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         Abstract   This paper reports an analysis of features of mathematics assessment 
items developed for the OECD’s Programme for International Student Assessment 
survey (PISA) in relation to a set of six mathematical competencies. These com-
petencies have underpinned the PISA mathematics framework since the inception 
of the PISA survey; they have been used to drive mathematics curriculum and 
assessment review and reform in several countries; and the results of the study are 
therefore likely to be of interest to the broad mathematics education community.  

 We present a scheme used to describe this set of mathematical competencies, to 
quantify the extent to which solution of each assessment item calls for the activation 
of those competencies, and to investigate how the demand for activation of those 
competencies relates to the dif fi culty of the items. We  fi nd that the scheme can be 
used effectively, and that ratings of items according to their demand for activation 
of the competencies are highly predictive of the dif fi culty of the items.  
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    2.1   Introduction 

 What are the factors that in fl uence the dif fi culty of PISA mathematics survey 
items? The publication of data from the PISA 2003 survey (OECD,  2004  ) , when 
mathematics was the major survey domain, has enabled a deep study of cognitive 
factors that in fl uence the dif fi culty of mathematics items. The framework on which 
that survey was based (OECD,  2003  )  outlines a set of mathematical competencies 
originally described in the work of Mogens Niss and his Danish colleagues 
(see Niss,  2003 ; Niss & Hoejgaard,  2011  ) . Such an understanding of item dif fi culty 
has the potential to guide the construction of new items to better assess the full 
range of the PISA mathematics scale, as well as to enhance the reporting of student 
performance associated with PISA assessments. 

 To the extent that these “Niss competencies” have resonance in various national 
curricula (e.g. in Denmark; see the of fi cial guidelines from the Ministry of Education: 
  www.ug.dk/uddannelser/professionsbacheloruddannelse/enkeltfag    ), have been used 
to evaluate curriculum outcomes and even have acted as drivers of curriculum and 
assessment reform (e.g. in Germany; see Blum, Drueke-Noe, Hartung, & Köller, 
 2006 , and in Catalonia, Spain; see Planas,  2010  ) , an understanding of their in fl uence 
on the dif fi culty of mathematics items will have far wider relevance than just within 
the PISA context, and will contribute more generally to an important area of 
knowledge in mathematics education. 

 The authors led an investigation that has extended over several years, beginning 
in October 2003. They built on earlier work aiming at understanding student achieve-
ment in mathematics developed by de Lange  (  1987  ) , Niss  (  1999  ) , and Neubrand 
et al.  (  2001  ) . The investigation has focused on six mathematical competencies 
which are a re-con fi guration of the set of competencies which have been at the 
heart of the Mathematics Framework for PISA from the beginning (see OECD, 
 2003,   2006  ) . These competencies describe the essential activities when solving 
mathematical problems and are regarded as necessary prerequisites for students to 
successfully engage in “making sense” of situations where mathematics might add 
to understanding and solutions. These six competencies were:

   Reasoning and argumentation  • 
  Communication  • 
  Modelling  • 
  Representation  • 
  Solving problems mathematically (referred to as Problem solving)  • 
  Using symbolic, formal and technical language and operations (referred to as • 
Symbols and formalism).    

 These competencies are not meant to be sharply disjoint. Rather, they overlap 
to a certain degree, and mostly they have to be activated jointly in the process of 
solving mathematical problems. 

 The initial investigation has consisted in developing operational de fi nitions of 
these six competencies, and in describing four levels of demand for activation of 
each competency (see Sect.  2.2 ). PISA survey items have been analysed in relation 
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to those de fi nitions and level descriptions, by the application of a set of rating values 
to each item for each competency. The resulting ratings have then been analysed as 
predictor variables in a regression on the empirical dif fi culty of the items, derived 
from the PISA 2003 survey data. The item ratings have been found to be highly 
predictive of the dif fi culty of the items (see Sect.  2.3 ). In addition, statistical studies 
have been conducted examining other variables, such as the four PISA mathematical 
content strands (quantity, space and shape, change and relationships, and uncertainty), 
the PISA contexts in which the item items are presented to students (personal, 
education/occupational, public, scienti fi c, and intra-mathematical), as well as the item 
formats themselves (various forms and combinations of multiple-choice, closed 
constructed-response, and open constructed-response items). None of these studies 
showed that these variables, acting singly or in combination with one another, 
explained signi fi cant proportions of the variation observed in item dif fi culty. 

 In this paper, we will present those competency de fi nitions and level descriptions 
as well as the essential outcomes of the analysis conducted.  

    2.2   The Competency Related Variables 

 The material following in Table  2.1  contains the de fi nitions and dif fi culty level 
descriptions of the six mathematical competencies used in this investigation so far. 
Each of the six competencies has an operational de fi nition bounding what con-
stitutes the competency as it might appear in PISA mathematics assessment items 
and then four described levels (labeled as levels 0, 1, 2, and 3) of each variable.   

    2.3   Analysis of the Application of the MEG Item 
Dif fi culty Framework 

 The following analyses provide an examination of the ef fi cacy of the MEG Item 
Dif fi culty Framework in explaining the variability present in student performance 
on the 48 items common to the PISA 2003 and PISA 2006 mathematics assessments. 
We examine this ef fi cacy from a number of perspectives: correlation of variable code 
average values, coder consistency, percentage of variance explained, consistency 
across assessments, and factor structure. 

    2.3.1   Psychometric Quality 

    2.3.1.1   Correlation of Variable Average Code Values 

 Table  2.2  contains the results of a correlation of the coding data associated 
with each of the six competency-based variables. Note that in this and subsequent 
tables, the competency labels are abbreviated as follows: REA for Reasoning and 
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   Table 2.1    MEG item-dif fi culty coding framework   

 Symbols and formalism 
 Variable-de fi nition   Symbols and formalism  

 [Understanding,  manipulating , and  making use  of symbolic expressions 
within a mathematical context (including arithmetic expressions and 
operations), governed by mathematical  conventions and rules ; 
understanding and  utilising constructs  based on de fi nitions, rules 
and  formal systems .] 

 Level 0  No mathematical rules or symbolic expressions need to be activated 
beyond fundamental arithmetic calculations, operating with small or 
easily tractable numbers. 

 Level 1  Make direct use of a simple functional relationship, either implicit or 
explicit (for example, familiar linear relationships); use formal 
mathematical symbols (for example, by direct substitution or 
sustained arithmetic calculations involving fractions and decimals) or 
activate and directly use a formal mathematical de fi nition, convention 
or symbolic concept. 

 Level 2  Explicit use and manipulation of symbols (for example, by algebraically 
rearranging a formula); activate and use mathematical rules, 
de fi nitions, conventions, procedures or formulae using a combination 
of multiple relationships or symbolic concepts. 

 Level 3  Multi-step application of formal mathematical procedures; working 
 fl exibly with functional or involved algebraic relationships; using 
both mathematical technique and knowledge to produce results. 

 Reasoning and Argumentation 
 Variable-de fi nition   Reasoning and argumentation  

 [Logically rooted thought processes that explore and link problem 
elements so as to  make inferences  from them, or to  check 
a justi fi cation that is given  or  provide a justi fi cation  of 
statements.] 

 Level 0  Make direct inferences from the instructions given. 
 Level 1  Re fl ect to join information to make inferences, (for example to link 

separate components present in the problem, or to use direct 
reasoning within one aspect of the problem). 

 Level 2  Analyse information (for example to connect several variables) to follow 
or create a multi-step argument; reason from linked information 
sources. 

 Level 3  Synthesise and evaluate, use or create chains of reasoning to justify 
inferences or to make generalisations, drawing on and combining 
multiple elements of information in a sustained and directed way. 

 Problem solving 
 Variable-de fi nition   Solving problems mathematically  

 [Selecting or devising, as well as implementing, a mathematical strategy 
to solve problems arising from the task or context.] 

 Level 0  Take direct actions, where the strategy needed is stated or obvious. 
 Level 1  Decide on a suitable strategy that uses the relevant given information to 

reach a conclusion. 
 Level 2  Construct a strategy to transform given information to reach a 

conclusion. 
 Level 3  Construct an elaborated strategy to  fi nd an exhaustive solution or a 

generalised conclusion; evaluate or compare strategies. 

(continued)
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Table 2.1 (continued)

 Modelling 
 Variable-de fi nition   Modelling  

 [ Mathematising  an extra-mathematical situation (which includes 
structuring, idealising, making assumptions, building a model), or 
 making use  of a given or constructed model by  interpreting  or 
validating it in relation to the context.] 

 Level 0  Either the situation is purely intra-mathematical, or the relationship 
between the real situation and the model is not needed in solving the 
problem. 

 Level 1  Interpret and infer directly from a given model; translate directly from a 
situation into mathematics (for example, structure and conceptualise 
the situation in a relevant way, identify and select relevant variables, 
collect relevant measurements, make diagrams). 

 Level 2  Modify or use a given model to satisfy changed conditions or interpret 
inferred relationships; or choose a familiar model within limited and 
clearly articulated constraints; or create a model where the required 
variables, relationships and constraints are explicit and clear. 

 Level 3  Create a model in a situation where the assumptions, variables, relationships 
and constraints are to be identi fi ed or de fi ned, and check that the model 
satis fi es the requirements of the task; evaluate or compare models. 

 Communication 
 Variable-de fi nition   Communication  

 [Decoding and  interpreting  statements, questions and tasks; including 
 imagining  the situation presented so as to  make sense  of the 
information provided;  presenting and explaining  one’s work or 
reasoning.] 

 Level 0  Understand a short sentence or phrase relating to a single familiar 
concept that gives immediate access to the context, where it is clear 
what information is relevant, and where the order of information 
matches the required steps of thought. 

 Level 1  Identify and extract relevant information. Use links or connections 
within the text that are needed to understand the context and task, or 
cycle within the text or between the text and other related 
representation/s. Any constructive communication required is simple, 
but beyond the presentation of a single numeric result. 

 Level 2  Use repeated cycling to understand instructions and decode the elements 
of the context or task; interpret conditional statements or instructions 
containing diverse elements; or actively communicate a constructed 
description or explanation. 

 Level 3  Create an economical, clear, coherent and complete description or 
explanation of a solution, process or argument; interpret complex 
logical relations involving multiple ideas and connections. 

 Representation 
 Variable-de fi nition   Representation  

 [ Interpreting , translating between, and  making use  of given 
representations;  selecting  or  devising  representations to capture the 
situation or to present one’s work. The representations referred to are 
depictions of mathematical objects or relationships, which include 
equations, formulae, graphs, tables, diagrams, pictures, textual 
descriptions, concrete materials] 

(continued)
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Argument; PS for Problem Solving; MOD for Modelling; COM for Communication; 
REP for Representation; SYM for Symbols and Formalism. The pre fi x ‘AVG’ 
indicates the average code value across the eight coders on the relevant competency.   

    2.3.1.2   Coder Consistency 

 Coder consistency can be approached from two perspectives. The  fi rst is the degree 
to which coders’ actual coding of the items correlated with codings they had 
initially given the items in another coding of the same items 2-years previously. 
This would be an analysis of intra-coder consistency. The other examination of 
coder consistency would be an examination of the degree to which the eight coders 
tended to code in common for a given item relative to the competencies. Such 
consistency would be an example of inter-coder consistency. 

Table 2.1 (continued)

 Level 0  Directly handle a given representation, for example going directly 
from text to numbers, reading a value directly from a graph or table, 
where minimal interpretation is required in relation to the situation. 

 Level 1  Select and interpret one standard or familiar representation in relation to 
a situation. 

 Level 2  Translate between or use two or more different representations 
in relation to a situation, including modifying a representation; 
or devise a simple representation of a situation. 

 Level 3  Understand and use a non-standard representation that requires 
substantial decoding and interpretation; or devise a representation 
that captures the key aspects of a complex situation; or compare or 
evaluate representations. 

   Table 2.2    Correlations of competency-based variable values based on the coding of 48 PISA 
mathematics items by eight coders   

  AVGSYM    AVGREA    AVGPS    AVGMOD    AVGCOM  

  AVGREA   0.283 
 0.051 

  AVGPS   0.301*  0.721* 
 0.038  0.000 

  AVGMOD   0.606*  0.455*  0.401* 
 0.000  0.001  0.005 

  AVGCOM   0.405*  0.471*  0.100  0.267 
 0.004  0.001  0.497  0.066 

  AVGREP   0.062  0.314*  0.303*  0.261  0.082 
 0.676  0.030  0.036  0.073  0.581 

  Cell contents: correlation,  p -value 
 *Correlation signi fi cantly different from 0 at the 0.05 level  
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  Intra-coder consistency . Within-coder data only exist for four of the eight coders in 
our sample. In addition, there have been minor changes in the description of the 
competency-related codes for some of the variables that may have slightly altered 
the use of the codes during the intervening 2 years. These cautions notwithstanding, 
correlations were conducted for the six competency-related variables for each of the 
coders for whom there was complete data for the two separate codings of the 48 
items. The results are in Table  2.3  Note that all of the observed correlations were 
signi fi cantly different from 0 at the 0.05 level.  

 There was an interesting pattern in the intra-coder correlations of the coders’ 
work. The coders are numbered in ascending order from most consistent to least 
consistent. This ordering also matches the ordering of amount of experience and 
coding the four coders had with using the MEG Item Dif fi culty Framework. This 
suggests, perhaps, that coders become more consistent with increased familiarity 
with the framework and its use, and that training in the use of the framework will be 
an important issue for the future. 

  Inter-coder consistency . A second approach to coder consistency lies in examining 
the degree to which the eight coders actually give the same code to an item for a 
given competency. In essence, this is asking to what degree the eight individual 
MEG coders give the same numerical code to an item for any one of the six com-
petency-related variables. This analysis can be approached from a variety of 
perspectives. Historically, most researchers have been satis fi ed with  fi nding the 
Pearson product moment correlation of the coders over the set of items related to a 
given competency area. More recently, researchers dealing with content coding and 
curricular studies have shifted toward the use of Cronbach’s  a  along with more 
emphasis on individual item and coder patterns of behaviour (Cronbach, Gleser, 
Nanda, & Rajaratnam,  1972 ; Shrout & Fleiss,  1979 ; von Eye & Mun,  2005  ) . 

 The data showing the codes each of the eight individual coders awarded for 
each item have been collected and analysed to determine the consistency of the 
eight coders for each of the six competency-based variables. Table  2.4  contains a 
variety of information points for each item. In addition to Cronbach’s  a  value for each 
competency-based variable, data are provided showing the distribution of ranges 
between minimum and maximum codes given to individual items for the competency 
variable in the coding. Note that a range of 3 for an individual item indicates that it 
was coded as being at both Level 0 and Level 3 by different coders.  

 The examination of the values of Cronbach’s  a  for the six competency-based 
variables shows considerable consistency with the exception of the Reasoning 

   Table 2.3    Intra-coder consistency for common PISA 2003/PISA 2006 items   

 Coder\competency  SYM  REA  PS  MOD  COM  REP 

 Coder 1  0.804*  0.803*  0.805*  0.885*  0.847*  0.860* 
 Coder 2  0.644*  0.906*  0.777*  0.856*  0.855*  0.884* 
 Coder 3  0.505*  0.575*  0.459*  0.380*  0.652*  0.703* 
 Coder 4  0.369*  0.428*  0.438*  0.579*  0.462*  0.404* 

  * r  is signi fi cantly different from 0 at the 0.05 level  
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and argumentation variable. An examination of the individual item and response 
data in general did not immediately indicate a reason for the lower consistency 
value observed. 

 The next row in the table indicates the average coding value given across each of 
the 48 items in each of the competency-based variables’ actual coding for this study. 

 The remaining rows of the table provide a great deal of information about how 
the 48 items were coded within each of the competency-based variables. The term 
“Code Range” in the left hand column refers to the range of codes, which is the 
value of maximum code awarded minus the value of the minimum code. For example 
a code range of 0 would indicate that all eight coders agreed on the code awarded an 
item. A code range of 1 would indicate that all coders were awarding one of two 
adjacent codes. A code range of 3, however, would indicate that at least one coder 
had awarded a code of 0 while another coder had awarded a code of 3 to an item. 
Items for which this occurred were  fl agged for extra analysis. The coders were 
numbered C1–C8 and the  fi nal row in the table indicates which coders were “outliers” 
in the coding of the individual item receiving a code range of 3.   

    2.3.2   Results of Dif fi culty Analyses 

    2.3.2.1   Predicting Variance Explained 

 The degree to which the six competency related variables add to the explanation 
of variance in the item dif fi culty scores associated with student performance for 
the PISA 2003 and PISA 2006 mathematics surveys was analysed using  fi rst the 
“best subsets” approach, and then through a separate multivariate regression 
analysis of the data. 

 Best Subset Regressions: Analysis of the PISA 2003 data, the implementation of 
the “best subset” regression approach, which is sometimes called the “all possible 
regressions” approach, resulted in the information shown in Table  2.5  (Chatterjee & 
Price,  1977 ; Draper & Smith,  1966  ) .  

   Table 2.4    Inter-coder consistency data for the six competency-based variables   

 SYM  REA  PS  MOD  COM  REP 

 Cronbach’s   a    0.89  0.62  0.90  0.81  0.95  0.83 
 Average code  1.42  1.52  1.54  1.48  1.58  1.40 
 Code range = 0  3  0  1  1  0  3 
 Code range = 1  26  25  24  24  24  27 
 Code range = 2  15  21  19  22  20  14 
 Code range = 3  4  2  4  1  4  4 
 Coding outliers  C5 = 2  C2 = 1  C8 = 4  C6 = 1  C1 = 1  C5 = 2 

 C8 = 2  C5 = 1  C4 = 1  C8 = 2 
 C5 = 1 
 C8 = 1 
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 The values in each row show data associated with various sets of predictor 
variables and the percentage of variance in the PISA 2003 item dif fi culty variability 
they predict. This percentage is given by the value in the Adjusted R-square column. 
The data show the best predictor variables as the number of variables used in the 
mode goes from 1 to 6. 

 An examination of the table provides a number of observations. First, the percent 
of variance predicted (Adjusted R-Squared value) increases up to a four-variable 
model and then decreases slightly thereafter for the best models with  fi ve or six 
predictor variables. The degree to which the increased value of prediction increases 
will be discussed later. 

 It is interesting that the one best competency predictor is the Reasoning and 
argumentation variable. The entrance of additional predictor variables in building 
best models with more variables show the entry order of Symbols and formalism, 
Problem solving, Communication, Modelling, and Representation. The latter 
two variables do not appear to add to the explanatory power achieved using only the 
 fi rst four. 

 Table  2.6  shows the same analysis conducted using the PISA 2006 item dif fi culty 
estimates. The results are very similar in that the four-variable model appears the 
best in numerical value and the  fi rst four variables entering are the same: Reasoning 
and argumentation, Symbols and formalism, Problem solving, and Communication. 
However, there is a slight difference in the order of the entrance of the remaining 
two variables into the predictor models. Here the next is Representation, followed 
then by Modelling. However, the data suggest that the addition of these latter 
two variables does not improve the prediction based on the four variables common to 
both the PISA 2003 and PISA 2006 data.  

 Overall, these best subset regression analyses indicate that the four variables of 
Reasoning and argumentation, Symbols and formalism, Problem solving, and 
Communication provide the best structure for maximizing the prediction of item 
dif fi culty in PISA as de fi ned by item logit values. Additional analysis of the relative 
contributions of each of these will appear in the next analyses. 

 Multiple regressions: Table  2.7  contains the results of a stepwise regression 
employing all possible competency-based variables for the prediction of the PISA 
2003 item dif fi culty logit values. The algorithm was structured to select the best 
single predictor, and then add the next best single predictor that would add a 
signi fi cant amount of explanatory power. This process iterates, adding variables to 
the regression equation until the point when the addition of any other variable to the 
regression equation would no longer make a statistically signi fi cant increase in 
the amount of item dif fi culty variance explained.  

 This regression equation indicates that the three competency-based variables, 
in order of explanatory power are Reasoning and argumentation, Symbols and 
formalism, and Problem solving. This model predicts 70.5% of the variability in the 
PISA item dif fi culty data, when the R-squared value is adjusted. While the addition 
of the variable Communication would have pushed the R-squared value to 71.8, the 
gain would not have been statistically signi fi cant over the variance explained by this 
three-variable model. 
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 Carrying out the same stepwise regression approach using the PISA 2006 item 
dif fi culty logit data as the dependent variable, we obtain the results shown in 
Table  2.8 . As in the case of the PISA 2003 data, the same three variables, Reasoning 
and argumentation, Symbols and formalism, and Problem solving enter in the same 
order. In this case, the three variables explain 71.4% of the variability in the item 
dif fi culty values when the adjusted R-squared value is computed.  

 A comparison of the coef fi cients show that there is no difference between the 
models developed from the PISA 2003 and PISA 2006 data. In like manner, there is no 
difference in the ascending order in which the three statistically signi fi cant predictor 
variables enter into the equations. In both cases, the calculation of the Durbin-Watson 
statistic and other residual diagnostics indicate that these models are sound and free 
of common biasing factors sometimes found in regression model building.  

    2.3.2.2   Factor Analysis 

 A factor analysis was conducted to examine the structure of the space spanned by 
the six competency-based variables. A principal components factor analysis of the 

   Table 2.7    Stepwise 
regression for the explanation 
of variability in the PISA 
2003 item dif fi culty logit 
values   

   Table 2.8    Stepwise 
regression for the explanation 
of variability in the PISA 
2006 item dif fi culty logit 
values   

 Step  1  2  3 

 Constant  −2.212  −2.524  −2.573 
 AVGREA  1.64  1.32  0.87 
  T -value  6.53  6.44  3.20 
 AVGSYM  1.09  1.02 
  T -value  5.46  5.33 
 AVGPS  0.67 
  T -value  2.39 
  S   0.947  0.743  0.707 
  R -Sq  48.09  68.78  72.38 

  The resulting regression equation is: 
 PISA 2003 = −2.573 + 0.87 * AVGREA + 1.02 
* AVGSYM + 0.67 * AVGPS  

 Step  1  2  3 

 Constant  −2.212  −2.521  −2.572 
 AVGREA  1.62  1.31  0.85 
  T -value  6.59  6.53  3.22 
 AVGSYM  1.08  1.01 
  T -value  5.53  5.42 
 AVGPS  0.68 
  T -value  2.52 
  S   0.931  0.726  0.687 
  R -Sq  48.53  69.35  73.22 

  The resulting regression equation is: PISA 
2003 = −2.572 + 0.85 * AVGREA + 1.01 * 
AVGSYM + 0.68 * AVGPS  
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correlation matrix of the competency-based variable scores for the 48 items revealed 
the  fi ndings shown in Table  2.9 . An examination of the data indicates that there 
were two factors having eigenvalues greater than one. Given that each variable con-
tributes a value of 1 to the eigenvalues total, only the factors having eigenvalues in 
the end greater than one are considered signi fi cant and retained for further study.  

 An examination of the percent of variance described by the  fi rst two factors show 
that they account for a total of 64% of the variance in the codings. Factor 1’s 
strongest loadings are Reasoning and argumentation, Modelling, Problem solving, 
and Symbols and formalism. This might be considered, given the values, a balanced 
factor similar to a generalised academic demand factor. Factor 2’s strongest loadings 
are Symbols and formalism decreased by Representation and Problem solving. This 
second factor might be considered as describing increased item demand related to 
the requirement to decode and deal with Symbols and formalism and Communication 
in the absence of Problem solving and the demand to interpret and manipulate 
Representations. One might liken this to adding demand for reading and symbol 
manipulation as it occurs without enacting problem solving strategies or multiple 
representations of mathematical concepts or operations. 

 An important remark: It might seem that a certain subset of those six competen-
cies will already serve all purposes and that the others are unnecessary. However, a 
subset of competencies proved to be suf fi cient only for explaining item dif fi culty 
and only in the particular case of PISA tests. In other cases, other subsets might 
have more explanatory power. More importantly, the competencies serve a much 
broader purpose than only explaining item dif fi culty. For the most important purpose, 
that is describing proper mathematical activities and thus formulating the essential 
aims that students ought to achieve through school mathematics, all competencies 
are indispensable.    

    2.4   Present Status of the Study 

 The foregoing data provide suf fi ciently strong evidence of the role played by the 
mathematical competencies, as de fi ned in Table  2.1 , in in fl uencing variability in 
item dif fi culty on the PISA mathematics survey items. At present, illustrations of 

   Table 2.9    Factor analysis of the competency-related variable codings   

 Sorted unrotated factor loadings and communalities 

 Variable  Factor 1  Factor 2  Factor 3  Factor 4  Factor 5  Factor 6 

 AVGREA  −0.833  −0.229  −0.355  −0.213  −0.129  0.258 
 AVGMOD  −0.762  0.181  0.450  0.064  −0.418  −0.075 
 AVGPS  −0.736  −0.430  0.020  −0.441  0.188  −0.207 
 AVGSYM  −0.666  0.538  0.353  0.022  0.361  0.110 
 AVGCOM  −0.554  0.484  −0.605  0.267  −0.002  −0.148 
 AVGREP  −0.438  −0.588  0.088  0.665  0.112  0.008 
 Variance  2.758  1.140  0.826  0.758  0.360  0.149 
 %Var  0.460  0.190  0.138  0.126  0.062  0.025 
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the way the competencies play out to in fl uence dif fi culty in particular items are 
being developed, along with an elaborated coding manual for researchers who have 
not been involved in the development of the MEG model. This coding manual will 
be central in the next stage of the study, as it will be used with researchers unfamil-
iar with it and the coding of PISA items, but familiar with coding structures. They 
will be asked to code the 48 PISA items and their results will be compared with 
those of the MEG members. 

 The planned next steps are as follows. Based on this experience and revisions 
that may result from observing these coders and their work, a broader  fi eld test shall 
be conducted where new individuals, familiar with the PISA project, will be asked to 
use the coding instruction manual without any other assistance to code the 48 items. 
Their coding results and written comments shall again be used to further the 
development of the model and manual for either one more round of  fi eld testing or 
release as a PISA technical report. 

 Two further developments of this study might be to investigate the extent to 
which the scheme could be used to predict the dif fi culty of newly developed PISA 
mathematics items; and to investigate its applicability to other (non-PISA) mathe-
matics items. 

 Curriculum statements in many countries re fl ect the importance of the competen-
cies on which this study has focused. It can be expected that the relationship between 
cognitive demand for the activation of these competencies and the empirical dif fi culty 
of the mathematical tasks that call for such activation, whether in the PISA context 
or in other contexts, will be of deep interest to teachers, teacher educators and others 
involved in mathematics education around the world.      
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