
Chapter 7
New Arguments for Adaptive Logics as Unifying
Frame for the Defeasible Handling
of Inconsistency

Diderik Batens

7.1 Introduction

A variety of formats is used to present defeasible logics. More often than not, the
format is typical for the logic and derives from the accidental way in which the logic
was discovered. Not only the object level description, but also the proof techniques
needed for metatheorems vary with those formats. Unifying this domain seems
highly useful if not necessary.

As soon as a standard format for adaptive logics was devised,1 it seemed to offer
an attractive means for unification. Today nearly all (first order) defeasible logics
have been characterised by adaptive logics. Moreover, the unification is a strong
one. If an adaptive logic is in standard format, the format itself defines the logic’s
proof theory and semantics. Moreover, most of the metatheory has been proved in
terms of the standard logic alone. This includes soundness and completeness and a
host of properties.

The standard format of adaptive logics may still prove not to be the right
unifying frame. New defeasible logics may be discovered and may require that
the format is modified or replaced. Or another format may turn out superior in the
end. Nevertheless, especially in terms of the new arguments presented below, it is
certainly worthwhile to continue the unification in terms of the standard format.

In the present paper, four new arguments are presented in favour of characterizing
defeasible reasoning forms by adaptive logics in standard format. The arguments are
diverse in nature, but all point in the same direction.

1The first steps were taken in Batens (2001), but later the matter was refined. The best published
formulation appears in Batens (2007). The most reliable reference on adaptive logics is Batens
(201+), of which the central chapters are available on the web.
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For the first two arguments, more technical papers are in preparation. This is
why I shall consider them briefly, pointing out the results and commenting on their
significance while referring, for technical matters, to the forthcoming papers. The
third and fourth argument are presented a bit more at length.

7.2 Preliminaries

In order to make the paper minimally self contained, I shall first briefly summarise
the standard format of adaptive logics. First, however, I need to introduce some
logics.

Where CL is classical logic, let CLuN be the full positive fragment of CL
together with the axiom A _ :A.2 CLuN is just like CL except that it allows for
gluts with respect to negation (whence its name). So it is a paraconsistent logic
and actually (with respect to CL) the most basic paraconsistent logic that is not
also paracomplete. CLuNs, studied at length in Batens and De Clercq (2004),
is the paraconsistent logic obtained by extending CLuN with double negation
(in both directions) De Morgan axioms, axioms expressing the standard classical
behaviour of negations of implications, negations of equivalences, and negations of
the quantifiers, and Replacement of Identicals—its name refers to Schütte who first
described its propositional fragment in Schütte (1960). LP is a fragment of CLuNs:
all logical symbols have the same meaning as in CLuNs except for implication
and equivalence, which are explicitly defined by A � B Ddf :A _ B and
A � B Ddf .A ^ B/ _ .:A ^ :B/ and hence are not detachable.

The sequel of this section may be skipped by people familiar with adaptive logics.
An adaptive logic AL is defined by a triple:

1. A lower limit logic LLL: a reflexive, transitive, monotonic, and compact logic
for which there is a positive test.

2. A set of abnormalities ˝: a set of LLL-contingent formulas, characterised by a
(possibly restricted) logical form F which contains at least one logical symbol.

3. An adaptive strategy: Reliability, Minimal Abnormality, . . .

The lower limit logic is the stable part of the adaptive logic; anything that
follows from the premises by LLL will never be revoked. For technical reasons,
all classical symbols are added to the lower limit logic, whence this extends
CL. In the present context, this means that classical negation, L:, is added next
to the standard negation, :, which is paraconsistent. In standard applications, L:
does not occur in the premises or in the conclusion. Its function is technical and
metatheoretical. Abnormalities are supposed to be false “unless and until proven
otherwise”. Strategies are ways to handle derivable disjunctionsof abnormalities:

2Replacement of Identicals is not derivable in CLuN but can be added.
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an adaptive strategy picks one specific way to interpret the premises as normally
as possible. To keep the discussion with bounds, I shall only consider the Minimal
Abnormality strategy—see below—in the present paper.

From now on, I shall take “adaptive logic” to mean adaptive logic in standard
format. Inconsistency-adaptive logics are adaptive logics the lower limit of which
has a paraconsistent standard negation.

Let us review some examples of inconsistency-adaptive logics. CLuNm has
CLuN as its lower limit logic, ˝ D f9.A ^ :A/ j A 2 F g, and Minimal
Abnormality as its strategy—F is the set of open and closed formulas and 9.A ^
:A/ is the existential closure of A ^ :A. CLuNsm is similar, except that CLuNs
is its lower limit and its set of abnormalities is ˝a D f9.A ^ :A/ j A 2 F ag, in
which F a is the set of open and closed primitive formulas (those that contain no
logical symbol except possibly for identity). LPm is exactly like CLuNsm except
that LP is its lower limit.

If the lower limit logic is extended with an axiom by which all abnormalities
entail triviality, one obtains the upper limit logic ULL. The upper limit logic of
CLuNm, of CLuNsm, and of LPm is CL. If a premise set � does not require that
any abnormalities are true, the AL-consequences of � are identical to its ULL-
consequences. In the opposite case, the AL-consequence set of � will in general be
a superset of its LLL-consequences.

In the expression Dab.�/, � is a finite subset of ˝ and Dab.�/ denotes
the classical disjunction of the members of �. Dab.�/ is called a Dab-formula.
Dab.�/ is a minimal Dab-consequence of � iff � `LLL Dab.�/ whereas � °LLL

Dab.�0/ for all �0 � �. Where Dab.�1/; Dab.�2/; : : : are the minimal Dab-
consequences of � , ˚.� / comprises the minimal choice sets of f�1; �2; : : :g.
Where M is a LLL-model, Ab.M / is the set of abnormalities verified by M .

Definition 7.1. A LLL-model M of � is minimally abnormal iff there is no LLL-
model M 0 of � such that Ab.M 0/ � Ab.M /.

Definition 7.2. � �ALm A iff A is verified by all minimally abnormal models of � .

It was proved in Batens (2007) that a LLL-model M of � is minimally abnormal
iff Ab.M / 2 ˚.� /.

Adaptive logics have also a dynamic proof theory, which is defined by rules of
inference and by a marking definition. An annotated AL-proof consists of lines that
have four elements: a line number, a formula, a justification and a condition. Where

A �

abbreviates that A occurs in the proof as the formula of a line that has � as its
condition, the (generic) inference rules are:
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PREM If A 2 � : . . . . . .
A ;

RU If A1; : : : ; An `LLL B: A1 �1

. . . . . .
An �n

B �1 [ : : : [�n

RC If A1; : : : ; An `LLL B L_Dab.�/ A1 �1

. . . . . .
An �n

B �1 [ : : : [�n [�

In RU, L_ abbreviates classical disjunction. By applying the above rules, one
moves from one stage of a proof to another. A stage is a list of lines—stage 0 of
any proof is the empty list. Stage s0 is an extension of s iff all lines that occur in s
occur in the same order in s0. A dynamic proof is a chain of stages.

That A is derivable on the condition � from the premise set � may be interpreted
as follows: it follows from � that A or one of the members of � is true. As the
members of �, which are abnormalities, are supposed to be false, A is considered
as derived, unless and until the supposition cannot be upheld. The precise meaning
of this depends on the strategy, which determines the marking definition (see below)
and hence determines which lines are marked at a stage. If a line is marked at a stage,
its formula is considered as not derived at that stage.

Dab.�/ is a minimal Dab-formula at stage s of an AL-proof iff, at stage s,
Dab.�/ is derived on the condition ; and there is no �0 � � for which Dab.�0/ is
derived on the condition ;. Where Dab.�1/; : : : ; Dab.�n/ are the minimal Dab-
formulas at stage s of a proof from � , ˚s.� / is the set of minimal choice sets of
f�1; : : : ; �ng.
Definition 7.3. Marking for Minimal Abnormality: Line l is marked at stage s iff,
where A is derived on the condition � at line l , (1) there is no ' 2 ˚s.� / such that
' \� D ;, or (2) for some ' 2 ˚s.� /, there is no line on which A is derived on a
condition � for which ' \� D ;.

This reads more easily: where A is derived on the condition � at line l , line l is
unmarked at stage s iff (1) there is a ' 2 ˚s.� / for which ' \ � D ; and (2) for
every ' 2 ˚s.� /, there is a line at which A is derived on a condition � for which
' \� D ;.

Definition 7.4. A is finally derived from � at line l of a stage s iff (1) A is the
second element of line l , (2) line l is not marked at stage s, and (3) every extension
of the stage in which line l is marked may be further extended in such a way that
line l is unmarked.

Definition 7.5. � `AL A (A is finally AL-derivable from � ) iff A is finally derived
at a line of a proof from � .
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As announced, most of the metatheory is provable in terms of the standard
format, including that � `AL A iff � �AL A.

7.3 Equivalent Premise Sets

This section reports on joint work with Peter Verdée and Christian Straßer (see
Batens et al. 2009b). It is often important to determine whether two premise sets,
� and � 0, are equivalent with respect to a logic L, i.e. CnL.� / D CnL.� 0/.
Thus, two theories may be ‘identical’ or not and two people may or may not
share the same view on some topic. Determining whether two premise sets are
identical by computing the sets CnL.� / and CnL.� 0/ is obviously an impossible
task. Fortunately certain criteria may be applied if the underlying logic is a Tarski
logic (a reflexive, transitive, monotonic consequence relation), which is the common
type of logics.3

Let L0 be weaker than L iff CnL0.� / � CnL.� / for some � and CnL0.� / �
CnL.� / for all � . The three most straightforward criteria are C1–C3 below. C1 is a
direct criterion; the other criteria refer to a different logic. C2 and C3 are especially
handy if L is a complicated logic.

C1 If � 0 � CnL.� / and � � CnL.� 0/, then � and � 0 are L-equivalent.
C2 If L0 is a Tarski logic weaker than L, and � and � 0 are L0-equivalent, then �

and � 0 are L-equivalent.
C3 If every CnL.�/ is closed under a Tarski logic L0 (viz. CnL0.CnL.�// D

CnL.�/ for all �), and � and � 0 are L0-equivalent, then � and � 0 are L-
equivalent.

For most defeasible logics, as formulated in the literature, one or more of the
criteria break down. Easy examples are the Strong (or inevitable) consequence
relation (� `Strong A iff � 0 `CL A for every maximal consistent subset of � 0 of � )
and the Weak consequence relation (� `Weak A iff � 0 `CL A for some maximal
consistent subset of � 0 of � )—see Rescher and Manor (1970) and Benferhat et al.
(1997). Note that C1 does not hold for the Weak consequence relation and that C3
fails for the Strong consequence relation. The way in which some defeasible logics
are presented causes the situation even to be worse. Thus criteria C1–3 require heavy
reformulation before they even make a chance to be applicable to the many kinds of
default logics or to the very transparent pivotal-assumption consequence relations
defined in Makinson (2005).

The situation is completely different for adaptive logics: criteria C1–C3 provably
hold for all of them. The proofs (in Batens et al. 2009b) rely on the fact
that all adaptive logics have the following properties: reflexivity, fixed point
(CnAL.CnAL.� // D CnAL.� /), cumulative monotonicity (if � 0 � CnAL.� /, then

3Tarski logics that are compact and semi-recursive may be characterised as logics that have static
proofs, whereas defeasible logics have dynamic proofs. A first version of the theoretical analysis
of such notions is presented in Batens (2009a).
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CnAL.� / � CnAL.� [ � 0/), and cumulative transitivity (if � 0 � CnAL.� / then
CnAL.� [ � 0/ � CnAL.� /)—note that these properties are provable from the
standard format. So, for adaptive logics, we have handy criteria for determining
the equivalence of premise sets (and the identity of theories) and these criteria are
the same as for Tarski logics.

Some will wonder how this is possible, given the claim that all defeasible first-
order logics can be characterised by an adaptive logic. The reason is that the
characterization often proceeds under a translation. An example might clarify this.
Let the premises be formulated with classical negation, L:. Let � : L: D f: L:A j A 2
� g and let W 6: be the set of closed formulas that do not contain : (but may contain
L:). It was proved in Batens (2000) that CnStrong.� / D CnCLuNm.� : L:/ \ W 6:. So
while C3 does not hold for the Strong consequence relation, C3 applies once the
two premise sets are so translated and the ‘logic’ Strong is replaced by CLuNm.

There is a further result on extending premise sets. For every Tarski logic L,
� [� and � 0[� are L-equivalent if � and � 0 are. This does not hold for defeasible
logics, not even for adaptive ones. However, for adaptive logics there is (apart from
a specific criterion) a very close approximation: If L is a Tarski logic weaker than
AL and � and � 0 are L-equivalent, then � [ � and � 0 [ � are AL-equivalent
for all �.

Two other important results are proven in Batens et al. (2009b). Where AL is an
adaptive logic and LLL is its lower limit logic: (1) every monotonic logic L that is
weaker than AL is weaker than LLL or identical to it and (2) if CnAL.� / is closed
under a monotonic logic L, then L is weaker than LLL or identical to it. This means
that the lower limit logic provides very sharp versions of C2 and C3 and of the
criterion mentioned in the previous paragraph.

7.4 Reducing Tinkering

Both the structure of the Cn logics and certain statements of da Costa’s seem
to suggest that a certain stratagem should be applied to theories that turn out
inconsistent. Whether da Costa had this application in mind or not, the stratagem
is clearly interesting and suggested by the Cn logics. It is worthwhile to develop
inconsistency-adaptive logics that have the Cn systems as their lower limit because
these enable one to accomplish, in more comfortable circumstances, the task served
by the stratagem. The results presented in this section are studied at length in Batens
(2009). So I shall be brief here.

7.4.1 The Cn Logics and the Stratagem

The Cn-logics form a hierarchy. A simple way to describe it—not da Costa’s original
one—goes as follows. Let C! be full positive (predicative) CL together with the
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axioms A _ :A and ::A � A and the rule “if A �c B , then ` A � B”, in which
A �c B iff A and B are congruent in the sense of (Kleene 1952, p. 153) or one is
obtained from the other by deleting vacuous quantifiers.4

Let A1 abbreviate :.A ^ :A/,5 let A2 abbreviate :.A1 ^ :A1/, etc., and let
A.n/ abbreviate A1 ^ A2 ^ : : : ^ An. The logic Cn (n 2 f1; 2; : : :g) is obtained by
extending C! with the following axioms

B.n/ � ..A � B/ � ..A � :B/ � :A//

.A.n/ ^ B.n// � .A � B/.n/ where � 2 f_;^;�g
Qx.A.x//.n/ � .Qx A.x//.n/ where Q 2 f8; 9g

A formula of the form A.n/ is a consistency statement in Cn. It expresses that A

behaves consistently—see for example da Costa (1974)—in that A;:A; A.n/ `Cn

B . Incidentally, :.n/A Ddf :A ^A.n/ defines classical negation in Cn.
The Cn logics form a hierarchy in that � `Cn A if � `Cm A for some m > n.

C! forms a limit of this hierarchy. As it will be useful to have classical negation
available even in C! , let us extend the language with the symbol L: and give it
the meaning of classical negation (by introducing the usual axioms)—the standard
negation,:, is still paraconsistent. Note the difference between:.n/ and L:. The first
is definable within the standard language and behaves like classical negation in all
Cm with m � n, but is not definable in C! . The second symbol does not belong to
the standard language, and hence does not occur in the premises, but is added to the
language for technical reasons.6

Two features of the Cn logics may cause some wonder. First, what is the use
of having classical negation, viz. the symbol :.n/, definable within paraconsistent
logics? Next, what is the use of the hierarchy of Cn logics? The following
paragraphs answer these questions, possibly with hindsight.

The paraconsistent Cn were introduced to replace CL in inconsistent contexts.
Let T0 D h�0; CLi turn out to be inconsistent. Replacing T0 by T1 D h�0; C1i saves
the theory from triviality—I suppose that �0 does not contain any formulas of the
form :.A ^ :A/ because these are CL-tautologies. At the same time, however, T1

is much poorer than is desirable. Suppose that A_B and:A are C1-derivable from
�0 and that A is not. As �0 was intended to be consistent, one would expect B to
be derivable as well. But A _ B;:A °C1 B . So, if A is not C1-derivable from �0,

4All Cn logics defined below in the text are identical to da Costa’s, except that he introduces C!

as the limit. C! is like C! except that the former has positive intuitionistic logic where the latter
has positive classical logic. An interesting study of limits of the hierarchy is presented in Carnielli
and Marcos (1999). The logic C! is there called Cmin.
5While :A ^ A and A ^ :A are C! -equivalent, :.:A ^ A/ and :.A ^ :A/ are not. Which of
both is taken to express the consistency of A is a conventional matter.
6The approach is related to, but different from, the one followed in Carnielli et al. (2007), where
a consistency operator, ıA, belongs to the standard language and is implicitly defined by, for
example, ıA � ..A ^ :A/ � B/.
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one might extend �0 with the consistency statement A.1/. This delivers the desired
result because A_B;:A; A.1/ `C1 B . Exactly the same situation arises if :B � A

and :A are C1-derivable from �0. So the addition of consistency statements to
an inconsistent theory has dramatic effects. Within the paraconsistent context, it
drastically enriches the theory. Moreover, the so enriched theory approaches the
original theory, T0, as it was originally intended.

Adding consistency statements involves a danger. Let T 0
1 D h�1; Ci in which

�1 is obtained by adding a set of consistency statements of the form A.1/ to �0. T 0
1

may very well be trivial. When this is the case, one may retract some of the added
consistency statements. There is, however, another possibility.

The transition from T0 to T1 involves the replacement of CL, which da Costa also
calls C0, by C1 in order to avoid triviality. If T 0

1 turns out trivial, one may replace C1

by C2—let the result be T2. In this way, triviality is avoided again; statements of the
form A.1/ are not consistency statements in the context of C2. Moreover, relying on
the insights from the failed previous attempt, one may enrich �1 with consistency
statements of the form A.2/, which have the desired effect in the context of C2. This
process may be repeated. If T 0

n D h�n; Cni, �n comprising no statements A.m/ for
which m > n,7 and is trivial, replacing Cn by CnC1 restores non-triviality because
no A.m/ occurring in T 0

n is a consistency statement with respect to CnC1.
The stratagem demands the presence of classical negation and the Cn hierarchy

and so motivates them. Certain phrases used by da Costa also suggest the stratagem.
Thus he states that Cn logics isolate inconsistencies and he distinguishes between
‘good’ and ‘bad’ theorems of Cn-theories, the bad ones being those whose negation
is also a theorem. In order to isolate the bad theorems and to take advantage of the
good ones, one needs to add consistency statements to the theory.

7.4.2 The Adaptive Logics

I shall proceed in two steps. First we need adaptive logics that interpret the premise
set as consistently as possible with respect to a Cn-logic. Let us call these Cn

m logics.
These inconsistency-adaptive logics enrich a premise set with the consistency
statements that are justifiable by logical means. The Cn

m-logics should have been
devised a long time ago, were it only because of the historical significance of the
Cn logics. There was, however, a difficulty. Cn logics validate relations between
contradictions and whenever this is the case there is a possibility that a flip-flop
logic results. Flip-flop logics are adaptive logics, but are uninteresting for most
application contexts. They behave like the upper limit logic whenever the premise
set is normal, which is all right, and behave like the lower limit logic whenever

7Just as A1 is a CL-theorem, viz. a C0-theorem, Am is a Cn-theorem whenever m > n. So one may
suppose that no formula of the form Am or A.m/ is CnC1-derivable from the non-logical axioms of
a theory that has Cn as underlying logic.
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the premise set is abnormal (requires at least one abnormality to be true), which is
not all right. Fortunately, a criterion for flip-flop behaviour, in terms of a specific
indeterministic semantics, was developed for the application of the criterion to the
Cn logics. In view of this result, the following logics are not flip-flops. For each n,
Cn

m is defined as the triple consisting of (1) Cn, (2) ˝ D f9.A ^ :A/ j A 2 F g,
and (2) Minimal Abnormality—the result generalises to Reliability, which I do not
consider for lack of space.

These logics assign as consequences of a premise set � all formulas true in the
minimally abnormal Cn-models of � —this obviously includes all Cn-consequences
of � .

Applying the adaptive logics has certain advantages over following the stratagem.
First of all, the logic itself adds consistency statements that can be added on logical
grounds; no tinkering is involved. Next, for some (actually most) premise sets, the
consequence set will comprise an infinite number of consistency statements as well
as all their consequences. Note that this effect cannot be obtained by tinkering.
Moreover, it is possible that a Dab-formula is derivable, say .p^:p/_.q^:q/, of
which no disjunct is derivable. In this case, there is no logical justification for either
of the two disjuncts. So the logic will not chose between:.p^:p/ and:.q^:q/,
but will have the disjunction of the consistency statements,:.p^:p/_:.q^:q/,
as a consequence together with all that follows from it.

An interesting fact concerns the choice of a Cn
m logic that is suitable for a set

of premises. It turns out that C!
m is the suitable choice for all premise sets. To be

more precise, it holds for every Cn
m that CnCnm .� / is either trivial or identical to

CnC!
m� .

Now we come to the second step. Following the stratagem has also an advantage
over applying the adaptive logic. Consider again a case where .p^:p/_ .q ^:q/

is derivable but none of both disjuncts is. A person following the stratagem is able
to chose at this point, for example to consider p ^ :p as false, and hence q ^ :q

as true.
It is possible to introduce such ‘new premises’ within an adaptive framework and

it is actually possible to do this in a more elegant way than the stratagem permits.
First of all, the minimal Dab-formulas that are derived evoke the question which
of the disjuncts is true; so they indicate the points at which choices may be made.
Next, there cannot be logical reasons for the choices. So the person applying the
adaptive logics has to justify the new premises on the basis of extra-logical grounds.
Moreover, the addition of new premises should proceed in a defeasible way in order
to avoid possible triviality. Finally, each such new premise is better introduced
in a prioritised way. Indeed, the justification of some consistency statements will
be stronger than that of others. Given all this, the matter may be handled by
a well known combined adaptive logic, which should only be adjusted to the
circumstances in that the lower limit of the combining adaptive logics should be
C! . The combined logic guides the addition of prioritised consistency statements.
To the C!

m-consequences the combined logic first adds as many as possible of the
consistency statements with the highest priority; to the result of this it adds as many
as possible of the consistency statements with the next highest priority; and so on.
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For the details of the combined logic, I refer to Batens (2009). It is interesting,
however, to note that, while the hierarchy of Cn logics proves useless on the present
approach, the priorities are expressed by formulas that largely follow da Costa’s
hierarchy of consistency statements. Thus :9.A ^ :A/ is the least prioritised
consistency statement concerning A, :9.A^:A/^:.9.A^:A/^:9.A^:A//

is the next stronger consistency statement concerning A, and so on.

7.4.3 Two Comments

The enrichment that will be described in the next section may be introduced within
the context of the Cn

m logics. This departs rather heavily from the stratagem, but is
clearly meaningful in the present context.

The second comment concerns decidability. Not taking anything back of what I
said about the advantages of the adaptive approach over the stratagem, let me try to
avoid a misunderstanding. The adaptive approach clearly cannot make the situation
more decidable than it is. For example, if the premise set is (finite and) propositional,
the adaptive consequence set is decidable. In this case, an able logician may manage
to obtain the right result in terms of the stratagem. Where the premise set is
predicative, the stratagem may lead one to the wrong conclusions because one may
never find out that an added consistency statement causes triviality. By following the
adaptive approach, a similar situation may arise: one takes a conclusion as finally
derived while it is not, because one does not manage to derive the required Dab-
formulas. If matters are undecidable, no approach can repair this—see Horsten and
Welch (2007) for a challenge and Batens et al. (2009a) for an answer.

The advantages of the adaptive approach are mainly threefold. First, it defines the
consequence set in a correct way, even if this set is not recursive or not even semi-
recursive. Next, there are proof procedures (see Batens 2005 and Verdée 201+) that,
for some � and A, lead after finitely many steps to the conclusion that A is or is
not a final consequence of � . It the answer is decidable, the proof procedure will
provide it, and if it provides an answer, the answer is correct. Finally, the adaptive
approach rigorously distinguishes between consistency statements that can be added
on logical grounds and those that require an extra-logical justification. It guides the
addition of the latter by delineating the choices to be made and it handles the added
statements according to their priority.

7.5 Variations

The first inconsistency-adaptive logic, dating from around 1980, had the aim to offer
a maximally consistent interpretation of premise sets, or theories, that were intended
as consistent but had turned out to be inconsistent. So when it was recently found
possible to realise the aim in a more efficient way, this came as a shock.
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Two other problems are solved at once. Inconsistency-adaptive logics are
instruments: formal characterizations of defeasible reasoning forms. We want to
have a manifold of them around to suit specific application purposes. While there is
a lot of variation with respect to the lower limit logic and the strategy, every lower
limit logic seems to determine a unique set of abnormalities8—I disregard flip-flop
logics (see previous section). In this paper, the limitation is overcome.

The second problem concerns the comparison between different lower limit
logics. Stronger paraconsistent logics have in general larger consequence sets than
weaker ones, but also spread inconsistencies. While the former property makes
more formulas derivable on the empty condition, the latter restricts the number
of formulas that are finally derivable but have a non-empty condition. In general,
varying the lower limit logic often leads to incomparable adaptive consequence sets.
The result presented in this paper changes the picture drastically. By varying the set
of abnormalities, adaptive logics with a very weak lower limit logic may be given a
very rich consequence set. I shall present comparative results below.

7.5.1 Characterization of the Abnormalities

The idea behind the enriched set of abnormalities is surprisingly simple. When
certain complex CLuNm-abnormalities are derivable, these may have different
causes. Thus if .p _ q/ ^ :.p _ q/ is CLuN-derivable from the premises, this
may be because p is so derivable, or q is, or p _ q is whereas neither p nor q is.
These three cases can be distinguished.

Consider the premise set �1 D f:.p _ q/; q; p _ rg and let the underlying
logic be CLuNm. Note that :p is derivable on the condition f.p _ q/ ^ :.p _ q/g
and hence r is derivable on the condition f.p _ q/ ^ :.p _ q/; p ^ :pg. By the
presence of q and :.p _ q/, however, .p _ q/ ^ :.p _ q/ is derivable from �1

on the empty condition and so cannot be taken to be false. So neither :p nor r are
CLuNm-derivable from �1. At first sight, this seems justified. Note, however, that
the derivability of .p _ q/ ^ :.p _ q/ is caused by the presence of q, not by the
presence of p.

It is possible to turn this idea in a technically feasible definition? It is. In the
presence of :.p _ q/, each of p _ q, p, and q may cause the abnormality. The
disjunction is derivable from either disjunct. Moreover, any CLuN-model verifying
p _ q verifies p or q, but not necessarily both. This suggests that we consider .p _
q/^:.p_q/, p^:.p_q/, and q^:.p_q/ as separate abnormalities. The gain is
clear: as :.p_q/ `CLuN :p_ .p^:.p_q//, p is derivable from:.p_q/ on the
condition fp ^:.p _ q/g if the member of this singleton counts as an abnormality.
Moreover, while q ^ :.p _ q/ is unconditionally derivable from �1, p ^ :.p _ q/

is provably not a disjunct of any minimal Dab-consequence of �1. Of course, this is
merely an example; the matter requires elaboration.

8This is typical for inconsistency-adaptive logics, not for other adaptive logics.
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Primitive formulas and their negations will be called atoms. Formulas that are not
atoms are classified as a-formulas or b-formulas, varying on a theme from Smullyan
(1968). To each of them, two other formulas are assigned according to the following
table.

a a1 a2 b b1 b2

A ^ B A B A _ B A B

A � B A � B B � A A � B L:A B

:A L:A L:A

L:.A _ B/ L:A L:B L:.A ^ B/ L:A L:B

L:.A � B/ A L:B L:.A � B/ L:.A � B/ L:.B � A/

Next, a set sp.A/ of specifying parts is assigned to every open or closed formula
A as follows:

1. Where A is a conjunction of (one or more) atoms, possibly preceded by a
sequence of quantifiers, sp.A/ D fAg.

2. sp.a/ D fag [ fsp.A ^ B/ j A 2 sp.a1/IB 2 sp.a2/g.
3. sp.b/ D fbg [ sp.b1/[ sp.b2/.
4. sp.8˛A/ D fsp.8˛B/ j B 2 sp.A/g.
5. sp.9˛A/ D fsp.9˛B/ j B 2 sp.A/g.

The adaptive logic CLuNm
1 is defined by the following triple: (1) lower limit:

CLuN, (2) set of abnormalities: ˝s D f9.B ^ :A/ j A 2 F IB 2 sp.A/g, and
(3) strategy: Minimal Abnormality.

The mechanism is one of refinement. Even if .p _ q/^:.p _ q/ is true in some
models of a premise set, either p^:.p_q/ or q^:.p_q/ may be false in some of
those models and this enables us to rule out some further models as more abnormal
than required by the premises.

We have seen that the logic CLuNm
1 is richer than CLuNm with respect to �1.

However, the enrichment is not restricted to similar cases. Let me mention two
further examples. Consider first �2 D fp_q;:.p_q/; p_ r; q_ sg. In view of the
explicit contradiction between the first two premises, one might expect to obtain no
gain in this case. Yet, there is one. It is easily seen that r is derivable from �3 on the
condition fp^:.p_q/g and that s is derivable on the condition fq^:.p_q/g. So
r_s is derivable on both conditions. Moreover, the only minimal Dab-consequences
of �3 are .p _ q/^:.p _ q/ and .p ^:.p _ q//_ .q ^:.p _ q//. It follows that
r _ s, which is not a CLuNm-consequence of �3, is a CLuNm

1 -consequence of this
premise set.

Another enrichment is illustrated by �3 D f::.p ^ q/;:p;:q _ rg. Neither q

nor r is a CLuNm-consequence of �2, but both are CLuNm
1 -consequences of it.
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7.5.2 A Combined Inconsistency-Adaptive Logic

For all that was said, one might have the impression that CLuNm
1 offers a net gain

over CLuNm, but this is false. In order to obtain a net gain, we need a combined
adaptive logic. To see this, consider �4 D f:.:s _ .:p ^ :r//;:.:p _ :q/;

:.s _ p/g.
The only members of minimal Dab-consequence of �4 (with respect to both ˝

and ˝s) are provably 1–9 below. All are members of ˝s and only 1–3 are members
of ˝ .

1 .:s _ .:p ^ :r// ^ :.:s _ .:p ^ :r//

2 .:p _ :q/ ^ :.:p _ :q/

3 .s _ p/ ^ :.s _ p/

4 :s ^ :.:s _ .:p ^ :r//

5 .:p ^ :r/ ^ :.:s _ .:p ^ :r//

6 :p ^ :.:p _ :q/

7 :q ^ :.:p _ :q/

8 s ^ :.s _ p/

9 p ^ :.s _ p/

It is also provable that we may restrict our attention, in this specific propositional
case, to models of �4 that verify the premises together with some of the relevant
propositional letters and the classical negation of the others. A survey is displayed
in Table 7.1. Unmentioned letters may receive an arbitrary value, provided they are
not inconsistent. The numbers in the table refer to the abnormalities listed before.
The first row of stars depicts the (kinds of) models that are minimally abnormal
with respect to CLuNm; the second row of stars those that are moreover minimally
abnormal with respect to CLuNm

1 . The two-step selection is required because the
second, fourth, sixth, eight, and ninth models are minimally abnormal with respect
to ˝s-abnormalities, but none of them is minimally abnormal with respect to ˝-
abnormalities. The so combined selection delivers the consequences q, p_ r , s _ r ,
. . . on top of those delivered by CLuNm.

Let us call the combined adaptive logic CLuNm
c and let CnCLuNm

c
.� / D CnCLuNm

1

.CnCLuNm.� //, which offers the right selection of models. Proof theoretically such
logics seem to be disastrous: it seems that one needs to compute CnCLuNm.� / before
one can even start to apply CLuNm

1 . But this is not so. As was spelled out already
in Batens (2001), the dynamic proof theory of thus combined adaptive logics is
hardly more complex than that of the combining logics.

7.5.3 Some Comparisons

As promised, I shall now show that the combined logic CLuNm
c does not only

better than CLuNm, but does also very well in comparison to inconsistency-adaptive
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Table 7.1 CLuN-models of �4

p p p p p p p p L:p L:p L:p L:p L:p L:p L:p L:p

q q q q L:q L:q L:q L:q q q q q L:q L:q L:q L:q

r r L:r L:r r r L:r L:r r r L:r L:r r r L:r L:r

s L:s s L:s s L:s s L:s s L:s s L:s s L:s s L:s

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

� � � � � �
4 4 4 4 4 4 4 4

5 5 5 5

6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9

� � �

logics that have a richer lower limit. Below, I consider five premise sets to compare
CLuNm

c with the corresponding adaptive logics that have as their lower limit logic
respectively the maximal paraconsistent logic CLuNs and LP. I list the results
for the latter logics together where they are identical with respect to the formulas
that are listed—they differ from each other with respect to formulas that contain
implications or equivalences.

�5 D f:.p _ q/; q _ r; p;:p _ sg
CLuNm CLuNm

c CLuNsm/LPm

p p p

:p

:q :q

q _ r r r

s s

�6 D fp _ q;:.p _ q/; p _ r; q _ sg
CLuNm CLuNm

c CLuNsm/LPm

:p

:q

p _ q p _ q p _ q

p _ r p _ r p _ r

q _ s q _ s q _ s

:p _ :q

r _ s



7 New Arguments for Adaptive Logics 115

�7 D fp; :p _ q; :.p _ r/; ::p � sg
CLuNm CLuNm

c CLuNsm LPm

p p p p

:p :p

::p ::p ::p ::p

:r :r :r

q q

s s s

�8 D fp; :p _ q; :.p _ r/; ::p � s;:q _ t; r _ ug
CLuNm CLuNm

c CLuNsm LPm

p p p p

:p :p

::p ::p ::p ::p

:r :r :r

q q

s s s

t t

u u u

It is interesting to study the difference between the consequence sets. In all
cases, (1) the CLuNsm-consequences or LPm-consequences that are not CLuNm

c -
consequences cause additional inconsistency and (2) some CLuNm

c -consequences
are neither CLuNsm-consequences nor LPm-consequences and they do not cause
additional inconsistency. I am not claiming, however, that CLuNm

c is better than the
other adaptive logics. An instrument should be used where it is suitable. The only
point I wanted to make is that CLuNm

c maximally isolates inconsistencies, just as
much as CLuNm, but nevertheless offers an extremely rich consequence set.

7.6 Parsimonious Axiomatisations

7.6.1 The Problem

Let LA be the language of arithmetic (with one constant, 0, and three functions, 0,
C, and �). In several places, for example Priest (1994, 1997, 2000, 2006), Graham
Priest considers inconsistent models of arithmetic (see also Paris and Pathamanathan
2006; Paris and Sirokofskich 2008). In these models, the logical symbols are
interpreted in terms of Priest’s LP—implication and equivalence are defined and
non-detachable. I shall only consider the so-called collapsed models.
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M n
p denotes the model with the following successor graph:

0! 1! : : :! n ! nC 1

" #
nC p � 1 : : :

In order to simplify the subsequent argument, let us concentrate on models M n
1 ,

which have the following successor graph

0! 1! : : :! n

˚
Let us more particularly concentrate on M 2

1 . In order to avoid confusion between
numbers and numerals, let the domain of the model be ff;m; ag and let the
interpretation of the successor function be characterised by the following graph:

f! m! a

˚
with v.0/ D f, viz. the constant 0 is taken to name f. So 00 names m, and 000, 0000, etc.
all name a.

Every M n
1 can be seen as modelling a specific inconsistent arithmetic An

1 D
fA j M n

1 � Ag (the formulas of LA that are verified by M n
1 ). As every M n

1

is a finite model, An
1 can be finitely axiomatised with LP as the underlying logic.

This means that there is a recursive, and actually finite, set of formulas � such that
An

1 D fA j � `LP Ag.
There is, however, an oddity. Not only M 2

1 , but also M 1
1 as well as the trivial

model M 0
1 are models of A2

1. This is related to the fact that A0
1 	 A1

1 	 A2
1 	 : : :. It

is also related to the fact that M 2
1 is a model of classical arithmetic,9 which, provided

it is consistent, is a limit of this sequence of sets. The sentences of LA that are true
in the standard model of arithmetic are also true in the finite and inconsistent model
M 2

1 . In the same way the sentences of LA that are true in M 2
1 are also true in M 1

1

and in M 0
1 .

It follows from Gödel’s first theorem that no consistent axiomatisation of first-
order sentences true in the standard model of arithmetic identifies the standard
model. Every such axiomatisation also has non-standard models, the domain of
which comprises objects not named by any numeral. So no (first-order) axioma-
tisation identifies the standard model. The situation is similar for every An

1 , except
that the domains of the non-intended models comprise not more but less objects
than the domain of the intended model—the larger n, the greater the number of
non-intended models. In many other respects, the situation is dissimilar from the
situation of classical arithmetic, but in this sense it is similar.

9By “classical arithmetic” I obviously mean the set of formulas true in the standard model and not
the theorems of some axiom system.
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The failure to identify a single model, say M 2
1 , is obviously contingent on the

object language and on the underlying logic. Let us first have a look at variant logics.

7.6.2 A LPm-Axiomatisation

One might hope to identify M 2
1 by presenting an axiomatisation that has LPm as

its underlying logic rather than LP (see Priest 1991, 2006). Indeed, LPm selects
the ‘minimal abnormal’ LP-models of a premise set—see below for the quotation
marks. In M 2

1 , the denotation of 000 and of all higher numerals are inconsistent with
respect to identity (that is 000 D 000^: 000 D 000 is a theorem), but the denotations of
00 and of 0 are consistent with respect to identity. In M 1

1 , the denotation of 00 is also
inconsistent with respect to identity, and in M 0

1 the denotation of every numeral is
inconsistent with respect to identity—M 0

1 is a trivial model.
Unfortunately, LPm does not provide a solution. The cause lies with the way in

which minimal abnormal models are defined in LPm. Here are, again, the successor
graphs of M 2

1 , M 1
1 , and M 0

1 :

f! m! a

˚
f! a

˚
a

˚
The ‘abnormal part’ of a model is represented in LPm by the atomic inconsistent

‘facts’ that hold in the model. In other words, for every n-ary predicate R, the n-
tuples that belong to both the extension of R, vC.R/, and to the anti-extension
of R, v�.R/ (see Priest 2006 for details). The only predicate that matters in the
present context is identity and all three models have the same abnormal part, viz.
vC.D/\v�.D/ D fha; aig. So all three models are LPm-models of A2

1. This means
that no LPm-axiomatisation identifies M 2

1 and that the difficulty remains.
Incidentally, we obviously need v.0/ D a instead of v.0/ D f in the displayed

model M 0
1 . Some isomorphic models have f as the only element of the domain, and

these have exactly the same abnormal part as some models isomorphic with M 1
1

and M 2
1 .

7.6.3 LPm-Axiomatisation

Unlike LPm, LPm is an adaptive logic in standard format; it was described earlier.
The difference with LPm is that abnormalities are not ‘inconsistent’ n-tuples of
members of the domain, but formulas, viz. existentially closed contradictions. The
abnormal part of a LP-model M , Ab.M /, is the set of abnormalities verified by
M . So Ab.M 2

1 / comprises all formulas of the form 0i D 0i ^ : 0i D 0i in which
i is a sequence of two or more names of the successor function, as well as the
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LP-consequences of these, for example 9x.x D x ^ : x D x/. The set Ab.M 1
1 /

moreover comprises 00 D 00^: 00 D 00 and Ab.M 0
1 / even comprises 0 D 0^: 0 D

0. So, of the three considered models, only M 2
1 is a minimally abnormal model of

A2
1. An LPm-axiomatisation of A2

1 is obtained, for example by adding the axiom
0000 D 000 to the Peano Axioms. Let this set of axioms be called PA2

1—there are
obviously simpler, viz. finite, sets that do exactly the same job. The axiom system
hPA2

1; LPmi (the axioms PA2
1 closed under LPm) identifies A2

1.
It is important to realise that the effect results from changing the underlying logic.

If this is LPm, the models of A2
1 have to be LPm-models, and the only such model

is M 2
1 .

Some may wonder whether an axiomatisation with LPm as underlying logic is
really an axiomatisation. Indeed, a LPm-proof of A from the premise set � requires
a list of formulas together with a reasoning in the metalanguage establishing that
A is finally derived in the list of formulas (see for example Batens et al. 2009a for
details). So this kind of proofs, which are called dynamic, do not form a positive test
for (final) derivability. In the present context, however, this complication does not
arise. Given the model M 2

1 , which is finite, and the language, there are prospective
proofs, see for example Batens (2005), that form a decision method for derivability.
In other words, CnLPm.PA2

1/ is a decidable set and the couple hPA2
1; LPmi is a

legitimate axiomatisation of A2
1. For those who are still mistrusting, let h�; LPi

be an axiomatisation of A2
1—so CnLP.�/ D A2

1. Next, consider the axiomatisation
h�; LPmi and note that CnLPm.�/ D A2

1.10 As every A2
1-theorem is LP-derivable

from �, it is unconditionally LPm-derivable from �. So in view of this metatheoretic
fact, there is a positive test for A2

1-theoremhood.

7.6.4 A Richer Language

Other axiomatisations are possible, even with a Tarski logic as the underlying
logic, but they all have the disadvantage that they require replacing LA by a richer
language.

The first alternative is that one adds classical (or Boolean) negation, L:. A suitable
axiomatisation is obtained by extending PA2

1 with, for example, L: 00 D 000. In the
presence of classical negation, L: 0 D 00 is derivable from this and, in general, L:A

is derivable whenever A is “false only” in M 2
1 . Apart from requiring an extension

of the language, this approach has the further disadvantage that it is opposed to
Priest’s philosophical views—he has argued against the meaningfulness of classical
negation, a point which I shall not discuss here.

Another alternative is to extend the language with a relevant implication,!, as
well as with bottom,?, and adding to PA2

1 axioms like 00 D 000 !?, 0 D 00 ! ?,

10This further clarifies the claim made in the previous paragraph. Although CnLP.�/ D CnLPm .�/,
hPA2

1; LPmi identifies M 2
1 whereas hPA2

1; LPi does not.
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and so on. If the relevant implication is the one from Priest (2006, § 18.3), the “and
so on” should not be underestimated; even 00 D 0 ! ? is not a consequence of
0 D 00 ! ?. If the n in M n

1 is large, the number of required axioms will be
impressive, but obviously finite.

This approach too seems to involve difficulties. If the relevant implication is not
extremely poor, one will have as a theorem 8x8y.x D y ! f .x/ D f .y// for
every one argument function f . So, in particular, one will have 8x8y.x D y !
x0 D y0/ as a theorem. But then 00 D 00 ! 000 D 000 is a theorem. As : 000 D 000
is a theorem of PA2

1 and! is contraposable, : 00 D 00 would be a theorem of PA2
1.

But this is wrong: : 00 D 00 is false in M 2
1 and so should not be a theorem of

PA2
1. Of course, the difficulty will not occur if the relevant implication is weaker,

for example is the one from Priest (2006, § 18.3). One wonders, however, whether
this implication will be sufficient to formalise the whole body of our knowledge,
empirical and mathematical. Indeed, Priest is a monologist. So he opposes using
different logics in different contexts.

The presence of an enthymematic implication does not repair the situation.
Indeed, while one might prefer to replace the relevant implication in : 1 D 1! ?
by an enthymematic one, there is no reason to perform the same replacement in
8x8y.x D y ! f .x/ D f .y// in case this is a theorem. However, the presence
of a non-contraposable relevant implication would remove this specific difficulty,
might very well be justifiable,11 and seems to provide a sufficiently strong statement
8x8y.x D y ! f .x/ D f .y//.

More serious difficulties are lurking around the bend. First, the relevant impli-
cation is ad hoc in the present context—it occurs nowhere else in the inconsistent
arithmetic, just like the classical negation from two paragraphs ago. Next, I cannot
see any sense in which : 00 D 00 can be said to relevantly imply every statement of
the language. Adding the implicative axioms comes to a technical trick. It does the
job, but can only be justified by the argument that it provides a warrant that is as
good as the one the classical logician invokes by recurring to classical implication
(which connects classical inconsistency to triviality)—but see below.

Another difficulty is related to the fact that everything is true in the trivial model,
in the present context M 0

1 . So, even if it can be avoided that M 1
1 is a model of A2

1,
this theory still has both M 2

1 and M 0
1 as models, and so does not identify M 2

1 in a
unique way—please compare with the LPm-axiomatisation which does rule out the
trivial model M 0

1 .
Incidentally, the classical logician seems to do better in this respect on her

understanding. She can claim that adding L: 00 D 000 identifies M 2
1 in a unique

way. On the classical logician’s understanding, there is no trivial model because
the truth values, say t and f , are distinct, vM is a function, and vM . L:A/ D t iff
vM .A/ D f . So there are no models in which vM . L:A/ D t D vM .A/. Of course
Graham Priest has argued that the classicist’s understanding makes no sense, a point
not discussed here.

11The most obvious justification for contraposition is consistency. So I always wondered why so
many relevant logicians want their implications to be contraposable.
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7.6.5 Describing the Models

Until now, I phrased the difficulty as one of axiomatising the formulas true in the
models M n

p , while I took those models at face value. However, a similar difficulty
affects the description of the models. Whether one considers the description I gave
above or the description in Priest (2006), the model M 1

1 actually agrees with the
description of the model M 2

1 . The domain counts three different objects, f, m, and a.
Of these, m and a are not only different but also identical and the successor function
holds between them. Note, incidentally, that “m” and “a” are not the elements of the
domain, but the names of these elements; just as the drawing is not the successor
graph, but a representation of it. That the characters “m” and “a” are not identical,
but different, and different only for that matter, does not prevent them from naming
the same entity.12 By a similar reasoning, the model M 0

1 agrees with the description
of M 2

1 .
So the description of M 2

1 does not identify this model as we understood it, unless
we presuppose that the description is as consistent as possible, viz. is presented in
terms of LPm. Unlike LPm, LPm will select the right description and will select
the right models of the description—these are not the models described by the
description.

7.7 Concluding Comment

Rather than commenting on the promise made in the introduction, I shall comment
on a consequence of the preceding section.

In Mortensen (2008), Chris Mortensen writes that, according to inconsistency-
adaptive logics, “only consistent conclusions are deduced pro tem” and continues
“In the opinion of this (opinionated) writer, consistentising strategies are useful for
the context of discovery, but fail to do justice to a priori reasoning from inconsistent
premises, where one should be acknowledging the full role of all the premises
without dodging the inconsistencies in them.” These claims are actually false,13 but
the reason to quote them lies elsewhere, viz. in the presupposed status of a priori
reasoning. If there is any truth in the previous section, one needs “consistentising

12One shouldn’t make too much of the “different only” phrase. In Priest’s view it may be true
together with “the characters are the same”, for otherwise “This sentence is false and only false.”
would produce triviality.
13The first quoted claim is obviously false: all formulas derivable by the lower limit logic are
adaptively derivable, whether consistent or inconsistent. However, some further consequences are
adaptively derivable by taking as many other inconsistencies to be false as the premises permit. So
inconsistency-adaptive logics do acknowledge the full role of all the premises and do not dodge
any inconsistencies in them. They presuppose that inconsistencies are false unless and until proven
otherwise, from the premises that is.
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strategies” in order to describe the models M n
p and this is apparently required before

any a priori reasoning about them can even start. Inconsistency-adaptive logics were
always presented as instruments (or methods), which may be more or less suited
to a specific context, and not as candidates for “the true logic” or “the standard
of deduction” or “the canon of a priori reasoning”. Nevertheless, the situation
depicted in this section seems to present a further argument, apart from many
others, to mistrust a strict separation between sensible reasoning instruments and
a priori reasoning. It also suggests that, while it is easy to explain the paraconsistent
viewpoint by relying on classical results, such as the supposedly consistent standard
model of arithmetic, it might be more difficult for the monologist dialetheist to offer
her teachings from scratch. That Graham Priest has been persistently working in that
direction, including the development of a dialetheisticly sound set theory, deserves
the admiration and sympathy of every logician, even of those who (like me) consider
the standard of reasoning as context dependent.
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