Kendall’s � and Spearman’s � rank correlation coefficients,
or the Blomqvist’s ˇ medial correlation coefficient. These measures always exist
(being based on the ranks), and model several types of association (for a practical
discussion see, e.g., the case studies illustrated in Salvadori et al. (2007)).

A numerical measure of association is a statistical summary of the degree of re-
lationship between variables. For the ease of comparison, coefficients of association
are usually constructed to vary between �1 andC1. Their absolute values increase
as the strength of the relationship increases, with a C1 (or �1) value when there is
perfect positive (or negative) association. Each coefficient of association measures
a special type of relationship: for instance, Pearson’s product-moment correlation
coefficient measures the amount of linear relationship. Most importantly, some
of these measures are scale-invariant, i.e. they remain unchanged under strictly
increasing transformations of the variables of interest: thus, they are expressible
in terms of the copula linking these variables (Schweizer and Wolff 1981).

The most widely known (and used), scale-invariant, measures of association
are the Kendall’s � and the Spearman’s �, both of which measure a form of
dependence known as concordance. These two measures also play an important
role in applications, since the practical fit of a copula to the available data is often
carried out via the estimate of � or � (Genest and Favre 2007) (as in the dam case
study used in this work).

Mathematically speaking (Scarsini 1984), � and � measure the concordance
between two r.v.’s: roughly, X and Y are concordant if small values of one are
likely to be associated with small values of the other, and large values of one are
likely to be associated with large values of the other. More precisely, let .xi ; yi / and
.xj ; yj / be two observations from a vector .X; Y / of continuous r.v.’s. Then, the
pairs .xi ; yi / and .xj ; yj / are concordant if

.xi � xj /.yi � yj / > 0; (5.23)

and discordant if
.xi � xj /.yi � yj / < 0: (5.24)

The population version of Kendall’s � (Kendall 1937; Kruskal 1958; Rohatgi
1976; Nelsen 2006) is defined as the difference between the probability of concor-
dance and the probability of discordance, which gives it a practical meaning.
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Definition 4 (Kendall’s £). Let .X1; Y1/ and .X2; Y2/ be i.i.d. vectors of continu-
ous r.v.’s. The difference

� D P f.X1 � X2/ .Y1 � Y2/ > 0g � P f.X1 � X2/ .Y1 � Y2/ < 0g (5.25)

defines the population version of Kendall’s � .

As shown in Nelsen (2006), if C is the copula of X and Y , then

� D
Z

I2
C .u; v/ dC .u; v/� 1 D 4E

�
C .U; V /

� � 1: (5.26)

The sample version t of Kendall’s � is easy to calculate:

t D c � d
c C d ; (5.27)

where c (d ) represent the number of concordant (discordant) pairs in a sample of
size n from a vector of continuous r.v.’s .X; Y /. Unfortunately, in applications it
often happens that continuous variables are “discretely” sampled, due to a finite
instrumental resolution. For instance, the rainfall depth could be returned as an
integer multiple of 0:1mm, or the storm duration could be expressed in hours and
rounded to an integer value. Clearly, this procedure introduces repetitions in the
observed values (called ties in statistics), which may adversely affect the estimation
of � . However, corrections to Eq. (5.27) are specified for solving the problem (see,
e.g., the formulas in Press et al. (1992)).

As with Kendall’s � , also the population version of Spearman’s � (Kruskal 1958;
Rohatgi 1976; Nelsen 2006) is based on concordance and discordance.

Definition 5 (Spearman’s ¡). Let .X1; Y1/, .X2; Y2/ and .X3; Y3/ be i.i.d. vectors
of continuous r.v.’s. The difference

� D 3 .P f.X1 � X2/ .Y1 � Y3/ > 0g � P f.X1 � X2/ .Y1 � Y3/ < 0g/ (5.28)

defines the population version of Spearman’s �.

Also Spearman’s � can be written in terms of a suitable expectation (Nelsen
2006):

� D 12
Z

I2

�
C .u; v/� uv

	
dudv: (5.29)

Thus, � is proportional to the signed volume between the graphs of C and the
independence copula ˘2. Roughly, � measures the “average distance” between
the joint distribution of X and Y (as represented by C), and independence (given
by ˘2).
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The sample version r of Spearman’s � is easy to calculate:

r D 1 � 6
Pn

iD1 .Ri � Si/2
n3 � n ; (5.30)

where Ri D Rank.Xi/, Si D Rank.Yi /, and n is the sample size. As already
mentioned before, instrumental limitations may adversely affect the estimation of
� in practice due to the presence of ties. However, corrections to Eq. (5.30) are
specified for solving the problem (see, e.g., the formulas in Press et al. (1992)).

A further measure of association based on concordance is given by Blomqvist’s
medial correlation coefficient ˇ (Blomqvist 1950).

Definition 6 (Blomqvist’s “). Let .X; Y / be a r.v., and let Qx; Qy be, respectively, the
medians of X and Y . The difference

ˇ D P f.X � Qx/ .Y � Qy/ > 0g � P f.X � Qx/ .Y � Qy/ < 0g (5.31)

defines the population version of Blomqvist’s medial correlation coefficient ˇ.

The point is that, if C is the copula of .X; Y /, then ˇ can be written as Nelsen
(2006)

ˇ D 4C .1=2; 1=2/� 1; (5.32)

which may be easy to estimate and calculate.

Example 3. As an illustration, consider the case study presented in Example 2. The
ranks plotted in Fig. 5.1 show that the variables .Q; V / are significantly positively
associated (i.e., concordant), and thusQ and V are not independent: the estimates of
both the Kendall’s � and the Spearman’s � are large, and the correspondingp-values
are negligible (see the values reported in Fig. 5.1).

The more general notion of cluster-type dependence, when the size of the cluster
is larger than two (i.e., beyond the simple pair-wise case), has only been partially
explored. Generalizations of Kendall’s � (Nelsen 1996), Spearman’s � (Schmid and
Schmidt 2007a,c), and Blomqvist’s medial correlation coefficient ˇ (see Durante
et al. (2007) and Schmid and Schmidt (2007b), and references therein) to the
d -variate case (d > 2) were only recently introduced. These extensions may be of
practical importance: on the one hand, they provide useful tools to quantify the
dependence within clusters; on the other hand, they can be used to estimate the
parameters of the multivariate model at play. However, at present the application
of these measures in actual case studies is still quite limited: for an illustration,
see Salvadori and De Michele (2011). As a general remark, it must be stressed
that it may be difficult (if not impossible or meaningless) to summarize all the
dependencies of the variables in cluster by a single number. A short summary of the
generalized association measures involving a generic d -copula C is shown below.
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�d D 1

2d�1 � 1
�
2d
Z

Id
C.u/ dC.u/� 1

�
; (5.33)

�d;1 D h.d/
�
2d
Z

Id
C.u/ du� 1

�
; (5.34)

�d;2 D h.d/
�
2d
Z

Id
˘d .u/ dC.u/� 1

�
; (5.35)

�d;3 D h.2/
0
@22

X
i<j

�
d

2

��1Z

I2
Cij .u; v/ du dv� 1

1
A ; (5.36)

where h.d/ D .d C 1/=.2d � .d C 1// is a normalizing function, and Cij is the
bivariate .i; j /-margin of C. Note that �d;3 is essentially the average Spearman’s
� for all the pairs in a set of d variables. Concerning the Blomqvist’s medial
correlation coefficient, a possible extension is as follows:

ˇd D
2d�1

�
C.1=2/C C.1=2/

�
� 1

2d�1 � 1 ; (5.37)

where C is the survival function associated with C, given by C.u/ D PfC > ug, and
1=2 D .1=2; : : : ; 1=2/. Clearly, also ˇd is invariant with respect to the distributions
of the margins. As pointed out in Schmid and Schmidt (2007b), ˇd has some
advantages over competing measures such as �d or �d;i ’s. In fact, it can explicitly
be derived whenever the copula is of explicit form, which is often not possible for
other measures, and its estimation requires a low computational complexity. Thus,
ˇd may represent a fast alternative for estimating the copula parameters.

5.2.3 Asymptotic Dependence

Besides the problem of measuring the amount of association between the variables
at play, a further central theme is represented by the way of quantifying the
dependence between them. In fact, two situations are possible (Coles et al. 1999):
one where, in a limiting sense, the extremes are dependent; the other where, in the
same sense, the extremes are independent.

In the context of extrapolation in multivariate frequency analysis, it may be of
great importance to be able to model the possible dependence of the extremes,
i.e. the tail dependence. This quantity is a fundamental ingredient in order to
estimate the risk adequately. As will be shown shortly, tail dependence is essentially
a characteristic of the copula underlying a random vector. In turn, tail depen-
dence, which relates to dependencies of extreme events, can be considered as a
“scale-invariant” dependence measure, since the copula separates the dependence
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structure of multivariate distributions from its marginals. Clearly, the notion of
tail dependence may provide useful indications for choosing a suitable family of
copulas for modeling a given phenomenon (Poulin et al. 2007). Below we shall only
consider the bivariate case: generalizations to the multivariate case can be found in
Charpentier (2006), Frahm (2006) and Schmid and Schmidt (2007c).

The notion of tail dependence (Joe 1993) for bivariate distributions relates to the
amount of dependence in the upper-right-quadrant tail or lower-left-quadrant tail.
Usually it is measured via the tail dependence coefficients, introduced by Sibuya
(1960). They reflect the limiting proportion of exceedance of one marginal over
a quantile of a certain level, given that the other marginal has exceeded the same
quantile.

We now present one of the possible definitions of tail dependence (Joe 1997).
A thorough exposition can be found in Schmidt (2003); for a survey on various
estimators of tail dependence coefficients within a parametric, semiparametric, and
non-parametric framework see Frahm et al. (2005). A survey on other measures of
tail dependence can be found in Coles et al. (1999) and Charpentier (2006)—see
also Frahm (2006) and Schmid and Schmidt (2007c).

Definition 7. Let Z D .X; Y /. The random vector Z is upper tail dependent if

�U D lim
t!1�

P
n
X > F

Œ�1�
X .t/ j Y > F

Œ�1�
Y .t/

o
> 0; (5.38)

provided that the limit exists. If �U D 0 then Z is upper tail independent. �U is
called the upper tail dependence coefficient.

Similarly, the lower tail dependence coefficient �L is defined as

�L D lim
t!0C

P
n
X � F Œ�1�

X .t/ j Y � F Œ�1�
Y .t/

o
; (5.39)

provided that the limit exists. If �L D 0 then Z is lower tail independent, and is
lower tail dependent if �L > 0.

As an example, consider the Gumbel-Hougaard copula introduced later in
Example 4: then, �L D 0 and �U D 2 � 21=	 , where 	 � 1 is the parameter of
the family. The following result shows that tail dependence is a copula property.

Proposition 3. Let Z D .X; Y / have copula C. Then

�U D lim
t!1�

1 � 2t CC .t; t/
1� t ; (5.40)

provided that the limit exists. Similarly,

�L D lim
t!0C

C .t; t/
t

; (5.41)

provided that the limit exists.
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Since the tail dependence coefficients can be expressed via copulas, many
properties of copulas apply to these coefficients: for instance, they are invariant
under strictly increasing transformations of the marginals.

As explained thoroughly in Nelsen (1997), Archimedean copulas play an im-
portant role in the study of tail dependence. Briefly, a 2-copula C is Archimedean
(Nelsen 2006; Salvadori et al. 2007) if

C .u; v/ D �Œ�1� .�.u/C �.v// ; (5.42)

where � W I ! Œ0;1� is called generator, and is continuous, convex, and strictly
decreasing, with �.1/ D 0. For the sake of simplicity we only consider strict
Archimedean copulas (ie., �.0/ D 1). Note that, if C is a strict copula generated
by � , then C .t; t/ D ��1.2�.t//.

Proposition 4. Let C be a strict Archimedean copula generated by � . Then

�U D 2 � lim
t!1�

1 � ��1.2�.t//
1 � t D 2 � lim

t!0C

1 � ��1.2t/
1 � ��1.t/

; (5.43)

provided that the limit exists. Similarly,

�L D lim
t!0C

��1.2�.t//
t

D lim
t!1

��1.2t/
��1.t/

; (5.44)

provided that the limit exists.

Within the framework of tail dependence for Archimedean copulas, the following
result is important (Schmidt 2003). Note that the one-sided derivatives of the
generator at the domain boundaries exist, since � is convex.

Theorem 2. Let C be an Archimedean copula generated by � . Then

1. Upper tail dependence implies � 0.1/ D 0, and �U D 2 � .��1 ı 2�/0.1/;
2. � 0.1/ < 0 implies upper tail independence;
3. � 0.0/ > �1 or a non-strict generator implies lower tail independence;
4. Lower tail dependence implies � 0.0/ D �1, a strict generator, and �L D .��1ı
2�/0.0/.

Given a generator � , a simple way to construct new generators (and, conse-
quently, families of Archimedean copulas) is to consider interior and exterior power
families, as shown here.

Proposition 5. Let � be a generator. Then

1. (Interior power) �˛.t/ D �.t˛/ is a generator for all ˛ 2 .0; 1�;
2. (Exterior power) �ˇ.t/ D Œ�.t/�ˇ is a generator for all ˇ � 1.

The families constructed via Proposition 5 are usually called the ˛- or ˇ-family
associated with � . Most importantly, using the interior and exterior power families,
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it is shown in Nelsen (1997) how to generate families of Archimedean copulas with
arbitrary (positive) values of �L and �U .

Proposition 6. Let C be an Archimedean copula generated by � , with lower and
upper tail dependence parameters �L and �U . Then:

1. The lower and upper tail dependence parameters for the copula C˛ generated by
�˛ , with ˛ 2 .0; 1�, are, respectively, �1=˛L and �U ;

2. The lower and upper tail dependence parameters for the copula Cˇ generated by

�ˇ , with ˇ � 1, are, respectively, �1=ˇL and 2� .2 � �U /1=ˇ .

As already mentioned (see Eq. (5.18)), a convex linear combination of copulas
is itself a copula. As a consequence, due to the linearity of the limit operator, the
tail dependence coefficients of the resulting copula are simply the convex linear
combinations of those of the mixing copulas.

As for any parameter associated with the asymptotic behavior of a phenomenon,
the estimation of the tail dependence coefficients is an involved task. Both para-
metric and non-parametric are available. In the former case, these can be estimated
either by assuming a specific bivariate distribution (Embrechts et al. 2002), or a class
of distributions (Serfling 2002), or a specific copula or a class of copulas (Juri and
Wüthrich 2002). For the non-parametric case see Poulin et al. (2007) (and references
therein), where a case study is also presented: this latter approach is based on the
empirical copula (see Definition 3), and is quite general, for no assumptions are
made about the copula and the marginals. For a thorough review see Frahm et al.
(2005).

5.2.4 Simulation

Copulas have primary and direct applications in the simulation of dependent
variables. We now present general procedures to simulate bivariate vectors, as
well as multivariate ones. The mathematical kernel for simulating copulas is
represented by conditional distributions, whose calculation is greatly facilitated by
using copulas, as shown below (Nelsen 2006):

P fU � u j V D vg D @

@v
C .u; v/ ; (5.45)

P fU � u j V � vg D C .u; v/
v

; (5.46)

P fU � u j V > vg D u � C .u; v/
1 � v

; (5.47)

and similar expressions hold for the conditional distributions of V given U .
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A general algorithm for generating observations .x; y/ from a pair of r.v.’s .X; Y /
with marginals FX; FY , joint distribution FXY , and 2-copula C is as follows. By
virtue of Sklar’s Theorem, we need only to generate a pair .u; v/ of observations of
r.v.’s .U; V /, Uniform on I and having the 2-copula C. Then, using the Probability
Integral Transform, we can transform .u; v/ into .x; y/. In order to generate the pair
.u; v/ we use the conditional distribution of U given the event fV D vg:

cv.u/ D P fU � u j V D vg D @

@v
C .u; v/ : (5.48)

A possible algorithm is as follows.

� ALGORITHM 2.

1. Generate independent variates v; t Uniform on I.
2. Set u D c.�1/v .t/.

3. The desired pair is then
�
x D F .�1/

X .u/; y D F .�1/
Y .v/

�
.

The general d -dimensional case (d > 2) can be dealt with as follows. Let F
be a multivariate distribution with continuous marginals F1; : : : ; Fd , and suppose
that F can be expressed in a unique way via a d -copula C by virtue of Sklar’s
Theorem. In order to simulate a vector .X1; : : : ; Xd/ � F, it is sufficient to simulate
a vector .U1; : : : ; Ud / � C, where the r.v.’sUi ’s are Uniform on I, and then apply the
Probability Integral Transform. We now show how to simulate a sample extracted
from C. For the sake of simplicity, we assume that C is absolutely continuous. Here
the notation @u1;:::;uk indicates the partial derivative with respect to fu1; : : : ; ukg.
� ALGORITHM 3.

1. To simulate the first variable U1, it suffices to sample from a r.v. U 0
1 Uniform on

I. Let us call u1 the simulated sample.
2. To obtain a sample u2 from U2, consistent with the previously sampled u1, we

need to know the distribution of U2 conditional on the event fU1 D u1g. Let us
denote this law by G2.� j u1/, given by:

G2.u2 j u1/ D PfU2 � u2 j U1 D u1g

D @u1C .u1; u2; 1; : : : ; 1/
@u1C .u1; 1; : : : ; 1/

D @u1C .u1; u2; 1; : : : ; 1/ ; (5.49)

being C .u1; 1; : : : ; 1/ D u1, since a copula has Uniform marginals. Then we take
u2 D G�1

2 .u0
2 j u1/, where u0

2 is the realization of a r.v. U 0
2 Uniform on I, that is

independent of U 0
1.

3. In general, to simulate a sample uk from Uk , consistent with the previously
sampled u1; : : : ; uk�1, we need to know the distribution of Uk conditional
on the events fU1 D u1; : : : ; Uk�1 D uk�1g. Let us denote this law by
Gk.� j u1; : : : ; uk�1/, given by:
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Gk.uk j u1; : : : ; uk�1/ D P fUk � uk j U1 D u1; : : : ; Uk�1 D uk�1g

D @u1;:::;uk�1
C .u1; : : : ; uk; 1; : : : ; 1/

@u1;:::;uk�1
C .u1; : : : ; uk�1; 1; : : : ; 1/

: (5.50)

Then we take uk D G�1
k .u0

k j u1; : : : ; uk�1/, where u0
k is the realization of a r.v.

U 0
k Uniform on I, that is independent of U 0

1; : : : ; U
0
k�1.

Other simulation algorithms can be found in Devroye (1986) and Johnson (1987),
in many of the exercises proposed by Nelsen (2006), in Salvadori et al. (2007,
Appendix C), and in Sect. 5.3.2 below.

5.3 Multivariate Extreme Value Models

As outlined in the previous Section, copulas represent a fundamental tool to describe
the structure of multivariate distributions (essentially via Sklar’s Theorem). In turn,
the results of classical Multivariate Extreme Value theory can be rewritten in terms
of copulas: as we shall see, this approach has quite a few advantages. The main
references to this subject are Marshall and Olkin (1983), Galambos (1987), Marshall
and Olkin (1988), Joe (1997), Nelsen (2006) and Salvadori et al. (2007), where
further bibliography is indicated.

In multivariate Extreme Value analysis it is a standard practice to investigate vec-
tors of componentwise extremes, as defined below. However, alternative approaches
are available (among others, multivariate Peaks-Over-Threshold methods, or Point-
Process approaches), though they will not be considered here: for a thorough
introduction see Coles (2001), and references therein.

Definition 8. Let f.Xi;1; : : : ; Xi;d /g, i D 1; : : : ; n, be a sample of size n of i.i.d. d -
variate r.v.’s with joint distribution F. The corresponding vector of componentwise
maxima Mn is defined as

Mn D .Mn;1; : : : ;Mn;d / D
�

max
1�i�n fXi;1g ; : : : ; max

1�i�n fXi;d g
�
: (5.51)

Note 2. Henceforth we concentrate on the analysis of maxima only, since there is
no need to study separately the behavior of the minima. In fact, let Yi D �Xi ; then,
if X.1/ D min fX1; : : : ; Xng and Y.n/ D max fY1; : : : ; Yng, it is clear that

X.1/ D �Y.n/: (5.52)

Thus, the analysis of the maximum of the Yi ’s suffices.

As in the univariate case, the extremal behavior of multivariate maxima
is based on the limiting behavior of “block” maxima (see, e.g., Salvadori



134 G. Salvadori and C. De Michele

et al. 2007, and references therein). However, it is important to realize that
the maximum of each of the d different marginal sequences Xi;1; : : : ; Xi;d
may occur for different indices, say i�1 ; : : : ; i�d . As a consequence, Mn does
not necessarily correspond to an observed sample value in the original
series.

A standard way to operate is to look for the existence of sequences of real
constants, fan;i g and fbn;i > 0g, 1 � i � d , such that, for all x 2 Rd , the function

G.x1; : : : ; xd / D lim
n!1 P

�
Mn;1 � an;1

bn;1
� x1; : : : ; Mn;d � an;d

bn;d
� xd

�
; (5.53)

which is equivalent to the following limit of the joint distribution function F

lim
n!1 Fn.an;1 C bn;1x1; : : : ; an;d C bn;dxd /;

is a proper distribution with non-degenerate marginals. Then G is a Multivariate
Extreme Value (hereinafter, MEV) law. Via the Pickands’ representation (Marshall
and Olkin 1983), it can be shown that MEV distributions are continuous (but not
always absolutely continuous). Furthermore, setting all the xi ’s but one to C1 in
Eq. (5.53) yields

lim
n!1F n

i .an;i C bn;ixi / D Gi.xi /; i D 1; : : : ; d; (5.54)

where Fi and Gi are, respectively, the i -th marginals of F and G. In turn, Gi
is a member of the Generalized Extreme Value (hereinafter, GEV) family. For a
representation in terms of the so-called spectral measure see, e.g., De Haan and
Resnick (1977), and also Gudendorf and Segers (2010) and references therein.

5.3.1 Extreme Value Copulas

Following Eq. (5.54), if F is a MEV distribution, then its marginals belong to the
continuous GEV family. Here we focus our attention on the copula C associated
with F. Note that, since the marginals Fi ’s are continuous, the copula representation
is unique. The following notion is fundamental.

Definition 9 (Extreme Value Copula). A d -copula C is max-stable if it satisfies
the relationship

C
�
ut1; : : : ; u

t
d

� D Ct .u1; : : : ; ud / (5.55)

for all t > 0 and u 2 Id . Max-stable copulas are called Extreme Value (hereinafter,
EVC or MEV).
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A characterization of MEV distributions can be given as follows.

Theorem 3 (MEV Distribution). Let F be a d -variate distribution with copula C.
Then F is a MEV distribution if, and only if,

1. The marginals Fi ’s have a GEV distribution, and
2. C is max-stable.

As a consequence of Theorem 3, if C is an EVC, then the multivariate distribution
F.x/ D C .F1.x1/; : : : ; Fd .xd //, where each marginal Fi ’s belongs to the GEV
class, is an EV distribution. Clearly, it is necessary that the marginals are GEV laws.

Example 4. As an illustration, consider the case study presented in Example 2. The
bivariate Gumbel-Hougaard copula (see Eq. (5.61)) was used to model the joint
behavior of the two variables .Q; V /. Clearly, CQV is an Extreme Value copula,
being max-stable. As a consequence, since both FQ and FV are GEV distributions,
then FQV D CQV .FQ; FV / is a bivariate EV law. In addition, CQV is Archimedean
(Nelsen 2006; Salvadori et al. 2007) (see Eq. (5.42)), with generator

� .t/ D .� ln t/	 ; (5.56)

where 	 � 1 is the parameter identifying the copula. Note that 	 can be estimated
via the relation

b	 D 1

1 �b� ; (5.57)

whereb� is an estimate of the Kendall’s � calculated using the .Q; V / sample (see
Fig. 5.1). In the present case,b� � 0:6813, and henceb	 � 3:1378. The multivariate
Goodness-of-Fit tests outlined in Genest et al. (2009), Berg (2009) and Kojadinovic
et al. (2011) can then be used to check whether or not CQV is an acceptable copula
model for the data of interest (actually, it is).

The following result emphasizes an important feature of EVC’s.

Theorem 4. If C� is an EVC, then

C� .u/ � ˘d.u/ (5.58)

for all u 2 Id .

Example 5. There are several families of copulas suitable for representing
EVC’s.

1. (Independence): for the product d -copula one sees that

˘d.ut / D
dY
iD1

uti D ˘t
d .u/: (5.59)
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2. (Co-monotone): for the co-monotone d -copula one sees that

Md .ut / D min
˚
ut1; : : : ; u

t
d

� DMt
d .u/: (5.60)

3. (Gumbel-Hougaard): for the Gumbel-Hougaard d -copula C	 , 	 � 1, it follows
that

C	

�
ut
� D e�Œ.�t ln u1/	C���C.�t ln ud /	 �

1=	 D Ct
	 .u/ : (5.61)

It is worth noting that the Gumbel-Hougaard family is the only Archimedean class
of EV copulas (Genest and Rivest 1989; Nelsen 2006; Salvadori et al. 2007).

As already mentioned in Proposition 1, 2-copulas (and, more generally,
d -copulas) are invariant under strictly increasing transformations of the marginals.
More specifically: if gi W R! R, i D 1; : : : ; d , are all strictly increasing functions,
then the vector Y D .g1.X1/; : : : ; gd .Xd // has the same copula as the vector
X D .X1; : : : ; Xd /. The interesting point is that such an invariance property holds
also for the limiting EVC of Y.

Proposition 7 (Invariance). Let X D .X1; : : : ; Xd /, and set Y D .g1.X1/; : : : ;

gd .Xd //, where the functions gi W R! R, i D 1; : : : ; d , are all strictly increasing.
If C�

X and C�
Y denote, respectively, the EVC of X and Y, then

C�
Y D C�

X: (5.62)

The invariance property mentioned above shows that the limiting EVC only
depends upon the copula C of the multivariate distribution F, and is independent
of the marginals of F.

As already mentioned in Sect. 5.2.1, any convex linear combination of copulas
is itself a copula. It is then of interest to calculate the limiting copula of such a
combination. Let us consider a d -dimensional copula C given by a convex linear
combination as in Eq. (5.18). Then, the EVC C� of C is given by

C� .u/ D
kY
iD1

�
C�
i .u/

��i
; (5.63)

where C�
i denotes the EVC associated with the copula Ci . It must be pointed out

that, in general, even if all the mixing copulas Ci ’s are EVC, this does not imply
that their convex linear combination C is also an EVC, as shown below.

Example 6. Let C1 D ˘d and C2 DMd : both these multivariate copulas are EVC.
Set C D .1 � �/C1 C �C2, where � 2 .0; 1/. Then, using Eq. (5.63), the EVC C�
of C is given by

C� .u/ D .˘d .u//
1�� .Md .u//

� D .u1 � � � ud /1�� min
˚
u�1 ; : : : ; u

�
d

�
: (5.64)
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Thus, C� is a member of the Cuadras-Augé family, a subfamily of the Marshall-
Olkin family of copulas (Nelsen 2006; Salvadori et al. 2007). Evidently, C� ¤ C,
and C is not an EVC. This EVC was used in Durante and Salvadori (2010), in
order to model the joint behavior of a set of three certified gauge stations recording
annual maximum flood data in northwestern Apennines and Thyrrhenian Liguria
basins (see also Example 8).

A notion of interest when dealing with EV 2-copulas is represented by Pickands’
dependence function A (De Haan and Resnick 1977; Pickands 1981; Mai and
Scherer 2010). A bivariate copula C is MEV if, and only if, there exists a convex
functionA W I! Œ1=2; 1�, satisfying the constraint maxft; 1� tg � A.t/ � 1 for all
t 2 I, such that

C.u; v/ D exp



ln.uv/ A

�
ln v

ln.uv/

�
(5.65)

for all .u; v/ 2 I2. In particular, if A.t/ � 1 then C D ˘2, and if A.t/ D maxft; 1�
tg then C D M2. Conversely, given a bivariate MEV copula C, the corresponding
Pickands’ dependence function A is given by

A.t/ D � ln C
�
e�.1�t /; e�t � ; (5.66)

where t 2 I. It is worth noting that the value of the Kendall’s � associated with C, as
well as that of the Spearman’s �, can be expressed in terms of A via (Nelsen 2006;
Salvadori et al. 2007)

� D
Z 1

0

t.1 � t/
A.t/

dA0.t/; (5.67)

where A0.t/ is the derivative of A.t/, and

� D 12
Z 1

0

1

.1C A.t//2 dt � 3: (5.68)

A generalization of Pickands’ dependence function to the multivariate case is shown
in Falk and Reiss (2005). Since A can be estimated via empirical data (a thorough
review can be found in Genest and Segers (2009)), then it may be used to check
the adequacy of different bivariate models (see, e.g., the hydrological case study
investigated in Salvadori and De Michele (2011)). However, it must be stressed
that the empirical estimates of the true (but unknown) dependence functions do
not generally respect the convexity constraint (the estimator is not intrinsic, viz.
not convex by design), and the construction of a valuable estimator is still an open
problem in Statistics.

Example 7. As an illustration, we consider the Gumbel-Hougaard 2-copula C	

introduced in Eq. (5.61). As is well known (Nelsen 2006), if 	 D 1, then C1 D ˘2,
while C	 ! M2 as 	 !1. Such a behavior can be easily spotted by studying the
corresponding Pickands’ dependence function given by, for t 2 I,
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Fig. 5.2 Plot of the Pickands’ dependence function of the Gumbel-Hougaard 2-copula for the dam
data shown in Fig. 5.1, with 	 	 3:1378, as well as an empirical estimate—see text. Also shown
is the lower bound given by the co-monotone 2-copula M2

A.t/ D �t 	 C .1 � t/	 �1=	 : (5.69)

In Fig. 5.2 we plot the function A for the dam case study investigated in this work
(see Example 2), as well as an empirical estimate: overall, the agreement is valuable.

5.3.2 Special Construction of MEV Distributions

The MEV copula C� shown in Eq. (5.64) provides a typical example of a situation
found in applications. In fact, d -copulas may sometimes have limited applica-
tions, due to the fact that only one (or few) global parameters rule the whole
dependence structure (in this case, �). In order to improve the modeling features,
further dependence parameters should be introduced: a simple example of an
“extra-parametrization” technique is provided by Proposition 5 for the case of
Archimedean 2-copulas.

Indeed, in practical applications, a suitable number of parameters may be
necessary to capture the inter-dependencies between all the variables at play. As
we shall see, the new parameters introduced via the techniques outlined below may
describe and rule how each variable affects the others, and/or how each variable is
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affected by the others. Note that the approach presented here may be applied to any
copula (for more details, see Durante and Salvadori 2010).

To handle the extra-parametrization problem, we use the following construction
method for copulas, which can be derived from the results outlined in Liebscher
(2008).

Theorem 5. Let d � 2, and let A and B be two d -copulas. For i D 1; : : : ; d , let
Fi W I ! I be a continuous and strictly increasing function, with Fi .0/ D 0 and
Fi .1/ D 1. Moreover, suppose that, for i D 1; : : : ; d , Gi.t/ D t=Fi .t/ is strictly
increasing, with Gi.0C/ D 0. Then the mapping CW Id ! I given by

C.u1; : : : ; ud / D A.F1.u1/; : : : ; Fd .ud // � B.G1.u1/; : : : ; Gd .ud // (5.70)

is a d -copula.

The following corollary is of interest in practical applications (Durante and
Salvadori 2010).

Corollary 2. Let A and B be d -copulas, and let a D .a1; : : : ; ad / 2 Id . Then

Ca1;:::;ad .u/ D A .ua/ � B �u1�a� D A
�
ua11 ; : : : ; u

ad
d

� � B
�

u1�a11 ; : : : ; u1�add

�
(5.71)

defines a family of d -copulas. In particular, if A and B are MEV, then so is Ca1;:::;ad .

The copulas defined by Eq. (5.71) belong to the Khoudraji family, since this
method of construction was first proposed in Khoudraji’s PhD thesis (Khoudraji
1995; Genest et al. 1998). A bivariate generalization has been discussed in Durante
(2009). The MEV model given by Eq. (5.71) is quite general and rich: an infinite
number of variants is possible via a suitable selection of A and B, and new families
of MEV copulas can be easily introduced.

Interestingly enough, should further parameters be needed (say, another set b D
.b1; : : : ; bd / 2 Id ), the above procedure can be easily iterated as follows. First,
simply consider the copula Ca1;:::;ad given by Eq. (5.71), and a new copula D. Then,
construct

Ca1;:::;ad Ib1;:::;bd .u/ D Ca1;:::;ad

�
ub� � D �u1�b� : (5.72)

Again, if the copulas Ca1;:::;ad and D are MEV, then so is CaIb. Clearly, the actual
number of new parameters introduced with the extra-parametrization technique may
depend upon the specific analytical structure of the copulas of interest. The above
technique for constructing copulas yields the following simulation algorithm.

� ALGORITHM 4.

1. Generate the variates s1; : : : ; sd from copula A.
2. Generate the variates t1; : : : ; td from copula B.
3. For i D 1; : : : ; d set vi D F �1

i .si / and zi D G�1
i .ti /.

4. For i D 1; : : : ; d return ui D maxfvi ; zi g.
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Example 8. As an illustration, we consider the hydrological case study reported
in Durante and Salvadori (2010): a set of three certified gauge stations recording
annual maximum flood data in northwestern Apennines and Thyrrhenian Liguria
basins (Italy) was investigated. A trivariate MEV copula was used for modeling the
dependence between these stations. Note that it was not possible to assume a priori
the independence of the stations, since the corresponding estimates of the Kendall’s
�’s were significantly different from zero. In order to provide a flexible multi-
parametric dependence structure, Corollary 2 was applied to the pair of copulas
A D C� (as calculated in Example 6, Eq. (5.64)) and B D ˘d , and the new set of d
parameters a D .a1; : : : ; ad / 2 Id was introduced (here d D 3):

eC�.u/ D C�.ua/ �˘d

�
u1�a�

D ˘d

�
u1�a�� Md

�
ua��

D u1��a11 � : : : � u1��add �minfu�a11 ; : : : ; u�add g: (5.73)

Note that every new family eC� includes the “basic” MEV copula C� as a special
case (it is enough to take a D 1), which provides a sort of a “latent” global
dependence structure. Evidently, eC� is a MEV copula with d free parameters
b D � � a, and bivariate marginseC�

ij ’s given by

eC�
ij .ui ; uj / D

(
ui u

1�aj �
j ; if uaii � u

aj
j

u1�ai�i uj ; if uaii � u
aj
j

D
(

ui u
1�bj
j ; if ubii � u

bj
j

u1�bii uj ; if ubii � u
bj
j

; (5.74)

which belong to the Marshall-Olkin family of 2-copulas (Marshall and Olkin 1967;
Nelsen 2006; Salvadori et al. 2007). In particular, these copulas are not absolutely
continuous for � > 0, and are asymmetric for ai ¤ aj (viz., they may model non-
exchangeable variables, a feature of great importance in applications (Grimaldi and
Serinaldi 2006).

The Spearman’s association measure �ij for the generic pair fXi;Xj g is given
by

�ij D 3 aiaj �

2ai C 2aj � aiaj � D
3 bibj

2bi C 2bj � bibj � 0: (5.75)

In the limiting case, �ij D 0 whenever ai D 0, or aj D 0, or � D 0; also, �ij D 1 if
ai D aj D � D 1. Actually, �ij 2 Œ0; 1�, i.e. it can take on all the admissible values
for a MEV copula.

Analogously, Kendall’s association measure �ij for the generic pair fXi;Xj g is
given by Fredericks and Nelsen (2007) and Salvadori et al. (2007)

�ij D aiaj �

ai C aj � aiaj � D
bibj

bi C bj � bibj � 0: (5.76)
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In the limiting case, �ij D 0 whenever ai D 0, or aj D 0, or � D 0; also, �ij D 1

if ai D aj D � D 1. Actually, also �ij 2 Œ0; 1�, i.e. it can take on all the admissible
values for a MEV copula.

5.4 Multivariate Return Periods and Design

In order to provide a consistent theory of multivariate return periods and design, it
is first necessary to precisely define the abstract framework where to embed the
question. Preliminary studies can be found in Salvadori (2004), Salvadori et al.
(2004), Durante and Salvadori (2010), Salvadori et al. (2010) and Salvadori et al.
(2011), and some applications are presented in De Michele et al. (2007), Salvadori
et al. (2010) and Vandenberghe et al. (2010).

Hereinafter, we shall consider as the object of our investigation a sequence
X D fX1;X2; : : :g of independent and identically distributed d -dimensional
random vectors, with d � 1: thus, each Xi has the same multivariate distribution
F as of the random vector X � F D C.F1; : : : ; Fd / describing the phenomenon
under investigation, with suitable marginals Fi ’s and d -copula C. For example, we
may think of a set of flood observations given by the pairs of non-independent r.v.’s
Flood Peak—Flood Volume, joined by the copula C (see, e.g., Example 4).

It must be stressed that most of the results outlined below are valid in a stationary
context, but are much trickier in case of non-stationarity, and will not be discussed
here. As general references, see Cox (1962) and Feller (1971).

5.4.1 Multivariate Return Periods

In applications, usually, the event of interest is of the type fX 2 Dg, where D is
a non-empty Borel set in Rd collecting all the values judged to be “dangerous”
according to some suitable criterion. Note that the Borel family includes all the
sets of interest in practice (like, e.g., the intervals .�1; x1/; .x1; x2/; .x2;1/, as
well as the corresponding multivariate versions). Let � > 0 be the expectation of
the random inter-arrival time of the realizations in X (viz., � is the average time
elapsing between Xi and XiC1). Following, e.g., Embrechts et al. (2003), and given
the fact that the sequence X is i.i.d. (and, thus, stationary), the univariate r.v.’s
fBi D ID .Xi /g form a Bernoulli process (where ID is the indicator function of
the set D), with positive probability of “success” pD given by

pD D PfX 2 Dg; (5.77)

where we assume that 0 < pD < 1. Then, it makes sense to calculate the first
random time AD that the sequence B D fB1;B2; : : :g, generated by X , takes on
the value 1 (viz., the first random time that X enters D):
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AD D � �minfi WXi 2 Dg: (5.78)

Clearly, the r.v. AD=� follows a Geometric distribution with parameter pD , and
therefore the expected value of AD is

E.AD / D �D D �=pD : (5.79)

Assuming again a stationary context, both the well known “memoryless prop-
erty” of the Geometric distribution, as well as the features of the Bernoulli process,
hold (see, e.g., Cox 1962; Feller 1971). Therefore, �D also corresponds to the
average inter-arrival time between two successive realizations of the event fX 2 Dg.
Evidently, �D ranges in Œ�;C1/: for example, if annual maxima are investigated,
then � D 1 year, and hence �D D 1=pD � �. We are now ready to introduce a
consistent notion of return period (hereinafter, RP) in a stationary framework.

Definition 10 (Return Period). The RP associated with the event fX 2 Dg (or the
dangerous set D 
 Rd ) is given by

�D D �=PfX 2 Dg: (5.80)

Note 3. Definition 10 is a very general one: the set D may be constructed in order
to satisfy broad requirements, useful in different applications. Indeed, most of the
approaches already present in literature are particular cases of the one outlined
above.

Example 9. As a univariate illustration, let X be a r.v. with distribution FX , and let
x� denote a prescribed critical design value. Then, e.g., in hydrology, if droughts are
of concern, x� may represent a small value of river flow, and the critical realizations
of interest are those for which X < x� (viz., D D Œ0; x�/). Instead, if floods are of
concern, x� may indicate a large value of river flow, and the critical realizations
of interest are those for which X > x� (viz., D D .x�;1/). According to
Definition 10 and Eq. (5.79), the corresponding RP’s are �=FX.x�/ in the former
case, and �=.1 � FX.x�// in the latter one.

It is important to stress that the RP is a quantity associated with a proper event.
However, with a slight abuse of language, we may also speak of “the RP of a
realization” (viz., x� in the example given above), meaning in fact “the RP of the
event fX belongs to the dangerous region Dx� identified by the given realization
x�g”. Indeed, in a univariate framework, usually the assignment of x� uniquely
specifies the corresponding region Dx� . Actually, also in a multivariate framework
it is possible to associate a given multi-dimensional realization x� 2 Rd with a
dangerous region Dx� 
 Rd .

Example 10. As an illustration, consider the two different bivariate dangerous
regions constructed in Salvadori (2004) and Salvadori et al. (2004). In these papers
the joint behavior of the vector .X; Y / � F D C.FX ; FY / was analysed: for
instance, in terms of variables of hydrological interest, think of the pairs Flood
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Peak–Volume, or Storm Intensity–Duration. In particular, great attention was paid
to the following two sets:

1. (“OR” case) the dangerous region is

D_
z� D f.x; y/ 2 R2Wx > x� _ y > y�g; (5.81)

where at least one of the components exceeds a prescribed threshold (roughly, it
is enough that one of the variables is too large);

2. (“AND” case) the dangerous region is

D^
z� D f.x; y/ 2 R2Wx > x� ^ y > y�g; (5.82)

where both the components exceed a prescribed threshold (roughly, it is neces-
sary that both variables are too large).

Here z� D .x�; y�/ is a prescribed vector of thresholds, and _;^ are the
“(inclusive) OR” and “AND” operators. We shall see later in Example 13 how to
deal with these two dangerous regions.

In this Chapter we adopt an original approach (Salvadori et al. 2011), which
generalizes the univariate one. First of all we need to introduce the following notion.

Definition 11 (Critical Layer). Let F D C.F1; : : : ; Fd / be a d -dimensional
distribution. Given t 2 .0; 1/, the critical layer L F

t of level t is defined as

L F
t D fx 2 Rd WF.x/ D tg: (5.83)

Clearly, L F
t is the iso-hyper-surface (having dimension d � 1) where F equals

the constant value t : thus, L F
t is a (iso)line for bivariate distributions, a (iso)surface

for trivariate ones, and so on. In Fig. 5.5 we show a selected critical iso-line on the
2-copula CQV of interest here (see below for an explanation).

Evidently, for any given x 2 Rd , there exists a unique critical layer L F
t

supporting x (say, using a quick-and-dirty notation, L F
x ): namely, the one identified

by the level t D F.x/. Note that, thanks to the Probability Integral Transform,
there exists a one-to-one correspondence between the two iso-hyper-surfaces L C

t

(pertaining to C in Id ) and L F
t (pertaining to F in Rd ).

The critical layer L F
t partitions Rd into three non-overlapping and exhaustive

regions:

1. R<
t D fx 2 Rd WF.x/ < tg;

2. L F
t , the critical layer itself;

3. R>
t D fx 2 Rd WF.x/ > tg.

Practically, at any occurrence of the phenomenon, only three mutually exclusive
things may happen: either a realization of X lies in R<

t , or over L F
t , or it lies in

R>
t . Note that all these three regions are Borel sets.
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t� . The triangle marker indicates the Component-Wise Excess design

realization, and the square marker indicates the Most-Likely design realization—see Sect. 5.4.3
and Table 5.1

Example 11. As an illustration, in Fig. 5.3 we plot the critical layers (actually,

isolines) L
CQV
t� and L

FQV
t� for the critical level t� � 0:998533 and the pair .Q; V /

of interest here (see below for an explanation).

Thanks to the above discussion, it is now clear that the following (multivariate)
notion of RP is meaningful, and coincide with the one used in the univariate
framework.

Definition 12. Let X be a multivariate r.v. with distribution F D C.F1; : : : ; Fd /.
Also, let L F

t be the critical layer supporting a realization x of X (i.e., t D F.x/).
Then, the RP Tx associated with x is defined as

1. For the region R>
t ,

T >x D �=PfX 2 R>
t g; (5.84)

2. For the region R<
t ,

T <x D �=PfX 2 R<
t g: (5.85)

In the sequel we shall concentrate only upon R>
t : the corresponding formulas for

R<
t could easily be derived. Note that R>

t may be of interest, e.g., when floods are
investigated, while R<

t may be appropriate if droughts are of concern.
Now, in view of the results outlined in Nelsen et al. (2001) and Nelsen et al.

(2003), it is immediate to show that

T >x D
�

1 �KC.t/
; (5.86)

where KC is the Kendall’s distribution function associated with C (see Eq. (5.21)
and the ensuing discussion). Clearly, T >x is a function of the level t identified by the
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Fig. 5.4 (a) Plot of the function KC (continuous line) associated with the copula CQV ; also
shown is its empirical estimate (markers) calculated by using the available observations—see text.
(b) Plot of the (millenary KRP) multivariate quantile t� 	 0:998533 (circle) associated with the
critical probability level p D 0:999; plot of the multivariate quantile t�1D 	 0:998753 (triangle)
corresponding to a KRP of about 1,170 years; plot of the value KC.0:999/ 	 0:999319 (square)
corresponding to a KRP of about 1,470 years—see text

relation t D F.x/. It is then convenient to denote the above RP via a special notation
as follows.

Definition 13 (Kendall’s RP). The quantity �x D T >x is called the Kendall’s RP of
the realization x belonging to L F

t (hereinafter, KRP).

An advantage of the approach outlined in this work is that realizations lying over
the same critical layer do always generate the same dangerous region. Evidently, this
is not the case considering the “OR–AND” approach discussed previously. Instead,
in the approach outlined here, all the realizations y having a KRP �y < �x must
lie in R<

t , whereas all those y having a KRP �y > �x must lie in R>
t , and all the

realizations lying over L F
t share the same KRP �x.

Example 12. As an illustration, in Fig. 5.4a we plot an estimate of the function
KC associated with the copula CQV : here Eq. (5.22) is used, and �C is as reported
in Fig. 5.1. Also shown is the empirical estimate of KC calculated by using the
available observations (see Algorithm 1 and the ensuing discussion): the horizontal
ties are simply due to the small sample size.
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In simple words, if R>
t is used to identify the potentially destructive occurrences

(viz., those involving the events “exceeding” the prescribed critical layer, as in the
approach outlined above), then, the events in R<

t are safe realizations, whereas the
ones over L F

t are alert events. As a consequence, a notion of criticality pre-order
“�c” can be introduced in Rd via the following formula:

x�cy if �x � �y: (5.87)

In simple words, x is “less critical” than y if its KRP is smaller than the one of y:
this exactly corresponds to the intuitive meaning of the concept of return period.
Conversely, y is “more critical” than x if it is more improbable to exceed the critical
layer associated with y than the one associated with x.

5.4.2 Multivariate Quantiles

Traditionally, in the univariate framework, once a RP (say, T ) is fixed (e.g., by
design or regulation constraints), the corresponding critical probability level p is
calculated as 1�p D PfX > xpg D �=T , and by invertingFX it is then immediate

to obtain the quantile xp D F
.�1/
X .p/, which is usually unique. A similar rationale

holds if, instead, the dangerous region is fX < xpg. Then, xp is used in practice for
design purposes and rational decision making. As shown below, the same approach
can also be adopted in a multivariate environment (to be compared with Belzunce
et al. 2007).

Definition 14 (Multivariate Quantile). Given a d -dimensional distribution F D
C.F1; : : : ; Fd / with d -copula C, and a probability level p 2 I, the Kendall’s
quantile qp 2 I of order p is defined as

qp D infft 2 IWKC.t/ D pg D K.�1/
C .p/; (5.88)

whereK.�1/
C (generalized) is the inverse of KC.

Note 4. Definition 14 provides a close analogy with the definition of univariate
quantile: indeed, recall that KC is a univariate distribution function (see Eq. (5.21)),
and hence qp is simply the quantile of order p of KC. Thanks to the Probability
Integral Transform, it is clear that the critical layer L F

qp
is the iso-hyper-surface in

Rd where F takes on the value qp, while L C
qp

is the corresponding one in Id where
the related copula C equals qp .

Now, let L F
qp

be fixed. Then, according to Eq. (5.21),

p D KC.qp/ D PfC.F1.X1/; : : : ; Fd .Xd // � qpg:



5 Multivariate Extreme Value Methods 147

Therefore, p is the probability measure induced by C on the region R<
qp

, while
.1 � p/ is the one of R>

qp
. From a practical point of view this means that,

in a simulation of n independent d -dimensional vectors extracted from F, np
realizations are expected to lie in R<

qp
, and the others in R>

qp
.

Note 5. It is worth stressing that a common error is to confuse the value of the
copula C with the probability induced by C on Id (and, hence, on Rd via the formula
F D C.F1; : : : ; Fd /): on the critical layer L C

qp
it is C D qp , but the corresponding

region R<
qp

has probability p D KC.qp/ ¤ qp , since KC is usually non-linear (the
same rationale holds for the region R>

qp
). In other words, while in the univariate case

the values of FX correspond to the probabilities induced on the Real line, this is not
so in the multivariate case.

Since KC is a probability distribution, and qp is the corresponding quantile of
orderp, we could use a standard bootstrap technique (see, e.g., Davison and Hinkley
1997) to estimate qp if it cannot be calculated analytically. The idea is simple,
and stems directly from the very definition of qp: viz., to look for the value qp
of C such that, in a simulation of size n, np realizations show a copula value less
than qp . Then, by performing a large number of independent simulations of size n,
the sample average of the estimated qp’s is expected to converge to the true value
of qp by virtue of the Law of Large Numbers (see also Genest and Rivest 1993;
Barbe et al. 1996). A possible algorithm is given below, most suitable for vectorial
software. Here we assume that the copula model is well specified, i.e. it is available
in a parametric form.

� ALGORITHM 5. First of all, choose a sample size n, a critical probability level
p, the total number of simulations N , and fix the critical index k D bnpc.
for i D 1 W N
S = sim.CIn/; % simulate n d-vectors from copula C
C D C.S/; % calculate C for simulated vectors
C = sort.C /; % sort-ascending simulated C values
E.i/ D C.k/; % store new estimate of qp into vector E

end
qp = Mean.E/; % calculate the estimate of qp

Once the loop is completed, qp provides a consistent estimate of the critical
multivariate quantile of order p. Practically, Algorithm 5 does the “inverse” task
of Algorithm 1. The bootstrap method may also yield an approximate confidence
interval for qp (see DiCiccio and Efron (1996) for more refined solutions): for
instance, at a 10 % level, the random interval .q0:05; q0:95/ can be used, where q0:05
and q0:95 are, respectively, the quantiles of order 5 % and 95 % extracted from the
vector E .

Example 13. As an illustration, in Fig. 5.4b we show an estimate of the function
KC, associated with the copula CQV , at the critical quantile t� � 0:998533

(corresponding to a millenary KRP): as expected, the value is almost exactly equal
to 99.9 %.
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Fig. 5.5 Critical iso-line L C
t� of the copula CQV corresponding to the (millenary KRP) critical

level t� 	 0:998533, indicated by the circle markers on the axes—see also Fig. 5.3. The triangle
marker indicates the Component-Wise Excess design realization, and the square marker indicates
the Most-Likely design realization—see Sect. 5.4.3 and Table 5.1

Furthermore, in Fig. 5.5 we plot the Gumbel-Hougaard copula CQV in the upper-
right corner of the unit square, and show the critical layer (iso-line) L C

t� for the
critical level t� � 0:998533, corresponding to a regulation return period of 1,000
years (viz., all the realizations on L C

t� have a KRP equal to 1,000 years)—see also
Fig. 5.3. Then, CQV D t� for all points belonging to L C

t� . Instead, CQV < t�
(and �X<1000 years) in the region R<

t� “below” L C
t� , the one containing the origin

0 D .0; 0/, whereas CQV > t� (and �X>1000 years) in the region R>
t� “above”

L C
t� , the one containing the upper corner 1 D .1; 1/. On average, only 0:1% of the

realizations extracted from a simulation of CQV are expected to lie in R>
t� . However,

the level of the critical layer is t� D q0:999 � 0:998533 < p D 0:999, as indicated
by the markers in the plot.

Moreover, let q� D 0:999 be a fixed univariate (millenary) quantile, and set
z� D .q�; q�/—see Example 10: essentially we assume here that Q and V are
equally “important”. Then, the “OR” dangerous region introduced in Eq. (5.81) has
probability 1 � CQV .q

�; q�/ � 0:001247, and a RP of about 800 years. Instead,
the “AND” dangerous region introduced in Eq. (5.82) has probability 1 � 2 � q� C
CQV .q

�; q�/ � 0:000753, and a RP of about 1300 years. In order to have exact
millenary regions, then the following quantiles should be used: q�_ � 0:999198 >

q� when considering D_
z� , and q�̂ � 0:998672 < q� when considering Dẑ� .

Note 6. The region R>
0:999 identified by the critical layer L F

0:999 (where the multi-
variate distribution F—or, equivalently, the copula C—takes on the value 0.999)
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has an estimated probability� 0:000682, and a corresponding KRP of about 1,470
years: practically, only one realization of CQV out of 1,470 simulations is expected
to lie in such a region (instead of 1 out of 1,000). Evidently, if F (or C) were
substituted for KC in Eq. (5.86) during the design phase, then the structure to be
constructed might be over-sized.

5.4.3 Multivariate Design Events

The situation outlined in the previous section is generally similar to the one found
in the study of univariate phenomena, where a single r.v. X with distribution FX
is used to model the stochastic dynamics. However, as already mentioned, the
multivariate case generally fails to provide a natural solution to the problem of
identifying a unique design realization. In fact, even if also the layer L F

t acts as
a (multi-dimensional) critical threshold, there is no natural criterion to select which
realization lying on L F

t (among the1d�1 possibilities) should be used for design
purposes. In other words, in a multivariate environment, the sole tool provided
by the RP may not be sufficient to identify a design realization, and additional
considerations may be required in order to pick out a “characteristic” realization
over the critical layer of interest. In the following, we outline possible ways to
carry out such a selection. Clearly, several approaches can be proposed, each one
possibly yielding a different solution: below, we only show two possible elementary
strategies to deal with the problem.

The basic idea is simply to introduce a suitable function (say, w) that “weighs”
the realizations lying on the critical layer of interest. Following this approach, the
practitioner can then freely choose the criterion (i.e., the function w) that best fits
the practical needs. Clearly, without loss of generality, w can be assumed to be non-
negative. In turn, a “design realization” can be defined as follows.

Definition 15 (Design Realization). Let wWL F
t ! Œ0;1/ be a weight function.

The design realization ıw 2 L F
t is defined as

ıw.t/ D argmaxx2L F
t

w.x/; (5.89)

provided that the argmax exists and is finite.

Definition 15 deserves some comments.

• In general, the unicity of the maximum may not be guaranteed. When this hap-
pens, a recourse to physical/phenomenological considerations, or to additional
procedures (like, e.g., Maximum Information/Entropy schemes (Jaynes 2003)),
may help solving the problem.

• Different copulas may share the same Kendall’s measureKC, and hence the same
KRP (e.g., all the bivariate Extreme Value copulas with the same Kendall’s �
(Ghoudi et al. 1998)). However, in general, the critical layers of such copulas will
have different geometries, and, in turn, will provide different design realizations.
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• The search of the point of maximum in Eq. (5.89) can be subjected to additional
constraints, in order to take into account the possible sensitivity of the structure
under design to the behavior of specific marginals (see also the discussion in
Note 7 below): for instance, a Bayesian approach might be advisable.

• Sometimes it could be more appropriate to select a set of possible design
realizations (i.e., an ensemble, rather than a single one) that should be used,
together with experts’ opinions, in order to better evaluate the features of the
phenomenon affecting the structure under design. This procedure can be carried
out by using a suitable step function in Eq. (5.89).

Note 7. A delicate problem may arise when adopting the approach outlined above:
to make the point clear, consider the following example. Suppose that we use the
duration of a storm and the storm intensity as the two variables of interest. In a fast
responding system (e.g., a sewer structure), a storm having short duration but high
intensity may cause a failure, whereas the same storm may not cause any problem
at a catchment level. In the catchment, however, a storm with long duration and
intermediate to low intensity may cause a flood event, whereas the same storm
does not cause any problem to the sewer system. Now, as a matter of principle, the
design realization ıw for the given return period (i.e., the “typical” storm calculated
according to the strategy illustrated here) may not cause any problem in both
systems, and therefore these would be wrongly designed. Practically, the sewer
system should be designed using storms of short durations and high intensities,
whereas a structure in the main river of the watershed should be designed using
storms of long durations and intermediate to low intensities. However, the problem
is more apparent than real. In fact, there are neither theoretical nor practical
limitations to restrict the search for the maxima in Eq. (5.89) over a suitable sub-
region of L F

t� : remember that all the realizations on the critical layer share the
same prescribed KRP. Thus, when a sewer system is of concern, only storms having
short durations and high intensities could be considered, whereas a design storm
for a structure in the main river could be spotted by restricting the attention to
storms of long durations and intermediate to low intensities. Roughly speaking, in
the approach outlined here, the calculation of the design realization can be made
dependent on both the environment in which a structure should be designed, as well
as on the stochastic dynamics of the phenomenon under investigation.

Overall, the procedure to identify the design realization could be described as
follows. Let X be a random vector with distribution F D C.F1; : : : ; Fd /.

1. Fix a RP T .
2. Calculate the corresponding probability level p D 1 � �=T .
3. Compute the Kendall’s quantile qp as in Eq. (5.88), either analytically or by using

Algorithm 5.
4. Fix a suitable weight function w.
5. Calculate the point(s) of maximum ıw of w on the critical layer L F

qp
(or on a

sub-region of it).
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The resulting ıw represents a “typical” realization in Rd with a given KRP.
Roughly speaking, it denotes the design realization obtained by considering the very
stochastic dynamics of the phenomenon. Note that, in general, ıw (or, better, the
corresponding critical layer) should be considered together with other information
(e.g., the physical features of the structure) in order to be correctly used in practice.

As a further consideration, the framework presented in this work is also most
suitable for the use of a different strategy, namely a simulation-based approach. In
fact, a large number of multivariate events could be generated, and the associated
“cost of failure” of each event could be computed. Then, the structure could be
designed, for instance, in order to minimize the expected cost, e.g. via a Bayesian
approach to decision making (Berger 1985; Smith 1988; Robert 2007).

For the sake of illustration, below we introduce two elementary weight functions.

5.4.3.1 Component-Wise Excess Design Realization

A realization lying on the critical layer L F
t may be marked as critical when all

of its marginal components are exceeded with the largest probability. In simple
words, we suggest to look for the point(s) x D .x1; : : : ; xd / 2 L F

t such that it
is maximum the probability that a realization y D .y1; : : : ; yd / satisfies all the
following componentwise inequalities:

y1 � x1; : : : ; yd � xd ; (5.90)

or y > x using a simplified notation. The next definition is immediate.

Definition 16. The Component-Wise Excess weight function wCE is defined as

wCE.x/ D P.X 2 Œx;1//; (5.91)

where X has distribution F D C.F1; : : : ; Fd /, and Œx;1/ is the hyper-rectangle in
Rd whose points satisfy all the inequalities stated in Eq. (5.90).

Then, by restricting our attention to the critical layer L F
t , the following definition

is immediate.

Definition 17. The Component-wise Excess design realization ıCE of level t is
defined as

ıCE.t/ D argmaxx2L F
t

wCE.x/; (5.92)

where t 2 .0; 1/.
Note 8. Via the Probability Integral Transform and Sklar’s Theorem, it is easy to
show that

wCE.x/ D P.U 2 Œu.x/; 1�/; (5.93)
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where U has the same copula C as of X and Uniform marginals, Œu; 1� is the hyper-
rectangle in Id with “lower” corner u and “upper” corner 1, and u D u.x/ D
.F1.x1/; : : : ; Fd .xd //. Thus, the probabilities of interest can be directly computed
in the unit hyper-cube (see, e.g., Joe 1997) by working directly on the critical
layer L C

t (instead of L F
t ), a solution numerically more convenient. Note that, for

large d -dimensional problems, the CPU time involved may become prohibitive,
though clever solutions have been proposed for d  1 (see, e.g., Cherubini and
Romagnoli 2009). In some cases, ıCE can be calculated analytically; otherwise,
it can be empirically estimated (e.g., by performing a suitable sampling over L C

t

or L F
t ).

Example 14. In Fig. 5.6 we show the behavior of wCE over L
CQV
t� , as well as

the Component-wise Excess design realization ıCE.t
�/ calculated for the case

study investigated here. This point has the largest probability to be componentwise
exceeded by a dangerous realization, and therefore it should be regarded as a sort of
(statistical) “safety lower-bound”: viz., the structure under design should, at least,
withstand realizations having (multivariate) size ıCE.t�/, as reported in Table 5.1.

As a test, using the design realization ıCE.t�/, we operated the reservoir routing
of the corresponding flood hydrograph. We use here an initial water level W D
780:91 m a.s.l., corresponding to the empirical mode of the distribution of the
W ’s (i.e., the most frequent initial water level). Then, we checked whether or
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Table 5.1 Estimates of the design realizations,
for a millenary KRP, according to different
strategies, and assuming an initial water level
WD780:91 m a.s.l.–see text. The right-most col-
umn shows the maximum water level of the dam
associated with the flood event .Q; V / reported
on the corresponding row

Q V M.W.L.
Strategy .m3=s/ .106m3/ .m a.s.l./

C.-E. 1,136 156 784.58
M.-L. 1,141 155 784.59

F
.�1/
�

.0:999/ 1,209 173 784.82

not the reservoir level exceeds the crest level of the dam (at 784 m a.s.l.). The
column“M.W.L.” in Table 5.1 reports the value 784.58 m a.s.l.: thus, the over-
topping may occur, i.e. the dam is apparently at risk against Component-Wise
Excess millenary bivariate realizations.

5.4.3.2 Most-Likely Design Realization

A further approach to the definition of a characteristic design event consists in
taking into account the density of the multivariate distribution describing the overall
statistics of the phenomenon investigated: in fact, assuming that the density f of F
is well defined over L F

t , we may think of using it as a weight function.
Clearly, the restriction ft of f over L F

t is not a proper density, since it does not
integrate to one. However, it may provide useful information, since it induces a
(weak) form of likelihood over L F

t : in fact, it can be used to weigh the realizations
lying on L F

t , and spot those that are (relatively) “more likely” than others. Indeed,
ft inherits all the features of interest here directly from the true global density f. The
next definition is immediate.

Definition 18. The Most-Likely weight function wML is defined as

wML.x/ D f.x/; (5.94)

where f is the density of F D C.F1; : : : ; Fd /.

Then, by restricting our attention to the critical layer L F
t , the following definition

is immediate.

Definition 19. The Most-Likely design realization ıML of level t is defined as

ıML.t/ D argmaxx2L F
t

wML.x/ D argmaxx2L F
t

f.x/; (5.95)

where t 2 .0; 1/.
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Note 9. As a rough interpretation, ıML plays the role as of a “characteristic
realization”, i.e. the one that has to be expected if a dangerous event with given
KRP happens. In some cases, ıML can be calculated analytically; otherwise, it can
be empirically estimated (e.g., by performing a suitable sampling of f over L F

t ).

In general, provided that weak regularity conditions are satisfied, f can be
calculated by using the density c.u/ D @d

@u1���@ud
C.u1; : : : ; ud / of the copula C and

the marginal densities fi ’s of X:

f.x/ D @d

@x1 � � � @xd C.F1.x1/; : : : ; Fd .xd //

D c.F1.x1/; : : : ; Fd .xd // �
dY
iD1

fi .xi /: (5.96)

Since our target is to compare the “weight” of different realizations, from a
computational point of view it may be better to minimize � ln.f/ over L F

t (since
the maxima are preserved).

Example 15. In the present (absolutely continuous) case, the expression of the
bivariate density fQV is given by

fQV .x; y/ D cQV .FQ.x/; FV .y// � fQ.x/ � fV .y/; (5.97)

where .x; y/ 2 R2, and cQV is the density of the Gumbel-Hougaard copula
modeling the pair .Q; V /. In Fig. 5.7 we show the behavior of (the logarithm of)
wML (i.e., fQV ) over L F

t� , as well as the Most-Likely design realization ıML.t�/
calculated for the case study investigated here. The actual values of the function
wML are irrelevant (since they do not represent a true density): in fact, we are only
interested in spotting where fQV is maximal. Therefore, the Most-Likely design
realization could be regarded as the “typical” realization: viz., the structure under
design should be expected to withstand events having (multivariate) size ıML.t�/,
as reported in Table 5.1.

Again, as a test, using the design realization ıML.t�/, we operated the reservoir
routing of the corresponding flood hydrograph, and checked whether or not the
reservoir level exceeds the crest level of the dam. The column “M.W.L.” in Table 5.1
reports the value 784.59 m a.s.l.: thus, again, the over-topping may occur, i.e. the
dam is apparently at risk against Most-Likely millenary bivariate realizations.

5.4.3.3 Further Notes About Design

Concerning design realizations, another interesting test can be carried out. In fact,
as a further possible strategy, suppose that a design realization ı1D D .x0:999; y0:999/
is defined in terms of the millenary univariate quantiles of the two variables .Q; V /
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Fig. 5.7 Plot of the (log) Most-Likely weight function wML over the critical iso-line L F
t� ,

corresponding to the (millenary KRP) critical level t� 	 0:998533. The star marker indicates
where the maximum is attained—see text and Table 5.1, and also Fig. 5.3

of interest here (see the last row of Table 5.1). In turn, t�1D D CQV .0:999; 0:999/�
0:998753 and KC.t

�
1D/ � 0:999150, corresponding to a KRP of about 1,170 years

(see Fig. 5.4b). It is then immediate to realize that, in order to provide a true
millenary multivariate design realization, it may not be enough (or necessary) to
rely upon millenary univariate quantiles. Also, operating the reservoir routing using
ı1D, yields a reservoir level of about 784.82 m a.s.l. (see Table 5.1), which may
cause an over-topping.

The behavior of the Ceppo Morelli dam was used throughout this Chapter in
order to illustrate the practical application of the techniques outlined. It is interesting
to note that the results reported above about the safety of the dam are apparently
in contrast to those presented in De Michele et al. (2005) (bivariate analysis) and
Salvadori et al. (2011) (trivariate analysis).

In De Michele et al. (2005), a simulation of 1,000 pairs of the variables .Q; V /
was used to check the adequacy of the dam spillway, where the initial water level
of the reservoir was chosen at random (instead of fixing it at the modal value
W D 780:91 m a.s.l.), by using the empirical distribution of the water levels. As
a conclusion, no over-topping occurred. Clearly, the analysis of only a 1,000-
year sample (viz., a too small sample size), might have hidden possible dangerous
realizations: thus, the different conclusions presented in De Michele et al. (2005)
may simply be due to an inadequate simulation approach. Alternatively, one could
operate the reservoir routing for, say, 106 simulations, and provide an estimate of
the over-topping probability.
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Table 5.2 Estimates of the critical design realizations,
for a millenary KRP, according to different strategies as
calculated in Salvadori et al. (2011)—to be compared
with Table 5.1

Q V W M.W.L.
Strategy .m3=s/ .106m3/ .m a.s.l./ .m a.s.l./

C.-E. 352.76 25.21 781.25 782.08
M.-L. 316.23 19.64 781.29 781.98

In Salvadori et al. (2011), a trivariate model was used by considering the triplet
.Q; V;W /, i.e. by including the water level W as a random variable. None of the
design realizations ıCE and ıML calculated in Salvadori et al. (2011) caused an
over-topping. Actually, the corresponding marginal design values of Q and V (see
Table 5.2) were much smaller than the ones reported in Table 5.1: at first sight, this
fact may be puzzling. However, this apparent inconsistency may be due to a general
phenomenon related to a dimensionality paradox: an explanation can be found in
the following illustration.

Example 16 (Dimensionality paradox). Let the Return Period T be given by
Eq. (5.80) in Definition 10. Without loss of generality, we assume here that � D 1.
Let X1 be a r.v. with Uniform law over .0; 1/, and suppose that the event of interest
is E1 D fX1 > x1g, where x1 D 0:9 is the quantile of X1 of order 0.9. Then, the
Return Period T1 of E1 is 10, since PfE1g D 0:1.

Now, let X2 be an i.i.d. copy of X1, i.e. assume that CX1X2 D ˘2. Suppose that
the event of interest is

E2 D fX1 > x2 \ X2 > x2g;
where the quantile x2 has to be chosen in order to yield a Return Period T2 for E2
equal to 10. Given the fact theXi ’s are i.i.d. and Uniform over .0; 1/, it is immediate
to realize that E2 is a small square in the right-upper corner of the unit square, and
that its area must be 0:1. This yields a quantile x2 D 1 � p0:1 � 0:683772 <

x1D 0:9.
In general, let d > 1 be the dimension of the problem under investigation, and

let X1; : : : ; Xd be i.i.d. r.v.’s Uniform over .0; 1/, i.e. assume that CX1:::Xd D ˘d .
Suppose that the event of interest is

Ed D
d\
iD1
fXi > xd g;

where the quantile xd has to be chosen in order to yield a Return Period Td for Ed
equal to 10. As above, xd D 1 � .0:1/1=d < x1 D 0:9.

As a conclusion, increasing the dimensionality of the problem may yield a
reduction of the univariate marginal quantiles, when embedded in a multivariate
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framework. Note that xd is a decreasing function of d . As a consequence, the
discrepancies mentioned above between the values of the design realizations in two
and three dimensions should not be considered as anomalies, but rather have to be
expected. Which of the approaches (bivariate rather than trivariate) is the “right”
one is at present an open question.

5.5 Discussion and Perspectives

In this Chapter we provide a short overview of some of the main aspects of MEV
theory and applications. Although some problems may find a consistent solution
within the MEV framework, the wealth of challenges that are still ahead when
dealing with multivariate extremes makes this area an open and interesting field
for future researches. Overall, it should be kept in mind that MEV methods only
have asymptotic justifications. As thoroughly explained in Coles (2001), to which
we make reference, the following issues need to be considered.

• Methods of estimation. Estimating the parameters of multivariate models is
always a difficult task: for instance, as soon as the dimension increases, it is more
and more improbable that the numerical algorithms adopted converge towards
the exact solution. Using copulas may help, since the estimate of the parameters
of the univariate marginals is carried out separately from the calculation of
the ones of the copula (see, e.g., Genest and Favre 2007). However, this may
raise statistical questions about the robustness of the estimates, and no ultimate
solutions have been proposed yet.

• Quantification of uncertainty. Given the available historical data, the statistical
estimates (e.g., those of the parameters, or the return periods, or the design
realizations) should only be intended as “best guesses” at the truth. In other
words, whether the results of the statistical analysis should be trusted or not may
be an “act of faith”. For instance, it may be enough to consider different samples
of the same phenomenon to find different estimates of the same parameters.
Thus, measures of uncertainty should be used in order to deal with the sample
variability. This issue is more and more important in a MEV context, since
extrapolations to very large (or small) levels may yield unreliable results.

• Model diagnostic. Once a model is adopted, it should always be validated via
suitable Goodness-of-Fit tests. Unfortunately, the construction of powerful tests
is still an open research area in multivariate analysis (see, e.g., Genest et al.
(2009), Berg (2009) and Kojadinovic et al. (2011), and references therein).

• Non-stationarity. The stationarity assumption is almost always at the basis of
the statistical techniques used for analysing historical data. However, it is a
hypothesis that rarely can be verified. Some techniques are available for dealing
with non-stationary phenomena (see, e.g., Wigley 1988; Cooley 2009; Katz
2010), but the theory gets quite tricky. In addition, the number of parameters
involved may remarkably increase, and it often happens that the available sample
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size may not be enough to calculate reliable estimates. For this reasons, the
research on suitable methods for dealing with non-stationarity in a multivariate
context is still open. We report here the final remark pointed out in Katz (2010),
with which we agree: “Finally, the question remains of the terms in which to
most effectively convey the risk of extreme events under a changing climate.
The familiar, if often misunderstood, concepts of return period and return level
(e.g., the proverbial 100-year flood), strictly speaking, no longer apply in a non-
stationary climate. The most appropriate way to extend these concepts is an open
question.”
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Deheuvels P (1979) La fonction de dépendence empirique et ses propriétés. un test non
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Chapter 6
Methods of Tail Dependence Estimation

Amir AghaKouchak, Scott Sellars, and Soroosh Sorooshian

Abstract Characterization and quantification of climate extremes and their
dependencies are fundamental to the studying of natural hazards. This chapter
reviews various parametric and nonparametric tail dependence coefficient
estimators. The tail dependence coefficient describes the dependence (degree of
association) between concurrent extremes at different locations. Accurate and
reliable knowledge of the spatial characteristics of extremes can help improve the
existing methods of modeling the occurrence probabilities of extreme events. This
chapter will review these methods and use two case studies to demonstrate the
application of tail dependence analysis.

6.1 Introduction

Weather and climate extremes are of particular importance due to their impacts on
the economy, environment and human life. Understanding the spatial dependence
structure of rare events is fundamental in risk assessment and decision making.
Most measures of dependence (e.g., Pearson linear correlation, Spearman (1904)
and Kendall (1962) correlation) are designed to describe the dependence of random
variables over their distributions. Most commonly used measures are not able
to correctly capture the dependence of the upper or lower parts (extremes) of
the distribution (Kotz and Nadarajah 2000). For example, the Pearson correlation
coefficient may not exist for random variables above a certain high (extreme)
threshold (De Michele et al. 2003). The Pearson linear correlation describes how
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Fig. 6.1 (left): Upper tail values (upper right quadrant – above dotted lines) of V1 and V1 are
locally independent; (right): Upper tail values of V1 and V2 seem to be locally correlated (Modified
after AghaKouchak et al. (2010c))

well two random variables are linearly correlated with respect to their entire
distribution. However, this information cannot be used to understand how the
extremes of two random variables are dependent (Serinaldi 2008).

In general, most dependence measures associate the entire distribution of two
or more random variables. However, the dependence between the upper part of the
distribution may be different than the mid-range and/or lower part of the distribution
(Embrechts et al. 2002). For example, two random variables with low dependence
between mid-range values, but strong association among high (low) values.

In extreme value analysis, the tail dependence coefficient describes the asso-
ciation between the upper or lower part (tail) of two or more random variables
(Schmidt 2005; Frahm et al. 2005; Ledford and Tawn 1997). The tail dependence
coefficient is first introduced by Sibuya (1959) as the dependence in the upper-right
and lower-left quadrants of a bivariate distribution function. Put differently, in a
bivariate distribution, the tail dependence refers to the limiting proportion that one
variable’s marginal distribution exceeds a certain threshold given the other variable’s
margin has already exceeded the same threshold.

Figure 6.1 explains the concept of tail dependence using an example. The figure
displays two generated random variables with the same linear correlation coefficient
of approximately 0.7. Figure 6.1 (left) is simulated using the bivariate normal
distribution, and Fig. 6.1 (right) is generated using the bivariate t-distribution. In
both cases the simulated variables are transformed to uniform [0-1] distribution.
The variables (V1 and V2) in both figures show positive Pearson linear correlation
coefficient (� 0:7). However, the upper right quadrant (above the dotted lines) is
different in the left and right panels of Fig. 6.1. As shown, in Fig. 6.1 (left) the values
in the upper right quadrant (upper tails of V1 and V1) are locally independent, while
in Fig. 6.1 (right) the upper tail values seem to be locally correlated (compare the



6 Methods of Tail Dependence Estimation 165

upper right corners of both panels). This indicates that the probability of occurrence
of V2 above a given high threshold (e.g., dotted line in the figure), assuming V1
exceeds the same threshold is higher in the right panel compared to the left panel in
Fig. 6.1. For additional information and graphical examples, the interested reader is
referred to Fisher and Switzer (2001) and Abberger (2005).

Parametric methods are frequently used for univariate extreme value analysis
(e.g., Fisher and Tippett 1928; Gumbel 1958). On the other hand, in multivariate
extreme value analysis, the joint probabilities of multiple random variables is
considered. This includes the probability occurrence (risk) of each variable based
on its univariate marginal distribution and the dependence of multiple probability
occurrences. Depending on the marginal distribution of random variables and their
dependence structure, a parametric model may or may not be sufficient to model the
characteristics of the joint extremes. Thus far, many parametric and nonparametric
methods have been developed for analysis of tail dependence of random variables
(Schmidt and Stadtmüller 2006; Malevergne and Sornette 2004; Poon et al. 2004;
Ledford and Tawn 2003; Malevergne and Sornette 2002; Ledford and Tawn 1996).

In the past three decades, most applications of tail dependence models have
been in financial risk management and dependence analysis of between extreme
assets (e.g., Schmidt (2005), Frahm et al. (2005) and Embrechts et al. (2002) and
references therein). In particular, many non-parametric methods are introduced
based on the concept of empirical copula. Copulas are multivariate distribution
functions that can describe the dependence of two or more random variables
independent of their marginal distrubtions. In recent years, multivariate copulas
have been applied in numerous hydrologic applications (Nazemi and Elshorbagy
2011; AghaKouchak et al. 2010b; Bárdossy and Li 2008; Serinaldi 2009; Zhang
et al. 2008; AghaKouchak et al. 2010a; Favre et al. 2004; De Michele and Salvadori
2003; Kelly and Krzysztofowicz 1997). Renard and Lang (2007) investigated
the usefulness of the multivariate normal copula in extreme value analysis. With
several case studies, Renard and Lang (2007) demonstrated that the multivariate
normal copula can be reasonably used for extreme value analysis. However, the
authors acknowledge that the low probabilities can be significantly underestimated
if asymptotically dependent random variables are described by the normal copula,
which is an asymptotically independent model. Serinaldi (2008) investigated the
association of rainfall data using the non-parametric Kendall rank correlation.
The study suggests a copula-based mixed model for modeling the dependence
structure and marginal distributions of variables.

In general, the tail dependence between variables may strongly depend on
the choice of model or estimation technique (Frahm et al. 2005). This chapter
reviews several parametric and non-parametric tail dependence estimators. Various
aspects of modeling tail dependence between variables are discussed in detail,
including the choice of extreme value threshold, and advantages and disadvantages
of tail dependence models. The chapter is organized into seven sections. After the
introduction, the concept of tail dependence is reviewed. The third section is devoted
to parametric tail dependence analysis and copulas. In section four, non-parametric
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methods are discussed. Section five provides additional insight into the choice of
extreme value threshold. The last section highlights two case studies using the tail
dependence estimators.

6.2 Tail Dependence: Basic Definitions

Let X1; : : : ; Xn be n random variables. The the upper tail (�up) for a multivariate
distribution with n random variables X.X1; : : : ; Xn/ is defined as (Joe 1997;
Melchiori 2003):

�up D lim
u!1�

Pr .F1.X1/ > t jF2.X2/ > t : : : Fn.Xn/ > t/ (6.1)

In Eq. 6.1, F1; : : : ; Fn are the cumulative distribution functions for the random
variables X1; : : : ; Xn, and t is the extreme value threshold. The equation expresses
the probability (P r) of occurrence of extremes (values above the threshold t)
in X1, conditioned on the occurrence of extremes (above the same threshold) in
X2; : : : ; Xn. Similarly, the lower tail dependence coefficient (�lo) is described as:

�lo D lim
u!1�

Pr.F1.X1/ � t jF2.X2/ � t : : : Fn.Xn/ � t/ (6.2)

The multivariate distribution function is said to be upper tail dependent if 0 <
�up � 1 and upper (lower) tail independent if �up D 0 (�lo D 0). For example,
in Fig. 6.1 (left), the upper tail coefficient is approximately zero (�up � 0), while
for Fig. 6.1 (right) the upper tail coefficient is approximately 0.8 (�up � 0:8). For a
more comprehensive discussion on the theoretical concept of tail independence, the
interested reader is referred to Draisma et al. (2004) and Husler and Li (2009).

6.3 Copulas and Tail Dependence

The upper (lower) tail coefficient can also be defined using copulas. Copulas are
joint cumulative distribution functions that describe dependencies among variables
independent of their marginals (Joe 1997; Nelsen 2006):

Cn.u1; : : : ; un/ D F.F�1
1 .u1/; : : : ; F

�1
n .un// (6.3)

where Cn is an n-dimensional joint cumulative distribution function (CDF) of a
multivariate random variable (U.U1; : : : ; Un/) and whoses marginals are uŒ0; 1�.
Equation 6.1 can be alternatively presented as:

�up D lim
u!1�

Pr .X1 > F
�1
X1
.u/jX2 > F�1

X2
.u/ : : : Xn > F

�1
Xn
.u// (6.4)
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where F�1
1 ; : : : ; F�1

n are the inverse CDF of the random variables X1; : : : ; Xn.
Notice that the conditional probability, given in Eq. 6.4, can be described as:

Pr .X1 > F
�1
X1
.u/jX2 > F�1

X2
.u/ : : : Xn > F

�1
Xn
.u//

D 1�Pr.X1�F�1
X1
.u//� : : :�Pr.Xn�F�1

Xn
.u//CPr.X1�F�1

X1
.u/; : : : ;Xn�F�1

Xn
.u//

1 � P r.X2 � F �1
X2
.u//� : : : � Pr.Xn � F�1

Xn
.u//

(6.5)

Substituting Eq. 6.3 into Eq. 6.5 with some algebraic manipulation yields the
following formulation for the upper tail (Joe 1997; Frahm et al. 2005):

�up D lim
u!1

1 � nuC C .n/.u; : : : ; u/

1 � .n � 1/u (6.6)

Similarly, the lower tail dependence coefficient (�lo) can be expressed as (Joe
1997):

�lo D lim
u!1

C .n/.u; : : : ; u/

.n� 1/u (6.7)

There are various copulas families, which have been developed for different
purposes. One major difference between different copula families is the upper
(lower) tail association they represent. For example, copula families may differ
in the upper and lower tail of the distribution, where the dependence is strongest
(weakest). In this study, two elliptical copulas, namely a normal copula and t-copula,
as well as a non-Gaussian (v-transformed) copula, are used for simulations. In the
following section, a number of copula families and their tail dependence behavior is
discussed.

6.3.1 Gaussian Copula

One of the most commonly used copula families is the multivariate Gaussian
(normal) copula, which is obtained from the multivariate normal distribution
(Nelsen 2006):

C�.u1; : : : ; un/ D F n
� .F

�1.u1/; : : : ; F�1.un// (6.8)

Equation 6.8 describes an n-dimensional multivariate Gaussian copula with
correlation matrix �n
n whose density function is:

c.u1; : : : ; un/ D 1p
det�

exp

�
�1
2
y.u/

0

.��1 � I /y.u/
�

(6.9)
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where: F n DMultivariate Gaussian CDF
y.ui / D F �1.ui /

6.3.2 t-Copula

The t-copula (alternatively known as Student copula), is an elliptical copula derived
from the Student distribution:

C�;�.u1; : : : ; un/ D tn�;�.t�1� .u1/; : : : ; t
�1
� .un// (6.10)

where: tn DMultivariate Student CDF
� D shape matrix and
� D degrees of freedom

tn�;�.x/ D
1p
det�


�
�Cn
2

�


�
�
2

�
.
�/n=2

�
Z x1

�1
: : :

Z xn

�1
dx�

1C x
0

��1x

�

�.�Cn/=2 (6.11)

For � > 2, the shape matrix (�) is proportional to the correlation matrix
(Malevergne and Sornette 2003). The density function of the t-copula is expressed
as (Malevergne and Sornette 2003):

c.u1; : : : ; un/ D 1p
det�


�
�Cn
2

� �

�
�
2

��n�1
�

�
�C1
2

��n �
˘n
kD1

�
1C y2k

�

�.�C1/=2

�
1C y

0

��1y

�

�.�Cn/=2 (6.12)

where: yk = t�1� .uk/
t� = univariate Student distribution with � degrees of freedom

Both Gaussian and t-copulas are elliptical; however, they represent different tail
dependencies. The Gaussian copula is upper (lower) tail independent (�up � 0)
regardless of the correlation coefficient among variables (Coles 2001; Renard and
Lang 2007; Mikosch and Resnick 2006). This indicates that the extreme values from
the different random variables occur independently, even if the random variables
exhibit a high correlation. It is worth pointing out that for independent variables,
one could expect �up D 0. Note that the converse is not necessarily true, meaning
that �up D 0 does not indicate that the random variables are necessarily independent
(Malevergne and Sornette 2003).

Contrary to the Gaussian copula, the t-copula can capture the upper (lower)
tail dependence (if exists) among two or more random variables. The t-copula can
capture the asymptotic dependence even when the variables are negatively (in-
versely) associated (Embrechts et al. 2001). In t-copula formulation, as � increases,
the tail dependence weakens, and thus, the probability of occurrence of extreme
values reduces. Figure 6.2a displays the tail behavior of the bivariate t-copula with
� D 1 � 10. The Figure presents occurrences of x > 0:8 (percentage) in both
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Fig. 6.2 Tail dependence behavior from bivariate random variable simulated using (a) t-copula
and (b) Gaussian copula. The y-axes show the occurrences of joint extremes (percentage)
in dependent random variables simulated using t-copula and Gaussian copula (modified after
AghaKouchak et al. 2010b)

random vectors of the bivariate t-copula. One can see that an increase in � results in
less occurrences of extremes (values above the threshold t in Eq. 6.1). Figure 6.2b
shows the tail dependence of Gaussian copula. The occurrence of joint extremes in
Gaussian copulas is considerably less than t-copula (threshold: 0.8). This indicates
that if strong dependence exist among multiple variables, using the Gaussian copula
may not be suitable for modeling dependence of extremes. In fact, the multivariate
Gaussian distribution is upper (lower) tail independent (�up � 0) meaning it cannot
be used to describe dependencies of extremes (Coles 2001; Renard and Lang 2007).
It is noted that the tail behavior of a multivariate model depends solely on the type
of copula and not on the marginal distribution of individual variables. Therefore,
in modeling the dependencies of extremes, the choice of copula family plays a
significant role.

6.3.3 Gumbel-Hougaard Copula

In the following section, a heavy upper tailed Archimedean copula (Nelsen 2006),
known as the Gumbel-Hougaard copula, is introduced. Unlike many copula fami-
lies, Archimedean copulas are not derived from standard multivariate distributions.
Generally, the multivariate Archimedean copulas can be expressed as:

C.x1; : : : ; xn/ D ‰�1
 

nX
iD1

‰.Fi.xi //

!
(6.13)

where ‰ is the so-called generator function. For the Gumbel-Hougaard copula, the
generator function can be expressed as:

‰.x/ D .� ln.x//	 (6.14)

where: 	 � 1 D copula parameter:
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By substituting Eq. 6.14 into Eq. 6.13, the general formulation of the bivariate
Gumbel-Hougaard copula can be described as (Venter 2002):

C.u; �/ D exp

�
�
�
.� ln u/	 C .� ln �/	

� 1
	

�
(6.15)

Equation 6.15 represents the bivariate Gumbel-Hougaard copula with variables
uŒ0; 1� and �Œ0; 1�. The Gumbel-Hougaard copula is parameterized through a single
parameter 	 . The copula parameter 	 is to be estimated based on available data.
By substituting Eq. 6.15 into Eq. 6.6, the upper tail dependence coefficient for the
Gumbel-Hougaard copula can be derived as: �up D 2 � 2	 (Salvadori et al. 2007;
Frahm et al. 2005; Nelsen 2006). A discussion on copula parameter estimation
techniques is beyond the scope of this chapter. The interested reader is pointed to
Genest et al. (1995), Salvadori et al. (2007) and Nelsen (2006) for more detailed
discussions on parameter estimation.

6.4 Nonparametric Tail Dependence Methods

There are different nonparametric tail dependence estimators that can be used to
evaluate the significance of tail behavior. The first nonparametric approach intro-
duced here is based on the concept of the empirical copula (Cm) – AghaKouchak
et al. (2010c):

Cm.u; �/ D F.m/
�
F�1
.m/1.u/; F

�1
.m/2.�/

�
(6.16)

where F.m/ refers to the empirical distribution of random variables. The tail

dependence estimator �.1/up is then expressed as (Schmidt and Stadtmüller 2006):

�.1/up D
T

k
Cm

��
1 � k

T
; 1


�
�
1 � k

T
; 1

�
(6.17)

D 1

k
†TjD1I.R

j
1 > T � k;Rj2 > T � k/

where: T = sample size
k = threshold rank
R
j
1 = rank of uj

R
j
2 = rank of �j

I = indicator function
It is worth pointing out that Eq. 6.17 is the empirical copula with the interval

.1 � k
T
; 1� � .1 � k

T
; 1�. That is, �.1/up is derived using the empirical tail-copula

introduced by Genest et al. (1995).
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Haung (1992) suggested another tail dependence measure (here, �.2/up ) based on
empirical copulas and extreme value theory:

�.2/up D 2 � T
k

�
1 � Cm

�
1 � k

T
; 1 � k

T

��

D 2 � 1
k
†TjD1I.R

j
1 > T � k OR Rj2 > T � k/ (6.18)

Coles et al. (1999) proposed a different nonparametric tail dependence measure
(�.3/up ) as follows (Frahm et al. 2005):

�.3/up D 2 �
logCm

�
T�k
T
; T�k

T

�

log
�
T�k
T

� (6.19)

where

Cm.u; �/ D 1

T
†TjD1I

 
R
j
1

T
� u;

R
j
2

T
� �

!
(6.20)

Another nonparametric tail dependence estimator (here, �.4/up ) is proposed by Joe
et al. (1992):

�.4/up D 2 �
1 � Cm

�
T�k
T
; T�k

T

�

1 � T�k
T

(6.21)

where the term Cm is the empirical copula as described in Eq. 6.20. It should be
noted that nonparametric methods of estimating tail dependence is not limited to
the ones mentioned above (see for example Capéraa et al. 1997).

6.5 Extreme Value Threshold

Estimation of the extreme value threshold requires assuming a threshold above
(or below) values that are considered as extreme (Frahm et al. 2005). For tail
dependence analysis, one can use a fixed (e.g., above 95 % of data) or variant thresh-
old approach. The so-called optimal threshold approach (Frahm et al. 2005; Peng
1998) uses a kernel plateau-finding algorithm to estimate the optimal extreme value
threshold. In this method, the optimal plateau is estimated in four steps: (1) a kernel
box with a bandwidth of b (e.g., b D int.0:05n/) is selected; (2) the mean values of
the coefficients that fall within each box results in n� 2b � values; (3) for a moving
plateau with a length of l D pn � 2b, the corresponding � values are calculated
(�k; : : : ; �kClC1 where k=1,. . . , n�2b�mC1); (IV) the optimal plateau (extreme
value threshold) is the first one that fulfills the following condition (for more detailed
description, the reader is referred to Frahm et al. (2005) and Peng (1998)):

†kCl�1
iDkC1j�i � �kj � 2¢ (6.22)
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Fig. 6.3 Variability of the tail dependence coefficient with respect to threshold (After AghaK-
ouchak et al. (2010c))

where ¢ is the standard deviation of the �i values (means of coefficients that fall
within each box). The optimal tail dependence coefficient is then expressed as:

� D 1

T
†TiD1�kCi�1 (6.23)

Figure 6.3 displays an example of tail dependence coefficient variability versus
the choice of extreme value threshold. In this figure, the box refers to the plateau
that satisfies the condition mentioned above (Eq. 6.22) and its corresponding TDC.
Note that the box size in Fig. 6.3 is not scaled, and the box size is placed on the
figure for illustration. For other methods of extreme value threshold estimation, the
interested reader is pointed to Tancredi et al. (2006).

6.6 Case Studies

Case Study A: In the following example, the tail dependence coefficient is used for
analysis of anisotropy of spatial dependencies of extremes. Figure 6.4 displays the
rainfall accumulations above 95 % threshold normalized to [0-1]. The precipitation
data used in this example is from the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN, Sorooshian
et al. 2000; Hsu et al. 1997) data set, which is an infrared-based microwave-adjusted
precipitation product. The tail dependence coefficient is estimated using Eq. 6.17
(�.1/up ) for the two perpendicular directions shown in Fig. 6.4. In this example, the
data is smoothed with a moving-average window with bandwidth of 2 pixels and
80 % overlap. Figure 6.5 indicates that heavy precipitation rates are dependent over
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Fig. 6.4 Sum of rainfall exceedance above 95 % normalized to [0-1]

Fig. 6.5 Tail dependence behavior of rainfall data in (left) E-W, and (right) N-S directions versus
distance (km)

longer distances in the horizontal direction (see Fig. 6.5 (left)) as opposed to the
vertical direction (see Fig. 6.5 (right)). This indicates that the spatial dependence
structure of heavy rainfall rates is asymmetrical, and in this example, heavy rainfall
rates are spatially more dependent in the horizontal direction.

Case Study B: Many earth science variables provide excellent data for studying
spatial dependencies of extreme events. This example demonstrates a nonparametric
approach to evaluating the dependence structure of the extreme precipitation
values over a region in the southern part of the United States. Understanding
extreme precipitation spatial dependencies and behavior on the local, regional and
global scale will provide enhanced insight in the spatial dependence structure of
precipitation in different regions of the world. This information can then be used to
assist in planning and decision making purposes.
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Fig. 6.6 Two nonparametric methods for calculating tail dependence coefficients. (Top) �.1/up for

three percentile groups, 75th, 90th and 95th as described in Eq. 6.17; and (Bottom) �.2/up for three
percentile groups, 75th, 90th and 95th as described by 6.18

Two nonparametric tail dependence methods based on empirical copulas are used
to derive tail dependence estimators: (1) �.1/up introduced in Eq. 6.17; and (2) �.2/up

introduced in Eq. 6.18. In both cases, the tail dependence estimator helps describe
the dependent structure or degree of association between concurrent rainfall ex-
tremes at different locations. High spatial and temporal resolution precipitation data
can be analyzed using these nonparametric tail dependence methods, which allows
for solving for the tail dependence coefficient and thus describing the dependence
structure of the extreme precipitation events.

The study region is over Mississipp, which is located in the southern part of
the United States with a latitude of 38N to 35.5N and longitude of �110W to
�107:5W from January 1st, 2005 to December 31st, 2008. The precipitation data
used in this example is the National Center for Environmental Prediction (NCEP)’s
Stage 4 mosaic multi-sensor national precipitation analysis, which has a 4 km spatial
resolution and hourly temporal resolution (Lin and Mitchell 2005).

Solving for �.1/up (Eq. 6.17) and �.2/up introduced in Eq. 6.18, and smoothing the
results for display purposes, one can see the dependence structure of precipitation
for the data in this region. Similar to the previous example, the data is smoothed
using a moving-average window with a bandwidth of 2 pixels and 80 % overlap.
Figure 6.6 shows three different precentile groupings of the extreme precipitation
events: 75th percentile, 90th precentile and 95th precentile for �.1/up and �

.2/
up
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Fig. 6.7 Tail dependence analysis using �
.1/
up and �

.2/
up and based on the concept of optimal

threshold introduced in Eqs. 6.22 and 6.23

tail dependence methods. Both nonparametric tail dependence methods from �
.1/
up

(Fig. 6.6, top) and �.2/up (Fig. 6.6, bottom) are consistent with each other showing
the expected decrease in dependence with distance across each of the different
precentile groups. The figure indicates that the spatial dependence of extreme
convective precipitation will decrease rapidly as distance increases. This is expected
because with extreme precipitation events, spatial dependence is typically the
highest near the region of convective activity, which produces the largest observed
precipitation. This is not always the case, for example, extra-tropical cyclones can
also produce extreme precipitation events and can have spatial dependence up to a
few hundred kilometers.

Figure 6.7 displays �.1/up (Fig. 6.7, top) and �.2/up (Fig. 6.7, bottom) methods using
the concept of optimal threshold (Eqs. 6.22 and 6.23) to determine the percentile
for calculating the tail dependence coefficient as well as a smoothed version for
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illustration purposes. Contrary to commonly used method (Fig. 6.6), this approach
of tail dependence analysis is independent of a fixed (constant) threshold. In other
words, this method provides a tail dependence analysis that does not require addi-
tional decisions regarding the choice of extreme value threshold (Frahm et al. 2005).

6.7 Summary and Conclusions

Extreme events (e.g., floods, droughts, heat waves) have varying spacial dependence
structures across different geographic locations and the understanding of these de-
pendencies is fundamental to risk assessment and decision making. Understanding
the different characteristics of extreme events, including spatial dependence, will
provide regional planners and policy makers with information and knowledge of
extreme events that impact their the local and regional communities. Spatial charac-
teristics of extreme events can be investigated through estimation of tail dependence
coefficient for different locations. This chapter reviewed several nonparametric and
parametric tail dependence coefficient estimators. The tail dependence coefficient
describes the degree of association between concurrent extremes. The presented
nonparametric methods are based on the concept of bivariate empirical copula of
random variables, whereas the parametric approach is based on the concept of
Gumbel-Hougaard Copula. The chapter also reviewed different aspects of modeling
tail dependence such as the choice of extreme value threshold.

In the first case study, the tail dependence coefficient is used for analysis of
anisotropy of spatial dependencies of extremes. The results showed that the spatial
dependence structure of heavy rainfall rates was asymmetrical. In the second ex-
ample, the tail dependence coefficient is used to investigate spatial dependencies of
precipitation extremes on a local scale revealing the spatial dependence structure of
the extreme convective precipitation as described by the tail dependence coefficient.
Extreme precipitation impacts many aspects of human society, such as loss of
property and life due to flooding and area destruction from severe storms.

In the case studies, a kernel plateau-finding algorithm is used to obtain tail
dependence coefficients, avoiding a fixed extreme value threshold. The results of
previous studies (e.g., AghaKouchak et al. 2010c) reveal that using the kernel
plateau-finding algorithm for tail dependence is superior to the fixed threshold
approaches. This method, also known as the optimal threshold approach, can obtain
a measure of tail dependence that does not require additional decisions regarding
the choice of extreme value threshold.

The tail dependence coefficient has numerous applications including: validation
and verification of weather and climate models in reproducing extreme events;
analysis of simultaneous extremes; probabilistic assessment of occurrences of
extremes, and understanding climate variability. For example, by deriving tail
dependence coefficients for simulations of a numerical weather prediction model or
a climate model, one can evaluate whether these models produces dependencies as
seen in the observations. These approaches are not limited to precipitation, but also
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a wide variety of earth science variables. This study of extremes tail dependence on
local, regional and global scales can assist in planning and policy making as well as
validating numerical models, thus providing a valuable tool for understanding how
extreme events impact society.

References

Abberger K (2005) A simple graphical method to explore tail-dependence in stock-return pairs.
Appl Financ Econ Taylor Fr J 15(1):43–51
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Chapter 7
Stochastic Models of Climate Extremes: Theory
and Observations

Philip Sura

Abstract One very important topic in climatology, meteorology, and related fields
is the detailed understanding of extremes in a changing climate. There is broad
consensus that the most hazardous effects of climate change are due to a potential
increase (in frequency and/or intensity) of extreme weather and climate events.
Extreme events are by definition rare, but they can have a significant impact on
people and countries in the affected regions. Here an extreme event is defined in
terms of the non-Gaussian tail (occasionally also called a weather or climate regime)
of the data’s probability density function (PDF), as opposed to the definition in
extreme value theory, where the statistics of time series maxima (and minima) in
a given time interval are studied. The non-Gaussian approach used here allows
for a dynamical view of extreme events in weather and climate, going beyond
the solely mathematical arguments of extreme value theory. Because weather and
climate risk assessment depends on knowing the tails of PDFs, understanding
the statistics and dynamics of extremes has become an important objective in
climate research. Traditionally, stochastic models are extensively used to study
climate variability because they link vastly different time and spatial scales (multi-
scale interactions). However, in the past the focus of stochastic climate modeling
hasn’t been on extremes. Only in recent years new tools that make use of advanced
stochastic theory have evolved to evaluate the statistics and dynamics of extreme
events. One theory attributes extreme anomalies to stochastically forced dynamics,
where, to model nonlinear interactions, the strength of the stochastic forcing
depends on the flow itself (multiplicative noise). This closure assumption follows
naturally from the general form of the equations of motion. Because stochastic
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theory makes clear and testable predictions about non-Gaussian variability, the
multiplicative noise hypothesis can be verified by analyzing the detailed non-
Gaussian statistics of atmospheric and oceanic variability. This chapter discusses
the theoretical framework, observational evidence, and related developments in
stochastic modeling of weather and climate extremes.

7.1 Introduction

In this introductory section we first review some fundamental ideas about extreme
events in climate, before focusing on novel stochastic approaches. In particular,
we qualitatively introduce the fundamental concept of stochastic climate models
driven by state-dependent (multiplicative) noise, where the strength of the stochastic
forcing depends on the flow itself, resulting in non-Gaussian statistics. This becomes
our basic paradigm for extreme events in climate, to be discussed in detail in the
remainder of this chapter.

7.1.1 Extreme Events: Definition, Relevance, and Sampling

Extreme events in nature and society are by definition scarce, but they can have
a significant physical and socioeconomic impact on people and countries in the
affected regions (Albeverio et al. 2006). Here we deal with extreme events in
weather and climate (i.e., nature), keeping in mind that there exists a strong
connection to society, because an extreme event in nature often triggers an extreme
socioeconomic event. For example, a natural disaster is often followed by a financial
crisis. Alongside our intuitive knowledge that a hurricane, tornado, or earthquake
might qualify, how can we define extreme events more quantitatively? Let’s recall
two common definitions:

• One often-used (e.g., by the Intergovernmental Panel on Climate Change (IPCC))
definition of an extreme event is based on the tails of its climatological
(i.e., reference) probability density function (PDF) at a particular geographical
location. An extreme event would normally be as rare as or rarer than the 5th or
95th percentiles. Note that this definition does not depend on the particular shape
(e.g., Gaussian or non-Gaussian) of the PDF. Yet the Gaussian distribution is very
often used to estimate the odds of extreme events, neglecting the non-Gaussianity
(higher probability of extreme events) of real world observations.

• Another widely accepted definition of an extreme event is that of a phenomenon
that is beyond our normal expectations (e.g., Brooks and Carruthers 1953; White
1980; Nakamura and Wallace 1991; Peinke et al. 2004; Newman 2005; Sornette
2006; Taleb 2010). When we say that an event is normally distributed, we
mean that the PDF follows the Gaussian bell curve. Thus, an extreme event
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can also be defined as the non-normal (i.e., non-Gaussian) tail of the data’s
PDF. This definition is akin to more non-technical (or popular) views, where
an extreme event is a high-impact, hard-to-predict phenomenon that is beyond
our normal expectations. In popular culture an extreme event is sometimes also
called a “Black Swan”, because a Black Swan provides a metaphor for a highly
improbable incident (e.g., Taleb 2010); before the discovery of Australia, people
in the Old World were convinced that all swans where white.

The latter definition of an extreme as the non-Gaussian tail of the data’s PDF
is the one we are using here. However, note that the non-Gaussian definition
does not exclude the percentile view, because percentiles do not depend on the
particular shape of the PDF. We employ the non-Gaussian approach because, as we
will see, real world observations are almost always non-Gaussian (if not averaged
too heavily; then the data become close to Gaussian because of the central limit
theorem). That is, we want to specify and understand the PDFs of climate variability
beyond empirically determining percentiles. In addition, the information included
in the non-Gaussian statistics allows us to learn more about the actual dynamics of
extreme climate variability. Therefore, here an event is only considered extreme if
its probability of occurrence is governed by non-Gaussian statistics. That implies,
that a high amplitude event does not qualify as extreme if it is described by
Gaussian statistics. It is important to recognize that in the following we, therefore,
use the terms extreme event and non-Gaussian statistics (and related phrases)
synonymously.

Understanding extremes has become an important objective in weather/climate
research, because weather and climate risk assessment depends on knowing and
understanding the tails of PDFs. At this point we need to define what we mean
by weather and climate a bit more. Here we typically think of representative
atmospheric variables (for example, pressure, wind, vorticity, temperature etc.) as
varying on weather timescales of hours, days, to a few weeks, and the ocean
(for example, sea surface temperatures, sea level heights, currents etc.) varying on
longer climate timescales of weeks, months, years, and decades. There is, of course,
certain overlap and we use the terms weather and climate in a loose way, specifying
the timescales as needed for particular applications. It should also be noted that
nonlinear multi-scale interactions make a strict separation of timescales impossible.

There is broad consensus that the most hazardous effects of climate change are
related to a potential increase (in frequency and/or intensity) of extreme weather and
climate events (e.g., Houghton 2009; Brönnimann et al. 2008; Alexander et al. 2006;
Easterling et al. 2000). The overarching goal of studying extremes is, therefore,
to understand and then manage the risks of extreme events and related disasters
to advance strategies for efficient climate change adaptation. While numerous
important studies have focused on changes in mean values under global warming,
such as mean global temperature (one of the key variables in almost every discussion
of climate change; see, for example, reports from the IPCC available at http://www.
ipcc.ch), the interest in how extreme values are altered by a changing climate is a

http://www.ipcc.ch
http://www.ipcc.ch
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relatively recent topic in climate research. The reasons for that are primarily twofold.
First, we need high-quality, high-resolution (in space and time) observational data
sets for a comprehensive analysis of non-Gaussian climate variability. It is only
recently that global high-quality daily observations became readily available to
the international research community (Alexander et al. 2006). Second, we need
extensive simulations of high-resolution climate models to (hopefully) simulate
realistic non-Gaussian climate variability. Again, only recently long enough high-
resolution numerical simulations of climate variability became feasible to study
global non-Gaussian and higher-order statistics in some detail (e.g., Kharin and
Zwiers 2005; Kharin et al. 2007).

The general problem of understanding extremes is, of course, their scarcity:
it is very hard to obtain reliable (if any) statistics of those events from a finite
observational record. Therefore, we have to somehow extrapolate from the well
sampled center of a PDF to the scarcely or unsampled tails. The extrapolation
into the more or less uncharted tails of a distribution can be roughly divided
into three major, by no means mutually exclusive categories. In fact, the study
of extreme events in weather and climate is most often done by combining the
strategies of the following methods (Garrett and Müller 2008).

7.1.2 Common Methods to Study Extreme Events

The statistical approach (extreme value theory) is solely based on mathematical
arguments (e.g., Coles 2001; Garrett and Müller 2008; Wilks 2006; Gumbel 1942,
1958). It provides methods to extrapolate from the well sampled center to the
scarcely or unsampled tails of a PDF using mathematical tools. The key point
of the statistical approach is that, in place of an empirical or physical basis,
asymptotic arguments are used to justify the extreme value model. In particular,
the generalized extreme value distribution (GEV) is a family of PDFs for the
maximum (or minimum) of a large sample of independent random variables drawn
from the same arbitrary distribution. While the statistical approach is based on
sound mathematical arguments, it does not provide much insight into the physics
of extreme events. Extreme value theory is, however, widely used to explore
climate extremes (Katz and Naveau 2010). In fact, the foundation of extreme value
theory is very closely related to the study of extreme values in meteorological data
(Gumbel 1942, 1958). Nowadays this is very often done in conjunction with the
numerical modeling approach discussed below. That is, model output is analyzed
using extreme value theory to see if statistics are altered in a changing climate.

The empirical-physical approach uses physical reasoning based on empirical
knowledge to provide a basis for an extreme value model. The key point here is
that, in contrast to the purely statistical method that primarily uses asymptotic math-
ematical arguments, physical reasoning is employed to perform the extrapolation
into the scarcely sampled tails of the PDF. The empirical-physical method can
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itself be further split into either empirical or physical strategies, focusing on the
empirical or physical aspects of the problem respectively. The empirical-physical
method lacks the mathematical rigor of the statistical method, but it provides
valuable physical insight into relevant real world problems. An example for an
empirical-physical application is the Gamma distribution which is often used to
describe atmospheric variables that are markedly asymmetric and skewed to the
right (Wilks 2006). Well known applications are precipitation and wind speed,
which are physically constrained to be non-negative. It should be noted that the
empirical-physical approach can be, in principle, put on a more rigorous foundation
using the principle of maximum entropy (Jaynes 1957a,b, 2003). That is, given some
physical information (i.e., constraints) of a process, the PDF that maximizes the
information entropy under the imposed constraints is the one most likely found in
nature.

The numerical modeling approach aims to estimate the statistics of extreme
events (the tails of the PDF) by integrating a general circulation model (GCM) for a
very long period (e.g., Easterling et al. 2000; Kharin and Zwiers 2005; Kharin et al.
2007). That is, this approach tries to effectively lengthen the limited observational
record with proxy data from a GCM, filling the unsampled tails of the observed
PDF with probabilities from model data. Numerical modeling allows for a detailed
analysis of the physics (at least model-physics) of extreme events. In addition,
the statistical and empirical-physical methods can also be applied to model data,
validating (or invalidating) the quality of the model. It is obvious that the efforts by
the IPCC to understand and forecast the statistics of extreme weather and climate
events in a changing climate fall into this category.

What do these approaches have in common? Every approach effectively ex-
trapolates from the known to the scarcely known (or unknown) using certain
assumptions and, therefore, requires a leap of faith. For the statistical approach
the assumptions are purely mathematical. For example, the assumption of classical
extreme value theory, that the extreme events are independent and drawn from the
same distribution, and that sufficient data is available for convergence to a limiting
distribution (the generalized extreme value distribution) may not be met (e.g., Coles
2001; Wilks 2006). The potential drawback of the empirical-physical approach is
its lack of mathematical rigor (with the exception of the principle of maximum
entropy); it primarily depends on empirical knowledge and physical arguments. The
weakness of numerical modeling lies in the largely unknown ability of a model to
reproduce the correct statistics of extreme events. Currently, GCMs are calibrated to
reproduce the observed first and second moments (mean and variance) of the general
circulation of the ocean and atmosphere. Very little is known about the credibility
of GCMs to reproduce non-Gaussian statistics, that is, extreme events.

We conclude that the common methods to study extreme events have some
limitations, and that it is fair to say that until recently the study of extreme
meteorological events has been largely empirical. In particular, there exists no
physical theory on what kind of non-Gaussian PDFs we should expect for cli-
mate variability (we don’t have a null hypothesis for the shape of non-Gaussian
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climate PDFs). Most investigators use observations or model output to estimate
the probabilities of weather and climate extremes without actually addressing
the detailed dynamical-physical reason for the shape of the PDFs beyond the
mathematical arguments of extreme value theory. In addition, many investigators
typically study non-Gaussian statistics in a phase-space spanned by the two or
three leading empirical orthogonal functions (EOFs) (e.g., Mo and Ghil 1988,
1993; Molteni et al. 1990; Corti et al. 1999; Smyth et al. 1999; Monahan et al.
2001; Berner 2005; Berner and Branstator 2007; Majda et al. 2003, 2008; Franzke
et al. 2005). Significant exceptions are White (1980), Trenberth and Mo (1985),
Nakamura and Wallace (1991) and Holzer (1996) who present maps of observed
skewness and (partly) kurtosis of Northern and Southern Hemisphere geopotential
heights. More recently Petoukhov et al. (2008) calculated skewnesses and mixed
third-order statistical moments for observed synoptic variation of horizontal winds,
temperature, vertical velocity and the specific humidity. Again, none of those papers
provide complete dynamical explanations for the observed non-Gaussian structures.
One partial exception is Holzer (1996) who attributes negative midlatitude skewness
bands to the rectification of velocity fluctuations by the advective nonlinearity.
However, the dynamics of the general non-Gaussian structures and extreme events
remain largely unexplained.

7.1.3 Novel Stochastic Approaches to Study Extreme Events

In recent years, new tools that make use of advanced stochastic theory have evolved
to evaluate extreme events and the physics that govern these events (e.g., Berner
2005; Berner and Branstator 2007; Franzke et al. 2005; Majda et al. 2003, 2008;
Monahan 2004, 2006a,b; Peinke et al. 2004; Sura 2003; Sura et al. 2005, 2006; Sura
and Newman 2008; Sura and Sardeshmukh 2008; Sardeshmukh and Sura 2009).
These tools take advantage of the non-Gaussian structure of the PDF by linking a
stochastic model to the observed non-Gaussianity. The novel feature of those models
is that the stochastic component is allowed to be state dependent (or multiplicative).
The physical significance of multiplicative noise is that it has the potential to
produce non-Gaussian statistics in linear systems. Because that phenomenon is the
foundation of this chapter, the basic physical principle is explained first. In Sect. 7.2
we will explore the related mathematics in more detail. Figure 7.1 illustrates the
following discussion, using a non-Gaussian bimodal PDF as an accessible example
(note that in reality we rarely observe bimodal PDFs).

Suppose climate dynamics are split into a slow (i.e., slowly decorrelating)
contribution and a fast (i.e., rapidly decorrelating) contribution; this is an assumption
well known in turbulence theory. The fast part is then approximated as noise. That
is, we consider the dynamics of an n-dimensional system whose state vector x is
governed by the stochastic differential equation (SDE)

dx
dt
D A.x/C B.x/�.t/; (7.1)
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Fig. 7.1 A schematic drawing to illustrate the fundamental dynamical difference between deter-
ministically and stochastically induced PDFs. The effective PDF (denoted P; solid line in lower
panel) of a trajectory in a deterministic double-well potential driven by state-independent (additive)
noise (dashed line in left upper panel) will be bimodal (the potential is denoted V; solid lines in
upper panels). The same effective PDF can be produced by a trajectory in a unimodal potential
forced by state-dependent (multiplicative) noise (dashed line in right upper panel). Because of the
larger noise amplitudes near the center of the monomodal potential, as compared to the strength
of the noise to the right and left, the system’s trajectory is more often found on either side of
the central noise maximum. Thus, the PDF becomes bimodal (non-Gaussian) (Adapted from Sura
et al. (2005))
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where the vector A.x/ represents all slow, deterministic processes. The product
of the matrix B.x/ and the noise vector �.t/, B.x/�, represents the stochastic
approximation to the fast phenomena. The stochastic components �i are assumed
to be independent Gaussian white-noise processes: h�i .t/i D 0 and h�i .t/�i .t 0/i D
ı.t�t 0/, where h: : :i denotes the time average (or, assuming ergodicity, an ensemble
average) and ı Dirac’s delta function. In general, x in Eq. (7.1) will have non-
Gaussian statistics and is, therefore, well suited to study extreme events. This is
well known to be the case if A.x/ is nonlinear, even if B.x/ is constant (i.e., the
noise is state-independent or additive; see left branch of Fig. 7.1). It is also true, yet
less well known, if the deterministic dynamics are linear, represented for example
as A0x with the matrix A0, as long as B.x/ is not constant (i.e., the noise is state-
dependent or multiplicative; see right branch of Fig. 7.1).

Let us look into the physics of each branch in more detail, starting with the left
one. There it is obvious that transitions from one potential well to the other driven
by additive noise will result in a bimodal PDF, as long as the additive noise is not
too strong (in that case we get a monomodal PDF because the potential barrier does
not inhibit the motion of the trajectory). This is not, however, the only dynamical
system which can produce such a PDF. Consider instead a linear system (the right
branch), represented by a unimodal deterministic potential, in which the trajectories
are perturbed by multiplicative noise. Because of the larger noise amplitudes near
the center of the monomodal potential, as compared to the strength of the noise to
the right and left, the system’s trajectory is more often found on either side of the
central noise maximum, and this system will have a bimodal PDF as well. Thus
the same non-Gaussian PDF can result from either a slow (deterministic) nonlinear
dynamical system or a fast (stochastic) nonlinear dynamical system.

There are different ways to study and use Eq. (7.1) to understand non-Gaussian
statistics. One is to derive an SDE of type (7.1), including a nonlinear deterministic
and a multiplicative noise term, directly from the equations of motion. This method
has been pioneered over the last decade by applied mathematicians (e.g., Majda
et al. 2003, 2008; Franzke et al. 2005). It is sometime called the MTV method, after
the names (Majda, Timofeyev, and Vanden-Eijnden) of its proponents (Majda et al.
1999, 2001, 2003). The drawback of this method is, while mathematically rigorous
and scientifically useful, that it requires detailed knowledge of the underlying
equations and processes. It is also unclear if it can be applied to very complex,
state-of-the-art climate models. Most important, the MTV method cannot be used
to analyze observational or model data directly.

That drawback can be overcome by trying to estimate the terms of Eq. (7.1)
directly from data. Unfortunately, it is nontrivial to estimate both the nonlinear
deterministic and multiplicative noise terms for higher (larger than 2) dimensional
systems. However, for 1-d and 2-d systems both terms can be estimated empirically
(e.g., Berner 2005; Berner and Branstator 2007; Crommelin and Vanden-Eijnden
2006; Lind et al. 2005; Siegert et al. 1998; Friedrich et al. 2000; Sura and Barsugli
2002; Sura 2003; Sura and Gille 2003; Sura et al. 2005, 2006; Sura and Newman
2008; Sura and Sardeshmukh 2009). For higher dimensions the multiplicative noise
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term poses the largest problem, whereas the deterministic contribution can still
be empirically estimated using nonlinear regression techniques. Therefore, one
approach is to simply use additive noise, which is relatively easy to estimate, to
close the system. For example, an empirical multivariate nonlinear (with quadratic
nonlinearities) stochastic model with additive (state-independent) noise captures
non-Gaussian tropical SST and extratropical atmospheric variability remarkably
well (Kravtsov et al., 2005, 2010; Kondrashov et al., 2006).

There is a obviously a gap between purely mathematical approaches on the
one hand, and predominantly empirical methods on the other hand. An approach,
introduced by Sura and Sardeshmukh (2008) and Sardeshmukh and Sura (2009),
to study non-Gaussian statistics in climate combines mathematical and empirical
methods in an effort to fill the aforementioned gap. It attributes extreme anomalies
to stochastically forced linear dynamics, where the strength of the stochastic forcing
depends linearly on the flow itself (i.e., linear multiplicative noise). Most impor-
tant, because the theory makes clear and testable predictions about non-Gaussian
variability, it can be verified by analyzing the detailed non-Gaussian statistics
of oceanic and atmospheric variability. In fact, Sura and Sardeshmukh (2008)
and Sardeshmukh and Sura (2009) confirm the multiplicative noise hypothesis of
extreme events for sea surface temperature and atmospheric geopotential height and
vorticity anomalies. The theoretical framework, the observational evidence, and the
implications on how to explore and interpret extreme events in weather and climate
are discussed in the remainder of this chapter.

In Sect. 7.2 the theoretical underpinnings of stochastically describing Gaussian
and non-Gaussian climate variability are presented. The observational evidence for
multiplicative noise dynamics in the ocean and atmosphere (and very briefly, in
plasma turbulence) is discussed in Sect. 7.3. Finally, Sect. 7.4 provides a summary
and discussion of the status quo, focusing on outstanding issues, challenges, and
perspectives of future research on extreme events in weather and climate.

7.2 Theory

7.2.1 Stochastic Dynamics in a Nutshell

This subsection reviews a few basic ideas of stochastic dynamics used in this paper.
More comprehensive treatments may be found in many textbooks (e.g., Gardiner
2004; Øksendal 2007; Paul and Baschnagel 1999; van Kampen 2007; Horsthemke
and Léfèver 1984). As already mentioned in the introduction, we split climate
dynamics into slowly deccorelating deterministic, and a rapidly deccorelating
stochastic component: dx=dt D A.x/CB.x/�.t/. One important step to understand
stochastic dynamics is to first clarify how to interpret this SDE, before introducing
the related equation for the PDF p.x; t/ of the stochastic variable x.t/.



190 P. Sura

7.2.1.1 Interpretation of SDEs

Let us consider, without loss of generality, the stochastic dynamics of a scalar x
governed by

dx

dt
D A.x/C B.x/�.t/; (7.2)

with the delta-correlated white noise �: h�.t/i D 0 and h�.t/�.t 0/i D ı.t � t 0/ (the
n-dimensional case is a simple component-wise extension of the scalar equation; see
Eq. (7.1)). What do we make of this equation? The underlying problem is that, while
the white noise �.t/ is defined for every time t , it is not continuous and, therefore,
not differentiable. This means that, mathematically speaking, the SDE (7.2) is not
well defined. An alternative interpretation is called for. The solution is to interpret
(7.2) in its integral form, and hence expect the noise term to be integrable. That is,
we integrate (7.2) to obtain the integral equation

x.t/ � x.t0/ D
Z t

t0

AŒx.t 0/�dt 0 C
Z t

t0

BŒx.t 0/��.t 0/dt 0; (7.3)

which can be interpreted consistently. In addition, the discontinuous white noise
�.t/ is usually replaced with its continuous integral, the Wiener process W.t/,
given by

W.t/ D
Z t

0

�.t 0/dt 0; (7.4)

or
dW.t/

dt
D �.t/: (7.5)

Informally we may write dW.t/ D �.t/dt , keeping in mind that this expression is
rigorously defined only within an integral. From the definition of the Wiener process
its autocovariance can also be easily calculated: hW.t/W.s/i D min.t; s/. Using
the definition of the Wiener process, the integral equation (7.3) becomes

x.t/ � x.t0/ D
Z t

t0

AŒx.t 0/�dt 0 C
Z t

t0

BŒx.t 0/�dW.t 0/: (7.6)

To summarize, the SDE (7.2) has to be interpreted in its mathematically consistent
integral form. As a reminder of the integral definition, the SDE (7.2) is often
written as

dx D A.x/dt C B.x/dW.t/: (7.7)

The more rigorous (in the Itô sense) integral expression of the increment of the
Wiener process is
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dW.t/ D W.t C dt/�W.t/

D
Z tCdt

0

�.t 0/dt 0 �
Z t

0

�.t 0/dt 0

D
Z tCdt

t

�.t 0/dt 0 : (7.8)

Using this expression we can calculate the autocovariance hdW.t/dW.s/i as

hdW.t/dW.s/i D h
Z tCdt

t

Z sCdt

s

�.t 0/�.s0/ dt 0ds0i

D
Z tCdt

t

Z sCdt

s

h�.t 0/�.s0/i dt 0ds0

D
Z tCdt

t

Z sCdt

s

ı.t 0 � s0/ dt 0ds0

D dt ıt;s; (7.9)

where ıt;s denotes the Kronecker delta. For t D s we obtain hdW.t/2i D dt ,
stating that the variance of white noise (the so called Wiener process W ) scales
with the time increment dt ; in fact, a more detailed discussion would show that
dW.t/2 D dt . That is, the increment of the Wiener process effectively scales withp
dt in contrast to the dt scaling of the deterministic terms. It is this

p
dt scaling

of the stochastic terms that is responsible for the so called stochastic calculus, in
contrast to the dt scaling of the ordinary deterministic calculus.

7.2.1.2 SDE Versus Fokker-Planck Equation

Another important point to bear in mind for the following discussion is that an SDE
describes a single realization of the stochastic trajectory x.t/ governed by the, in
general, n-dimensional SDE dx=dt D A.x/C B.x/�. For sufficiently smooth and
bounded A.x/ and B.x/ the PDF p.x; t/ of the stochastic variable x.t/ is governed
by the corresponding Fokker-Planck equation

@p.x; t/
@t

D �
X
i

@

@xi

2
4Ai C Ǫ

X
j;k

�
@

@xj
Bik

�
Bjk

3
5p.x; t/

C 1

2

X
i;j

@2

@xi@xj
.BBT /ij p.x; t/ ; (7.10)
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which describes the conservation of p.x; t/ under both deterministic and diffusive
influences. Two different values of Ǫ yield two physically important stochastic
calculi: the Itô ( Ǫ D 0) and the Stratonovich calculus ( Ǫ D 1=2). On the right
hand side, the first term within square brackets describes the dynamics of the
deterministic system and is called the deterministic drift. The second term within
square brackets, which does not occur in Itô systems ( Ǫ D 0), is called the
noise-induced drift. The remaining term (i.e., the sum including the derivatives
of .BBT /ij p.x; t/) is associated with the diffusion of the probability density by
noise. For a detailed discussion of stochastic integration and the differences between
Itô and Stratonovich SDEs see for example Gardiner (2004), Øksendal (2007),
or van Kampen (2007). The key point here is that the Stratonovich calculus is
relevant for continuous physical systems, such as the atmosphere, in which rapidly
fluctuating quantities with small but finite correlation times are approximated
as white noise. Thus, simplified stochastic models constructed from atmospheric
dynamical equations may assume Stratonovich calculus. However, if instead a
stochastic model is indirectly estimated from observed discrete data, then the
inferred drift will be the sum of the deterministic and the noise-induced drifts. In
this case using the Itô framework may be preferable, where now A.x/ represents not
just the deterministic drift but rather this sum, or the “effective drift”. For example
(and for future use) in the 1-d case (7.10) simplifies to

@p.x; t/

@t
D � @

@x
Aeffp.x; t/C 1

2

@2

@x2
B2p.x; t/ ; (7.11)

where Aeff is now the effective drift.

7.2.2 Stochastic Dynamics of Climate Variability

Next we outline the basic underlying principle of the stochastic approach to study
climate variability in general, and non-Gaussian statistics and extreme events in
particular. The main point is that we assume that climate dynamics can be split into
a slowly decorrelating contribution and a rapidly decorrelating contribution, and
that the fast part can be approximated as white noise. While this is, at first sight,
an oversimplification, the white noise approximation is appropriate because it is
actually sufficient to require that the fast motions decorrelate more rapidly than the
slow motions. This is the general requirement discussed and used by Hasselmann
(1976) (see Sect. 2.3 below). Note that the decomposition into fast and slow modes is
also a common approximation made in turbulence theory (e.g., Monin and Yaglom,
1971, 1975; Pope, 2000).

Thus the starting point is again Eq. (7.1). We now define B.x/ � B.x/� (to use
the vector/matrix form of the coming expansion), let x D hxi C x0, and linearize
around the basic state hxi through a Taylor expansion to get
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dx0

dt
D JA.hxi/x0C B.hxi/C JB.hxi/x0 � hJB.hxi/x0i C r ; (7.12)

with the Jacobian Jf .hxi/ (for the function f.x/) evaluated at hxi and assuming that
the tendency of the mean is forced by the deterministic drift of the mean, d hxi=dt D
A.hxi/. Because the time mean of the multiplicative noise term hJB.hxi/x0i is, in
general, not zero we have to introduce an additional mean forcing �hJB.hxi/x0i to
ensure that hx0i D 0. We also included a supposedly small residual r, representing
the higher-order terms of the Taylor expansion and all other neglected phenomena.
Thus, although the governing equations for weather and climate are nonlinear, for
many applications the anomalies are well approximated by a linear SDE of the
general component form

dxi

dt
D Aij xj C .Gip C Eijpxj /�p �Di C ri ; (7.13)

where we dropped the primes, lumped together all the derivatives and coefficients
into new matrices and tensors, and used Einstein’s summation convention (sum
over repeated indices) to highlight the functional form of, specifically, the noise
terms. Therefore, besides the linear deterministic term Aij xj , Gip�p represents
the additive (state-independent), and Eijpxj �p the multiplicative (state-dependent)
noise contribution. Note that the additive and multiplicative noise terms are
correlated because each term is multiplied by the same noise �p . In addition, Di

represents the correlations of the noise forcing with the state variable itself (the
“noise-induced drift” in Stratonovich systems), which can be shown to be related to
the noise parameters as Di D �.1=2/EijpGjp (e.g., Sardeshmukh and Sura, 2009).

Equation (7.13) without multiplicative noise (i.e., Eijp D 0) already plays a
central role in studying climate variability. For example, the matricesAij andQij D
GimGjm (the product of Gim with its transpose) can be estimated directly from
data. This technique is called linear inverse modeling and has been successfully
applied to study many climate phenomena (e.g., Penland 1989; Penland and Ghil
1993; Penland and Matrosova 1994; Penland and Sardeshmukh 1995; Winkler et al.
2001). In addition, dynamical studies of quasigeostrophic turbulence often rely on
multivariate linear models with additive noise (e.g. Farrell and Ioannou 1995, 1996;
Whitaker and Sardeshmukh 1998; DelSole 2004). While the multivariate linear
models with additive noise are very useful for many applications, they have one
inherent shortcoming: they can only represent Gaussian statistics (Gardiner, 2004)
and are, therefore, more often than not inconsistent with observations (we will
present and discuss several examples in Sect. 7.3).

This brings us to the main theme of this chapter. In the general case with
multiplicative noise (i.e., Eijp ¤ 0) Eq. (7.13) will exhibit non-Gaussian statistics.
In the remainder of this chapter we will discuss the non-Gaussian statistics
of (7.13) and compare those with observations. As we will see, recent detailed
studies demonstrated that certain types of observed non-Gaussian statistics are
consistent with linear stochastically forced dynamics with correlated additive and
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multiplicative (CAM) noise forcing. The consistency follows from the fact that the
PDF and closed expressions for the moments, such as skewness and kurtosis, can be
analytically derived from the stationary Fokker-Planck equation for a system such
as (7.13). In particular, for a variable x (with zero mean and standard deviation �)
drawn from such a PDF p.x/ we obtain

• The striking property that the (excess) kurtosisK � hx4i=�4�3 is always greater
than 1.5 times the square of the skewness S � hx3i=�3 (minus an adjustment
constant r , discussed later), K � .3=2/S2 � r ;

• Power-law tails p.x/ / x�˛ (with the power-law exponent ˛) for large˙x.

Remember that skewness represents the asymmetry of a PDF. It is positive if the
right tail contains more data than the left tail, and negative if the opposite is true.
Symmetric distributions, such as the classic Gaussian, have zero skewness. Kurtosis
measures the probability (fatness) in the tails of a distribution. The definition of K
here is sometimes referred to as “excess kurtosis”, because we have subtracted 3,
corresponding to the kurtosis for a Gaussian distribution. Here we exclusively use
“excess kurtosis” in most calculations and plots, and simply call it “kurtosis” most
(but not all) of the times. Thus, in this paper “excess kurtosis” and “kurtosis” are
equivalent. (Only in one later example (Fig. 7.15) “excess kurtosisC3” is used and
denoted by QK.)

Remarkably, the theoretically derived K-S inequality and the power-law be-
havior is found to be consistent with observed non-Gaussian variability of many
variables in the ocean and the atmosphere. However, before we move on to present
the theoretical foundation and the related observations in some detail, we will briefly
rehash the theory of the Gaussian model (Hasselmann’s paradigm), as it facilitates
the understanding of the non-Gaussian extension.

7.2.3 Stochastic Models of Gaussian Variability: Hasselmann’s
Paradigm and the Red Climate Spectrum

Hasselmann (1976) uses the univariate version of (7.13) with additive noise as the
simplest quantitative model of climate variability:

dx

dt
D ��x C �� ; (7.14)

where x represents the “slow” climate driven by “fast” weather noise ��. Here � is
a positive damping constant, and � denotes the constant amplitude of the Gaussian
white-noise forcing �, satisfying h�.t/i D 0 and h�.t/�.t 0/i D ı.t�t 0/. From (7.14)
it is straightforward (e.g., Gardiner 2004; Paul and Baschnagel 1999, or see the
discussion below) to calculate the autocorrelation function �.t 0/ for lag t 0,

�.t 0/ D hx.t/x.t C t
0/i

hx2i D exp.�t 0�/ ; (7.15)
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Fig. 7.2 Spectral input G.!/ and response F.!/ of a stochastically forced univariate (single
component) climate model with additive noise, where ! denotes the angular frequency. The forcing
G.!/ has to be white only below a cut-off frequency !y D 1=�y . The high-frequency part of the
forcing can have any spectral form

and hx2i D �2=2�. This is a substantial result because we now know the most
important and commonly used characteristic of climate variability, namely the
frequency spectrum F.!/ (where ! denotes the angular frequency). Recall that
the spectrum is defined as the Fourier transform of the autocovariance function
�.t/ D hx2i�.t/. The Fourier transform of common functions is tabulated. For
example, if �.t/ D ı.t/ (autocovariance of white noise), then its Fourier transform
F.!/ D const . That is, white noise has a flat spectrum: every frequency has the
same weight. If �.t/ D hx2i exp.�t �/ (autocovariance of (7.14), see above), then
F.!/ / 1=.!2 C �2) and the response has a very different character from that of the
white-noise forcing. We see that !c D � defines a critical frequency. At frequencies
! > !c the response to white-noise forcing decreases rapidly with frequency. On the
other hand, at frequencies ! < !c the response levels out and becomes independent
of !. It is called a red-noise spectrum because there is more power in lower
frequencies (as in the electromagnetic spectrum of red light). This simple model is
the generally accepted paradigm of how inertia introduced by sluggish elements of
the climate system damps high frequencies to yield a slowly decorrelating response.
This is sometimes called a “reddening” of the spectrum of climate variability. The
universal spectral forcing G.!/ and response F.!/ representation of the stochastic
climate model is summarized in Fig. 7.2. Note that, in general, the forcingG.!/ has
to be white only below a cut-off frequency !y D 1=�y . The high-frequency part of
the forcing can have any spectral form. The relevance of this simple model is, of
course, that it explains the ubiquitous red spectrum of many climate time series.
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Besides the spectrum we can also easily derive the steady-state PDF p.x/ of x
governed by (7.14). The related time-independent Fokker-Planck equation is

d

dx
� x p.x/C 1

2

d2

dx2
�2 p.x/ D 0: (7.16)

It is straightforward to verify that the solution is a centered Gaussian distribution
with variance hx2i D �2=2�,

p.x/ D 1p
2
 .�2=2�/

exp



� x2

2 .�2=2�/


: (7.17)

Therefore, while Hasselmann’s paradigm is successful in explaining the ubiquitous
red spectrum of climate variability, it fails to account for observed non-Gaussian
statistics. At this point the thoughtful reader may object that perhaps the stochastic
forcing is non-Gaussian itself, inducing a non-Gaussian response in x. While this
is, of course, the obvious question to ask, a simple scaling argument shows that
non-Gaussian additive noise alone has no significant effect on the distribution of x.
For reasonable climate applications we can assume that � is a small parameter
(representing slowly decorrelating, i.e., low-frequency climate variability), over-
shadowed by a strong stochastic forcing of amplitude � . That means, in a first-order
approximation the evolution of x is, on short timescales, given by dx=dt � �� so
x �P ���t , and the central limit theorem applies. In other words, for sufficiently
small �, non-Gaussian additive noise will result in a close to Gaussian distribution
of x. It is easy (and instructive) to verify this simple scaling argument with
numerical integrations of (7.14) with a strongly non-Gaussian stochastic forcing.
The bottom line is that, while the linear model with additive noise (7.14) is very
useful as a paradigm for the general shape of observed climate spectra, it fails
to explain non-Gaussian statistics. As we will see now, this shortcoming can be
addressed by considering multiplicative noise models.

7.2.4 Stochastic Models of Non-Gaussian Variability: A Null
Hypothesis for the Statistics of Extreme Events

Let us restate the question. How can we extend Hasselmann’s paradigm (or null
hypothesis) for climate variability to include non-Gaussian statistics? One obvious
approach is to retain the, so far neglected, multiplicative noise contribution in
Eq. (7.13). Thus we take the univariate version of (7.13) as a physically plau-
sible null hypothesis for non-Gaussian climate variability; as we will see in
Sect. 7.3, observations support this approach. Therefore, the starting point is the
1-d Stratonovich SDE

dx

dt
D �Q�x C � x F 0 C F 0 CR0 � � hxF 0i; (7.18)



7 Stochastic Models of Climate Extremes: Theory and Observations 197

with the effective drift �Q�, a constant �, and the Gaussian white-noise forcing
terms F 0 and R0 with amplitudes �F 0 and �R0 : hF 0.t/F 0.t 0/i D .�F 0/2ı.t � t 0/
and hR0.t/R0.t 0/i D .�R0/2ı.t � t 0/. The effective drift equals the sum of the
deterministic drift and the noise-induced drift:�Q� D ��C .1=2/.��F 0/2. Note that
we changed the nomenclature of the noise to F 0 andR0 (from � used beforehand) to
clearly distinguish between the correlated additive and multiplicative (CAM) noise
forcing .� x C 1/F 0 and the purely additive noise residual R0.

Equation (7.18) is a natural extension of Hasselmann’s paradigm (7.14), adding
a correlated linear state-dependent noise term to the traditional state-independent
one. It is this CAM noise term that is responsible for the specific non-Gaussian
statistics of our stochastic model (7.18). Before we move on to discuss the non-
Gaussian statistics, let us answer another important question. Will our CAM noise
model (7.18) still generate a red spectrum? Remember that the main success of the
Hasselmann model (7.14) is that it explains the ubiquitous red spectrum of many
climate time series. The answer is yes because (7.18) still has an exponentially
decaying autocorrelation function �.t/ D exp.�t Q�/. The only difference to the
autocorrelation function (7.15) of Hasselmann’s additive noise model is that the
decay time is now given by the inverse of the effective drift, and thus is now 1= Q�.
This can be easily seen by calculating the ensemble average of x from (7.18) for a
given initial condition x.0/:

hx.t/i D x.0/ exp.�t Q�/: (7.19)

If we now multiply by x.0/ and average over initial conditions we get

hx.t/x.0/i D hx.0/2i exp.�t Q�/; (7.20)

and the autocorrelation function becomes

�.t/ D exp.�t Q�/: (7.21)

Therefore, the spectrum of x governed by (7.18) has the characteristic form F.!/ /
1=.!2C Q�2/, and the introduction of CAM noise does not alter the spectral behavior
of Hasselmann’s paradigm. As we will see next, however, CAM noise significantly
alters the PDF of the stochastic null hypothesis.

7.2.4.1 Skewness-Kurtosis Link

For x governed by (7.18), the Fokker-Planck equation for the stationary PDF p.x/
may be written

d

dx
Q�x p.x/C 1

2

d2

dx2

�
.�2F 0C�2R0C�2 �2F 0 x

2C2 � �2F 0 x/p.x/
	 D 0: (7.22)
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Equations for the moments can be obtained by multiplying (7.22) by powers of
x and integrating by parts. This yields hxi D 0 for the first moment, and for the
second, third, and fourth moments we get

hx2i D .�2F 0 C �2R0/

Œ2 Q� � .��F 0/2�
;

hx3i D 2��2F 0hx2i
Œ Q� � .��F 0/2�

;

hx4i D Œ3��2
F 0hx3i C .3=2/.�2F 0 C �2R0 /hx2i�

Œ Q� � .3=2/.��F 0/2�
: (7.23)

Note that for � > 0 the additive and multiplicative noises are positively correlated
(have the same sign), resulting in positive skewness of x. For � < 0 the reverse is
true, and for no multiplicative noise at all (� D 0/ x obeys, of course, Gaussian
statistics. Using the definitions of skewness S � hx3i=�3 and kurtosis K �
hx4i=�4 � 3 (for an x with zero mean and standard deviation � D phx2i) we
can derive the relationK D AS2 C B , with

A D 3

2

h
�Q�C .��F 0/2

i
h
�Q�C .3=2/.��F 0/2

i ; (7.24)

and

B D 3
h
�Q�C .1=2/.��F 0/2

i
h
�Q�C .3=2/.��F 0/2

i � 3: (7.25)

For stable conditions this results in the general relation between skewness and
kurtosis

K � 3

2
S2; (7.26)

where we used the fact, that, for the fourth moment to exist, there is an upper
limit for the strength of the multiplicative noise: .��F 0/2 < .2=3/ Q�. Note that for
weak multiplicative noise we obtain the equality K � .3=2/S2, and that the weak-
multiplicative-noise approximation is not equivalent to having no multiplicative
noise at all. For vanishing multiplicative noise S D 0, andK D AS2CB collapses
to K D 0.

Above we already mentioned that the CAM noise parabola might include a small
vertical offset: K � .3=2/S2 � r , with the positive constant r . We now briefly
discuss the dynamical reason for this offset. Sardeshmukh and Sura (2009) showed
that the above-mentioned one-dimensional model becomes progressively better at
representing higher-order statistics of multivariate systems through a principle of
increasing “diagonal dominance” in the higher-order moment equations. Diagonal
dominance refers to the progressively greater importance of the self-correlation
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terms in the higher-order moment equations of multivariate systems. In physical
terms this means that local correlations are dominating the moment equations, while
spatial correlations over long distances are less important. That makes sense for
rapidly varying high-amplitude day-to-day atmospheric variability, as long as we are
neglecting low-frequency (and amplitude) teleconnection patterns in our first-order
approximation. The increasing importance of self-correlation terms in the higher-
order moment equations is the basic reason for the relevance of the one-dimensional
model in the dynamics of the higher-order moments even in multivariate systems.
The diagonal dominance of the higher-order moment equations now helps explain
the vertical offset relative to the prediction of the one-dimensional theory. The
key to understanding this, qualitatively, is to recognize that diagonal dominance is
stronger for the higher moments. That is, the error we make using a one-dimensional
system to approximate a multivariate system is largest for the second moment
(the mean is zero by construction of our anomaly equations), and successively
smaller for the higher moments. In addition, since the multivariate system has
larger variance, we know the sign of the error we make in the second moments
by using a univariate system to approximate a multivariate system. This relies on
the fact that a linear operator A is, in almost all geophysical contexts, a “non-
normal” (here “non-normal” refers to the non-orthogonality of the eigenfunctions
of A and should not be confused with non-Gaussianity) that does not commute
with its transpose. This non-normality of the linear dynamical system leads to a
greater variance of x than for a “normal” A with the same eigenvalues (Ioannou
1995); a one-dimensional system is, of course, always “normal”. In most cases, this
non-normality is associated with the ability of anomalies to draw energy from a
background state, of which there is pervasive evidence and which is indeed one of
the cornerstones of dynamical meteorology and oceanography. Now it can be seen
from the definition of kurtosis, K D hx4i=�4 � 3, that an increased variance in
combination with a negligible error in the fourth moment will lead to a decrease of
K: the parabola is effectively shifted downward. Therefore, the multivariate system,
results in an inequalityK � .3=2/S2 � r , with a small positive constant r .

Before we move on to discuss the PDF of CAM noise dynamics, let us extract the
physical significance of the skewness-kurtosis link. For our purpose the key point to
recognize is that the constraint K � .3=2/S2 � r is stronger than the lower bound
for data drawn from any PDF, where K � S2 � 2 (e.g., Wilkins 1944). Another
general constraint states that for a unimodal PDF (i.e., a distribution with a single
peak), K � S2 � 186=125 � S2 � 1:5 (Klaassen et al. 2000). Thus the factor 3=2
is clearly due to the presence of the CAM noise forcing, and will be used to identify
CAM noise dynamics in the climate system. While the K-S link can be used to
identify CAM noise dynamics, for the study of extreme events the knowledge of the
tail of a PDF is more crucial. As we will see next, CAM noise systems will produce
power-law tails. This is important because power-law tails are very closely related
to our discussion of non-Gaussian statistics (i.e., extreme events) as power-law tails
decay much slower than the tails of Gaussian PDFs. In fact, power-law PDFs are
often considered an archetype for the statistics of extreme events (e.g., Newman
2005; Taleb 2010).
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7.2.4.2 PDF and Power-Law Tails

Besides being used to obtain the moments, the Fokker-Planck equation (7.22) can
also be analytically solved for the full PDF p.x/ (e.g., van Kampen 2007; Müller
1987; Sardeshmukh and Sura 2009). After one integration we obtain

Q�x p.x/C 1

2

d

dx

�
.�2F 0 C �2R0 C �2 �2F 0 x

2 C 2� �2F 0 x/p.x/
	 D const: � 0;

(7.27)

where the constant of integration has to be zero to fulfill the boundary conditions
of vanishing probability at x D ˙1. It is now straightforward to verify that the
solution of (7.27) is

p.x/ D N
h
.��F 0 xC�F 0/2C�2R0

i�.Q�=�2�2
F 0

C1/
exp

"
2 Q�

�2�F 0�R0

arctan

�
��F 0 xC�F 0

�R0

�#
;

(7.28)

with the normalization constant N . The PDF (7.28) is clearly skewed if CAM
noise is present, whereas for vanishing multiplicative noise it becomes Gaussian.
In addition to skew, (7.28) has power-law tails with exponent ˛,

˛ D 2
 Q�
�2�2F 0

C 1
!
; (7.29)

because for large magnitudes of x we get p.x/ / x�˛ . That is, besides the
skewness-kurtosis link, another important result is that Eq. (7.18) will produce
power-law tails. The exponent (7.29) tells us to expect heavier tails (smaller ˛) for
a weaker damping (or stronger multiplicative noise forcing �2�2F 0 ) and vice versa.

That the CAM noise system (7.18) will produce power-law tails can also be
directly seen from the Fokker-Planck equation (7.27) without having the general
solution (7.28). For large x and small noise amplitudes (i.e., keeping only the
quadratic term) the Fokker-Planck equation (7.27) simplifies to

Q�x p C 1

2

d

dx
.�2 �2F 0 x

2 p/ D 0: (7.30)

Using the power-law ansatz p.x/ / x�˛ one easily finds that p.x/ is a solution
of (7.30) if ˛ D 2. Q�=�2�2F 0 C 1/. It should be noted, though, that the limit of very
small �2�2F 0 (resulting in ˛ !1) is not allowed within the approximation we made
to simplify the Fokker-Planck equation: �2�2F 0 ! 0 counteracts the approximation
of large x. The limit �2�2F 0 ! 0 simply means that the multiplicative noise is
negligible, and the PDF p.x/ becomes Gaussian.
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7.2.4.3 Synthesis

To summarize our hitherto discussed results, a CAM noise SDE of type (7.18)
is potentially a good candidate to explain non-Gaussian statistics of weather and
climate phenomena because (7.18) is derived as a simple Taylor expansion from
a very general dynamical system (7.1). Therefore, we have reason to believe that
the statistics of observed climate variability might be, approximately, explained by
multiplicative noise dynamics. In fact, as we will see in Sect. 7.3, many relevant
weather and climate phenomena in the atmosphere and ocean follow the statistics
(S -K constraint and power-law tails) predicted by (7.18), strongly suggesting the
relevance of CAM noise dynamics in statistically explaining extreme events in
weather and climate. At this point we are not aware of another dynamical mech-
anism capable of producing the constraint skewness-kurtosis linkK � .3=2/S2� r
and power-law statistics p.x/ / x�˛ for large˙x.

7.3 Observations and Applications

In this section we present and discuss recent observational examples and applica-
tions of our non-Gaussian stochastic framework. We will see that several relevant
weather and climate phenomena in the atmosphere (Sardeshmukh and Sura 2009;
Sura 2010; Sura and Perron 2010) and ocean (Sura and Sardeshmukh 2008; Sura
and Gille 2010) conform to the non-Gaussian skewness-kurtosis and power-law
statistics predicted by (7.18), allowing us to attribute the statistics of extreme events
to a correlated additive and multiplicative noise forcing. We will also briefly discuss
the successful application of non-Gaussian stochastic dynamics to other fields such
as plasma turbulence (Krommes 2008; Sandberg et al. 2009), pointing to the general
character of our theory.

7.3.1 Oceanic Examples

7.3.1.1 Sea Surface Temperature

We start with the discussion of sea surface temperature (SST) because Hasselmann’s
Gaussian stochastic climate model (7.14) was tested (and also inspired) using
SST variability (Frankignoul and Hasselmann 1977). The high-resolution (daily,
on a 0.25-degree latitude/longitude grid ) observational dataset used by Sura and
Sardeshmukh (2008) consists of a blended analysis of daily SST fields based
on infrared satellite data from the Advanced Very High Resolution Radiometer
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Fig. 7.3 Skewness and kurtosis of daily SST anomalies (1985–2005) for extended winter
(Adapted from Sura and Sardeshmukh (2008))

(AVHRR) and in situ data from ships and buoys, and is compiled and provided
by Reynolds et al. (2007). A more detailed description of the dataset and analysis
procedure can be found in Reynolds et al. (2007). In Sura and Sardeshmukh (2008)
21 years of daily SST data (January 1985 to December 2005) were used, and
anomalies were calculated by subtracting the daily climatology and linear trend
from the full daily values. Then the extended summer (May-October) and extended
winter (November-April) seasons were analyzed.

The skewness (upper panel) and kurtosis (lower panel) of extended winter SST
anomalies are shown in Fig. 7.3. Note again that we are using “excess kurtosis” in
most calculations and plots, and simply call it “kurtosis” most of the times. Results
for the extended summer season look very similar and are, therefore, not shown
here (but can be found in Sura and Sardeshmukh 2008). In fact, here we are not so
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Fig. 7.4 Scatter plot of
excess kurtosis versus
skewness for full-year SST
anomalies equatorward of
65ı North and South. The
solid line denotes the function
K D .3=2/S2 . The estimated
local 95 % confidence
intervals on the values are
indicated in the upper right
corner of the figure (Adapted
from Sura and Sardeshmukh
(2008))

much interested in the rich spatial structure but the global skewness-kurtosis link.
Figure 7.4 shows a scatterplot of kurtosis as a function of skewness for all data points
equatorward of 65ı North and South for extended summer and winter. The solid
line in Fig. 7.4 clearly shows a parabolic bound on kurtosis in the SST data: K �
.3=2/S2 (while many points fall outside the bound, they do so within the error bars).
Thus, the distribution of SST anomalies is obviously (and statistically significant)
non-Gaussian and also follows our analytically derived constraint (7.26).

What about the predicted power-law tails? In Fig. 7.5 we present two repre-
sentative examples from locations with strong skewness and kurtosis (taken from
Sura 2010). The sample time series are full year SST anomalies from a location
off Cape Hatteras (35ıN, 75ıW), presented in the upper row, and a location in
the North Atlantic Current (40ıN, 50ıW), presented in the bottom row. The PDFs
are presented on a log-log scale to highlight the scaling properties of the data. For
example, a highly non-Gaussian power-law tail (that is, a PDF P.x/ / x�˛ with the
exponent ˛) will appear as a straight line on a log-log plot. Because of the log scale
on the x-axis absolute SST anomalies jT 0j are presented. In addition, because the
emphasis is on extreme events, the center of the PDFs (˙ one standard deviation)
is not shown. Thus, the tails of the PDFs of negative/positive SST anomalies at
Cape Hatteras are shown from left to right in the upper row, and the PDFs of
negative/positive SST anomalies in the North Atlantic Current are shown from
left to right in the bottom row of Fig. 7.5. In all plots the solid line denotes a
Gaussian distribution. Note the distinct heavy-tail power-law behavior for negative
anomalies giving rise to negative skewness. However, even the positive anomalies
follow a power-law (weaker than Gaussian, though). The straight dashed lines are
maximum likelihood estimates of the power-law behavior (given by the power-law
exponent˛ also included in each plot) above a systematically estimated lower bound
jT 0jmin. The lower bounds jT 0jmin are shown by the dotted-dashed vertical lines.
The procedure to estimate the power-law parameters and the related goodness-of-fit
test (a Monte-Carlo approach using Kolmogorov-Smirnov statistics) are described
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Fig. 7.5 Log-log scale PDFs (circles) of absolute values jT 0j of full year (left) negative and (right)
positive SST anomalies (upper row) off Cape Hatteras (35ıN, 75ıW) and (lower row) in the North
Atlantic Current (40ıN, 50ıW). The straight dashed lines are Maximum Likelihood Estimates of
the power-law behavior and the solid lines denote Gaussian distributions. The lower bounds of the
power-law scaling are shown by the dotted-dashed vertical lines (Adapted from Sura (2010))

in Clauset et al. (2009) and Sura (2010). Here it is sufficient to know that in all
cases the power-law hypotheses are statistically significant (cannot be rejected) and
that, therefore, we conclude that PDFs of anomalous SST variability in the Gulf
Stream system indeed obey a power-law. At other locations around the globe we
also observe power-law statistics (Sura 2010).

To summarize, we have ample evidence to attribute non-Gaussian SST statistics
to a correlated additive and multiplicative noise forcing. While, in Sect. 7.2, we
predominantly used mathematical arguments to justify the CAM noise equation
(7.18), in the case of SST variability the physical aspect of the state-dependent noise
forcing is easy to understand. If we (realistically) assume that SST variability is
mainly driven by the vertical heat flux FQ through the air-sea boundary, the typical
bulk heat flux parameterization takes the form FQ D ˇ.To � Ta/jUj (positive flux
upward), where To and Ta are the sea surface and air temperatures, respectively. jUj
is the wind speed, and ˇ is a positive parameter including the densities of seawater,
air, specific heats, the Bowen ratio, mixed-layer depth, and other physical processes.
That is, the local rate of change of To is given by

@To

@t
D FQ; (7.31)
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where FQ is a function of location and time. For small sea surface temperature
anomalies T 0

o a Taylor expansion of the heat flux FQ with respect to To D T o C T 0
o

yields
@T 0

o

@t
D @F Q

@To
T 0
o C

@F 0
Q

@To
T 0
o C F 0

Q CR0; (7.32)

where it is assumed that the evolution of the mean temperature T o is balanced by
the mean heat flux FQ, using FQ D FQCF 0

Q, and that the derivative is evaluated at

T o. We also added a residual term R0 to represent higher-order terms of the Taylor
expansion and other processes not included in our simple picture. In addition we
use FQ D ˇ.Ta � To/jUj and F 0

Q D ˇ.Ta � To/jUj0, allowing for rapidly varying,
effectively stochastic, wind speed fluctuations jUj0. In other words, it is assumed that
jUj0 can be approximated by Gaussian white noise. This assumption is reasonable
since daily wind speed anomalies are almost uncorrelated and have a distribution
that is nearly Gaussian (Sura et al. 2006). For example, at Ocean Weather Station
P (in the Gulf of Alaska; 50ıN, 145ıW; 1949–1981) wind speed anomalies are
almost uncorrelated after 2–3 days (Fig. 7.6a) and deviations from Gaussianity are
relatively small (Fig. 7.6b). Note that the mean SST To is still allowed to vary
very slowly. We then obtain @FQ=@To D �ˇjUj and @F 0

Q=@To D �ˇjUj0, or,

equivalently, @FQ=@To D �ˇjUj D �ˇ.jUj C jUj0/. It is the constant term that
justifies the introduction of the constant feedback parameter �� in the general
formulation (7.14). However, the rapidly varying term @F 0

Q=@To cannot be neglected
as done in many studies (e.g., in Frankignoul and Hasselmann 1977). Therefore,
if we allow for rapidly varying, effectively stochastic, winds we immediately see
that the rapid wind component multiplies the slowly varying SST, giving rise to
an effectively multiplicative noise forcing. In fact, we recover the by now familiar
CAM noise equation (7.18) (Sura and Newman 2008; Sura and Sardeshmukh
2009; Sura 2010). Therefore, in the SST case the CAM noise predominantly (but
not exclusively) originates from rapidly varying winds forcing the turbulent heat
flux through the air-sea interface. In strong currents like the Gulf Stream random
advection by surface currents plays a (mathematically) similar role.

7.3.1.2 Sea Surface Height

Next we consider sea surface height (SSH) anomalies along the TOPEX/Poseidon
satellite altimeter ground tracks. We use data distributed by Archiving, Validation
and Interpretation of Satellite Oceanographic (AVISO) that are archived at regular
10 km intervals along satellite ground tracks, with standard tidal and atmospheric
corrections applied. Here we analyze data from 25 September 1992 to 11 August
2002, corresponding to the duration of the TOPEX/Poseidon mission along its
original ground tracks. We subtract the time mean from each observation, so that
at each measurement point SSH anomalies have a zero mean.
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a

b

Fig. 7.6 (a) Autocorrelation function and (b) PDF of daily wind speed anomalies (m/s) at Ocean
Weather Station P (Gulf of Alaska; 50ıN, 145ıW; 1949–1981). In (b) the PDF is denoted by
steps. The dashed line is the related Gaussian distribution, whereas the boxes denote deviations
from Gaussianity (Adapted from Sura et al. (2006))

At first sight, it seems very likely that SSH and SST dynamics should be governed
by similar stochastic dynamics, because surface quasigeostrophic (SQG) theory
predicts that both quantities should resemble each other on oceanic mesoscales
(approximately < 400 km) (e.g., Lapeyre and Klein 2006; Isern-Fontanet et al.
2008). For example, we might expect skewness maps of SSH and SST to be almost
identical on scales of meandering boundary current systems, such as the Gulf



7 Stochastic Models of Climate Extremes: Theory and Observations 207

Fig. 7.7 (a) Skewness from TOPEX/Poseidon mission, computed for each data point along
ground tracks. (b) Excess kurtosis, similarly computed along TOPEX/Poseidon ground tracks.
(c) Skewness from full-year sea surface temperature anomalies, computed from daily Reynolds
data (Adapted from Sura and Gille (2010))

Stream, with first baroclinic Rossby radii smaller than 400 km. (Note that the typical
Rossby radius in the Gulf Stream system is about 50–100 km, and the typical width
of the Gulf Stream is of the same order.) However, as we will see, a comparison of
SSH and SST skewness maps in those regions shows that their spatial distributions
are not identical on those scales. This implies that the non-Gaussian extremes of
SSH and SST variability are driven by different physical processes, and we have no
a priori reason to expect the non-Gaussian statistics of SSH and SST to be governed
by similar dynamics.

Figure 7.7a shows skewness, and Fig. 7.7b shows kurtosis of SSH. In some
regions, the SSH maps show structures that resemble skewness and kurtosis maps
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Fig. 7.8 Scatter plot of
skewness versus excess
kurtosis for sea surface
heights measured by the
TOPEX/Poseidon mission.
Dots come from all latitudes
and longitudes. The dotted
line indicates the theoretical
lower bound for any PDF, the
dashed line indicates the
theoretical lower bound for a
unimodal PDF, and the solid
line corresponds to
K D .3=2/S2 � 1:5. The
error bars in the upper part of
the figure denote the standard
errors in K and S (Adapted
from Sura and Gille (2010))

produced for SST anomalies discussed above and shown in Fig. 7.3; see Fig. 7.7c for
full-year SST skewness. Nevertheless, in dynamically active regions of meandering
jets (with first baroclinic Rossby radii smaller than 400 km) such as the Gulf
Stream, the Kuroshio Extension, and the Agulhas Retroflection, SSH skewness
forms a dipole pattern, with negative values on equatorward sides of frontal features
and positive values on poleward sides. As explained by Thompson and Demirov
(2006), this structure is consistent with the fact that these fronts are meandering
jets. In contrast, SST anomalies show a very different tripole pattern, with negative
skewness in the mesoscale (or Rossby radius scale) core of the current, sandwiched
between regions of positive skewness (for details, see Sura 2010; Sura and Gille
2010). The related SSH skewness-kurtosis scatterplot is presented in Fig. 7.8. The
solid line denotes the limit of K � .3=2/S2 � 1:5. Note that the theoretical lower
bound for any PDF, K � S2 � 2, is included as the dotted line, and that the dashed
line indicates the theoretical lower bound for a unimodal PDF, K � S2 � 1:5.
Presumably, the larger vertical offset of the skewness-kurtosis bound for SSH
anomalies, as compared to SST, is due to the fact that SSH variability is impacted
more strongly by non-local effects.

As before for SST (Fig. 7.5), we also present PDFs for two representative regions
within the ocean interior and two areas within the Agulhas region (Fig. 7.9). In the
ocean interior we contrast an area with weak positive skewness (Interior I: 25.0–
30.0ıS, 350.0–360.0ıE; Fig. 7.9a) against an area with strong negative skewness
(Interior II: 35.0–40.0ıS, 320.0–330.0ıE; Fig. 7.9b). In the Agulhas region we
compare an area with strong positive skewness (Agulhas I: 40.0–45.0ıS, 10.0–
20.0ıE; Fig. 7.9c) to an area with strong negative skewness (Agulhas II: 34.8–3.5ıS,
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Fig. 7.9 Log-log scale PDFs of the absolute values jh0j of positive (triangles) and negative
(circles) normalized SSH anomalies in four different regions. (a) Interior I: 25.0–30.0 ıS,
350.0–360.0 ıE. (b) Intererior II: 35.0–40.0 ıS, 320.0–330.0 ıE. (c) Agulhas I: 40.0–45.0 ıS, 10.0–
20.0 ıE. (d) Agulhas II: 34.8–36.5 ıS, 23.0–26.1 ıE. The straight dashed lines are Maximum
Likelihood Estimates of the power-law behavior, and the solid lines denote Gaussian distributions
(Adapted from Sura and Gille (2010))

23.0–26.1ıE; Fig. 7.9d). Height anomalies within each box are normalized by their
standard deviation, and PDFs are plotted on log-log scales. In Fig. 7.9 positive
and negative normalized height anomalies h0 are indicated by triangles and circles,
respectively. Because the emphasis is on extreme events, the center of the PDFs (˙
one standard deviation) is not shown. In fact, the center of the PDFs is close to being
Gaussian, consistent with previous studies of SSH and geostrophic velocities. In all
plots the solid line denotes a Gaussian distribution. The straight dashed lines are
Maximum Likelihood Estimates of the power-law behavior (given by the exponent
˛) above a systematically estimated lower bound jh0jmin. The tails decay linearly
in large regions of the PDF domain, providing compelling evidence for power-
law behavior of SSH variability. However, the power-law scaling is not constant
throughout the PDF domain, but instead shows an approximately piecewise linear
behavior (in log-log coordinates). That means that the PDFs show a different scaling
above a certain value of h0 (a scale break) in some PDFs. Nevertheless, in all cases
the power-law behavior above a scale break is statistically significant as tested by
Kolmogorov-Smirnov statistics. The different scalings may point to mechanisms not
included in our simple model.
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The bottom line is that the tails of SSH variability approximately follow a
power-law distribution. This, together with the observed skewness-kurtosis link,
allows us to also attribute non-Gaussian SSH statistics to a correlated additive and
multiplicative noise forcing. Because we have different scalings of the power-law,
the attribution is, however, only a first-order approximation. Yet it is astonishing that
the basic non-Gaussian features of SSH variability can be captured by our simple
CAM noise model. The fundamental reason is, of course, that the CAM noise model
is a linearization of a more general stochastic-dynamical system.

7.3.2 Atmospheric Examples

We will now turn our attention to the atmosphere, presenting non-Gaussian at-
tributes from daily National Centers for Environmental Prediction (NCEP)-National
Center for Atmospheric Research (NCAR) reanalysis data. Here we focus on the dy-
namically relevant variables: relative vorticity, potential vorticity, and geopotential
height. Anomalies were calculated by subtracting the daily climatology and linear
trend from the daily averages.

Figure 7.10 shows (a) skewness and (b) kurtosis of the observed daily-averaged
300 hPa relative vorticity anomalies � 0 in the northern winters (DJF) of 1970–
1999. Both quantities are large in the hemispheric jet stream waveguide and have
a coherent, almost zonally symmetric structure. Another prominent feature is the
observed change of sign in � 0 skewness and kurtosis across the storm tracks, with
positive skewness (and kurtosis) to the south and negative skewness (and kurtosis)
to the north. This feature is known in terms of the skewness of geopotential height
anomaliesˆ0 (White 1980; Nakamura and Wallace 1991; Trenberth and Mo 1985).
Remember that geopotential height and (quasigeostrophic) vorticity anomalies ˆ0
and � 0 are linked through the horizontal Laplacian equation � 0 D .1=f /r2ˆ0, where
f is the Coriolis parameter. That is, in the Northern Hemisphere (f > 0) � 0 and ˆ0
are expected to have opposite signs and, therefore, opposite signs of skewness. It
is often speculated that the sign of the skewness is related to cut-off lows at low,
and from blocking anticyclones at high latitudes (e.g., White 1980; Nakamura and
Wallace 1991; Trenberth and Mo 1985). In addition, Holzer (1996) attributes the
band of positive � 0 skewness (approximately equivalent to negative skewness ofˆ0)
to the rectification of near-symmetric velocity fluctuations by nonlinear advective
effects. Figure 7.10c presents the relationship between skewness and kurtosis in
form of a scatterplot; the solid curve denotes the parabola K D 1:5 S2 � 0:6. It is
again obvious that there exists a lower parabolic bound on kurtosis in the vorticity
data: K � 1:5 S2 � 0:6. The vertical offset of the skewness-kurtosis bound for
vorticity anomalies is presumably due to the non-local character of atmospheric
variability.

Figure 7.11 verifies yet again the prediction of power-law tails. As a represen-
tative example, Figs. 7.11a, b present observed (NCEP-NCAR) wintertime (DJF)
300 hPa vorticity anomalies � 0 at 20ıN, 180ıW, and 500 hPa geopotential height
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Fig. 7.10 (a) Skewness S and (b) excess kurtosis K of daily 300 hPa vorticity anomalies �0

during northern winters (DJF) of 1970–1999, calculated from NCEP/NCAR reanalysis data. (c)
Scatterplot of S and K values. The solid curve denotes the parabola K D 1:5 S2 � 0:6. The error
bars indicate the 95% confidence intervals (approximately ˙2 standard deviations) (Adapted from
Sardeshmukh and Sura (2009))

anomalies ˆ0 at 15ıN, 180ıW. Negative anomalies are denoted by circles, and
positive anomalies by triangles. Thin solid curves denote a Gaussian distribution.
Note the non-Gaussian power-law tails of positive � 0 and negativeˆ0, as highlighted
by the straight lines (for � 0 we see that the power-law scaling is not constant
throughout the PDF domain, but instead shows an approximately piecewise linear
behavior (in log-log coordinates)). To confirm the observed distributions, model
results were also analyzed (the model used is the Portable University Model of
the Atmosphere, available from the Department of Meteorology, University of
Hamburg, at http://www.mi.uni-hamburg.de/TheoMet.6.0.html). In Fig. 7.11c, d the
modeled PDFs of the same variables at identical locations as above are shown,
underpinning the power-law statistics of non-Gaussian atmospheric variability. Note

http://www.mi.uni-hamburg.de/TheoMet.6.0.html
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Fig. 7.11 PDFs of the absolute values of (a–b) observed (NCEP/NCAR; 1970–1999) and (c–d)
modeled (PUMA) 300 hPa vorticity anomalies �0 at 20ıN, 180ıW, and 500 hPa geopotential height
anomalies z0 at 15ıN, 180ıW. Negative anomalies are denoted by blue circles, and positive
anomalies by red triangles. Thin solid curves denote a Gaussian distribution. Note the non-
Gaussian power-law tails of positive �0 and negativeˆ0 (highlighted by the blue/red straight lines).
All plots for DJF (winter). The lower bounds of the power-law scaling are shown by the vertical
lines

that the lower bound of the power-law scaling is estimated objectively from data
(using Kolmogorov-Smirnonov statistics) and, therefore, might change from dataset
to dataset.

The vertical structure of non-Gaussian atmospheric variability is shown in terms
of zonally averaged skewness and kurtosis of daily quasigeostrophic potential
vorticity anomalies q0 for wintertime (DJF) data from 1948–2007 (Fig. 7.12).
(In the following we equate the terminology quasigeostrophic potential vorticity
with potential vorticity, keeping in mind that they are physically not strictly
identical; see Hoskins et al. 1985.) Relative vorticity anomalies � 0 and potential
vorticity anomalies q0 are, of course, closely related: q0 is the sum of the eddy
quasigeostrophic relative vorticity and the eddy stretching vorticity (e.g., Holton
1992). That is, in the quasi-horizontal atmosphere, where the anomalous stretching
term is locally less important than the anomalous quasigeostrophic relative vorticity
contribution, we expect q0 and � 0 (and their statistics) to be somewhat similar. In
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Fig. 7.12 Zonally averaged skewness (left column) and excess kurtosis (right column) of daily
potential vorticity anomalies q0 for (from top to bottom) full year, winter (DJF), and summer (JJA)
subsets for data from 1948–2007 (Adapted from Sura and Perron (2010))

fact, comparing the zonal structures of Figs. 7.10 and 7.12, the overall skewness and
kurtosis patterns of q0 resemble those of � 0 (Sura and Perron 2010). In a nutshell,
Fig. 7.12 reveals that in the troposphere equatorward of the Northern Hemisphere
storm track potential/relative vorticity skewness is positive. Poleward of the same
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Fig. 7.13 Scatterplot of
excess kurtosis vs. skewness
from full year potential
vorticity anomalies q0. The
solid curve denotes the
parabola K D 1:5 S2 � 0:8.
The error bars indicate the
95% confidence intervals
(approximately ˙2 standard
deviations) (Adapted from
Sura and Perron (2010))

storm track the vorticity skewness is negative. In the Southern Hemisphere the
relation is reversed. We also see that in the troposphere the overall large scale pattern
of skewness and kurtosis remains the same over the seasons.

Figure 7.13 visualizes the global (horizontally and vertically) relationship of
q0 skewness and kurtosis in a scatterplot; the solid curve denotes the parabola
K D 1:5 S2 � 0:8. It is obvious that there also exists a lower parabolic bound on
kurtosis in the potential vorticity anomaly data. As mentioned before, the vertical
offset is presumably due to the non-local character of atmospheric variability. We
also checked if non-Gaussian q0 variability follows a power-law. A representative
example is given in Fig. 7.14 for full year q0 at 160ıW, 15ıN, and 250 hPa. This
is a location with strong positive skewness. As, in general, atmospheric non-
Gaussianity has a large zonally symmetric component, we also see a positive
skewness maximum at that height (250 hPa) and latitude (15ıN) in the zonally
averaged field (see Fig. 7.12). In both plots the solid line denotes a Gaussian
distribution. Note the distinct heavy-tail power-law behavior for positive anomalies
giving rise to positive skewness. However, even the negative anomalies follow a
power-law (weaker than Gaussian, though). Thus, we again observe (statistically
significant) power-law tails, strongly suggesting that potential vorticity variability
is also governed by stochastic dynamics with CAM noise.

To summarize the atmospheric results, we have strong evidence that the non-
Gaussian statistics of atmospheric variability can be well described by CAM noise
dynamics.
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Fig. 7.14 Log-log scale
PDFs (circles) of the absolute
values jq0j of full year (top)
positive and (bottom) negative
potential vorticity anomalies
at 160ıW, 15ıN and 250 hPa.
The straight dashed lines are
Maximum Likelihood
Estimates of the power-law
behavior and the solid lines
denote Gaussian distributions.
The lower bounds of the
power-law scaling are shown
by the dotted-dashed vertical
lines (Adapted from Sura and
Perron (2010))

7.3.3 Other Applications

At this point an alert reader might ask if we observe the parabolic skewness-kurtosis
constraint K � .3=2/S2 � r and power-law tails in other turbulent flows as well.
The argument behind this line of thought is that the derivation of our simple CAM
noise equation (7.18) only requires quadratic nonlinearities, and those are, of course,
present as advective terms in the general Navier-Stokes equations. Therefore, the
governing equations of any fluid dynamical system can be always expressed in the
general form (e.g., Salmon 1998)

dXi

dt
D LijXj CNijkXjXk C Fi ; (7.33)
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Fig. 7.15 Scatterplot of skewness S vs. kurtosis QK of density fluctuations in a turbulent plasma.
The solid line is the parabola QK D 1:5S2 C 2:78. Note that in this plot the kurtosis QK on the
ordinate is defined as our “excess kurtosis C3”, or QK D K C 3. Therefore, in our terminology we
see the parabola K D 1:5S2 � 0:22, and the approximate constraint K � 1:5S2 � 1:25. The error
bars denote the standard errors in QK (Adapted from Labit et al. (2007))

where the state of the fluid is given by the vector X with components Xi . The first
and second terms on the right are the linear and quadratically nonlinear tendencies
(including linear and quadratically nonlinear damping terms), and Fi denotes a
forcing term. If Xi in (7.33) is expanded into a mean and anomaly, and the anomaly
is then split into a slowly and a rapidly decorrelating contribution, the multivariate
CAM noise equation (7.13) follows (Sardeshmukh and Sura 2009). Therefore,
we should see our parabolic constraint (and power-law tails) in many turbulent
flow situations. Indeed, the constraint K � .3=2/S2 � r has been also observed
and discussed in plasma turbulence (Labit et al. 2007; Krommes 2008; Sandberg
et al. 2009). In particular, Labit et al. (2007) found that the non-Gaussian density
fluctuations in plasmas follow the approximate constraint K � .3=2/S2 � 1:25
(see Fig. 7.15; note that in that plot the kurtosis QK on the ordinate is defined as
our “excess kurtosis C3”, or QK D K C 3). Therefore, there exists some evidence
that the CAM noise approach might be able to explain a general characteristic
of turbulence. More research is needed to explore the skewness-kurtosis link in a
variety of turbulent fluids.
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7.4 Conclusions

7.4.1 Where Do We Stand?

Knowing the tails of PDFs is an important goal in the atmospheric and ocean
sciences because weather and climate risk assessment depends on understanding
extremes. In recent years new tools that make use of advanced stochastic theory
have evolved to evaluate extreme events and the physics that govern these events.
Stochastic methods are ideal to study extreme events because they link vastly
different time and spatial scales. We have seen that non-Gaussian statistics of
extreme anomalies can be attributed to stochastically forced dynamics, where, to
model nonlinear interactions, the strength of the stochastic forcing depends on
the flow itself (multiplicative noise). In particular, we have provided theoretical
and observational evidence suggesting that a simple linear stochastic differential
equation with correlated additive and multiplicative (CAM) noise is an excellent
candidate to explain the non-Gaussian statistics and extreme events of numerous
weather and climate phenomena. The evidence is based on the fact that the CAM
noise theory makes clear and testable predictions about non-Gaussian variability
that can be verified (or falsified) by analyzing the detailed statistics of atmospheric
and oceanic variability. That is, we have seen that many dynamically relevant
weather and climate phenomena in the atmosphere and ocean follow the predicted
non-Gaussian CAM noise statistics (skewness-kurtosis constraint,K � .3=2/S2�r ,
and power-law tails, p.x/ / x�˛), strongly suggesting the relevance of CAM noise
dynamics in statistically explaining extreme events in weather and climate. We are
not aware of another dynamical mechanism capable of accomplishing that.

The somewhat astonishing general character (or applicability) of CAM noise
dynamics in capturing non-Gaussian statistics in a wide range of applications can
be understood by recognizing that the theory is essentially a linearization (Taylor
expansion) of a general stochastic dynamical system. In addition, it can also be
derived from the equations of motion of any fluid dynamical system, as long as we
can justify a fast-slow timescale separation. Then the multiplicative noise appears
naturally from the nonlinear advection terms. Thus, non-Gaussian behavior is an
inherent property of geophysical flows, and stochastic theory provides an excellent
tool to model the statistics of extreme events in weather and climate. In fact, because
of its general character, our approach provides a natural null hypothesis for non-
Gaussian climate variability, as it is capturing the ubiquitous red climatic spectrum
and the statistics of extreme events. Therefore, the outlined univariate CAM noise
approach is a natural non-Gaussian extension of Hasselmann’s Gaussian red-noise
null hypothesis.

Going back to the classification and terminology we used in the introduction,
we now have a general null hypothesis of extreme events that enables us to extrap-
olate into the tails of a distribution based on mathematical-dynamical arguments.
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Thus, we have a dynamically based idea of the general shape we expect in the tail of
a PDF, allowing us to understand and potentially predict the probability of extreme
events in weather in climate. This is a crucial step beyond the predominantly
empirical (and numerical) studies widely used in this field of research. The research
presented here is, of course, only the first leg of a journey into largely uncharted
waters. There are numerous issues and challenges to be discussed and, hopefully,
resolved. In the following we go through a, not necessarily complete, list of open
issues and speculate how they might be addressed in the future.

7.4.2 Outstanding Issues and Challenges

One point that comes to mind is that of potential applications. It is obvious that the
knowledge of the power-law exponent could be used to predict the probability of
extreme events in the unsampled part of the PDF. So we could indeed extrapolate
into the scarcely sampled tail of a distribution. To establish such an application
we also need to look deeper into the validity of power-law statistics of dynamically
relevant variables. That is, we have to identify, in detail, variables and regions where
our null hypothesis works and where it fails. In particular, we have to ascertain
the physical reasons why our null hypothesis is potentially breaking down. For
example, so far we do not understand why we observe scale breaks in some power-
law distributions.

Closely related is the technical difficulty of applying multiplicative noise models.
In general, it is non-trivial to estimate coefficients of SDEs from limited data (e.g.,
Kloeden and Platen 1992; Sura and Barsugli 2002). Even in our particular case
we have not come up with a stable and reliable method to estimate all parameters
of the CAM noise SDE (7.18) from relatively short records in order to directly
compare modeled and observed PDFs and power-law exponents. One method we
are exploring is to use the observational estimates of Q� and the moments hx2i, hx3i,
hx4i to solve the nonlinear set of equations (7.23) for the remaining noise parameters
�2F 0 , �2R0 , and �. Preliminary results show a satisfactory agreement of the power-law
exponent ˛ calculated from (7.29) with the direct estimate from data. However, the
method is fraught with the potential for error and uncertainty due to the nonlinearity
of the equations involved.

Another important point is that the discussed stochastic theory makes several
simplifying assumptions, such as that of stationary statistics. This is a common
approximation in statistical climate research. However, its validity is not yet
studied within the non-Gaussian stochastic framework. The main contributor to non-
stationary statistics is, of course, the seasonal cycle. Thus, there is a need to study
the impact of the seasonal cycle on extreme events within the multiplicative noise
framework.

In the future we might be able to develop a conceptual, yet physically reasonable
model to study how climate change might affect extreme events. At this point we
do not have a paradigm at hand that allows us to physically understand how a PDF
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might change in a warming climate. Many climate projections just look into the
change of the mean and the variance, that is, assuming Gaussian statistics. However,
the non-Gaussian statistics (the shape of the distribution) will most likely also be
altered in a changing climate.

We hope that this chapter (and book) will inspire students and researchers to
address the plethora of outstanding question and challenges.
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Chapter 8
Methods of Projecting Future Changes
in Extremes

Michael Wehner

Abstract This chapter examines some selected methods of projecting changes in
extreme weather and climate statistics. Indices of extreme temperature and precipi-
tation provide measures of moderately rare weather events that are straightforward
to calculate. Drought indices provide measures of both agricultural and hydrological
drought that are especially suitable for constructing multi-model ensemble projec-
tions of future change. Extreme value statistical theories are surveyed and provide
methodologies for projecting the changes in frequency and severity of very rare
temperature and precipitation events.

Future changes in the average climate virtually guarantee that changes in extreme
weather events will follow. Such rare events are best described statistically as
it is difficult, but perhaps not impossible, to directly link individual disasters to
human-induced climate change. Examples of extreme weather events with severe
consequences to society that are amenable to projection include heat waves, cold
spells, floods, droughts and tropical cyclones. Confidence in projections of future
changes in the severity and frequency of such events is increased if the mechanisms
of change can be identified and understood. Equally important, however, is the
rigorous quantification of the uncertainties in these projections. These uncertainties
include the inherent natural variability of the climate system as well as limitations
in both the climate models’ fidelity and the statistical methods used to analyze their
output.

The discussions about future changes in extreme events in recent climate change
assessment reports (including the IPCC 4th Assessment Report and the US national
assessments) did not generally focus on sophisticated statistical analyses. Rather,
extremes were presented in these documents by a series of “extreme indices”.
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Introduced first by Frich et al. (2002), they are often referred to as the Frich indices.
While many of these represent significant departures from the mean climate, they
are by no means descriptive of rare events or the far tails of the temperature or
precipitation distributions. The fundamental difference between these index based
treatments and formal Extreme Value Theory descriptions of rare events illustrates
the difficulties in nomenclature when discussing climate and weather extremes.
What constitutes “extreme” varies greatly in the literature and depends highly on
the application of the final results. This chapter will survey some of these methods
of projecting changes in climate and weather.

8.1 Extreme Indices

A set of extreme indices was part of the data output specifications for the Coupled
Model Intercomparison Project (CMIP3, see www-pcmdi.llnl.gov). Table 8.1 lists
these ten pre-calculated statistics that were specified to be calculated for each
year of the simulations. Code was provided to the climate modeling groups to
calculate these fields although they could also be replicated from the archived daily
averaged surface air temperature and precipitation rates. Most of these indices are
clearly motivated by their relevance to climate change impacts, e.g. the number
of frost days, the growing season length and the number of consecutive dry days.
However, for a more general interpretation of the effect of global climate change on

Table 8.1 The Frich indices saved as annualized quantities for the CMIP3 coordinated numerical
experiment

Index name Units Description

fd Day Total number of frost days (days with absolute minimum
temperature< 0ı C)

etr Kelvin Intra-annual extreme temperature range: difference between the
highest temperature of any given calendar year (Th) and the
lowest temperature of the same calendar year (Ti)

gsl Day Growing season length: period between when Tday> 5ı C
for> 5 days and Tday< 5ı C for> 5 days

hwdi Day Heat wave duration index: maximum period> 5 consecutive days
with Tmax > 5ı C above the 1961–1990 daily Tmax normal

tn90 % Fraction (expressed as a percentage) of time Tmin> 90th percentile
of daily minimum temperature, where percentiles are for the
1961–1990 base period

r10 Day No. of days with precipitation greater than or equal to 10 mm
day�1

cdd Day Maximum number of consecutive dry days (Rday < 1 mm)
r5d kg m�2 Maximum 5 days precipitation total
sdii kg m�2 s�1 Simple daily intensity index: annual total/number of Rday greater

than or equal to 1 mm day�1

r95t % Fraction (expressed as a percentage) of annual total precipitation
due to events exceeding the 1961–1990 95th percentile

www-pcmdi.llnl.gov
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extreme events, these three indices and the others based on fixed threshold values
are somewhat less useful (Alexander et al. 2006; Tebaldi et al. 2006). For instance,
every day is a frost day in the very high latitudes but none are in the deep tropics.
Similarly, 10 mm of precipitation in a single event is fairly common in tropical
regions but impossible in many desert regions. Of more utility in this context are the
percentile-based indices such as tn90 (hot nights) and r95t (very wet days). These
two indices define base states (the 1961–1990 period) from which departures can
be calculated anywhere on the planet. The bottom panel of Fig. 8.1 shows a CMIP3
multi-model projection of the change in r95t over land regions at the end of the
twenty-first century under the SRES A1B forcing scenario. This index is defined as
the percentage of annual total precipitation due to events exceeding the 1961–1990
95th percentile. During the base state period, this field would be uniformly 5%. End
of twenty-first century values over land in this figure range from a low of 9% to a
high of 54%. This increase in the index may be interpreted in the following sense:
what might be currently considered very wet days (i.e. the top 5%) will occur from
two to ten times more frequently in this future scenario. This also suggests that the
shape of the distribution of daily precipitation must change in this scenario because
the mean precipitation is not projected to change in a similar manner. Note that care
should be exercised in interpreting such exceedance rate changes as sampling errors
may play a role (Zhang et al. 2005).

In general, mean precipitation changes are a mix of increases and decreases
and are smaller in magnitude as in the top panel of Fig. 8.1. In this multi-model
example, an average projection is formed by equally weighting each climate model.
Constructing weighted average projections based on model skill in replicating
observed climate means or trends is a difficult task (Santer et al. 2009; Knutti
et al. 2010a) and is presumably yet more difficult for extremes due to their less
well characterized behavior. In Fig. 8.1, models with multiple realizations, if any,
are ensemble averaged prior to inclusion into the multi-model result. Furthermore,
the index is calculated on the models’ native grids, then regridded to a common
grid and masked prior to the multi-model averaging. These latter two points are
the general practice in many climate change projection studies but have important
implications for certain extremes, especially those related to precipitation, when
evaluating model performance (Wehner et al. 2010).

Figure 8.2 shows a different way of representing the change in an extreme index.
In this figure, a CMIP3 multi-model projection of the change in tn90 averaged over
North American land regions under a variety of forcing scenarios is shown from
the beginning of the twentieth century to the end of the twenty-first century. This
index is defined as the percentage of time that daily minimum temperature exceeds
the 90th percentile, of the 1961–1990 base period. This method of illustrating
a projection, while lacking the spatial detail of the previous figure, allows the
explicit depiction of projection uncertainty. The four major sources of projection
uncertainty are the natural variability of the climate system, limited sample size
(i.e. small ensembles and/or short time intervals), imperfect climate models (largely
manifested by differences in climate model sensitivity to changes in greenhouse gas
concentration but also realized in less well characterized ways for extremes), and
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Fig. 8.1 A CMIP3 multi-model projection of changes in precipitation statistics at the end of the
twenty-first century under the SRES A1B forcing scenario. (Top panel) Percent change of annual
mean precipitation. (Bottom panel) Percentage of annual total precipitation due to events exceeding
the 1961–1990 95th percentile (r95t). Ten different climate models were averaged with equal
weighting in these projections (units: percent)



8 Methods of Projecting Future Changes in Extremes 227

Fig. 8.2 A CMIP3 multi-model projection of the percentage of time the daily minimum temper-
ature exceeds the 90th percentile of daily minimum temperature, calculated from 1961 to 1990
base period (tn90) at the end of the twenty-first century under the SRES A1B forcing scenario.
Ten different climate models were averaged with equal weighting in this projection. A 13 point
temporal filter is applied to all projections as in IPCC AR4 (units: percent)

the unpredictability of human behavior (i.e. the different scenarios). One method for
quantifying the uncertainty from the imperfections of climate model is to calculate
the variance in the projection across the ten climate models that provided this
index to the CMIP3 database. In Fig. 8.2, one standard deviation across models is
depicted by the gray shading and two standard deviations by the yellow shading.
The envelopes plotted here are determined by the maximum spread across all
three scenarios. One might also want to consider each scenario separately to base
decisions on how significant the differences between the scenarios are. In this case,
taken from the USGRCP report (Karl et al. 2009), this representation permitted
usage of the “likelihood language” (Morgan et al. 2009). The gray shaded area
represent the “likely” range of change (i.e. a 2 out of 3 chance of being a correct
statement) while the yellow shaded bounds represent the “very likely” range of
change (i.e. a 9 out of 10 chance of being a correct statement). However, given
the limited set of available global models and that many of them are related, this
measure of uncertainty does not completely sample the space of projection and
underestimates to true uncertainty due to model deficiencies (Tebaldi and Knutti
2007; Knutti et al. 2010b).
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As with projections of changes in mean quantities, the scenario uncertainty in
the beginning of the twenty-first century is less than at the end (Hawkins and Sutton
2009; Yip et al. 2011). Comparison of Fig. 8.2 to similar figures for changes in
mean temperature (Karl et al. 2009) reveals subtle differences in the timing of the
separation of the low emissions scenario (B1, stabilizes at 550 ppm CO2) from
the high emissions scenarios (A2, business as usual). Furthermore, the relationship
between the higher stabilization scenario (A1B, stabilizes at 720 ppm CO2) from
the business as usual scenario is quite different. In multi-model projections of the
annual mean surface air temperature, the two scenarios are indistinguishable over
most areas, including North America, until mid-century after which the business as
usual scenario continues to increase and the stabilization scenario starts to stabilize.
By the end of the twenty-first century, the differences between the scenarios are
“likely” to be significant. In Fig. 8.2, warm nights increase in temperature over
North America at the beginning of the twenty-first century at a greater rate in the
stabilization scenario (A1B) than in the business as usual scenario (A2). This is
followed by the A2 scenario catching up towards the end of the twenty-first century.
There are enough differences in these forcing scenarios that one could hypothesize
a plausible mechanism for why warm night temperatures might behave differently
from annual mean temperatures. But the inter-model uncertainty in Fig. 8.2 is clearly
large enough to prevent a conclusion that these differences are “likely” significant.
Even a weaker statement about the significance of these differences is prevented
by limitations in the sample size behind this index projection in comparison to that
behind projection of mean temperature changes. For at the beginning of the twenty-
first century, only about 10% of the daily temperature values are used in calculating
the index as opposed to all of the values when calculating the annual mean. Although
this fraction rises to about 50% towards the end of the century due to warming, the
tn90 index remains a noisy quantity compared to annual mean temperatures. In order
to ascertain, whether these tantalizing differences in the scenario behavior between
the warm night index and the mean temperature are genuine, more realizations
of each individual model are required. This will prove to be a recurring theme in
ascertaining the significance of extreme changes. The exact details depend greatly
on the variability of the quantity of interest and the magnitude of the differences
(Wehner 2000).

Other extreme indices than that developed by Frich et al. (2002) can be useful
tools in analyzing future climate change projections. In particular, there are a
number of drought indices in wide use by the agricultural and other water intensive
industries. Table 8.2 shows five drought indices that are provided to the public at
regular intervals by the US National Climatic Data Center (NCDC) on their website,
http://www.drought.noaa.gov/. A recent paper (Wehner et al. 2011) examined the
performance and projections for the Palmer Drought Severity Index in the CMIP3
models finding wide variations between the models. In that study, the models
simulated the observed PDSI much better after a bias correction procedure. Bias
corrections can take many forms and can be useful in enhancing confidence in
projections. Bias correction assumes that errors in the mean state may not influence
trends or changes to the same degree. In many instances, this assumption can be

http://www.drought.noaa.gov/
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Table 8.2 The NCDC drought indices (see http://www.drought.noaa.gov/)

Drought
index name Units Description

PDSI Palmer Drought
Severity Index

Duration and intensity of long-term drought

PHDI Palmer Hydrological
Drought Index

Similar to PDSI except measures longer term
hydrological effects relevant to reservoir levels,
groundwater levels, etc.

Z-index Palmer Z Index Short-term drought on a monthly scale
CMI Crop Moisture Index Short-term drought on a weekly scale
SPI Standardized

Precipitation
Index

A normalized precipitation only index that is reported
on time scales ranging from weeks to years.

tested by applying the correction over one part of an observational record and testing
against another part. In the PDSI study, the input (monthly averaged temperature and
precipitation) to the drought index calculation was corrected by applying a monthly
varying climatological factor that altered the models’ long term temperature and
precipitation means to the observations but kept each models’ particular variability
intact. The PDSI is constructed to measure excursions from a neutral base state.
Since the models’ variability was not corrected, performance in replicating observed
PDSI statistics ranged greatly. The simple land surface model contained in the
PDSI algorithm is particularly sensitive to temperature leading to large projected
changes in the severity and spatial extent of future drought in North America.
However, this large temperature sensitivity caused large inter-model differences in
these projections at the end of the century because of the large differences in climate
model sensitivities to changes in atmospheric greenhouse gases.

This source of projection uncertainty can be reduced in a certain sense by
rephrasing how the climate change question is asked. Most climate change pro-
jection questions ask something like: “What will happen at the end of the century?”
Instead consider if a question such as the following is asked: “What will happen
if the global mean temperature rises by 2.5 K?” In the former case, the time
period is fixed but the different models exhibit vastly different warmings. In
the latter case, the question of timing is foregone but at least the model states
bear some resemblance to each other. In fact, under the SRES A1B scenario,
the date at which the running decadal average global mean surface air temper-
ature reaches 2.5 K over its preindustrial value ranges from 2038 in the most
sensitive model to 2110 in the least sensitive model. The average date over all
models to reach this amount of warming is 2070. Figure 8.3 shows maps of
future North American PDSI under SRES A1B forcing and the associated inter-
model uncertainty relevant to these two ways of posing future climate change
questions. The upper two panels (a and c) show decadal averaged PDSI values and
represent what the climatological values of PDSI would be relative to the current
climatology. For interpretation of PDSI, drought is classified into the following
categories: incipient (�0.5� PDSI>�1.0), mild (�1.0�PDSI>�2.0), moderate

http://www.drought.noaa.gov/


230 M. Wehner

Fig. 8.3 (a) Multi-model average value of PDSI when the global average surface air temperature
has increased 2.5 K over its 1900–1909 mean value (b) inter-model standard deviation of the values
shown in panel (a, c) multi-model average value of PDSI for the decade centered at 2070 (d) inter-
model standard deviation of the values shown in panel (c)

(�2.0� PDSI>�3.0), severe (�3.0� PDSI>�4.0), and extreme (�4.0�PDSI).
The upper right panel shows the PDSI averaged over all models for the decade
centered around 2070 (with an average model global warming of 2.5 K). In this
projection, conditions currently considered severe drought would become normal in
the western US. In parts of Mexico, conditions currently considered extreme drought
would become normal. However, uncertainty in this projection, shown as the inter-
model standard deviation in the lower right panel (d), is large in these regions. By
changing the climate change question to ask what the value of PDSI would be under
a 2.5 K global warming (which would occur on average at 2070), this inter-model
uncertainty is reduced in most areas as shown in the lower left panel (b). The actual
projection of drought severity is also reduced as seen in the upper left panel (a),
reflecting a nonlinear dependence of PDSI on temperature.
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8.2 Extreme Value Theory Methods

Numerous studies in the literature as well as much of the contents of this book utilize
sophisticated extreme value statistics to explore questions of climate change. These
techniques differ from the index-based methods described in the previous section
principally in their ability to quantify the statistical behavior of much rarer events.
Rather than review the details of how and when extreme value theory methods
may be applied to climate and weather datasets, this section discusses aspects of
interpretation of results from these statistical formalisms in a context of climate
change.

The parameters describing the generalized extreme value distribution and the
generalized Pareto distribution can often offer interesting insight. However, these
fields are not closely tied to observable quantities and are generally of limited
utility to the users of climate change projections. Design engineers and other parties
interested in climate change impacts are more concerned with how the limitations
of their particular systems might be exceeded. Return value and/or return time
often can provide the critical information necessary to make informed decisions
about the impacts of rare weather and climate events. Whether the analysis takes
a block maxima or threshold approach, these application relevant fields are readily
calculated if the distribution parameters can be satisfactorily fit to the extreme data.

Extreme value theory (EVT) is often used to describe how extreme weather
behaves in a changing climate by analyzing high frequency (i.e. daily) modeled or
observed datasets. Return values from the fitted EVT distributions are defined over
a fixed specified period, for instance, T with units in years. In a stationary climate,
the return value can be interpreted as the value of the data that would be realized on
average once every T years over a very long period of time. By introducing time as
a covariate, EVT can be generalized to non-stationary datasets (Brown et al. 2008;
Smith, Private communication, 2010). In a changing climate, this explanation loses
meaning for a time dependent return value. Instead, a more appropriate alternative
interpretation is that the return value at a given time represents the value that has a
1/T chance of occurring that year in the dataset.

Return time offers a slightly different way to express the same concepts. In a
stationary climate, the return time is the average time between instances that the
data take to reach or exceed a specified value over the course of a very long time.
In a non-stationary climate, the return time for a fixed specified value would be a
time dependent quantity. The inverse of the return time would be the chance that the
specified value would be achieved in that year.

Uncertainty in return value and return time estimates depends on the magnitude
of the time scale of interest in relation to the length of the datasets Wehner (2010).
When this time scale is much less than the dataset length, the return values have
likely been realized in the datasets and uncertainty is lower. When the time scales are
much larger than the dataset lengths, the EVT estimates are extrapolations outside
the datasets and uncertainty is higher. However, if the asymptotic assumptions of
the EVT are valid, estimated return values and return times can be reasonable in
extrapolated cases. The generalization of EVT to treat time dependent datasets can
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help reduce uncertainty by allowing the consideration of longer datasets. However,
care must be exercised as these generalizations assume specific time dependences
of the EVT distribution parameters. These can be linear, quadratic or even higher
order in the Smith (Private communication, 2010) formalism but it is not always
clear how to generate the best fits. In fact, the observed climate change has not
been particularly linear and future changes may not even be monotonic if drastic
remediation procedures are taken.

The actual climate system is of course limited to the single world that actually
exists. Climate model simulations have no such limitations as they are routinely inte-
grated in statistically independent realizations to be combined into large ensembles
by varying initial conditions. If one assumes quasi-stationarity over short periods of
time, these independent realizations can be combined into much longer datasets and
stationary EVT used to provide accurate estimates of the distribution parameters.
The length of such a period depends greatly on the variable of interest as well as the
rate of climate change.

Stationarity would be guaranteed if linear detrending is applied over these short
periods. In the literature (for instance Kharin et al. 2007), it is not uncommon
to assume a decade or two. Although Santer et al. (2011) showed that any
individual decade in the last century might exhibit observed positive or negative
temperature trends, they also showed that over a large sample of decades, a
statistically significant positive trend can be found. This suggests that detrending is
prudent when combining intervals over individual realizations to construct a larger
stationary dataset for EVT analysis. Ensemble sizes in the CMIP3 database ranged
between three and eight, if multiple realizations were performed at all. In the CMIP5
specifications, a minimum of ten realizations is called for in the “Tier 1” experiments
(Taylor et al. 2009). This then affords the opportunity to concatenate detrended
decadal segments to build quasi-stationary datasets of about 100 years in length
representing any time period during the integration.

Hence, there are two EVT methods that can be used to make projections of
future changes in extreme weather event statistics. The first method is to fit non-
stationary datasets with time dependent EVT distributions. The advantage in this
approach is that the single realization of the observed climate system can be treated
without any ad hoc assumptions of stationarity. The length of the record should be
chosen carefully such that the trend is well fit by the specified time dependence.
For multiple realizations of a single climate model, each realization should be
treated separately in this method and ensemble mean return values and/or return
times calculated. A continuous picture of change including trends is provided
by this method. Additionally, a measure of the models’ internal variability can
be obtained by calculating the inter-realization variance to provide insight into
this source of projection uncertainty. The second method is applicable to climate
models with multiple realizations. In this approach, short intervals from each
realization are concatenated to form a larger dataset. Detrending of the segments
prior to concatenation is often desirable. Fitting a stationary EVT distribution to
concatenated datasets formed at different times permits changes in return values
and/or return times to be directly calculated. In both methods, the uncertainty from
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estimation of the fitted distribution parameters can be estimated by the scheme
outlined by Hosking and Wallis (1997). This technique involves first estimating
the distribution parameters for the actual dataset then generating random datasets
distributed by the EVT distribution defined by those parameters. To estimate
uncertainty, each of the random distributions is fit to an EVT with appropriate
parameters and return fields estimated along with their variances. This forms a
measure of uncertainty associated with the finiteness of the data. For the large
ensembles promised with CMIP5, this uncertainty should be reduced.

Presentation of the results from an EVT analysis of climate change poses serious
challenges as the concept of return value and return time may not be intuitive to the
non-specialist. Changes in return value (for a fixed return period) can be expressed
in similar forms to widely published changes in mean values. For instance, Fig. 8.4
shows a multi-model CMIP3 projection of the end of century changes under a
business as usual scenario (SRES A1B) of the 20 year return value of the annual
maximum daily average surface air temperature (upper panel) and the annual mean
surface air temperature (lower panel). Exhibiting projected changes in pairs of
figures such as these allows discussion of the differences between them. In this
case, large changes in the 20-year return value are confined to land masses and are
generally larger than changes in the annual mean. Not shown in these figures are the
seasonal behaviors of projected changes that can reveal mechanistic insights. This
seasonal aspect is particularly important in the interpretation of changes in precip-
itation extremes. Also not shown are changes in extremes of minima temperatures
that exhibit different behaviors than the changes in maxima temperatures, again
providing opportunities for understanding physical mechanisms of change.

Changes in severity of rare weather events is only a part of an EVT analysis.
Changes in frequency may be yet more important. Figure 8.5 attempts to illustrate
this point in the upper panel by showing the return time in the future for daily surface
air temperatures exceeding the present day 20-year return value. In this case, the
future return time is projected to become less than 20 years over most of the globe.
Alternatively, the lower panel of Fig. 8.5 shows the number of times in a future
20 year period that this same temperature threshold can be expected to be exceeded
on average. If the climate does not change, this number would be one. However, for
annual maximum daily temperatures, the value is much greater than that over most
of the globe. The EVT data used in both Figs. 8.4, 8.5 come from the same analysis.
These figures reveal that warm weather events currently considered rare (once every
20 years) are projected to become relatively commonplace and that warm events of
a fixed rarity are projected to become more severe.

8.3 Multi-Variate Climate and Weather Extremes

The literature of multi-variate extreme value statistics is well developed (see
Chap. 7). However, it has not seen significant application to climate change
projections or historical analyses despite an urgent need. For instance, consider

http://dx.doi.org/10.1007/978-94-007-4479-0_7
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Fig. 8.4 Changes in the end of twenty-first century surface air temperature properties relative to
the end of the twentieth century under SRES A1B forcing from the CMIP3 models. Upper panel:
Change in 20-year return value of the annual maximum daily averaged temperature. Lower panel:
Change in annual mean temperature (units: kelvin)

hot, dry and windy events versus hot, moist and stagnant events. The impacts of
such events are very different. The former may lead to increased risk of fires while
the latter may lead to increased human mortality through heatstroke or air quality
issues. In both cases, at least one of the salient variables is not extreme in itself. In
fact, it is often the combination of multiple events, each common in isolation, that
is considered rare and/or dangerous.
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Fig. 8.5 Upper panel (a) The projected return time at the end of the twenty-first century under
SRES A1B forcing associated with daily temperature threshold defined by the end of the twentieth
century 20-year return value of the annual maximum daily averaged surface air temperature (units:
years). Lower panel (b) The number of occurrences per 20 year period at the end of the twenty-first
century when the daily averaged surface air temperature exceeds that same threshold. If the climate
had not changed, this number would be one (units: dimensionless)

Two multivariate indices are in common usage in weather forecasting. Similar to
the drought indices discussed above, they can be used to define the frequency and
severity of extreme events in climate change projections. The first of these is the
“Heat Index” (HI) that combines air temperature and relative humidity (Steadman
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1979a, b). The second of these is the “Wind Chill” index combining temperature
and wind speed (Osczevski and Bluestein 2005). Both of these indices, expressed
in degrees, are used to estimate effects on the human body and are often said
to describe how hot or cold “it feels”. The derivations of both indices are rather
involved and often implemented via tabular lookups or fitted polynomials. Delworth
et al. (1999) projected that patterns of future increases in HI are largely dependent
on temperature increases but are amplified by changes in moisture, illustrating a
complex interplay between variables.

8.4 Summary

Changes in climate and weather extremes can be projected by a wide variety
of methods. Indices and thresholds defined by their relevance to climate change
impacts can be particularly useful. Changes in truly rare events, often associated
with dire consequences, are well described by return value or return time changes
using extreme value theories. Projecting changes in multi-variate climate and
weather extremes is still a developing skill. The description of changes in rare
compound events via multi-variate extreme value theory would be an important
advance in the field.
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Chapter 9
Climate Variability and Weather Extremes:
Model-Simulated and Historical Data

Siegfried D. Schubert and Young-Kwon Lim

Abstract The climate community is being challenged to provide increasingly more
comprehensive societally-relevant information about the impacts of climate change
that go well beyond broad statements about how much the global mean temperature
will change. This in turn requires increasingly more comprehensive assessments of
the quality of climate models to reproduce past regional climate impacts as well
as the full spectrum of observed climate variability including those aspects (such as
weather extremes) that are likely to have the greatest impact on society. This chapter
examines the simulated and observed short-term climate variability and weather
extremes that have occurred over the last three decades with a focus on the winter
hemispheres.

9.1 Introduction

Extremes in weather and climate encompass a wide array of phenomena including
tropical storms, mesoscale convective systems, snowstorms, floods, heat waves, and
drought. Understanding how such extremes might change in the future requires
an understanding of their past behavior including their connections to large-scale
climate variability and trends.
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Previous studies suggest that the most robust findings concerning changes in
short-term extremes are those that can be most directly (though not completely)
tied to the increase in the global mean temperatures. These include the findings
that (IPCC 2007): “There has been a widespread reduction in the number of frost
days in mid-latitude regions in recent decades, an increase in the number of warm
extremes, particularly warm nights, and a reduction in the number of cold extremes,
particularly cold nights.” For North America in particular (CCSP SAP 3.3 2008):
“There are fewer unusually cold days during the last few decades. The last 10 years
have seen a lower number of severe cold waves than for any other 10-year period
in the historical record that dates back to 1895. There has been a decrease in the
number of frost days and a lengthening of the frost-free season, particularly in the
western part of North America.”

Other aspects of extremes such as the changes in storminess have a less clear
signature of long term change, with considerable interannual, and decadal variability
that can obscure any climate change signal. Nevertheless, regarding extratropical
storms (CCSP SAP 3.3 2008): “The balance of evidence suggests that there has
been a northward shift in the tracks of strong low pressure systems (storms) in
both the North Atlantic and North Pacific basins.” For North America: “Regional
analyses suggest that there has been a decrease in snowstorms in the South and
lower Midwest of the United States, and an increase in snowstorms in the upper
Midwest and Northeast.”

Despite the progress already made, our understanding of the basic mechanisms
by which extremes vary is incomplete. As noted in IPCC (2007), “Incomplete global
data sets and remaining model uncertainties still restrict understanding of changes
in extremes and attribution of changes to causes, although understanding of changes
in the intensity, frequency and risk of extremes has improved.” Separating decadal
and other shorter-term variability from climate change impacts on extremes requires
a better understanding of the processes responsible for the changes. In particular,
the physical processes linking sea surface temperature changes to regional climate
changes, and a basic understanding of the inherent variability in weather extremes
and how that is impacted by atmospheric circulation changes at subseasonal to
decadal and longer time scales, are still inadequately understood.

Given the fundamental limitations in the time span and quality of global obser-
vations, substantial progress on these issues will rely increasingly on improvements
in models, with observations continuing to play a critical role, though less as a
detection tool, and more as a tool for addressing physical processes, and to insure
the quality of the climate models and the verisimilitude of the simulations (CCSP
SAP 1.3 2008).

In this chapter we examine the ability of the NASA Goddard Earth Observ-
ing System – Version 5 (GEOS-5) atmospheric-land general circulation model
(AGCM), described in Appendix A, to reproduce cold-season weather extremes,
the leading modes of climate variability and associated regional impacts, and the
longer-term changes (including changes in extremes) that have occurred during
the last three decades. Our focus on the boreal (January–March) and austral
(July–September) winter hemispheres, avoids the more challenging warm and
transition seasons for which much higher resolution than is typical of climate model
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simulations is required to adequately represent such extreme weather phenomena
as hurricanes, and other mesoscale convective systems that are typical of many
continental warm season extremes. Our focus on the last three decades is for the
most part dictated by the availability of modern global atmospheric reanalyses
(in particular NASA’s high-resolution Modern-Era Reanalysis for Research and
Applications – MERRA, Rienecker et al. 2011) and satellite observations, as well as
the feasibility of producing an ensemble of multi-decadal simulations at relatively
high (50 km) resolution with the GEOS-5 model. The simulations are done in
a so-called AMIP-mode in which the GEOS-5 atmospheric general circulation
model (AGCM) is forced with observed sea surface temperatures (SSTs). The name
(AMIP) refers to the Atmospheric Model Inter-comparison Project (Gates 1992)
in which such runs were, for the first time, done in a coordinated fashion. In the
current experiments the model is also forced with the observed GHGs and ozone as
described in Appendix A.

Section 9.2 examines the simulated and observed leading modes of variability
on monthly to interannual time scales as well as the longer-term changes that
have occurred over the last three decades, and how these changes impact regional
weather and extremes. In Sect. 9.3, we examine more idealized simulations (e.g.,
doubled CO2; spatially uniform increase in SST) to get a first order sense of how a
warmer world might change the nature of climate variability and weather extremes
compared to those in our current climate, and what they can tell us (if anything)
about the longer-term changes that have occurred in the last three decades. The
specific questions that we will address are:

– Does the GEOS-5 model reproduce the observed winter climatological fields?
– Does it have the correct low-frequency (monthly mean) modes of variability?
– Does it have the correct weather variability and extremes?
– Are the linkages between climate variability and regional weather simulated

correctly?
– What are the longer terms changes that have occurred over the last three decades

and are these reproduced in the model?
– What can idealized AGCM experiments tell us about the recent, and possible

future changes in climate variability and weather extremes?

We begin by examining the GEOS-5 model’s ability to reproduce the climate
means and variations of the last three decades (1980–2009).

9.2 Observed and Simulated Climate Variability
and Weather Extremes

9.2.1 Boreal Winter (JFM)

Numerous diagnostic studies of extratropical atmospheric variability on monthly
and longer time scales (e.g., Quadrelli and Wallace 2004; Trenberth et al. 2005) have
found that the atmospheric circulation is dominated by a relatively few patterns of
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variability that include the El Nino/Southern Oscillation (ENSO), the Pacific/North
American Pattern (PNA), the North Atlantic Oscillation (NAO), the Northern and
Southern Annular Modes (NAM and SAM), the Pacific Decadal Oscillation (PDO)
and the Atlantic Multi-decadal Oscillation (AMO). As discussed below, these
patterns of variability have impacts on weather throughout the world. Furthermore,
as noted by Kenyon and Hegerl (2008): “ : : : . for reliable attribution of changes in
extremes as well as prediction of future changes, changes in modes of variability
need to be accounted for.” In particular, that study found considerable influences of
ENSO, the NAO, and Pacific interdecadal variability on daily temperature extremes
throughout the world.

We focus on January through March (JFM), since these are the winter months
during which the Northern Hemisphere (NH) atmospheric response to ENSO SST
and the variance of other large-scale middle latitude teleconnections appear to be
most robust, including the NAM (e.g., Thompson and Wallace 2000). We also focus
on the leading patterns of monthly-mean variability that occurs on interannual time
scales and (in the next section) how this variability might change in a warmer world.
While we cannot address decadal variability directly,1 we do examine the impact
of the longer time-scale modes of variability indirectly in Sect. 9.2.1.3 as they are
reflected in the differences between the first and second half of the last three decades.

ENSO is known to impact weather during JFM in a number of regions throughout
the world, primarily over the Pacific Rim and North America, but also parts of
Europe and the high latitude Southern Hemisphere (e.g., Fraedrich and Muller 1992;
Gershunov and Barnett 1998; Kenyon and Hegerl 2008; Schubert et al. 2008; Chang
et al. 2012; Turner 2004). There is some evidence for an apparent change from
eastern Pacific to central Pacific ENSOs (since about 1990 there have been more
central Pacific ENSOs, Ashok et al. 2007; Kao and Yu 2009) and this appears to be
consistent with global warming (a flattening of the thermocline – Yeh et al. 2009),
although it cannot be excluded that these are natural variations of ENSO (Newman
et al. 2011). The potential impacts of such changes in the characteristics of ENSO
will be discussed in later sections.

The NAO impacts extremes over much of Eurasia and parts of North America
(e.g., Hurrell et al. 2003a, b; Scaife et al. 2008; Kenyon and Hegerl 2008; Lim
and Schubert 2011). The NAO is, in particular, linked to storm track changes over
Europe (e.g., Hurrell 1995; Jones et al. 2003; Hurrell and Deser 2009; Mariotti
and Dell’Aquila 2011). IPCC (2007) notes that “There is mounting evidence
that the recent observed inter-decadal NAO variability comes from tropical and
extratropical ocean influences (Hurrell et al. 2003a, b, 2004), land surface forcing
(Gong et al. 2003; Bojariu and Gimeno 2003) and from other external factors (Gillett
et al. 2003).” The trend in the NAO since 1950 is to more positive values (Hurrell
et al. 2004; Raible et al. 2005) though, as we shall see below, that trend is less

1While the PDO and AMO are important components of climate variability on decadal and longer
time scales and have impacts on extremes (e.g., Chang and Fu 2002), the limited time span
(30 years) of our data does not allow us to consider these in any detail.
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evident during the last three decades. Hurrell et al. (2004) indicate that tropical SST
forcing (especially in the Indian Ocean) is key to understanding the trend since the
1950s. In fact, they assert that boreal winter North Atlantic climate change since
1950 is well described by the trend in the NAO.

The NAM impacts weather throughout the NH middle and high latitudes
(Thompson and Wallace 2001). It is statistically linked with the NAO (Quadrelli and
Wallace 2004). The NAM has exhibited a trend towards its positive phase between
the 1960s and the 1990s, corresponding to a decrease in surface pressure over the
Arctic and an increase over the subtropical North Atlantic (Hurrell 1996; Thompson
et al. 2000; Gillett et al. 2003), with somewhat of a decrease after the mid-1990s.
The positive phase of the NAM has been associated with a decrease (increase) in
winter precipitation over southern (northern) Europe, due a northward shift of the
storm track (Thompson et al. 2000).

The trend in the PNA during the period 1950–2000 is characterized by a general
shift toward more negative heights over the Aleutians and the southeastern United
States (e.g., as inferred from Raible et al. 2005). The more recent values of the PNA
index,2 however, suggest that the trend appears to end, if not reverse, in the 1980s
(see also next section).

In the following, we assess the ability of the GEOS-5 AGCM to capture the
above major modes of climate variability including their spatial structure, time
variations, and their links to regional weather. We also assess the extent to which the
model reproduces the basic observed weather variability and extremes. The model
results are compared with the latest reanalysis data as well as various gridded station
observations.

9.2.1.1 Climatology and Variability

In the following, we examine the results of three AMIP-style simulations with the
GEOS-5 AGCM forced with observed SST, GHGs and ozone covering the period
1980–2009 (see Appendix A for details of the runs). Comparisons are made with
MERRA, the NOAA Climate Forecast System Reanalysis (CFSR, Saha et al. 2010),
and other gridded observations. The focus in this section is on assessing the quality
of the model simulations of the mean climate, the large-scale monthly variability,
and the daily weather variability for the 29 boreal winters (JFM) starting in 1981
(since the runs were started in early January of 1980, we discard JFM of 1980 to
avoid any spin-up and incomplete months).

Figure 9.1 (top two rows) shows that GEOS-5 reproduces the observed
(MERRA) boreal winter upper tropospheric stationary waves and their monthly
variability quite well. Here we include a comparison with another reanalysis
(CFSR) to get some sense of the uncertainties inherent in the reanalysis data.
That comparison shows that the model stationary waves are, in fact, almost

2http://jisao.washington.edu/data/pna/

http://jisao.washington.edu/data/pna/
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Fig. 9.1 The (JFM, 1981–2009) 250 hPa eddy height (Z*) climatology (top row: a, e, i) and
monthly variance (second row: b, f, j) fields from MERRA (left panels), GEOS-5 simulations
(middle panels), and CFSR (right panels). Units are meters and meters squared times 0.01,
respectively. The third and fourth rows are the same as the first and second rows except for
precipitation (Prec) and the right panels (k and l) are from GPCP observations. Units are mm/day
and (mm/day)2, respectively

indistinguishable from the reanalysis estimates. The model also reproduces the
climatological precipitation pattern and its monthly variability (third and fourth
rows of Fig. 9.1), although the simulated variance is somewhat larger than the
observed (as estimated from GPCP or MERRA) in the tropics. In addition, the
model reproduces the climatological middle latitude storm tracks, although with
somewhat weaker amplitude than observed (top panels of Fig. 9.2).

The ability of the model to produce realistic extremes in daily precipitation is
evaluated in the second half of Fig. 9.2, which shows the 10-year return values of
the daily precipitation maximum (c and f). Also shown are the 10-year return values
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Fig. 9.2 Upper panels: The 250 hPa variance of the daily v-wind for JFM (1981–2009) from
MERRA (a) and the simulations (b). Lower panels: Maps of 10-year return values for daily
maximum precipitation (c and f, units are mm/day), warmest day (d and g, units are ıC) and
warmest night (e and h, units are ıC). Left is for observations (GPCP or HadGHCN), and right is
for the AMIP runs. White regions indicate missing or insufficient data to produce reliable fits to the
GEVD

of the warmest days (d and g) and warmest nights (e and h). The return values are
estimated by fitting the extremes to the Generalized Extreme Value Distribution
(GEV, Coles 2001). Examples of the fits to the GEV distribution are given in
Appendix B. Overall, the simulated extremes look reasonable. The greatest model
deficiency appears to be the unrealistically cold day-time temperatures simulated
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over Canada and northern Eurasia, as it is reflected in the extreme values of the
warmest days. There is also a tendency to overestimate the precipitation maxima
especially over southern Asia and in the tropics.

The decomposition of the monthly mean height variability is carried out in terms
of a rotated empirical orthogonal function (REOF) analysis (Richman 1986). The
resulting four leading REOFs (Fig. 9.3a–h) appear to provide a clean separation of
the observed (MERRA) variability into patterns consisting of (in order of decreasing
variance) ENSO, the NAM, the PNA, and the NAO.3 The results from the model
show a very realistic representation of those patterns although with somewhat
different variance. In particular, the main deficiency of the model simulation is a
too strong PNA (Fig. 9.3g) that shows up as the first mode in the simulations (it
appears as the third mode in MERRA). The time series of the associated principal
components or PCs (Fig. 9.3i–l) show that PC 1 (PC 3 in the model simulations,
Fig. 9.3i) indeed appears to be linked to ENSO variations as well as a trend towards
more positive values, with all three model runs tracking the observed behavior very
closely. The PC time series for the model runs and MERRA associated with the
second REOF (the NAM, Fig. 9.3j), suggest less control from the SST, with the
observations showing a tendency toward negative values after the early 1990s. While
the model results do not show such a tendency, the observed values do tend to fall
within the spread of the model ensemble. It should be noted that our observed NAM
time series is consistent with longer time series4 of the NAM (beginning in 1950)
that are characterized by predominantly negative values prior to 1985, with peak
positive values occurring in the early 1990s, followed by a negative trend.

The PNA (third REOF for MERRA and first in the model runs, Fig. 9.3k) shows
a trend toward more negative values. As discussed earlier, longer time series starting
in 1950 show that this downward tendency follows an extended period of an upward
tendency that peaked in the mid 1980s. Here, the observed and simulated behavior
does show some similarity suggesting some dependence on SST or GHGs, although
that appears to be stronger for the model runs (the individual ensemble members are
more similar to each other than to MERRA). The time variability of the NAO (fourth
REOF, Fig. 9.3l) shows little control from any external forcing, although the three
model simulations again seem to be more similar to each other than to MERRA.
There is no obvious trend, but there is again (like for the NAM) some tendency
toward more negative values for the observations in recent years. This is part of a
longer-term variability5 that resembles the behavior of the NAM, characterized by
primarily negative values from 1950 to 1980, with peak maximum values in the
early 1990s, followed by the downward trend.

3We note that the SAM also occurs during the boreal winter, though it does not show here as a
leading mode. We shall see later that during austral winter it does show up prominently as the
leading mode.
4http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily ao index/JFM season ao index.
shtml
5http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/JFM season nao index.shtml

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/JFM_season_ao_index.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/JFM_season_ao_index.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/JFM_season_nao_index.shtml
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The above results indicate that the various modes of variability consist of some
patterns that are externally forced (by SST or GHGs or ozone) and others that are
internal to the atmosphere, with some evidence that the latter may be impacted
(modulated) by external forcing. We shall see in Sect. 9.3, that the NAM, PNA and
NAO are indeed fundamentally internal (to the atmosphere) modes of variability, in
that they appear as the leading REOFs of model simulations that have no interannual
variability in external forcing (SST, GHGs, or ozone).

9.2.1.2 Regional Impacts of Climate Variability

We next turn to an evaluation of the relationships between the variations of the
boreal winter leading large-scale modes of variability (ENSO, NAM, PNA, NAO)
and regional weather including changes in storminess, near surface temperature, and
precipitation. Results are presented for both MERRA (or gridded observations) and
the model simulations. In the latter case, the correlations are the average of the
correlations computed for each ensemble member. In all cases, a linear trend is
removed before computing the correlations.

Overall, the results show that the main features of the regional impacts of the
climate modes are well reproduced by the model (Fig. 9.4). This includes the
enhanced storminess and precipitation along the US Gulf States during El Nino, the
warmer (colder) temperatures over northern Eurasia (the Mediterranean and North
African regions) during a positive NAM, the increased storminess and warming over
northern Europe and the warming over the US eastern seaboard during a positive
NAO, and the warming over Alaska and western Canada during a positive PNA. The
main deficiency appears to be that the PNA is more strongly tied to SST variability
than is observed.

Specific features of the ENSO-related correlations (panels on the top left side
of Fig. 9.4) include a substantial El Nino warming throughout the tropics in all
ocean basins, with the typical off-equatorial cooling in the Pacific. The correlations
over the extratropical land areas are generally weak, with the model showing
more pronounced correlations over North America than MERRA. The precipitation
correlations (Fig. 9.4b, f) show the typical ENSO-related pattern in the Pacific, with
positive values over the central and eastern tropical Pacific and negative values in the
Pacific warm pool that extend eastward into the subtropics of both hemispheres. The
sea level pressure (SLP) correlations (Fig. 9.4c, g) are consistent with the Southern
Oscillation pattern. The weather variance, as estimated by the daily meridional wind
variability (v’2), shows (Fig. 9.4d, h) negative correlations in the central Pacific and
positive correlations in the tropical Atlantic and the Indian Ocean and parts of the
Pacific warm pool. The enhanced (reduced) storm track along the U.S. southern tier
of states during El Nino (La Nina) is clearly evident in both the simulations and
MERRA.

The correlations of both the MERRA and simulated temperatures 2 m above
the ground (T2m) with the NAM (top right panels of Fig. 9.4) are characterized
by negative values over the Arctic and Greenland, positive values over northern
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Fig. 9.4 Correlations between the leading monthly REOFs (the corresponding PCs- seasonally
averaged) and seasonal mean T2m, precipitation, sea level pressure, and 250 hPa v’2. For each set
of panels, the results for MERRA are on the left and the results for GEOS-5 are on the right. Top
left set of panels: MERRA REOF 1 and GEOS-5 REOF 3. Top right set of panels: MERRA REOF
2 and GEOS-5 REOF 2. Bottom left set of panels: MERRA REOF 3 and GEOS-5 REOF 1. Bottom
right set of panels: MERRA REOF 4 and GEOS-5 REOF 4. Values are detrended before computing
the correlations. The model results are the average of the correlations computed separately for each
ensemble member

Scandinavia and Russia extending eastward to Japan, and again negative values
over Northern Africa and parts of southern Asia (Fig. 9.4a, e). The precipitation
correlations (Fig. 9.4b, f) are positive over much of northern Russia (with a
tendency for negative values to south) and Scandinavia. The SLP exhibits negative



250 S.D. Schubert and Y.-K. Lim

correlations in the Arctic (north of 60ıN) and primarily positive values south of that,
with the model showing positive correlations in the eastern Pacific that are not in the
MERRA results (Fig. 9.4c, g). The correlations with v’2 (Fig. 9.4d, h) show positive
values across northern Russia and Scandinavia, and a tendency for negative values
to the south in the latitude band 30–40ıN, though the observed negative correlations
over the US are not reproduced in the model results.

The observed and simulated PNA correlations (bottom left panels of Fig. 9.4)
exhibit negative values for T2m over the western North Pacific and southeastern
US, with positive values over much of northwest North America (Fig. 9.4a, e). The
simulations show a substantial region of positive correlations with T2m over the
central and eastern tropical Pacific that indicate a too strong link to SST variability.
The precipitation correlations (Fig. 9.4b, f) are positive over the North Pacific
extending into the Gulf of Alaska, and these are flanked by negative correlations
to the north and south. Positive correlations also occur in the tropical Pacific and
in the Gulf of Mexico extending into the North Atlantic. The correlations with
SLP (Fig. 9.4c, f) are consistent with the height anomalies, and are dominated by
negative correlations in the North Pacific and the southeast U.S., and a tendency
for positive correlations in the eastern tropical Pacific and (for the model) also in
the Indian Ocean. Correlations with v’2 (Fig. 9.4d, h) are mostly negative over the
North Pacific, and the U.S., with some positive correlations (more so for the model)
extending from the eastern subtropical Pacific across Mexico and into the Atlantic.

The observed and simulated NAO correlations (bottom right panels of Fig. 9.4)
exhibit positive values for T2m (Fig. 9.4a, e) over much of Europe and Russia, and
the southeast United States. Negative correlations occur over northeastern North
America and Greenland, as well as northern Africa. Correlations with precipitation
(Fig. 9.4b, f) show a north/south dipole over the North Atlantic and Europe
(positive over Northern Europe) and that is reflected to some extent by a north/south
dipole in the correlations with weather variability (positive over Northern Europe,
Fig. 9.4d, h). Correlations with SLP (Fig. 9.4c, g) are primarily negative north of
60ıN and positive over the North Atlantic (south of 60ıN) and northern Africa.

9.2.1.3 Long-Term (Decadal Scale) Changes

In the previous sections we examined the variability on monthly time scales, and
found that the leading modes of variability and their connections with weather and
regional surface meteorology are generally well simulated by the model. Time series
of these modes showed that they vary on both interannual and longer time scales,
with a few modes showing clear evidence of trends over the three decades examined
here. In this subsection we look more directly at the longer-term changes that have
occurred, as they are reflected in the differences between the first and second half of
the record.

Figure 9.5 shows the observed (MERRA and GPCP) and model simulated
differences in the 250 hPa height, daily weather variability (v’2), T2m, and
precipitation. The most pronounced differences in the 250 hPa height field between
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Fig. 9.5 The difference between the means: (1995–2009) minus (1981–1994) for JFM. The left
panels are for the observations (MERRA and GPCP precipitation) and the right panels are for the
AMIP runs. Top panels are the 250 hPa height differences (only values significant at the 10% level
are shaded, units are meters), the second row consists of the differences in the 250mb daily V-wind
variance (units are m/s squared), the third row shows the 2 m temperature differences (units are
ıC), and the last row shows the precipitation differences (units are mm/day)

the two periods in both MERRA and the simulations (Fig. 9.5a, e) are the overall
increase in the tropics and subtropics and a decrease in the tropical eastern Pacific.
The observations show a height decrease in the southern polar region, and an
increase in height in the northern polar region: these are absent from the model
simulations. The latter reflects the general trend towards more negative values of
the NAO after 1990 in the observations (see e.g., Fig. 9.3l). The weather variability
(Fig. 9.5b, f), shows a distinct poleward shift in the SH in both the observations and
simulations. Over North America, there is an increase in weather variability over
Canada and a decrease over the US southern tier of states. There is little agreement
between the observations and model results over Eurasia in terms of the changes in
weather variability. The surface temperature changes (Fig. 9.5c, g) show a general
warming, with cooling over western Canada, Alaska, and (for the observations) over
northern Russia.

Over the ocean the temperatures have warmed over the North Atlantic, much of
the western Pacific and parts of the Indian Ocean. In contrast, the eastern Pacific
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Fig. 9.6 The difference between the means: (1995–2009) minus (1981–1994) for JFM. The left
panels are for MERRA and the right panels are for the AMIP runs. Top panels are the 250mb
height differences with the zonal mean removed. The second row displays the zonal mean height
difference (only values significant at the 10% level are shaded). Units are meters

shows some evidence of cooling. This appears to be part of a longer-term trend
extending back at least one half century (e.g., Kumar et al. 2010). The precipitation
differences (Fig. 9.5d, h) in the Pacific resemble the response to La Nina, with
reduced precipitation in the tropical central and eastern Pacific extending polewards
in both hemispheres (across the southern US and towards the southern tip of South
America). The Pacific warm pool and the tropical Atlantic both show enhanced
precipitation. The above changes in precipitation are consistent with those described
in Hoerling et al. (2010).

Kumar et al. (2010) note that for the recent period (1980–2008), the global
teleconnection pattern associated with La Niña has been associated with higher
heights than in previous decades from the tropics to the mid-latitudes. In Fig. 9.6a, c
we remove the “background” height increase by removing the zonal mean heights
before computing the 250 hPac height differences. This shows more clearly
the canonical La Nina response in the eastern Pacific with anomalies extending
northward and eastward across North America. The cross section of the zonal
mean height differences (Fig. 9.6b, d) highlights the general height increases that
maximize above 200 hPa. The zonal means also emphasize the differences between
the model and MERRA at high latitudes noted earlier.

The changes in the extremes between the two time periods are depicted in Fig. 9.7
in terms of the differences in the 10-year return values of the number of heavy rain
days, warm days, and cold nights. Results are based on a fit of the exceedances
to a Generalized Pareto Distribution (GPD, Coles 2001). This approach has the
advantage over the block maxima approach applied earlier to the maxima (e.g.,
Fig. 9.2), in that it uses more data – this is especially important here in view of
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Fig. 9.7 The difference (JFM, 1995–2009 minus 1981–1994) in the 10-year return values of
the number of heavy rain days (>5 mm/day), warm days (greater than the 90th percentile of
the daily maximum temperatures) and cold nights (less than the 10th percentile of the daily
minimum temperatures) for observations (left panels), MERRA (middle panels) and AMIP runs
(right panels). Results are based on fits of the exceedances to a GPD

the short (15 year) records for the two time periods. The results for the changes
in the number of heavy rain days (Fig. 9.7a, d, g) show general agreement between
the observations, MERRA, and simulations, although there are differences in the
details. The reduction in the number of heavy rain days in the southern United States
is prominent in all three. So is the increase over eastern Russia, Canada, southern
Asia, and northeast Brazil. The main discrepancy with the simulations occurs over
northern Russia, where the model shows an increase and the observations and
MERRA show a slight decrease in the number of heavy rain days.

The spatial pattern of the differences for the number of warm days (Fig. 9.7b, e, h)
to a large extent reflect the distribution of the differences in the mean temperature
(Fig. 9.5c, d), with an increase in the number of warm days over much of central and
southern Asia, and the southern United States and Mexico. The apparent reduction
in the number of warm days over northern Asia for the observations (and MERRA)
versus an increase for the model is not inconsistent with the difference between
the observed/MERRA and simulated mean temperature changes in that region
(Fig. 9.5c, d). Over northwest North America, the observations and MERRA also
show a reduction in the number of warm days while the model results are mixed.

The largest discrepancies with the observations occur for the changes in the
number of cold nights (Fig. 9.7c, f, i), with the model and MERRA showing a
general decrease over much of Asia, while the observations indicate an increase
especially over central and northern Asia, though the northern areas have a
substantial number of missing observations during the last decade. Over North
America, there is more agreement with all three showing a tendency for an increase
in the number of cold nights over the Pacific Northwest, and a decrease over the
southwest.
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Overall, the simulated (and MERRA) temperature extremes appear to reflect the
basic shift to warmer conditions, with a general increase in the number of warm
days and a decrease in the number of cold nights. This is less so for the observations,
though that may be largely an artifact of gaps in the temperature record.

9.2.2 Austral Winter (JAS)

We turn next to the austral winter. In this case, we choose the Southern Hemisphere
(SH) late winter 3-month period of July, August and September (JAS), as the
appropriate juxtaposition with the late boreal winter period, JFM. The SH winter
is also (like the boreal winter hemisphere) characterized by a number of distinct
modes of variability on monthly and longer time scales. Perhaps the best know is the
Southern Annular mode (SAM; Thompson and Wallace 2000) already mentioned
earlier. As reported in IPCC (2007), the SAM has exhibited an upward trend over
the past 30 years, corresponding to a decrease in surface pressure over the Antarctic
and an increase over the southern mid-latitudes although the mean SAM index since
2000 has been below the mean of the late 1990s, but above the long term mean.
An upward trend in the SAM has occurred in all seasons, but the largest trend
occurs during the southern summer (Mo 2000; Thompson et al. 2000; Marshall
2003). Based on an analysis of the structure and seasonality of the observed trends
in SH circulation, Thompson and Solomon (2002) suggest that the trends have been
largely induced by stratospheric ozone depletion. In contrast, Ding et al. (2011)
report that, while the SAM exhibits an upward trend during the summer, during
winter it has exhibited a negative trend since 1979, associated with an increase in
geopotential heights over high latitudes. This appears to be in part due to the nature
of the SAM index, which is a superposition of both intrinsic high latitude variability
and a tropically-forced component. The SAM is known to have impacts on South
America (Silvestri and Vera 2003), Australia (Hendon et al. 2007), New Zealand
(Kidson et al. 2009), South Africa (Reason and Rouault 2005), and the Antarctic
Peninsula (Lefebvre et al. 2004).

In addition to the SAM, there are several distinct wave structures that are the
counterparts to the PNA in the NH, consisting of the Pacific South American (PSA)
modes 1 and 2 (Kidson 1988; Ghil and Mo 1991; Mo 2000). These zonal wave
3 structures extend from the tropical South Pacific polewards and eastward across
southern South America. Both PSAs have been linked to variations in ENSO (e.g.,
Karoly 1989; Mo 2000).

Before examining the modes of variability, we again begin by first looking at the
ability of the model to simulate the basic climatological fields and overall variability.

9.2.2.1 Climatology and Variability

The model captures that JAS stationary wave pattern quite well (Fig. 9.8a, e, i).
Again, as during JFM, the correspondence in the details of the JAS troughs
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Fig. 9.8 The (JAS, 1980–2009) 250 hPa eddy height climatology (top row: a, e, i) and monthly
variance (second row: b, f, j) fields from MERRA (left panels), GEOS-5 simulations (middle
panels), and CFSR (right panels). Units are meters and meters squared times 0.01, respectively.
The third and fourth rows are the same as the first and second rows except for precipitation and the
right panels are from GPCP observations. Units are mm/day and (mm/day)2, respectively

and ridges in both hemispheres is remarkable. The variance patterns (Fig. 9.8b,
f, j) are also well simulated included the region of enhanced variability in the
SH high latitudes near 120 W. The basic precipitation pattern is simulated well
(Fig. 9.8c, g, k), although the area of Pacific warm pool precipitation extends too far
north in the western Pacific, and the precipitation in the eastern end of the Pacific
ITCZ is excessive. The overall pattern of precipitation variance (Fig. 9.8d, h, l) is
quite realistic and reflects the spatial distribution of the mean precipitation, although
the amplitude is excessive.

As an overall assessment of weather activity we again focus on the patterns of
daily v’2 at 250 hPa. This shows (Fig. 9.9a, b) that the model reproduces the basic
patterns of SH weather variability quite well, matching both the spatial pattern
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Fig. 9.9 Upper panels: The 250 hPa variance of the daily v-wind for JAS, 1980–2009 from
MERRA (a) and the simulations (b). Lower panels: Maps of 10-year return values for daily
maximum precipitation (c and f, units are mm/day), warmest day (d and g, units are ıC) and
warmest night (e and h, units are ıC). Left is for observations (GPCP or HadGHCN), and right is
for the AMIP runs. White regions indicate missing or insufficient data to produce reliable fits to the
GEVD

and amplitude of the variability. We note that in the NH, the simulated weather
variability is overall weaker than observed during this season, especially in both
storm tracks although the regions of the maxima in variance are again quite realistic.

The 10-year return values of the precipitation maxima (Fig. 9.9c, f) are simulated
reasonably well over Australia, Africa and South America during JAS, although
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Fig. 9.10 Left set of panels: The four leading rotated empirical orthogonal functions (REOFs) of
the monthly 250 hPa height field for JAS, 1980–2009 (note for the model the second and third
REOFs are switched). Left panels are from MERRA and the right panels are from GEOS-5. Right
set of panels: The time series of the four leading PCs of the height field REOFs. The black line is
from MERRA and the colored lines are the three model ensemble members. The monthly values
are averaged to produce seasonal (JAS) means before plotting. For the third mode the trend lines
for each ensemble member and MERRA are significant at the 10% level. The PCs are normalized
to have unit variance, so amplitude information is contained in the spatial maps of the REOFs

the amplitude tends to be too large. Also shown in Fig. 9.9 are the 10-year return
values of the warmest day (d and g) and warmest night (e and h). The comparison
is to a large extent limited to Australia (due to insufficient daily temperature
observations over most of the rest of the SH land areas). While the spatial pattern
of the temperature extremes over Australia look reasonable, the values are too large
indicating a warm bias in the model.

We next turn to the REOFs of the 250 hPa height field. The four leading REOFs
are shown in the left panels of Fig. 9.10a–h. The first (Fig 9.10a, e) is clearly
associated with the SAM, showing a zonally symmetric structure, with however,
maximum loadings in the eastern hemisphere (Indian Ocean sector), in both the
observed and simulated patterns. The PCs associated with the SAM (Fig. 9.10i)
show little coherence and no apparent trends. While previous studies have found
an upward trend in the SAM over the last 30 years, observations show that this is
largely confined to the SH summer and autumn months (Marshall 2003).

The second REOF (third in the model simulations, Fig. 9.10b, f) has a zonal
wave number 3 structure extending across the middle latitudes of the Southern
Hemisphere (with the largest amplitude in the South Pacific and South Atlantic). The
variations do not seem to be strongly forced (little coherence among the ensemble
members, Fig. 9.10j) but there is some suggestion that the waves emanate from the
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Pacific warm pool. The third REOF (the second REOF in the model simulations,
Fig. 9.10c, g) is associated with an almost global height increase and a very robust
upward trend (Fig. 9.10k). The fourth REOF (Fig. 9.10d, h) has a wave structure
confined to the South Pacific Ocean (south of 30ıS), and also seems to have little
if any coherence among the ensemble members or with MERRA (Fig. 9.10l). We
shall see in Sect. 9.3 that for JAS, REOFs 1, 2 and 4 (as defined by MERRA) are
the leading internal atmospheric modes of variability, analogous to the NAM, PNA,
and NAO during JFM.

9.2.2.2 Regional Impacts of Climate Variability

We next focus on the regional impacts of the four 250 hPa REOFs (Fig. 9.11). The
top left set of panels of Fig. 9.11 show the T2m correlations (Fig. 9.11a, e) with the
SAM (the leading 250 hPa REOF). Correlations are strongest (negative values) over
Antarctica in the eastern hemisphere, with weak positive values over parts of the
Southern Oceans. The results for MERRA (Fig. 9.11a) show positive correlations
over the eastern tropical Pacific with negative correlations in the western Pacific,
suggestive of an ENSO connection (see also Ding et al. 2011). In contrast, the
simulations (Fig. 9.11e) show only very weak correlations in the tropical Pacific,
indicating a much weaker link to ENSO. Both model and MERRA show weak but
coherence correlations with precipitation (Fig. 9.11b, f) with alternating bands of
negative correlations over Antarctic, positive correlations just north of Antarctica
and again negative correlations just south of Australia. The correlations with SLP
(Fig. 9.11c, g) show a very clear pattern of negative correlations over Antarctic and
positive correlations over the Southern Indian Ocean. The observed and simulated
correlations with v’2 (Fig. 9.11d, h) also show alternating bands of negative and
positive correlations (negative over Antarctica, positive just north of that, and again
negative correlations in the southern Indian Ocean) extending eastward along the
southern coast of Australia, New Zealand, and further east into the south Pacific.

The correlations with the third MERRA (second model) REOF (the Trend mode)
are shown in the bottom left set of panels of Fig. 9.11. The correlations with T2m
(Fig. 9.11a, e) show that the strongest positive correlations occur over the northern
Indian Ocean, parts of the Pacific warm pool, the far eastern tropical Pacific, and
the Atlantic warm pool extending eastward across the Atlantic. Over the land areas
the correlations tend to be positive, including parts of North America, northern
South America, southern Asia, and northern Africa. Correlations with precipitation
(Fig. 9.11b, f) tend to be weak and disorganized, with the most coherent correlations
occurring in the Pacific ITCZ (where they are positive) and across northern South
America where the correlations are negative. Correlations with SLP (Fig. 9.11c, g)
are weak and show little agreement between the model and MERRA. MERRA
has positive correlations over Indonesia, while the model has positive correlations
over the central tropical/subtropical Pacific. Correlations with v’2 (Fig. 9.11d, h) are
weak and disorganized but tend to be positive, especially for MERRA.
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Fig. 9.11 Correlations between the leading monthly REOFs (the corresponding PCs- seasonally
averaged) and seasonal mean T2m, precipitation, sea level pressure, and 250 hPa v’2. For each set
of panels, the results for MERRA are on the left and the results for GEOS-5 are on the right. Top
left set of panels: MERRA REOF 1 and GEOS-5 REOF 1. Top right set of panels: MERRA REOF
2 and GEOS-5 REOF 3. Bottom left set of panels: MERRA REOF 3 and GEOS-5 REOF 2. Bottom
right set of panels: MERRA REOF 4 and GEOS-5 REOF 5. Values are detrended before computing
the correlations. The model results are the average of the correlations computed separately for each
ensemble member

Finally, we also show in Fig. 9.11 the correlations with the second and fourth
REOFs corresponding to PSA 1 (upper right set of panels) and PSA 2 (lower
right set of panels). These both exhibit a wave structure in the high latitude South
Pacific that is reflected in both the T2m (Fig. 9.11a, e) and SLP (Fig. 9.11c, g)
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Fig. 9.12 The difference between the means of the two 15-year periods (1995–2009) and (1980–
1994) for JAS. The left panels (a–d) are for the observations (MERRA and GPCP precipitation)
and the right panels (e–h) are for the AMIP runs. Top panels are the 250 mb height differences
(only values significant at the 10% level are shaded, units are meters), the second row consists of
the differences in the 250 mb daily V-wind variance (units are m/s squared), the third row shows
the 2 m temperature differences (units are ıC), and the last row shows the precipitation differences
(units are mm/day)

correlations, and that extend from Australia southward and eastward to southern
South America. Both patterns also appear to impact the western hemisphere of
Antarctica (see the T2m and Precipitation correlations). The MERRA-based and
simulation-based correlations are generally quite similar, with neither showing a
strong impact/connection with the tropics.

9.2.2.3 Long-Term (Decadal Scale) Changes

Figure 9.12 shows global maps of the differences between the means of the
two 15-year periods (1995–2009) and (1980–1994) for JAS. The 250 hPa height
differences (Fig. 9.12a, e) again (as during JFM) show for both MERRA and the
simulations a general increase throughout the tropics and subtropics, with some
hemispheric asymmetry in the sense that the increases extend further poleward to
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include much of the middle and high latitudes of the NH. In the SH the maximum
increases occur near 30ıS, while in the NH the maximum increase occurs near 60ıN.
In contrast to JFM, there is no clear signature of a La Nina response (presumably
because of the seasonal increase in the tropical Pacific easterlies). Instead, there is
some evidence of an enhanced response over the Atlantic, reflecting a response to
the warming of the Atlantic Ocean during this time period. In fact, the pattern of
enhanced positive anomalies extending westward and poleward from the tropical
Atlantic into the North and South Pacific oceans, and over Eurasia, is reminiscent
of the response to an idealized uniform warming of the Indian Ocean (simulation
not shown). The main differences between the MERRA pattern and that of the
simulations is the more complex wavy structure in the MERRA 250 hPa differences
at middle and high latitudes, which likely reflects the larger sampling errors in the
MERRA results.

There is little agreement between the model results and MERRA regarding the
changes in weather statistics (Fig. 9.12b, f), with the MERRA difference patterns
showing generally very little spatial coherence. The model results on the other hand
do show coherence with generally reduced weather variability in the NH middle
latitudes and in the SH near 30ıS over the Pacific, and with increased weather
variability over the high latitudes of both hemispheres. Both the model and MERRA
show an increase in T2m over North America, central Asia, the Sahel and Australia
(Fig. 9.12c, g). They disagree on the T2m temperature changes over central Africa
and parts of South America, though it should be noted that these are regions where
the MERRA reanalysis is not reliable. The precipitation differences (Fig. 9.12d, h)
also show little agreement between GPCP and the model, especially in the tropical
Pacific.

Figure 9.13 further highlights the areas of agreement and disagreement among
the MERRA and model difference fields. After removing the zonal mean, the
250 hPa differences (Fig. 9.13a, c) are generally quite noisy, although there is
some evidence of a wave response over the SH Pacific in both MERRA and the
simulations. The zonal mean height differences (Fig. 9.13b, d) show height increases
above about 700 mb that extend northward from about 30ıS. In MERRA the
differences maximize near 200 hPa and in the North Polar region, while in the
simulations they continue to increase above 100 mb with maximum values occurring
near 60ıN.

The differences in the austral winter extremes between the two time periods are
depicted in Fig. 9.14. Here again we present the differences in the number of heavy
rain days (Fig. 9.14a, d), warm days (Fig. 9.14b, e) and cold nights (Fig. 9.14c, f),
though only for MERRA and the simulations (the limited number of observations
in the SH do not allow reliable estimates of the differences in the extremes). The
changes in the number of days with heavy precipitation show substantial differences
between MERRA and the simulations with, for example, an increase over northern
South America in MERRA and a decrease in the simulations. Both agree that
there has been an increase in the number of heavy precipitation days in east-
central South America and parts of Africa. Both the MERRA and the simulated
temperature extremes are characterized by an increase in the number of warm days
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Fig. 9.13 The difference between the means of the two 15-year periods (1995–2009) and (1980–
1994) for JAS. The left panels are for MERRA and the right panels are for the AMIP runs. Top
panels are the 250 mb height differences with the zonal mean removed, while the second row
shows the zonal mean height differences (only values significant at the 10% level are shaded, units
are meters)

and a decrease in the number of cold days over much of the SH land masses with
the largest changes occurring over northern South America, and Africa. Some of
the major differences between MERRA and the simulations occur over central and
southern South America, with MERRA showing an increase in the number of cold
nights, while the simulations show a slight decrease.

Without observational estimates, the reliability of the simulated changes in the
SH extremes is difficult to assess. While we do have the reanalysis estimates in the
SH, their quality is in question, since these too suffer from insufficient observational
constraints on the precipitation and surface temperature fields, as well as from
potential model bias.

9.3 Impact of CO2 Doubling and Uniform SST Increase

We next turn to the analysis of more idealized simulations in which the model is
forced with uniform increases in SST or doubled CO2 . As already noted, these
are not meant to provide realistic scenarios of future climate, but merely to assess
sensitivities of the model climate and variability to such changes in forcing, and to
help provide some insight into the changes that have already occurred. These runs of
course do not have ENSO or any other anomalous SST forcing, nor do they have any
variations in trace gases or aerosols. Here our assessment of changes in variability
is limited to any changes in internal atmospheric/land variability.



9 Climate Variability and Weather Extremes: Model-Simulated and Historical Data 263

Fig. 9.14 The difference (JAS, 1995–2009 minus 1980–1994) in the 10-year return values of
the number of heavy rain days (>5 mm/day), warm days (greater than the 90th percentile of the
daily maximum temperatures) and cold nights (less than the 10th percentile of the daily minimum
temperatures) for MERRA (left panelsa–c) and AMIP runs (right panelsd–f). Results are based on
fits of the exceedances to a GPD

There are three different 20-year simulations consisting of a control run forced
with a repeating annual cycle of the climatological (1981–2005 mean) SST, a run
that is the same as the control but with doubled CO2, and another run that is the
same as the control but with a globally uniform 2ıC increase in SST. This change
is large in the sense that that it is considerably greater than what has occurred in
the last three decades. In particular, we note that the actual SST changes over the
last three decades are generally less than 0.5 ıC and are far from uniform (see for
example the T2m changes in Figs. 9.5 and 9.12; see also Deser et al. 2010). Also,
the CO2 increase over the last three decades is approximately 14%. Details of the
experiments are provided in Appendix A. We begin by presenting the results for
JFM. All model results are presented as differences from the control run.
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9.3.1 Boreal Winter (JFM)

9.3.1.1 Impact on the Mean Climate and Weather Variability

Some care must be taken in interpreting AGCM simulations with doubled CO2,
since coupled IPCC model simulations show quite clearly that much of the global
warming signal is realized as a warming of the oceans, and the atmosphere in turn
responds to the associated changes in the SST. Nevertheless, it is instructive to try
to isolate the fast response of the atmosphere and land to the change in radiative
forcing, as discussed recently by I. Held6 to see how much that might contribute to
the continental warming.

The direct radiative impact (top left panels of Fig. 9.15) on the atmosphere of
doubling CO2 is a very modest warming of the troposphere with maximum zonal
mean warming (between 0.2 and 0.5 ıC) occurring at the tropopause (in the tropics
and summer hemisphere) and the lower tropospheric Arctic, with cooling in the
stratosphere (Fig. 9.15a). At the land surface, modest warming is largely confined
to the northern middle latitudes (Fig. 9.16g). The tropospheric jets show a tendency
to shift poleward (Fig. 9.15b). Changes in weather variability are small (order 10%),
with most of the main storm track regions showing some reduction in storm track
activity (Fig. 9.16e). The Hadley Cell shows a slight weakening (Fig. 9.15d), and
the main relative humidity changes are a small reduction (<5%) in the tropics above
100mb (Fig. 9.15e). Precipitation changes are small and unorganized, with some
overall preference for reduced precipitation (Fig. 9.16c).

The impact of a uniform 2ıC increase in the SST of the world’s oceans
(Fig. 9.15f–j) consists of warming throughout the troposphere with maximum zonal
mean warming of greater than 4ıC occurring in the tropics just below the tropopause
(Fig. 9.15f). Significant cooling is limited to the tropical and Arctic stratosphere.
The relative humidity changes (Fig. 9.15j) are positive at the tropopause and in the
tropical troposphere, with reduced values in the extratropical troposphere (poleward
of about 30ılat) of both hemispheres. The zonal mean wind changes (Fig. 9.15g)
show a poleward and upward shift of the westerly jets, with anomalous easterlies in
the upper tropical troposphere and the high latitudes of the Northern Hemisphere.
The upper level troposphere height differences (Fig. 9.16b) show reduced heights
at high latitudes resembling an enhanced positive phase of the annular modes
(NAM and SAM) in both hemispheres. Surface warming exceeds 1ıC over much

6http://www.gfdl.noaa.gov/blog/isaac-held/2011/05/24/11-is-continental-warming-a-slave-to-
warming-of-the-ocean-surface/more-1919

http://www.gfdl.noaa.gov/blog/isaac-held/2011/05/24/11-is-continental-warming-a-slave-to-warming-of-the-ocean-surface/more-1919
http://www.gfdl.noaa.gov/blog/isaac-held/2011/05/24/11-is-continental-warming-a-slave-to-warming-of-the-ocean-surface/more-1919
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Fig. 9.16 JFM differences from the control run and the experiments with double CO2, and 2ıC
SST increase. The top left panels (a–b) show the 250 hPa height (meters, with the global means
removed: these are 10,532, 10,540, and 10,651 m for the control, double CO2 and 2ıC SST runs,
respectively). The top right panels (d–f) show the 250mb v’2 (m2). The bottom left panels (c–d)
show the precipitation (mm/day), and the bottom right panels (g–h) show the T2m (ıC)

of the world’s land areas, with some regions showing increases of more than 3ıC
(Fig. 9.16h). The strength of Hadley Cell is reduced (Fig. 9.15i). The strength of
the adjacent Ferrel Cells is also reduced in a way that is consistent with a poleward
expansion of the Hadley Cell.

Precipitation changes (Fig. 9.16d) are mostly positive with increases occurring
over the SPCZ, the tropical/subtropical southern Indian Ocean, on the northern
fringe of the Pacific ITCZ, and the high latitudes (generally poleward of 60ı)
especially in the North Atlantic. Some reduction in precipitation occurs over South
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Africa, eastern Australia and central South America. The storminess (as measured
by the variance of 200 hPa daily v-wind) shows a well-defined poleward shift in
both hemispheres (Fig.9.16f).

The above results are compared (in Fig. 9.15k–o) with the changes that were
simulated to have occurred in the last three decades during JFM. The results
show a weakening and poleward expansion of the Hadley (Fig. 9.15n) that is
consistent with observational studies (Fu et al. 2006). Such changes appear to
be a robust response in coupled models to GHG forcing (Held and Soden 2006;
Lu et al. 2007), and have been linked to an increased tendency for long-term
drought in the subtropics (e.g., Seager et al. 2007). The expansion of the Hadley
Cell is associated with a poleward shift (Fig. 9.15l) of the subtropical jets (e.g.,
Lu et al. 2007). The direct radiative impacts show similar features although these
are likely too weak to contribute in a substantial way to the changes that have
occurred in the last three decades. One thing of note is the substantial cooling in
the NH stratosphere near the pole under CO2 doubling (Fig. 9.15a), which may
contribute to the observed changes in that region. Whether any of the observed
continental interior warming is at all the result of the fast response to CO2 changes
on the land surface is not clear, though any such impact would again be small.
Overall, the impacts of a CO2 doubling presented here appear to be consistent
with those presented by I. Held8 based on the Geophysical Fluid Dynamics Lab-
oratory (GFDL, AM2.1/LM2.1) AGCM. Evidence for the predominantly oceanic
control of the recent world-wide warming over land can be found in Compo and
Sardeshmukh (2009).

9.3.1.2 Impact on Climate Variability

In view of the considerable world-wide impact of the leading modes of variability, it
is of interest to determine whether they are impacted (either as a change in amplitude
or spatial structure) by changes in CO2 or SST. Hu et al. (2011) addressed this issue
in a comparison of IPCC scenario A1B and control runs with the CCSM3 model.
They found that the leading seasonal mean modes of internal variability are largely
unaffected by an increase in GHG and aerosol concentrations.

Our results are consistent with Hu et al. in that the leading modes of variability
found in the AMIP runs and MERRA (in particular, the NAM, NAO and PNA) exist
also in the control and other idealized fixed forcing runs. Of course the atmospheric
ENSO mode does not appear since it is a response to SST anomalies. In fact, we
have computed the REOFs separately for each experiment and found only minor
differences in the patterns (differences that are likely well within the sampling
errors). In order to assess any potential changes in variability, we have computed
the REOFs from the combined set of 3 runs (first removing the means of the
individual runs separately), to obtain a combined set of REOFs (Fig. 9.17a–d). This
shows that the NAM, NAO and PNA are the three leading modes, with the fourth
mode resembling the North Pacific Oscillation (NPO, also found in the AMIP runs
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Fig. 9.17 Left panels (a–d): Leading monthly JFM 250 hPa height REOFs of the combined
control, 2ıC SST increase, and double CO2 runs. The anomalies are computed with respect to the
means of the individual runs. Right panels (e–f): Scatterplots of the leading REOFS (the principal
components, PCs). Black dots: control run. Red dots: double CO2 run. Blue dots: C2ıC SST run

and MERRA as a higher mode – though not discussed in the previous sections).
The NPO is well known as an important pattern of subseasonal variability (e.g.,
Linkin and Nigam 2008). Figure 9.17e, f show scatterplots of the amplitudes of the
4 leading PCs. These show no obvious differences in the variability in the various
runs. Table 9.1, however, suggests that the variability of the NAM increased by about
2/3 and the variability of the NPO decreased by about 1/2, in the 2ıC SST run. Also,
it appears that the PNA variance decreased by about 1/2 in the doubled CO2 run. It
should however be emphasized that with just 20 years for each experiment the above
results are only marginally significant at the 5% level (based on a F-test for the ratio
of variances).

We next turn to the impacts on the JAS climate and variability.
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Table 9.1 JFM variances
(X 100,000) of the four
leading REOFs in the
idealized experiments

Control 2XCO2 SST C 2ıC

MODE 1 3.00 3.05 4.98
MODE 2 2.77 2.93 1.99
MODE 3 1.96 1.02 3.10
MODE 4 1.84 1.72 0.96

Values in bold are significantly different from
the control at 5%

9.3.2 Austral Winter (JAS)

9.3.2.1 Impact on Mean Climate and Weather Variability

The direct radiative impact on the atmosphere of doubling CO2 during JAS
(Fig.9.18a–e) is in many ways quite similar to the response during JFM, although
with the hemispheres reversed. The impacts on the temperature (Fig. 9.18a) and
zonal winds (Fig. 9.18b) are somewhat stronger than for JFM, with more extensive
zonal mean warming in the Northern Hemisphere, greater cooling in the SH polar
stratosphere, and larger changes (poleward and upward shift) in the zonal wind in
the Southern Hemisphere. The Hadley cell changes (Fig. 9.18d) are small. The
largest changes in RH (Fig. 9.18e) are negative in the tropical tropopause and
positive in the Antarctic stratosphere (compared to the Arctic stratosphere for JFM).
The 250 hPa height differences (Fig. 9.19a) are more coherent than for JFM with
generally enhanced heights in the high latitudes (north of 45ıN) of the NH, and
reduced heights over the high latitudes (south of 60ıS) of the SH. Modest surface
warming (Fig. 9.19g) again occurs over much of the extratropical land area but it
is more extensive over Russia. Changes in storminess (Fig. 9.19e) again show a
general reduction especially in the NH middle latitudes.

The zonal mean impact of a uniform 2ıC increase in the SST of the world’s
oceans (Fig. 9.18f–j), are quite similar to that already shown for JFM, including a
general warming throughout the troposphere, an upward and equatorward expansion
of the upper level westerlies (Fig. 9.18g), enhanced v’2 (Fig. 9.18h) above the
climatological maxima accompanied by a reduction equatorward and below the
climatological maxima, a reduction in the strength of the Hadley Cell (Fig. 9.18i),
and RH increases (Fig. 9.18j) near the tropopause. The spatial maps of the changes
show an upper level height response (Fig. 9.19b) exhibiting reduced heights in
both polar regions, and enhanced heights equatorward of about 30ı latitude (again,
having a zonally symmetric component that is reminiscent of the positive phase
of the annular modes). Surface warming (Fig. 9.19h) is wide spread over all land
areas with some of the largest warming occurring over the U.S. Great Lakes region.
Precipitation changes (Fig. 9.19d) are generally positive in the tropical regions of
the ITCZ and the Pacific warm pool extending westward across southern Asia.
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Fig. 9.19 JAS differences from the control run and the experiments with double CO2, and 2ıC
SST increase. The top left panels (a–b) show the 250 hPa height (meters, with the global mean
removed: these are 10,627, 10,639, and 10,748 m for the control, double CO2 and 2ıC SST runs,
respectively). The top right panels (e–f) show the 250mb v’2 (m2). The bottom left panels (c–d)
show the precipitation (mm/day), and the bottom right panels (g–h) show the T2m (ıC)

The above results are compared (in Fig.9.18k–o) with the changes that were
simulated to have occurred in the last three decades during JAS. The comparison
indicates that the weakening of the Hadley Cell that has occurred in the last three
decades during JAS (just as for JFM) is consistent with observational studies (Fu
et al. 2006), and as already noted above, appears to be a robust response in coupled
models to GHG forcing (Held and Soden 2006; Lu et al. 2007). Also, the expansion
of the Hadley Cell is associated with a poleward shift of the subtropical jets as
discussed in Lu et al. (2007). The asymmetrical warming (mostly occurring in the
NH in the zonal mean) is, in contrast, more similar to what can be expected from
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Fig. 9.20 Left panels (a–d): Leading monthly JAS 250 hPa height REOFs of the combined
control, 2ıC SST increase, and double CO2 runs. The anomalies are computed with respect to the
means of the individual runs. Right panels (e–f): Scatterplots of the leading REOFS (the principal
components, PCs). Black dots: control run. Red dots: double CO2 run. Blue dots: C2ıC SST run

the direct radiative impacts of a doubling in CO2. Also, the cooling in the SH polar
stratosphere (Fig. 9.18k), the reduction in RH in the tropical tropopause (Fig. 9.18o)
and the increase in the southern polar stratosphere are consistent with the direct
radiative impacts of the increase in CO2.

9.3.2.2 Impact on Climate Variability

The leading internal SH modes found in the AMIP runs and MERRA (Fig. 9.10)
are largely unchanged in the control and other idealized forcing runs. This includes
the SAM, and the two PSA modes (Fig. 9.20a–d). The trend mode does not appear
as expected since there is no external time varying forcing. The scatterplots of the
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Table 9.2 JAS variances
(X 100,000) of the four
leading REOFs in the
idealized experiments

Control 2XCO2 SST C 2ıC

MODE 1 4.27 2.52 3.22
MODE 2 2.39 2.39 2.09
MODE 3 1.60 2.06 0.87
MODE 4 2.52 1.14 0.87

Values in bold are significantly different from
the control at the 5% level

PCs (Fig. 9.20e–f) indicate that there is little if any change in the variance of the
internal models. There is some indication that the CO2 increase appears to decrease
the variance of the SAM by about 40%, while the SST warming acts to reduce the
variability of PSA modes (Table 9.2).

9.4 Summary and Discussion

Weather extremes are inextricably linked to variability on a broad range of time
scales. As such, understanding the causes of any changes in the characteristics of
weather extremes requires an understanding of the connections between extremes
and climate variability. This was addressed here in the framework of AMIP-style
simulations in which the model was forced with observed SSTs, GHGs and ozone.
In particular, we have reviewed the ability of the GEOS-5 AGCM, run at moderately
high horizontal resolution (50 km), to simulate the major modes of monthly climate
variability and weather extremes in the two winter hemispheres during the period
1980–2009. We also examined the nature of the longer-term (decadal) changes
that occurred during this time period, including the changes in extremes. Idealized
AGCM experiments were used to help guide the interpretation of the results.

Several questions were posed in the Introduction that we now attempt to answer.
Specifically:

Does the GEOS-5 model reproduce the observed winter climatological fields?
In short, the results show quite clearly, that the GEOS-5 AGCM when forced

by the observed SST and GHGs and ozone does reproduce the (1980–2009 mean)
climatological fields quite well, including the stationary waves and precipitation
fields in both winter hemispheres.

Does it have the correct low-frequency (monthly mean) modes of variability?
The GEOS-5 model appears to do a credible job in reproducing the observed

variability, with several caveats. The model overestimates the monthly mean
precipitation variability in the tropics. It also overestimates the upper tropospheric
height variability in the North Pacific during JFM. The model does a remarkably
good job in reproducing the leading patterns of monthly variability in both winter
hemispheres. These include the ENSO response, the PNA, NAO, NAM, SAM and
two Pacific South American (SPA) patterns. In addition, the model reproduces the
key trend modes during both seasons. The main deficiency appears to be a too
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strong PNA variability (hence too much variability in the North Pacific) that appears
to reflect a too strong sensitivity of the atmosphere to SST forcing in the central
tropical Pacific.

Having multiple ensemble members also allowed an assessment of the degree
to which the various modes are constrained by external forcing (SST, GHG and
ozone). The results show a strong forcing for the trend and ENSO modes, while
the lack of correlation between the individual ensemble members for the other
modes indicates that these are largely internal to the atmosphere (unforced). This
is confirmed with the idealized control simulation (having no interannual variations
in external forcing) that reproduced the leading modes (PNA, NAO, NAM, SAM,
and PSA). There is some evidence that the PNA is impacted/modulated by SST at
longer time scales, and that appears to contribute to the tendency for a La Nina –
like (negative PNA) response over the United States during the last three decades.
Trends in other modes (for example those identified in previous studies of the NAO,
NAM and SAM) emerge only in the context of longer records and/or during the
warm season.

Does it have the correct weather variability and extremes?
The model reproduces the spatial structure and amplitude of the JFM and JAS

winter storms tracks. Over land, the model also reproduces the basic patterns and
amplitudes of precipitation extremes over the winter hemispheres, as reflected in the
10-year return values of the daily precipitation maximum and the warmest day and
warmest night. The model does however tend to overestimate precipitation maxima
at low latitudes especially during JAS, and suffers from a substantial day time cold
bias in high latitude land areas during JFM. Efforts to validate the simulated daily
extremes, are hampered by missing data, especially for the temperature record. The
problem is especially severe in the SH where reasonably good coverage is largely
confined to Australia.

Are the linkages between climate variability and regional weather simulated
correctly?

The model does a remarkably good job of reproducing the predominant telecon-
nections associated with ENSO, the NAO, PNA, NAM, SAM and SPA modes. This
includes the changes over the US associated with ENSO (e.g., enhanced storminess
and precipitation along the US Gulf States), over Australia, New Zealand and
Antarctica associated with the SAM, and over Eurasia associated with the NAM
and NAO. It also includes warmer (colder) temperatures over northern Eurasia (the
Mediterranean and North African regions) during a positive NAM, the increased
storminess and warming over northern Europe and the warming over the US eastern
seaboard during a positive NAO, and the warming over Alaska and western Canada
during a positive PNA.

What are the longer-term changes that have occurred over the last three decades
and are these reproduced in the model?

There is a very clear trend towards more positive upper tropospheric heights
throughout the tropics and subtropics (extending into much of the middle latitudes)
during the austral winter in both MERRA and the model simulations. During the
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boreal winter (JFM) the positive trend is again evident in the height field but it
is intermingled with a strong ENSO signal in both the MERRA and simulations.
The ENSO component of the trend appears to favor stronger warm events and
contributes to an overall warming in the tropics and subtropics. As mentioned
above, there is however imbedded in the warming trend, a La Nina-like (negative
PNA) pattern. This is associated with a northward shift in the storm tracks and
warmer temperatures over the United States. The relationship between these two
distinctly different behaviors of a tendency towards both an El Nino like general
atmospheric warming, and an embedded trend toward a La Nina like atmospheric
response is unclear, but the latter appears to reflect the long-term response of the
PNA (an intrinsically internal mode of monthly variability) to the cooling of the
central and eastern tropical Pacific over the last three decades. One possibility is that
this reflects the apparent shift from eastern to central Pacific ENSOs (e.g., Ashok
et al. 2007), resulting in a greater sensitivity of the PNA to the cooler Pacific in
recent years.

During JFM the model shows a distinct surface warming over northern Asia
that, in the reanalysis, is a region of slight cooling over the last three decades.
Other discrepancies between the reanalysis and the model during JFM occur in
the polar regions, where the reanalysis shows a negative height change over the
Southern Hemisphere and a positive change in the Northern Hemisphere, that are not
reproduced in the simulations. The extent to which these represent true trends (that
are not reproduced by the model) or whether they are simply statistical residuals of
the variability associated with the SAM and the NAM is not clear. It is noteworthy
that, despite these discrepancies, both the reanalysis and simulations show a zonally-
symmetric poleward shift in the SH storm tracks during JFM.

During JAS, the model and reanalysis are consistent in showing warmer surface
temperatures throughout North America, central Eurasia, Australia, and northern
Africa. There is little consistency in the changes in the storm tracks, with the
reanalysis showing little spatial coherence in the changes, while the model shows a
poleward shift in the SH and a general reduction in storminess over the NH middle
latitudes. Similarly, there is no agreement in the changes in the zonal mean jets.
These results highlight the lack of dominant teleconnections and associated SST-
forced changes in planetary waves during JAS, with the general continental warming
presumably induced by the warmer oceans as discussed previously.

The observed and simulated changes in boreal winter extremes between the two
periods reflect the continental warming and, over North America, the La Nina
(negative PNA) response, including the northward shift of the storm tracks and
the generally warmer conditions over the southern US. In particular, much of
the southern United States shows a decrease in the number of days with heavy
precipitation, while much of Europe and eastern Russia show an increase. Much
of southern and central Asia, the Mediterranean region, and the southern US are
characterized by an increase in the number of warm days. The major discrepancy
between the simulations and observations is that the latter show a reduction in
the number of warm days (and an increase in the number of cold days) in
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northern Russia while the simulations produce the opposite, although the substantial
number of missing observations in the recent decade make the observational results
unreliable in that region. The simulated austral winter temperature extremes show
an overall increase in the number of warm days and a decrease in the number of
cold days over much of the SH land masses with the largest changes occurring over
northern South America, southern Africa and northern Australia. The simulated
changes in the number of days with heavy precipitation is more complicated
showing for example a reduction over the Amazon basin, and an increase over
equatorial Africa. The reliability of the simulated changes in the SH extremes is
however unclear, since the observationally-based estimates suffer from limited data
coverage and uncertainties in the quality of the reanalysis data.

What can idealized AGCM experiments tell us about the recent, and possible
future changes in climate variability and weather extremes?

During JFM, the warming of the world’s oceans by 2ıC leads to several key
changes, including a poleward shift in the storm tracks, a poleward and upward
shift in the middle latitude jets, a weakening and poleward expansion of the Hadley
Cell, and a general warming over land that in some regions exceeds 3ıC. The
direct radiative impact on the atmosphere of a CO2 doubling is weak, showing a
maximum warming (>1ıC) near the tropical and SH tropopause, a cooling above the
tropopause, especially in the NH high latitudes, a weak poleward shift in the middle
latitude jets (approximately 0.5 m/s change), and continental interior warming of up
to 1ıC in the NH. Comparisons with the simulated changes of the last three decades
suggests that the expansion and weakening of the Hadley Cell is consistent with the
impact of the SST warming, as is the observed SH poleward shift in the subtropical
jet and storm tracks, and the continental warming.

During JAS the uniform SST increase also produces a poleward shift in
storminess, an upward shift in the middle latitude jets, a weakening and poleward
expansion of the Hadley Cell, and a general warming of the continents. The direct
radiative impact on the atmosphere of a CO2 doubling is again weak, showing the
largest warming (>0.5ıC) occurring near the tropical tropopause and in the NH
middle and high latitude troposphere, together with an interior continental surface
warming of up to 1ıC in the NH. Cooling occurs in the stratosphere, especially in
the SH high latitudes. A comparison with the simulated changes of the last three
decades indicates that the weakening of the Hadley Cell is again (as during JFM)
consistent with the response to the uniform SST increase. That is also true for the
SH poleward shift of the subtropical jets and storm tracks, while the NH changes
in the jet and storm tracks are less clearly linked to the SST changes. In fact, the
asymmetrical warming (mostly occurring in the NH in the zonal mean) is similar in
pattern to the direct radiative impact of increases in CO2. Also, the reduction in RH
in the tropical tropopause and the increase in the upper level south polar region is
consistent with the direct radiative impacts of an increase in CO2.

Concluding Remarks
The climate community is being challenged to provide increasingly more

comprehensive societally-relevant information about the impacts of climate change
that go well beyond broad statements about how much the global mean temperature
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will change. This in turn requires increasingly more comprehensive assessments of
the quality of climate models to reproduce past regional climate impacts as well as
the full spectrum of observed climate variability including those aspects (such as
weather extremes) that are likely to have the greatest impact on society.

Our analysis shows that the wintertime climate and weather variability and trends
of the last three decades are comprised of a rich assortment of internal (to the
atmosphere) and externally forced (SST, GHGs, ozone) modes that have profound
impacts on regional climates on monthly and longer time scales. Any assessment
of long-term changes, including changes in extremes, must take these modes into
account. In particular, we found that the long-term warming trends of the last three
decades are intertwined with ENSO and the PNA. In addition, our more idealized
runs highlight the important role of the oceans in warming the continents, as well
as their controls on other key climate features such as the Hadley Cell, subtropical
jets and storm tracks. Those runs also show that the spatial structure of the leading
internal modes of variability is largely unchanged, even with substantial changes in
external forcing.

Our assessment of the GEOS-5 model AMIP simulations indicates that the model
is of sufficient quality to provide realistic assessments of the wintertime impacts of
long-term changes in SST and GHGs on regional climates and weather extremes.
Gaps in the observational coverage and the uncertain quality of the reanalysis data,
however, hinder our ability to validate the model results over much of the SH and
parts of Asia, especially for assessing changes in the extremes.

We did not include the warm and transition seasons in our analysis because we
believe current climate models do not provide sufficiently realistic representations of
such basic features as warm season continental precipitation, including the diurnal
cycle and meso-scale convective systems that are critical to achieving realistic
summer weather extremes in middle latitudes. Nor do they adequately resolve
the most intense tropical storms that are in some regions the most important
extreme events in terms of their impacts on society. In part, this is a resolution
issue, although some necessary model improvements will likely still require better
parameterizations, at least for the resolutions that are expected to be feasible for
climate models during the next decade.

A.1 Appendices

A.1.1 Appendix A

A.1.1.1 The GEOS-5 Model and Experiments

The NASA Goddard Earth Observing System (GEOS-5) Atmospheric General
Circulation Model or AGCM (Rienecker et al. 2008) employs the finite-volume
dynamics of Lin (2004). This dynamical core is integrated with various physics
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Table A.1 List of experiments

Radiative gases,
Experiments Time period Initial conditions SST and sea ice ozone, aerosols

AMIP 1980–2009 MERRA: Jan 2,
9, and 16th of
1980

Observed
(HadISST)

“Observed”– see text

Control 20 years MERRA: 1980
Jan 2

Repeating mean
annual cycle
from
HadISST
(1981–2005)

Gases are constant
IPCC 1992 values
(Table A.2); ozone
is climatological
(1981–2005);
aerosols are 2002
values

Global
warming

20 years Same as control Same as control
plus uniform
2ıC increase
over the
global oceans

Same as control

Double CO2 20 years Same as control Same as control Same as control, but
double CO2

packages (Bacmeister et al. 2006) under the Earth System Modeling Framework
(Collins et al. 2005) including the Catchment Land Surface Model (Koster et al.
2000), and a modified form of the Relaxed Arakawa-Schubert convection scheme
described by Moorthi and Suarez (1992). For the experiments described here we
used version 2.4 of the AGCM. The model was run with 72 hybrid-sigma vertical
levels extending to 0.01 hPa, and ½ı (about 50 km) horizontal resolution on a
latitude/longitude grid. Atmospheric variables and surface variables were output
every 6 h, and for some variables (in particular those with a strong diurnal cycle)
every 3 h.

In addition to the atmospheric model inter-comparison (AMIP) style runs forced
with observed SST, several other more idealized experiments were run with a
repeating climatological annual cycle in the SST and sea ice. These include a
control, a run with a uniform 2ıC increase in the global SST, and a run with doubled
CO2 (Table A.1)

For the AMIP runs, CO2 consists of the time varying annual global mean values
provided by IPCC/CMIP5. The other greenhouse gases (GHGs: CH4, N2O, CFC-
11, CFC-12, and HCFC-22), stratospheric water vapor (H2O), and ozone (O3) are
relaxed to time varying zonal averages with a 2-day e-folding time. The zonal
averages of the GHGs are taken from simulations of 1950–2010 with the GEOS
chemistry climate model (CCM, Pawson et al. 2008), and are calibrated (bias
corrected) to the tropospheric concentrations specified by CMIP5 (Meinshausen
et al. 2011). Stratospheric H2O is also taken from the CCM. In both cases, GHGs
and H2O, 5-year running averages are first computed to reduce the influence of
interannual variability in the CCM fields. Ozone is specified from AC&C/SPARC
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Table A.2 Radiative gases
from 1992 IPCC
specifications

Radiative gas Amount

CO2 3.56E-04
CH4 1.714E-06
N2O 3.11E-07
CFC11 2.68E-10
CFC12 5.03E-10
CFC113 8.20E-11
CFC22 1.05E-10

monthly averages (ftp-esg.ucllnl.org) from 1870 to 2005, and is converted to zonal
means before interpolation onto GEOS-5 layers. For all seven gases, the relaxation
fields have realistic latitudinal, vertical, and seasonal variations imposed on their
specified trends. Two-day e-folding times allow the species contours to sufficiently
follow planetary-scale potential vorticity deformations in the stratosphere.

Aerosols are computed using the Goddard Chemistry, Aerosol, Radiation, and
Transport model (GOCART, Chin et al. 2002; Colarco et al. 2009) in GEOS-5.
The GOCART module is run online within the GEOS-5 AGCM; that is, the
aerosols and other tracers are radiatively interactive and transported consistently
with the underlying hydrodynamics and physical parameterizations (e.g., moist
convection and turbulent mixing) of the model. GOCART treats the sources, sinks,
and chemistry of dust, sulfate, sea salt, and black and organic carbon aerosols.
Aerosol species are assumed to be external mixtures. Total mass of sulfate and
hydrophobic and hydrophilic modes of carbonaceous aerosols are tracked, while
for dust and sea salt the particle size distribution is explicitly resolved across five
non-interacting size bins for each.

Both dust and sea salt formulations have wind-speed dependent emission
functions, while sulfate and carbonaceous species have emissions principally from
fossil fuel combustion, biomass burning, and biofuel consumption, with additional
biogenic sources of organic carbon. Sulfate has additional chemical production from
oxidation of SO2 and DMS, and we include a database of volcanic SO2 emissions
and injection heights. For all aerosol species, optical properties are primarily from
the commonly used OPAC data set (Hess et al. 1998). This framework also includes
the representation of CO tracers, which have emissions from fossil fuel, biofuel,
and biomass burning. The online CO processes in GEOS-5 derive from Bian
et al. (2007), and include indirect production of CO from oxidation of natural
and anthropogenic non-methane hydrocarbons, chemical production from methane
(CH4) oxidation, and losses through reaction with OH.

A.1.1.2 MERRA and Other Observations

Our analysis is based in part on MERRA (Rienecker et al. 2011). MERRA is
an atmospheric reanalysis that was produced with the Goddard Earth Observing
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System Data Assimilation System Version 5 (GEOS-5) documented in Rienecker
et al. (2008), consisting of the GEOS-5 atmospheric model and the Grid-point
Statistical Interpolation (GSI) analysis system, the latter being a system jointly
developed by the GMAO and NOAA’s National Centers for Environmental Pre-
diction. The GEOS-5 assimilation system includes an incremental analysis update
(IAU) procedure (Bloom et al. 1996) that slowly adjusts the model states toward
the observed state. This has the benefit of minimizing any unrealistic spin down (or
spin-up) of the water cycle. MERRA was run at a resolution of ½ı latitude� 2/3ı
longitude with 72-levels extending to 0.01 hPa. More information about MERRA
can be found at: http://gmao.gsfc.nasa.gov/research/merra/.This study uses standard
monthly mean (JJA) and hourly output that is provided on 42 pressure levels at
a horizontal resolution of 1ı latitude� 1.25ı longitude for the period 1979–2010.
A more limited comparison is made with the NOAA Climate Forecast System
Reanalysis (CFSR, Saha et al. 2010).

We also make use of various observations consisting of the daily and monthly
mean Global Precipitation Climatology Project (GPCP) precipitation data (Adler
et al. 2003), and the HadGHCN daily and monthly temperature data (Caesar et al.
2006). Some of the results are also based on daily NOAA Climate Prediction Center
precipitation data (Xie et al. 2007).

A.1.2 Appendix B

A.1.2.1 Some Examples of Fits to the GEV Distribution

In order to estimate the 10-year return values of the maximum daily precipitation
and the warmest days and warmest nights, we fit the maxima to the Generalized
Extreme Value (GEV, Coles 2001) distribution:

1

�
t.x/�C1e�t .x/;

where

t.x/ D
( �

1C � x��
�

��1=�
if � ¤ 0

e�.x��/=� if � D 0

and �, � and ¢ represent that shape, location and scale of the distribution
respectively. Examples of the fits are presented in Fig. B.1.
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Fig. B.1 Left set of panels (a–h): Spatially averaged histograms with superimposed GEV fits from
observations (left) and GEOS5-AMIP runs (right). Top: warmest days and nights temperature
occurrences in percentage averaged over the US during JFM (red bars). Corresponding GEV
fits are denoted by blue curves. Bottom: same but over Australia for JAS. X-axis denotes the
actual temperature values whereas the Y-axis denotes the percentage values. Right set of panels
(a–f): Direct comparisons of the spatially averaged GEV fits to the observations (red) and AMIP
simulations (blue) for maximum daily precipitation (top panels), warmest day (middle panels), and
warmest nights (lower panels). Spatial averaging was performed for the US (130W-70W, 25N-
45N) for JFM on the left, and for Australia (100E-160E, 50S-10S) for JAS on the right
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Chapter 10
Uncertainties in Observed Changes
in Climate Extremes

Kenneth E. Kunkel

Abstract Some of the sources of uncertainty in evaluating observed changes in
climate extremes include the highly non-linear, chaotic behavior of the dynamical
climate system; inhomogeneities in the climate station records, and incomplete
sampling of the climate system. There is no known theoretical basis for char-
acterizing uncertainties arising from the chaotic nature of the climate system.
Ensemble simulations as well as long control simulations from climate models
offer an opportunity to characterize this source of uncertainty, realizing that climate
models introduce their own layer of uncertainty. Prominent examples of inho-
mogeneities in climate station records include changes in instrumentation, station
moves, changes in measurement methodology, and changes in time of observation.
Examples of the potential effects of an instrument change in the U.S. cooperative
observer network and a shift in the predominant time of observation are provided.
Sampling uncertainties are greater for precipitation than temperature extremes,
because precipitation extremes are smaller in scale. A Monte Carlo approach to
quantify sampling uncertainty is described, based on station distribution in the U.S.
cooperative observer network. Also, the use of statistical tools (such as Kendall’s
tau, generalized extreme value theory, and bootstrap resampling) and climate model
ensemble experiments are discussed.
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10.1 Overview of Fundamental Issues Underlying
Uncertainty

A fundamental motivation for efforts to detect changes in extremes is to provide
information about the future. If there has been a real change in the characteristics of
the climate that have affected extreme events, then there is a basis for anticipating
characteristics in the future, perhaps as simple as a maintenance of recent levels
or a continuation of recent trends. Thus, the central underlying question is whether
there has been a real change in the climate system. Answering this question can be
difficult because of the following considerations.

The physical laws governing the behavior of the climate system are highly non-
linear. The result is a dynamical system that is chaotic, that is, the temporal evolution
is highly sensitive to the initial state of the system. Extremes arise naturally out
of this chaotic system. Furthermore, there is no known fundamental constraint on
the frequency, intensity, or location of such extremes. It is at least conceivable
that changes that appear to be real are simply a reflection of this internal chaotic
dynamically-driven variability and these apparent changes carry no predictive power
for the future state of the system. Thus, even if there is high confidence that a trend
has been observed, this may not meet the ultimate objective of our analysis.

Since extremes are by definition rare, normal statistics that rely on a large
number of samples simply do not apply. Without a priori knowledge of the statistical
characteristics of extreme events, there is uncertainty whether the tools we apply are
relevant to the specific type of event being studied. Extreme value theory may be
applicable, but it has not been determined how the governing laws of the climate
system lead to a particular functional distribution for extreme events. Any such
relationships are purely empirical at this juncture. As such, their predictive power
is unknown.

Limitations in the observational network add another layer of uncertainty. There
may be changes in the network over time, such as in the spatial density and location
of observing stations and in the methods of measurement, to name two examples.
Real changes in the climate system may be masked, partially or wholly, by such
changes which can create artifacts in the data. It can be difficult or impossible to
quantify such artificial changes and separate out the real changes in the climate
system.

10.2 Specific Sources of Uncertainty

10.2.1 Chaotic Climate System

The uncertainties that arise from the chaotic nature of the climate system have not
been quantified in any theoretical sense. Ensemble simulations of climate models
offer some hope of quantifying this, with the underlying realization that climate
models introduce their own layer of uncertainty.
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Under constant boundary conditions (e.g. state of the ocean and land surfaces
and composition of the atmosphere), the dynamic and thermodynamic laws of the
atmosphere will on occasion naturally produce extreme conditions at any specific
location. However, the naturally-occurring frequency and intensity of such extremes
may be quite sensitive to the boundary conditions. For example, the spatial pattern
of sea surface temperatures (SSTs) is known to have effects on a wide variety of
climate characteristics, including extremes. A particular SST pattern might enhance
or suppress the likelihood of a specific type of extreme.

The climate system is a coupled system. Atmospheric conditions affect SST
patterns and land surface characteristics. Thus, the natural climatology of extreme
events at a specific location arises from complex interactions among the various
components of the climate system, not just from the specific laws governing atmo-
spheric dynamics and thermodynamics. This introduces formidable complexities in
understanding and challenges for modeling of the climate system. An atmosphere-
only climate model requires much less computer time than a climate model with
a fully-coupled ocean and land surface. As a result, much longer simulations of
atmosphere-only models are available. Such long simulations can be very valuable
in understanding the natural characteristics of extreme events. However, the results
may be unrealistic since coupled processes, particularly between the oceans and
atmosphere, are likely to be crucially important.

10.2.2 Measurements: Climate Station Inhomogeneities

The observations that are used to investigate changes in extremes have a variety
of characteristics that affect the description of extremes and there are number of
sources of inhomogeneities.

Instrumental changes are common in long time series of data and often lead to
artificial shifts in extreme metrics. For example, the U.S. National Weather Service
Cooperative Observer Network (COOP) is the core climate network of the U.S.
Established in 1890, the COOP’s long records have been an indispensable source
for identifying long-term trends in core climate conditions. As one example of
an important instrumental change, the NWS began replacing the liquid-in-glass
(LIG) thermometer with an electronic system, starting in the 1980s. Not only
was the sensor changed but the radiation shield for the new sensor, a stacked-
plate configuration, was completely different than the Cotton Region Shelter (CRS)
used for the LIG. Inter-comparison experiments indicated that there is a systematic
difference between these two instrument systems, with the newer electronic system
recording lower daily maximum temperatures (Tmax) and higher daily minimum
temperatures (Tmin) (Quayle et al. 1991; Hubbard and Lin 2006; Menne et al.
2009). Menne et al. (2009) estimate that the mean shift (going from CRS/LIG to
MMTS) is �0.52 K for Tmax and C0.37 K for Tmin. As will be shown later, these
magnitudes of shifts can have noticeable effects on extreme metrics time series.
Adjustments for these differences can be applied to monthly mean temperature to
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Fig. 10.1 Time series of total annual snowfall at Ironwood, Michigan, USA (blue) and at
Stambaugh, Michigan, USA (red), smoothed with a 11-year moving average filter

create homogeneous time series. However, it is not known whether the differences
are quantitatively the same for the small subset of extreme daily temperature values.
It is important to keep in mind this potential source of uncertainty.

Changes in the characteristics of sites and/or station moves can introduce
artificial shifts or trends in the data. If measurement equipment has been moved,
the new site may still be considered to be the same as far as the observing network
is concerned and may be identified as such with no change in name or identifier.
In the COOP network, a station is generally not given a new name or identifier
unless it moves at least 5 miles and/or changes elevation by at least 100 ft (National
Weather Service 1993). However, changes less than this can still result in artificial
shifts in the climate record that are comparable to, or larger than, real fluctuations.
For example, a time series of annual snowfall for Ironwood, MI shows a large jump
in totals around 1965 (Fig. 10.1). This occurred around the time of a move of the
station that was too small to result in its identification as a different station (Kunkel
et al. 2007a). This station is located in the lake effect snow belt of Lake Superior.
Another nearby station (Stambaugh, Michigan) does not show a jump (Fig. 10.1).
Based on comparisons with Stambaugh and a number of other nearby stations, the
Ironwood snowfall record was judged to be inhomogeneous by Kunkel et al. (2009).

Site characteristics can change over time and affect a station’s record, even
if no move is involved. A common source of such changes is urbanization
around the station, which will generally cause artificial warming, primarily in Tmin
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(Karl et al. 1988), the magnitude of which can be several degrees in the largest
urban areas. Most research suggests that the overall effect on national and global
temperature trends is rather small because of the large number of rural stations
included in such analyses (Karl et al. 1988; Jones et al. 1990). Nevertheless, such
effects may be important when examining local or regional trends in areas with large
urban centers.

Changes in observational practices are another source of artificial shifts. The
COOP stations record observations at a daily resolution. However, in the 1990s
they were given the option to measure snowfall at 6-hourly intervals and sum the
6-hourly totals for a daily total. Because of compaction of snow, the application of
this practice tends to inflate totals relative to daily resolution sampling.

Changes in the time that observations are taken can also introduce shifts (Karl
et al. 1986). In the COOP network, typical observation times are early morning
or late afternoon, near the usual times of the daily minimum and maximum
temperatures, respectively. Because observations occur near the times of the daily
extremes occurrences, a change in observation time can have a measurable effect
on averages, irrespective of real changes. The study by Karl et al. (1986) indicates
that the difference in monthly mean temperatures between early morning and late
afternoon observers can be in excess of 2ıC. The quantitative impact on metrics
of daily temperature extremes could be substantial. An example illustrates this.
Assume that a station, with an early morning observation time, experiences a
severe cold wave with minimum temperatures below the 0.1% percentile threshold
on two consecutive mornings, the minimum occurring at the observation time of
7 am local time. Warming begins on the afternoon of the second day and the
minimum temperature during the third night is 10ı warmer. On the second morning,
the maximum-minimum thermometer will be reset at the time of the minimum
temperature. In this case, the minimum temperature observed on the third morning
will be the temperature at the time of thermometer reset on the second morning
and thus will also be below the 0.1% percentile threshold. In the recorded data,
it appears that there are three consecutive extremely cold nights, rather than the
two that actually happened. By contrast, the record for an afternoon observer will
only have two consecutive very cold mornings, reflecting the actual situation. If the
station was a morning observer throughout the history of the station, this artificial
bias will not affect trends. However, if that station was an afternoon observer in
the early part of its history, then changed its observation time to early morning,
there could be an artificial bias toward an upward trend in extremely cold days.
There has been in fact a major shift from a preponderance of afternoon observers
in the early and middle part of the twentieth century to a preponderance of morning
observers at the present time. In the 1930s, nearly 80% of the COOP stations were
afternoon observers (Karl et al. 1986). By the early 2000s, the number of early
morning observers was more than double the number of late afternoon observers
(Menne et al. 2009). The specific quantitative impact of this shift on trends in
extreme temperatures has not been investigated and will undoubtedly be dependent
on the exact metric used.
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Fig. 10.2 Locations of COOP stations with less than 10% missing precipitation data for the period
of 2001–2010

10.2.3 Measurements: Sampling of Physical System

The spatial and temporal sampling of the climate system is limited and does not
necessarily capture all important extreme events. The current number of active
COOP stations is approximately 7,000. This has declined since a peak of over 8,000
in the 1960s. If these stations were evenly distributed, this would represent about
one station per 1,100 km2, or one every 30–35 km. However, the distribution is
not even, the density of stations being lower in the sparsely populated regions of
the intermountain West. For example, the density of active stations in Nevada is
only about one per 3,300 km2. Figure 10.2 shows the locations of stations with less
than 10% missing precipitation data for the period of 2001–2010. Most areas of the
U.S. have rather uniform coverage. However, the lower density of stations in the
intermountain West is apparent.

The impact of the density on measurement of extremes is dependent on the spatial
coherence of the various types of extremes. Temperature extremes are coherent on
fairly large spatial scales, much larger than the average spacing of COOP stations.
The same is true of extreme snowstorms, although in this case there can be small
scale bursts of snowfall that may be missed by the network. By contrast, many
extreme precipitation events are convective in nature, leading to high variability
on small spatial scales. Groisman et al. (2005) found that the correlation distance
for extreme precipitation events averaged 95–250 km. Fortunately, this is larger
than the average spacing of COOP stations of 30–35 km and, thus, the modern
COOP network should detect the normal extreme precipitation event, even when it
is convective in nature.
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Fig. 10.3 Locations of COOP stations with less than 10% missing precipitation for 1895–2010

These constraints become more important when examining long-term trends in
extremes. In this case, it is necessary to use stations with long records to avoid biases
caused by stations dropping in and out of the network. The number of stations that
can be used for such analyses is typically much less than the total number of current
COOP stations. Kunkel et al. (2003, 2007b) examined trends for the period of 1895-
present using only stations with less than 10% missing precipitation data. Updating
their analysis to the present time, Fig. 10.3 shows the locations of 748 stations with
less than 10% missing precipitation data for the period of 1895–2010. This translates
roughly into one station every 10,000 km2, or about one station every 100 km or
so and close to the lower end of the correlation distance for extreme precipitation
events. In the western US, the density of stations available was much lower than this
average number (see Fig. 10.3); this is low enough that some (unknown) percentage
of extremes are not sampled.

10.3 Methods for Quantification of Uncertainty

10.3.1 Monte Carlo Experiments

The Monte Carlo technique is a brute-force, but effective, approach to quantification
of uncertainty. Essentially, a Monte Carlo technique uses a random number genera-
tor to sample from known theoretical or empirical distributions of some aspect(s)
of the natural and observing system. This sampling is repeated many times to
establish a distribution function of the outcome, from which uncertainty bounds can
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be estimated. The application of this approach can be computationally-demanding.
In addition, a Monte Carlo experiment must be carefully designed to achieve an
accurate estimation of uncertainty.

An example will illuminate this approach. Kunkel et al. (2007b) designed
a Monte Carlo experiment for the purpose of quantifying the uncertainties in
measuring extreme precipitation event frequencies using a 930-station network. This
network is likely too sparse in some areas to sample all events, leading to some level
of uncertainty in determining trends.

The experiment was designed around the denser modern network. Specifically,
a total of 6,353 stations had relatively complete reporting records for the 30-year
period of 1971–2000. Their first step was to create an artificial time series of length
110 years by randomly selecting years from 1971 to 2000. Of course, there were
repeat years, but that was not important to the goals of this experiment, which
simply required an observed, and therefore realistic, sequence of daily data that
preserves spatial and temporal relationships. The next step was to create an artificial
observing network by randomly choosing 930 stations from the 6,353 total. The
random selection was modified to ensure that the spatial variations in station density
in the real network (fewer stations in the west, more in the east) were maintained in
the artificial network. An artificial daily precipitation time series for each of these
stations was created by concatenating the data from the random sequence of years
chosen above. All stations used the same sequence of years, thereby preserving
spatial coherence. Finally, the artificial time series were analyzed to produce a
national time series of the occurrence of precipitation extremes from which time-
block averages and trends were computed. The selection of stations to produce an
artificial network from which extreme precipitation metrics were calculated was
repeated 500 times. The distribution of block averages and trends was created,
from which 5 and 95 percentile uncertainties limits were determined. This analysis
determined that the 95% confidence limits on the trends from the artificial time
series were smaller than the magnitude of the observed trends for 1-, 5-, and
20-year return period events. The study concluded that, while the limited spatial
density of long-term stations, particularly in the western U.S., does add considerable
uncertainty to trend estimates, the observed trends were larger than the estimated
uncertainties and thus were statistically significantly different from zero.

10.3.2 Standard Statistical Tools

Standard statistical tools are the usual method to estimate uncertainty, essentially
using the properties of the time series itself. A solid foundation of statistical theory
underlies this approach and is generally a powerful and effective way to estimate
uncertainty. In most cases, extremes metrics data are not normally distributed. Thus,
standard linear regression is not the preferred method to examine trends. A number
of other approaches are typically used.
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A common nonparametric approach (e.g. Alexander et al. 2006) is Kendall’s
tau-based slope estimator (Sen 1968). Statistical significance is assessed by looking
at the sum of the signs of the differences of all possible pairs of data points.
Specifically, the test statistic S is calculated as:

S D
N�1X
jD1

NX
iDjC1

sgn
�
xi � xj

�

where

sgn.y/ D 1 y > 0

sgn.y/ D 0 y D 0
sgn.y/ D �1 y < 0

The variance of S, s, is given by

�2S D
N .N � 1/ .2N C 5/
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The z statistic is then

z D S � 1
�S

S > 0

z D 0 S D 0

z D S C 1
�S

S < 0

The estimate of the magnitude of the trend is the median of all non-zero pairwise
trends. Some level of serial correlation is commonly present in extremes time
series and will artificially raise the significance level. Estimates of trends and
their statistical significance should take this into account. Wang and Swail (2001)
describe a pre-whitening process that can be applied to time series to minimize the
effects of serial correlation.

Spatial correlation will also artificially increase the level of significance in
evaluating the reality of changes over large areas. For example, a single extreme
meteorological event may be manifested at several stations. Or, a weather pattern
persisting for some time may cause a sequence of extremes affecting a specified
area. In both cases, the time series at adjacent stations are affected by the same
meteorological phenomena and are not completely independent. The question that
is of relevance for establishing changes in the climate is whether the number of
stations with statistically significant trends over a large area of interest is statistically
significant. Using the 95% limit, just by chance we should expect 5% of the
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stations to exhibit either a statistically significant negative trend or a positive
trend. If the time series of the stations were completely independent, then the
overall field of stations would exhibit statistical significance if more than 5% of
the stations exhibited a positive or negative trend. However, when considering the
spatial dependence of station time series, the number of stations where statistical
significance is achieved has to be higher than 5% in order to establish that there is
a real change in extremes. The required level of significance can be determined by
a bootstrapping resampling procedure (Livezey and Chen 1983). Assume that each
station or grid point has a 100-year time series of some metric of extremes. The
bootstrapping procedure consists of randomly selecting a sequence of years and
constructing artificial time series based on this sequence. Then a trend is calculated.
The same sequence of years is applied to all of the stations/grid points. Finally,
the number of stations/grid points with statistically significant trends is counted.
This process is repeated many times, perhaps 500–1,000 (Kiktev et al. 2003). The
distribution of the number of stations/grid points with statistically significant trends
is computed. The 95% value of that distribution then provides the threshold for field
significance. For example, Kunkel et al. (1999) found that this threshold was 10%
for a particular metric of extreme precipitation for the coterminous U.S., that is,
stations representing at least 10% of the area had to have a statistically significant
trend to consider that the field exhibited statistical significance.

In many studies, the Generalized Extreme Value (GEV) distribution has been
found to be suitable as a fit to the tails of the distribution for atmospheric variables.
The probability distribution of the GEV, G(y), is given by:
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where ©, �, and ¢ are called the shape, location, and scale parameters. A trend can
be introduced as a trend in the location parameter or log of the shape parameter
(Katz 2010). In Zwiers et al. (2011), trends were studied by assuming that the
temporal changes can be expressed as an additive change in the location parameter
with the other parameters remaining constant. The purpose of the study was to
determine whether the influence of anthropogenic forcing on the climate system had
a detectable influence on observed changes in extreme temperatures. The maximum
likelihood method was used to find the estimates of the parameters that best fit
the observed and modeled data. The bootstrapping method described above was
used to ascertain the overall uncertainty in estimates. In this particular case, the
data were divided into 5-year blocks and these blocks were randomly reshuffled
to create artificial time series. The location parameter of the reshuffled time series
was estimated using maximum likelihood. The reshuffling and estimation of the
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location parameter was repeated many times to determine the uncertainties in the
location parameter due to natural variability. Using this approach, they found that
the external forcing of the climate system was clearly detectable in the observed
changes in extreme temperatures, that is, the observed changes were highly unlikely
to have been due to natural variability in the climate system.

10.3.3 Climate Model Ensemble Experiments

While statistical approaches provide a well-established numerical framework for
estimating uncertainties, the functional fits and other numerical aspects are in
many respects an artificial framework. For example, the GEV fits the tails of the
distribution of extremes well. But, there is no physics in the equation, as is also the
case for all statistical functions. This may be satisfactory for mild extremes because
there are a substantial number of actual samples in the observational record and a
good fit by the GEV implies an adequate representation of the underlying climate
system characteristics. But, the most extreme events are another matter. What is the
return period of the 1930s Dust Bowl? What about the 2003 European heat wave? or
the 2010 Russian heat wave? These are singular events in the observational record
and, at many locations affected by them, the observed conditions are considerably
more extreme than for any other similar period. Such observations can be included in
a fit to the GEV and a return period, or trend, can be computed but the uncertainties
in such estimates must be considered very high.

Exploring the true probability of the most extreme conditions requires another
approach. Climate models offer a possible solution. They are based on the funda-
mental physical laws governing the climate system. They can produce the dynamic
chaotic behavior that is characteristic of the system. In principle then, they can
produce events like the singular ones described above and provide insights into their
probability.

Two types of model simulations are most relevant. One is the long control
simulation, often using pre-industrial concentrations of greenhouse gases and
sometimes present-day concentrations. Some modeling groups have made very long
simulations (Table 10.1), over 1,000 years, in support of the Intergovernmental
Panel on Climate Change (IPCC) 4th Assessment Report. In total, the 24 models
listed in Table 10.1 produced over 12,000 simulated years in these control experi-
ments. These can be quite valuable in assessing the likelihood of very rare events.
But, the estimation of such risks assumes a climate system with no change in the
anthropogenic forcing influences. The other type is the simulation of the twentieth
century using best estimates of the time-dependent forcing during the industrial
era, of the order of 100 years in length. Many modeling groups have run multiple
ensembles, with different initial conditions. The 24 models have produced 80
separate simulations of the twentieth century. Although there has been considerable
research on these simulations, the use of these simulations to explore extreme events
has probably not been fully exploited.
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Table 10.1 Simulations by climate models used for the IPCC 4th Assess-
ment Report

Model name
Twentieth century
(# simulations)

Control simulation #years
(# simulations)

BCC 4 223.1/

CCSM3 9 1;330.3/

CGCM3.1 (T47) 5 1;001.1/

CGCM3.1 (T63) 1 501.1/

CNRM-CM3 1 501.1/

CSIRO-Mk3.0 3 430.2/

CSIRO-Mk3.5 3 1;000.1/

ECHAM5/MPI-OM 3 506.1/

ECHO-G 5 652.2/

FGOALS-g1.0 3 351.1/

GFDL-CM2.0 3 500.1/

GFDL-CM2.1 3 500.1/

GISS-AOM 2 502.2/

GOISS-EH 5 400.1/

GISS-ER 9 500.1/

INM-CM3.0 1 330.1/

IPSL-CM4 1 720.1/

MIROC3.2 (hires) 1 100.1/

MIROC3.2 (medres) 3 500.1/

MRI-CGCM2.3.2 5 500.2/

PCM 4 650.2/

UKMO-HadCM3 2 422.2/

UKMO-HadGEM1 2 341.1/

This includes the number of simulations of the twentieth century and the
number of model simulation years and number of individual simulations for
control simulations using either pre-industrial or present-day greenhouse gas
concentrations

An example of application of climate models is the study of Deser et al.
(2010), who used a 10,000-year long control model simulation of the atmospheric
component of the CCSM model to explore atmospheric variability for temperature,
precipitation, and sea level pressure to estimate the uncertainties due to internal
atmospheric variability. From the standpoint of extremes, the use of a long
simulation from an atmospheric model not fully coupled to an ocean model may be
potentially useful, although it may underestimate variability of those extremes that
arise from the coupling of specific sea surface temperature conditions with specific
atmospheric states, something that may well be very important for certain extended
extremes such as severe droughts or extended wet spells.
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10.4 Applications

10.4.1 Extreme Precipitation Trends in the U.S.

The spatial coherence of individual precipitation extreme events is relatively small.
Thus, the uncertainty arising from the limited spatial density of the observational
network may be quite large. On the other hand, the U.S. COOP network has used
the same basic technology throughout its existence. Thus, uncertainty arising from
instrumentation and observation practice changes is quite low. To quantify the major
source of uncertainty (i.e. the limited spatial density of observing stations), the
Monte Carlo approach was used to estimate uncertainties in 22-year block averages
of a metric of the occurrence of extreme precipitation events in the U.S. (Kunkel
et al. 2007b), using the methodology described in Sect. 10.3.1. Figure 10.4 shows
a sample of the results, for events exceeding a return period of 20 years. The
whiskers around each block average, representing the confidence interval, were
obtained from the distribution of values from the 500 Monte Carlo simulations. Two
questions were of interest, expressed as the following null hypotheses: (1) heavy
precipitation event frequencies during 1895–1916 and 1917–1938 are not different,

Fig. 10.4 U.S. national index of daily extreme precipitation events exceeding a 1-in-20 year
threshold, averaged over 22-year consecutive blocks and expressed as deviations from the long-
term average. Whiskers indicated the 95% confidence interval, based on Monte Carlo simulations
(From Kunkel et al. 2007b)
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and (2) heavy precipitation event frequencies during 1895–1916 and 1983–2004
are not different. To determine statistical significance of these two block average
differences, two further calculations are needed. As discussed in Payton et al.
(2003), the nominal value of the confidence interval (e.g., 95%) for a single period
mean is not the same as the confidence level for testing differences of two period
means by examining overlapping intervals. For large samples, there is a factor of

p
2

between the normal variate Z for the individual period means and the value of Z for
testing the null hypothesis using overlapping intervals. For example, for testing the
null hypotheses at the ’D 0.05 level (ZD 1.96), the appropriate confidence interval
for the individual period means is approximately 84% (Z D1.96/

p
2D 1.39); that

is, if the 84% confidence intervals for each period mean do not overlap, then the
null hypothesis is rejected at the 0.05 significance level. A second adjustment is
needed because we are testing two differences. Since multiple comparisons are
being made, an adjustment must be applied because multiple comparisons increase
the probability that the null hypothesis will be rejected by chance (that is, increase
the probability of a Type I error, incorrectly rejecting the null hypothesis). The
Bonferroni adjustment (Snedecor and Cochran 1980) estimates this as ’/m where
m is the number of comparisons. For two comparisons, the probability value for
testing at the ’D 0.05 significance level is 0.05/2 or 0.025, that is, the confidence
interval for testing each comparison needs to be 97.5% in the present case of
two comparisons when testing the null hypothesis at the ’D 0.05 significance
level. The use of the Bonferroni adjustment is a conservative approach because
it tends to increase the probability of a Type II error (not rejecting the null
hypothesis incorrectly). Combining both adjustments for the specific example of
achieving a significance level of 0.05 to reject the null hypothesis, the confidence
interval for individual period means must be 89%, that is, the null hypothesis
is rejected at ’D 0.05 if the 89% confidence intervals for the individual period
means do not overlap. For the results in Fig. 10.4, there are a very small number
of events occurring at any single station (i.e. sampling uncertainty), leading to
large uncertainties at individual stations. However, on a national average basis, this
analysis demonstrated that the changes over time are larger than the uncertainty and
thus we can state with confidence that there have been real changes in the occurrence
of these extreme events.

10.4.2 Heat and Cold Wave Trends

Temperature extremes are typically of relatively large spatial scale. Thus, the
sampling uncertainty associated with limited station density is much less of a
source of uncertainty than with precipitation. In the COOP network, the change
of instrumentation from CRS/LIG to MMTS (mostly occurring by 1990), along
with associated changes in radiation shielding, is a possible source of uncertainty.
While artificial shifts have been quantified for mean values, the quantitative effect
on extreme values is not known and thus the possible effects on trends have not
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been documented. Menne et al. (2009) estimated that the change from CRS/LIG
to MMTS results in a mean shift of �0.52 K in Tmax and C0.37 K in Tmin.
A sensitivity analysis of the potential effects of such changes was conducted,
assuming that the mean changes above apply to extreme episodes as well. The
test involved adjusting all post-1989 temperature observations by the mean shifts
of �0.52 K for Tmax and C0.37 K for Tmin. A heat wave index was calculated
for 4-day duration hot spells exceeding the threshold for a 1-in-5 year recurrence.
Calculations were done for each station and then aggregated to a national index.
The heat wave calculations were done separately first using only Tmax and then
only Tmin, essentially representing a “hot day” index and a “warm night” index,
respectively. The results are shown in Fig. 10.5. When the temperature observations
are used without correction (Fig. 10.5, top), a potentially very interesting result
is obtained. Starting in the 1980s, the Tmin index is considerably greater than
the Tmax index, implying that spells of very warm nights are becoming relatively
more frequent than very warm days. However, after applying the mean correction
factors for all stations (Fig. 10.5, bottom), this difference between the Tmax and Tmin

indices mostly disappears. Thus, this change in instrumentation, if not considered
in analysis, introduces biases sufficiently large to affect conclusions about trends.

The quantitative effects of the time of observation bias in the COOP network
on metrics of extreme temperatures could be significant, but has not been system-
atically investigated to date. A test of potential effects was conducted for extreme
cold episodes. In the first step of the analysis, a U.S. national time series of the
number of episodes of 4-day duration exceeding the 1-in-5 year threshold was
calculated. These multi-day duration episodes could be affected by the shift in time
of observation within the COOP networks from predominantly late afternoon to
predominantly early morning. The net effect would be an artificial upward trend in
occurrences, added to any real trends. In the second step of the analysis, a national
time series of the number of 1-day extreme temperatures exceeding a 1-in-5 year
threshold was calculated. In this latter case, it was required that there be a minimum
2-day gap between episodes. This requirement eliminates the double counting of
very cold days that can occur with early morning observations and should eliminate
any artificial trend bias. These two time series are compared in Fig. 10.6. The two
time series are very comparable. The small observed differences between the two
could be due to the different extreme event definitions, although there could be
some effect due to the time of observation bias. However, linear trend lines fitted to
these two time series (not shown) are virtually identical; the linear trend is �1.0%
decade�1 for the 4-day duration metric and �1.2% decade�1 for the 1-day metric.
There is a small positive difference for the 4-day metric compared to the 1-day
metric and this small residual could be due to the time of observation bias, or could
simply be due to the different definitions of the metrics.

An analysis of a heat wave index found similar results (in this case, the time of
observation bias would introduce an artificial downward trend). This pilot analysis
suggests that time of observation bias is unlikely to affect the overall conclusions
about trends in extreme temperature.
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Fig. 10.5 Time series of an index for heat waves, aggregated for the U.S. based on a network of
711 long-term temperature observing stations, and calculated separated for Tmin and Tmax. (Top)
No correction to observed values. (Bottom) Every daily value adjusted after 1989 by C0.52 K for
Tmax and �0.37 K for Tmin before calculating index. A 5-year recurrence interval threshold is used
to identify events
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Fig. 10.6 Time series of an index for cold waves, aggregated for the U.S. based on a network of
711 long-term temperature observing stations, and calculated separated for 4-day duration episodes
(blue) and 1-day duration (red). A 5-year recurrence interval threshold is used to identify events

The other likely greatest source of uncertainty in extreme temperature metrics is
the sampling uncertainty associated with the rarity of extremes. Standard statistical
tools that evaluate uncertainty based on the variance in the data provide the best way
of quantifying this.

10.4.3 The Hurricane Problem

There is great interest in documenting any changes in the frequency and intensity
of hurricanes. A number of studies have documented possible trends (see Kunkel
et al. 2008 for summary). However, there has been much concern about the quality
of the data and possible artificial shifts (e.g. Landsea et al. 2004). There are a
number of issues with the record that arise from sampling over the oceans, changing
technologies and methodology. Trend studies have look at time series extending
back to the latter half of the nineteenth century. In the early part of the record,
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detection of hurricanes over the oceans required the occurrence of an intersection
with a ship track or an island. Aircraft reconnaissance in the 1940s and satellite
data in the 1960s greatly improved detection and tracking. Studies have been
done to estimate the likely number of missed hurricanes in the early part of the
record by superimposing hurricane tracks from the modern (since the beginning of
satellite observations) era over ship tracks in the early part of the record to see how
many modern hurricanes would have been missed in the early part of the record
(Vecchi and Knutson 2011). This analysis indicates that in the latter part of the
nineteenth century, the annual number of tropical cyclones is likely undercounted
by 2–3, compared to an average annual value of about 10. This estimated undercount
decreases to less than 1 per year after World War II.

Trends in the total power associated with hurricanes have even greater potential
bias problems. Ascertaining the magnitudes of winds in a tropical cyclone is a
more challenging problem than determining location and track. For TCs over ocean
areas, the only in situ observations are from aircraft. As noted above aircraft
reconnaissance began only in the 1940s. While this has continued for Atlantic
TCs, this was discontinued for Pacific TCs in 1989. Inferred winds from satellites
provides a uniform approach (Kossin et al. 2007) but it is not a direct approach and
therefore subject to some uncertainty; however the uniformity of the data source is
a big advantage and makes this the preferred approach for the satellite era.

10.4.4 The Tornado Problem

Tornadoes are characterized by their small spatial scale, relative to most other
major weather hazards, and their local destructiveness. In addition, the occurrence
of tornadoes over much of the historical record depended entirely on reports by
weather spotters and the general public. In recent years, Doppler radar provides a
supplemental record, although it is an indirect measure and any radar detection must
be confirmed by ground inspection or the above-mentioned reports. A source of bias
in the number of reported tornadoes is the change in population in tornado-prone
regions (increasing the chances of detection and reporting) and a greater public
awareness and interest in seeing and reporting events. There is a very strong upward
trend in the number of weak tornadoes (Fig. 10.7). Is this real? If one examines
only stronger tornadoes, there is no trend. Does this mean that there has been
an increase in only weak tornadoes? Almost surely not. The expert consensus is
that the upward trend in total tornadoes is a sampling artifact (Brooks and Dotzek
2008; Kunkel et al. 2012). Specifically, larger populations in tornado-prone regions
and greater public interest have led to more complete reporting of the weaker
tornadoes.
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Fig. 10.7 Reported tornadoes in NWS database from 1950 to 2010. Blue line is F0 tornadoes, red
dots are F1 and stronger tornadoes (From Kunkel et al. (2012), courtesy of H. Brooks)

10.5 Concluding Remarks

To reiterate the main point, a central objective of research in this arena is to
determine whether there are real changes in the characteristics of extreme events.
The most serious challenge to achieving this objective is not the adequacy of the
statistical tools. Rather, the adequacy of the observational data and understanding
of the physical climate system pose the greatest challenges. Much work has gone
into data set development and improvement. Nevertheless there are opportunities to
further this.

Tree ring data are the iconic example of proxy data. Many other proxies have
been developed and provide unique insights into the behavior of the climate system.
The further development of such data sets can provide additional insights into the
behavior of extremes events, particularly in areas where proxy data have hitherto
been unavailable.

The use of climate simulations to explore potential extreme behavior in the
climate system is currently limited by model limitations. For example, model
resolution is not sufficient to directly simulate the typical extreme precipitation
event. As model resolution increases and representation of physical processes in the
models improves, the ability of these models to simulate extremes should improve
also. This will provide the opportunity to explore the behavior of more types of
extremes.
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Chapter 11
Uncertainties in Projections of Future
Changes in Extremes

Levi D. Brekke and Joseph J. Barsugli

Abstract Water resource managers share a common challenge in understanding
what climate change could mean for future hydroclimate extremes. In order to make
decisions about whether to invest in adaptation measures today or to wait for more
convincing information, it is critical that managers understand the uncertainties of
projecting changes in extremes. Uncertainties arise from several methodological
choices including criteria that drive selection of global climate projection informa-
tion to frame the assessment, whether and how to bias-correct global projection
information, and how to represent local controls on how to spatially downscale
translations of these projections. This chapter highlights such uncertainties, focusing
on projected changes in two precipitation metrics: annual total and annual maximum
daily amount, and for both typical (i.e. median metrics) and extreme conditions
(i.e. annual totals related to drought, having 0.01 and 0.05 cumulative probabilities;
and, annual maximum daily amounts related to floods, having 0.95 and 0.99
cumulative probabilities). The evaluation is conducted on 53 daily precipitation
projections over the contiguous U.S., southern Canada and northern Mexico.
Focusing on two future periods, and the chapter presents: (a) assessed changes in
typical metric conditions and determining their significance, (b) assessed changes
in extreme metric conditions, (c) decomposition of uncertainties in both types of
changes relative to three sources of global climate projection uncertainty (emissions
scenario, global climate model, internal variability), and (d) characterization of how
projected changes may be sensitive to spatial downscaling.
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11.1 Introduction

Water resource managers share a common challenge in understanding how to
evaluate future hydroclimate possibilities and what they mean for the systems they
manage. Such possibilities affect both natural resources and built infrastructure.
Anticipation of these possibilities requires consideration of both typical and extreme
hydroclimate conditions. Understanding the uncertainty and credibility of these
projected possibilities is critical to the process of making decisions on whether
to invest in adaptation measures today or delay until more certain and credible
information becomes available.

This chapter focuses on the precipitation aspects of future hydroclimate possi-
bilities, although the assessment methods presented herein are general and may be
applied to assess changes in other hydroclimatic variables. It has been suggested that
climate change could affect both heavy precipitation and drought-related extremes
(USGCRP 2009). This premise is used as context to demonstrate how climate
projections might be assessed for (1) changes in typical conditions for contrasting
precipitation metrics, (2) changes in extreme occurrences of these metrics, and (3)
evaluated to understand how variance in projected changes might be associated
with various sources of global climate projection uncertainty. Along the way, other
assessment choices are identified as contributing additional uncertainties.

Before conducting such an assessment, it is useful to first consider physical
mechanisms that might establish expectations for assessment outcomes. Any such
mechanism begins with recognition that future climate forcing will change as
greenhouse gases accumulate in the atmosphere (Christensen et al. 2007). The
task is then to relate these changes in global climate forcing to regional/local
changes in precipitation. One such mechanism starts from the premise that as the
atmosphere warms, its water-holding capacity increases according to the Clausius-
Clapeyron relationship. In association, this is expected to lead to a small increase
in global mean precipitation (Karl et al. 2008), where the increase is constrained
by the global surface energy budget (Held and Soden 2006). It is also expected
to affect heavy precipitation (Karl et al. 2008), for which the Clausius-Clapeyron
relation only provides an approximate physical constraint (e.g., Allen and Ingram
2002), recognizing that regional to local atmospheric dynamics also influence local
precipitation. So a critical question remains as to how global air temperature
increases will affect atmospheric circulation and synoptic-scale weather patterns
in ways that enhance or counteract the Clausius-Clapeyron effect at the local
scale. One such atmospheric circulation response to global warming that has been
suggested in several studies is the weakening of tropical Hadley circulation (Held
and Soden 2006) and associated expansion of the tropical Hadley Cell (Lu et al.
2007; Seager et al. 2007). The result of this circulation response is an increase
in atmospheric subtropical static stability, associated broadening of the atmo-
spheric subsidence zone (i.e. “deserts” regions around the planet), and associated
poleward displacement of the wetter middle-latitude storm tracks. This “Hadley
Expansion” effect is seen in the majority of recent climate projections, leading to
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What does this 
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Fig. 11.1 Approach for assessing projected changes in extremes and associated uncertainties

precipitation reductions over traditionally dry sub-tropical regions (Seager et al.
2007; Christensen et al. 2007). Likewise, these same projections show increasing
precipitation over the middle-to-higher latitudes, suggesting that the “Clausius-
Clapeyron” relationship is leading to increased moisture content of weather systems
tracking over these regions. Revisiting the suggestion of how heavier precipitation
and more severe precipitation droughts could occur over a given region, the degree
to which either impact occurs may depend on the interplay of these large-scale
effects at a given geographic position and how these effects interact with regional to
local controls on precipitation.

Noting these physical paradigms, the assessment of projected changes in precip-
itation metrics and associated extremes might be conducted using the following list
of general steps, which might also be adapted to assessing changes in temperature,
runoff and other hydroclimatic extremes (Fig. 11.1):

1. Identify Weather or Hydrologic Metric of Interest: The metric is defined by vari-
able, statistic, duration and spatial extent (e.g., annual total precipitation over a
regional watershed, annual maximum-day precipitation over a local basin).
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2. Select a Representative Climate Projection Ensemble for Evaluation: The assess-
ment considers climate projections that reflect current and best available climate
science, and preferably represent choices in specifying future climate forcing,
choices in climate model structure, and multiple realizations of internal climate
variability given these choices. Having various options for future climate forcing
and climate model structure, as well as facing the prospect of having multiple
realizations of internal climate variability for given choice of climate forcing
and model structure, ultimately drives the need to consider a climate projection
ensemble in this step.

3. Assess Projected Changes in Typical Metric Conditions: The focus here is on
gaining a sense of how gradual global warming may affect “typical” metric con-
ditions, indicated as period-average or period-median. Such assessment provides
a useful context when evaluating climate change implications for extreme or rare
metric occurrences. Changes in typical conditions should also be subjected to
statistical testing to determine whether they are significant.

4. Assess Projected changes in Extreme Metric Conditions: The focus here is to
identify an appropriate statistical distribution of metric possibilities, and then
fit that distribution to projected metric conditions from a given period. The fitted
distribution can then be used to infer extreme and rare metric occurrences having
N-year return periods, potentially longer than the sample period (e.g., application
of extreme value theory and the metric “annual maximum-daily precipitation” to
estimate frequency of rare heavy precipitation events). Again, changes in N-year
extreme events for a given metric should be subjected to statistical testing to
determine whether they are significant.

5. Relate Variance in Projected Changes to Global Uncertainties: Three global
sources of climate projection uncertainty might be considered when trying to
understand uncertainties in projected local metrics: (1) choice among scenarios
for global greenhouse gas emissions, (2) choice among global climate models
for simulating climate system response to a given emission scenario, and (3)
choice among “initializations” that define alternative climate-system states at the
beginning of climate projections. Various methods of variance decomposition
might be used to allocate local change variance to these sources (e.g., Hawkins
and Sutton 2009, 2010).

6. Assess Projected Changes given Global/Local Interactions: This step in the eval-
uation considers how local features (e.g., topography, land surface) can control
variability in local surface climate, and how such local control might interact
with global influences on future climate. The process of considering such local
features and controls on local response to global climate change are is often
referred to as “spatial downscaling” and may be conducted using methods that
range from simple statistical techniques to complex and more physically based
dynamic simulation.

When executing these steps, various sources of uncertainty and scoping choices
become apparent. Interest in these sources of uncertainty varies depending on
the purpose of the assessment. For example, for the sake of climate or impacts
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model development the question might be: how much gain is expected from
increased resolution? For rationalizing planning investments informed by projected
hydroclimate conditions, the assessment may be focused on the overall degree of
uncertainty, or at least on how the decision-support information is sensitive to
choices in the assessment design – e.g., is the information sensitive to choice of
greenhouse gas emissions scenario, or how the climate projection information is
bias-corrected and spatially downscaled?

This chapter quantifies some of the sources of uncertainty that affect projections’
portrayal of future hydroclimatic extremes, with thought toward what this means
for water resources planning and decision-making under uncertainty. Five such
questions are common to assessments of this nature and are highlighted on
Fig. 11.1:

• Which climate projection information is available?
• What does this information say about changes in typical and extreme conditions?
• What is the influence of climate projection bias-correction?
• How do the results relate to sources of climate projection uncertainty?
• What is the influence of climate projection spatial downscaling?

This chapter demonstrates the assessment steps of Fig. 11.1 and explores
uncertainties associated with method options along the way. Note that although
Fig. 11.1 may be interpreted to suggest that these questions need to be addressed
in some order, it may be more appropriate to address these questions in concert,
as choices on climate projection ensemble and method of climate projection bias-
correction may bear influence on approach for spatial downscaling, and vice versa.
Lastly, it is important to recognize that this chapter does not delve into the issue
of whether GCMs adequately simulate hydroclimate extremes. Rather, the starting
point for this discussion is that readers have access to an ensemble of global climate
projections that report information on extremes, that this information presents a
projection distribution of extremes, and that this distribution can be related to
various sources of global to local uncertainty. This is not to say that adequacy issues
should be dismissed.

11.2 Step 1. Identify Precipitation Metrics of Interest

In defining precipitation metrics and extremes, there are a continuum of conditions
that might be considered, varying in scale and frequency of occurrence (Karl et al.
2008). Definition choices for a given assessment will vary with respect to which
precipitation characteristics matter for a given resource situation. For example,
local storm water management districts may be concerned with heavy precipitation
extremes and the intensity of storm events having duration hours to days and over
areas ranging from small catchments to larger watersheds. In contrast, local water
supply managers may be concerned about “dry extremes” or sustained precipitation
departures below normal, and the intensity of these departures during periods
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ranging from weeks to years and over areas that range from local watershed to large
regional basins.

For simplicity of illustration in this chapter, focus is placed on precipitation
extremes associated with two precipitation metrics:

• Annual: annual total precipitation and extreme departures below typical “annual
total precipitation” (i.e. precipitation droughts of annual duration).

• 1daymax: annual maximum-daily precipitation and extreme departures greater
than typical “annual maximum-daily precipitation” (i.e. rare heavy precipitation
events).

Although this chapter focuses on these two metrics, readers may wish to consider
other metrics of hydroclimatic extremes. For example, many CMIP3 modeling
groups (see below) computed and archived the so-called “Frich Indices” (Frich et al.
2002) which consist of various measures of extreme temperature and precipitation.
The STARDEX project –“Statistical and Regional Dynamical Downscaling of
Extremes for European regions” – (Goodess 2005) also identified a set of extremes
indices for temperature and precipitation that partially overlaps with the Frich
indices. Another potential starting point for exploring other metrics is the list
developed by the Expert Team on Climate Change Detection and Indices (ETCCDI,
Alexander et al. 2006).

11.3 Step 2. Select a Representative Climate
Projections Ensemble

Recognizing the goal of representing choices in future climate forcing, climate
model structure, and multiple realizations of internal variability given these choices,
the best available information of projected global climate is that generated through
the World Climate Research Programme (WCRP) Coupled Model Intercomparison
Project (CMIP).1 The third phase of this effort, CMIP3 (Meehl et al. 2007),
includes climate simulations from 23 different coupled atmosphere-ocean general
circulation models (GCMs), where each GCM has been applied to simulate future
global climate response to different pathways for future greenhouse gas emissions
(emissions scenario). Internal climate variability is investigated by performing
multiple simulations for with a GCM starting from different initializations of the
climate system. In this way, different phases of interannual and interdecadal climate
variability can be sampled.

1We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Inter-
comparison (PCMDI) and the WCRP’s Working Group on Coupled Modeling (WGCM) for
their roles in making available the WCRP CMIP3 multi-model dataset, available at: http://www-
pcmdi.llnl.gov/projects/cmip/index.php. Support of this dataset is provided by the Office of
Science, U.S. Department of Energy.
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Recent evaluation of current climate projection information has led to recommen-
dations that local hydroclimate impacts assessments be informed by a multi-model
ensemble of climate projection information (e.g., Pierce et al. 2009, 2011; Mote
et al. 2011) rather than seeking to identify a “best set of climate models” to provide
projection information. While some studies have shown that ranking climate models
has led to a separation of future responses (e.g., Walsh et al. 2008), others have
shown that consideration in climate model skill has generally had little influence
on change detection and attribution (e.g., Santer et al. 2009; Pierce et al. 2009) or
characterization of future climate change distributions (e.g., Brekke et al. 2008).
It has also been shown that selection of an appropriate set of performance metrics
for ranking climate models can be a challenge, as all climate models appear to do
something well relative to their peers and metric relevance varies with application
(e.g., Gleckler et al. 2008; Brekke et al. 2008).

Given these findings, this demonstration is informed by a large and representative
subset of CMIP3 projections with no efforts made to discriminate based on
perceived climate model skill. However, other factors did determine model and
projection membership. One factor related to time-step of temporal reporting.
While CMIP3 climate simulations are executed on a sub-hourly time-step, output is
generally reported in a time-aggregated form, most often as monthly or daily gridded
time series information. This chapter’s evaluation considers daily precipitation con-
ditions and therefore requires daily precipitation projections. Other factors involve
possible pathways of future climate forcing and internal variability of the climate
system. This relates to Step 5 where the evaluation considers how global sources of
climate projection uncertainty influence variance in local changes, and sets up the
need to assemble a projections ensemble representing GCMs that have been applied
to simulate different emissions scenarios using (ideally) multiple initializations.
Given these considerations, a subset of 9 CMIP3 models were identified at the
Lawrence Livermore National Laboratory’s Program for Climate Model Diagnosis
and Intercomparison (PCMDI) multi-model CMIP3 data repository for which
there were daily precipitation projections reported for three Emissions Scenarios
(B1, A1B and A2 as defined in IPCC 2000),2 and simulated from one to five initial
conditions (i.e. 53 projections listed in Table 11.1, with numbers below Emissions
Scenario indicating initialization number, or “run” number). The reader may wish to
review CMIP3 documentation (Meehl et al. 2007) for information about the climate
models (e.g., spatial resolution, shared modules and parameterizations).

Each precipitation projection was sampled within a region bounded by �125
to �67ıW and 25 to 53ıN and for three climate-simulation periods: 1961–2000,
2046–2065, and 2081–2100. Ideally a single period from simulated twentieth
century to projected twenty-first century would have been sampled from each
daily precipitation projection. However, most of the CMIP3 modeling centers only
contributed daily results to PCMDI for these three periods.

2For the ECHAM5/MPI-OM model, PCMDI did not contain projections of the A1b emissions
scenario.
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Table 11.1 CMIP3 projections considered in this evaluation

Emission scenario (IPCC 2000)
and initial conditions (runs)WCRP CMIP3

model I.D. Reference B1 A1b A2

CGCM3.1 (T47) Flato and Boer (2001) 1,2,3 1,2,3 1,2,3
CNRM-CM3 Salas-Mélia et al. (2005) 1 1 1
ECHAM5/MPI-OM Jungclaus et al. (2006) 1 1
ECHO-G Legutke and Voss (1999) 1,2,3 1,2,3 1,2,3
GFDL-CM2.0 Delworth et al. (2005) 1 1 1
GFDL-CM2.1 Delworth et al. (2005) 1 1 1
IPSL-CM4 IPSL (2005) 1 1 1
MIROC3.2 (medres) K-1 model developers (2004) 1,2 1,2 1,2
MRI-CGCM2.3.2 Yukimoto et al. (2001) 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5
Total 18 17 18

To set up an efficient multi-model evaluation of projected changes over the
domain of interest (Fig. 11.1), the projections were processed in three ways:

• REGRID: Each climate projection’s output was interpolated from native GCM
spatial resolution to a 2 degree grid within the domain of interest using the
SYMAP interpolation scheme (Shepard 1984).

• (Bias-Corrected) BC: Focusing on a common period of observation and sim-
ulation overlap (1950–1999), each REGRID projection was translated into a
bias-corrected (BC) projection following the quantile-mapping methodology
described in Maurer et al. (2010). Application of this method involved adopting
Maurer et al. 2002 as a representation of observed historical weather conditions
coarsened to REGRID resolution. The procedure results in the BC projections
having simulated 1950–1999 daily precipitation conditions that are statistically
consistent with observations (Maurer et al. 2002) during that period.

• (Bias Corrected Constructed Analog) BCCA: Each BC projection was spatially
downscaled using a non-dynamical, constructed analogs (CA) technique
(Hidalgo et al. 2008; Maurer and Hidalgo 2008), producing daily precipitation
projections at 1/8 degree spatial resolution.3

Step 3 of this evaluation considers both REGRID and BC projections. Steps 4 and
5 then focus on BC results before some limited-area BCCA results are presented in
Step 6 (Fig. 11.2).

It is foreshadowed at this point that bias-correcting climate projection infor-
mation can influence the change assessment. Also, it should be understood that
some type of bias-correction will be conducted in assessing projected changes in

3The resulting REGRID, BC and BCCA projections are available at the online Bias
Correction and Downscaled WCRP CMIP3 Climate Projections archive (http://gdo-
dcp.ucllnl.org/downscaled cmip3 projections/dcpInterface.html).
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Fig. 11.2 Gridded domain of daily precipitation projections. Map shows 2-degree gridded
domain of daily precipitation projections and also four 2 
 2 degree grid cells highlighting focus
locations for evaluations in this chapter: Northwest (blue, centered on 117W and 47N), Southern
Sierra (magenta, centered on 117 W and 35N), Southern Plains (red, centered on 99W and 33N)
and Mid-Atlantic (green, centered on 77W and 39N)

extremes, and the degree of influence depends on how the bias-correction method
is carried out. For example, an implicit bias-correction technique is to simply
assess for changes within REGRID projections and impose those changes on an
observed reference in order to imply future conditions; this might be labeled “bias-
correction in the mean”. Alternatively, bias-correction may be conducted to account
for variable degree of bias under simulated warm versus cool or wet versus dry
conditions. An example of this type of method is illustrated in Maurer et al. 2010
and is sometimes referred to as quantile mapping. It might also be labeled as “bias-
correction in the distribution”. A by-product of the quantile mapping approach to
bias-correction is that the BC projected precipitation trends can be different than
those from REGRID projections because the quantile-mapping method modifies
the variance of GCM output during the period of historical bias-identification
(Pierce et al. 2011). It also modifies the resultant temporal evolution of statistical
properties from that period (e.g., variance, skew, and higher moments). Other
applications of quantile-mapping bias-correction have involved first identifying and
removing the trend in REGRID projections, applying bias-correction to residual
information, and then reinserting the REGRID trend afterwards (e.g., Wood et al.
2002 and application of quantile mapping to bias-correct temperature projections,
where doing so seemed logical given that the trend in projected temperature was
large relative to the historical envelope of variability). Whether to apply such a
trend constraint is a subjective choice, and as will be illustrated, introduces change
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uncertainty. Also note that any application of this technique requires assumptions
on how to extrapolate quantile maps from the bias-identification period to address
simulated magnitudes lying outside the range from this period. In summary, some
type of climate projection bias-correction will be featured in this type of assessment,
multiple bias-correction techniques might be considered, and it remains a matter
of research as to which type of bias-correction is more appropriate given current
limitations of climate modeling and approaches to climate projection development.

Another point of emphasis is that this climate projection ensemble may be
referred to as an “ensemble of opportunity” (e.g. Tebaldi and Knutti 2007), perhaps
analogous to the term “ships of opportunity” – merchant ships that are used to make
oceanographic observations when the opportunity arises. One consequence is that
the opportunistic sampling of the range of possible futures is neither random nor
systematic, nor does it sample all of the known sources of uncertainty. Creating a
probabilistic projection from such an ensemble requires making many assumptions,
and the resulting probabilistic depiction of uncertainty is heavily dependent on those
assumptions (Tebaldi and Knutti 2007). Therefore it should be kept in mind that the
central trajectory and spread of any quantities that are derived from the “ensemble
of opportunity” could be influenced by systematic biases and errors pervasive
throughout the projections or in subsequent processing steps such as bias correction
and downscaling. One view is that it is futile to assign weighting factors to models in
order to create probability distributions from climate model ensembles, but rather to
view the ensemble as the “non-discountable range of possibilities” (Stainforth et al.
2007). Annan and Hargreaves (2010), on the other hand, present evidence that the
models are “statistically indistinguishable” from one another and from observations,
and that an equal weighting of models is a reasonable approach. Our approach in this
analysis is to acknowledge the conceptual and practical difficulties in quantifying
the absolute uncertainty, while characterizing the sources of variance within the
ensemble of opportunity, treating each model with equal weight.

11.4 Step 3. Assess Projected Changes in Typical
Precipitation Conditions

The assessment now proceeds to evaluation of projected changes in typical Annual
and 1daymax precipitation. In this case “typical” is defined as period-median
condition of the given metric. The assessment is conducted on both REGRID and
BC projections in order to highlight how uncertainty in projected change may
be introduced by the act of bias-correcting the projections. Later in this chapter
(Step 6), the assessment is conducted for a limited region in the domain to illustrate
how uncertainty is introduced during the process of spatial downscaling, from BC
to BCCA information.

Two different views might be adopted when assessing projected changes in
hydroclimate conditions:
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• Transient: This view requires tracking the ensemble of projection information
through time (e.g., time evolution of global average temperature conditions
shown on Figure SPM-5 from IPCC 2007). Such tracking draws attention to
the temporal evolution of ensemble statistics, such as the ensemble median
indicating the centrally expected condition at a time stage, or the ensemble
variance indicating the distribution of metric possibilities at a time stage. The
transient view invites attention to the projected rate of change in the metric
conditions. Applied on a projection-specific basis, the transient view also reveals
presence of any low-frequency variability in the projection, which may confound
interpretation of whether changes within that projection relate to human or
natural forcing.

• Period-change: This view focuses attention on two climate periods, typically
a reference historical period and a subsequent historical or projected future
period. Changes in metric period-statistics are then assessed. One example is
illustrated in IPCC (2007), which shows spatially distributed changes in global
mean-seasonal precipitation between two decade periods (IPCC 2007, Figure
SPM-7). In climate impacts literature, the period-change view is generally
more prevalent than the transient view. Period-change assessments may be
applied on a projection-specific or ensemble-pooled basis and with focus on
changes in a variety of period-statistics (e.g., period mean and higher moments,
minimum, maximum, etc). Interpretation of whether projection-specific period-
changes relate to human or natural forcing may be challenged by the presence
of low-frequency variability within in projections, particularly for precipitation
projections (Hawkins and Sutton 2010).

This chapter applies a period-change view, only because the selected climate
projections ensemble (Step 2) is specified for three disjoint periods. Metrics were
assessed on a water year basis (i.e. October through September). The single histor-
ical period (1961–2000) was split into two historical periods of roughly the same
duration as the future periods. This resulted in four periods being considered: (1)
water years 1962–1981 serving as the reference historical period (i.e. October 1961
through September 1981), (2) water years 1982–2000, (3) water years 2047–2065,
and (4) water years 2082–2100.

The evaluation first focuses on the ensemble-median change in period-median
condition for both Annual (Fig. 11.3) and 1daymax (Fig. 11.4). The goal was to
understand how consensus change geographically varies through time. Attention
to variance in projected changes and associated uncertainties are deferred to
subsequent illustrations in Step 5. Change results for typical Annual conditions sug-
gest that both “Clausius-Clapeyron” and “Hadley-Expansion” paradigms influence
results in the contiguous U.S. domain (Fig. 11.3), consistent with findings from
other efforts (USGCRP 2009; Seager et al. 2007). Focusing on the two historical
periods, changes from 1962–1981 to 1982–2000 for both REGRID and BC results
are minimal throughout the domain, with changes of plus or minus a few percent.
Focusing on the future periods and changes from the 1962–1981 period, geographic
patterns of change are more apparent. For both REGRID and BC conditions, the
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Fig. 11.3 Percentage change in period-median annual total precipitation (Annual). Maps
show spatially distributed, ensemble-median projected change in period-median condition for
REGRID and BC projections (top and middle rows, respectively) and for three period-pairs
(columns). The bottom row shows the mapped differences in this change measure when using
BC versus REGRID projections

northwest to northeast region shows increases in period-median Annual conditions,
potentially due to the “Clausius-Clapeyron” effect being prominent over these
regions. Switching to the southwest region, both REGRID and BC projections
suggest a decrease in precipitation, which is well associated with the “Hadley
Expansion” effect, and suggests that perhaps this effect is more prominent than any
“Clausius-Clapeyron” affecting precipitation-bearing weather over this region.

Comparison of changes in REGRID and BC Annual (Fig. 11.3, bottom row)
reveals how the act of bias-correction can introduce uncertainty. Throughout much
of the domain, and notably over southern Canada and the U.S. Great Plains, the
BC changes are wetter than those from REGRID, and for some locations by more
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Fig. 11.4 Percentage change in period-median annual maximum-day precipitation (1day-
max). Same as Fig. 11.3, but for the precipitation metric 1daymax

than 10%. However, some regions show BC changes that are drier than those from
REGRID, including Ohio River Valley and areas within the Southwestern U.S. This
illustrates how quantile-mapping bias-correction modifies the variance of REGRID
output (Pierce et al. 2011) and, without the constraint of trend preservation (Wood
et al. 2002), can lead to a different evolution of statistical properties in the BC
changes compared to REGRID changes.

Geographic change patterns for typical 1daymax conditions (Fig. 11.4) are
similar to those found for Annual. Changes from the reference 1962–1981 to 1982–
2000 show little to no change, and no apparent geographic pattern of change. For
the two future periods, the same regions emerge as areas of increased (Northwest to
Northeast) and decreased metric conditions (Southwest). However, there are three



322 L.D. Brekke and J.J. Barsugli

noteworthy differences between projected changes in typical Annual and 1daymax.
First, the areas of positive change are generally greater for 1daymax than for Annual,
and encroach on the the Annual areas of neutral to negative change. This result
perhaps highlights areas (e.g., southern Plains, southern Intermountain West) that
may experience both minor decreases in annual total precipitation and increases
in heavy daily precipitation events when they occur (USGCRP 2009). Second,
the spatial change patterns have less noise or more spatial fidelity for the Annual
condition compared to the 1daymax condition, suggesting that interpreting 1daymax
change in a single grid-cell should be informed by consideration of surrouding grid-
cell changes within the greater region. Third, the comparison of BC and REGRID
results shows that quantile-mapping bias-correction can affect locally expressed
1daymax changes, but with less spatial fidelity than how it affected Annual changes.
In sum, these differences in spatial change patterns for Annual and 1daymax suggest
that projected changes in 1daymax may not linearly trend with changes in Annual,
especially at the cell resolution of REGRID and BC information.

Even as the preceding evaluation illustrates projected change in typical metric
conditions, a complementary question has yet to be addressed: are these changes
statistically significant? One approach to assessing significance is to consider
projection-specific period-distributions of metric conditions, compare distributions
between two periods using a two-sample Komolgorov-Smirnov test (Massey 1951),
and then determine whether to reject a null hypothesis that the two period
distributions originate from a common underlying distribution (e.g., at a specified
significance level). This type of test considers the potential influence of change in
median and variance and was applied using a 0.10 significance level to compare
period-distributions of metric conditions. Figure 11.5 indicates the count of BC
projections where the null hypothesis was rejected when applied to each of the
three periods following the reference period. Results show that most projections do
not contain 1982–2000 metric distributions that appear to differ significantly from
1962 to 1981 distributions. For the two future periods, geographic patterns emerge
where a majority of projections appear to express different period-distributions,
with greater frequency of null rejection occurring over the Northwest and Northeast
regions. It’s notable that the frequency of null rejections is greater for the Annual
metric than for 1daymax. So although the Northwest and Northeast regions of
positive change were arguably greater for 1daymax, the ability to characterize
such changes as being significant was confined to the interior areas of both
regions and/or supported by fewer projections. This result seems to be due to test
results for 1daymax being more influenced by 1daymax period variance compared
to associated tests for Annual. In relation to this, a Wilcoxon Rank Sum test
(Gibbons 1985) was also applied to evaluate for apparent changes in period-median
conditions. Geographic patterns of null rejection frequency were found similar to
those from Komolgorov-Smirnov tests (results not shown), implying that the latter
may be primarily influenced by apparent change in median rather than change in
distributional variance and shape properties.
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Fig. 11.5 Count of projections showing significant differences in period-distributions of
annual and 1daymax. Plots show spatially distributed count of BC projections where, when
comparing the distribution of 1962–1981 Annual (top row) or 1daymax values (bottom row) to
the associated distribution of values from a subsequent period (1982–2000, 2047–2065, or 2082–
2100 for the columns, left to right, respectively), a Komolgorov-Smirnov two-sample test (alpha
0.10) resulted in a rejection of the null hypothesis that the two period distributions come from a
common underlying distribution. Only locations with counts of at least nine (which would occur
with probability less than 0.1, assuming a binomial distribution) are shown

11.5 Step 4. Assess Projected Changes in Extreme
Precipitation Conditions

The assessment now proceeds to evaluation of projected changes in extreme Annual
and 1daymax precipitation. For Annual, an extreme occurrence would be an atypical
amount of annual total precipitation, whether it’s a large or small total. In this
case, focus is placed on the latter as such annual “droughts” can test capabilities
in managing water supply systems to satisfy various demands (i.e. Annual events
expected to occur once in every 20–100 years). For 1daymax, an extreme occurrence
would be an atypical amount of annual maximum-day precipitation. In this case,
focus is placed on large and somewhat rare 1daymax events that are relevant to the
design and planning of various water resources systems (i.e. 1daymax events that are
expected to occur once in every 20–100 years). From this step forward, evaluations
are conducted only on BC projections, having already noted in Step 3 how climate
projection bias-correction can introduce uncertainty about assessed changes.
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In order to estimate rare metric occurrences, cumulative probability distributions
are fit to period-metric conditions, and then used to estimate event magnitudes of
a specified cumulative probability associated with return-periods of interest (i.e.
pD 0.05 and 0.01 for small-magnitude Annual, and pD 0.95 and 0.99 for large-
magnitude 1daymax). For Annual samples, a gamma distribution with maximum
likelihood estimated parameters was used (Hahn and Shapiro 1994). For 1daymax
samples, a three-parameter generalized extreme value (GEV) distribution with
maximum likelihood estimated parameters was used (Embrechts et al. 1997; Kotz
and Nadarajah 2000). Both distributions were fit in two ways: (1) to “projection-
specific” conditions (i.e. projection-, period-, and grid cell-specific samples of
metric conditions, where N years of sample values informed each fit), and (2) to
“ensemble-informed” conditions (i.e. projections pooled-, period- and grid cell-
specific samples, where 53�N years of sample values informed each fit). It is
acknowledged that other statistical methods might be used to characterize extremes,
and that this chapter simply adopts one method common to engineering practice as
a means to evaluate uncertainty in projections of extremes. In principle, the method
chosen here is for illustration purposes and could be replaced by other candidate
methods (e.g., peaks over thresholds, fitting other distributions to extremes).

The first part of this evaluation step focuses on uncertainty introduced from the
choice of fitting projection-specific or ensemble-informed distributions. Focusing
on 1daymax and the four grid cell locations highlighted on Fig. 11.2, results
show that the central tendency and shape of projection-specific distribution varies
considerably (Fig. 11.6). Results also show that the ensemble-informed distribution
lies somewhat centrally within the spread of projection-specific fits. When the
evaluation focuses on ensemble-median changes in extremes, results were found to
be insensitive to whether the result was sampled from the collective of projection-
specific fits or sampled from the single ensemble-informed fit.

Broadening to changes in extremes throughout the domain, only the results
from ensemble-informed fits are shown on Figs. 11.7 and 11.8, which respectively
contain results for small-magnitude Annual and large-magnitude 1daymax extremes
for three return periods: 2-, 20- and 200-year. The 2-year return period represents
sampling the distributions at pD0.50 and should show change geographic patterns
similar to the period-median changes already discussed in Step 3. Focusing first on
Annual extremes and the two future periods, it’s apparent that changes in extreme
dry years (20- and 100-year return periods) do not necessarily follow changes
in typical years (2-year return periods). Changes in typical annual precipitation
suggested the Northwest and Northeast as regions of positive change and the
Southwest as a region of negative change. When focus is switched from typical
to extreme years, the Southwest region expands to include much of the southern tier
of the domain, and the regions of positive change are confined to the more northwest
and northeastern areas. Perhaps most striking is that the projected change in 100-
year “annual precipitation droughts” is expected to be neutral to negative over nearly
all of the contiguous U.S. even though sizeable portions of the northwest to northeast
are expected to receive an increase in typical year precipitation (Fig. 11.3).
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Fig. 11.6 Estimated generalized extreme value distributions fit to period samples of 1day-
max at four grid cells. Distributions were fit to data from BC projections (x-axis) from a given
period (row) and grid cell (column, Fig. 11.2). Distributions were fit using two types of samples:
projection-specific samples resulting in 53 distributions associated with 53 projections for a given
period and grid cell (lines colored other than black); and, an ensemble-pooled sample resulting in a
single distribution representing all 53 projections for a given period and location (heavy black line
except for 1962–1981 period, where it’s a dashed green line). For periods following 1962–1981,
the distributions from 1962 to 1981 are also shown, plotted under the given period’s distributions
(yellow and green lines from top row of plots)

Switching focus to 1daymax extremes and the two future periods, results
show that changes in more common 1daymax extremes (20-year return periods)
generally follow changes in typical years (2-year return periods), but not so for the
more uncommon 1daymax extremes (100-year return periods). In addition, as the
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Fig. 11.7 Percentage change in estimated annual values having N-year return periods. Maps
show percentage change in estimated Annual values based on (1) fitting gamma distributions to
ensemble-pooled BC projected conditions during 1962–1981, 1982–2000, 2047–2065, and 2082–
2100 periods, (2) estimating events having 2-, 20- and 100-year return periods (rows) as the
period-specific gamma distributions sampled at 0.50, 0.05 and 0.01 cumulative probabilities, and
(3) assessing changes in these return period values for the three latter periods relative to the 1962–
1981 period (columns)

distributions are used to infer the more uncommon extremes, the spatial fidelity of
changes tends to breakdown. This suggests that at this grid-cell resolution there may
be greater uncertainty in estimating changes in 100-year return period values than
changes in 20- and 2-year return period values.

Before concluding this section, it is noted that uncertainties in estimating
projected changes in extremes are introduced through the choice of distribution form
and method of distribution fitting. For example, although the gamma distribution
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Fig. 11.8 Percentage change in estimated 1daymax values having N-year return periods.
Maps show percentage change in estimated 1daymax values based on (1) fitting generalized
extreme value (GEV) distributions to ensemble-pooled BC projected conditions during 1962–1981,
1982–2000, 2047–2065, and 2082–2100 periods, (2) estimating events having 2-, 20- and 100-
year return periods (rows) as the period-specific GEV distributions sampled at 0.50, 0.95 and 0.99
cumulative probabilities, and (3) assessing changes in these return period values for the three latter
periods relative to the 1962–1981 period (columns)

has been suggested as an appropriate distribution to describe Annual precipitation
possibilities (Wilks 2006) and changes due to global warming (Watterson and Dix
2003), it may not be the ideal distribution to describe conditions for some U.S. loca-
tions (or grid cells in this case). Likewise, the GEV distribution may be commonly
featured in engineering practice to describe heavy precipitation intensity-duration-
frequency relationships (e.g., NOAA Atlas 14, Volume 6, Version 2.0: California
(Perica et al. 2011)), but may not be the ideal distribution for some locations. Also,
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estimating parameters for a given distribution can be done multiple ways (e.g., for
the GEV distributions, approaches may involve using L-moments (Hosking and
Wallis 1997) or product moments rather than the maximum-likelihood moments
used in this illustration). Parameter estimation is also sensitive to identification and
treatment of data outliers, efforts made to ensure temporally homogenous sample
data, and efforts made to constrain local parameter estimates to conform to some
larger spatial pattern of parameter values. In this case, no efforts were made to
identify and removed period-internal trends before distribution fitting, or to identify
regional (multi grid-cell) constraints on local (grid-cell) parameter values. Wehner
(2010) discusses several practical issues in applying GEV analysis to climate data,
including trend and bias removal. He notes that trend removal is not generally
needed for the 20 year periods analyzed here.

Finally, the same Komolgorov-Smirnov tests discussed in Step 3 could have been
performed to test whether the changes in projection-distributions of N-year extremes
were statistically significant. It is recommended that such tests be conducted to
complement this step if there is interest in being able to comment on whether
assessed changes in N-year metrics are significant.

11.6 Preliminary for Step 5: Low-Frequency Climate
Variability and Its effect on Interpreting Projected
Changes in Local Extremes

The next part of the evaluation involves assessing how the variance of changes in
Annual or 1daymax extremes decomposes relative to three sources of global climate
projection uncertainty: (1) choice among future climate forcing scenarios involving
different rates of global greenhouse gas emissions, (2) choice among GCMs for
simulating climate system response to a given emission scenario, and (3) choice
among “initializations” that define alternative climate-system states at the beginning
of climate projections. The existence of multiple emissions scenarios (IPCC 2000)
and multiple GCMs is well recognized among the practitioner community. However,
the third source of global uncertainty, also referred to as “internal” climate
variability because it is not the result of an imposed climate forcing, can bear
significant implications for interpreting regional to local climate changes within
global simulations decades into the future (Hawkins and Sutton 2009), particularly
for precipitation and in the mid-latitudes (Hawkins and Sutton 2010).

Some of the uncertainty associated with internal variability stems from decadal to
multidecadal modes of the climate system. Other aspects arise from finite sampling
of shorter-term climate and weather variability that would exist even in the absence
of low-frequency climate modes. Considering our climate projections ensemble,
it is clear that low-frequency variability is expressed in the climate projections,
but to varying degree depending on climate model and geographic location. This
low-frequency variability can confound interpretation of projected extremes. For
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example, Kendon et al. (2008) indicated that a single 30-year simulation is not
adequate to infer changes in extreme precipitation in regions where there is
large multi-decadal variability. One also needs to recognize that GCMs should be
scrutinized for more than just their expression of low-frequency climate system
variability but also for whether this simulated variability seems reasonable or
plausible relative to observations.

Internal variability, if not recognized as such, can give the erroneous appearance
of a large change in precipitation when a period-change view is applied. To
illustrate, consider projection-specific changes in period-median metrics at the four
locations introduced in Step 4 (Fig. 11.1) from 1962–1981 to 2047–2065 (futr1)
and 2082–2100 (futr2). Recognizing that the projections share twenty-first century
climate forcing scenarios that have a somewhat monotonic increase in climate
forcing, it’s reasonable to expect a somewhat monotonic increase in global air
temperature. It might also be reasonable to expect that this implies a monotonic
change in local precipitation if it’s sensitive primarily to changes in global climate
forcing. However, as shown for the four locations on Fig. 11.9, many projections
do not express monotonic change from the reference period through the future
periods. Some projections show more positive change by futr1 transitioning to
less positive change by futr2 (green projections on Fig. 11.9); others show the
opposite (red projections). For these projections, it appears that there is low-
frequency precipitation variability that is significantly influencing period-change in
precipitation at these grid cells.

When this analysis is broadened to consider presence of this type of low-
frequency variability at all grid cells (Fig. 11.10), regions emerge where it appears
that projected changes may be more sensitive to low-frequency variability. Focusing
on the right-column maps of Fig. 11.10, it appears that changes in typical 1daymax
conditions over the high-plains and southern portions of the contiguous U.S.
are sensitive to projected low-frequency climate variations. For Annual, these
same regions are identified, although the frequency of projections exhibiting low-
frequency variations is generally reduced except for over the southern Intermountain
West. Comparing these results to those from Step 3, it is evident that the geographic
pattern of projections having changes affected by low-frequency variability seems
to generally align with the geographic pattern of locations where the period-changes
in typical metric conditions did not appear to be statistically significant (Fig. 11.5).

11.7 Step 5. Relate Variance in Projected Changes
to Global Uncertainties

The evaluation now considers how uncertainties in projected local changes relate to
three sources of uncertainty in global climate projection uncertainty: future emission
path, climate model sensitivity, and internal climate variability (as simulated by
the models). Hawkins and Sutton (2009, 2010) apply variance decomposition as
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Fig. 11.9 Period-to-period stability of projected changes in extremes – four grid cells. Figures
show ensemble of BC projected changes in period-median values for 2047–2065 (futr1) and 2082–
2100 (futr2) relative to relative to 1962–1981. All projections are initially shown as blue circles
connected by blue lines. Projections are then color-recoded if they have change values that do
not monotonically increase or decrease through time, either from more negative to more positive
change (red), or from more positive to more negative change (green)

a way to relate the uncertainty of annual temperature and precipitation at global and
regional scales to these three sources of global projection uncertainty (i.e. HS2009
and HS2010, respectively). Here we provide a similar analysis of variance, focusing
on the 1daymax metric of heavy precipitation focusing on the ensemble of BC
precipitation projections.

The ensemble of 53 available projections poses a challenge for this purpose as
it contains an unequal number of runs for each model (Table 11.1). Most models
have only a single run during the past, and only three runs (one for each emissions
scenario) into the future. The small sample size makes it difficult to separate the
uncertainty introduced by internal variability from the other sources. In order to gain
as much statistical power as possible for the variance decomposition all changes are
computed with respect to 1962–2000. This choice differs from the rest of the paper
where changes are with respect to 1962–1981.

Following Kendon et al. (2008) the precipitation conditions in each projection
are regionalized by pooling the daily values within a 3 � 3 array of adjacent cells
centered on each grid-cell. For coastal grid-cells, only the data overlying terrestrial
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Fig. 11.10 Period-to-period stability of projected changes in extremes – full domain. Fol-
lowing Fig. 11.9, maps show the count of BC projections expressing projected changes in
period-median conditions (1daymax on the top row, Annual on the bottom row) that do not
monotonically increase or decrease through futr1 and futr2 (Fig. 11.9), transitioning from more
to less negative (neg to pos, left column), more to less positive (pos to neg, middle column) or
either (right column)

areas can be pooled given the limitations of BC projections generation that relies on
a land-based observational dataset for bias correction. Unlike Kendon et al. (2008),
we rescale the data before pooling, dividing by the projection-specific 1961–2000
mean 1daymax:

qs;m;i .x; y; t / D Qqs;m;i .x; y; t /
h Qqs;m;i .x; y; t /itD1961::2000

;

where Qqs;m;i .x; y; t / is the 1daymax value at each grid-cell (x D longitude, y D
latitude) for each year (t) and the brackets denote the average over the period shown.
The subscripts denote emissions scenario s, model m, and run i. As described in
Step 4, a GEV distribution is fit to the pooled data to obtain the 2-, 20- and 100-
year return values for each of the two time periods in the future at each grid-cell.
The only difference from Step 4 is that cell-specific GEV distributions are fit to the
pool of values from a 3 � 3 array of grid cells centered on the given cell rather than
to only the values from the given cell. Though the individual grids in the pooled
sample are not strictly independent, a spot check of several grid-cells shows that
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the GEV distribution provides a good fit to the pooled data. Kendon et al. (2008)
present a thorough discussion of the relative merits of spatial pooling versus spatial
averaging. They find that a small degree of pooling, such as the 3 � 3 pooling, can
increase the robustness of estimated changes in extreme precipitation. They also
note that spatial pooling is no substitute for having an ensemble of simulations that
can sample many phases of multidecadal variability.

To preview the approach, the variance in a grid-cell’s projected change in
1daymax will be decomposed and assigned to the following order of uncertainties:
emissions scenario, climate model sensitivity, and internal variability. Before
presenting this analysis of variance, emissions scenario- and model-specific mean
changes are first inspected. First consider the variation among the emissions
scenarios. For a given 1daymax statistic zs,m,i, such as the N-year return value at
a given location, we compute the mean fractional change over individual runs for
each model and emissions scenario,

Zs;m D
hzs;m;i iiD1;I.m/;future

hzm;i itD1962�2000
� 1;

where the number of runs, I(m), would ideally be the same for each model. In
our case, the run count varies by model given the limits of our climate projections
“ensemble of opportunity.” In this way, no individual model is given more weight
simply because there are more runs in the dataset. We then average zs,m over the
models to get the mean response for each emissions scenario at each future time
period, zs, having an N-year return period. The emissions-specific change patterns,
averaged over all models (not shown) are quite similar to one another for either
period and in general show larger amplitude changes in the later time period.

Now consider the variance associated with climate models and the same statistic.
The challenge of isolating the model-specific changes is highlighted in Fig. 11.9,
which shows the temporal instability of the sign of change when considering
individual model runs. In most locations, one would expect that the model-specific
changes would scale monotonically with the increased emissions, with deviations
from monotonicity due to internal variability. Given the small number of runs for
most of the available models, one way to increase the sampling of internal variability
is to note that the simulations using the three emissions scenarios diverge from one
another due to the chaotic nature of the climate system. As a result, by mid-century
the three emissions scenarios that were run for each initial condition are effectively
independent samples of each model’s internal variability.

The average of zs,m over emissions scenarios yields an estimate of the spatial
pattern of change for each model for 2047–2065 and 2082–2100. For example,
the resulting patterns reveal striking differences among model-specific results when
considering 2082–2100 change from 1962 to 2000 in the 2-year return value of
1daymax (Fig. 11.12). When the model-specific patterns for the two time periods
were computed independently, the average pattern correlation across all models
(excluding the mpi model) was 0.86 (2-year), 0.80 (20-year), 0.77 (100-year).
This agreement is a good indication that the sampling is sufficient to discriminate
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Fig. 11.11 Percent change in 20-year return value for 1daymax for two regions. The panels
show change for the Northwest (left) and Mid-Atlantic (right) locations (Fig. 11.2) from 1962–
2000 to 2047-2065 (futr1) and 2082-2100 (futr2) for each of the models noted. The total number
of runs for each model, including all emissions scenarios, is shown in parentheses. The model-
colored lines indicate the mean over all emissions scenarios and runs for a given model; the
model-colored circles (a1b), triangles (a2), and squares (b1) show the average of all runs for each
separate emissions scenario. The ECHAM5 (MPI) model is not shown because only two emissions
scenarios were available

among the broad patterns of change in each model. The model-specific change
at two locations for the 20-year return value of 1daymax precipitation is shown
in Fig. 11.11. While not perfect, we see that there is a tendency for each model-
specific average to show monotonic change in time. For the mid-Atlantic location
we note a consistent model-specific behavior for models that show both increasing
and decreasing extremes.

The model-specific and emissions-specific results motivate an analysis of vari-
ance approach that differs from the method of HS2009. HS2009 used a polynomial
fit in time to zs,m,i at each location in order to isolate the underlying model sensitivity
from the low-frequency internal variability. The lack of continuous time periods
in our projections ensemble and the similarity in the spatial patterns motivate a
different approach based on the concept of pattern scaling (Mitchell et al. 1999).
Pattern scaling assumes that the change in a variable of interest can be approximated
by a model-specific spatial pattern multiplied by a scale factor ’ that represents the
overall magnitude of the climate forcing in a given emissions scenario. Formally,

Zs;m;i .x; y; � / D ˛ .s; �/ � Pm .x; y/C "i .x; y; s; � /

where Pm is the spatial pattern for model m determined as the change from the
mean of 1962–2000 to the mean of the two future period means (2047–2065 and
2082–2100). The scaling factor, ˛, is associated with emissions scenario s and
future period � . Unlike Mitchell et al. (1999) we do not assume a linear relationship
of the scale factor to the global mean temperature. Instead, the scaling factors are
determined by linear regression of the projection-specific changes for a given model,
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Fig. 11.12 Percent change in 1daymax having a 100-year return value for nine climate
models from 1962–2000 to 2082–2100. Changes are computed from residual BC projections
of 1daymax (having period- and emissions scenario-specific means removed) and reflect average
change over all runs simulated by the given model (Table11.1). Note that data for the mpi model
was available only from the B1 and A2 emissions scenarios, so its estimates are not as robust as
for the other models

Zs,m, onto the pattern Pm for that model. The model-specific scale factors are then
averaged over all models to obtain a scale factor for each emissions scenario and
future period. Considering only the first term on the right hand side of the above

equation, _zs;m .x; y; � / D ˛ .s; �/ � Pm .x; y/ represents the combined effects of
emissions scenario and model choice (Fig. 11.12).

Proceeding to the analysis of variance, we provide a linear decomposition of the
sources of variance as in HS2009, but with the variance contributed by emissions
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Fig. 11.13 Percentage of variance in projected change in 2-year 1daymax explained by three
sources of global climate projection uncertainty. Percentage variance is allocated to choice
among emissions scenarios (left), climate models (middle), and internal variability (right) for
change from 1962–2000 to 2047–2055 (top row) and 2082–2100 (bottom row)

scenario and model computed from _zs;m rather than from their polynomial curves.
The emissions scenario variance is computed first for each model, and then averaged
over all models. This differs from HS2009, who compute the mean over all models
first, then compute the variance. In the case that the mean over all models is zero,
as in the right panel of Fig. 11.11, this might lead to an erroneous result. The model
variance is computed on the model-specific changes averaged over all emission
scenarios. The internal variability is then determined from the variance of the
residual "i. for each model run, averaged over all models and emissions scenarios. As
in HS2009 we assume that there are no interactions among the sources of variability
so that the total variability follows from �2total D �2model C �2emissions C �2internal:

This variant on the HS2009 method is also very simple, and no doubt a more
sophisticated analysis could be attempted. For reasons stated in HS2009 this method
probably yields underestimates of the overall uncertainty in these projections. In
addition, the estimates of the relative sources of variance will depend on the
assumptions implicit in the use of pattern scaling as well as on the choice of baseline
period, and on whether or not to regionalize the data.

Figures 11.13 and 11.14 respectively show the percentage of the variance
accounted for by the three factors for the 2-year and 100-year return values.
Emissions scenario uncertainty is only significant in the latter period, as one would
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2046-2065, 100yr 1 daymax, Emissions
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Fig. 11.14 Percentage of variance in projected change in 100-year 1daymax explained by
three sources of global climate projection uncertainty. Similar to Fig. 11.13, but for the 100-
year return period

expect from the relatively small difference in the associated climate forcing at mid-
century (IPCC 2000), and even then only for the 2-year return values. Even in the
period 2082–2100 it generally accounts for less than 20% of the variance in much
of the domain. As noted in HS2010, the emissions scenarios generally play a larger
role at larger spatial scales. Much of the model and internal uncertainty has large
amplitude at sub-continental scales, whereas emissions uncertainty acts to alter the
pace and ultimate magnitude of change globally.

The uncertainty from internal variability is generally largest for the period 2047–
2065 for both return periods. For the period 2082–2100, both model uncertainty and
internal variability play a very large role over much of the domain. For the 2-year
values, model uncertainty dominates on the west coast with values up to 80% and
is in the range or 30–50% over much of the domain. Even for the 100-year return
value, model uncertainty is a significant factor.

This leads to several issues when interpreting consensus and spread among
ensemble changes. First of all, there are regions where the model signals are not
in the same direction (e.g., Fig. 11.11 highlighting changes for two of the grid-cell
“regions” shown on Fig. 11.2). For such regions, the multi-model mean signal may
be much smaller than the signal in most of the individual models. This leads to
an adaptation dilemma – the uncertainty can increase into the future – reflecting
potential for negative and positive changes– even though the mean signal is small.

To test the robustness of our results, we performed the decomposition of variance
using alternative methodological choices. We performed three-way analysis of
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variance (MATLAB anovan function) on zs,m,i(x,y, �) with and without allowing
a statistical interaction term between the model and emissions scenario factors.
The results were broadly similar in pattern for the 2- and 20-year values, with
the interaction term contribution comparable to the emissions scenario contribution.
The 100-year values were substantially different, with different model patterns for
the two time periods, and much more variance attributed to internal variability.
Concern over small sample size and the resulting instability of model patterns
motivated us to adopt the pattern scaling approach that assumes the same underlying
model patterns of change for both periods, thus effectively doubling the sample
size. Another choice related to applying the model REGRID versus BC projections,
leading to qualitatively similar results in the patterns and amount of variance
explained by each factor at least when the scaling step was done. Lastly, the analysis
was conducted before scaling and pooling. The resulting analysis of variance was
similar in the broad patterns, but much noisier on the grid scale with a much
greater dominance of internal variability when the data were not pooled. Scaling
(which accounts for the different model’s biases in simulating extremes during the
historic period), does not change the broad patterns, but does reduce the apparent
contribution of the emissions scenario. Given the typically small ensemble sizes
for climate model projections, regionalization of extreme values can reduce the
influence of grid-scale internal variability.

Finally, the role of internal variability should not be discounted. In this paper
we have not addressed how well the models reproduce the observed internal
variability in extremes. The large scale of the climate model grid-cells may not
be able to resolve processes such as land-atmosphere feedback that may enhance
the variability of local extremes. Because of the ad-hoc design of the CMIP3
experiment, it is not possible to cleanly separate the inter-model variability from the
internal variability for our purposes. Larger ensemble sizes for each model would
be desirable. We have used the available daily projections from the CMIP3 archive
at PCMDI, and combined the analysis for two future time periods to gain what
statistical power we could. Nonetheless, our method may be underestimating the
contribution of multi-decadal internal variability.

11.8 Step 6: Assess Changes Given Global/Local Interactions

Up to this point the demonstrations in this paper have analyzed changes in daily
precipitation at the spatial scale of GCM output. In contrast, many applications
of climate data to water resources management first involve “downscaling”, that
is the translation of global climate projection to a finer spatial scale, ideally
recognizing local climate forcing and local controls on how global climate change
might influence local conditions. Choosing among candidate downscaling methods
introduces additional uncertainties in the evaluation of extremes beyond those
already originating from choices in global climate projection (Step 5). Some
studies have quantified relative amount of uncertainty introduced by GCMs versus
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subsequent downscaling when assessing local hydroclimate impacts (e.g., Wilby
and Harris 2006; Crosbie et al. 2011).

Quantifying the uncertainties introduced by choice of downscaling method
is difficult to assess without conducting the idealized experiment where GCM
projections are subjected to both multiple statistical downscaling methods and
dynamical downscaling using multiple RCMs. Nonetheless, the effect of simple
downscaling methods on extremes may be transparent. For example, an annual
change-factor (“delta”) method based on historical observations would simply
multiply the annual and 1daymax values by that change factor. A simple spatial
disaggregation method such as was used in Wood et al. (2002) would, at least
approximately, transfer the percentage changes in extremes seen at the GCM scale
to the finer scale.

More involved statistical and dynamical methods need to be evaluated explicitly
for their effect on extremes. As an example, consider a more involved statisti-
cal method where the ensemble of BC daily precipitation projections has been
downscaled to a 1/8 degree spatial grid using the constructed analogues technique
(Hidalgo et al. 2008; Maurer and Hidalgo 2008). The BCCA technique creates daily
fields of precipitation through linear regression on the 30 nearest historical analogs
to the projected patterns as measured by a domain-wide root-mean-square distance.
Because the method is applied on the domain-wide pattern, it is not constrained to
reproduce the same local extremes seen in the GCM data. Nonetheless, constructed
analogues do well at reproducing the upper end of the precipitation distribution
when tested on historical data (Hidalgo et al. 2008). As an illustration, Fig. 11.15
shows the Annual and 1daymax values for the BCCA dataset for part of the western
U.S. These values may be compared against values for the BC dataset shown
in the middle rows of Figs. 11.3 and 11.4. While the BCCA data expresses an
overall north-south gradient in the change field similar to that in the BC results,
the percentage change in the BCCA dataset is enhanced over the higher topography
of the Sierra Nevada demonstrating that portrayed changes can be affected by this
type of downscaling.

Given that GCMs are capable of modeling the changes in synoptic-scale
weather patterns, statistical downscaling methods are meant to capture the changes
in regional and local conditions associated with the large-scale changes, under
the assumption that the (often very simple) statistical relationship used in the
downscaling does not change into the future. Different statistical downscaling
methods give different projections of extremes, even when applied to the same
GCM data (Haylock et al. 2006; Fowler et al. 2007). The STARDEX project
compared many downscaling methods, and noted that no single method stood
out as clearly superior, and recommended that multiple downscaling methods be
considered (Goodess 2005).

In many locations, regional and mesoscale atmospheric dynamics are responsible
for extremes and in particular for extremes of precipitation at daily and shorter
time scales, and for regions of high topographic relief. To capture these with more
confidence, it may be desirable to downscale the GCM using a regional climate
model (RCM), a process known as dynamical downscaling. The North Ameri-
can Regional Climate Change Assessment Program (NARCCAP) coordinated a
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Fig. 11.15 Percentage change in downscaled period-median annual and 1daymax precip-
itation. Maps show spatially distributed, ensemble-median projected change in period median
condition for BC projections that have been spatially downscaled using Constructed Analogues
(i.e. BCCA projections)

multi-model dynamically downscaled ensemble at approximately 50 km resolution
covering most of North America. For the European and West African domains, the
ENSEMBLES project produced a multi-model ensemble at approximately 25 km
resolution. RCMs, like GCMs have biases in simulating the climate, and even at
25 km do not resolve many processes that are important for precipitation extremes.
Also as noted earlier, the need to consider uncertainty in a resource assessment
motivates consideration of climate projections from a large multi-GCM ensemble.
The typically smaller ensemble size featured in multi-RCM experiments – and in
particular the small number of driving GCM runs that have been downscaled – can
be a hindrance to their use. However, the increased resolution can aid in studies of
the processes that relate to extremes. In addition, RCMs can be used to investigate
the impact of local and regional climate forcing such as changes in land cover and
land use or regional aerosol and dust emissions.

11.9 Summary

This chapter explores various uncertainties associated with projecting changes in
extreme precipitation conditions, associated with both daily heavy precipitation
events and annual droughts. Physical paradigms for changes in extreme precipitation
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relate to two global scale drivers– the “Clausius-Clapeyron” relationship where
the atmospheric water-holding capacity increases exponentially as the atmosphere
warms, and the “Hadley Expansion” phenomena where global warming leads to
a weakening of tropical Hadley circulation and broadening of the subtropical
atmospheric subsidence zones causing poleward migration of middle latitude storm
tracks. These paradigms are expressed in contemporary global projections of
precipitation to varying degree depending on choices made in specifying the climate
forcing scenario, climate model structure and climate system initialization.

The scope of relevant projected precipitation extremes is very broad, varying
from localized and acute heavy precipitation events to regional sustained precipita-
tion deficits. Further, for any metric, extremes may be defined by their magnitude or
expected frequency of reoccurrence. Regardless of precipitation metric and extreme
definition, the evaluation of projected changes in extremes can feature a common
set of steps:

1. Identify weather or hydrologic metric of interest.
2. Select a representative climate projection ensemble for evaluation.
3. Assess changes in typical metric conditions, and evaluate the significance of

these changes.
4. Assess changes in extreme metric conditions, and evaluate the significance of

these changes.
5. Relate variance in projected changes to global uncertainties.
6. Assess changes given global/local interactions.

In Step 1, focus may be placed on many types of weather or hydrologic variables,
statistical metrics of these variables. For this demonstration, focus was placed on
two annual precipitation metrics: total annual precipitation (Annual) and maximum-
day precipitation (1daymax). In Step 2, ensemble consideration is necessary in
order to support exploring dimensions of uncertainty, regardless of whether model
validation is conducted beforehand in a way that bears influence on inform ensemble
selection. For this demonstration, changes in the two metrics were evaluated within a
53-member ensemble of daily CMIP3 projections over the contiguous United States.

In Step 3, the demonstration initially focused on consensus projected change
(ensemble-median) in typical metric conditions (period-median) from a reference
period of water years 1962–1981 to three subsequent periods: water years 1982–
2000, 2047–2065 and 2082–2100. Results revealed that typical Annual conditions
were expected to increase in the northwest and northeast regions of the domain and
decrease in the southwest reaches of the domain, consistent in their broad spatial
patterns and magnitude with earlier findings based on the CMIP3 multi-model
ensemble (USGCRP 2009). Similar geographic patterns of change were found for
typical 1daymax conditions, although the region of increased metric conditions was
somewhat expanded to the south. Analyses were conducted on two versions of the
climate projections: one using regridded results from GCM simulations (REGRID)
and another using bias-corrected GCM results (BC) where “bias-correction in
the distribution” was conducted using a quantile mapping technique. Comparison
of results showed that changes varied between REGRID and BC projections,
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sometimes by greater than 10%, highlighting how the act of bias-correcting climate
projections introduces uncertainty into the change assessment. Finally, statistical
testing showed that BC projections most frequently expressed significant change in
the northwest and northeast regions of the domain for both metrics, and also the
southwest region for Annual.

In Step 4, the demonstration switched focus from changes in typical to changes
in extreme 1daymax and Annual events. Extremes values for 1daymax and Annual
were respectively estimated from generalized extreme value and gamma probability
distributions fit to metric period-samples at each grid cell. Three return periods were
considered: 2-year (akin to period-median), 20- and 100-year. Results revealed that
geographic patterns of changes in extreme conditions (20- and 100-year return) do
not necessarily align with the patterns of typical conditions (2-year). For Annual
extremes, the region of negative change expanded from the southwest to the east
and north. For 1daymax extremes, the region of positive change largely covered
the same extent as that associated with typical 1daymax. Combining these two
results, it’s apparent that some middle domain regions are projected to experience a
combination of more severe annual droughts and more extreme heavy precipitation
events, which is also consistent with earlier findings (USGCRP 2009). Although not
demonstrated, the same tests applied to evaluate the significance of typical changes
could also be applied to evaluate the significance of extreme changes.

Having characterized changes in typical and extreme conditions, the demonstra-
tion moved onto Step 5 and considered how variance in these projected changes
partitions to three sources of global climate projection uncertainty: climate forcing
scenario (Emissions), climate model sensitivity (Model), and internal climate
variability (Internal). Following the variance decomposition approach of Hawkins
and Sutton (2009, 2010), and adapting it from their transient application to the
period-change application in this study, results showed the Emissions choices
account for only a small fraction of change variance for most of the domain
and for both projected twenty-first century periods. Exceptions to this finding
are the northwest and northeast regions, which showed significant sensitivity to
emissions path by 2082–2100. The relative influence of Model and Internal sources
of uncertainty varied regionally, with Model uncertainty found to account for a
generally greater share of variance for the typical 1daymax (2-year return) than
for the extreme 1daymax (100-year return). Reasons for why the Internal source
of uncertainty receives considerable variance allocation include the presence of
low-frequency (i.e. decadal to multidecadal) modes of variability in the climate
system and simulated within the GCMs to varying degree (rightly or wrongly), and
sampling uncertainty in determining extremes from relatively short climate records.
These findings were found to be generally robust when the variance decomposition
was implemented using different choices in the analytical design (e.g., whether to
scale metric conditions, whether to apply to REGRID or BC projections, whether
to decompose using an additive model following HS2009 or a statistical model that
permits Emissions-Model interaction). However, estimates of the 100-year values
of 1daymax were more sensitive to the choice of method. The dominance of model
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variance for 20-year values is in general agreement with Wehner (2010), who notes
a similar result for 20-year temperature extremes.

In summary consideration of Steps 3– 5, a fair amount of caution should be used
in interpreting the GCM-scale precipitation extremes, particularly in any single grid-
cell. There are many uncertainties introduced by the parameterization of convective
storms and the coarse representation of orographic precipitation and mesoscale
atmospheric circulations. It is known that tropical storms are not well simulated by
the CMIP3 models. Yet the GCMs demonstrate that there are large scale patterns
in how the water budget may change, and that there are large-scale sources of
uncertainty in these projections.

Finally, the demonstration moved to the final step, considering how regional
atmospheric circulation and local climate controls might interact with global climate
projections to determine local precipitation change. Such consideration invites the
task of spatially downscaling climate projections to more local resolution. Schemes
for doing so may be simple to complex statistical methods or complex dynamical
methods. The dynamical approach is preferable if the purpose is to characterize how
regional/local factors might modulate the change signal from global projections.
However, dynamical downscaling remains sensitive to regional climate modeling
approach (similar to how global climate projection remains sensitive to GCM
choice), and such techniques have yet to be applied to the projections and period
scope considered in this analysis. Alternatively, a daily non-dynamical technique
has been applied to these projections (constructed analogues) and evaluation of
these results over a limited west-coast region reveals that the spatial pattern of
changes can be modulated even by such non-dynamical techniques, introducing
further uncertainty into the assessment.

In conclusion, this chapter demonstrates the following:

• The reader may evaluate projections for relevant precipitation metrics and then
apply traditional probabilistic methods to these projected metrics in order to
characterize extreme metric events.

• Characterization of projected extreme events is confounded by climate model
simulation biases, and choice of whether to characterize extremes with or without
climate model bias-correction. Although a quantile mapping bias-correction
without trend constraint was implemented in this demonstration, there are
multiple types of bias-correction techniques available and it remains a matter
of research to identify an appropriate method. Given the current situation, it may
be preferable to consider multiple bias-correction techniques if the interest is in
better disclosure of projected impacts uncertainty.

• Projected extremes and changes in projected extremes vary across the projection
ensemble, and in different ways depending on extreme metric and geographic
location.

• Statistical testing can reveal the statistical significance of apparent changes
in the projection-distribution of typical and extreme metric conditions, and is
recommended as a complement to any such change assessment.



11 Uncertainties in Projections of Future Changes in Extremes 343

• Low-frequency variability exists in climate projections and to varying degree
depending on source climate model and geographic location. Its occurrence
in projections confounds interpretation of projected changes in precipitation
extremes.

• Using variance decomposition, variance in projected changes in extremes may
be associated with three sources of global climate projection uncertainty: climate
forcing (emissions), climate model sensitivity (models), and internal climate
system variability (model initialization). For the continental U.S. and precipi-
tation metrics considered, much of the variance is attributable to climate model
sensitivity and internal climate system variability.

• Uncertainties also arise from changes in regional circulation and local controls
on climate, which are partially revealed through downscaling of GCM results to
local scale. Statistical methods are efficient in accomplishing this task. However,
the effects of regional circulation and local controls on climate are likely to be
best resolved through dynamical downscaling.
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Chapter 12
Global Data Sets for Analysis of Climate
Extremes

David R. Easterling

Abstract Anthropogenic forced climate change is expected to result in changes
in both the mean climate state and climate extremes. Documenting changes in
extremes, such as drought, heavy precipitation, heat waves or tropical storms
requires long-term observations of climate at sufficiently high temporal resolution
to identify individual extreme events and is spatially complete enough to use at both
global and regional scales. This chapter discusses various data sets that are suitable
for examining changes in extremes in the observed record. Issues discussed include
problems with data quality, such as data homogeneity and data availability. Data sets
discussed include global sets for monthly and daily temperature and precipitation,
tropical cyclones, and reanalyses. In addition, a brief section on climate observing
networks is included outlining new networks in the U.S. and Canada that have been
designed to alleviate many of the problems discussed here.

12.1 Introduction

Changes in climate are expected to lead to changes in the occurrence of extreme
events (Easterling et al. 2000). Climate extremes can result from natural variability,
forcing due to increasing greenhouse gases, or more likely some combination of
the two. For example, some of the more robust climate change signals related to
extremes in both the observed record and in model simulations for the future are
increases in the number of unusually warm days and nights and, decrease in the
number of unusually cold days and nights and an increase in heavy precipitation
events (Seneviratne et al. 2012). Other changes include a likely increase in the
incidence of hurricanes in the north Atlantic since about 1970 (Kunkel et al. 2008).
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On the other hand, although drought has increased in many regions, and is expected
to increase in many regions, the global signal on drought showing some increase is
not as strong as other extremes (Seneviratne et al. 2012).

Documenting observed changes in extremes is often difficult owing to the
scarcity of long-term data suitable for analyzing extremes in many regions of the
globe. This chapter discusses data sets and issues with data that are available to
examine climate extremes, and associated elements of the climate system such as
storms and drought.

12.2 Data Issues Impacting the Analysis of Extremes

By definition climate extremes are rare events, thus there is a lack of observed
climate data documenting these events. The data often have problems such as
missing data, a lack of precision, or just are not available for a given region. If
data are available they may not have the proper sampling resolution. For instance
monthly averaged temperature data is readily available for most parts of the world
for relatively long periods of time (e.g. since 1900) and are suitable for studying
extremes such as drought, however to examine most extremes daily or even hourly
data are necessary. Long-term data with this kind of temporal resolution is often not
readily available even for regions with monthly averaged data.

Since most true extremes are rare, many researchers have defined “extremes” in
such a way as to increase the number of observations for more robust statistical
analysis, but this often results in events that may not be truly extreme. For example,
studies examining the observed record have defined unusually warm or unusually
cold days using the 90th percentile or 10th percentile resulting in 10% of the
observations being unusually warm and 10% being unusually cold (Alexander et al.
2006). Similarly for precipitation heavy and extreme daily rainfall events have been
defined using the 90th and 99th percentiles (Groisman et al. 2005). Return period
thresholds have also been used (e.g. 1, 5, or 20 year return period amounts) as an
alternative way of defining an extreme threshold amount (Kunkel et al. 1999, 2003).

The assessment of observed changes in most climate extremes requires the use of
longer-term observations of the climate elements and phenomena examined in this
section. Here issues are discussed related to data and observations used to examine
observed changes in extremes. This will allow the reader to place the results in other
chapters and their uncertainties in context with the data used to derive these results.

Studies examining observed changes in climate elements such as temperature
and precipitation over the past few decades have traditionally focused on changes in
mean and variance statistics (Easterling et al. 2000). Although studies using mean
and variance statistics remain important, particularly for climate change detection
and attribution studies, documenting changes in extreme events is crucial since these
events have the most immediate and greatest impacts on society and the natural
environment. Although the situation is changing, many countries still consider
higher temporal resolution climate data as being monetarily valuable and do not
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freely distribute their data which can be problematic. Lastly, long-term observations
of climate are often available only at weather stations, such as at airports, that were
designed to take observations in support of developing weather forecasts, and not
for climate purposes, which can result in lower quality data.

Often the analysis of extremes in weather and climate elements involves ex-
amining the tails of a statistical distribution. This involves setting a threshold
value that must be exceeded to define an extreme event. Daily temperature or
precipitation extremes can be defined by establishing either an absolute threshold,
such as exceeding 35ıC for daily maximum temperature, or 50 mm for daily total
precipitation, or a value derived based on a statistical distribution, such as the
90th percentile value for daily temperature. Fitting extreme value distributions,
such as the Generalized Extreme Value (GEV) distribution or a generalized Pareto
distribution, to either an annual maximum or partial duration series is another
method used to examine changes in extremes (Brown et al. 2008). This can be
used to define return period thresholds, such as the 10 year, 24 h precipitation
amount, which is the amount that has a 10% chance of occurring in any given year.
This threshold amount can then be used to define a time series of exceedances by
counting how often the amount is equaled or exceeded in each year. To determine
if changes are occurring a linear trend analysis is performed as discussed in
Smith (2008). Another approach to determining changes is to fit the GEV to
successive overlapping time periods and examine the distribution parameters for
trends (DeGaetano 2009).

In any case, the results using a threshold value can be impacted by the quality of
the data, and there are a number of data problems that can affect values that exceed
thresholds. These problems include missing data, particularly if those values that
are missing would exceed a threshold, or those missing values could affect the value
of the threshold by changing the statistical results used to establish the threshold
value. For instance, Kunkel et al. (2003) determined various return period thresholds
for daily precipitation empirically by rank-ordering daily precipitation observations
then defining a threshold for, say, the 20 year return period for 100 years of data
as being the fifth highest value (one would expect 5 daily rainfall events to equal
or exceed that value over 100 years). However, if a given year of data had more
than 60 days missing, that year was excluded, potentially eliminating one or more
extreme values from the analysis.

Other data problems include the Time-of-observation Bias (TOB) for daily
temperatures discussed in detail in Karl et al. (1986). This is an issue in the U.S.
Cooperative Observer Network, where observers take an observation only once per
day using daily maximum and minimum thermometers. A general switch in the
observing time in the network from afternoon (typically 5 pm LST) to morning
(typically 7 am LST) resulted in a cool bias due to the occasional double counting
of daily low temperature values. In particular, Easterling (2002) and Meehl et al.
(2009) include discussions on how the TOB issue impacts extremes of temperature.

Quality control procedures designed to flag a value suspected of being erroneous
can impact the research results by flagging extreme values that are truly correct, or
by not flagging a truly incorrect value. This has been an issue, particularly with large
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daily precipitation totals due to convective storms or isolated extreme temperature
events. Quality assurance checks are typically implemented to examine the data on
a station by station basis. These employ both internal checks, such as climatological
bounds checks (e.g. is the value reasonable for the location and season), and spatial
checks using comparison with nearby climate stations. An isolated but intense
thunderstorm may result in an extreme daily precipitation total at one station, but
not impact any surrounding stations and result in a flagged value. In recent years
particular care has been given to develop automated quality assurance procedures
that minimize the flagging of valid observations (false positives), yet does remove
the truly incorrect values (Durre et al. 2008).

Climate data homogeneity is another issue, and data are defined as homogeneous
when the variations and trends in a climate time series are due solely to variability
and changes in the climate system. Whether or not climate data are homogeneous
can impact the results of an analysis of extremes. Inhomogeneities occur in a climate
time series due to a variety of reasons. These reasons include changes in the location
of an observing station, changes in instrumentation, the installation or removal of a
wind shield on a precipitation gauge, land use/land cover changes, or changes in the
daily observing time. When a change occurs it can result in either a discontinuity
in the time series (slight jump) or a more gradual change that can manifest itself
as a false trend (Menne and Williams 2009), both of which can impact whether a
particular observation exceeds a threshold (see Fig. 12.1). Homogeneity detection
and data adjustments have been implemented for longer averaging periods (e.g.
monthly, seasonal, annual), and homogeneity detection and adjustments for daily
and sub-daily data have recently been developed (e.g. Della-Marta and Wanner
2006), but have not been widely implemented. Even considering the issues of
quality control and homogeneity, results of recent global analyses of extremes (e.g.
Alexander et al. 2006) are consistent with what would be expected owing to analyses
of mean values using homogeneity adjusted data (e.g. Vose et al. 2005).

Precipitation observations from rain gauges are particularly susceptible to mea-
surement problems that can impact investigations into extremes. The two main
problems with gauge data are the use of gauges with different measurement
mechanisms and the under-catch problem associated with windy conditions, par-
ticularly whether the gauge has a wind shield or not (Easterling et al. 1999a). High
temporal resolution precipitation data are mainly observed using gauges with a more
automated mechanism such as a tipping bucket or weighing mechanism. Tipping
buckets in particular have been shown to under-catch precipitation amounts in high
rain rate situations (Sevruk 1982). The use of wind shields helps alleviate the issue
of under-catch in high wind situations, where under-catch can be 50% or more
with snow or light rain. However, the installation or removal of a wind shield at
an observing site creates a discontinuity in the time series that must be addressed.
Since high daily precipitation totals can be either due to a short duration, high rain
rate event, or longer duration (many hours) lighter event, under-catch due to either
problem can be significant.

Figure 12.1 shows the impacts of a variety of changes in precipitation mea-
surements in the climate records of ten countries. These include changes in gauge
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type, gauge height, installation of wind shields and measurement practices. The
discontinuity in the time series that results from one of these kinds of changes
may result in an increase or decrease in the amount of precipitation measured. In
some instances, such as for the U.S. precipitation record, discontinuities resulted in
a decrease due to station moves to locations with windier conditions early in the
record, then an increase later with the installation of wind shields at many locations.

Providing high quality observations of frozen precipitation presents special
challenges. Observations of snow can be the liquid water equivalent (as from
gauges), snow depth (total depth of snow on the ground), or snow fall (new snow
falling since last observation). Snow depth observations are typically made using a
snow board and measurement stick with the new snow fall measurement insured by
clearing the snow board after each measurement (Doesken 2003). The timing (e.g.
every 4 or every 6 h) of the regular measurements or failure to clear the snow board
can impact the snow total since snow on the ground compacts over time (Kunkel
et al. 2007).

The implementation of quality control procedures can also impact extremes
in data sets. In particular, outlier checks designed to detect and evaluate the
legitimacy of extreme outliers can flag as erroneous extreme values that are, indeed,
valid (Easterling et al. 1999a, b). This is particularly a problem in warm season
precipitation where isolated convective storms may produce extreme rainfall at an
observing station, but not at near-by stations used for comparison in quality control.
Outlier checks typically compare an observed value with observed values for the
same time period at some number of nearest neighbor stations (Durre et al. 2008).
This can be done using z-scores and comparing with z-scores from surrounding
stations then flagging the observed value if it is more than some number (e.g. 3.5)
of standard deviation values different. Another approach is to convert an observed
time series to anomalies from the series mean and compare with anomalies from
nearby highly-correlated stations, flagging the observation if the observed anomaly
is different from the neighbor anomaly by some pre-determined value (e.g. 4ıC).
With spatially conservative variables, such as temperature, these kinds of outlier
checks work quite well. However, as noted previously, for other variables that have
high spatial variability on short time scales (e.g. precipitation) outlier checks may
exclude valid values that are truly extreme.

Data for weather and climate phenomena, such as tropical and extra-tropical
cyclones or thunderstorms can be much more problematic than for most weather
and climate elements. Thunderstorms and tornadoes are not well observed and
in the United States the time series of tornado occurrence since 1950 displays
a false increasing trend that is mainly due to increased population density and
increased numbers of people to observe them in remote areas (Kunkel et al. 2008).
A similar problem occurs with thunderstorms, most thunderstorm observations
come from major weather stations such as those at airports. Changes in reporting
practices, increased population density and even changes in the ambient noise level
at an observing station all have led to inconsistencies in the observed record of
thunderstorms.
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Studies examining changes in extra-tropical cyclones (ETCs) focus on changes
in storm track location, intensities and frequency. Most studies have relied on
model-based reanalyses that also incorporate observations into a hybrid model-
observational data set. However, reanalyses can have homogeneity problems due
to changes such as the introduction of satellite data in the late 1970s and other
observing system changes (Trenberth et al. 2001). This homogeneity problem has
been addressed in a recent reanalysis that has a much longer (130 year) period
of record by assimilating only surface air pressure observations and sea-surface
temperatures (Compo et al. 2011). This produces a very long and presumably
homogeneous reanalysis, however it still remains to be seen whether the reanalysis
produces robust depictions of the climate system in times of sparse observations.

Analyses of observed changes in tropical cyclones have been impacted by a
number of issues with the historical record. Changes in reporting methods and
in technology have led to major issues with the homogeneity of observed record
of tropical cyclones (e.g., Landsea et al. 2004). Since data quality and reporting
protocols vary between scientific agencies dealing with tropical cyclones hetero-
geneities are introduced when records from multiple ocean basins are combined
to explore global trends (Knapp and Kruk 2010). Similar to other weather and
climate observations, tropical cyclone observations are taken to support short-
term forecasting needs. Changes in observing techniques are typically implemented
without any overlap or calibration against existing methods. These changes often
impact homogeneity of the climate record. The introduction of geostationary
satellite imagery in the 1970s, and with it the introduction of tropical cyclone
analysis methods, such as the Dvorak technique for estimating storm intensity,
further compromises the homogeneity of tropical cyclone observations.

12.3 Climate Observing Networks

Most high temporal resolution data that are necessary for documenting changes
in most extremes are taken in support of weather forecasting. Weather observing
networks are typically sited in locations, such as airports, that are sufficient for
observing the weather, but not ideal for providing high quality climate observa-
tions necessary for climate monitoring and research. Some networks have been
established specifically to provide climate observations. For example, the U.S
Cooperative Observer Network was established in the 1890s to provide temperature
and precipitation data to describe the climate of the United States. The primary
observations consist of daily maximum and minimum temperature, and 24 h total
precipitation. Currently there are about 8,000 sites, with observations taken by
volunteers. Instrumentation and training is provided by the U.S. National Weather
Service, with data archived at the U.S. National Climatic Data Center. Long-
term hourly precipitation data in the U.S. are provided by approximately 2,200
Hourly Precipitation Data (HPD) stations throughout the 50 states. Most of these
stations have a period of record starting in the middle of the twentieth century
(Doesken 2003).
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Fig. 12.2 Schematic of U.S. Regional Climate Reference Network station. The rain gauge is
equipped with a double Alter wind shield

Other networks include the recently established U.S. Climate Reference Network
and U.S. Regional Climate Reference Network (see Fig. 12.2 for schematic of a
station) that has stations in all 50 states, and the Canadian Reference Climate Station
network with 303 stations. These networks share similar instrument configuration
and have been designed and sited to provide high quality climate observations.
In particular, both networks employ the same weighing-type of rain gauge, with
wind shields that are sited in as open an environment as possible. They provide
high temporal resolution rainfall amounts (5 min). These networks also maintain
triple redundancy in the observations of both temperature and precipitation. Triple
redundancy means both temperature and precipitation have three independent
sensors providing three observations at each observing time. This allows the
detection of instrument problems, such as one sensor going out of calibration,
and enables network operators to quickly replace malfunctioning equipment. Other
countries are establishing similar networks, including China. These networks have
been designed specifically for monitoring the climate and adhere to the climate
monitoring principals originally articulated by Karl et al. (1995) and adopted by the
Global Climate Observing System (GCOS). See http://www.ncdc.noaa.gov/crn/.

12.4 Data Sets for Examining Climate Extremes

There are a limited number of comprehensive data sets of temperature and precip-
itation with global coverage in existence (see Table 12.1). These data sets contain
either daily, or monthly averaged maximum, minimum and mean temperature and

http://www.ncdc.noaa.gov/crn/
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Fig. 12.3 Locations of the 7,280 observing stations in the GHCN-M inventory (From Lawrimore
et al. 2012)

total precipitation at observing stations. In the context of extremes, monthly versions
are suitable mainly for looking at large area, longer period extremes, such as extreme
wet periods or droughts of a month or more. One such data set is the Global
Historical Climatology Network monthly (GHCN-M) data set (Vose et al. 1992;
Peterson and Vose 1997; Lawrimore et al. 2011). The GHCN-M contains monthly
temperature for approximately 7,000 stations and monthly total precipitation for
over 20,000 stations (see Fig. 12.3). Earliest records for temperature are for 1,701
and for precipitation 1,697. Examining the map in Fig. 12.3, the regions with the
most stations, and longest periods of record are in North America, Europe, Australia
and parts of Asia. Similar data sets for temperature for land only (CRUTEM3/4) and
land/ocean (HadCRUT3/4) are compiled and maintained by the Climatic Research
Unit of the University of East Anglia, jointly with the Hadley Center of the British
Meteorological Office (Jones et al. 2012; Harris et al. 2012; Morrice et al. 2012)
and the Global Precipitation Climatology Center Full Data Reanalysis Version 5
(GPCC) of the German Weather Service (Rudolf et al. 2011).

The Global Historical Climatology Network Daily (GHCN-D) data set contains
daily maximum and minimum temperature and 24 h total precipitation, snow fall
and snow depth at approximately 75,000 stations from 180 countries from around
the globe, although most (�65%) report only precipitation (Menne et al. 2012).
The GHCN-D provides data for maximum and minimum temperature, total daily
precipitation, snowfall and snow depth. However, most of the stations (66%) only
report total daily precipitation. One major issue with developing and maintaining a
daily data set, such as the GHCN-D is that daily data are much less accessible than
monthly data. This is partly due to the reluctance of many countries to share daily
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data, and partly due to a lack of these data having been digitized. GHCN-M and
GHCN-D are available from the National Climatic Data Center (see Table 12.1).

The Global Precipitation Climatology Project (GPCP) provides merged satellite-
rain gauge data on a global grid for the period 1979-present. There is a monthly
data set on a 2.5ı grid available for the period 1979-present (Adler et al. 2003) and a
daily version on a 1ı grid for the period 1996-present (Huffman et al. 2001). These
data sets have been used to examine numerous features of the hydrologic cycle,
including drought (Chen et al. 2009) and in comparisons between satellite estimates
and high temporal resolution rain gauge data (Sapiano and Arkin 2009).

Although many countries are reluctant to share high temporal resolution data,
they have been willing to allow value-added products based on their data to be
made freely available. One such data set is a global gridded version of climate
extremes indices first described in Frich et al. (2002). The data set is described
in Alexander et al. (2006) and is comprised of 27 indices of temperature and precip-
itation computed using software developed by the Climate Research Branch of the
Meteorological Service of Canada. Each of the indices are calculated using data for
2,500 stations (temperature) and 6,000 stations (precipitation) and are provided on a
2.5ı� 3.75ı latitude/longitude grid for about 70% of the global land surface for the
period 1951–2003. Indices include a number for heavy precipitation events such as
annual contributions from very wet days, and a daily intensity index. Temperature
indices include unusually cold (<10th percentile) days and nights and unusually
warm (>90th percentile) days and nights, warm-spell duration and frost-days. The
indices description and software are available at cccma.seos.uvic.ca/ETCCDI/and
data are available at www.metoffice.gov.uk/hadobs/hadex/.

On a regional basis there are a number of data sets that are suitable for examining
extremes. Haylock et al. (2008) describe a gridded daily high-resolution data set of
temperature and precipitation for the period 1950–2006 for Europe. The data set
was developed with a number of spatial resolutions to facilitate comparison with
climate model simulations. The U.S. Historical Climatology Network data sets of
monthly and daily temperature and precipitation for the 48 contiguous states were
specifically developed for documenting century scale climate variability and change
(Easterling et al. 1996, 1999a, b). Haylock and Nichols (2000) describe a high-
quality daily precipitation data set for Australia and document observed changes in
extreme rainfall indices.

The International Best Track Archive for Climate Stewardship (IBTrACS, Knapp
et al. 2010) data set is the most complete global data set of tropical cyclone
observations available. It combines data from a number of regional tropical cyclone
data sets (e.g. HURDAT, Landsea et al. 2004) and consists of observations of
tropical cyclone position, winds, and pressure. The driver for development of
the IBTrACS was to collect all available data from the Regional Specialized
Meteorological Centers, plus any other agencies that has tropical cyclone data, and
provide the data in one product with a common data format. In addition to the basic
track and meteorological data, summary statistics for each storm are also provided.

Reanalyses are another potential source of data for examining hydrological
extremes especially large-scale storms and associated circulation patterns (see

www.metoffice.gov.uk/hadobs/hadex/
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Sect. 12.2 regarding ETCs). A reanalysis is a hybrid model-observational data
set where observations are assimilated into a numerical climate model to provide
physically consistent 3-dimensional depictions of the climate at a given time step
(e.g. Kalnay et al. 1996). Values of temperature, precipitation, winds, pressure
and all other atmospheric variables are provided for the entire globe, or in the
instance of regional reanalyses, for the region of interest. Most current reanalysis
data sets extend back to 1979 when appropriate satellite data became available or
the middle of the twentieth century due to constraints on the availability of many of
the observations included, especially upper air observations from radiosondes which
only begin in large scale in the mid twentieth century. However, one reanalysis, the
twentieth century reanalysis described in Compo et al. (2011), extends back into
the late nineteenth century. This is possible because the twentieth century reanalysis
only assimilates surface air pressure and sea-surface temperatures, both of which
have enough observations back into the late nineteenth century to allow the creation
of a long-term reanalysis data set. Additionally, land-surface models associated with
reanalysis systems can be used to examine soil moisture and drought (e.g. Sheffield
and Wood 2008). More information is available at www.reanalysis.org. Additionally
Table 12.1 contains a listing of most data sets suitable for analysis of extremes.

Lastly, metadata describing observing stations are important, but detailed meta-
data for stations from most countries are difficult if not impossible to obtain.
Metadata for long-term observing stations essentially falls into two categories:
(1) Historical metadata that documents changes such as instrument changes or
observing practices through time, and (2) Station locations and information about
their surrounding environment. Historical metadata documenting changes at stations
for most countries is impossible to collect and therefore not available for these
data sets. Since these kinds of changes can impact the homogeneity of the station
data this has necessitated the development of statistical methods for homogeneity
evaluation as described in Sect. 12.2.

12.5 Concluding Remarks

The availability of temperature and precipitation data with sufficient spatial and
temporal coverage to be useful in analysis of climate extremes remains problematic
for many parts of the globe. Satellite data provide virtually complete spatial
coverage, but suffer from a lack of long time series necessary for documenting
longer-term (50 years C) changes in climate extremes. On the other hand, station-
based in situ measurements of temperature and precipitation, particularly higher
temporal resolution data, are often not available for large parts of the world due to
a reluctance of individual countries to release them. Furthermore, obtaining long
time series of in situ measurements, particularly in the early twentieth century is
also an issue owing to the lack of digital data from many parts of the globe. In
many cases these data exist in manuscript form, but have not been digitized. Even
when available, in situ observations are often not homogeneous due to changes in
instrumentation, observing practices, and station locations.

www.reanalysis.org
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Other kinds of observations relevant to climate extremes, such as storms, have
problems similar to those for temperature and precipitation. In particular, the
tropical cyclone record suffers from inconsistencies owing to changes in technology
and reporting practices, although this is less of an issue for land-falling tropical
cyclones that result in many climate extremes.

In spite of the data issues discussed above, concerted efforts to rehabilitate
data and provide comprehensive global data sets for the scientific community
have been underway for many years (e.g. Lawrimore et al. 2011). The GCOS
was established in 1992 specifically to coordinate and provide global observations
of the climate system available from a number of national and international
climate observing efforts (Karl et al. 2010). Additionally, new observing networks
specifically designed to minimize data issues are being established and already
provide high-quality, homogeneous observations suitable to address questions on
climate extremes.
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Chapter 13
Nonstationarity in Extremes and Engineering
Design

Dörte Jakob

Abstract Dealing with nonstationarity in hydrological extremes in the design of
structures is a truly multidisciplinary undertaking; requiring expertise in hydrology,
statistics, engineering and decision-making. This chapter gives a broad overview
over relevant key aspects in these areas including definitions of key words like
‘extremes’ and ‘stationarity’. We briefly cover current knowledge of both climate
variability and climate change and effects on hydrological extremes with particular
emphasis on precipitation and floods. This is followed by a brief discussion on
impacts of hydrological extremes, risk assessments and options for adaptation as
well as hurdles. A large part of this chapter is dedicated to new statistical techniques
(or extensions of existing techniques) to address nonstationarity in hydrological
extremes through the use of time-varying parameters, moments, quantile estimates
and the use of covariates. A changing climate may prove impetus to change some of
the existing paradigms and explore new avenues. The need to reduce uncertainty,
or alternatively derive more reliable uncertainty estimates, is exacerbated in a
changing climate. One of the key strategies should be a move from deterministic
to probabilistic approaches. Bayesian techniques are a promising framework in this
context.

13.1 Introduction

Dealing with nonstationarity in hydrological extremes in the design of structures
is a truly multidisciplinary undertaking; requiring expertise in hydrology, statistics,
engineering and decision-making. This chapter aims to give a broad overview over
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relevant key aspects in these areas. In Sect. 13.1 we will be setting the scene and
provide examples of recent hydrological events, their impacts and questions they
raised. This section will conclude with presenting definitions of ‘extremes’ and
‘stationarity’, which are fundamental to the remainder of this chapter. Section 13.2
covers current knowledge of both climate variability and climate change and effects
on hydrological extremes with particular emphasis on precipitation and floods.
A brief discussion on impacts of hydrological extremes, risk assessments and
options for adaptation as well as hurdles will be presented in Sect. 13.3. The heart
of this chapter though is Sect. 13.4, providing details about state-of-practice and
state-of-the-art approaches for deriving estimates of design rainfall and floods.

13.1.1 Setting the Scene

: : : Extreme hydrological events destroy human heritage and undermine development by
breaking continuity. People have interacted with these features with varying degrees of
success since history began. Sometimes it has been a failure, as floods and droughts (and
desertification) have wiped out whole civilizations. (Kundzewicz and Kaczmarek 2000)

An impressive illustration for failure to interact successfully with hydrological
extremes is the fall of Angkor, the capitol of the Khmer empire. While other societal
stressors came into play, it appears that decade-long droughts during the mid to
late fourteenth century and the early fifteenth century interspersed with intense
monsoons led to Angkor’s decline and fall (Buckley et al. 2011). Recent tree-
ring based reconstructions of hydroclimatic variations based on the Palmer Drought
Severity Index (PDSI) are giving new insights into the demise of Angkor. Regional
medieval climate variability was identified to be linked to the El Niño-Southern
Oscillation (ENSO), with El Niño conditions leading to droughts and La Niña
events being linked to above average rainfall over much of southeast Asia. While
drought episodes affected the city’s water supply and agricultural productivity,
heavy monsoons damaged ‘water control infrastructure’. Climate model simulations
support the hypothesis that the southward shift of the Intertropical Convergence
Zone (ITCZ), which occurred at roughly the same time as the Angkor droughts,
may have contributed to a decline in rainfall over South and Southeast Asia.

13.1.2 Recent Extremes, Their Impact and Questions
They Raised

Variables characterizing processes of the hydrological cycle are subject to variability. From
time to time, they take values in their low or high ranges, including hydrological extremes.
When there is too little or too much water, the problem becomes spectacular and of concern
to the general public. (Kundzewicz and Kaczmarek 2000)
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Fig. 13.1 Schematic overview over key components relevant to engineering design under nonsta-
tionarity

Some of the problems that we face today with regards to hydrological extremes
will be highlighted using recent examples. These examples illustrate the breadth
of challenges faced by meteorologists and climatologists in understanding the
underlying physical processes and potential effects of climate change. For hydrolo-
gists, engineers and decision-makers the challenge is not only in incorporating this
information in design of structures but also in developing operational guidelines.
Figure 13.1 summarizes some of the key concepts relevant to engineering design
under nonstationarity.

13.1.2.1 Boscastle Flood, Cornwall, UK – 16 August 2004

From a floods perspective, the year 2004 was characterized by a significant
mesoscale convective event on 16 August, which caused severe flooding in the
town of Boscastle. Nearly 200 mm of rainfall fell over the catchment upstream of
Boscastle over a period of only 4.5 h (Dale 2005). In contrast, widespread and severe
flooding across much of the UK in autumn 2000 (Marsh and Dale 2002) was due
to an amalgamation of a series of rainfall events over a period of about 3 months.
Clearly, the two events were due to different flood producing mechanisms. Relevant
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rainfall events are either frontal or convective in nature (or a combination of the
two) and may be orographically enhanced. Apart from rainfall, flooding itself may
be affected by a range of meteorological/hydrological parameters like snowmelt,
frozen ground, tidal effects and groundwater levels.

The Boscastle event raises the question how flood-producing mechanisms might
change under climate change, and in particular how frequency and intensity of the
most extreme short duration rainfall events are likely to change. The estimated return
period for rainfall leading to the Boscastle flood exceeds 2,000 years, sparking
discussion about the validity of current estimates for the rarest rainfall and flood
events (Probable Maximum Precipitation and Probable Maximum Floods).

13.1.2.2 Hurricane Katrina, New Orleans, USA – August 2005

Hurricane Katrina was one of the most expensive and deadliest natural disasters in
the history of the USA. Despite excellent meteorological forecasts and warnings
provided by the US National Hurricane Center well in advance of the event, about
1,300 lives were lost and total damage was estimated as $75 billion (McCallum and
Heming 2006). Other estimates based on economic modeling to include indirect
costs put the figure much higher (in the range of $130 billion). Important factors
for the genesis of this tropical cyclone were remnants of an earlier depression and
an upper tropospheric trough, together with high sea surface temperatures (above
27ıC), weak vertical wind shear and high mid-level humidity. Due to areas of deep
warm water (depth of water with temperature of at least 26ıC) the hurricane was
able to intensify to a Category 5 event. Katrina’s impact was due to a combination
of factors: powerful winds, heavy rainfalls and storm surges up to 10 m.

From an engineering perspective, this event raised questions about the state of
flood defenses for the city of New Orleans. For climate scientists, it renewed the
dispute about the impact of climate change on frequency and intensity of tropical
cyclones. From a management perspective, this event raises the question of how we
make best use of available information and resources.

13.1.2.3 Brisbane Flood, Queensland, Australia – 13 January 2011

Prior to the autumn of 2010, much of south-east Australia had been in drought
conditions since the late 1990s, while the southwest of the country had received
significantly reduced annual (and especially winter) rainfalls since the 1970s. After
the breakdown of the 2009/2010 El Niño a strong La Niña event developed in
autumn 2010. La Niña events are typically related to higher than average rainfall
over most of Australia. The 2010 event was one of the strongest events and led to
2010 becoming the third-wettest year on record, despite prolonged dry conditions
in the southwest. Unusually heavy falls were experienced in a number of states:
Queensland, New South Wales, the Northern Territory and South Australia (Bureau
of Meteorology 2011). Preliminary estimates of damage for the state of Queensland
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are in the order of one billion Australian Dollars. Much media coverage was given
to the flooding of Brisbane (Queensland) on the 13 January 2011. Flood events
of comparable magnitude had occurred previously under La Niña conditions in
February 1893 and January 1974. The latter of these resulted in 14 deaths and $200
million damage. As a consequence of the damage sustained during the 2011 event,
operation of Wivenhoe Dam came under scrutiny. Challenges in operating dams to
ensure both water supply and protection were already covered in a report on the
1974 flood event (Bureau of Meteorology 1974):

In situations where the major flood contribution occurs in catchments below Somerset Dam
and the proposed Wivenhoe Dam, there are considerable problems in deciding when to
empty the flood storage. If floodwaters were retained by the dam for too long not only
would there be major and prolonged flooding upstream from the storage but the dam would
become virtually useless for flood mitigation downstream in the event of a repetition of
excessive rainfall. Meteorologically such a situation has already occurred (in 1893 when
there were three floods within a month) and a recurrence appears inevitable.

The Brisbane floods highlight the necessity of addressing nonstationarity in
hydrological extremes associated with the El Niño-Southern Oscillation against a
potential long-term underlying drying in some regions of Australia in the operation
of large dams.

Vulnerabilities in developing countries are much greater, as the 2010 Pakistan
floods caused by heavy monsoonal rainfall show. Estimates of impact vary depend-
ing on source. According to Alertnet (http://www.trust.org/alertnet/crisis-centre/
crisis/pakistan-floods-2010) this was the worst flood in Pakistan in living memory,
costing 1,750 lives and affecting more than a tenth of the population.

13.1.3 Definitions

This section will cover definitions of four key terms used in the remainder of the
chapter: engineering design, extremes, return period and stationarity.

13.1.3.1 Engineering Design

For the purposes of this chapter, we will take ‘engineering design’ to relate to design
of structures such as roads, bridges, dams and sewers. Closely related activities
include flood risk mapping, flood warnings and emergency management as well
as the operation of dams and regulated river systems and mining operations. For
most of this chapter, the focus will be firmly on high extremes (floods) but we
note that while low extremes in precipitation and streamflows (low flows) may be
considered less of a challenge for design, they can have large effect on society (e.g.
water supply, hydropower production, natural environment).

http://www.trust.org/alertnet/crisis-centre/crisis/pakistan-floods-2010
http://www.trust.org/alertnet/crisis-centre/crisis/pakistan-floods-2010
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Table 13.1 Extreme rainfall indices as recommended by the ETCCDI

Index Name Definition

RX1day Max 1-day rainfall total Seasonal maximum 1-day rainfall
RX5day Max 5-day rainfall total Seasonal maximum 5-day rainfall
R10mm Heavy rainfall days Annual count of days where

rainfall> 10 mm
R95pT Proportion of annual

rainfall from very wet
days

Total annual rainfall from wet days
(� 1 mm) with rainfall above
the 95th percentile for wet days
in the 1961–1990 period,
divided by the annual rainfall

13.1.3.2 Extremes

Differences in semantics between different scientific communities can lead to
misinterpretations. These differences have evolved over decades and are motivated
by different paradigms. While it may be desirable to bring these definitions into
alignment, this may not always be feasible. Certainly there should be an emphasis
on stating clearly which definition is used.

Climate Change

For the analysis of trends in intense daily precipitation Groisman et al. (2005)
defined heavy, very heavy and extreme precipitation as the 90th, 99.7th and 99.9th
percentiles respectively and this definition has become somewhat of a standard. The
Expert Team on Climate Change Detection and Indices (ETCCDI) defined a suite
of indices and indicators for use with both observations and climate model output.
Table 13.1 gives some examples for indices defined for assessing rainfall extremes,
note that ‘heavy rainfall days’ refers to the frequency of exceedance of a predefined,
constant threshold (10 mm).

Extreme Value Analysis

From a statistical perspective, extremes are defined in the sense of extreme value
series. For annual maximum series of daily data this implies the 99.7th percentile
(matching the definition by Groisman et al. for very heavy precipitation) while
for series of annual maxima of hourly data the 99.99th percentile would be
characteristic and for a peaks-over-threshold approach with on average three peaks
per year this would equate to the 99.2nd percentile.



13 Nonstationarity in Extremes and Engineering Design 369

Fig. 13.2 Design characteristics of notional design event classes (Redrawn after Nathan and
Weinmann 2001)

Hydrology and Engineering

Hydrologists might classify events on the basis of their frequency of occurrence
as ‘frequent’, ‘rare’ or ‘extreme’ (Fig. 13.2). Events labeled as ‘extreme’ would be
expected to occur on average only once every 10,000 or 100,000 years – well outside
the range typically considered in climate change research or extreme value analysis.

Impact Assessments

Lastly, the term ‘extreme’ may be attached to an event because of the impact it
has on society (damages/lives lost as in the examples provided above) rather than
magnitude or rarity of its meteorological or hydrological components.

13.1.3.3 Return Period

Return period or recurrence interval is often used as a way of referring to
concepts which more accurately should be described in terms of Annual Exceedance
Probability (AEP) or Average Recurrence Interval (ARI). The Annual Exceedance
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Probability (AEP) is the probability that a given rainfall total (or flow) for a given
duration will be exceeded in any 1 year. An Average Recurrence Interval (ARI) can
be calculated as the reciprocal of the AEP.

Generally, and when applied to peaks-over-threshold series (series of indepen-
dent events above a preselected threshold), ARI is the average, or expected, value
of the periods between exceedances of a given rainfall total for a given duration.
When specifically applied to the annual maximum series (a series that only contains
the event with the largest magnitude that occurred in each year) it is the average,
or expected, number of years between years in which there are one or more
exceedances of a given rainfall total for a given duration.

Conventional definitions of ARI and AEP refer to long-term averages and are
based on the notion that the probability of an event of given magnitude being
equalled or exceeded does not change over the lifetime of a structure. The risk R
of failure of a structure within a life-time of n years for an event magnitude with an
average recurrence interval T can be calculated using Eq. 13.1. For a structure with
a lifetime of 100 years designed for a ‘1 in 100 years’ – event, the risk of failure is
therefore 63.4%.

R D 1 �


1 �

�
1

T

�n
(13.1)

13.1.3.4 Stationarity

As with the term ‘extremes’ there are different perceptions about what stationarity
(or nonstationarity) implies and indeed for practical application, interpretation of
the meaning of stationarity may be somewhat relative and depending on the period
under consideration (year, decade, century).

Coles (2001) provides the following definition of a stationary process:

A random process X1, X2, : : : is said to be stationary if, given any set of integers fi1, : : : , ikg
and any integer m, the joint distributions of fXi1 ; ::: ; Xik g and fXi1Cm

; ::: ; XikCm
g are

identical.

Where a ‘random process’ is defined as a sequence of independent and identically
distributed random variables. According to Coles, ‘trends, seasonality and other
deterministic cycles are excluded by an assumption of stationarity.’ Often though
reference is given to ‘stationary time series’ (rather than stochastic processes) and
stationary series are considered those for which the distribution is invariant under
translation in time. For most practical applications the definition of stationarity is
relaxed to what is referred to as ‘wide-sense stationarity’, which is satisfied if neither
mean nor autocorrelation change with time.

Whether we treat a series as stationary or nonstationary depends to some
degree on our perception about the underlying processes: do we assume there is
an underlying deterministic function defining changes or are they considered to
have come about as part of a random process? This question is far from purely
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philosophical and in practice may boil down to answering the question whether
we assume (natural) climate variability or climate change are driving observed
changes. The validity of assumptions about random processes (independent and
identically distributed observations) as relevant for frequency analysis is discussed
in Sect. 13.4.

13.2 Climate Variability and Climate Change

With reference to ‘hydrologic extremes in a changing climate’ this section aims to
provide some of the required background information. This short section therefore
describes the respective effects of natural (or inherent) climate variability and
anthropogenic climate change on hydrological extremes. Following on from the
discussion above, it may prove useful for our understanding and for practical
applications to distinguish between the two. In this discussion we will cover neither
nonstationarity in hydrological extremes due to factors other than climate nor will
we expand on abrupt climate shifts.

13.2.1 Climate Variability

Large-scale modes of atmosphere-ocean interactions are known to affect precip-
itation (rainfall as well as snow accumulation) and therefore the occurrence and
severity of droughts and floods. Well-known examples are the El Niño-Southern Os-
cillation (ENSO) and the North Atlantic Oscillation (NAO). The word ‘oscillation’
hints at the fact that these tend to be see-saws between high/low, positive/negative
or warm/cold phases generally driven by anomalously warm/cool sea surface
temperatures and related changes in pressure patterns with associated changes in
wind direction and speed, and cloudiness. These oscillations can be characterized
using indices defined for a grid box(es) of certain latitude and longitude range,
and may be based on a single parameter (e.g. the Southern Oscillation Index is
calculated as the pressure difference between Darwin and Tahiti) or a combination
of parameters like the multivariate ENSO Index.

Most severe droughts for the conterminous USA tend to occur for the negative
(cool) phase of the Pacific Decadal Oscillation (PDO) and the positive (warm) phase
of the Atlantic Multidecadal Oscillation (AMO). McCabe et al. (2004) found that
more than half of the temporal and spatial variance in drought frequency can be
explained by the state of AMO and PDO.

The effects of the ENSO had already been briefly touched on in the discussion
of the demise of Angkor and recent flooding in Brisbane. This oscillation is one
of the main drivers behind rainfall variability over large parts of Australia but its
relationship with rainfall is determined by the interaction with other drivers like
the Indian Ocean Dipole (IOD). The combined effect of La Niña and negative
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phase of the IOD typically leads to wet conditions over eastern Australia while
the combination of El Niño and positive IOD on average leads to particularly
dry conditions in this region. The Southern Annular Mode (SAM) affects mainly
southern parts of the country where the positive phase of SAM is associated with
reduced rainfall due to the poleward contraction of the westerly wind belt. On
shorter time-scales, the Madden-Julian Oscillation (MJO) comes into play and is
important especially for monsoonal rainfall (in the north of the continent). The
patterns of rainfall relationship to each of the drivers exhibit substantial decadal
variability (Risbey et al. 2009) and studies have shown that drivers themselves may
be affected by climate change. For example, a recent study showed that observed
positive summertime trends in SAM driven by increasing greenhouse gases are
likely to reverse due to recovery of the ozone hole (Arblaster et al. 2011).

Much attention has been given to studying the large-scale oscillations discussed
in this section and we now know that their effect varies with region and season, and
that climate change may affect both the frequency with which these oscillations
enter their positive/negative phase and the strength of these events. While the
relationship of indices with rainfall is not stable over time, knowledge of these
drivers should still prove useful in attempting decadal and multidecadal prediction.
From a design perspective, it is desirable to include this information in the
estimation of design estimates. How this can be achieved is discussed in Sect. 13.4.
Knowledge of these drivers is already successfully being exploited in providing
seasonal streamflow forecasts (Wang et al. 2009). Predictions at seasonal time scales
could be considered a ‘test bed’ vis à vis longer time scales with regards to choice
of suitable statistical techniques as well approaches to presenting the skill of these
predictions.

13.2.2 Climate Change

Temperature records indicate an increase in global temperature of about 0.7ıC
over the last 100 years (IPCC 2007). Most of this warming has been attributed to
greenhouse gas emissions from human activity (e.g. burning of fossil fuels).

13.2.2.1 Rainfall Extremes

According to the Clausius-Clapeyron relation, for each 1ıC increase in global
temperature, the precipitable water increases by about 7% but models show that
the associated increase in average rainfall is typically considerably lower (about 2%
per 1ıC). However, Lenderink and van Meijgaard (2008) show that for a site in
the Netherlands (de Bilt) for temperatures above 12ıC the increase in magnitude
for intense rainfall events (99th percentile) at the 1-h duration could be as high as
14% per 1ıC temperature increase. O’Gorman and Schneider (2009) found that the
effects of climate variations are most readily detected for the highest thresholds.
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According to IPCC (2011)

There have been statistically significant trends in the number of heavy precipitation events
in some regions. It is likely that more of these regions have experienced increases than
decreases, although there are strong regional and subregional variations in these trends.

It is likely that the frequency of heavy precipitation or the proportion of total rainfall
from heavy falls will increase in the 21st century over many areas of the globe. This is
particularly the case in the high latitudes and tropical regions, and in winter in the northern
mid-latitudes. Heavy rainfalls associated with tropical cyclones are likely to increase with
continued warming. There is medium confidence that, in some regions, increases in heavy
precipitation will occur despite projected decreases of total precipitation in those regions.
Based on a range of emissions scenarios (B1, A1B, A2), a 1-in-20 year annual maximum
daily precipitation amount is likely to become a 1-in-5 to 1-in-15 year event by the end of
the 21st century in many regions, and in most regions the higher emissions scenarios (A1B
and A2) lead to a stronger projected decrease in return period.

Detecting and attributing trends in historical rainfall extremes is complicated by
the large degree of variability. Min et al. (2011) are considered the first to have
succeeded in formally attributing the anthropogenic contribution to intensification
of extreme precipitation over large parts of the Northern Hemisphere. However,
because of the low signal-to-noise ratio, attribution fails when moving to smaller
subcontinental scales.

Using downscaled climate model runs, Christensen and Christensen (2002)
show that even as summers become drier over parts of northern Europe, severe
5-day precipitation (99th percentile) might increase. For Canada, Mailhot et al.
(2007) found that precipitation changes at short durations exceeded those at longer
durations. Based on comparison of control run (1961–1990) and future climate
simulation (2041–2070) from the Canadian Regional Climate Model (CRCM),
return periods were found to have halved for the 2- and 6-h durations, and to
have decreased by one third for the 12- and 24-h durations. For late twenty-first
century warm season precipitation (May–August), average precipitation is projected
to decrease over the Central United States but at the same time an increase is
projected in the intensity of both heavy precipitation events and rain in general when
it does fall (Bukovsky and Karoly 2011). The same study indicates an increase in
the frequency of very heavy to extreme 6-h average events, but a decrease in the
frequency of all events lighter than those.

13.2.2.2 Floods

There is, however, less certainty about changes in floods (IPCC 2011):

There is limited to medium evidence available to assess climate-driven observed changes in
the magnitude and frequency of floods at regional scales because the available instrumental
records of floods at gauge stations are limited in space and time, and because of
confounding effects of changes in land use and engineering. Furthermore, there is low
agreement in this evidence, and thus overall low confidence at the global scale regarding
even the sign of these changes.

Projected precipitation and temperature changes imply possible changes in floods, although
overall there is low confidence in projections of changes in fluvial floods.
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Changes in rainfall are amplified in streamflow, for Australia typically by a
factor of 2–3 (Chiew 2006). Analogous to changes in rainfall extremes, Boé et al.
(2009) found based on downscaled projections from 14 CMIP3 (Climate Model
Intercomparison Project) models that an increase in high-flow magnitudes could
occur in parallel with an increase in low-flow frequency and a decrease in mean
discharge. However, the authors argue that such changes ‘are strongly linked to
changes in extreme precipitation, whose evolution at the regional scale is hard to
predict’.

13.2.2.3 Sea Level Rise

One of the areas where climate change is already being addressed, is in the design of
coastal structures (see also Sect. 13.3.2. Adaptation) because there is a high degree
of certainty that climate change is affecting sea levels (IPCC 2011):

It is very likely that mean sea level rise will contribute to upward trends in extreme coastal
high water levels in the future.

13.2.2.4 Additional Considerations

This brief overview over studies into how climate change is likely to affect
hydrological extremes in the future highlights that such changes are expected to
be far from uniform. While there is little doubt that climate change will affect (and
may already be affecting) hydrological extremes, statements like ‘a warming world
will lead to an intensification of the hydrological cycle’ while true do not do the
complexity of the processes justice and by themselves are not helpful in a decision-
making context. In-depth assessments need to include geographical location, season,
duration and rarity of extremes.

Geographical location Changes at regional and local scales as required in decision-
making are difficult to predict.

Season Changes will not only affect the frequency or magnitude of events but
seasonality of flood events is likely to be affected too through changes in
antecedent conditions (snowpack, state of soil – frozen ground, catchment
wetness, ground water levels). Because potential effects of climate change may
vary with season, this fact should be addressed in the analysis. Clear differences
in seasonal trends have already been identified. For example, for four Irish rivers
Bastola et al. (2011) found increases in streamflow during winter accompanied
by progressive decrease in summer. Extrapolating from known seasonal rainfall
changes to changes in streamflow is complicated by the fact that seasonality of
rainfall and streamflow may not match, as illustrated in Fig. 13.3.

Duration There are indications that extremes at shorter durations might be dis-
proportionally affected (Mailhot et al. 2007; Jakob et al. 2011a, b), which is
important in an urban context.
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Fig. 13.3 Circular diagrams highlighting differences in seasonality in rainfall (black dots) and
flows (red dots) for two catchments. Shown are standardized mean pentad values for 30 years
commencing 1 March 1968. The angular plotting position is defined by the date, distance from the
origin indicates magnitude. The shaley Annan is located in southwest Scotland, the chalky Cam in
the southeast of England (Source: Reed 2011)

Rarity of extreme Effects of climate change could be more pronounced for more
intense rainfall events (O’Gorman and Schneider 2009). Also, low and high
extremes could be affected differently.

13.3 Impacts – Hydrological Extremes and Society

A special report on ‘Climate Change and Water’ discusses the challenges we are
facing (Bates et al. 2008). Expected changes in hydrological extremes can briefly be
summarized as

Increased precipitation intensity and variability is projected to increase the risks of flooding
and drought in many areas. The frequency of heavy precipitation events (or proportion of
total rainfall from heavy falls) will very likely increase over most areas during the 21st
century, with consequences to the risk of rain-generated floods. At the same time, the
proportion of land surface in extreme drought at any one time is projected to increase
(likely), in addition to a tendency for drying in continental interiors during summer,
especially in the subtropics, low and mid-latitudes.

The report also provides an overview over main water-related projected impacts
by region. Some examples have been selected to give an impression of the range of
impacts with relevance for design issues.



376 D. Jakob

Asia
Coastal areas, especially heavily populated Asian megadelta regions, will be at greatest risk
due to increased flooding from the sea and, in some megadeltas, flooding from the rivers.

Australia and New Zealand
Risks to major infrastructure are likely to increase due to climate change. Design criteria
for extreme events are very likely to be exceeded more frequently by 2030. Risks include
failure of floodplain levees and urban drainage systems, and flooding of coastal towns near
rivers.

Europe
By the 2070s, hydropower potential for the whole of Europe is expected to decline by 6%,
with strong regional variations from a 20–50% decrease in the Mediterranean region to a
15–30% increase in northern and eastern Europe.

Latin America
Any future reductions in rainfall in arid and semi-arid regions of Argentina, Chile and Brazil
are likely to lead to severe water shortages.

Other not directly design-relevant impacts relate to agriculture (damage to crops,
death of livestock, land degradation) and human health (diseases, malnutrition).
After Schneider and Kuntz-Duriseti (2000) the significance of climate impacts
can be judged using five criteria: monetary loss, loss of life, biodiversity loss,
distribution and equity, and quality of life. Most assessments in the published
literature, however, express adaptation costs and benefits (avoided climate impacts)
in purely monetary terms.

13.3.1 Impacts on Cities

Currently half the world’s population is living in cities and this proportion is
projected to rise to about 60% by 2030 with most of that growth occurring in
developing countries (OECD 2008). At the same time, cities and especially coastal
cities or those located at major waterways, are likely to be strongly affected by
changes in hydrological extremes. An estimated 5% of the world’s Gross Domestic
Product (GDP) was exposed to 100-year floods in 2005. This number is expected to
rise to about 9% of world GDP by the 2070s. While two thirds of that increase is
expected due to socio-economic changes, another third of this projected increase is
likely due to climate change and artificial subsidence (Hanson et al. 2010).

Ntelekos et al. (2010) provide an overview of the flood history of the USA
and how it was shaped by major flood events. They add another dimension for
assessment of impacts of changes in hydrological extremes in an urban environment:
Flood frequency estimation in an urban setting is complicated due to the uncertain
nature of the relationship between rainfall and flows for application in hydrological
modeling. One of the exacerbating factors for the uncertainty in this relationship is
nonstationarity due to changing infrastructure and climate. To add to the problem,
urban streams are typically more sensitive to short rainfall durations (around 1 h)
and it is ‘very likely’ that an increasing fraction of annual rainfall will be delivered
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in short duration high intensity events (IPCC 2007). An example to illustrate the
magnitude of the challenge: Total loss from river flooding for metropolitan Boston
(USA) is projected to exceed $57 billion by 2100, almost half of which is attributed
to climate change (Kirshen et al. 2008). Suitable adaptation measures could reduce
these costs by about 80%, implying that there is huge potential to reduce those
impacts through suitable adaptation strategies.

13.3.2 Adaptation

For decision-making purposes vulnerability could be classified by degree of severity
as either ‘acceptable’, ‘significant negative impacts but survivable’ or ‘intolerable
without policy changes’ (Plate 2002). In assessing the vulnerability of a system to
climate change (and ‘other unfamiliar conditions’) one would typically consider
reliability (frequency of likely failure), resilience (time required to recover from
failure), vulnerability (severity of consequences of failure) and a range of conditions
that stress the system but don’t lead to failure (robustness, brittleness).

Ziervogel et al. (2010) discuss how identifying key vulnerabilities to climate vari-
ability (both with regards to droughts and floods) may help us develop appropriate
responses to climate change. As discussed earlier, developing approaches to make
best use of seasonal forecasts could be considered a ‘test bed’ when it comes to
adaptation to climate change. One of the important factors identified as hindering
the uptake of seasonal forecasts by water managers was risk perception. So even the
combined knowledge of the causes of climate change, likely impacts and possible
solutions does not necessarily translate into action. Perception of risk depends on
personal experience (or lack thereof) of climate-related events and competing risks.
Communication therefore needs to address this potential barrier by conveying a
consistent message on climate change and providing advice that is tailored for the
target audience, making use of visualisation where possible (Adger et al. 2007).

Adger et al. (2007) provide a detailed discussion on adaptation to climate change
and provide a range of examples across different sectors. They define adaptation
to climate change as ‘adjustments to reduce vulnerability or enhance resilience
in response to observed or expected changes in climate and associated extreme
weather events.’ There are barriers and limits to adaptation which fall into five broad
categories (IPCC 2007):

• physical or ecological
• technical, political or social
• economic
• cultural and institutional
• cognitive and informational

Two contrasting examples (coastal structures, fluvial flood risk management) are
presented below to illustrate this point.
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13.3.2.1 Coastal Structures

For long-lived infrastructure there are already cases where scenarios of future
climate change and associated impacts have been taken into account, to date
most of these address anticipated sea-level rise because there is high confidence
that climate change is leading to sea level rise. Analysis for Cuxhaven, Germany
(Mudersbach and Jensen 2010) suggests an increase in annual maximum water
levels of about 50 cm by the year 2085. The Dutch Committee on Water Defence
already recommends taking 50 cm sea-level rise into account when designing storm
surge barriers and dams.

13.3.2.2 Flood Risk

There is, however, less certainty in observed changes in magnitude and frequency
of floods at regional scales, and low confidence in projections of changes in fluvial
floods (IPCC 2011). Fluvial flood risk can be represented as a combination of
hydrological hazard and vulnerability (Merz et al. 2010). According to Merz et al.
this relationship can be expressed as

RI.t/ D
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fh.h; t/D.h; t/ dh (13.2)

where

• h is the flood water level,
• D is the damage,
• hD is the level above which damage occurs, and
• fh(h,t) is the probability density function for the flood level h.

A large number of studies have been undertaken to assess the relative contribu-
tions of climatic and non-climatic factors to changes in flood risk, and it appears
likely that non-climatic factors dominate (IPCC 2011):

Increasing exposure of people and economic assets has been the major cause of the
long-term increases in economic losses from weather- and climate-related disasters (high
confidence). Long-term trends in economic disaster losses adjusted for wealth and popula-
tion increases have not been attributed to climate change, but a role for climate change has
not been excluded (medium evidence, high agreement).

The increase in economic losses together with a high uncertainty about flood risk
in a changing climate have already led to a shift away from flood protection to flood
risk management. In other words, a move away from structural measures to prevent
flooding based on a design flood event to ‘living with floods’ and measures to reduce
damage. Merz et al. (2010) quote examples like floating amphibious buildings.
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13.3.2.3 Combined Effects of Sea Level Rise and Increased
Intensities in Design Rainfall

Under the title ‘Practical consideration of climate change’, the Department of En-
vironment and Climate Change, New South Wales, Australia (2007) sets out advice
to be used in conjunction with existing floodplain risk management guidelines.

As a first step, it is recommended to undertake sensitivity analyses (in addition to
those usually undertaken). Recommended timeframes are 2090–2100 for sea level
rise and 2070 for rainfall. Three scenarios (low, medium, high) are suggested for sea
level rise, ranging from 0.18 to 0.91 m. Likewise, three scenarios are recommended
to assess the sensitivity to changes in rainfall intensities, ranging from 10–30%.
Where applicable, the combined effects of sea level rise and changes in rainfall
intensity should be assessed using joint probability approaches.

Secondly, and based on the results from the sensitivity analyses, the significance
of impacts from climate change for the location in question needs to be assessed to
decide whether impacts are ‘minor’ or ‘significant’. The following questions will
need to be addressed:

• Will climate change significantly affect flood hazard, flood damage, frequency of
exposure, frequency of inundation or could it result in new floodways?

• What are the key sources of changes in vulnerability (sea level rise, increased
rainfall intensity, a combination of the two)?

• What are the management options regarding existing or proposed development?

As part of the review of existing Flood Risk Management Plans (to be undertaken
at least every 5 years) it needs to be ensured that relevant climate change impacts
are adequately understood and considered in informed decision making.

Finally, suitable management strategies for existing and proposed development
depend on the significance of ramifications. Where these are considered minor for
existing development, one option might be to do nothing now but to allow for
necessary upgrades in the future. Where ramifications are considered significant,
other options will have to be considered:

• With regards to future development, consideration may be given to development
types that allow planned retreat from affected land (e.g. caravan parks).

• Consideration could be given to setting land aside to allow for construction of
a levee to manage future climate change impacts (i.e. reduce the frequency of
inundation).

• Damage potential could be reduced by a requirement for two-storey housing with
flood compatible structural materials in the bottom storey.
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13.3.3 Decision Making Under Uncertainty

13.3.3.1 Uncertainty in Projected Changes

The majority of decision-making approaches make use of output from Global
Climate Models (GCMs), either directly or indirectly since they are the only
credible tool for projecting future climate. However, while there have been major
advances in this area, climate models are by their very nature a simplification
of highly nonlinear processes and even the latest generation of coupled GCMs
does not adequately model large-scale teleconnections known to significantly
affect hydrological extremes. The prime example here is the El Niño-Southern
Oscillation (ENSO). Coupled climate models generally struggle to correctly model
both the location of the Pacific cold tongue in Sea Surface Temperatures (generally
overpredicting the westward extension) and ENSO seasonality/variability (IPCC
2007). Based on GCM output we cannot yet conclusively say whether ENSO
is likely to strengthen or weaken under climate change. Because of their coarse
resolution, GCMs are not capable of accurately modeling characteristics of key
rainfall-producing mechanisms like the frequency and intensity of tropical cyclones
or the seasonality/extent of the monsoon and associated wind patterns.

The performance of GCMs is evaluated on the basis of how well they are able
to replicate current climate conditions. While adequate performance with regards
to current climate would be considered a necessary condition, it does not imply
reliability of climate projections. There is little agreement on how one should
choose suitable models. Generally ensemble approaches are preferred. The choice of
models to include in such ensembles is based on their perceived performance against
a set of metrics or variables of interest and results can be used to develop weighting
schemes for use with multiple models/model runs. A detailed and well-written
discussion of the various components of uncertainty is presented in Stainforth
et al. (2007). The authors suggest reframing the question by moving away from
attempting to select the best models to using the available information to establish a
‘non-discountable envelope of possibilities’. Another key reference with regards to
uncertainty in (temperature) projections is Knutti et al. (2008).

Statistical assessments have been undertaken to assess and decompose uncer-
tainty in GCM projections (Hawkins and Sutton 2009, 2010). Three important
components are: (1) choice of emission scenario, (2) model structure and (3)
modeled climate variability. Alternative statistical techniques like ANOVA (Yip
et al. 2011) allow assessing the interaction terms (e.g. interaction between model
choice and scenario). Other uncertainties in GCMs – for instance those due to
‘knowledge gaps’ (including uncertainty about key feedbacks like the combined
lapse-rate/water vapour feedback) – are more difficult to assess quantitatively.
It might be possible, however, to make use of expert knowledge with Bayesian
techniques (Thyer et al. 2009). For most practical applications, GCM projections
have to be processed further and it is informative to assess the relative contributions
of GCM uncertainty, downscaling uncertainty (Crosbie et al. 2011), hydrological
modeling (Bastola et al. 2011) and decision making-tools.
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13.3.3.2 Methods for Decision Making Under Uncertainty

The approach described above has a number of drawbacks: firstly, at each of these
steps uncertainties are introduced or propagated (uncertainty cascade) and secondly,
it is computationally highly expensive.

An inverse approach referred to as ‘decision scaling’ (Brown 2009) was imple-
mented in the International Upper Great Lakes Study (IUGLS). Rather than climate
output, the starting point in decision scaling is ‘asking first to identify the futures
we are not prepared for and then asking if those futures are plausible’. Based on
vulnerability assessments, risk scenarios can be developed and the plausibility of
these scenarios can be evaluated using a ‘climate response function’ to identify
potential climate change that causes an unacceptable decrease in reliability and
therefore requires some adaptation.

A white paper by the Water Utility Climate Alliance (2010) presents five
decision support planning methods (DCSMs) together with a discussion of their
key elements, case studies and gap analysis. These five methods are

• Classic decision analysis,
• Traditional scenario planning,
• Robust decision making,
• Real options, and
• Portfolio planning.

Important criteria for the selection of appropriate method(s) are available
resources (computational demands, level of expertise required), planning horizons
and ease of use of results (communicability, transparency).

Wilby et al. (2009) present an overview of tools for constructing climate change
risk information with an emphasis on developing regions because of their greater
vulnerability and lower capacity to adapt. The authors advocate marrying two
different approaches to decision-making: evaluating the sensitivity of infrastructure
to observed climate variability to answer the question: ‘How much climate change
has to happen to be of practical significance?’ which also allows identifying
key vulnerabilities; and scenario-led adaptation and development planning to test
effectiveness of adaptation measures from a long-term perspective. If we accept
the inherent uncertainty and work under the assumption that projections of future
climate multiple decades ahead are not certain enough to provide us with the infor-
mation required for an optimum design solution, an adaptive approach to design may
be prudent (Westra et al. 2010). Under this approach, ‘solutions are implemented in
a staged fashion and the need for each successive step is evaluated periodically’.

In some cases it may be desirable to provide specific guidance despite high
uncertainties, although this is rarely done. Design rainfall estimates for New Zealand
can be derived using the High Intensity Rainfall System (HIRDS). In its latest
version (version 3, accessed 22 May 2011, http://hirds.niwa.co.nz/) users can enter
projected temperature changes to assess potential effects of climate change. The
basis of this assessment is a percentage adjustment per degree warming, although
users are cautioned that ‘increases might in some cases be considerably higher’.

http://hirds.niwa.co.nz/
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13.4 Deriving Design Estimates

The selection of suitable data from instrumental records and making use of non-
systematic information is touched on briefly in the first part of this section while the
remainder of the section presents techniques for deriving design estimates and how
to address nonstationarity.

13.4.1 Data

13.4.1.1 Testing and Selecting Data Under Nonstationarity

Nonstationarity raises questions in the process of selecting data, namely selection
of measurements that are representative of a ‘current climate’. For a long time, the
paradigm in frequency analysis has been to use long records wherever possible
to increase the chance of sampling some of the largest events, and to cover
multidecadal climate variability (known wet and dry periods). Changes over time
in series of precipitation and streamflow may present themselves in three different
ways:

• Slow, more or less monotonic trends
• Fluctuations on shorter time scales (modulating underlying trends)
• Sudden changes or breakpoints

Guidance on change detection in hydrological records and on adequate tests is
given in Kundzewicz and Robson (2004). The authors advocate the use of visually
exploring the data to identify patterns and features before applying formal statistical
tests to assess the significance of these features. Given the nature of hydrological
data (often skewed and serially correlated), the use of non-parametric tests and
resampling approaches is recommended. The selection of suitable statistical tests
should be based on the nature of the change to be tested for, i.e. gradual change
(trend) or step change. Tests suitable for the detection of step change include
Pettitt’s test (Pettitt 1979), the distribution-free CUSUM test and Student’s t test
(for normally distributed data). Testing for trends could be based on Spearmans’
rho, the Mann-Kendall test (addressing autocorrelation where required, Hamed and
Rao 1998) or linear regression (assuming data are normally distributed).

The length of record required to detect a trend depends (among other factors)
on the magnitude of the trend and the desired probability of detecting the trend.
Longer records allow detecting smaller trends and nearly twice the record length
may be required for a 99% probability of detecting a trend than for a 50%
probability (Westra and Sisson 2011). Statistical testing to identify whether long-
term trends in series can be detected would ideally be undertaken in a regional
context because this increases the signal-to-noise ratio and therefore the likelihood
of trend detection. In assessing the significance of such trends both serial correlation
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and cross-correlation need to be accounted for (Ishak et al. 2011). Simulations show
that spatial information remains a poor substitute for increasing record length where
that is possible (Westra and Sisson 2011).

An approach for the detection of network-wide trends in rainfall extremes
is presented in Burauskaite-Harju et al. (2010). Analyses for 12 sites in the
Netherlands were based on empirically derived percentiles (90th, 95th, 98th and
99th percentile) and percentiles estimated from fitted GPD (Generalized Pareto
Distribution). Trend testing was undertaken using a multivariate Mann-Kendall test.
The study identified that results from trend testing were robust to misspecification
of the underlying distribution. Especially at higher percentiles, the power of trend
testing was enhanced when GPD based percentile estimates were used because the
sample variance was smaller than for empirical percentile estimates.

Where feasible, it might also be informative to undertake sensitivity testing to
explore how design estimates are affected by choice of base period. As previously
highlighted, such assessments should be undertaken on a seasonal basis and for
a range of durations. In trying to select data representative of current or baseline
conditions, we are faced with the conundrum that it suddenly becomes attractive to
consider shorter periods of say 30-year periods but during which we may not have
adequately sampled extreme events or the full range of multidecadal variability.
Clearly, for structures with long life-times the use of baseline estimates will not
be appropriate in a changing climate. Following this thought pattern though, the
derivation of design estimates is essentially being split into two steps:

1. Derive estimates characterising ‘current’ climate conditions based on the analysis
of historical data and

2. Develop guidance on how baseline estimates have to be adjusted based on
projections of future climate.

The attractiveness of this two-step approach stems from its straightforward
extension of existing techniques and paradigms. But what it does mean too is
that hydrologists continue to undertake conventional analyses, only incorporating
projected changes after preliminary estimates have been derived.

In the following we provide two examples of how the problem of data selection is
being tackled in revisions of design estimates that have either recently commenced
or are imminent. Haddad et al. (2010) describe the selection of streamflow data
as part of the regional flood frequency analysis for the revision of flood frequency
estimation for Australia (Haddad et al. 2010). Two trend tests (Mann-Kendall test
and CUSUM test) were applied to series of annual maximum flood series. Between
10 and 20% of series were identified as having decreasing trends. This finding is
likely due to a severe drought that affected southeast Australia since the 1990s. It
has not yet been resolved whether the detected decrease in annual maximum flood
series data is an expression of long-term climate variability or is due to climate
change. A pragmatic way was chosen to deal with nonstationarity in the process
of data selection: The minimum record length was increased from 20 to 25 years.
While this led to a reduction of the number of candidate stations to about a quarter,
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it was deemed that the remaining series yield a more representative assessment of
long-term flood risk.

Currently valid design rainfall estimates for Germany had been derived for the
period 1951–2000 (Malitz 2005). Estimates for subdaily durations will be revised
in the near future to include observations from the most recent decade (2001–2010).
It has yet to be decided whether to choose a 30-year reference period (from 1981 to
2010) or a 60-year reference period (1951–2010) for the planned revision. A number
of studies has already been undertaken to assess potential effects of climate change
on daily rainfall totals for Germany. Preliminary investigations based on annual
maxima at subdaily durations identified significant changes for only a small number
of regions. The absence of strong indication for an increase in annual maximum
rainfall at subdaily durations was ascribed to the fact that Germany experienced
climate variability that led to exceptional magnitudes in subdaily rainfall totals in
the 1950s and 1960s (Gabriele Malitz, personal communication). The two examples
above highlight the difficulty in separating climate variability from the potential
influence of climate change.

13.4.1.2 Instrumental Records

Design estimates will rely directly or indirectly on measurements and could
therefore be affected by errors introduced either in the measurement itself (e.g.
instrumentation failure), transmission of measurement, and ingestion into data
bases (e.g. keying in of paper charts). Significant errors can also be introduced
in the conversion of measurement to a hydrologically relevant variable like in the
conversion from snow depths to snow water equivalent. Likewise, flows are often
not directly measured but derived as estimates from stage discharge relationships
(rating curves).

Estimates of potential errors introduced through that conversion vary widely.
Cook (1987) quotes about 20–30%, another source puts the errors in the range of
10–100% (Benito et al. 2004). Certainly, in practice it may be difficult to derive
suitable rating curves for the most extreme events even with the aid of hydrologic
models, simply because those rare events have not been measured. Apart from
precipitation and streamflow other climate variables like wind speed/direction, solar
radiation, humidity and soil moisture may be required in deriving design estimates.

Other common challenges include incomplete records, artefacts in measurements
(e.g. due to changes in observing practices or changes in station location) as well
as insufficient network density, record length and temporal resolution. Statistical
techniques have been developed to address most of these issues such as spatial
techniques like kriging, procedures for infilling and disaggregation of data and
homogeneity tests. Homogeneity testing based on standard normal homogeneity
tests (SNHT) or two-phase regression tests (TPR) should precede testing for change
in hydrological series to avoid detection of spurious trends (Pettitt 1979; Reeves
et al. 2007; Toreti et al. 2011).
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13.4.1.3 Historical Floods and Palaeofloods

Systematically measured flood data are used in the estimation of return periods
up to about 100 years. For very large and rare events, this information can be
supplemented by data from other sources, namely historical information (from
documents and chronicles, e.g. Bayliss and Reed 2001) and flood information
obtained through palaeoflood hydrology. Historical floods are extremes that have
not been measured but have been documented and are accessible in public archives
and local chronicles. Palaeoflood hydrology concerns itself with ‘lasting effects of
floods on natural indicators’ such as slackwater deposits or scour lines and has been
used to lengthen flood records beyond that of instrumental records (Benito et al.
2004; Benito and Thorndycraft 2005). This information is valuable because it will
provide exactly what is lacking from instrumental records due to a combination of
logistic and technical challenges in measuring the most extreme events and limiting
effects of short records. From historical archives, information about the precise dates
and prevailing meteorological conditions could be retrieved together with some
reference to flood peak levels (marked on buildings or bridges). Estimates of exact
discharge level, minimum or maximum flood stage can be derived from palaeostage
indicators (elevation reached by flood, flooded/non-flooded areas). Numerical dat-
ing of these events is undertaken using radiocarbon dating, luminescence methods
and optical stimulates methods (Benito et al. 2004).

Non-systematical information can be incorporated into flood frequency analysis
(Fig. 13.4). From a statistical perspective, this requires addressing two issues:
dealing with censored data (only the major floods are known) and dealing with
nonstationarity (due to climate variability), further details are given in Sect. 13.4.4.3.
One major obstacle to the more widespread use of non-systematical flood data is
the highly complex nature of the reconstruction of past flood events; requiring in-
terdisciplinary cooperation between palaeohydrologists, historians, climatologists,
meteorologists and statisticians.

13.4.2 Choice of Techniques

One of the key aspects of prescribing design standards is to ensure that the
level of protection provided and the costs to achieve that level of protection are
optimally selected. Some examples for different levels of protection are given below
(Institution of Engineers Australia 1987):

• For urban drainage, standards are set to reduce inconvenience and disruptions.
• For the construction of bridges and roads, standards depend on the importance of

roads and the availability of alternative routes.
• Flood mitigation schemes are typically based on 1 in 100 year ARI.

Performance standards for dams depend on height and storage capacity. For
large dams engineers make use of standards-based approaches rather than statistical
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Fig. 13.4 Combining systematic and non-systematic flood information (source: Benito et al.
2004) – (a) Schematic diagram illustrating the changing level of flood perception through time
according to progressive human settlement towards the river. This means that the threshold
of flood discharges recorded in the historical documents decreases with time. (b) Geomorphic
surfaces covered with slack-water flood deposits showing different thresholds of flood discharges.
(c) Organisation of historical, palaeoflood and systematic data, using the described discharge
thresholds, for flood frequency analysis
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Fig. 13.5 Typical range of AEPs adopted as design standards (Redrawn after Ladson 2008)

techniques. These are applied where one has to follow a precautionary principle
and failure has to be avoided regardless of cost (where loss of life is concerned).
Such standards would be the Probable Maximum Flood and the Probable Maximum
Precipitation. Typical ranges of Annual Exceedance Probability (AEP) for important
design standards are summarised in Fig. 13.5 based on information provided in
Ladson (2008).

No one technique can be used to derive estimates for all applications and AEP.
Swain et al. (1998) present expert estimates of credible limits of extrapolation
depending on data type. Where multiple data sources and techniques are available,
these should be used to (a) derive independent estimates for validation and (b) to
consolidate. For example, estimates derived through flood frequency analysis could
be validated with results from rainfall-runoff modelling (Table 13.2).

As discussed above, the choice of technique will depend on both the application
and data availability. With regards to data types there are basically two different
approaches, a direct approach based on streamflow data and an indirect approach
based on precipitation data. Frequency analysis (of either rainfall or flood data) can
be used to derive estimates for the range up to about 1 in 100 years. This approach
will be discussed in some detail in the following sections. Estimation of Probable
Maximum Precipitation (PMP) and Probable Maximum Flood (PMF) is a somewhat
separate topic and relevant procedures are presented in Sect. 13.4.7.
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Table 13.2 Hydrometeorological data types and extrapolation limits
for flood frequency analysis (After Swain et al. 1998)

Limit of credible extrapolation for
annual exceedance probabilityType of data used for flood

frequency analysis Typical Optimal

At-site streamflow data 1 in 100 1 in 200
Regional streamflow data 1 in 750 1 in 1,000
At-site streamflow and at-site

palaeoflood data
1 in 4,000 1 in 10,000

Regional precipitation data 1 in 2,000 1 in 10,000
Regional streamflow data and

regional palaeoflood data
1 in 15,000 1 in 40,000

Combinations of regional data
sets and extrapolation

1 in 40,000 1 in 100,000

13.4.3 Frequency Analysis

The statistical techniques used in rainfall and flood frequency analysis respectively
are based on the same fundamental concepts. An overview of techniques used for
point rainfall frequency estimation in Europe (United Kingdom, Sweden, France,
Germany), North America (Canada, USA) and the Southern Hemisphere (South
Africa, New Zealand, Australia) is given in Svensson and Jones (2010).

13.4.3.1 Extracting the Extremes Series

Where frequency analysis has been identified as the appropriate technique and
once data have been collected, quality controlled and missing data infilled as
appropriate; series of extremes can be extracted. Extreme series consist either of
block maxima (annual, seasonal or monthly maxima, r-largest) or exceedances
above a threshold (referred to as ‘peaks-over-threshold’ or ‘partial durations series’).
Based on theoretical considerations and for sufficiently long records, estimates
derived from an annual maximum approach and a peaks-over-threshold approach
would be expected to be in good agreement.

For the annual maximum series, the highest-ranking event in a given calendar
or water year is selected. The extraction of annual maxima is therefore simple to
implement, apart from the fact that a suitable set of criteria is required to decide
whether to include a year depending on the amount of missing data. The extraction
of peaks-over-threshold series requires the definition of criteria to ensure the
independence of subsequent events. This can be achieved by requiring a minimum
drop in magnitude (for streamflow) and a minimum separation in time between
selected peaks. A number of measures have been developed to assist in the selection
of a suitable threshold. Thresholds can be defined either in terms of magnitude
or with respect to an average number of peaks per year. Typical choices are in
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the range between one to three events per year. Lang et al. (1999) discuss three
tests (based on the mean number of events, the mean threshold exceedance and
the dispersion index) to decide on appropriate thresholds while Svensson and Jones
(2010) describe threshold selection based on goodness-of-fit tests. Thresholds need
to be selected high enough to satisfy the independence assumption but low enough
to guarantee the sample is still large enough for parameter estimation. The additional
effort in extracting peaks-over-threshold series is particularly worthwhile for short
records.

13.4.3.2 Frequency Distribution

Frequency distributions are used to model the relationship between magnitude of
extremes (rainfall or streamflow) and Annual Exceedance Probability (AEP). For
a given AEP one can derive the corresponding magnitude which is relevant for
design applications, and vice versa for a given magnitude the corresponding AEP
can be estimated and the rarity of observed events can be assessed. Common choices
are three-parameter distributions like the Generalised Extreme Value distribution
(GEV) for annual maxima and the Generalised Pareto distribution (GPD) for peaks-
over-threshold series. The three parameters here are the location, scale and shape
parameters. A range of goodness-of-fit tests has been developed to test (a) whether
a distribution delivers an acceptable fit and (b) to decide which of the candidate
distributions results in the best fit (e.g. Hosking and Wallis 1997). The choice
of distribution may also reflect physical considerations, for example whether the
distribution should have an upper (or lower) bound.

13.4.3.3 Underlying Assumptions

The underlying assumption in fitting a frequency distribution to series of rainfall or
streamflow extremes is that of a stationary process (see Sect. 13.1.3.4). Observations
therefore should be independent and identically distributed.

Independence with respect to a time series at just one location requires that the
events are not serially correlated. This assumption is likely to be satisfied for block
maxima where the blocks are sufficiently long (say years) and the extraction process
of peaks-over-threshold series is aimed at satisfying this assumption (for instance
by requiring a minimum separation of events in time). Khaliq et al. (2006) discuss
approaches to fitting distributions to dependent data.

The assumption that events have been sampled from the same population and
therefore are identically distributed may not be valid. For instance where different
mechanisms lead to precipitation extremes (frontal systems, convective events) or
flooding (precipitation, snowmelt) this assumption may be violated, an example is
shown in Fig. 13.6. In particular, very large events may be due to rare events like
tropical cyclones and this could become a serious issue for deriving estimates at
low AEP especially where the parameter estimates are derived using techniques
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Fig. 13.6 Annual maximum series of 2 h rainfall depths at Brisbane (Queensland, Australia) based
on period 1912–1993 (dots), GEV fitted using L-moments (solid line) and 95% confidence interval

that give high leverage to the most extreme events (e.g. LH-moments, Wang 1997).
Approaches to address this issue include use of seasonal maxima (Svensson and
Jones 2010). Seasonal maxima have been shown to be more homogeneous in respect
to both distribution and trend over time (Strupczewski et al. 2001 for Polish rivers).
This may indicate a need to give more emphasis to considerations of seasonality of
rainfall extremes and flooding events. Van den Brink and Können (2008) suggest
a tool to verify whether the largest events in a record are adequately represented
by the fitted distribution. Willems (2000) presents an approach to derive compound
IFD relationships for two seasons and two storm types.

13.4.4 Regional Frequency Analysis

13.4.4.1 Defining Regions

Considering the limited record lengths available and the need to extrapolate to
very low AEP, optimal use should be made of available information. This is
achieved through regional analysis; the underlying concept is to ‘trade space for
time’. In other words, data from a number of ‘hydrologically similar’ sites are
pooled together to extend the length of record. Selection of sites to include for
the purposes of regionalisation (sometimes referred to as pooling) can be based on
geographical location, catchment characteristics, statistical measures characterising
the extreme series or a combination of these approaches. There has been a tendency
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to move away from a small number of large geographically contiguous regions that
were used predominantly in the past to a ‘region-of-influence’ approach (Hosking
and Wallis 1997), that is to regions tailored to a ‘site of interest’. Commonly
used measures in this context are based on L-moment statistics to (a) identify
homogeneous regions (i.e. sites in a region are judged to be hydrologically similar)
and (b) to identify discordant sites (sites that are outliers with respect to other sites
in a region).

So, what length of record is required to reliably identify the correct underlying
frequency distribution? And how many years are required to derive reliable esti-
mates for AEP 1 in 100 years?

– Generally, regional approaches are preferred over at-site assessments with the
possible exception of cases where long at-site records exist and less extreme
quantiles (say AEP 1 in 10 years) are required. The UK Flood Estimation
Handbook (Robson and Reed 1999) recommends as a rule of thumb in flood
frequency estimation to use five times as many station years as the target return
period in question (5T rule). Following this rule, one would aim to include
stations with a combined record length of approximately 500 years to estimate
the 100-year flood.

– If cyclical behaviour rather than long-term trends are a concern, consideration
should be given to the period of record as well as the record length.

– Bayesian techniques are especially useful with short records and allow deriving
estimates of uncertainty. Resampling approaches are useful in constructing confi-
dence intervals around frequency curves (Fig. 13.6). Information on uncertainty
of estimates can be used to decide whether an estimate is deemed reliable or
whether further investigations are required.

– Assuming the underlying assumptions are not violated, misspecification of
distribution is probably important only for events rarer than 1 in 100 years
(Hosking and Wallis 1997).

13.4.4.2 Index Flood Approach

This approach was pioneered by Dalrymple (1960) for flood frequency estimation
and is widely used in regional frequency analysis of floods and rainfall. Funda-
mentally, this approach builds on the idea that sites in a region are hydrologically
similar and the frequency curves for sites in the region can therefore be split into
two components: a scaling factor – a site-specific index flood – and a scaled version
of the frequency curve – the growth curve. The index flood is often chosen as the
mean or median of the at-site annual maxima (or peaks-over-threshold). One critical
aspect in this approach – apart from the choice of sites to include in the region and
the size of the region – is the choice of suitable weights for combining regional
and at-site information when deriving estimates at a site of interest. (Robson and
Reed 1999)
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13.4.4.3 Parameter Estimation

The choice of method for estimating parameters is a much-studied topic. Factors
to consider in the choice of approach include the available record length and
the parameters themselves. Commonly used techniques include method of mo-
ments, Probability Weighted Moments (PWM), Maximum likelihood estimators
(MLE) and L-moments (Hosking and Wallis 1997) as well as modifications of
the L-moment approach (LH-moments and LL-moments, Wang 1997). Hybrid
techniques have also been suggested (Ailliot et al. 2011).

It is desirable to derive estimates of parameter uncertainty and a Maximum
likelihood approach can be used to calculate standard errors (Hosking and Wallis
1987), which in turn can be used to construct confidence intervals. However, for
small samples, maximum likelihood estimators may have very large variance and
numerical solutions of maximum likelihood equations can lead to convergence
problems or may result in solutions that are not physically acceptable. Alternatives
are bootstrapping techniques (Faulkner 1999) and Bayesian techniques. Approaches
to reduce uncertainty in parameter estimation can be based on regional information
and such approaches have become increasingly popular. Examples include the use of
regional shape parameters (Stedinger and Lu 1995), hierarchical approaches (Alila
1999) and regional regression (Swain et al. 1998).

Frequency analysis of palaeoflood data is based on the hypothesis that for a
specified period all exceedances above a threshold have been captured. Estimates
for distributional parameters are derived under the assumption of stationarity.
The validity of this assumption for censored data can be checked using Lang’s
test (Lang et al. 1999). Maximum likelihood estimators, the method of expected
moments, partial probability weighted moments or non-parametric techniques could
be considered when working with censored data. Bayesian approaches appear
particularly promising in this context. A review of suitable techniques is given in
Ouarda et al. (1998).

13.4.4.4 Bayesian Techniques

Regional estimation may be used to mitigate lack of data but local information is
then ignored. Bayesian approaches have a number of advantages in such situations:
they are conceptually simpler than the classical approach to frequency estimation,
they allow incorporating additional information in the inference process and the
precision of parameter estimates can be assessed. A literature review on Bayesian
approaches for combining local and regional information is provided in Seidou
et al. (2006). In their discussion they distinguish between ‘mixed approaches’ where
some parameters are estimated with local data and others with regional data, and
‘simultaneous estimation’ where both information sources are used together to
estimate all parameters and quantiles. For the latter, either empirical or parametric
(full) Bayesian inference can be employed.
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Linear empirical Bayesian estimation combines at-site and regional information
assuming that both local and regional flood quantile estimators are normally
distributed. Weights are chosen to be inversely proportional to the estimator’s
variance. An alternative Bayesian approach is developed in Seidou et al. (2006).
Prior distributions are obtained using a log-linear regression model on quantiles
and quantile differences. Local observations are then used (within a Markov Chain
Monte Carlo, MCMC algorithm) to infer posterior distributions of parameters and
quantiles. Advantages of this approach are two-fold: it relaxes the assumption of
normality of local quantiles’ probability distribution and significantly improves the
estimation of parameters and quantiles when short records are used.

13.4.5 Addressing Nonstationarity in Frequency Analysis

The classical notions of ‘probability of exceedence’ and ‘return period’ are no longer valid
under nonstationarity. (Khaliq et al. 2006)

There are a number of confounding problems that need to be considered in
choosing and developing suitable approaches to address nonstationarity in rainfall
and flood frequency analysis:

• Nonstationarity in hydrological extremes may be due to climate or a range
of other factors, including changes in land use/land cover. In this context,
testing for break points should be undertaken prior to trend analysis. While
land use/land cover changes may affect hydrological extremes directly, there
are also interactions between such changes and climate change. Through these
interactions it is possible that land use/land cover changes could magnify climate-
driven changes in extremes (Vogel 2010).

• Since nonstationarity may be expressed in higher variability, both mean and
variance should be tested. Techniques have been developed to decompose fluctu-
ations and trends in time series; these include spectral analysis, wavelet analysis
and Empirical Mode Decomposition (EMD). The latter has successfully been
applied to series of hydrological time series (McMahon et al. 2008; Jakob 2011).
Given that nonstationarity may come about due to a combination of factors,
such analyses could be useful in gaining an understanding of the underlying
mechanisms.

• Trends - especially were they are estimated on the basis of short records – may
be misleading. In a similar vein, trends established at single sites may not be
characteristic of larger regions. Field significance tests could be applied (Wilks
2006). Spatial pooling has been used to detect meaningful changes in extremes,
for instance by using spatial averages of quantile estimates (Frei et al. 2006;
Burauskaite-Harju et al. 2010).

Nonstationarity may affect series at different time scales. How this is addressed
in the frequency analysis depends on the relationship between frequencies of
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nonstationarity and quantile estimates required. Where nonstationarity needs to be
accounted for this can be achieved in a number of different ways:

• time-varying parameters
• time-varying moments
• use of covariates
• time-varying quantile estimates

Local likelihood approaches have been developed and proven to be useful
exploratory tools. For these, models are fitted to extremes series using local fitting,
i.e. parameter estimates can vary over time. This approach can be extended to
include covariates in the local estimation. While there is merit in tackling the
problem from a mathematical perspective for initial assessments, the aim should be
to understand the physical mechanisms, and potentially include them as covariates.
These covariates may be climate-related but other sources of nonstationarity need to
be taken into account. For example, flood frequency analysis in urban watersheds is
complicated by nonstationarity associated with changes in land use and stormwater
infrastructure. In this situation suitable choices of covariates (in addition to rainfall
and climate indices) may include indicators of the degree of urbanisation, like pop-
ulation. Villarini et al. (2009) undertook flood frequency analysis in such a setting
using a Generalised Additive Model for location, scale and shape (GAMLSS). They
found that peak discharge did not increase linearly but exhibited time trends which
were most pronounced during a period of accelerated urban growth (Fig. 13.7).
This example highlights the need to take more than just climate into account when
addressing nonstationarity in frequency analysis. A promising technique that is not
yet widely used is quantile regression. In quantile regression (and censored quantile
regression) quantiles are directly related to climate indices through linear or non-
linear functions.

13.4.5.1 Use of Covariates for Nonstationary GEV Parameters
Fitted Using GML

Generalised Maximum Likelihood (GML) is based on the same principles as Maxi-
mum Likelihood – model parameters are estimated by maximising a log likelihood
function (Coles 2001) – but with one additional constraint on the shape parameter.
The GML approach can therefore be viewed as a special case of a Bayesian
approach where the prior distribution is only specified for the shape parameter.
A distinct advantage of GML is that both historical and regional information can be
included in the formulation of the prior distribution. The parameter estimates can be
derived using Monte Carlo Markov Chain (MCMC) methods. The concept of GML
estimators can be extended to nonstationary models (El Adlouni et al. 2007). In the
following we provide an outline of an approach to modelling under nonstationarity
based on the use of a climate index as covariate.

El Adlouni et al. (2007) discuss the modelling of annual maximum precipitation
for a station in California with 51 years of record where annual maxima exhibit
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Fig. 13.7 Time trends in the value of peak discharge with 0.01 annual exceedance probability
(black line) and in the estimated return period of the 0.01 annual exceedance flood peak derived
from the 83-year gage record (gray line). These results are based on the GAMLSS model for
Little Sugar Creek at Archdale (top panel) and Little Hope Creek (bottom panel). For reference,
the Bulletin 17B 100-year peak estimates are 4.3 and 15.0 m3 s�1 km�2, respectively, for Little
Sugar Creek and Little Hope Creek, based on the 20-year record from 1987 through 2006 (Source:
Villarini et al. 2009)
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a correlation with the Southern Oscillation Index (SOI) of �0.6. Using a GML
approach to estimate conditional medians (Q0.5) and 95% confidence intervals from
both the classical stationary model and nonstationary models it was found that:

• The nonstationary models represent the data variance more adequately.
• Differences in conditional quantile estimates (Q0.5) are especially high for low

SOI values, where estimates from the more complex nonstationary model (loca-
tion as quadratic function of covariate) can be three times as high as estimates
from the stationary model but for high SOI values the classical approach leads to
underestimation.

• Precision of estimates depends on information available to establish dependence
between parameters and covariates, e.g. few cases of low value SOI are available
and this is borne out by wider confidence intervals at low SOI values.

Covariates can be introduced in two ways: If time itself is selected as the
covariate then quantiles of the process of interest can be calculated and changes over
time can be examined. Where the covariate is a time-varying stochastic process, one
can compute conditional quantile estimates (given the value of the covariate). In
addition to the classical model with time-constant parameters, three models were
developed in Sugahara et al. (2009) (location parameter as linear and quadratic
function of covariate respectively, both location and scale parameter as linear
functions of covariate). Whether a more complex model explains a significantly
larger part of the variance in the data was assessed based on a deviance statistics
D (calculated as the difference in the maximised log likelihood function of the two
models, see Coles 2001).

How the results from nonstationary frequency estimation are used in hydrological
design depends on the time scales over which the covariate changes. Flood risk
levels can be re-estimated on a seasonal or annual basis taking into account the
current state of relevant predictors, such as the SOI index while for the design
of infrastructure with long life spans risk assessment should be carried out by
integrating the risk level throughout the lifetime of the structure.

13.4.5.2 Addressing Nonstationarity in Regional Frequency Analysis

The number of publications discussing nonstationary models in relation to the
widely used regional flood frequency analysis (index flood approach) is still very
limited. The first to develop such an approach were Cunderlik and Burn (2003)
assuming temporal and spatial variation in location and scale parameter. However,
this technique is mathematically complex and computationally intensive. Cunderlik
and Ouarda (2006) refined this approach by assuming that the most uncertain
parameter – the shape parameter – was still time-varying but spatially constant
while the regional scale parameter was estimated as the weighted average of at-site
scale parameters. Regional frequency analysis approaches can be used in exploring
climate model projections. As discussed in the example below, for these studies
nonstationarity needs to be explicitly accounted for. Studies indicate the need to (a)
consider seasonal models and (b) assess changes across a range of quantiles.
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Hanel et al. (2009) assume for their work on precipitation extremes that all three
GEV parameters vary with time while only the location parameter varies both in
time and space, and with the additional constraint that relative changes in quantiles
are constant over the region. The temporal trend in the location parameter is assumed
to be constant over the region of interest. This is motivated by the assumption that
changes in extreme precipitation are mainly associated with large-scale changes in
the atmospheric conditions. While short period convective storms may cause local
flooding in summer, in winter multiday events may lead to flooding with larger
spatial extent. Separate analyses were therefore undertaken for summer (1-day to-
tals) and winter (5-day totals). Data from a regional climate model (RACMO) were
compared to gridded observations for the Rhine basin. Hanel et al. chose exponential
dependence on a time-dependent covariate for both the dispersion coefficient and the
location parameter. Seasonal global temperature anomalies from the driving climate
model (ECHAM5) were chosen as the time-dependent covariate. Changes in 1-day
summer precipitation maxima were mainly found for large quantiles and these were
primarily related to positive trends in the dispersion coefficient while there were
smaller trends of opposite sign in quantiles close to the median. For the 5-day
maximum winter on the other hand, low quantiles were increasing due to increase in
the location parameter. For higher return periods this effect was offset by decrease
in the shape parameter, resulting in small increase or even decrease.

An alternative to the ‘spatial’ GEV approaches described above is the max-stable
process model. The important difference between the two is that max-stable pro-
cesses also account for dependence between (point-based) records. This technique
was applied to data at 30 subdaily gauges in east Australia for the period 1965–
2005 and a statistically significant increase in annual maxima of 6-min rainfall by
18% was detected, with smaller increases at longer durations and an absence of
significant trends at the daily duration (Westra and Sisson 2011). Global sea surface
temperature, Australian annual average temperature and Southern Oscillation Index
were considered as covariates. The increase in subdaily extreme precipitaton shows
strongest relationship with global SST. However, this relationship is not sufficient
to fully explain the strong increase in subdaily rainfall extremes and its attribution
therefore requires further investigation.

13.4.6 Modelling Approaches

For estimation of flood magnitudes, Nathan and Weinmann (1995) distinguish
between three different ranges of AEP:

• frequent events (AEP above 1%)
• extreme events (beyond the credible limits of extrapolation) and
• ‘intermediate’ events (the range between the first two categories).

For the first category, estimates could be derived directly, that is by extrapolation
from flood records. Due to a lack of suitably long records this is, however, rarely
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the solution. More commonly an indirect approach has to be used: design rainfall
estimates are derived and these are used to derive flood hydrographs. Sources of
uncertainty are assumptions about spatial and temporal rainfall patterns as well as
initial conditions (soil moisture and state of surface/subsurface storages). Nathan
and Weinmann therefore recommend comparison of model results with at-site or
regional flood frequency estimates in an attempt to reduce model uncertainty.

Estimates for the most extreme events (PMP/PMF) are dealt with using a similar
technique: PMP estimates are fed into runoff-routing models to derive estimates of
PMF. While estimates are generally deemed to exhibit little sensitivity to antecedent
conditions like soil moisture (due to the magnitude of the PMP), they can be
extremely sensitive to assumptions about initial storage conditions (reservoir may or
may not be drawn down prior to the onset of a major storm). Due to a lack of suitable
observations, model calibration for extreme events is especially challenging. Nathan
and Weinmann (1995) recommend two strategies to explore and reduce the effects
of uncertainties discussed above: (a) the use of joint probabilities (discussed below)
and (b) comparing resulting estimates with envelope curves of observed extreme
events.

13.4.6.1 Monte Carlo/Joint Probability Approaches

By creating a large number of replicates or scenarios rather than single estimates it is
possible not only to derive a ‘best estimate’ of the expected value but also to provide
an estimate of the inherent uncertainty. This approach can be extended to allow for
observations to be treated as random variables, taking observed dependencies into
account (stochastic modelling) and to make use of atmospheric models in deriving
point and areal precipitation.

In recognition of the fact that design flood characteristics may result from a
variety of combinations of different flood producing factors, Nathan et al. (2002)
suggest use of a Monte Carlo framework to characterize hydrologic risk. With
the aim of a more realistic presentation of flood generation processes, inputs are
considered in terms of their joint probability distributions. This approach is an
extension of current state-of-practice approaches where – apart from rainfall – input
parameters are generally treated as fixed.

For flood risk analysis the complete ‘flood disaster chain’ from the triggering
event through to its consequences needs to be assessed. However, taking into
account all relevant flooding scenarios, their associated probabilities and conse-
quences/damages in a Monte Carlo Framework leads to a highly complex model
and it may therefore be desirable to simplify this approach (Apel et al. 2006).
Advantages of a pared-down version of this approach include faster computation,
robustness (due to fewer parameters) and a model that is easier to understand.
For example, stochastic rainfall simulations and spatially distributed catchment
models can be used to model runoff processes. Alternatively the approach can be
simplified by using flood frequency curves and correlations between catchments
instead. The authors present a Monte Carlo framework that includes the following
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components: hydrological load, flood routing, levee failure and outflow through
levee breach, damage estimation. Similar tools could be useful in decision-making
required during the design-stage and in an operational environment.

This approach provides a suitable framework for assessing hydrological risk in
the presence of nonstationarity. With regards to nonstationarity in a changing cli-
mate, and where the required information is available (e.g from climate modelling)
one can account for variability and change through distributional parameters, and
describe changed relationships through joint probability.

13.4.6.2 Continuous Simulation

An alternative to event-based approaches used in design flood estimation is con-
tinuous simulation. An extensive review of this approach, including its origin
as a tool in flood forecasting, is provided in Boughton and Droop (2003). An
overwhelming array of models of different levels of complexity (e.g. lumped
vs distributed models) has been developed for continuous simulation, to allow
accounting for different hydrological processes in different regions and different
applications but the main components tend to be loss model and flood hydrograph
models. Calibration is typically based on recorded streamflows. For ungauged
catchments model parameters may instead be found indirectly, through relationship
with catchment characteristics. Advantages over design-based approaches are due
to the fact that a number of subjective assumptions and choices are not required in
continuous simulation:

• assumptions about losses,
• separation of surface runoff and baseflow and
• selection of a critical storm.

Stochastic rainfall generators can be used to produce very long series of rainfall.
This allows simulation of long periods of streamflow from which to derive required
estimates. While it may not be possible to evaluate the relative performance of event-
based approaches and continuous simulation on the basis of estimates derived, such
comparisons should prove useful in assessing uncertainty.

Continuous simulation has potential for exploring effects of climate change
on design floods because simulation can be driven by suitably downscaled and
corrected rainfall series derived from GCMs (Prudhomme et al. 2002). However,
one of the assumptions behind this approach is that the calibration is relevant not
only for the current climate but also for future climate conditions. The validity of
such an assumption would have to be assessed on a case-by-case basis.

13.4.6.3 Prediction in Ungauged Climates

Modelling in a changing world can be considered analogous to the problem of
‘prediction in ungauged basins’ (PUB) as ‘prediction in ungauged climates’ (PUC),
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requiring extrapolation in time rather than (or in addition to) extrapolation in space.
Impact assessments often implicitly assume that parameters calibrated under current
climate conditions will remain valid under future conditions. When considering
modelling approaches to address this problem, one might initially want to focus
on developing techniques that will provide robust parameter estimates under current
conditions, for instance deriving a priori estimates based on physical relationships,
regionalisation of calibrated model parameters, use of multi-objective and regional
calibration or alternatively use ensemble modelling and model output averaging to
reduce uncertainty (Peel and Blöschl 2011). Under changing conditions, either due
to a changing climate or other changes affecting hydrological processes (like land
use change) the following approaches should be considered:

• Scenario approaches – running precalibrated models with data representative of
changed conditions (either using downscaled and bias corrected GCM output or
by appropriately scaling observations to reflect projected change).

• Sensitivity methods (either model or data-based) – using the concept of elasticity,
e.g. the magnitude of changes in streamflow is quantified based on the magnitude
of changes in temperature and precipitation.

• Spatial gradients – similar to the method of analogues in that one assumes that
under a changed climate conditions hydrological processes for a catchment might
resemble those for another catchment under current climate conditions.

The challenge here is in combining techniques to ensure robust parameter
estimates discussed above with modelling approaches suitable for use under
changing conditions. Promising in this context may be the use of ‘hydrological
signature modelling’: Plausible parameter sets and model structures are those that
reproduce hydrological signatures of interest like runoff ratio or baseflow index
across timescales.

13.4.6.4 Uncertainty and Impact Studies

A fundamental problem in using hydrological models calibrated using historical
data in studying the response of runoff to climate change is assessing the validity
of calibration parameters. An Australian case study (Vaze et al. 2010) indicates that
such models if calibrated using more than 20 years of data can be used for climate
impact studies where the future mean annual rainfall does not change by more
than 15–20%. It was found that it is more difficult for a model calibrated under
wet conditions to predict dry conditions than vice versa. Given that projections
for southeast Australia indicate a drier future, there is good reason to use models
calibrated using records representative of recent drought conditions.

The role of hydrological modelling uncertainty in impact studies can be re-
markably high. Three techniques that allow assessing hydrological modelling
uncertainty due to both parameter and structural uncertainty are Generalised
Likelihood Uncertainty Estimates (GLUE), Bayesian Total Error Analysis (BATEA,
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Thyer et al. 2009) and Bayesian Model Averaging (BMA). The GLUE scheme is
widely used to account for parameter uncertainty. Its strength lies in the fact that it
can handle parametrically and structurally different models. However, uncertainty
estimates derived using this technique are highly sensitive to a number of subjective
decisions (number of models, range of model parameters, selection of threshold
to differentiate between acceptable and unacceptable solutions). BMA not only
accounts for uncertainty about model forms or assumptions but also propagates this
uncertainty to inferences about quantities of interest.

While the GLUE and BMA techniques are conceptually different, they yielded
similar results when applied to assess climate change impacts over the next century
for four Irish river catchments on the basis of three GCMs, two emission scenarios
and four conceptual rainfall-runoff models: progressive increase in streamflow in
winter and progressive decrease in summer (Bastola et al. 2011). From a decision-
making perspective, both BMA and GLUE can add value to predictions by allowing
a truer assessment of the uncertainties in future projections.

13.4.6.5 Downscaling Under Consideration of Circulation Patterns

Output from GCM generally has to be pre-processed prior to use for hydrologi-
cal applications. Statistical or dynamical downscaling techniques are required to
increase resolution for use with hydrological models and validation of downscaled
data against historical data (for instance using Taylor diagrams) tends to indicate the
need for additional corrections.

For the analysis of hydrological extremes so-called ‘delta’ methods (percentage
scaling) is inappropriate and quantile-quantile (Q-Q) matching approaches are pre-
ferred instead. Bárdossy and Pegram (2011) present an extension to this approach:
based on sea level pressure from reanalysis data they define a set of 20 circulation
patterns (CP) for use in the downscaling procedure. Their analyses suggest that
the use of CP is particularly relevant where precipitation under CP differs strongly
from climatology. A ‘double Q-Q transform’ is used because rainfall distributions
differ between CPs (as expected) but are also found to differ between the observed
period and future scenarios. Extremes relevant for hydrological applications were
assessed for the Rhine basin (annual maxima of daily rainfall for flash flooding and
an antecedent precipitation index related to drought conditions) and results indicate
that the basin might become wetter than it has been in the past.

Non-homogeneous hidden Markov models (NHMM) have been used for some
time to relate the occurrence of precipitation at multiple sites to broad-scale
atmospheric circulation patterns (Hughes et al. 1999). This technique can be consid-
ered a stochastical downscaling approach: atmospheric predictors are downscaled
to multisite daily precipitation occurrence while the precipitation amounts are
downscaled based on conditional multiple linear regression (Charles et al. 2007).
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13.4.7 Probable Maximum Precipitation (PMP) and Probable
Maximum Flood (PMF)

PMF estimates are used in dam safety assessments. Whether one could or should
attach an AEP to the PMF is a contested issue. However, most would agree that the
frequency-based approaches described in Sects. 13.4.3 and 13.4.4 are not suited to
estimation of the PMF.

Estimates of Probable Maximum Flood (PMF) are used in the design of a
project at a particular geographical location in a given watershed (WMO 2009).
PMF estimates may also assist in designing the size (dam height, reservoir storage
capacity) of a structure and dimensioning of its flood carrying components (spillway
and reservoir storage capacity). In particular, PMF estimates can be used to evaluate
risks associated with the hazard of dam failure or flooding of nuclear power plants
(Fernandes et al. 2010) and hydropower stations (Thompson 2003).

Estimation of a theoretical storm of critical duration and depth (Probable
Maximum Precipitation, PMP) is undertaken to determine the Probable Maximum
Flood (PMF) for a particular watershed on the basis of current knowledge of the
hydrometeorological and hydrological processes under extreme conditions. The
definition of PMF (after WMO 2009) addresses three key points:

• PMF is the theoretical maximum flood in a design watershed;
• poses extremely serious threats to the flood control of a given project;
• could plausibly occur in a locality at a particular time of year under modern

meteorological conditions.

The estimation of PMF is undertaken outside the framework of conventional
flood frequency analysis, for three reasons (Fernandes et al. 2010):

• Firstly (and perhaps most obvious) is the fact that extreme events like the PMF
are considered beyond the limit of credible extrapolation based on typically
available observed flood records.

• Secondly, distributions used in flood frequency analysis (e.g. Generalised Ex-
treme Value distribution), are not generally unbounded whereas the idea of PMF
implies an upper limit/bound.

• Thirdly, current deterministic techniques for estimating PMF do not allow
deriving estimates of associated uncertainty.

Given the potentially disastrous implications of underdesign and the economical
implications of overdesign, it appears prudent to invest substantial effort into (a)
deriving reliable estimates and (b) providing guidance on the uncertainty attached
to estimates of PMP/PMF in a changing climate.

13.4.7.1 Estimation of Probable Maximum Precipitation (PMP)

PMP estimates should be considered approximations and where feasible, validation
of these estimates should be undertaken. Assumptions required in deriving PMF



13 Nonstationarity in Extremes and Engineering Design 403

estimates on the basis of PMP estimates include antecedent moisture and unit
hydrograph shapes. This means even where the PMP estimate is being held constant;
the PMF estimate is not unique (Vogel et al. 2007).

Much of the following discussion on techniques for PMP estimation is based on
the material provided in a WMO manual. This manual (WMO 2009) provides:

• a classification of methods together with a discussion of their suitability depend-
ing on availability of data and hydrometeorological expertise; watershed, climate
and orography, and

• illustrates the use of procedures using examples from actual studies undertaken
by the National Weather Service (formerly United States Weather Bureau),
National Oceanic and Atmospheric Administration, United States Department
of Commerce, the Australian Bureau of Meteorology, and water and power
authorities in China and India.

Fundamentally, approaches will either focus on the watershed in question (direct
approach) or on the meteorological event (indirect approach). The indirect approach
is based on storm area and estimates are then converted into PMP for the collecting
area of a particular project in the design watershed. WMO (2009) distinguishes
between the following 8 methods:

(a) The local method (local storm maximization or local model)
(b) The transposition method (storm transposition or transposition model)
(c) The combination method (temporal/spatial maximization of storm or storm

combination)
(d) The inferential method (theoretical model or rationality model)
(e) The generalized method (generalized estimation)
(f) The statistical method

and for extremely large watersheds:

1. The major temporal and spatial combination method;
2. The storm simulation method based on historical floods.

The statistical technique is based on the idea of the transposition of storms. On
the basis of annual maximum rainfall series for a given duration, mean annual
maxima and standard deviations are calculated and using the ‘general frequency
equation’ a scaling parameter Km is derived which can then be used to estimate
PMP for the site of interest (Hershfield 1977).

The major advantage of this technique is its simplicity. Only precipitation data
are required, neither dew point nor wind data have to be available. This approach is
therefore suited to speedy assessments like those required for feasibility studies.
Assessments will result in point estimates, and catchment averages are derived
using area reduction curves. The technique is recommended only for small and
intermediate catchment sizes. Estimates derived using the statistical technique may
also provide an independent estimate against which to evaluate estimates derived on
the basis of hydrometeorological techniques.
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More commonly, techniques for estimating PMP are based on hydrometeoro-
logical assessments and maximisation of historical events. A key assumption made
in deriving PMP estimates is the simultaneous occurrence of maximum moisture
availability and maximum storm efficiency. Moisture maximisation is used to scale
up the observed moisture availability to the maximum possible (for given location
and season). Moisture availability is expressed as the moisture content of a column
of air, referred to as precipitable water (PW, in mm). Estimates of this moisture
content can be derived in two different ways: from upper-air soundings (using
weather balloons) and from surface observations. Due to a lack of suitable upper-
air data, estimates of moisture availability are usually derived from surface data
under the assumption of a saturated atmosphere (pseudo-adiabatic lapse rate). For
the central United States, this assumption was shown to lead to an overestimate of
PMP by on average 6.9% (Chen and Bradley 2006). Upper-air soundings suggest
that conditions conducive to maximum atmospheric moisture availability do not
favour deep convection and heavy rainfall, raising doubt about the validity of the
assumption of concurrent maximum moisture and maximum storm efficiency.

13.4.7.2 Uncertainties in Deriving PMF Estimates

Deriving estimates of PMF from PMP is based on the same concepts as deriving
design flood estimates from design rainfall estimates: estimates of PMF are derived
by running hydrological models where one of the key inputs is PMP. For this
exercise it is generally assumed that a large storm has occurred, resulting in high
antecedent moisture conditions. While PMF estimates are not very sensitive to
variations in initial loss and continuing loss, estimates will depend significantly on
assumptions made about the initial conditions of storage. One way to address the
issue is through the use of a joint probability approach (Nathan and Weinmann
1995). Two other major sources of uncertainty in the estimation of PMF are
spatial and temporal patterns of design rainfall. Together these factors may lead
to uncertainties in the order of 50% of the PMF estimate.

13.4.7.3 Recent Developments

Rezacova et al. (2005) describe the development of the first set of PMP estimates
for the Czech Republic, a study prompted by severe floods in July 1997 and August
2002. Two techniques (statistical technique, storm model) were used to allow
comparison of PMP values derived. This study is noteworthy because radar data
were used to develop maximum areal reduction factors, required in the conversion of
point PMP estimates to catchment averages. Likewise, information from numerical
weather prediction models was found to be useful for assessing spatially averaged
rainfall for extreme events despite the fact that they might not actually match the
local extremes due to resolution (Thompson 2003).
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Current state-of-practice techniques for estimation of Probable Maximum Flood
(PMF) result in valuable but uncertain estimates not least because the use of models
for deriving PMF estimates implies using these models well outside the range of
calibration. Validation of estimates using suitable benchmarks is therefore highly
desirable (Nathan and Weinmann 1995). Palaeoflood and historical data may be
used as a ‘yardstick’ against which PMF estimates can be compared because the
largest floods are not necessarily captured in the instrumental record. An extreme
flood event in the Gardon River (France) in September 2002 was considered the
largest flood on record. Subsequent investigations found sedimentary evidence of
at least five floods that were larger than the event in September 2002 (Sheffer
et al. 2003). Palaeoflood data can therefore prove a useful tool used in validating
estimates of the Probable Maximum Flood. Results from studies undertaken for
a small number of catchments in the USA and Spain showed that existing PMF
estimates may be very large overestimates (Enzel et al. 1993; Levish et al. 1996,
1997). Non-systematic information may also be useful in selecting appropriate
parameters for hydrological modeling; and by including this information in flood
frequency analysis, estimates of probabilities of rare events can be improved.

While the concept of PMF is essentially deterministic, estimates of exceedance
probabilities are required to incorporate such events into quantitative risk assess-
ment studies. There are different views on whether meaningful probabilities could
be assigned to PMF estimates. Nathan and Weinmann (2001) argue that operational
estimates might conceivably be exceeded and that conceptual foundations for
estimating the AEP are unclear. To reflect the considerable uncertainty in estimating
AEP for PMP, they suggest as notional upper and lower limits for the AEP
plus/minus two orders of magnitude. Vogel et al. (2007) present an approach based
on envelope curves for flood of record (FOR) and PMF to estimate exceedance
probabilities. Based on theoretical considerations and a case study for 226 sites
located across the USA they found exceedance probabilities of the order of 10�4.

Fernandes et al. (2010) present a Bayesian approach to combine two apparently
incompatible approaches: deterministic PMF estimates and frequency analysis of
maximum flows. Key ingredients in this approach are:

• The assumption that there is a natural upper bound to the magnitude of floods
(the at-site PMF) in a given region and therefore use of distributions which have
an upper bound;

• Incorporating systematic (annual flood peaks) and non-systematic (historical and
palaeoflood data); and

• Including information related to PMF in the formulation of an informative prior
distribution.

Advantages of this approach include consistent and coherent results, and the
opportunity to include information from different data sources, not least that of
the PMF estimate as a reference for the upper bound of the frequency distribution.
The underlying assumption of homogeneity and stationarity (especially with regards
to non-systematic data) is briefly discussed and the authors argue for including
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these data because they provide information that is lacking from short samples:
information about the largest floods.

In relation to estimation of PMP it might be worthwhile exploring the concept
of atmospheric rivers and its association with extreme rainfall events. About 90%
of poleward water vapour transport in the mid-latitudes occurs within narrow bands
called ‘atmospheric rivers’ (Zhu and Newell 1998). Atmospheric rivers (AR) can
lead to intense precipitation. Using daily GCM outputs of vertically integrated
water vapour (IWV) and near surface (925 hPa) wind speed and direction, Dettinger
et al. (2009) analyzed projected changes in frequency of such events for the winter
season in California. While weakening of mid-latitude westerly winds partially
compensated for a tendency to higher IWV, there is potential for increased flooding
before and after the historical bounds of the flood season in California. Although
the average intensity of storms is not projected to increase, occasionally ‘much-
larger-than-historical range storm intensities’ are projected to occur under warming
scenarios.

Use of physically based models in deriving PMP estimates for practical appli-
cations is still the exception although in the long term and especially with a view
to assessing the potential effects of a changing climate, modelling approaches and
Bayesian techniques appear the most promising recent developments. A physically
based regional atmospheric model (MM5) was calibrated using NCAR (National
Centre for Atmospheric Research) reanalysis data and a historical storm event
was maximised using three different methods: (a) by maximising atmospheric
moisture to 100% relative humidity, (b) by maintaining atmospheric conditions
corresponding to the heaviest precipitation and (c) by spatially shifting atmospheric
conditions to hit the watershed (Ohara et al. 2011). Maximum Precipitation (MP)
estimates derived for the American River watershed in California for the 72-h
duration were very similar across the three methods. Assuming initial and boundary
conditions can be derived from reanalysis data for historical events and from GCM
output for climate projections, this may prove a tool for assessing the potential
effects of climate change on PMP estimates.

13.4.7.4 PMP and Potential Effects of Climate Change

Nonstationarity with regards to estimation of PMP due to changes in sea surface
temperatures (SST) has been discussed decades ago (Schwarz 1972; Pyke 1975).
Where extreme events are related to tropical storms it was recommended to make
use of SST in the process of moisture maximisation. But while the question of how
nonstationarity might affect hydrological extremes and design estimates is an area
of active research, potential effects on estimates of PMP and PMF have so far not
received much attention. One of these studies (Clark et al. 2002) argues that while
global temperature is known to have increased, temperature changes for India (the
study area) are less clear and while maximum persisting dew points may increase
in some regions, for the region studied (India) there is no convincing evidence that
this is the case.
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In the second edition of the manual on PMP estimation (WMO 1986) the
definition of PMP reads:

The greatest depth of precipitation for a given duration meteorologically possible for a
design watershed or a given storm area at a particular location at a particular time of
year, with no allowance made for long-term climatic trends.

In the recent edition WMO (2009), PMP is defined as:

Theoretically, the greatest precipitation for a given duration that is physically possible over
a given watershed area or size of storm area at a particular geographic location at a certain
time of the year, under modern meteorological conditions.

This subtle shift hints at the need to explore how PMP estimates might be
changing in a changing climate. Few such studies have been undertaken, the
following is based on a case study for Australia (Jakob et al. 2009).

The method applicable for most of mainland Australia is based on generalizing
historical storms from a database containing 122 storms and dating back to the end
of the nineteenth century. In generalising storms, features specific to a location that
influence rainfall depth are removed. Steps in the generalization process include:

• deriving depth-duration-area-curves;
• defining zones depending on storm types (e.g. monsoonal trough, tropical

cyclone);
• removing portion of rainfall due to orographic enhancement (remainder is labeled

‘synoptic’ component);
• maximizing local moisture availability; and
• adjusting for decay of storms (as storms move away from the coast and

south/polewards).

In deriving PMP estimates for catchments, these local features are reconstructed.
As a result, PMP estimates for a set of durations (1–7 days) are derived. As discussed
above, spatial and temporal distributions are often required for further hydrological
analyses.

To investigate potential effects of climate change on PMP estimates, the factors
used in deriving these estimates were initially assessed separately. In addition,
changes in generalized rainfall depths were assessed. These changes reflect the
combined effects of changes in relative storm efficiency and moisture maximization.
Some significant increases in moisture availability were found for coastal Australia,
and climate models project further general increases, although with some regions
of decrease. Very few significant changes in storm efficiency were found, although
there is a tendency to a reduction in storm efficiency for coastal parts of eastern
Australia. Typically, no significant changes were found in generalised rainfall
depths, but a recent event was record breaking (both in terms of storm efficiency
and generalised rainfall depth) if only for the season during which the event occurred
(winter).

Since the PMP method is related to very large rainfall events, changes in both
observed and projected extreme rainfall were also assessed using indices defined by
the Expert Team on Climate Change Detection and Indices (ETCCDI):
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Fig. 13.8 Trends in extreme rainfall indices and annual rainfall for the period 1910–2005. Trends
significant at the 0.05 level are shown as solid triangles with a black outline. Trends with a
magnitude of less than 5% are shown as a black C (Source: Jakob et al. 2009)

• R10mm: Annual count of days where rainfall exceeds 10 mm
• RX5day: Seasonal maximum 5-day rainfall total
• R95pT: Proportion of annual rainfall from very wet days (total annual rainfall

from wet days (�1 mm) with rainfall above the 95th percentile for wet days in
the 1961–1990 period, divided by the annual rainfall)

Long-term trends in rainfall extremes were found for only two regions
(Fig. 13.8). This implies that for most of Australia current generalized estimates
are representative of current climate conditions. Global climate models do not
accurately model the trends of late twentieth century Australian rainfall. However,
there is an indication that due to the overall increase in moisture availability in a
warming climate the most extreme rainfall is likely to increase in the twenty-first
century.

While this study did not confirm that PMP estimates are definitely increasing
under a changing climate, confidence in the reliability of this assessment is limited
due to the deterministic nature of the methodology applied to derive estimates of
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PMP and the fact that it is based on historical events. While it is important to develop
an understanding of how climate change might affect PMP estimates, this shouldn’t
remain the sole focus for further work in this area. A number of related issues remain
to be addressed:

• Feasibility of using additional data sources for practical applications (e.g. radar
data for spatial patterns; nonsystematic data);

• Validation of PMP estimates (through independent data and techniques);
• Quantification of uncertainty associated with operational estimates of PMP;
• Validity of current techniques (e.g. generalization) used to estimate PMP in a

changing climate;
• Validity of assumption of simultaneous occurrence of maximum moisture avail-

ability and maximum storm efficiency; and
• Feasibility of using physical models in deriving PMP estimates operationally

(Hardaker 1996; Leslie and Leplastrier 2008; Ohara et al. 2010).

13.5 Conclusions

This chapter started with a series of examples to set the scene. In a similar vein, an
analogue will be used here for the conclusions. Michael Pollan (2009) in his book
‘Food Rules: An Eaters Manual’ sets out 64 rules on what one should eat, what kind
of food one should eat and how one should eat. He summarises the essence of his
extensive research in the following brief statement: ‘Eat food. Not too much. Mostly
Plants.’ With regards to hydrological extremes and engineering design in a changing
climate, here is an attempt to distil findings in a similarly short sentiment:

Design with change in mind. Not just climate. Think across disciplines.

While the examples presented in this chapter highlight the effect of climate
on hydrological extremes, the discussion also showed that although climate is
an important stressor, it would be simplistic and damaging to focus only on
potential effects of a changing climate, neglecting other factors, like increasing
urbanization and population growth. Economical impact assessments teach us that
projections need to take into account climate change as well as other factors, namely
socioeconomic changes. While a significant proportion of losses due to hydrological
extremes may be attributable to climate change, suitable adaptation strategies can
drastically reduce that component.

Nonstationarity has always been an issue to be dealt with in the design of
structures; severe penalties have arisen in the past where this rule was not adhered to.
Climate change adds a new dimension to this challenge. Beyond doubt are these
facts: Humans are contributing to climate change, climate change is affecting
hydrological extremes and this needs to be taken into consideration in the design
of structures as well as in the assessment of existing structures.
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The question is no longer whether climate models are useful but how to best
use the information they provide. It may be a misguided effort to try and derive
exact quantitative estimates of anticipated change. Instead the emphasis should shift
to understanding the underlying processes. This is perhaps especially true for the
estimation of Probable Maximum Precipitation and Probable Maximum Flood.

New and innovative approaches to decision-making are required. Considering the
uncertainty in climate projections and the propagation of this uncertainty through
the chain of models, from downscaling via hydrological models to decision-making
tools, alternatives become attractive. The starting point could therefore be to identify
thresholds, which if they were exceeded, we couldn’t cope with and then with the
use of climate models to assess the likelihood of such thresholds being exceeded.

Design of infrastructure requires information that is derived across a range
of disciplines: meteorology, climatology, hydrology, statistics, engineering and
decision-making. Addressing common misconceptions in communication between
these communities should be one focal point, because even as they are becoming
more engaged with each other, there is still ample room for misinterpretation
because key terminology is used with different meanings (e.g. ‘extreme’).

A large part of this chapter covers new statistical techniques (or extensions of
existing techniques) to address nonstationarity in hydrological extremes, through
the use of time-varying parameters, moments, quantile estimates and the use
of covariates. A changing climate may prove impetus to change some of the
existing paradigms and explore new avenues. Bayesian techniques are a promising
framework in this context because (a) they allow incorporating almost any type
of relevant additional information (including non-systematic) into the analysis
and (b) because of their superior suitability for assessing uncertainty. The need
to reduce uncertainty, or alternatively derive more reliable uncertainty estimates,
is exacerbated in a changing climate. This is a recurring theme throughout the
discussion in this chapter and one of the key strategies should be moving from
deterministic to probabilistic approaches.

Given the nature of processes leading to nonstationarity in hydrological extremes,
exact estimates of how these extremes change over the next few decades will
not be available. But this inherent uncertainty can be addressed in the way we
plan the design of structures. It may no longer be appropriate to work towards
an ‘optimum’ solution, instead the idea of sustainability and building with future
generations in mind should be given more emphasis: Design should allow some
degree of flexibility, allowing for and actually planning for future upgrades as they
are required.
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