
Chapter 10
A Computational Interpretation of Forcing
in Type Theory

Thierry Coquand and Guilhem Jaber

10.1 Introduction

In a previous work (Coquand and Jaber 2010), we considered intuitionistic type
theory with a type of natural numbers N and a type of Booleans N2. The type
C D N ! N2 represents Cantor space, the space of functions from natural
numbers to Booleans, and it has a natural topology, with basic compact open subsets
defined by a finite set of conditions of the form f ni D bi about a function
f W C . We have shown (Coquand and Jaber 2010) that any definable functional
F W C ! N2 is uniformly continuous. This means that we can find a partition
of Cantor space in a finite number of conditions p1; : : : ; pn with corresponding
Boolean values b1; : : : ; bn such that F f D bi whenever f satisfies the condition
pi . The argument in Coquand and Jaber (2010) is constructive, and thus can be
seen implicitly an algorithm which computes an uniform modulus of continuity. We
explicitate here a possible algorithm, which given such a functional F , produces
a covering p1; : : : ; pn and a list b1; : : : ; bn. To simplify the presentation, we limit
ourselves to a type system which is an extension of Gödel system T (Gödel 1990)
with a type of Booleans. This computation can be readily expressed in a functional
programming language, here Haskell, using the notion of monads (Wadler 1992).

We briefly outline the paper. We first recall the syntax for terms and conditions.
We then give a simple operational semantics corresponding to forcing. We prove
the termination of this evaluation, and give an algorithm to compute the modulus
of continuity of a given functional. These computation combines in a non trivial

T. Coquand (�)
Chalmers tekniska högskola, Data-och informationsteknik, 412 96 Göteborg, Sweden
e-mail: coquand@chalmers.se

G. Jaber
Département Informatique – École des Mines de Nantes 4, rue Alfred Kastler,
44307 Nantes, France
e-mail: guilhem.jaber@mines-nantes.fr

P. Dybjer et al. (eds.), Epistemology versus Ontology, Logic, Epistemology,
and the Unity of Science 27, DOI 10.1007/978-94-007-4435-6__10,
© Springer Science+Business Media Dordrecht 2012

203

204 T. Coquand and G. Jaber

way realizability and Beth models, and we end by commenting on this point,
following Goodman (1978). A first appendix presents a representation in the
programming language Haskell and a second appendix explains how we can give
computational sense to universal quantification over Cantor space by iterating this
forcing construction.

10.2 Terms, Types and Conditions

10.2.1 Terms

The terms of Type Theory are untyped �-calculus extended with constants, and with
the following syntax.

t; u WWD x j �x:t j t t j natrec.t; t/ j boolrec.t; t/ j S.t/ j 0 j 1

We consider terms up to ˛-conversion. Besides ˇ-reduction, natrec and boolrec
have the reduction rules

natrec.a; g/ 0 ! a natrec.a; g/ S.n/ ! g a .natrec.a; g/ n/

and
boolrec.a0; a1/ 0 ! a0 boolrec.a0; a1/ 1 ! a1

This forms an extension of ˇ-reduction which still has the Church-Rosser property
(Martin-Löf 1998), sometimes called ˇ; �-reduction (Barendregt 1997).

If k is a natural number, we write k the term Sk.0/.

10.2.2 Typing Rules

The basic types are N , for natural numbers, and Nk, for finite types with k elements.
If A; B are types then so is A ! B . The typing judgements are of the form � ` t WA,
where � is a context x1WA1; : : : ; xnWAn (with xi ¤ xj for i ¤ j).

The typing rules are as follows.

.xWA/ 2 �

� ` xWA
�; xWA ` t W B

� ` �x:t W A ! B

� ` v W A ! B � ` uWA
� ` v u W B

� ` 0 W N

� ` t W N

� ` S.t/ W N

� ` a W B � ` g W N ! B ! B

� ` natrec.a; g/ W N ! B

� ` 0 W N2 � ` 1 W N2

� ` a0 W B � ` a1 W B

� ` boolrec.a0; a1/ W N2 ! B

10 A Computational Interpretation of Forcing in Type Theory 205

f l D 1f l D 0

pi ; i 2 I0 pi ; i 2 I1

p

Fig. 10.1 An example of condition

10.2.3 Conditions

The conditions p; q; : : : represent finite amount of information about the infinite
object we want to describe. Since we want to force the addition of a Cohen real, the
conditions are finite sub-graphs of function from natural numbers to Booleans. Thus
the conditions can be represented as a finite list of equations

f n1 D b1 : : : f nk D bk

where n1; : : : ; nk are distinct natural numbers and b1; : : : ; bk Booleans. The domain
dom.p/ of this condition p is the finite set n1; : : : ; nk . We write q � p if the
condition q extends the condition p. One can think of a condition p as a compact
open subset Cp of Cantor space C , which is the space of functions from natural
numbers to the discrete space of Booleans, with the product topology. A condition
p represents also some finite amount of information about a generic element of
Cantor space. If p and q are compatible conditions, we can consider pq D qp, by
taking the union of the conditions p and q. We clearly have Cq � Cp if q � p and
Cpq D Cp \ Cq if p and q are compatible. Any condition p can be considered to be
the product of elementary conditions f n D b. If n is not in the domain of p then the
two conditions p.f n D 0/ and p.f n D 1/ form an elementary partition of p. By
iterating this construction, we obtain the general notion of partition p1; : : : ; pl of a
condition p (this includes as well the trivial partition p of p.) In general a non trivial
partition pi ; i 2 I of p is built from one partition pi ; i 2 I0 of p.f l D 0/ and one
partition pi ; i 2 I1 of p.f l D 1/ for some l not in the domain of p (Fig. 10.1).

10.2.4 Generic Function

We extend the syntax of terms with a new function symbol f. To each condition p

we associate the reduction relation !p which extends ˇ; � reduction with the rule

206 T. Coquand and G. Jaber

f n !p b whenever f n D b is in p. This extension still satisfies the Church-
Rosser property, by the usual Martin-Löf/Tait argument (as presented for instance
in Martin-Löf 1998). We define then t Dp u to mean that t and u have a common
reduct for !p.

10.3 Computational Interpretation of Forcing

10.3.1 Operational Semantics

In ordinary type theory, the computation is described by a rewriting relation t ! t 0
between terms. Here the computation deals with a pair pt of a condition p (which
can be thought as a state) and a term t . Furthermore the computation (process) may
open during the computation independent computations, and the computation step
is a relation pt ! ˛ between pt and a formal sum ˛ D ˙pi ti where p1; : : : ; pn is
a partition of p. The definition is the following.

pt ! ˙pi ti

p.t u/ ! ˙pi.ti u/ p..�x:t/ u/ ! ptŒx=u�

p.boolrec.t0; t1/ 0/ ! pt0 p.boolrec.t0; t1/ 1/ ! pt1

p.natrec.t0; t1/ 0/ ! pt0 p.natrec.t0; t1/ S.t// ! p.t1 t .natrec.t0; t1/ t//

pt ! ˙pi ti

p.natrec.t0; t1/ t/ ! ˙pi .natrec.t0; t1/ ti /

pt ! ˙pi ti

p.boolrec.t0; t1/ t/ ! ˙pi .boolrec.t0; t1/ ti /

The remaining crucial rules are that p.f k/ ! pb if f k D b is in p and otherwise
p.f k/ ! p00 C p11 with pi D p.f k D i/. Finally, we have p.f Sn.t// !
˙pi .f Sn.ti // whenever pt ! ˙piti .

We can then define the computation of the normal form (for ground types):

p0) p0 p1) p1

pt) ˙piki

pS.t/) ˙pi1 C k1

pt ! ˙pi ti pi ti) ˛i

pt) ˙˛i

Lemma 10.1. If pt ! ˙pi ti or pt) ˙pi ti then .pi / is a partition of p and
t !�

pi
ti .

If ˛ D ˙pi ti is a formal sum, with .pi / partition of p, and q � p we can define
q˛ D ˙.qpi/ti where we limit the sum to the pi compatible with q.

Lemma 10.2. If pt ! ˛ and q � p then qt ! q˛. If pt) ˛ and q � p then
qt) q˛.

10 A Computational Interpretation of Forcing in Type Theory 207

10.3.2 Computability Predicate

We define p � 'N .t/ inductively

• p � 'N .0/

• p � 'N .S.t// if p � 'N .t/

• p � 'N .t/ if pt ! ˙pi ti with pi � 'N .ti / for all i

This is equivalent to the fact that we have a relation t) ˙pi ki . Similarly p �
'N2.t/ is defined by the clauses

• p � 'N2.0/

• p � 'N2.1/

• p � 'N2.t/ if pt ! ˙pi ti with pi � 'N2.ti / for all i

and this is equivalent to the fact that pt) ˙pi vi with vi D 0 or vi D 1 for all i .
Finally, p � 'A!B.t/ means that q � p and q � 'A.u/ implies q � 'B.t u/.

p � 'A.t/ can be read as “p forces that t is computable at type A”. In the case
A D N or A D N2 this means that we have pt) ˛ for some ˛, i.e. that the
computation of pt terminates.

Lemma 10.3. If p � 'A.t/ and q � p then q � 'A.t/.

Proof. This is direct if A is a function type and follows from Lemma 10.2 in the
case A D N or A D N2.

Lemma 10.4. If pt ! ˙pi ti and pi � 'A.ti / for all i then p � 'A.t/.

Proof. This is clear if A D N or A D N2. If A D A1 ! A2 and pt ! ˙pi ti and
pi � 'A.ti / for all i and if q � p then we have qt ! ˙.qpi/ti by Lemma 10.2. If
q � 'A1.u/ we have q.t u/ ! ˙.qpi/.ti u/ and qpi � 'A2.ti u/. By induction we
have q � 'A2.t u/ as desired.

Lemma 10.5. If p � 'A.t0/ and p � 'N !A!A.t1/ then p � 'N !A.natrec.t0; t1//.
Similarly, if p � 'A.t0/ and p � 'A.t1/ then p � 'N2!A.boolrec.t0; t1//.

Proof. This follows from Lemma 10.4.

Lemma 10.6. The generic function is computable, i.e. p � 'N !N2.f/ for all p.

Proof. We assume p � 'N .t/ and we prove p � 'N2 .f t/. We have pt) ˙pi ki

and, using Lemma 10.4, we are reduced to prove that p � 'N2 .f k/, which is direct,
by case if k is in the domain of p or not.

Theorem 10.1. If x1WA1; : : : ; xnWAn ` t WA and p � 'A1.t1/; : : : ; p � 'An.tn/ then
we have p � 'A.tŒx1=t1; : : : ; xn=tn�/. In particular, if ` t WA then p � 'A.t/ for
all p.

Proof. By induction on the proof of x1WA1; : : : ; xnWAn ` t WA using Lemmas 10.5
and 10.6.

208 T. Coquand and G. Jaber

If we have ` F W C ! N2 it is possible to use this result and compute a modulus
of uniform continuity for F as follows. Using Theorem 10.1 and Lemma 10.6, we
have � 'N2.F h/. Hence we have F h) ˙pi vi with vi D 0 or vi D 1 for all i ,
and pi is a partition of Cantor space. By Lemma 10.1, we have F h !�

pi
vi . We

can see the modulus of continuity of F as the greatest k such that a condition of the
form f k D b appears in one of the pi .

10.3.3 Baire Space

Our argument can be adapted to the case of Baire space N ! N instead of Cantor
space. The generic function f is now of type N ! N and an elementary condition
is of the form f n D m, where n and m are natural numbers. The partitions are not
finite objects anymore but well-founded trees. The inductive definition of partition
is the following: the condition p itself is a (trivial) partition of p, and if n is not
in the domain of p, and for each m we have a partition Pm of p.f n D m/, then
the union of all Pm is a partition of p. Similarly the formal sums ˙pi ti are now
indexed by well-founded trees: we have the formal sum pt over p, and if n is not in
the domain of p, and for each m we have a formal sum �m over p.f n D m/, then
the formal sum ˙m�m is a formal sum over p. The operational semantics have the
same rules, except that p.f k/ ! pl if f k D l is in p and p.f k/ ! ˙pnn with
pn D p.f k D n/ otherwise. Whenever ` F W .N ! N / ! N it is possible in
this way to associate to F a well-founded tree (a bar on Baire space) with natural
numbers at each leaves, by computing F f. This gives a strong form of the continuity
of definable functionals on Baire space.1

10.4 Conclusion

In the reference (Goodman 1978), Goodman compares recursive realizability and
Kripke/Beth models as follows. Recursive realizability “emphasizes the active
aspect of constructive mathematics: : : However, Kleene’s notion has the weakness
that it disregards that aspect of constructive mathematics which concern epistemo-
logical change: : : . Precisely that aspect of constructive mathematics which Kleene’s
notion neglects is emphasized by Kripke’s semantics for intuitionistic logic: : : .
However, Kripke’s notion makes it appear that the constructive mathematician is
a passive observer of a structure which gradually reveals itself. What is lacking
is the emphasis on the mathematician as active which Kleene’s notion provides.”

1This result is stated for instance in the reference Bishop (1970). In this reference, Bishop argues
that an appropriate approach to Brouwer’s theory of choice sequence is to express them as part of
the metatheory of a system similar to Gödel System T .

10 A Computational Interpretation of Forcing in Type Theory 209

He then presents a combination of realizability and Kripke semantics. We think
that our work illustrates these remarks in a simple and concrete framework. Usual
computation rules in type theory, with a rewriting relation on terms, don’t involve
“epistemological change”. In our framework, the condition p represents a state of
knowledge. While in usual Kripke/Beth semantics, these states of knowledge are
independent of the computations, they are here needed in the computation, and the
computation may create new states of knowledge.

A.1 Appendix 1: Representation in Haskell

The operational semantics given in the previous section has a natural representation
in the programming language Haskell, using the notion of monad (Wadler 1992).
Written in this way, the program is quite close to an ordinary evaluation program
for Gödel system T by head reduction. The monad we use is a composition of the
list monad (for nondeterminism) and of the state monad (Wadler 1992).

type Name = String

data Exp =
Zero | One | Succ Exp | App Exp Exp | Natrec Exp Exp

| Boolrec Exp Exp | Lam Name Exp | Var Name | Gen

-- closed substitution

subst :: Exp -> Name -> Exp -> Exp

subst t x e = case t of
Var y -> if x == y then e else t
Lam y t1 -> if x == y then t else Lam y (subst t1 x e)
App t1 t2 -> App (subst t1 x e) (subst t2 x e)
Natrec t1 t2 -> Natrec (subst t1 x e) (subst t2 x e)
Boolrec t1 t2 -> Boolrec (subst t1 x e) (subst t2 x e)
Succ t1 -> Succ (subst t1 x e)
_ -> t

type Cond = [(Int,Exp)] -- uses only Zero or One

newtype M a = M (Cond -> [(Cond,a)])

app :: M a -> Cond -> [(Cond,a)]
app (M f) p = f p

instance Monad M where
return x = M (\p -> [(p,x)])
l >>= k = M (\p -> concat (map (\(p,a) -> app (k a) p)

(app l p)))

210 T. Coquand and G. Jaber

-- split determines if the condition p contains the value in k,
-- and otherwise forks between the two possibilities

split :: Int -> M Exp

split k = M (\ p -> case lookup k p of
Just b -> [(p,b)]
Nothing -> [((k,Zero):p,Zero),

((k,One):p,One)])

-- gen k e computes e before applying it to split

gen :: Int -> Exp -> M Exp

gen k Zero = split k
gen k (Succ e) = gen (k+1) e
gen k e = do e’ <- step e

gen k e’

-- step implements the reduction

step :: Exp -> M Exp

step (App (Lam x t) u) = return (subst t x u)
step (App (Natrec t0 t1) Zero) = return t0
step (App (Natrec t0 t1) (Succ t)) =

return (App (App t1 t) (App (Natrec t0 t1) t))
step (App (Boolrec t0 t1) Zero) = return t0
step (App (Boolrec t0 t1) One) = return t1
step (App (Natrec t0 t1) t) =

do t’ <- step t
return (App (Natrec t0 t1) t’)

step (App (Boolrec t0 t1) t) =
do t’ <- step t

return (App (Boolrec t0 t1) t’)
step (App Gen u) = gen 0 u
step (App t u) = do t’ <- step t

return (App t’ u)
step t = error("step " ++ show t)

-- app (eval t) [] outputs a covering of
-- Cantor space if t is of type N2

eval :: Exp -> M Exp

eval Zero = return Zero
eval One = return One
eval t = do t’ <- step t

eval t’

10 A Computational Interpretation of Forcing in Type Theory 211

A.2 Appendix 2: Quantification on Cantor Space

A.2.1 New Conditions

We explain how one can use this operational interpretation of forcing to give a new
computational interpretation of an universal quantification 8 W .C ! N2/ ! N2

on Cantor space. There are already computational interpretations (Escardo 2007;
Simpson 1998), using a general recursive program.2 The interpretation we suggest
relies on iterating the previous construction and introducing infinitely generic
functions f0; f1; : : : It is reminiscent of iterated forcing in set theory, and of the
interpretation of choice sequences in intuitionism (Troelstra and van Dalen 1988).

The first step is to extend the notion of condition. So far, a condition p represents
a compact open subset of Cantor space. We can in the same way consider conditions
r; s; : : : which represent compact open subsets of the product space C N. The
elementary conditions are now of the form fl k D i , given an information about the
generic function fl , and a condition r is a finite product of compatible elementary
conditions. The set of conditions P is the union of the sets Pn of condition
containing only fl k D i with l < n. The conditions we need p; q; : : : are pairs
p D .r; n/, with r in Pn. Such a condition represents a compact open subset X of
C n. We define .s; m/ � .r; n/ to mean n � m and s � r . To summarize, each
condition p D .r; n/ represents a finite amount of information about a finite number
of generic functions, and to refine this condition we can either add new informations,
or add a new generic function. (Intuitively, the conditions represent compact open
subsets of a “variable” space.)

The reduction relations pt ! ˛; pt) ˛ are as before, with p D .n; r/, and
t a term which may contain f0; : : : ; fn�1 and ˛ is now a formal sum ˙pi ti where
pi D .n; ri / and .ri / is a partition of r .

A.2.2 Universal Quantification as Projection

An element r of Pn represents a compact open subset X of C n. A formal sum of
Booleans ˛ D ˙pivi with pi D .n; ri / and ri partition of r represents a continuous
function f˛ from X to the discrete space N2.

We define the conjunction operation on formal sums of Booleans ˛ ^ ˇ as

.˙pi vi / ^ .˙qj wj / D ˙pi qj .vi ^ wj /

in such a way that we have f˛^ˇ D f˛ ^ fˇ.

2The termination of this program relies on classical logic and the fact that definable functionals are
continuous.

212 T. Coquand and G. Jaber

If r is a condition in PnC1, we can write r D r 0s with r 0 in Pn and s a product
of conditions of the form fn k D i . The condition .n C 1; r/ can thus be thought
as representing a product X � Y , with X � C n corresponding to the condition
.n; r 0/ and Y corresponding to s. If we consider a partition .ri / of r in PnC1, the
formal sum ˛ D ˙pi vi , with pi D .n C 1; ri / represents a continuous function
f˛ W X�Y ! N2. We are going to define the formal sum p.˛/ D ˙.n; sj /wj which
represents the function fp.˛/ W X ! N2 such that fp.˛/.x/ D 1 iff f˛.x; y/ D 1 for
all y in Y .

This definition is by induction on the fact that .ri / is a partition of r . If .ri / is the
unit partition then we take p..n C 1; r/v/ D .n; r 0/v: If it is a partition formed of a
partition .ri ; i 2 I0/ of r.fl k D 0/ and a partition .ri ; i 2 I1/ of r.fl k D 1/, we
can consider by induction

ˇ0 D p.˙i2I0pi vi / ˇ1 D p.˙i2I1pi vi /

If l D n, we define p.˛/ D ˇ0 ^ ˇ1 and if l < n, we define p.˛/ D ˇ0 C ˇ1.

A.2.3 Computation Rules

The only new reduction rule is the following

.n C 1; r/.F fn/) ˛

.n; r/.8 F / ! p.˛/

The intuition is that we want to compute 8 F and we know that F mentions
only the generic functions f0; : : : ; fn�1, satisfying the condition r . We compute
then F fn, where fn is “fresh” for F , and from the result of this computation we can
compute 8 F using the function p.

The computability relation p � 'A.t/ is defined as before, for p D .n; r/ and t

a term which may contain f0; : : : ; fn�1.

Lemma 10.7. All constant fl are computable, i.e. .n; 1/ � 'C .fl / if l < n. The
constant 8 is computable, i.e. � 'C !N2.8/.

Proof. The proof that fl is computable is the same as the proof of Lemma 10.6.
If we have .n; r/ � 'C !N2.F / we show that .n; r/ � 'N2.8 F /. For this

it is enough to show that .n C 1; r/ � 'N2 .F fn/, which follows from .n; r/ �
'C !N2.F / and .n C 1; r/ � 'C .fn/.

References

Barendregt, H. 1997. The impact of the lambda calculus. Bulletin of Symbolic Logic 3: 181–215.
Bishop, E. 1970. Mathematics as a numerical language. In Intuitionism and proof theory, ed.

A. Kino, J. Myhill, and R.E. Vesley. Amsterdam: North-Holland.

10 A Computational Interpretation of Forcing in Type Theory 213

Escardo, M. 2007. Infinite sets that admit fast exhaustive search. In LICS 2007, Wroclaw, 443–452.
Coquand, Th., and G. Jaber. 2010. A note on forcing in type theory. to appear in Fundamenta

Informatica 100: 43–52.
Gödel, K. 1990. On a hitherto unexploited extension of the finitary standpoint. In Collected Works,

vol. II. Publications 1938–1974. New York: Oxford University Press.
Goodman, N. 1978. Relativised realizability in intuitionistic arithmetic at all finite types. Journal

of Symbolic Logic 43: 23–44.
Martin-Löf, P. 1998. An intuitionistic theory of types In Twenty-five years of type theory,

ed. G. Sambin and J. Smith. New York: Oxford University Press (reprinted version of an
unpublished report from 1972).

Simpson, A. 1998. Lazy functional algorithms for exact real functionals. In Mathematical
foundations of computer science 1998, Lecture notes in computer science, vol. 1450, ed.
L. Brim, J. Gruska, and J. ZlatuLska 456–464. Berlin: Springer.

Troelstra, A.S., and D. van Dalen. 1988. Constructivism in mathematics, vol. II. Amsterdam:
North-Holland.

Wadler, Ph. 1992. The essence of functional programming. In Conference record of the nineteeth
annual symposium of principle of programming languages, New Mexico.

	Chapter 10: A Computational Interpretation of Forcing in Type Theory
	10.1 Introduction
	10.2 Terms, Types and Conditions
	10.2.1 Terms
	10.2.2 Typing Rules
	10.2.3 Conditions
	10.2.4 Generic Function

	10.3 Computational Interpretation of Forcing
	10.3.1 Operational Semantics
	10.3.2 Computability Predicate
	10.3.3 Baire Space

	10.4 Conclusion
	A.1 Appendix 1: Representation in Haskell
	A.2 Appendix 2: Quantification on Cantor Space
	A.2.1 New Conditions
	A.2.2 Universal Quantification as Projection
	A.2.3 Computation Rules

	References

