Chapter 17
Notes on Inconsistent Set Theory

Zach Weber

17.1 Introduction

The standard axioms of naive set theory state existence and uniqueness conditions
for sets (see Routley 1980; Priest et al. 1989; Brady 2006). The axioms are:

Axiom 17.1 (Abstraction) x € {z: ®(z,u)} <> D(x,u).
Axiom 17.2 (Extensionality) (Vz)(z€ x <> z€ y) < x = ).

The purpose of this paper is to highlight and discuss two ideas that play in to the
axiomatic development of a paraconsistent naive set theory, as detailed in Weber
(2010b). We will focus on aspects of the theory that can be read right off the
axioms, concerning intensional identity and unrestricted set existence. Both relate
to inconsistency and are dealt with here as follows.

First, the extensionality axiom says that identity is governed by entailments. As
we will define below, — is an intensional, relevant implication and so, as with an
extensionality axiom formulated using a material conditional, this leads to some
distinctive properties for identity. With these new properties in hand I extend some
results of Arruda and Batens from da Costa’s set theory (from da Costa 2000
in Batens et al. 2000).

Second, the set formation principle is fully unrestricted, so the set being defined
may appear in its defining condition. We will explore how this makes modelling
recursive phenomena particularly easy and natural, elaborating on ideas from
Routley’s set theory in Routley (1977).

To begin I lay out a relevant background logic, placing a strong emphasis on
the restrictions such a logic must have in order to support an inconsistent set
theory. The sections that follow proceed on the understanding that, while highly
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inconsistent, a good deal of control is being exerted on the theory through the
weakened logic. The two features of a fully naive theory, identity and self-reference,
dovetail throughout.'

17.2 Logic

The main purpose of this section is to summarize the known restrictions on a logic
for naive set theory; see also Weber (2010a). The subsidiary purpose is to fix the
logic used in this paper; the logic may be altered for different results, as long as all
the restrictions are observed. Thus not much emphasis is placed on the particular
choice here, except to provide exactness.

The language of first order set theory has primitives A, —, —,V, = and €, as
well as a term-forming operator {- : -}; variables x, y,z,...; names a, b, c, .. .; and
formulae @, ¥, 7, ..., built up by standard formation rules. The usual shorthand is
used: @ VY for =(—® A —V); @ < Y for (@ - V)A (¥ — &); Fis ~V—.
(Taking these as definitions means thate.g, ® V¥ — —(—=® A —¥) is no more than
an instance of axiom I below.)

17.2.1 Axioms

All instances of the following schemata are theorems:

I -

Ila NV — @

I ®ANY > Y

I dAMWVY)—> (@AY)V(DAT)  (distribution)

vV (@AW ->T)>(@—->T7) (conjunctive syllogism)
V (@->UVA@—->T)> (@ —>VAT)

VI (& - V) - (¥ - —D) (contraposition)
vil ——Y - ¥ (double negation elimination)
vill @ v —® (excluded middle)

1Following a distinction I first saw in Libert (2005), Axiom 17.1 is called abstraction, while
the formulation in Theorem 17.3 below is called comprehension. There is a syntactic difference
between abstraction and comprehension, and in weak paraconsistent logics the principles are not
equally user-friendly, because the quantifier 3 is sometimes tricky to eliminate. Nevertheless,
both formulations capture a core intuition and in informal discussion the names are used
interchangeably, without intending to mark an important difference.
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Xa (@ —>V)>[(V—>T7)—=(@—>T7)]

IXb (@ > W) = [(T — @) = (T = V)] (hypothetical syllogisms)
X (V)@ — d(a/x)

XI (Vx)(@ > V) - (® - (VX)¥)

XII (Vx)(@ v¥) —> & v (Vx)¥

Axioms XI and XII have the caveat that x does not appear free in @. The hypo-
thetical syllogism pair IXa and IXb are called suffixing and prefixing, respectively.

17.2.2 Rules

The following rules are valid:

I QYU DdAY (adjunction)

I &, >V HY (modus ponens)
o, ~vE—(d -V

IV &+ (Vx)®

V x =yF &) — ©(y) (substitution)

Brady proves that set theory in this logic has a model and is non-trivial (Brady
1989 and 2006, p. 242). If rule IIl, called counterexample, is brought up to
arrow strength, the resulting logic is DLQ from Routley and Meyer (1976); with
hypothetical syllogism, Axioms IXa, b, the logic is called TLQ. Non-triviality of
naive set theory in these stronger logics is an open problem.

The fact that Brady’s universal logic DJQ is not strong enough for some of
these results is important. The key non-DJQ principles, excluded middle and coun-
terexample, restores a connection between the intensional — and the extensional
connectives, via the derived rule

P >VE-DdVY

More to the point, the axiom does a lot of work. The preponderance of the results
discussed below cannot be recovered (as given) using only DJQ. For more on the
considerations going in to the choice of this particular logic, see Weber (2010a).

17.2.3 Restrictions

For a logic of naive set theory, DLQ is quite strong. For instance, it has a robust
negation. But it is very spare, and for good reason. The first phase of paraconsistent
set theoretical research has shown that there are several key restrictions to respect,
on pain of triviality, which we recite here for ease of reference.
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An inference is invalid if it does not preserve truth, and in the context of
inconsistent set abstraction one must take extra care. Disjunctive syllogism,

D, -P VY,

is invalid in this context, due to C.I. Lewis’ famous argument in (Lewis and
Langford 1959, p. 250). Also invalid is contraction,

- (O —->V)FD >V

as shown by Curry (1942). Closely related is axiom modus ponens (or pseudo-modus
ponens or mp-contraction),

OPA(P —>V) > W

as found in Meyer et al. (1978) and Restall (1994). There is also a trouble with
permutation,
P> W ->"FY > (@—->T)

due to the argument in Slaney (1989). Slaney’s argument shows that excluding the
middle and permutation are not jointly tenable. The cause is, again, a close relative
of Curry’s paradox.

Since the logic is relevant it does not include weakening, @ + ¥ — @. With
weakening, we would have to drop contraposition. Else, we could argue from A to
¥ — A, thento =A — V. Butif also —A, i.e. A is a true contradiction, then ¥
follows by modus ponens, where ¥ is arbitrary. The improper inference here is just
® =@ — ¥, aform of explosion.

17.2.4 A Case Study

Here is an example of how the weakened logic must be attended to. Consider the
two way inference

OANY T 40— W —>T). (17.1)

In classical logic (and set theory) this is obvious—because, materially, it just says
(P AY)VY A-—-D VvV (=¥ VTY). (17.2)
The two-way derivation (17.2) is valid here, but in an intensional logic, the two
sentences in (17.1) certainly do not say the same thing. They must, on pain of

triviality, not be inter-derivable. Suppose the inference (1) from left to right. Now,
we have as an axiom @ A ¥ — @. So we would infer @ — (¥ — @) as a valid
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scheme, which is weakening and so trivializing in this logic. From right to left on
(1), because (¢ — ¥) — (@ — V) is an instance of an axiom, PA(® — ¥) — ¥
would be a valid scheme, which is mp-contraction. Given the relevance logic we are
using, both directions of (17.1) must fail.

With this in mind, though, let us look at an example with a subset relation C.

Definition 17.1. x C y := (V2)(z€ x = z€ y).Thenx C y :=x C yA(F)(z €
VAZEX).

Then consider two ways of understanding transitivity,

ySz—=>(x<Cy—xCz),

XSYAYySz—=>xCz

If subset is understood with arrows, as it is in Definition 17.1, then the first is
an instance of hypothetical syllogism (Axioms IX) and the second of conjunctive
syllogism (Axiom I'V). But we can see that these are almost certainly independent of
one another, based on the problems just discussed. So it is required in proofs that we
be very clear about which forms we are using. More generally, in any formulation
of definitions, for subset, ordinal number, or function, a great deal of thought is
required. For example, f could be called a function when (x,y) € f A (x,z) €
f — y =z orwhen (x,y) € f — ({x,z2) € f — y = z), but with different
results.

Although we do not need the following here, it is worth flagging a useful notion:
a relevant singleton is written {x}, := {z : z = x Az € y}. This is for relevance
purposes, to fix {x}, C yiff x € y.

17.3 Basics

Existential generalization (the contrapositive of axiom X) on the abstraction
Axiom 17.1 immediately yields the principle:

Theorem 17.3 (Comprehension). (3y)(Vx)(x € y < @(x,u)).
Under abstraction, the substitutionruleis x = y = (Vz)(x € z > y € 2).
Proposition 17.1. y = {z: ®(z2)} < (Vx)(x € y < ®(x)).

Proof. By extensionality, y = {z : @(z2)} < (VX)(x € y < x € {z: D(2)}).
By abstraction, (Vx)(x € {z : @(z)} < @(x)).Then by conjunctive syllogism,
(Vx)(x € y < @(x)). For the converse, we again invoke the abstraction scheme,
where (Vx)(@(x) < x € {z: @(z)}), so by conjunctive syllogism (Vx)(x € y <
x € {z: @(z)}). And this with the extensionality axiom completes the proof.

Abstraction and extensionality can then be reconnected, as in Frege’s axiom:

Theorem 17.4 (Basic Law V). {x: @} = {x: ¥} < (Vx)(® < V).
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As Routley (1977) points out, Zermelo’s axioms now follow instantly as
theorems—unsurprisingly, since Zermelo explicitly picked out instances of com-
prehension. For example, Aussonderung is just a weaker comprehension scheme,
Fy)(Vx)(x € y « x € a A @(x)), while union, intersection and pairing are all
as usual; e.g. the last is obtained by abstraction on the condition x = a V x = b.
Given a working theory of functions, Fraenkel’s replacement axiom scheme is easily
obtainable, too.2 Of some more interest is a proof of the axiom of infinity, which is
an artefact of full comprehension, Proposition 17.3 below.?

A universe and an empty set both exist. The universe is

V={x:@Ay)x €y},

and as one would expect, both (Vx)(x € V) and (Vx)(x C V) hold. The empty set
is the complement of V,

f={x:(Vy)x ey}

and both (Vx)(x ¢ @) and (Vx)(@ € x) hold, too. See Dunn (1988) (in Austin
1988) for study of the uniqueness of these sets. For now the main fact to know
about the empty set is that it is explosive. For example, to show that the empty set
is empty, we argue by cases. Either x & @ or x € @. If the former, stop. So suppose
that x € @. Then (Vy)(x € y); then x € {z : z & @} and therefore x ¢ @J. More
generally, (Vy)(x € y) - x € {z : ¥} forany ¥ at all. So x € § — W. This
property of @ is very useful; see also Slaney (1989).

17.4 Identity

The properties of — make identity an equivalence relation,

X =X,
X=y—>y=ux,

X=YAYy=7—>X=2

With hypothetical syllogism, additionally, x =y — (y =z — x = 2).

2The first step in securing a set theoretic account of functions is defined ordered pairs and show
them to behave according to the law {(a,b) = (c.d) 74 a = ¢,b = d. We will be assuming
throughout that some approximation of standard mathematical functions is available.

3Without full comprehension, one can prove that the set of all sets is Dedekind infinite by producing
an injection into itself, say by a map x +—> {x}, but, again, functions and cardinality arguments are
mostly beyond our scope here.
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By the counterexample axiom, — retains a connection to material implica-
tion, namely that if all @s are ¥s, then everything is either not @ or else V.
Contrapositively, if some @s are not ¥s, then not all @s are ¥s. This leads to the
following surprising-and-intuitive result:

Proposition 17.2. Sets that differ with respect to membership are not identical. In
particular, (3x)(x eanx €a)Fa # a.

Proof. This is by rule /11 and the axiom of extensionality.

When a set a is such that its membership is inconsistent, some » € a and b € a,
then a is inconsistent. And (3x)(x # x), since by comprehension we have (at least)
Russell’s set,

R ={x:x¢dx}.

Excluding the middle, R € R A R & R. Since R differs from itself with respect to
membership,
R # R.

Let us briefly expand on this theme, by seeing what happens when not only =
but parthood is tied to entailment,* as given by Definition 17.1.

For any a, we use the name Z(a) for {x : x C a}.

The eccentricities of R enrich a result of Arruda and Batens (1982) from the
set theory of da Costa (2000). Define by finite recursion (Theorem 17.7 below),
P = P and P"T! = P P". Then

Theorem 17.5. (Vn)[Z"T1(R) C 2"(R)].
Proof. Arruda has found that

L PPPR)C PPR)C P(R)CR.

To see that Z(R) € R, suppose x ¢ R. Then x € x. So x € x A x € R, meaning
that 3y(y € x Ay € R), so x € R. By contraposition, then, x € R — x € R,
ergo Z(R) € R. Now suppose x € L Z(R). Then x € H(R),so x € R by
transitivity. Therefore x € Z(R), and thus ZZ(R) € Z(R).

To strengthen Arruda’s finding, we employ contraposition at each arrow. For
P (R) C R,recallthat R € Rand R ¢ R;thisimplies R € R.AndR € RAR € R
gives #Z(R) C R. For Z#(R) C ZR,noticethat RC R,but R€ RAR Z R;
so by generalizing, (y)(y € R Ay € Z(R)), as required. Again the argument
may be continued:

L PPPR)C PP(R)C P(R)C R.

In general, then, this argument can be carried out for 2" *1(R) and 2" (R), which
gives the full result by V-introduction.

4There is a debate about the right definition of subset—see (Mares, 2004, p. 198), and Beall et al.
(2006), for instance using a more restricted implication.
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That R ‘implodes’ in this way can be read as simple structure. With ordinal
indices, one could go on to define by recursion (Theorem 17.7 below)

Ry = R,
Ra+1 = Q(Ra)
Ry = JRe.
KEA

where A is a limit ordinal.

17.5 Full Comprehension

Since naive set theory formalizes the idea that all predicates determine sets, in the
comprehension principle the occurrence of the set being defined in the defining
predicate @ is not ruled out. Following Routley, this is completely unrestricted or
full comprehension. Priest and Routley write that

The naive notion of set is that of the extension of an arbitrary predicate. . . This is as tight an
account as can be expected from any fundamental notion. It was thought to be problematical
only because it was assumed (under the ideology of consistency) that ‘arbitrary’ could not
mean arbitrary. However, it does. (Priest et al. 1989, p. 499)

Set theory with a fully unrestricted comprehension principle is covered by the non-
triviality proof in e.g. Brady (1989); Brady notes that Chang in 1965 had already
noticed that a set theory with unrestricted comprehension can be consistent. In this
section we look at some of the work a full comprehension principle can do—from
supplying the concept of recursion to justifying a global choice principle.

When unrestricted, the abstraction axiom generates ‘circular’ or self-referring
cases. These are neither necessarily inconsistent nor unique, e.g. cases like

xeJ ox=1J,

xe K< x=XK,

mean that / = {J} and K = {K}. But there is no way to say, absent further
postulation, whether or not / = K. Compare this to other non-well-founded set
theories, like Aczel’s (discussed in Exercise 2.4 of Barwise and Moss (1996)). Aczel
adds an axiom asserting, in effect, that / = K in cases like these (since his anti-
foundation axiom implies that all systems of equations have unique solutions). Here
we allow the indeterminacy, in exchange for axiomatic simplicity.

To guarantee, meanwhile, that such instances are valid abstractions—to ensure
that every predicate, even groundless ones, determines a set—we have abstraction
instances of the form

x €{z: Pzu)} < D [z/x, u/{z: D(z,u)}]
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where the right-hand-side indicates a simultaneous substitution in @ of z by x,
and u by the term {z:®(z,u)}. (At first, in Brady and Routley (1989, p. 419),
a new quantifier, formation rule, and reflection axiom were added to handle
circular predicates; but by Brady (2006, p. 177), the idea is streamlined as above.)
Axiom 17.1 in this way includes cases

x €{z: Pz, u)} < DP(x,{z: P(z,u)}).

To start, the axiom makes for some very direct expressions of natural phenomena.
For example, (consistent) infinite descents have extreme expressions, like

xeA< @y)(yexnyed).

The simplest members of A could be a pair a, b such thata € b and b € a. That
there are such sets at our disposal might have application to models of inconsistent
arithmetic (see Priest 2000), where circular periods occur in the successor relation,
if the ordering < on natural numbers is reduced to €.

To take a simpler, and inconsistent, example, Routley identifies the limiting case
of diagonal sets,

XEX >xgd %

which is a kind of ‘ultimate Russell set’. Non-self-identity 2 # 2 is by
Proposition 17.2, but actually something much stronger follows. By excluded
middle, either x € 2 or not, for every x, from which it follows that (Vx)(x € &)
and (Vx)(x € Z).

While this in some sense does make 2 both universal and empty, we do not
have 2 = V or 2 = {, since identity is controlled by relevance. Because of
relevance, (3y)(x € y) does not entail x € %, so V C 2 does not obtain and a
fortiori neither does 2° = V. This is actually good news; the alternative is triviality
(see Weber 2010a).

The universe is not the only set to have a highly inconsistent ‘2" -part. Any non-
empty set a, for example, will have a subset Z(a) = {x : x € a A x & Z(a)}.
Now, just as with unrestricted 2, we have (Vx)(x € Z(a)). For x € a, though,
this is just the property needed to show x € Z'(a). So every member of a both is
and is not a member of 2 (a). This subset of a acts as a reflection of a over which
inconsistency can be ‘dialled up’ as high as we like. Some points to note about this
% (a) phenomenon:

e Full comprehension is not required to give this result. Instead of Z, just take
{x : x € a AR € R}, for R the Russell set. The same arguments go through. This
is the inconsistent aspect of the dopplegidnger phenomenon (see Weber 2010a).

e While Z'(a) is inconsistent for non-empty a, this does not prove that a is
inconsistent. By the —-logic of parthood, a set can have inconsistent parts and yet
be perfectly consistent as a whole. The universe V' is only the biggest example.
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e There are consequences here for cardinality. For example, one can provide a
proof of Cantor’s theorem, of the form |a| < |Za|, essentially by appealing to
Z(a) € Pa.In asense, this is good news, as it confirms an important theorem.
On the other hand, consider singletons:

{a} ={x:x =a}

Z({ap) ={x:x=anx g Z({a}}

It is simple to check that 2°({a}) C {a}. In fact, though, by the argument for
Theorem 17.5, it is almost as straightforward that 2 ({a}) C {a}, a proper subset.
Now, if a set X is Dedekind infinite when there is an injection from X to a proper
subset of X, then we just proved that {a} is Dedekind infinite for any set a. This
strongly suggests that a finer grained notion of cardinality is required than in the
classical definitions of infinity.

On this note, we derive a classical axiom of infinity.’

Proposition 17.3 (Infinity). There is a non-empty set i isomorphic to an w-
sequence of Zermelo ordinals,

f= g

Proof. Consideri = {x : x = i}. Since i € i, the set is not empty. Since i = {i},
by substitution, {i } € i.

For the development of Peano arithmetic, we could then define the natural
numbers as
o={x:[x=0v@y)y}=x]Ax Cow}

using full comprehension to ensure that numbers are preceded only by other
numbers.

We turn then to the theory of ordinal numbers, which includes the natural
numbers. In standard set theory, ordinals are understood as the set of all preceding
ordinals, ordered by membership. This is plainly recursive and can be captured in a
definition: An ordinal is a transitive, well-ordered set of ordinals.

Let Wo(x) mean that x is well-ordered—that there is a linear €-order on x where
also every non-empty subset of x has a least member. Let Conn(x) mean that for
every y € On, either x C y orelse y € x. The formalism of this is not a concern
now; the rendering of (Brady, 2006, p. 310), could do. The matter at hand is full
comprehension.

5Compare this to Petersen’s characterization of the natural numbers, (Petersen, 2000, p. 386).
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Proposition 17.4. There is a set On such that

X€eEOn< xCOn
A Conn(x)
ANYyEX—>yCXx
A Wo(x).
For short, On = {x : x is an ordinal }.
Notice immediately that On is transitive. Since « € On — o C On, the set of all

ordinals satisfies one of the key conditions for being an ordinal. With this definition,
one can work from ¥ € On up to Burali-Forti’s paradox that On € On.

Theorem 17.6. [Burali-Forti 1897] On € On.

Proof. On is a transitive, well-ordered set of connected ordinals (see Weber 2010b).
Checking the definition of ‘ordinal’ gives the result.

Because € is irreflexive on ordinals, and because of what we know about identity
from the last section (Proposition 17.2), we have some contradictions:

Corollary 17.1. On € On, and then On # On.

Full comprehension is well suited to modelling recursive processes, as we have
been seeing. We would like a transfinite recursion theorem. Barwise and Moss
(1996) use the nice example of a function g : @ —> o X w defined as g(n) =
(n,g(n + 1)), which delivers a sequence g(0) = (0, (1, (2,(...)))), and with full
comprehension, it is easy enough to prove that something like g exists, namely

(x,y)egooxewny={(xg+1).

There is no guarantee that this g is a function, though. Instead, a general form of
recursion on the ordinals (and ipso facto the natural numbers) is captured in the next
proof. Let f|x be the restriction of f to x, defined as {{u,v) € f : u € x}.

Theorem 17.7 (Transfinite Recursion). Let h be a function from V to V. There is
a function f from On to 'V such that

f@) = h(f|a).

Proof. The set (x,y) € f < y = h(f|x) exists, and is a function because /4 is.

Full comprehension, then, is very powerful. It is time to consider one of its most
arresting, and earliest, applications, to the axiom of choice.
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Routley (1977) produced an argument for the axiom of global choice from full
comprehension. He did this by defining a function to be either univocal or empty,
since classically an empty set is a function by dint of material implication. The
instance of comprehension

x € f < dudviue X Ax = {(u,v) Aveu) A fisa function.

then allows the following proof: Either f is empty or not. Either way, f is a
function, because if it is non empty then f is a function by the definition of f,
while if it is empty then f is a function by definition of function. So there is a
choice function on any X —including the universe, V. This is the axiom of global
choice.

There is something unsatisfactory about the argument. Full comprehension is not
even required here, since a ‘function’ like

{{u,v) : R € R},

with R the Russell set, supports the same reasoning.® (Since R ¢ R, the set has
no members, and so satisfies Routley’s criteria to be a function.) But this does
not appear to be a function in any mathematical sense, since every ordered pair
whatsoever is a member.

Later Routley (Priest et al. 1989, p. 374) reprised the attempt with the compre-
hension instance

xef<duwe X Ax =(u,v) Aveu)

AYuVyVz({u,y) € f A{u,z) € f — y = 2),

again looking to say that f is a function on X. But the argument is really just a
version of Curry’s paradox, and is blocked by the failure of contraction, since to
show that f is a function leads us to consider (u,v) € f — Vz({u,v) € f A
(u,z) € f — v =7z).If f is non-empty, then it is a function, but there is no telling
whether or not f is empty; we first need to know whether or not it is a function. So
this second formulation is a contraction away from choice, but also from proving
anything at all.

In a sense, Routley is trying to use a paradox to make choice true. The first
attempt uses a paradox of material implication (that when f is empty, (x, y) € f
materially implies that y is unique). That idea can be presented in terms of Russell’s
paradox, or it can be rephrased in terms of the implicational form of Russell’s
antinomy, Curry’s paradox. But none of these are making meaningful use of full
comprehension per se, and more seriously, none of these give us reason to think that
the axiom of choice is true.

%Conrad Asmus pointed this out.
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On the other hand, defining the ordinals self-referentially by full comprehension
leads to Burali-Forti’s paradox, and, as I now outline, this paradox not only delivers
an equivalent theorem, but gives us a good mathematical reason to think that what
we have proved is true. We derive Cantor’s well-ordering principle, by giving an
easy way for the universe to be injected into a particular subset of On. Suppose
we say that a function f : a —> b is injective, or one-one, iff (Vx)(Vy)—(x #
yA ) = f().

Theorem 17.8. The universe can be well-ordered.

Proof. An injection f : V — On is required. Consider the constant function
f(x) = On. The range of f is a segment of the ordinals. Because On # On, we

have that (Vx)(Vy)(x = y vV On # On), so (Vx)(Vy)(x = y Vv f(x) # f()).
Therefore f is an injection. Thus

{xrm @ f(x) € On}

is a well-order on V.

17.6 Conclusion

Whether a useful choice principle really obtains, and so whether this line fares better
than Routley’s arguments, remains to be seen. Indeed, most of an elementarily
paraconsistent set theory—elementary in the sense that no appeal is made to
classical results—remains to be seen. From the point of view of inconsistent
mathematics, I only hope to have suggested there is a great deal of the universe
of sets still waiting to be explored. Drawing again on one venerable tradition in
paraconsistent set theory, I join da Costa in his structural initiative:

It would be as interesting to study the inconsistent systems as, for instance, the non-
Euclidian geometries: we would obtain a better idea of the nature of certain paradoxes, could
have a better insight on the connections amongst the various logical principles necessary to
obtain determinate results, etc. (da Costa 1974, p. 498)

And drawing again on another tradition, Routley claimed more. In a programmatic
polemic, Routley (1977) hypothesized that standard mathematics, beginning with
set theory, can be recaptured using a suitable “ultramodal” logic. Later reprinted in
his magnum opus, he writes

There are whole mathematical cities that have been closed off and partially abandoned
because of the outbreak of isolated contradictions. They have become like modern
restorations of ancient cities, mostly just patched up ruins visited by tourists.

In order to sustain the ultramodal challenge to classical logic it will have to be shown that
even though leading features of classical logic and theories have been rejected, . .. by going
ultramodal one does not lose great chunks of the modern mathematical megalopolis. ... The
strong ultramodal claim—not so far vindicated—is the expectedly brash one: we can do
everything you can do, only better, and we can do more. (Routley 1980, p. 927)
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