
Chapter 9
On Modal Logics Defining Jaśkowski’s
D2-Consequence

Marek Nasieniewski and Andrzej Pietruszczak

9.1 Introduction

The basic features of notions of deductive and deductive discussive systems used
by Jaśkowski are as follows (see Jaśkowski 1948, p. 61 and Jaśkowski 1999,
pp. 37–38).

• By theses of a deductive system Jaśkowski meant all expressions asserted within
it, i.e. axioms and theorems deduced from them or proved in a specific way for a
given system.

• A deductive system is based on a certain logic iff the set of its theses is closed
under modus ponens rule with respect to theorems of the logic.

• A deductive system is overcomplete iff the set of its theses is equal to the set of
all meaningful expressions of the language.

• A deductive system is inconsistent iff among its theses there are two theses such
that one of them is the negation of the other.

• Usually, theses of a deductive system are formally expressed theorems of some
consistent theory.

• If there is no assumption that theses of a deductive system express opinions which
do not contradict each other, then such a system is called discussive.

Jaśkowski’s aim was to formulate a logic, which when applied to inconsistent
systems would not generally entail overcompleteness.

Jaśkowski gave an example of the way in which theses of discussive systems can
be generated by referring to a discussion. Decisive for such a choice was the fact that
during a discussion inconsistent voices can appear, however, we are not inclined to
deduce every thesis from them.
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One can treat voices appearing explicitly in the discussion as preceded by the
following restriction: “according to the opinion of one of the participants of the dis-
cussion”, which formally one can express by preceding the given statement with: ‘it
is possible that’. If we take a position of an external observer (i.e. someone that does
not take part in a discussion) all voices appearing in a discussion are only possible.
It is so, since a person who is not involved in the discussion has every right to treat
particular voices in disbelief or to dissociate from discussants’ statements. For the
same reason, also conclusions following from explicitly expressed statements in a
discussion are only possible. Conclusions one can treat as implicitly included into a
discussion, since a given discussion consists not only of voices explicitly expressed,
but also statements concluded from them. Summarizing, explicit voices, as well as
their conclusions, are treated as theses of a discussive system.

Since the above pattern requires use of a modal language, one has to choose some
specific modal logic. Jaśkowski himself chose the logic S5.

It is obvious that one needs to consider the language of full sentential logic, since
otherwise one would have to treat all sentences as atomic ones, and it would not be
possible to analyze logical deducibility based on the meaning of logical sentential
constants.

In the present paper, ‘p’ and ‘q’ are propositional letters, used to built formulae
(both discussive and modal). Capital Latin letters ‘A’, ‘B’ and ‘C ’ (with or without
subscripts) are metavariables for formulae, a Greek letter ‘˘ ’ is a metavariable for
sets of formulae, while small Latin latter ‘a’ is a metavariable for propositional
letters. Besides, following Jaśkowski’s custom, Gothic letters are used to denote
instances of concrete sentences of the natural language.

Jaśkowski observed that while formulating a discussive system one can not treat
the implication ‘!’ as a material one, since sets of theses of discussive systems
would not be closed under the modus ponens rule:

P ! Q
P

Q

[. . . ] out of the two theses one of which is

P ! Q ;

and thus states: “it is possible that if P, then Q”, and the other is

P ;

and thus states: “it is possible that P”, it does not follow that “it is possible that Q”, so that
the thesis

Q ;

does not follow intuitively, as the rule of modus ponens requires. (Jaśkowski 1999, p. 43,
see also Jaśkowski 1948, p. 66)
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Jaśkowski meant that the formula:

Þ.p ! q/ ! .Þp ! Þq/

is not a thesis of S5. Thus, not for all sentences P and Q, the following sentence

Þ.P ! Q/ ! .ÞP ! ÞQ/

is a substitution of a logical thesis.
As an appropriate implication to be used in the formulation of a discussive logic

Jaśkowski chose a discussive one. We will denote it by ‘!d’. In the formal language
Jaśkowski defined a formula

p !d q

by

Þp ! q :

Jaśkowski intuitively understood it in the following way: “if anyone states that
p, then q” (Jaśkowski 1999, p. 44, see also Jaśkowski 1948, p. 67).

In the same fragment, Jaśkowski pointed to the fact that:

In every discussive system two theses, one of the form:

P !d Q ;

and the other of the form:
P ;

entail the thesis
Q ;

and that on the strength of the theorem

Þ .Þp ! q/ ! .Þp ! Þq/: (M21)

Thus, such an understanding of the implication ensures that sets of theses of
deductive systems are closed under the modus ponens rule.

A discussive equivalence (notation: ‘p $d q’) Jaśkowski defined as:

.Þp ! q/ ^ .Þq ! Þp/:

In Jaśkowski (1948) (see also Jaśkowski (1969)), three classical connectives
are used: negation (‘:’), disjunction (‘_’) and conjunction (‘^’). Moreover, a
discussive conjunction ‘ d̂’, was introduced in Jaśkowski (1949). Any sentence
of the form ‘p d̂ q’ expresses a statement: “p and it is possible that q”, i.e.
formally: ‘p ^ Þq’. Notice that in Jaśkowski (1949) the classical conjunction was
not dropped from the language of discussive systems.
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Dwuwartościowy dyskusyjny rachunek zdań oznaczony jako D2 można wzbogacić defi-
niując koniunkcję dyskusyjną Kd. [In English: The two-valued discussive propositional
calculus denoted as D2 can be enriched with a definition of the discussive conjunction d̂].
(Jaśkowski 1949, p. 171, Jaśkowski 1999a, p. 57)

The question arises: what is the natural interpretation of the classical conjunction in
the context of discussive systems? It seems that the classical conjunction can be used
to “glue” particular statements of a given participant of the discussion. For example,
if a given participant expresses two statements P and Q then she/he asserts pP ^
Qq, i.e. taking the external point of view we have in the modal language pÞ.P� ^
Q�/q, where .�/� is the appropriate translation of discussive connectives which can
appear within P and Q. On the other hand discussive conjunction is usually meant
as a tool adequate to express the status of a given discussion from the point of view
of a given participant of the discussion. Thus, if we have assertions P and Q made
by two participants, then the appearance of these two statements—taking the point
of view of the first participant—can be expressed as follows: pP d̂ Qq. From the
external point of view such a statement becomes pÞ.P� ^ ÞQ�/q, which in the
logic S5 is equivalent to pÞP� ^ ÞQ�q. We obtain the same formula if we start
with the consideration of the point of view of the second participant. Indeed, we
have the discussive record of the discussion from the point of view of the second
participant: pQ d̂ Pq, while the external point of view of this statement becomes:
pÞ.Q� ^ ÞP�/q, equivalently on the basis of S5 we have pÞQ� ^ ÞP�q.

Of course we are not interested only in the <<external description>> of a
given discussion, but also whether Q discussively follows from given statements
P1, . . . , Pn of n participants (n > 0). Using modal translations and the usual
understanding of deduction in modal logics we inquire whether the following
statements (equivalent by the positive logic):

(a) .ÞP�
1 ^ � � � ^ ÞP�

n/ ! ÞQ�,
(b) ÞP�

1 ! .: : : ! .ÞP�
n ! ÞQ�/ : : :/

are valid in S5.1 Equivalently we can look into the problem of validity of the
following sentences in the discussive logic:

(a)d .P1
d̂ � � � d̂ Pn/ !d Q,

(b)d P1 !d .: : : !d .Pn !d Q/ : : :/.2

In both cases (a)d and (b)d—using the logic S5—we obtain the equivalent transla-
tions of sentences into the modal language. We have to remember that in the case of
validity in the discussive logic the translation obtained has to be preceded by ‘Þ’,

1For n D 0 we inquire whether the sentence Q is valid in the discussive logic, i.e. whether the
modal sentence ÞQ� is valid in S5.
2Notice that for n D 1 and any m > 0 a sentence p.p1 ^ � � � ^ pm/ !d Qq has a form (a)d as
well as a form (b)d, for P1 WD pp1 ^ � � � ^ pmq. Thus, it can be treated as expressing the external
point of view where only one participant is considered.
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since from the point of view of an external observer the sentences (a)d and (b)d are
only possible. Thus indeed (a) and (b) are the modal counterparts of (a)d and (b)d,
respectively.

As it is known the formula (a), resp. (b), is valid in S5 iff there is a finite sequence
beginning with sentences pÞP�

1q, . . . , pÞP�
nq, and ending with pÞQ�q, where

the other elements (as well as pÞQ�q) are either theses of S5 and/or are sentences
obtained from some sentences preceding in the sequence obtained by modus ponens.

The main aim of our paper is to find the smallest normal logic and the smallest
regular logic which could be used instead of S5. For these logics it is not enough
to have the same theses beginning with ‘Þ’ as S5; since we consider here the
discussive deducibility relation, thus these logics have to include also (M21).

Remark 9.1. In the case of a sentence of the form (a), resp. (b), for n D 0 we
only try to find out whether a wanted logic has the same thesis beginning with ‘Þ’.
This problem has already been solved in the case of normal and regular classes
of logics (Furmanowski 1975; Perzanowski 1975; Nasieniewski and Pietruszczak
2008). ut
Nowadays in the considerations concerning the logic D2 the classical conjunction is
usually omitted. It is justified by the functional completeness obtained by classical
connectives of ‘:’ and ‘_’. Thus, we also do not include the classical conjunction
in the discussive language.

9.2 Basic Notions

Let Ford be the set of all formulae of the discussive language with constants: ‘:’,
‘_’, ‘ d̂’, ‘!d’, and ‘$d’. Let Form be the set of all modal formulae.3 Jaśkowski’s
transformation is the function �� from Ford into Form such that:

1. .a/� D a, for any propositional letter a,
2. and for any A; B 2 Ford:

(a) .: A/� D p: A�q,
(b) .A _ B/� D pA� _ B�q,
(c) .A d̂ B/� D pA� ^ ÞB�q,
(d) .A !d B/� D pÞA� ! B�q
(e) .A $d B/� D p.ÞA� ! B�/ ^ Þ.ÞB� ! A�/q.4

Assume that voices in a discussion are written formally by schemes: A1, . . . , An.
We consider a possible conclusion B . Since formulae A1, . . . , An and B may contain

3In Appendix we recall some chosen basic facts and notions concerning modal logic.
4If the classical conjunction were considered, one would have to add the following condition:
.A ^ B/� D pA� ^ B�q.
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logical constants thus, instead of ÞA1, . . . , ÞAn and ÞB we have to consider their
discussive versions: ÞA�

1 , . . . , ÞA�
n and ÞB�. Taking into account examples given

by Jaśkowski we see that he used the following definition of a discussive relation:
B follows discussively from A1, . . . , An iff the following formula

ÞA�
1 ! .: : : ! .ÞA�

n ! ÞB�/ : : : /

belongs to S5.5

To conclude, discussive deductive systems are to be based on a certain logic
connected with the following consequence relation for formulae from Ford.

Definition 9.1 For any ˘ � Ford and B 2 Ford: ˘ `D2 B iff for some n > 0 and
for some A1, . . . , An 2 ˘ we have

pÞA�
1 ! .: : : ! .ÞA�

n ! ÞB�/ : : : /q 2 S5 :

In other words,

˘ `D2 B iff fÞA� W A 2 ˘g `S5 ÞB�;

where `S5 is the pure modus-ponens-style inference relation based on S5 (see
Definition 9.A.1 and Fact 9.A.1 in Appendix).

Jaśkowski used notation ‘D2’ referring to a logic, i.e. a certain set of formulae.

Definition 9.2 D2 WD f A 2 Ford W pÞA�q 2 S5 g.

Thus, on the basis of D2 one can characterize the consequence relation for
discussive systems in the following way:

Fact 9.1 For any n > 0, A1, . . . , An, B 2 Ford:

A1; : : : ; An `D2 B iff p.ÞA�
1 ^ � � � ^ ÞA�

n/ ! ÞB�q 2 S5

iff pÞA�
1 ! .: : : ! .ÞA�

n ! ÞB�/ : : : /q 2 S5

iff pÞ.A1 !d .: : : !d .An !d B/ : : ://�q 2 S5

iff pA1 !d .: : : !d .An !d B/ : : : /q 2 D2

iff p.A1 ^d � � � ^d An/ !d Bq 2 D2 :

5In da Costa and Doria (1995) a similar relation was used, yet not for Ford, but for a modal language
enriched with some discussive connectives. However, in this modal language the discussive
conjunction was defined as follows: p.A d̂ B/ $ .ÞA ^ B/q. But, as it was proved in Ciuciura
(2005), for a new transformation �� such that .A d̂ B/� D pÞA� ^ B�q, we obtain another
discussive logic D�

2 which differs from D2.
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Proof. By PL, (5˘Š), (R˘�), and definitions of the relation `D2 , the function ��,
and the logic D2.

Notice that, by the above fact, we can express the relation `D2 as the pure modus-
ponens-style inference relation based on D2.

Fact 9.2 For any ˘ � Ford and B 2 Ford:

˘ `D2 B iff there exists a sequence A1, . . . , An D B in which for any i 6 n,
either Ai 2 ˘ [ D2 or there are j; k < i such that Ak D
pAj !d Aiq.

Proof. Because (M21) belongs to S5, so D2 is closed under modus ponens for ‘!d’,
i.e., for any A; B 2 Ford, if A; pA !d Bq 2 D2, then B 2 D2. Moreover, D2

contains for any A; B; C 2 Ford the following formulae:

A !d .B !d A/

.A !d .B !d C // !d ..A !d B/ !d .A !d C //

So the condition from the fact is equivalent to the following condition: for some
n > 0 and for some A1, . . . , An 2 ˘ we have pA1 !d .: : : !d .An !d B/ : : : /q 2
D2.6 Thus, by Fact 9.1, it is equivalent to ˘ `D2 B .

9.3 Other Logics Defining D2

Definition 9.3 Let L be any modal logic.

(i) We say that L defines D2 iff D2 D f A 2 Ford W pÞA�q 2 L g.
(ii) Let S5˘ be the set of all modal logics which have the same theses beginning

with ‘Þ’ as S5, i.e., L 2 S5˘ iff 8A2Form.pÞAq 2 L ” pÞAq 2 S5/.

Fact 9.3 Nasieniewski and Pietruszczak (2008). For any classical modal logic L: L

defines D2 iff L 2 S5˘.

In Furmanowski (1975), it was shown that S4 and S5 have the same mem-
bers beginning with ‘Þ’—thus, one can use weaker modal logics to define
D2. In Perzanowski (1975), the smallest normal modal logic (denoted by S5M)
possessing this property was indicated.

6So notice that for the logic D2 we have an analogous fact to Fact 9.A.1.
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In Perzanowski (1975) S5M was defined as the smallest normal logic containing
pÞ>q,7

Þ�.Þ�p ! �p/ (ML5)

Þ�.�p ! p/ (MLT)

and closed under the following rule:

if pÞÞ Aq 2 S5M then pÞAq 2 S5M. .RM21/

Let NS5˘ and RS5˘ be respectively the sets of all normal and regular logics
from S5˘.

Fact 9.4 Perzanowski (1975). S5M is the smallest logic in NS5˘.

Notice that one can drop two out of the three axioms of the original formulation
of S5M (see also Fact 9.8ii).

Fact 9.5 Nasieniewski and Pietruszczak (2008). S5M is the smallest normal logic
which contains (MLT) and is closed under .RM21/.

Besides, it was proved in Błaszczuk and Dziobiak (1977) that one can define
the logic S5M without the rule .RM21/, using instead—as an additional axiom—the
following formula (“semi-4”):

�p ! Þ��p (4s)

Fact 9.6 Błaszczuk and Dziobiak (1977). S5M is the smallest normal logic contain-
ing (4s) and (MLT), i.e. S5M D K4s(MLT).8

Additionally, in Nasieniewski (2002) another axiomatisation of the logic S5M

without the rule .RM21/ was given.

Fact 9.7 Nasieniewski (2002). S5M is the smallest normal logic which contains (4s)
and the converse of (5)

�p ! Þ�p (5c)

i.e. S5M D K4s5c.

In Nasieniewski and Pietruszczak (2008) a regular version of the logic S5M was
considered. It was proved that while defining the logic D2 one can use a weaker
modal logic than S5M.

7As it is well known, in all regular logics (and so in normal ones) the formula pÞ>q is equivalent
to the formula (D) (see Lemma 9.A.7). The smallest normal logic containing (D) (equivalently
pÞ>q) is denoted by ‘KD’ or simply by ‘D’. We have, D ¨ S5M.
8For an explanation of the Lemmon code KX1 : : : Xn or CX1 : : : Xn see page 160.
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Definition 9.4 Let rS5M denote the smallest regular logic which contains (MLT)
and is closed under the rule .RM21/.

Fact 9.8 Nasieniewski and Pietruszczak (2008).

(i) The logic rS5M is not normal. In other words, rS5M has no thesis of the form
p�Bq. Thus, rS5M ¨ S5M.

(ii) (D); (ML5) 2 rS5M.
(iii) rS5M is the smallest logic in RS5˘; so rS5M is the smallest regular logic

defining D2.

From Fact 9.8(iii) we obtain:

Corollary 9.1. For any modal logic L: if rS5M � L � S5, then L 2 S5˘.

In Nasieniewski and Pietruszczak (2009) three axiomatisations of rS5M where
given: two of them were formulated without .RM21/ rule, while one was using .RM21/.
Axiomatisations of rS5M correspond to axiomatisations of the logic S5M. These
results have been summarized below.

Fact 9.9 Nasieniewski and Pietruszczak (2009).
rS5M is the smallest regular logic which:

(i) Contains (MLT) and (4s), i.e. rS5M D C4s(MLT);
(ii) Contains (5c) and (4s), i.e. rS5M D C4s5c;

(iii) Contains (5c) and is closed under .RM21/.

Besides, we have the upward analogue of the result from Fact 9.8(iii).

Fact 9.10 Nasieniewski and Pietruszczak (2008).
If L is a regular logic defining D2, then L � S5.9

9.4 KD45 in the Formulation of D2-Consequence

It appears that the consequence relation `D2 is closely related to the normal logic
KD45 (D K5Š D K55c; see Lemma 9.A.8(v)). To start an investigation of this
relationship, we will prove the following lemma.

Lemma 9.1.

(i) (4s) 2 CD4 ¨ KD4.
(ii) (4); (5) … K4s5c D S5M.

(iii) S5M ¨ KD4 ¨ KD45.

Proof. (i) By (4), .US/ and PL, the formula ‘�p ! ���p’ belongs to C4.
Moreover, by (D), .US/ and PL, we obtain that (4s) 2 CD4.

9It was proved in Błaszczuk and Dziobiak (1975) that if L 2 NS5˘, then L � S5.
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(ii) By “the corresponding Hintikka condition” from Segerberg (1971), Theorem
6.5 (see also Błaszczuk and Dziobiak 1977; Nasieniewski 2002) we know that
normal logics defined by (5c), and (4s) are determined by frames hW; Ri
fulfilling, respectively, the following conditions:

8u9x

�
u R x & 8v.x R v H) u R v/

�
(h5c)

8u9x

�
u R x & 8v.x R2 v H) u R v/

�
(h4s)

We can indicate a model whose frame fulfils this conditions in which (4)
and (5) are falsified. Thus, (5); (4) … K4s5c. By Fact 9.7, K4s5c D S5M.

(iii) By (i), (ii) and Lemma 9.A.8(iii) we have S5M ¨ KD4 D K45c ¨ KD45.

Since S5M � KD45 � S5, so from Fact 9.3 and Corollary 9.1 we obtain:

Corollary 9.2. KD45 2 NS5˘ and KD45 defines D2.

We can define a discussive consequence on the basis of any modal logic L.

Definition 9.5 For any ˘ � Ford and B 2 Ford: ˘ `DL
B iff for some n > 0 and

for some A1, . . . , An 2 ˘ we have pÞA�
1 ! .: : : ! ÞA�

n ! ÞB�/ : : : /q 2 L. In
other words,

˘ `DL
B iff fÞA� W A 2 Xg `L ÞB�;

where `L is the pure modus-ponens-style inference relation based on L (see
Definition 9.A.1 and Fact 9.A.1).

If ˘ D fA1; : : : ; Ang, then we will use notation: A1; : : : ; An `DL
A.

By (R˘�) and (5!) we obtain

Lemma 9.2. Let L be any normal logic such that KD45 � L. Then for any
A1, . . . , An, B 2 Form:

pÞ.ÞA1 ! .: : : ! .ÞAn ! B/ : : : //q 2 L iff

pÞA1 ! .: : : ! .ÞAn ! ÞB/ : : :/q 2 L :

Corollary 9.3. For any A1, . . . , An, B 2 Ford:

pA1 !d .: : : !d .An !d B/ : : : /q 2 D2 iff

pÞ.A1 !d .: : : !d .An !d B/ : : : //�q 2 KD45 iff

pÞA�
1 ! .: : : ! .ÞA�

n ! ÞB�/ : : : /q 2 KD45 :
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By definitions, Corollaries 9.2 and 9.3, and Fact 9.1 we obtain

Theorem 9.1. `D2 D `DKD45 .

Proof. For any A1, . . . , An, B 2 Ford we obtain

A1; : : : ; An `DKD45 B iff pÞA�
1 ! .: : : ! .ÞA�

n ! ÞB�/ : : : /q 2 KD45

iff pÞ.A1 !d .: : : !d .An !d B/ : : ://�q 2 KD45

iff pÞ.A1 !d .: : : !d .An !d B/ : : ://�q 2 S5

iff A1; : : : ; An `D2 B

Thus, for any ˘ � Ford and B 2 Ford: ˘ `D2 B iff ˘ `DKD45 B .

In what follows, we prove that KD45 is the smallest, while S5 is the largest
among normal logics which define the same consequence relation `D2 . But neither
S5M nor S4 is appropriate for this purpose.

Fact 9.11 `DS5M ¨ `DS4 ¨ `D2 . ut
The inclusions “�” are obvious. For “¨” we can use either the following

examples or the next fact.

Example 9.1. (i) .p _ : p/ d̂ p `DS4 p, while .p _ : p/ d̂ p °DS5M p.
Indeed, .p _ : p/ d̂ p `DS5M p iff ‘Þ..p _ : p/ ^ Þp/ ! Þp’ belongs

to S5M iff (4˘)2 S5M iff (4) 2 S5M. But (4) … S5M, by Lemma 9.1(ii).
(ii) p; q `D2 p d̂ q, while p; q °DS4 p d̂ q.

(iii) .p _ : p/ d̂ p; q `D2 p d̂ q, while .p _ : p/ d̂ p; q °DS4 p d̂ q. ut
Fact 9.12

(i) Let L be any regular logic such that `D2 � `DL
. Then L contains (D), (4), and

p�> ! (5)q, so CD45(1) � L.10

(ii) Let L be any normal logic such that `D2 � `DL
. Then L contains (D), (4),

and (5), so KD45 � L.

Proof. (i) For (D): Since ; `D2 p _ : p, so—by the assumption—also ; `DL

p _ : p. Hence ‘Þ.p _ : p/’ 2 L, by the definition of `DL
. By

Lemmas 9.A.5 and 9.A.7 we have that (D) 2 L.
For p�> ! (5)q: Since p !d :.p _ : p/; p `D2

:.p _ : p/, so—by the
assumption—also p !d :.p _ : p/; p `DL

:.p _ : p/. Therefore, by the
definition of `DL

, we get that ‘ÞŒÞp ! :.p _ : p/� ! ŒÞp ! Þ :.p _
: p/�’ belongs to L. Thus, by PL, ‘: Þ.Þp ! : >/ _ .Þp ! Þ : >/’
belongs to L. Thus, by (R˘�) and PL, also ‘:.� Þ p ! Þ : >/ _ .Þp !
Þ : >/’, ‘.� Þ p ^ : Þ : >/ _ : Þp _ Þ : >’, ‘.� Þ p _ : Þp _

10The name ‘CD45(1)’ is used in the sense of Segerberg (1971), vol. II. Notice that CD45 D
KD45.
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Þ : >/ ^ .: Þ : > _ : Þp _ Þ : >/’, and ‘� Þ p _ : Þp _ Þ : >’
belong to L. Thus, ‘Þp ^ �> ! � Þ p’ and p�> !(5˘)q belong to L.
Hence, by the standard duality result, p�> ! (5)q 2 L as well.

For (4): Since p d̂ q `D2 q, so ‘Þ.p ^ Þq/ ! Þq’ and ‘Þ.> ^ Þq/ !
Þq’ belong to L. However ‘Þ Þ q ! Þ.> ^ Þq/’ is a thesis of all regular
logics. Thus, by transitivity, we obtain that (4˘)2 L; so also (4) 2 L.

(ii) Since L is normal, so L is regular and p�>q 2 L.

Let Cn˘S5 be the set of modal logics which satisfy the following condition: for
any logic L

L 2 Cn˘S5
df” for any ˘ � Form and B 2 Form,

Þ ˘ `L ÞB iff Þ ˘ `S5 ÞB :

Let NCn˘S5 be the set of all normal logics from Cn˘S5. By definitions,
Lemma 9.2, and Corollary 9.2 we obtain

Fact 9.13 KD45 2 NCn˘S5.

Lemma 9.3. (5c) and (5) belong to all logics from NCn˘S5. Thus, every logic
from NCn˘S5 includes KD45.

Proof. Firstly, ‘Þ.Þp ! p/’ and ‘.Þp ^ Þ : Þp/ ! Þ : >’ are theses of
S5; so they are also theses of all logics from NCn˘S5. Secondly, these formulae
are equivalent, respectively, to (5c̆ ) and (5˘), on the basis of any normal modal
logic. Thus, (5c̆ ) and (5˘) belong to all logics from NCn˘S5. So every logic from
NCn˘S5 includes K55c (D KD45).

By Fact 9.13 and Lemma 9.3 we obtain:

Theorem 9.2. KD45 is the smallest element in NCn˘S5.

Below we introduce a transformation from Form to Ford. It allows us to prove
that if any normal logic defines the D2-consequence, it has to be located between
KD45 and S5.

Definition 9.6 Let �ı be the function from Form into Ford such that:

1. .a/ı D a, for any propositional letter a,
2. And for any A; B 2 Form:

(a) .: A/ı D p: Aıq,
(b) .A _ B/ı D pAı _ Bıq,
(c) .A ^ B/ı D p:.: Aı _ : Bı/q,
(d) .A ! B/ı D p: Aı _ Bıq,
(e) .A $ B/ı D p:.:.: Aı _ Bı/ _ :.: Bı _ Aı//q,
(f) .ÞA/ı D p.p _ : p/ d̂ Aıq,
(g) .�A/ı D p: Aı !d :.p _ : p/q.

Lemma 9.4. For any A 2 Form: pA $ Aı�q is a thesis of all classical logics.
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Lemma 9.5. For any classical modal logic L

`DL
D `D2 iff L 2 Cn˘S5 :

Proof. “)” ÞA1; : : : ; ÞAn `L ÞB iff pÞA1 ! .: : : ! .ÞAn ! ÞB/ : : :/q 2
L iff, by Lemma 9.4, PL, and (REP), pÞAı�

1 ! .: : : ! .ÞAı�
n ! ÞBı�/ : : :/q 2

L iff Aı
1; : : : ; Aı

n `DL
Bı iff Aı

1; : : : ; Aı
n `D2 Bı iff pÞAı�

1 ! .: : : ! .ÞAı�
n !

ÞBı�/ : : :/q 2 S5 iff, by Lemma 9.4, PL, and (REP), ÞA1; : : : ; ÞAn `S5 ÞB .
“(” Obvious.

Finally, we get the following

Theorem 9.3. For any normal modal logic L:

`DL
D `D2 iff KD45 � L � S5 :

Proof. “)” For KD45 � L see Fact 9.12(ii).
For any A 2 Form we have: ; `D2 Aı iff ; `DL

Aı. So by Definitions 9.1 and 9.5
we have: pÞAı�q 2 S5 iff pÞAı�q 2 L. Thus, by Lemma 9.4, PL, and (REP), we
obtain that: pÞAq 2 S5 iff pÞAq 2 L. Thus, L 2 NS5˘. Therefore L � S5, by
Facts 9.3 and 9.10.

“(” By Corollary 9.2 and Fact 9.3, L 2 NS5˘. Thus, L 2 NCn˘S5, by
Lemma 9.2. Hence `D2 D `DL

, by Lemma 9.5.

9.5 The Smallest Regular Modal Logic Defining
D2-Consequence

We will show that consequence relation `D2 is also closely connected with the
regular logic CD45(1).

Definition 9.7 Let CD45(1) be the smallest regular logic which contains (D), (4),
and (5(1)), i.e. p�> ! (5)q.
Remark 9.2. In the notation of Segerberg a regular logic CN1D(1)4(1)5(1) cor-
responds, by the definition, to the normal logic KD45. Yet in C2 the formu-
lae (D), (4) and (5c) are respectively equivalent to (D(1)), (4(1)) and (5c(1)),
i.e., p�> ! .�p ! Þp/q, p�> ! .�p ! ��p/q and p�> ! .�p !
Þ�p/q (see Segerberg 1971, p. 208). Moreover, the formula .N1/, i.e. p�> !
��>q (see Segerberg 1971, p. 198), is an instance of (4). Thus, CD45(1) D
CN1D(1)4(1)5(1). Hence, by Lemma 9.A.9, i.e. Corollary 2.4 from Segerberg
(1971), vol. II, we obtain:

CD45(1) D CF1 \ KD45 ;

CN15c5(1) D CF1 \ K55c ;

where CF1 is the falsum logic. ut
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By the above remark and the equality KD45 D K55c we obtain11:

Fact 9.14 CD45(1) D CN15c5(1).

Fact 9.15 The logic CD45(1) is not normal. In other words, CD45(1) has no thesis
of the form p�Bq.

Proof. It is enough to use a model from Fact 3.1 of Nasieniewski and Pietruszczak
(2008): Let v be a valuation from Form into f0; 1g which preserves classical truth
conditions for classical connectives and let v.�A/ D 0 and v.ÞA/ D 1, for any
A 2 Form. Notice that for any thesis of CD45(1) we have v.A/ D 1, while, for
example, v.�>/ D 0.

Fact 9.16 rS5M ¨ CD4 ¨ CD45(1) ¨ KD45 ¨ S5.

Proof. Notice that, by Lemma 9.9, rS5M D C4s5c. Moreover, (5c̆ ), (4s) 2 CD4 D
C45c, respectively by Lemmas 9.A.8(ii) and 9.1(i). Thus, rS5M � CD4. This
inclusion is proper, since rS5M ¨ S5M ¨ KD4 and (4) … S5M (see Lemma 9.1).

Besides, we have CD4 � KD4. But (5)… KD4, so also (5(1))… KD4, since
in all normal logics we have the thesis ‘(5)$(5(1))’. Hence (5(1))… CD4.
Moreover, CD45(1) � KD45. This inclusion is proper by Fact 9.15.

Lemma 9.6. The formulae (�) and for any n > 2

Þp1 ! .Þp2 ! : : : .Þpn ! .Þ.p1 ^ .Þp2 ^ : : : .Þpn�1 ^ Þpn/ : : : /////

and for any n > 1

Þ .Þp1 ! .Þp2 ! : : : .Þpn ! q/ : : : // !
! .Þp1 ! .Þp2 ! : : : .Þpn ! Þq/ : : : //

are theses of CN15(1) � CD45(1).

Proof. By Lemma 9.A.8(vi), (�) 2 K5. Obviously (�) 2 CF1. So, we use
Lemma 9.A.9. The proof in the case of remaining formulae is analogous. It is by
induction on n.

Let RCn˘S5 be the set of all regular logics from Cn˘S5. We have:

Lemma 9.7. CD45(1) 2 RCn˘S5.

11We have also a proof of the following fact without the use of Lemma 9.A.9. Firstly, by
Lemma 9.A.8(ii), (5c) 2 CD4; so CN15c5(1) � CD45(1).

Secondly, 5˘ (1) belongs to C5c5(1), so by .US/ we have: ‘�> ! .Þ�p ! � Þ �p/’.
Moreover, by 5(1), .RM/, (K) and PL, we obtain: ‘��> ! .�Þ�p ! ��p/’. So,
by PL, we receive: ‘.��> ^ �>/ ! .Þ�p ! ��p/’. Hence, by (5c) and PL, we
get ‘.��> ^ �>/ ! .�p ! ��p/’. Hence, by .N1/, PL and .RM/, we have that
(4) 2 CN15c5(1). Thus, CD45(1) � CN15c5(1), since by Lemma 9.A.8(i), (D) 2 C5c.
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Proof. For any A1, . . . , An, B 2 Form by Lemma 9.2 and Fact 9.16, and Fact 9.8(iii):
pÞA1 ! .: : : ! .ÞAn ! ÞB/ : : : /q 2 S5 iff pÞ.ÞA1 ! .: : : ! .ÞAn !
B/ : : ://q 2 S5 iff pÞ.ÞA1 ! .: : : ! .ÞAn ! B/ : : ://q 2 CD45(1).

By Lemma 9.6, it follows from the last statement that pÞA1 ! .: : : ! .ÞAn !
ÞB/ : : : /q 2 CD45(1). The reverse implication is obvious.

By the above lemma we have directly:

Corollary 9.4. `D2 D `DCD45(1) .

By Fact 9.12(i) and Definition 9.7 we obtain:

Lemma 9.8. For any regular logic L such that `D2 D `DL
it is the case that

CD45(1) � L.

By Lemmas 9.7, 9.5, and 9.8 we conclude that

Corollary 9.5. CD45(1) is the smallest element in RCn˘S5.

We have of course also a regular version of Theorem 9.3:

Lemma 9.9. S5 is the biggest element in RCn˘S5.

Proof. Let us assume that L 2 RCn˘S5 and A 2 L. By the classical logic we
have .p _ : p/ ! A 2 L and by monotonicity Þ�.p _ : p/ ! Þ�A 2 L

i.e, Þ�.p _ : p/ `L Þ�A. Thus, by the assumption Þ�.p _ : p/ ! Þ�A 2
S5 and by .MP/ we obtain that Þ�A 2 S5, so using the standard reduction of
modalities we obtain that A 2 S5.

We have a lemma that is analogous to Lemma 9.8:

Lemma 9.10. For any regular logic L such that `D2 D `DL
it is the case that

L � S5.

Proof. Assume that A 2 L. By Lemma 9.4 we have also Aı� 2 L.
Since Þ.Þ :.p _ : p/ ! :.p _ : p// 2 S5 thus, :.p _ : p/ !d :.p _

: p/ 2 D2 and by the assumption also :.p _ : p/ !d :.p _ : p/ 2 DL. By
the definition of DL it means that Þ.Þ :.p _ : p/ ! :.p _ : p// 2 L. But for
every regular modal logic the last statement is equivalent to: Þ�.p _ : p/ 2 L.
It follows from Lemma 9.A.6 that Þ�Aı� 2 L. But again for every regular modal
logic this condition is equivalent to Þ.Þ : Aı� ! :.p _ : p// 2 L, which
means that : Aı !d :.p _ : p/ 2 DL, so : Aı !d :.p _ : p/ 2 D2. Therefore,
Þ.: Aı !d :.p _ : p//� 2 S5, equivalently Þ�Aı� 2 S5. From this follows
that Aı� 2 S5 while by Lemma 9.4 we conclude that A 2 S5.

So taking together Lemmas 9.8 and 9.10 we receive:

Corollary 9.6. For any regular logic L such that `DL
D `D2 we have CD45(1) �

L � S5.



156 M. Nasieniewski and A. Pietruszczak

Lemma 9.11. For any regular logic L such that CD45(1) � L � S5 we have
L 2 RCn˘S5.

Proof. Assume that CD45(1) � L � S5. We have to prove that for any A1, . . . , An,
B 2 Form: pÞ.ÞA1 ! .: : : ! .ÞAn ! B/ : : ://q 2 S5 iff pÞ.ÞA1 ! .: : : !
.ÞAn ! B/ : : ://q 2 L. Left-to-right implication follows from Lemma 9.7. The
reverse implication is obvious.

From this lemma and Lemma 9.5 we obtain

Theorem 9.4. For any regular logic L such that CD45(1) � L � S5 we have
`DL

D `D2 .

Finally, directly from Corollary 9.6 and Lemma 9.11 we get the following

Theorem 9.5. For any regular modal logic L

`DL
D `D2 iff CD45(1) � L � S5 :

Appendix: Some Facts from Modal Logic

As in Chellas (1980) modal formulae are formed in a relational way from proposi-
tional letters: ‘p’, ‘q’, ‘p0’, ‘p1’, ‘p2’, . . . ; truth-value operators: ‘:’, ‘_’, ‘^’, ‘!’,
and ‘$’ (connectives of negation, disjunction, conjunction, material implication,
and material equivalence, respectively); modal operators: the necessity sign ‘�’ and
the possibility sign ‘Þ’; and brackets. Let Form be the set of modal formulae, and—
as in Chellas (1980)—let PL be the set of modal formulae which are instances of
classical tautologies. Let > WD ‘p ! p’.

As in Bull and Segerberg (1984) and Chellas and Segerberg (1996), a set L of
modal formulae is a (modal) logic iff

• PL � L,
• For any C; A 2 Form: L contains the following formula

C Œ
: � : A=ÞA� $ C ; (rep�)

where C ŒA=B� is any formula that results from C by replacing one or more
occurrences of A, in C , by B , i.e. using (rep�) we are replacing in C one
or more occurrences of ‘: � :’ by ‘Þ’.12

12In Bull and Segerberg (1984) and Chellas and Segerberg (1996) the symbol ‘Þ’ is only an
abbreviation of ‘: � :’. In the present paper ‘Þ’ is a primary symbol, thus, we have to admit
an axiom of the form (rep�). Theses of this form are equivalent to the usage of ‘Þ’ as the
abbreviation of ‘: � :’.
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• L is closed under the following three rules: modus ponens for ‘!’:

if A and pA ! Bq are members of L, so is B . .MP/

uniform substitution:
if A 2 L then s A 2 L, .US/

where s A is the result of uniform substitution of formulae for propositional
letters in A.

Definition 9.A.1 Let L be any modal logic. We define the consequence `L as
follows. For any ˘ � Form and B 2 Form: ˘ `L B iff for some n > 0 and
for some A1, . . . , An 2 ˘ we have pA1 ! .: : : ! .An ! B/ : : : /q 2 L.

Notice that ˘ `L B iff there is a derivation of B from L [ ˘ with the help
of modus ponens for ‘!’ as the only rule of inference, i.e., `L is the pure modus-
ponens-style inference relation based on L.

Fact 9.A.1 Lemmon (1977). ˘ `L B iff there exists a sequence A1, . . . , An D B

in which for any i 6 n, either Ai 2 ˘ , or Ai 2 L, or there are j; k < i such that
Ak D pAj ! Ai q.

All members of the set L are called theses of the logic L. By (rep�), every modal
logic has the following thesis:

Þ p $ : � : p: (dfÞ)

A modal logic L is classical (congruent) iff L is closed under the following rule
for any A; B 2 Form:

if pA $ Bq 2 L then p�A $ �Bq 2 L. .RE/

Every classical logic L is closed under the rule of replacement, i.e. for any
A; B; C 2 Form:

if pA $ Bq 2 L then pC $ C ŒA=B�q 2 L. (REP)

It is known (cf. e.g. Chellas 1980) that while defining classical logics one
uses (dfÞ) instead of (rep�), i.e. treats them (logics) as subsets of Form which
include PL and (dfÞ) and which are closed under rules .MP/, .US/ and .RE/.
We also have an analogous situation in the case of monotonic, regular, and normal
modal logics defined further.

Every classical modal logic has the following thesis

�p $ : Þ : p (df�)



158 M. Nasieniewski and A. Pietruszczak

Lemma 9.A.1 A classical modal logic contains, respectively, the following
formulae

�.p ! q/ ! .�p ! �q/ (K)

�.p ^ q/ $ .�p ^ �q/ (R)

�p ! p (T)

�p ! ��p (4)

Þ�p ! �p (5)

�p ! Þ�p (5c)

�p $ Þ�p (5!)

if and only if it contains, respectively, their dual versions

�.p ! q/ ! .Þp ! Þq/ (K˘)

Þ.p _ q/ $ .Þp _ Þq/ (R˘)

p ! Þp (T˘)

Þ Þ p ! Þp (4˘)

Þp ! � Þ p (5˘)

� Þ p ! Þp (5c̆)

Þp $ � Þ p (5˘Š)

Lemma 9.A.2 For any classical modal logic L the following conditions are
equivalent:

(a) For any � 2 PL, p��q 2 L (resp. pÞ�q 2 L, pÞ��q 2 L).
(b) p�>q 2 L (resp. pÞ>q 2 L, pÞ�>q 2 L).

Lemma 9.A.3 Let L be any classical modal logic such that

(a) either p�>q 2 L,
(b) or (5); pÞBq 2 L, for some B 2 Form.13

Then L is closed under the rule of necessitation:

if A 2 L then p�Aq 2 L. .RN/

13Notice that (b) implies (a).
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Lemma 9.A.4 Chellas (1980). Let L be any classical modal logic such that
(T); (5) 2 L. Then L has as its theses p�>q, pÞ>q, pÞ�>q, (4), and

�p ! Þp (D)

and L is closed under .RN/ and the following rules:

if A 2 L, then pÞAq 2 L, .RP/

if A 2 L, then pÞ�Aq 2 L. .RPN/

A modal logic L is monotonic iff L is closed under the monotonicity rule, i.e.
for any A; B 2 Form:

if pA ! Bq 2 L, then p�A ! �Bq 2 L, .RM/

Every monotonic logic L is classical and it is closed under the dual form of .RM/,
i.e. for any A; B 2 Form:

if pA ! Bq 2 L, then pÞA ! ÞBq 2 L. .RM˘/

Lemma 9.A.5 For any monotonic logic L the following conditions are equivalent:

(a) For any � 2 PL, p��q 2 L (resp. pÞ�q 2 L, pÞ��q 2 L).
(b) p�>q 2 L (resp. pÞ>q 2 L, pÞ�>q 2 L).
(c) For some B 2 Form, p�Bq 2 L (resp. pÞBq 2 L, pÞ�Bq 2 L).

Lemma 9.A.6 Let a monotonic logic L has a thesis of the form p�Bq (resp.
pÞBq, pÞ�Bq). Then L is closed under the rule .RN/ (resp. .RP/, .RPN/).

A modal logic L is regular iff L is monotonic and (K) 2 L. A logic L is regular
iff L is closed under the regularity rule, i.e. for any A; B; C 2 Form:

if pA ^ B ! C q 2 L then p�A ^ �B ! �C q 2 L. .RR/

Every regular modal logic has the following theses: (K˘), (R), (R˘) and

Þ .p ! q/ $ .�p ! Þq/ (R˘�)

By (R˘�) we obtain.

Lemma 9.A.7 For any regular logic L: pÞ>q 2 L iff (D) 2 L.

A modal logic is normal iff it contains (K) and is closed under .RN/ iff it is
regular and contains p�>q.

Let K (resp. C2) be the smallest normal (resp. regular) modal logic. Using names
of formulae from Lemma 9.A.1, to simplify naming normal (resp. regular) logics we
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write the Lemmon code KX1 : : : Xn (resp. CX1 : : : Xn) to denote the smallest normal
(resp. regular) logic containing formulae .X1/, . . . , .Xn/ (see Bull and Segerberg
1984; Chellas 1980; Lemmon 1977). We standardly put T WD KT, S4 WD KT4
and S5 WD KT5. As it is known, T ¨ S4 ¨ S5, KD45 ¨ S5, KD45 ª S4 and
T ª KD45.

Lemma 9.A.8

(i) (D) 2 C5c � K5c; (D) 2 KT.
(ii) (5c) 2 CD4 � KD4.

(iii) KD4 D K45c and CD4 D C45c.
(iv) (4) 2 K5Š .
(v) KD45 D K5Š D K55c.

(vi) In K the formula (5) is equivalent to the following formula

.Þp ^ Þq/ ! Þ.p ^ Þq/ (�)

Proof. (i) ‘Þ.p ! �p/’ belongs to C5c, by (R˘�). So, we use Lemma 9.A.7.
(ii) By (4), .US/, (D) and PL we obtain that (5c) 2 CD4.
(iii) By (i) and (ii).
For (iv) see Exercise 4.46 in Chellas (1980).
(v) By (i), (ii) and (iv).
For (vi) see Exercise 4.37 in Chellas (1980).

Notice that from Lemmas 9.A.3, 9.A.4, and 9.A.7 we obtain:

Corollary 9.A.1 CD5 D KD5, CD45 D KD45 and CT5 D KT5 WD S5.

Thus, while defining strictly regular logics one uses some additional formulae.
We adopt a convention from Segerberg (1971), p. 206. For the formula .X/ and any
i > 0 we put .X(i)/ WD p�i > ! .X/q.

Lemma 9.A.9 Segerberg (1971), vol. II, Corollary 2.4. For any i > 0:

CNiX1.i/ : : : Xn.i/ D CFi \ KX1 : : : Xn ;

where

�i > ! �iC1> (Ni)

Þi : > (Fi)

Of course, in any modal logic N0 is equivalent to p�>q; so CN0 D K.
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Jaśkowski, S. 1969. Propositional calculus for contradictory deductive systems. Studia Logica 24:

143–157; the first English version of Jaśkowski (1948).
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