
Chapter 3
Plants that Hyperaccumulate Heavy
Metals

Elisa Fasani

Abstract Heavy metal hyperaccumulators are plants that can tolerate and
accumulate extremely high concentrations of metals in their shoots. This reflects
the enhancement of physiological processes such as metal uptake, mobilization,
translocation, and detoxification by chelation and vacuolar sequestration.
Hyperaccumulation occurs in approximately 500 taxa of angiosperms and is
particularly common among the Brassicaceae. Several candidate genes have been
proposed as determinants of heavy metal hyperaccumulation. They predominantly
encode transporters involved in metal translocation and storage, and also chelators
and genes involved in stress responses.

Keywords Hyperaccumulator � Elemental defense � Metal transporter �
Metal ligand

3.1 Defining Hyperaccumulator Plants

The first plant species reported to accumulate extremely high levels of metals was
Alyssum bertolonii, whose Ni content was greater than 1 mg g-1 dry weight
(Minguzzi and Vergnano 1948). However, the term ‘‘hyperaccumulator’’ was
coined only in 1976 to describe plants whose shoot metal concentration is some
orders of magnitude higher than adjacent plants (Jaffrè et al. 1976). This definition
implies high rates of metal uptake in roots, translocation, and accumulation in
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shoots, thus excluding plants which accumulate metals in the roots alone (Maestri
et al. 2010). Inevitably, hyperaccumulation implies hypertolerance, i.e., the ability
of the plants to detoxify heavy metals stored in aerial tissues (Krämer 2010).
Thresholds have been set for different metals and metalloids to define plants as
hyperaccumulators (Table 3.1).

Hyperaccumulation is an extreme trait that has evolved many times but is
relatively uncommon in terrestrial higher plants. The metal hyperaccumulators
identified thus far belong to approximately 500 taxa, accounting for 0.2% of all
angiosperms (Baker et al. 2000; Krämer 2010). The number of hyperaccumulator
taxa discovered for the main heavy metals is shown in Table 3.2. Most of the
known hyperaccumulators are biennial or short-lived perennial herbs, shrubs or
small trees. They are mainly endemic to metal-rich soils and are often unable to
compete with other species in non-selective soils, possibly due to the higher
metabolic costs of metal accumulation and detoxification (Baker et al. 2000). The
hyperaccumulation trait is particularly well represented among the Brassicaceae.
A phylogenetic tree of the Brassicaceae showing the positions of the main
hyperaccumulator species is shown in Fig. 3.1.

Ni hyperaccumulation is the most common trait, reflecting the large number of
Ni-enriched serpentine soils worldwide, in particular in the Mediterranean area

Table 3.1 Hyperaccumulation thresholds for the most relevant heavy metals, in comparison with
the average content in plant tissues and toxicity levels

Element Average range in plant
tissues (mg/kg dw)a

Critical toxicity level
(mg/kg dw)b

Threshold for hyper-
accumulators (mg/kg dw)a,b

As \0.01–4c \2–80 [1,000
Cd 0.03–0.5 6–10 [100
Co 0.01–3d 0.4-several [1,000
Cu 2–20 20–30 [1,000
Cr 0.2e 0.2–1 [1,000
Pb 0.1–5 0.6–28 [1,000
Mn 1–700 200–3,500 [10,000
Hg 0.005–0.2 0.001–5f [1,000
Ni 0.4–4 10–50 [1,000
Seh 0.01–0.2 3–100 [1,000
Tl 0.1–1.5g 20 [1,000
Zn 15–150 100–300 [10,000
a from Maestri et al. (2010)
b from Krämer (2010)
c from National Research Council, Committee on Medical and Biological Effects of Environ-
mental Pollutants (1977)
d from Sillanpää and Jansson (1992)
e from National Research Council, Committee on Biologic Effects of Atmospheric Pollutants
(1974)
f from Patra et al. (2004)
g from Kazantzis (2000)
h Although Se is not a heavy metal, it is included because a number of Se hyperaccumulators
have also been discovered
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and in New Caledonia. Among the nearly 400 known metal hyperaccumulator
species, approximately 25% are from the families Brassicaceae and Euphorbiaceae
(Krämer 2010). Evident from Fig. 3.1, Ni hyperaccumulation has evolved inde-
pendently six times in the Brassicaceae (Krämer 2010) and occurs most frequently
in the genus Alyssum (Baker et al. 2000), almost exclusively in the section
Odontarrhena (Krämer 2010). As far as Zn is concerned, the majority of
hyperaccumulators belong to the Brassicaceae, with probably three independent
evolutionary events. Zn hyperaccumulation tends to correlate with Cd and Pb
accumulation because these metals share similar chemical properties (Krämer
2010). The only known Cd hyperaccumulator species outside the Brassicaceae are
Viola baoshanensis (Violaceae; Liu et al. 2004), Salsola kali (Chenopodiaceae;
de la Rosa et al. 2004), Sedum alfredii (Crassulaceae; Deng et al. 2007) and
Phytolacca americana (Phytolaccaceae; Liu et al. 2009). Finally, As hyperaccu-
mulation has been reported in only two angiosperm species, both belonging to the
Brassicaceae (Karimi et al. 2009). Interestingly, the only other known As
hyperaccumulators are some fern species from the genus Pteris (Zhao et al. 2002),
among which the most studied is P. vittata (Wang et al. 2002). Species that
hyperaccumulate other metals, such as Se (Reeves and Baker 2000) and Pb (Baker
et al. 2000), have also been identified.

Two model species for hyperaccumulation, Arabidopsis (formerly Cardaminopsis)
halleri and Noccaea (formerly Thlaspi) caerulescens, are particularly suitable
for genetic analysis thanks to their strong similarity and extensive synteny with
A. thaliana.

Arabidopsis halleri is a self-incompatible perennial diploid species that can
tolerate and hyperaccumulate Zn and Cd. It shares 94% sequence identity with
A. thaliana within coding regions (Clauss and Koch 2006) and appears to have

Table 3.2 Number of hyperaccumulator plants discovered to date for relevant heavy metals, as
reported by Krämer (2010), with modification regarding Cd hyperaccumulator species cited by
Liu et al. (2009)

Element Taxa (no.) Families (no.)

As 15 2
Cd 8 5
Co (26)a (11)
Cu (35) (15)
Pb (14) (7)
Mn 10 6
Ni 390 42
Seb 20 7
Tl 1 1
Zn 15 6

a Parentheses indicate that overreporting may have occurred due to contamination with soil
particles or minerals
b Although Se is not a heavy metal, it is included because a number of Se hyperaccumulators
have also been discovered
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diverged from its non-tolerant sister species A. lyrata around 337,000 years ago,
with a speciation event coinciding with major adaptive changes that conferred
hypertolerance (Roux et al. 2011). A. halleri is found mainly in Central
and Eastern Europe, although the subspecies gemmifera occurs in Japan and
Taiwan (Al-Shehbaz and O’Kane 2002). All A. halleri populations, from both non-
contaminated and metalliferous soils, are constitutively able to hyperaccumulate
Zn and Cd, although the degree of hyperaccumulation is variable and heritable
(Macnair 2002; Meyer et al. 2010).

Noccaea caerulescens is a self-compatible diploid species, biannual or perennial,
which shares an average sequence identity of 88% with A. thaliana within the coding
regions (Assunção et al. 2003a; Rigola et al. 2006). Zn hypertolerance and
accumulation is constitutive in this species, although the trait shows more variability
than in A. halleri (Verbruggen et al. 2009; Plessl et al. 2010; Krämer 2010). Some
N. caerulescens ecotypes can also accumulate Cd and Ni. Furthermore, variations in
Cd hyperaccumulation among different ecotypes seem to correlate with different
degrees of Zn accumulation (Assunção et al. 2003b; Roosens et al. 2003). In some
populations from Southern France, Cd may even be necessary for optimal growth
(Roosens et al. 2003). Like Cd, Ni hyperaccumulation in N. caerulescens appears to
be non-constitutive and confined to some populations from serpentine soils
(Assunção et al. 2003b). The most studied ecotypes are: Prayon (Belgium) and
Ganges (France), both of which hyperaccumulate Zn and, in different degrees,
Cd; Monte Prinzera (Italy) that accumulates Zn and Ni; La Calamine (Belgium),
a Zn/Cd-hypertolerant population with low accumulation rates; and Lellingen
(Luxembourg), a non-metalliferous population (Assunção et al. 2003a, b;
Verbruggen et al. 2009).

3.2 Ecological Role of Metal Hyperaccumulation in Plants

Metal hyperaccumulation is an adaptive solution that may be disadvantageous for
plants because it is associated with high energy costs and therefore slows
metabolism and growth. However, the trait has evolved independently several
times in different taxa, indicating that it must provide some evolutionary advan-
tages. Several different explanations for metal hyperaccumulation have been
proposed although in most cases there is no supporting experimental data. Six
hypotheses were reviewed by Boyd and Martens (1992): metal tolerance/disposal,

b Fig. 3.1 Phylogenetic tree of the Brassicaceae family, as reported by Lysak and Koch (2011).
Currently accepted tribes are listed in the first column. Main hyperaccumulator species among the
Brassicaceae are indicated in the second column together with the accumulated heavy metals, and
are highlighted with red squares. Dashed lines indicate uncertain phylogenetic relationships.
Branches are not drawn to scale. *Recent hypothesis for the subdivision of the Camelineae tribe,
as suggested by Bailey et al. (2006)
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induction of drought resistance, interference, inadvertent uptake, and defense
against herbivores and pathogens. Of these, the inadvertent uptake hypothesis
gives no selective value to metal hyperaccumulators, regarding the trait as a by-
product of other physiological processes.

According to the metal tolerance/disposal hypothesis, the accumulation of
heavy metals in the aerial parts of the plant may contribute to tolerance by
removing metals from sensitive tissues and eliminating them through the loss of
leaves (Rascio and Navari-Izzo 2011). The drought resistance theory suggests that
heavy metals could work as osmolytes in the cells. Neither hypothesis is supported
by any experimental evidence.

The interference hypothesis takes allelopathy into consideration. Hyperaccu-
mulators would be able to inhibit neighboring plants by creating a high metal-content
zone, allowing them to compete with faster growing plants for space and light.
However, most studies of elemental allelopathy have been inconclusive and do not
take into consideration important criteria, such as the role hyperaccumulators play in
increasing the metal content in the surrounding area (Morris et al. 2009). Exhaustive
work comparing the Se hyperaccumulators Atragalus bisulcatus and Stanleya
pinnata with the non-accumulators Astragalus drummondii and Stanleya elata
growing in seleniferous and non-seleniferous soils demonstrated that plants can
affect Se accumulation in their neighbors, and that Se in the soil influences compe-
tition and facilitation between plants. Therefore, Se hyperaccumulators may affect
the composition of plant communities by allowing growth of Se-tolerant species
(El Mehdawi et al. 2012).

Finally, the elemental defense hypothesis considers the role of heavy metals
in defense against herbivores and pathogens, and is the most supported theory.
The role of Ni (Jhee et al. 2006b), Cd (Jiang et al. 2005), Zn (Behmer et al. 2005),
As (Rathinasabapathi et al. 2007), and Se (Galeas et al. 2008; Quinn et al. 2010) in
protecting plants from biotic stresses has been confirmed. Biotic stress resistance is
a direct effect of metal accumulation, since metal-tolerant pathogens show a
greater ability to colonize hyperaccumulator plants (Fones et al. 2010). Defense is
mediated both by the toxicity of heavy metals and their deterrent action, since
herbivores seem to prefer plants that accumulate low levels of metals (Pollard and
Baker 1997; Boyd et al. 2002). For example, many experiments conducted on
Brassica juncea plants grown with or without Se, and exposed to caterpillars
(Pieris rapae) and a fungal pathogen of the root system (Fusarium sp.), showed
that caterpillars strongly preferred leaves without Se, and Se-containing plants
were less susceptible to fungal infection (Hanson et al. 2003).

Elemental defense provides advantages over chemical defense because heavy
metal uptake requires less metabolic effort than the biosynthesis of chemical toxins
and deterrents, and inorganic elements cannot be degraded by herbivores, although
some of them are able to chelate metals and therefore develop tolerance (Rascio
and Navari-Izzo 2011). This is supported by the low levels of glucosinolate found
in the metal hyperaccumulators Streptanthus polygaloides (Davis and Boyd 2000)
and N. caerulescens (Tolrà et al. 2001). However, joint effects between different
metals and between metals and chemical compounds have been demonstrated
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(Jhee et al. 2006a). Recently, a proteomic approach aiming to unravel differences
in the A. halleri proteome following treatment with Cd and Zn highlighted that
proteins involved in plant defense mechanisms against biotic stress are down-
regulated by heavy metals. In other words, if a high metal concentration in the
shoot provides protection, then other defense mechanisms can be temporarily
saved. These data also suggest there is cross-talk between heavy metal signaling
and defense signaling (Farinati et al. 2009).

Fig. 3.2 Main mechanisms that are involved in metal accumulation by hyperaccumulating
plants. The most relevant metal transporters and chelators described in this chapter are reported.
The black dots represent metal ions and the black arrows indicate the direction of their transport.
Areas inside the cells indicate the vacuole
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3.3 Determinants for Metal Hyperaccumulation

As stated above, the distinctive characteristic of hyperaccumulator plants is the
partitioning of heavy metals in the aerial tissues, whereas most plant species
confine metals to the roots, thus preventing damage to the photosynthetic
machinery. Hyperaccumulation is achieved by enhancing certain physiological
processes, such as uptake into the roots, symplastic mobility, xylem loading and
unloading, and metal detoxification by chelation or vacuolar sequestration in the
shoots (for a review see Verbruggen et al. 2009; Krämer 2010).

Hypertolerance and hyperaccumulation are quantitative characters (Bert et al.
2003; Assunção et al. 2006; Deniau et al. 2006; Filatov et al. 2006, 2007; Courbot et al.
2007; Willems et al. 2007). Although they coexist in hyperaccumulator species,
segregation experiments using interspecific and intraspecific crosses demonstrate
that they are genetically independent (Macnair et al. 1999; Assunção et al. 2003c; Bert
et al. 2003). At least three QTLs for Zn hyperaccumulation have been identified in A.
halleri (Filatov et al. 2007) as well as one major QTL for Cd accumulation (Willems
et al. 2010). In N. caerulescens, two QTLs have been identified for Zn and Cd accu-
mulation in the roots, three for Zn accumulation in shoots, and one for Cd accumulation
in shoots (Deniau et al. 2006). Different comparative approaches, including tran-
scriptomic (Becher et al. 2004; Weber et al. 2004; Hammond et al. 2006; Rigola et al.
2006; Talke et al. 2006; van de Mortel et al. 2006, 2008) and proteomic analysis (Ingle
et al. 2005b; Tuomainen et al. 2010), have been used to isolate candidate determinants
of hyperaccumulation. Several genes are overexpressed in hyperaccumulators in
comparison to non-accumulator species, including genes encoding metal transporters
and chelators, and genes involved in generic stress responses. The main mechanisms
involved in metal hyperaccumulation are summarized in Fig. 3.2.

3.3.1 Metal Transporters

3.3.1.1 ZIP Family

The ZIP family has been shown to promote cation (particularly Zn) uptake and
accumulation in A. thaliana (Lin et al. 2009), suggesting that ZIP genes may play
an important role in metal hyperaccumulation. Some ZIP genes have been isolated
from hyperaccumulator species, including the N. caerulescens genes encoding
NcZNT1 and NcZNT2, which are homologous to AtZIP4 (Assunção et al. 2001),
as well as NcZNT5 and NcZNT6, which are homologous to AtZIP5 and
AtZIP6, respectively (Wu et al. 2009). Mizuno et al. (2005) cloned the genes for
TjZNT1, which transports Zn, Cd, and Mn, and TjZNT2, which is more specific
for Zn and Mn, from the Ni hyperaccumulator Thlaspi japonicum. AhIRT3, which
is involved in Fe and Zn transport, was identified in A. halleri (Lin et al. 2009), as
well as CsZIP1 from the Mn hyperaccumulator Chengiopanax sciadophylloides
(Mizuno et al. 2008).
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Several ZIP genes do appear to be overexpressed in hyperaccumulator species,
including A. halleri (ZIP4 and ZIP6: Becher et al. 2004; ZIP9: Weber et al. 2004; ZIP6:
Filatov et al. 2007; IRT3, ZIP3, ZIP4, ZIP6, ZIP9, and ZIP10: Talke et al. 2006) and
N. caerulescens (IRT3, ZIP6 and ZIP7: Hammond et al. 2006; ZIP3, ZIP4 and ZIP9:
van de Mortel et al. 2006; ZIP1 and ZIP8: van de Mortel et al. 2008) in comparison to
non-accumulators. The overexpression of ZIP genes may in some cases reflect gene
duplication events, e.g., AhZIP3, AhZIP6 and AhZIP9 in A. halleri (Talke et al. 2006).

3.3.1.2 CDF Family

Members of the CDF family are important for the maintenance of metal homeostasis
by mediating the efflux of metal ions from the cytosol into the apoplast or vacuole
(Gustin et al. 2011). In particular, the A. thaliana CDF protein AtMTP1 induces Zn
tolerance and accumulation when overexpressed in transgenic A. thaliana plants,
suggesting a potential role in hyperaccumulation (van der Zaal et al. 1999).

Accordingly, AtMTP1 homologs in hyperaccumulators appear to have an
important role. MTP1 is strongly expressed in A. halleri (Becher et al. 2004;
Dräger et al. 2004; Talke et al. 2006) and N. caerulescens (Assunção et al. 2001) in
comparison to non-accumulator species, and cosegregates with the QTL for Zn
tolerance in A. halleri (Willems et al. 2007; Shahzad et al. 2010). MTP1 is also
induced in the presence of Cd in N. caerulescens, suggesting a role in the response
to Cd toxicity (Küpper and Kochian 2010).

A. halleri MTP1 genes have been studied in detail and five paralogs have been
detected, named AhMTP1-A1, -A2, -B, -C, and -D (Dräger et al. 2004; Shahzad
et al. 2010). AhMTP1-D is not fixed in at least one metalliculous population. The
AhMTP1 copies share on average 97.5% sequence identity, and respectively 91
and 93% identity with their orthologs in A. thaliana and A. lyrata. Stronger
divergences are present in the promoter regions and are correlated with different
expression levels in the different species (Shahzad et al. 2010). The A. halleri
paralogs are differentially expressed and are modulated by Zn (Dräger et al. 2004;
Shahzad et al. 2010). Exhaustive analysis of MTP1 has also been carried out in the
hyperaccumulators N. caerulescens (Assunção et al. 2001) and Thlaspi goesin-
gense (Kim et al. 2004; Gustin et al. 2009). In particular, the overexpression of
TgMTP1 in A. thaliana induces a systematic response that includes the increased
expression of Zn transporters (ZIP3, ZIP4, ZIP5, and ZIP9), suggesting that
TgMTP1 may induce Zn accumulation by initiating a Zn deficiency response
(Gustin et al. 2009).

AhMTP8 and AhMTP11 are also overexpressed in A. halleri in comparison to
A. thaliana (Talke et al. 2006). Similarly, NcMTP8 is expressed more strongly in the
presence of excess Zn in N. caerulescens in comparison to A. thaliana (van de Mortel
et al. 2006). NcMTP11 and NcMTP12 also show higher expression levels in N.
caerulescens in comparison to T. arvense (Hammond et al. 2006). These metal trans-
porters belong to group I of the CDF family (Krämer et al. 2007) and are homologous to
ShMTP8 (formerly ShMTP1) from the Mn-tolerant legume Stylosanthes hamata,
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which transports Mn into the vacuoles (Delhaize et al. 2003). NcMTP11 and NcMTP12
may therefore contribute to the homeostasis of metals other than Zn and Cd.

3.3.1.3 P1B-Type ATPases

P1B-type ATPases (HMAs) play a prominent role in the homeostasis of different
metals. In A. thaliana they are involved both in Zn and Cd root-to-shoot
translocation (AtHMA2 and AtHMA4: Wong and Cobbett 2009) and metal
detoxification by vacuolar storage (AtHMA3: Morel et al. 2009), confirming their
important role in heavy metal tolerance and accumulation.

HMA1 (Becher et al. 2004), HMA3 (Becher et al. 2004; Filatov et al. 2006) and
HMA4 (Talke et al. 2006) are overexpressed in A. halleri in comparison to
A. thaliana. AhHMA4 was found to co-localize with the QTLs for Zn (Willems
et al. 2007; Roosens et al. 2008) and Cd tolerance (Courbot et al. 2007) and for Zn
and Cd accumulation (Willems et al. 2010). The downregulation of AhHMA4 by
RNA interference demonstrates that Zn and Cd tolerance and Zn hyperaccumu-
lation are mainly due to AhHMA4, which seems to be responsible for loading
metals into the xylem and their redistribution in the leaf blade (Hanikenne et al.
2008). Three almost identical gene copies are present in the A. halleri genome,
suggesting a recent duplication event. In addition to the higher copy number,
promoter modifications have enhanced the expression of AhHMA4 (Hanikenne
et al. 2008). The speciation event that separated A. halleri from its sister species
A. lyrata may have coincided with the duplication of HMA4 (Roux et al. 2011).

The P1B-type ATPases NcHMA3 and NcHMA4 are overexpressed in
N. caerulescens in comparison to T. arvense (Hammond et al. 2006) and A. thaliana
(van de Mortel et al. 2006). NcHMA4 is expressed more strongly in N. caerulescens
roots than shoots and confers Cd resistance in yeast (Bernard et al. 2004). Four
tandem copies of NcHMA4 are present in the N. caerulescens genome. The paralogs
share 88–99% sequence identity as well as 76–78% and 62–66% identity, respec-
tively, with A. thaliana and A. halleri, indicating that the gene amplification is a
relatively recent event within the N. caerulescens lineage (Ó Lochlainn et al. 2011).
Each gene copy is constitutively expressed at high levels as in A. halleri
(Ó Lochlainn et al. 2011). NcHMA3 is localized in the tonoplast and is highly
specific for Cd. It is expressed at a higher level in the Ganges ecotype, which
accumulates more Cd than Prayon. Overexpression of NcHMA3 in A. thaliana
induces Cd tolerance and low levels of Zn tolerance (Ueno et al. 2011).

3.3.1.4 NRAMP Family

NRAMP transporters are involved in the remobilization of metals (especially Fe)
from the vacuole, which suggests a putative role in hyperaccumulation (Lanquar
et al. 2005).
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Accordingly, it was shown that NRAMP3 is overexpressed in A. halleri (Weber
et al. 2004; Filatov et al. 2006; Talke et al. 2006) and N. caerulescens (van de
Mortel et al. 2006) in comparison to A. thaliana. NcNRAMP3 and NcNRAMP4
from N. caerulescens have been characterized and are similar in terms of locali-
zation and biological activity to their orthologs in A. thaliana (Oomen et al. 2009).
NcNRAMP3 can transport Fe, Mn, and Cd in yeast, whereas NcNRAMP4 trans-
ports Zn in addition (Oomen et al. 2009). The expression of NcNRAMP3 in yeast
also induces the accumulation of Cd but reduces Ni accumulation, underlining its
role in heavy metal homeostasis (Wei et al. 2009). These data indicate that the
differing roles of NRAMP proteins in A. thaliana and the hyperaccumulator
N. caerulescens may reflect different levels or patterns of gene expression (Oomen
et al. 2009). An NRAMP4 ortholog has also been cloned in the Ni-hyperaccu-
mulator species T. japonicum, and the expression of TjNRAMP4 in yeast induces
Ni accumulation and sensitivity, inferring a role in Ni homeostasis (Mizuno et al.
2005).

3.3.1.5 YSL Family

YSL transporters interact with a variety of heavy metals as phytosiderophore and
NA chelates (Schaaf et al. 2004). Their involvement in the lateral translocation of
metals into the veins (DiDonato et al. 2004) suggests a role in root-to-shoot
translocation and therefore in metal hyperaccumulation. Nevertheless, few YSL
genes appear to be overexpressed in hyperaccumulator species by transcriptomic
approach, only YSL6 in A. halleri (Talke et al. 2006) and YSL7 in N. caerulescens
(van de Mortel et al. 2006), suggesting that YSL proteins contribute minimally to
the regulation of metals other than Fe. However, three N. caerulescens YSL genes
(NcYSL3, NcYSL5, and NcYSL7) are expressed at higher levels than their orthologs
in A. thaliana (Gendre et al. 2007). These genes are constitutively expressed at
high levels around the vasculature, and they are not inducible by heavy metals.
NcYSL3 can transport both Fe- and Ni–NA complexes in yeast assays (Gendre
et al. 2007).

3.3.1.6 CaCA Superfamily

As discussed above, the MHX and CAX transporters are the only members of the
CaCA family that appear to be involved in heavy metal accumulation in plants.
MHX is a vacuolar Mg2+ and Zn2+/H+ antiport (Shaul et al. 1999). In A. halleri,
the AhMHX gene is present as a single copy; the transcript is present mainly in the
shoots and at similar levels to its ortholog in A. thaliana. However, the MHX
protein is constitutive and much more abundant in A. halleri than in A. thaliana,
indicating some form of post-transcriptional regulation (Elbaz et al. 2006).

Some CAX genes are overexpressed in metal hyperaccumulators, including
CAX2 in A. halleri (Becher et al. 2004; Weber et al. 2004), and CAX2 (Hammod
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et al. 2006), CAX3 (van de Mortel et al. 2008), and CAX7 (van de Mortel et al.
2006) in N. caerulescens. Moreover, NcCAX3 is induced by Cd (van de Mortel
et al. 2008). These data suggest CAX genes are involved in metal hyperaccu-
mulation. However, the metal specificity of CAX transporters has not been
investigated thus far, although CAX2 does not transport Zn (Becher et al.
2004).

3.3.2 Metal Ligands

3.3.2.1 Histidine

Histidine is the most versatile free amino acid in terms of metal hyperaccumula-
tion, and has a particularly high affinity for Ni (Callahan et al. 2006). The
Ni-hyperaccumulator Alyssum lesbiacum accumulates high levels of histidine in
the xylem sap when exposed to excess Ni (Krämer et al. 1996). Interestingly, Ni
tolerance and Ni transport to shoots can also be induced in the non-accumulator
species Alyssum montanum by feeding with histidine, underlining its important
role in hyperaccumulation. Similarly, feeding the non-accumulator Brassica jun-
cea with histidine increases Ni translocation by the xylem, although it has no
impact on Ni uptake (Kerkeb and Krämer 2003).

The role of histidine biosynthesis in Ni accumulation was tested in A. thaliana
by introducing the bacterial ATP phosphoribosyl transferase enzyme StHisG,
which catalyzes the first step of histidine biosynthesis and is insensitive to feed-
back inhibition by histidine. The transgenic plants were much more Ni tolerant
than wild type plants, confirming the important role of the free histidine pool
(Wycisk et al. 2004). The relationship between histidine biosynthesis and Ni
hyperaccumulation was also studied in the Ni hyperaccumulator Alyssum lesbia-
cum, by monitoring transcript and protein levels. This showed that there was no
transcriptional regulation in response to excess Ni, but the levels of all enzymes
(especially ATP phosphoribosyl transferase, ATP-PRT) were constitutively higher
than those in the weak accumulator Alyssum serpyllifolium and the non-accumu-
lator Alyssum montanum (Ingle et al. 2005a). The overexpression of AlATP-PRT
from Alyssum lesbiacum in A. thaliana conferred Ni tolerance but had no impact
on Ni accumulation (Ingle et al. 2005a) and there was no modulation of histidine
biosynthesis by Ni in the Ni-hyperaccumulator Thlaspi goesingense (Persans et al.
1999). These data suggest that additional factors are necessary to develop a
complete hyperaccumulation phenotype.

3.3.2.2 Nicotianamine

NA is the principal metal ligand in plants and it can form complexes with most
transition metal ions (Verbruggen et al. 2009). A role for NA in Zn and Cd
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hyperaccumulation has been proposed because the genes in the NA biosynthesis
pathway are upregulated in hyperaccumulators. NAS2, which is responsible for the
last step in the pathway, is constitutively expressed in A. halleri roots at a higher
level than its ortholog in A. thaliana (Becher et al. 2004; Weber et al. 2004). NAS3
is overexpressed in shoots (Becher et al. 2004). SAMS2, which generates the NA
precursor SAM, is also expressed at higher levels in A. halleri than A. thaliana
(Talke et al. 2006). N. caerulescens NAS3 and NAS4 are also expressed at higher
levels than their A. thaliana orthologs, and NAS4 is constitutively expressed (van
de Mortel et al. 2006, 2008). NA is also involved in Ni chelation, because Ni–NA
complexes are found in N. caerulescens roots exposed to Ni (Vacchina et al.
2003). NcNAS1 is constitutively expressed in shoots, whereas NA accumulation in
roots appears to be Ni dependent (Mari et al. 2006). Furthermore, NcNAS1
overexpression in A. thaliana induces Ni tolerance and accumulation (Pianelli
et al. 2005). Finally, NA is probably involved in the accumulation and mobili-
zation of other metals, such as Fe, because AhNAS4 cosegregates with a QTL for
Fe accumulation in A. halleri (Willems et al. 2010).

3.3.2.3 Metallothioneins

Although no correlation with hyperaccumulation has been demonstrated, MTs are
induced by several heavy metals e.g. in A. thaliana (Murphy and Taiz 1995) and
are involved in metal tolerance and accumulation (Zimeri et al. 2005).

The N. caerulescens MT2a and MT2b genes are expressed at higher levels than
their orthologs in A. thaliana (van de Mortel et al. 2006) and the N. caerulescens
MT2a and MT3 genes are expressed at higher levels than their orthologs in
T. arvense (Hammond et al. 2006). The MT proteins were also expressed at higher
levels in a metal-adapted N. caerulescens population in comparison to non-
metalliculous populations (Hassinen et al. 2009). However, the different expres-
sion levels of NcMT2a, NcMT2b, and NcMT3 do not correlate with the Cu, Cd, and
Zn accumulation capacity and tolerance profiles in transgenic A. thaliana
(Hassinen et al. 2009). There is no evidence of a direct connection between MTs as
metal ligands and hyperaccumulation, thus it is likely that the increased tolerance
induced by MT expression in some experiments is due to alternative roles, such as
for ROS scavenging (Hassinen et al. 2011).

3.3.3 Response to Stress

3.3.3.1 Glutathione

Antioxidants are important for hyperaccumulators to address the potential oxida-
tive stress caused by heavy metal ions. GS plays a key role for metal tolerance
because it can act as a ROS scavenger, a metal chelator, and as a substrate for PC
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biosynthesis (Krämer 2010). The overexpression of genes involved in cysteine and
GS biosynthesis has been reported in hyperaccumulators, e.g., the cysteine syn-
thetase gene OASA2 is expressed at higher levels in A. halleri than A. thaliana
(Becher et al. 2004; Weber et al. 2004), and the glutathione-S-transferase protein
GSTF10 is induced by heavy metals (Farinati et al. 2009). Similarly, GSTF16 is
overexpressed in N. carulescens shoots in comparison to T. arvense (Hammond
et al. 2006), and other GST genes are expressed at higher levels than their
A. thaliana orthologs (van de Mortel et al. 2008). Enhanced GS biosynthesis
correlates with Ni tolerance, and the concentrations of GS, cysteine, and O-acetyl-
L-serine (OAS) appear to correlate with Ni accumulation in different Thlaspi
species, both hyperaccumulator and non-accumulator (Freeman et al. 2004).
A. thaliana plants transformed with the enzyme serine acetyltransferase (SAT)
from T. goesingense produce GS, cysteine, and OAS at similar levels to hyper-
accumulator species and tolerate higher levels of Ni (Freeman et al. 2004), Zn, and
Co, but not Cd (Freeman and Salt 2007). This probably reflects the fact that
TgSAT is less sensitive to feedback inhibition induced by cysteine than AtSAT
and can therefore accumulate higher levels of GS (Na and Salt 2011).

3.3.3.2 Lignin

The cell wall is an important site for metal storage in plants because it provides a
large number of metal-binding sites (Maestri et al. 2010). Genes involved in
phenylpropanoid (PAL2), lignin (CytP450 family), and suberin biosynthesis
(CER3, CER6 and some LTP genes) are overexpressed in N. caerulescens in
comparison to A. thaliana (van de Mortel et al. 2006, 2008). Lignin and suberin
deposition in N. caerulescens results in the lignification of endodermal cells,
followed by the formation of a second layer of endodermis and the development of
the Casparian strip, which does not occur in A. thaliana or T. arvense. Lignifi-
cation and suberification may therefore help to prevent metal efflux from the
vascular cylinder (van de Mortel et al. 2006, 2008).

3.3.3.3 Defensins

Metal hyperaccumulation also induces the expression of genes involved in stress-
response signaling (biotic and abiotic) including defensins, which are strongly
overexpressed in both A. halleri (Becher et al. 2004; Talke et al. 2006) and
N. caerulescens (van de Mortel et al. 2006) in comparison to A. thaliana. Some
defensins in A. halleri are modulated by Zn (Mirouze et al. 2006). The overex-
pression of AhPDF1.1 induces Zn tolerance in both yeast and A. thaliana. This can
be explained by a Zn-chelation hypothesis, in which defensins (like MTs) use their
cysteine-rich domains to bind metal ions. Alternatively, defensins may interfere
with divalent cation transporters, reflecting their structural similarity to some
channel-blocking peptides (Mirouze et al. 2006).
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