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  Abstract    Coxiella burnetii  is a bacterial intracellular parasite of eucaryotic cells 
that replicates within a membrane-bound compartment, or “parasitophorous 
vacuole” (PV). With the exception of human macrophages/monocytes, the con-
sensus model of PV traf fi cking in host cells invokes endolysosomal maturation 
culminating in lysosome fusion.  C. burnetii  resists the degradative functions of 
the vacuole while at the same time exploiting the acidic pH for metabolic activation. 
While at  fi rst glance the mature PV resembles a large phagolysosome, an increasing 
body of evidence indicates the vacuole is in fact a specialized compartment that 
is actively modi fi ed by the pathogen. Adding to the complexity of PV biogenesis is 
new data showing vacuole engagement with autophagic and early secretory pathways. 
In this chapter, we review current knowledge of PV nature and development, 
and discuss disparate data related to the ultimate maturation state of PV harboring 
virulent or avirulent  C. burnetii  lipopolysaccharide phase variants in human 
mononuclear phagocytes.  

  Keywords   Macrophage  •  Parasitophorous vacuole  •  Endosome  •  Lysosome  
•  Autophagy  •  Integrin  •  Lipopolysaccharide  •  Monocyte  •  Phase variation  •  Secretory 
pathway      

    8.1   Introduction 

 Soon after identi fi cation of  Coxiella burnetii  as the cause of human Q fever ,  the 
organism was classi fi ed as a rickettsial agent due to its obligate intracellular nature 
and staining properties (Cox  1939  ) . The original assignment of  C. burnetii  to the 
 a -proteobacterial order  Rickettsiales  (Weiss and Moulder  1984  )  was changed during 
the molecular era with genetic information indicating appropriate placement within 
the  g -proteobacteria order  Legionellales , which includes the facultative intracellular 
pathogen  Legionella pneumophila  (Weisburg et al.  1989  ) . Indeed,  C. burnetii  and 
 L. pneumophila  share several traits including aerosol transmission, a tropism for 
alveolar macrophages during natural infection, developmental forms adapted to 
intracellular survival and environmental transmission, and subversion of host cell 
functions by effector proteins secreted by a specialized Dot/Icm type IV secretion 
system (T4SS) (Voth and Heinzen  2007 ; Newton et al.  2010  ) . Although macrophage 
invasion and survival are central to pathogenesis by both  C. burnetii  and  L. pneumophila , 
the organisms occupy unique intracellular niches and utilize different subversion 
strategies once internalized by their macrophage hosts. 

 Natural isolates of  C. burnetii  undergo a virulent to avirulent transition upon 
serial passage in embryonated eggs or tissue culture. This transition can be serologi-
cally de fi ned using post-vaccination antisera and is referred to as “phase variation”. 
Lipopolysaccharide (LPS)  O -antigen of virulent organisms is the primary surface 
antigen recognized by phase I antiserum. Avirulent  C. burnetii,  recognized by phase 
II, but not phase I antiserum, produce a severely truncated LPS lacking  O -antigen 
and some core sugars (Hackstadt et al.  1985  ) . Some, but not all,  C. burnetii  in phase 
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II contain a large chromosomal deletion enriched in genes involved in  O -antigen 
biosynthesis (Denison et al.  2007 ; Beare et al.  2006  ) . The virulence function of 
 C. burnetii  LPS is unrelated to lipid A, as both phase I and phase II organisms of 
the Nine Mile reference strain have the same tetra-acylated structure that weakly 
interacts with Toll-like receptor (TLR) 4 (Zamboni et al.  2004  ) . Instead, virulence 
appears related to  O -antigen masking of the organism’s outer surface that inhibits 
complement deposition (Vishwanath and Hackstadt  1988  )  and antibody access 
to surface proteins (Hackstadt  1988  ) . Masking is also proposed to restrict TLR 
receptor interactions of immune cells with non-LPS ligands (Shannon et al.  2005  ) . 
Interestingly, despite weak lipid A-TLR4 interactions, full-length phase I LPS 
stimulates dramatic F ( fi lamentous)-actin rearrangement in human macrophages 
in a TLR4-dependent manner (Capo et al.  1999,   2003 ; Honstettre et al.  2004  ) . 
Consequently,  C. burnetii  protein interactions with complement receptor 3 (CR3) 
are inhibited, an effect speculated to result in different traf fi cking of phase I and phase 
II organisms in human mononuclear phagocytes (discussed in more detail below) 
(Barry et al.  2011  ) . 

 LPS  O -antigen does not appear to act directly as a ligand in  C. burnetii  uptake 
as phase II organisms are internalized 10–100 times more ef fi ciently then phase I 
organisms by cultured professional phagocytes, epithelial cells and  fi broblasts 
(Moos and Hackstadt  1987  ) . The lower carbohydrate content of phase II LPS is 
thought to make the organism hydrophobic, thereby facilitating non-speci fi c host 
plasma membrane interactions (Williams et al.  1981  ) . The more accessible surface 
protein ligands of phase II  C. burneii  may further enhance uptake (Hackstadt  1988  ) . 

 By default, the phagocytic process results in material being sequestered within 
a nascent phagosome that traf fi cs through the endocytic pathway (Haas  2007  ) . 
The  fi rst step of phagosome maturation is the intermingled fusion/ fi ssion events 
with early endosomes. Phagosomes acquire several markers, such as early endosome 
antigen-1 (EEA 1) and the small GTPase Rab5. Early phagosomes progressively 
transform into compartments that present features of late endosomes. Markers of late 
endosomes, such as the small GTPase Rab7 and lysosomal membrane-associated 
protein-1 (LAMP-1), gradually replace early endosomal markers (Scott et al.  2003 ; 
Henry et al.  2004  ) . The pH of early phagosomes is around 6.0, with acquisition 
of the vacuolar proton pump ATPase (V-H + -ATPase) by late phagosomes leading 
to an intraphagosomal pH of 4.5–5.5 (Scott et al.  2003  ) . Finally, late phagosomes 
fuse with lysosomes that contain hydrolytic enzymes such as cathepsin D, thus 
leading to the formation of phagolysosomes in which bacteria can be destroyed 
(Scott et al.  2003  ) . Consequently, numerous bacterial pathogens have developed 
speci fi c strategies to avoid this intracellular fate, thereby enhancing their survival 
within host cells (Scott et al.  2003  ) . Bacteria such as  Listeria ,  Shigella  and  Rickettsia  
escape from nascent phagosomes to the cytosol to avoid destruction in phagolysosomes 
(Cossart and Sansonetti  2004  ) . A different strategy used by several pathogens 
involves interference with normal phagolysosome biogenesis that leads to forma-
tion of vacuoles supporting replication (Alonso and Garcia-del Portillo  2004  ) . 
For example,  B. abortus  vacuoles interact with the endoplasmic reticulum but 
not with the classical endocytic network (Meresse et al.  1999b  ) . Furthermore, 
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 Mycobacterium  phagosomes exchange material such as transferrin with early 
endosomes but are unable to fuse with late endosomes (Scott et al.  2003 ; Rohde et al. 
 2007  ) . Finally,  Salmonella  resides in atypical phagosomes that are neither early nor 
late phagosomes. Membranes of the trans-Golgi network surround  Salmonella -
containing phagosomes, suggesting interactions with endocytic and biosynthetic 
pathways (Holden  2002  ) . 

 In contrast with other intracellular bacteria, the  C. burnetii  parasitophorous 
vacuole (PV) has extensive interactions with the endolysosomal pathway. With the 
exception of human mononuclear phagocytes, studies using several cell types 
have consistently demonstrated PV containing virulent phase I strains of  C. burnetii , 
or the avirulent Nine Mile phase II (NMII) RSA439 strain, fully mature through 
the endolysosomal cascade to resemble a large phagolysosome (Voth and Heinzen 
 2007  ) . However, disparate models have been published on traf fi cking of vacuoles 
harboring virulent Nine Mile phase I (NMI) RSA493 organisms or NMII in human 
mononuclear phagocytes (Ghigo et al.  2002 ; Howe et al.  2010  ) . NMI is considered 
a reference strain with NMII being a high passage isogenic variant of NMI. NMII 
has been extensively characterized and harbors a large chromosomal (~26 kb) 
deletion of  O -antigen biosynthesis genes (Moos and Hackstadt  1987 ; Hoover et al. 
 2002  ) . The clonality and large chromosomal deletion of NMII render it non-revertable 
to full virulence. For the purpose of discussion, we will refer to the opposing models 
of NMI and NMII traf fi cking as the differential traf fi cking (DT) and similar 
traf fi cking (ST) models. In the DT model, maturation of PV containing NMI stalls 
at a late endosomal stage, resulting in a vacuole permissive for pathogen survival 
and growth (Ghigo et al.  2002  ) . Conversely, PV sheltering NMII fully mature into a 
phagolysosomal-like compartment that contains active lysosomal hydrolases and 
is bacteriocidal (Ghigo et al.  2002  ) . Thus, in the DT model, virulence of phase 
variants is attributed to the ultimate maturation state of their respective PVs. In the 
ST model, NMI and NMII both replicate in phenotypically-indistinguishable 
PV that fully mature through the endolysosomal pathway to fuse with lysosomes. 
In this phagolysosome-like vacuole, phase variants resist degradation and replicate 
at equal rates (Howe et al.  2010  ) . 

 Here, we review early and recent work on  C. burnetii  PV nature and development. 
Furthermore, we discuss disparate data related to the ultimate maturation state 
of PV harboring  C. burnetii  NMI or NMII phase variants in human mononuclear 
phagocytes.  

    8.2   Early Studies of the  Coxiella  Vacuole 

 In 1937, Edward Derrick of Brisbane, Australia, published his careful and extensive 
description of a new clinical entity in humans called Q (query) fever (Derrick 
 1937  ) . He successfully isolated the infectious agent – now known as  Coxiella 
burnetii  – in guinea pigs but was unable to visualize the pathogen in infected 
tissues. Using inocula provided by Derrick, Macfarlane Burnet and Mavis Freeman 



1458 The  Coxiella burnetii  Parasitophorous Vacuole

(Burnet and Freeman  1937  )  infected mice and successfully stained organisms in 
spleen sections that they stated “occur as intracellular microcolonies of close-packed 
individuals, nearly always sharply circumscribed within an oval or circular outline.” 
Although not speci fi cally mentioned, it is clear from their elegant sketches that 
organisms were restrained in an intracellular compartment. Interestingly, unpub-
lished notes of Derrick showed strikingly similar drawings (Cooke  2008  ) . A year 
later, Harold Cox at the Rocky Mountain Laboratories in Hamilton, Montana, USA, 
successfully cultivated the newly isolated NMI strain of  C. burnetii  in tissue 
cultures of minced chick embryos and alluded to their vacuolar nature (Cox  1938  ) . 
Subsequent electron microscopy clearly demonstrated intracellular NMI surrounded 
by a limiting membrane (Handley et al.  1967  ) . 

 The biological nature of the  C. burnetii  PV began to unravel with the seminal 
 fi ndings of Burton and co-workers (Burton et al.  1971,   1978  ) . Based on cytochemical 
localization of the lysosomal enzymes acid phosphatase and 5´-nucleotidase in 
NMI-infected mouse L929 cells, they suggested  C. burnetii  resides in a secondary 
lysosome, i. e., the product of primary lysosome fusion with a phagosome. They 
proposed both signi fi cant replication and degradation of  C. burnetii  in the vacuole 
(Burton et al.  1971  ) . A similar fusion event in spleen reticular cells from mice 
infected with the Luga strain of  C. burnetii  was described by Ariel et al.  (  1973  )  who 
used the term “phagolysosome” to describe the  C. burnetii  vacuole. Burton et al. 
 (  1978  )  went on to show acid phosphatase activity in NMI and NMII vacuoles of 
persistently infected (6–10 months) mouse L929 cells and African green monkey 
kidney (Vero) cells, with Vero cell vacuoles also containing abundant membrane 
whorls, or “myelin con fi gurations” (Fig.  8.1 ).  

 By de fi nition, a phagolysosome is a degradative organelle containing acid 
activated hydrolases. The proton pumping V-H + -ATPase is responsible for lowering 
the vacuole’s lumenal pH to approximately 5.0 to achieve optimal hydrolytic enzyme 
activity (Luzio et al.  2007  ) . Consistent with the presence of two active lysosomal 
enzymes (Burton et al.  1971  ) , Akporiaye et al.  (   1983  )  subsequently demonstrated 
that NMI PV in persistently-infected J774 murine macrophages acquire thorium 
dioxide from primary lysosomes and acidify to pH 5.2, thus strengthening the 
emerging model of PV-lysosome fusion. 

    8.2.1   Acid Activation of Metabolism 

 Shortly after the original clinical isolation of  C. burnetii,  robust growth of the 
pathogen was achieved in embryonated hen’s eggs and cultured cell lines (Ormsbee 
 1952 ; Cox  1938  ) . Thus, it was perplexing in early metabolic studies why intact 
host cell-free bacteria, unlike bacterial lysates, displayed little metabolic activity 
in different physiologic buffers (Weiss  1973  ) . This puzzle was solved by Hackstadt 
and Williams  (  1981  )  who astutely recognized the implications Burton et al . ’s 
 (  1975,   1978  )   fi ndings. In a landmark study published in 1981, and before the actual 
determination of PV pH, they showed that transport, catabolism and incorporation 
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of both glucose and glutamate by host cell-free  C. burnetii  NMI are highly stimulated 
under acidic conditions mimicking that of a phagolysosome (Hackstadt and Williams 
 1981  ) . Importantly, they also demonstrated an intracellular growth requirement 
for vacuolar acidity by showing cessation of NMI growth following neutralization of 
the PV with lysosomotropic amines (Hackstadt and Williams  1981  ) . The discovery 
of “acid activated”  C. burnetii  metabolism led to a series of studies that identi fi ed 
optimal conditions for transport and utilization of nutrients, maintenance of the 
ATP pool, and membrane energization (Hackstadt and Williams  1984  ) .   

    8.3   The  Coxiella  Parasitophorous (PV) Vacuole 

 A resurgence in  C. burnetii  PV characterization occurred in the mid-1990s. Enabled 
by new reagents, such as vital stains and organelle-speci fi c antibodies, and enhanced 
imaging capabilities, such as laser scanning confocal microscopy, researchers 
could now more precisely monitor phagosome maturation. These tools, coupled 
with a variety of cultured cell model systems, allowed several groups to dramatically 

  Fig. 8.1     The   C. burnetii   parasitophorous vacuole (PV).  Scanning electron micrograph showing 
a cryo-prepared Vero cell infected with  C. burnetii  Nine Mile (phase II) for 4 days. The host cell 
cytoplasm (tan) contains a large PV  fi lled with  C. burnetii  ( orange ) (Image courtesy of Beth 
Fischer, Rocky Mountain Laboratories)       
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expand our knowledge of  C. burnetii  PV biogenesis. With the exception of NMI 
organisms in human mononuclear phagocytes (discussed in detail below), cumulative 
evidence supports a model whereby  C. burnetii  PV fully mature through the 
endolysosomal cascade to acquire characteristics of a phagolysosome. However, 
this is an overly simpli fi ed model as  C. burnetii  modi fi es the vacuole to create a 
specialized compartment with unusual fusogenicity with other endolysosomal 
compartments and interactions with autophagy/secretory pathways. 

    8.3.1   PV Maturation/Biology in Animal Cells 
and Human Epithelial Cells/Trophoblasts 

 Although the primary targets of  C. burnetii  during natural infection are monocytes/
macrophages (Stein et al.  2005 ; Khavkin and Tabibzadeh  1988  ) , the organism has an 
impressive ability to infect a wide variety of cultured epithelial cells,  fi broblasts, and 
macrophage-like cells (Voth and Heinzen  2007  ) . In this section, we discuss  C. burnetii  
interactions with animal cells (both professional and non-professional phagocytes) 
and human epithelial cells/trophoblasts. 

 In mouse L929 cells and P388D1 macrophages, live or dead NMI or NMII  C. 
burnetii  are internalized by phagocytosis at equal rates, indicating  C. burnetii  plays 
a passive role in cellular uptake (Baca et al.  1993a ; Tujulin et al.  1998  ) . Rearrangement 
of host cell F ( fi lamentous)- actin is required for pathogen uptake as internalization 
is inhibited by treating cells with actin depolymerizing agents such as cytochalasin 
D (Baca et al.  1993a  ) . The bacterial ligand(s) mediating attachment are unknown; 
however, it is likely proteinaceous as treatment of  C. burnetii  with proteases hinders 
uptake (Baca et al.  1993a  ) . Pretreatment of NMI with the cationic peptide CAP37 
dramatically enhances infection of L929 cells without a deleterious effect on the 
pathogen (Aragon et al.  1995  ) . An opsonon-like activity of the peptide is speculated 
to promote invasiveness (Aragon et al.  1995  ) . 

 In addition to a role in pathogen uptake, F-actin rearrangements regulate the size 
and formation of the  C. burnetii  PV (Aguilera et al.  2009  ) . In HeLa cells, a web 
of F-actin surrounds mature PV harboring NMII. Treatment with latrunculin B or 
cytochalasin D following uptake results in smaller PV with reduced fusogenicity. 
PV decorate with both wild type and constitutively active forms of the Rho family 
GTPases Cdc42 and RhoA, noted regulators of actin dynamics. Actin accumulation 
may bene fi t PV expansion by providing tracks for vesicular fusion and/or enhancing 
structural integrity. A similar actin web surrounds the vacuole (inclusion) occupied 
by the intracellular bacterium  Chlamydia trachomatis,  and is thought to provide a 
structural scaffold (Kumar and Valdivia  2008  ) . 

 In animal cells and human epithelial cells/trophoblasts, studies assessing pH, 
enzymatic activities, and lysosomal protein markers agree that nascent NMI or NMII-
containing phagosomes fully mature through the default endocytic pathway to acquire 
characteristics of a phagolysosome (Heinzen et al.  1996 ; Howe and Mallavia  2000 ; 
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Burton et al.  1971,   1978 ; Akporiaye et al.  1983 ; Howe et al.  2003 ; Romano et al. 
 2007 ; Campoy et al.  2011 ; Aguilera et al.  2009 ; Grieshaber et al.  2002  ) . Ratiometric 
pH-sensitive probes consistently show PV with a phagolysosomal-like pH (~5) in 
J774 mouse macrophages infected with NMI (Akporiaye et al.  1983  ) , Vero cells 
infected with NMII (Grieshaber et al.  2002  ) , and P388D1 and L929 cells infected 
with NMII or the virulent Priscilla and Q212 strains of  C. burnetii  (Maurin et al. 
 1992a,   b  ) . A cursory examination of the kinetics of PV maturation has been con-
ducted in several cell lines. In CHO cells, the early endosomal marker Rab5 is found 
on PV containing NMII as early as 5 min after bacterial uptake, with maximum 
association at 20 min (Romano et al.  2007  ) . The late endosomal/lysosomal marker 
Rab7 has maximal PV association between 40 and 60 min post-infection, when 
Rab5 levels are decreasing (Romano et al.  2007  ) . Phagosome recruitment of lysosomal 
hydrolases is a de fi ning marker of lysosome fusion; however, traf fi cking of the lyso-
somal enzymes acid phosphatase and cathepsin D to the  C. burnetii  PV appears 
delayed in NMI-infected J774 macrophages and NMII-infected CHO cells respectively, 
taking approximately 1–2 h to reach high levels (Howe and Mallavia  2000 ; Romano 
et al.  2007  ) . These maturation kinetics are substantially slower than those of 
phagosomes containing inert particles such as latex beads, which acquire lysosomal 
markers by 15 min after uptake (Oh and Swanson  1996  ) . Cathepsin D localizes 
to mature PV harboring replicating NMII in both HeLa and CHO cells (Heinzen 
et al.  1996 ; Aguilera et al.  2009 ; Romano et al.  2007  )  and PV containing replicating 
NMI in human BeWo trophoblasts (Ben Amara et al.  2010  ) . General protease activity 
has also been demonstrated for mature NMII PV in HeLa cells (Campoy et al.  2011  ) . 
Other late endosome/lysosomal markers that decorate mature PV in animal cells 
and human epithelial cells/ trophoblasts include the V-H + -ATPase (Heinzen et al. 
 1996  ) , the lysosomal glycoproteins LAMP-1, LAMP-2 and LAMP-3 (CD63) (Ghigo 
et al.  2002 ; Heinzen et al.  1996 ; Shannon et al.  2005 ; Sauer et al.  2005 ; Beare et al. 
 2009a  ) , and syntaxin 8 (Fig.  8.2 ), a t-SNARE involved in late endosome-lysosome 
fusion (Luzio et al.  2009  ) .  

    8.3.1.1   Autophagy/Secretory Pathway Interactions 

 A potential mechanism for delayed  C. burnetii  phagosome maturation involves 
interactions with autophagosomes (Gutierrez et al.  2005 ; Romano et al.  2007  ) . 
As early as 5 min after NMII uptake by CHO cells, the nascent phagosome acquires 
the autophagosomal marker microtubule-associated protein light-chain 3 (LC3) 
and the marker remains associated through at least 3 days post infection (Romano 
et al.  2007 ; Beron et al.  2002 ; Campoy et al.  2011 ; Gutierrez et al.  2005  ) . Rab24, a 
small GTPase involved in autophagy, also decorates mature NMII PV (Gutierrez 
et al.  2005  ) . Overexpression of LC3 or starvation-induced autophagy both result 
in reduced recruitment of cathepsin D by the  C. burnetii  phagosome at 1 h post-
infection (Romano et al.  2007  ) . Thus, engagement of the autophagy pathway 
promotes delayed PV-lysosome fusion. In CHO and HeLa cells, NMII infection 
itself induces autophagy as evidenced by increased conversion of LC3-1 to LC3-II 
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(Vazquez and Colombo  2010 ; Romano et al.  2007  ) . An increasing body of evidence 
indicates that autophagy mediates innate immunity by delivering both intravacuolar 
and cytoplasmic bacterial pathogens to lysosomes for degradation (Deretic and 
Levine  2009  ) . However,  C. burnetii  clearly bene fi ts from interactions with the 
autophagic pathway as induction enhances PV formation and bacterial replication 
(Gutierrez et al.  2005  ) . 

 An interplay between autophagy and apopotosis pathways in  C. burnetii  PV 
development has recently been described (Vazquez and Colombo  2010  ) . In NMII-
infected HeLa cells, Beclin 1, an important regulator of autophagy, is recruited to 
the PV membrane. Beclin 1 overexpression favors development of PV while siRNA 
knockdown reduces PV size. Beclin 1 has a BH2 domain that binds Bcl-2 family 
proteins involved in apoptosis, including anti-apoptotic Bcl-2. Interestingly, the 
bene fi cial effect of PV-localized Beclin-1 is optimized upon binding Bcl-2. Thus, 
 C. burnetii  infection modulates both autophagy and apoptotic pathways through 
Beclin 1/Bcl-2 interactions to promote successful infection. 

 New data indicates that  C. burnetii  bene fi ts from PV interactions with the early 
secretory pathway (Campoy et al.  2011  ) . In CHO and RAW murine macrophages 
cells, NMII PV recruit Rab1b, a small GTPase responsible for anterograde transport 
between the endoplasmic reticulum (ER) and Golgi apparatus. Overexpression of 
a dominant-negative form of Rab1b results in smaller PV and less  C. burnetii  repli-
cation. Disruption of the Golgi apparatus, and consequently the secretory pathway, 

  Fig. 8.2     The   C. burnetii   PV decorates with the t-SNARE syntaxin 8.  HeLa cells infected with 
 C. burnetii  Nine Mile (phase II) for 2 days were stained by immuno fl uorescence for syntaxin 8 
( red ) and LAMP-3 (CD63) ( green ). Host and  C. burnetii  DNA were stained with DRAQ5 ( blue ). 
syntaxin 8 and LAMP-3 decorate the PV membrane ( arrow ) (Image courtesy of Dale Howe, Rocky 
Mountain Laboratories)       
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by treating infected cells with brefeldin A or expression of a dominant-negative 
form of the small GTPase Sar1, also results in signi fi cantly smaller PV. Rab1b deco-
ration is most noticeable on mature PV (>24 h post-infection), suggesting secretory 
pathway engagement is important during the expansion phase of PV development. 
Interestingly, autophagosome formation also requires Rab1 and functional ER exist 
sites (Zoppino et al.  2010  ) , thereby implicating interactions between ER transport 
processes and autophagy in PV biogenesis.  

    8.3.1.2    Coxiella  Modulation of PV Biogenesis 

 Collectively, the current model of  C. burnetii  PV biogenesis now includes endocytic, 
autophagy and secretory pathway interactions. As mentioned above, the  C. burnetii  
phagosome matures with delayed kinetics. This behavior requires active  C. burnetii  
protein synthesis as PV containing organisms inactivated with formalin or chloram-
phenicol mature with normal phagosome kinetics (Romano et al.  2007 ; Howe and 
Mallavia  2000  )  and fail to recruit LC3 (Romano et al.  2007  ) . How  C. burnetii  
bene fi ts from stalled phagosome maturation is unclear. Two possibilities are 
(1) stalling affords the organism extra time to metabolically activate and express 
proteins ultimately required for survival within a phagolysosomal environment, 
and (2) stalling is necessary for differentiation of the non-replicating small cell 
variant (SCV) developmental form into the replicating large cell variant (LCV) 
developmental form (Voth and Heinzen  2007 ; Coleman et al.  2004  ) . However, 
contrary data demonstrate that NMII inactivated with chloramphenicol persist in a 
viable state for days in lysosome-like vacuoles of Vero cells (Howe et al.  2003  ) , and 
that puri fi ed NMII LCV and SCV are equally infectious (Omsland et al.  2009 ; 
Coleman et al.  2004  ) . 

 In addition to PV biogenesis,  C. burnetii  protein synthesis is required for 
maintenance of the mature PV structure and its recruitment of lysosomes (Howe 
et al.  2003  ) . Coincident with  C. burneti  entry into log phase (~2 days post-infection), 
mature PV containing NMII in Vero cells undergo a dramatic expansion, resulting 
in a large and spacious vacuole that is easily visible by light microscopy (Coleman 
et al.  2004  ) . However, following a 12 h treatment with chloramphenicol, these vacuoles 
collapse and lose their spaciousness and phase translucent appearance (Howe et al. 
 2003  ) . Moreover, fusion between mature PV and the lysosomal compartment, as 
evidenced by recruitment of latex bead-containing phagolysosomes, is substantially 
reduced in infected J774 macrophages treated with chloramphenicol (Howe et al. 
 2003  ) . Although the  C. burnetii  protein effectors of PV maturation and maintenance 
are unknown, some are presumably delivered directly to the host cytosol via the 
pathogen’s T4SS (Voth and Heinzen  2009a  ) . 

 The PV  fi lled with stationary phase  C. burnetii  (~6 days post-infection) can 
encompass nearly the entire host cell cytoplasm (Coleman et al.  2004  ) . Interestingly, 
this parasitic burden does not impose obvious cytopathic effects and there is no 
concerted lytic event associated with  C. burnetii  host cell egress. Indeed, L929 and 
J774 infected with NMI or NMII continue to divide normally with the PV segregating 
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to one of two daughter cells (Roman et al.  1986 ; Baca et al.  1985  ) . Segregation of 
NMII PV does not apparently lead to defects in host cell cytokinesis as shown for 
vacuoles harboring  C. trachomatis  (Grieshaber et al.  2006  ) .   

    8.3.2   PV Maturation/Biology in Human Mononuclear 
Phagocytes 

 As mentioned above, there are con fl icting models regarding the ultimate maturation 
state of PV harboring phase I and phase II  C. burnetii  in human mononuclear phago-
cytes and the outcome of infection (Ghigo et al.  2002 ; Howe et al.  2010  ) . These 
studies have exclusively used the NMI and NMII strains of  C. burnetii . 

    8.3.2.1   NMI and NMII: Differential Traf fi cking (DT) Model 

 In the following sections, data supporting the DT model are presented. Selective 
receptor engagement by NMI and NMII that induces different cytoskeletal rear-
rangements and signaling is discussed, as is the involvement of TLR4 in host cell 
interactions. Moreover, the maturation process of PV containing NMI or NMII is 
described along with the modulation of traf fi cking by cytokines. The DT model 
asserts that the avirulence of NMII is associated with residence in a vacuole that 
fuses with lysosomes. Conversely, virulence of NMI is associated with residence in 
a vacuole that stalls at a late endosomal stage, thereby allowing pathogen growth 
(Ghigo et al.  2002  ) . 

      Integrin-Dependent Phagocytosis 

 A critical element of the DT model is the engagement of different phagocyte receptors 
by NMI and NMII that ultimately affects PV outcome. Phagocytosis is an ancestral 
defense mechanism directed against microbial invasion. Professional mononuclear 
phagocytes, including circulating monocytes and tissue macrophages, ingest and 
degrade a wide variety of microorganisms such as bacteria, virus, fungi and protozoa. 
To discriminate between infectious agents, mononuclear phagocytes possess a 
restricted number of phagocytic receptors including Fc receptors and complement 
receptor (CR3, a heterodimer consisting of  a M and  b 2 integrin proteins CD18 
and CD11b) that recognize opsonized microorganisms, the mannose receptor that 
recognizes conserved motifs on pathogens, scavenger receptors that recognize 
diacyl lipids from the bacteria surface, and TLRs that recognize microbial structures 
such as LPS, peptidoglycan or  fl agellin (Taylor et al.  2005  ) . 

 Numerous pathogens exploit the phagocytic process to infect host cells. In human 
mononuclear phagocytes,  C. burnetii  has developed a survival strategy based on 
subversion of receptor-mediated phagocytosis (Capo et al.  1999,   2003  ) . In contrast 
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to NMII, NMI organisms are poorly internalized by monocytes. Whereas the uptake 
of NMII is mediated by both  a v b 3 integrin and CR3, the internalization of NMI 
involves only the engagement of  a v b 3 integrin. The phagocytic ef fi ciency of CR3 
depends on its activation through  a v b 3 integrin and an integrin-associated protein 
(CD47), a molecule physically and functionally associated with  b 3 integrins. Indeed, 
macrophages from CD47-de fi cient mice are unable to ingest NMII bacteria through 
CR3. It has been demonstrated that the inhibitory mechanism mediated by NMI 
does not target CD47 since they do not down-regulate the expression of CD47 
(Capo et al.  1999  ) . 

 The functional consequence of inhibition of  a v b 3 integrin/CR3 crosstalk is survival of 
NMI in monocytes (Capo et al.  1999  ) . Conversely, monocytes eliminate NMII, sug-
gesting CR3 engagement is deleterious to  C. burnetii . The involvement of CR3 in the 
microbicidal activity of myeloid cells such as monocytes and macrophages seems to 
depend on the nature and opsonization of pathogens (Stuart and Ezekowitz  2005  ) . 
 Escherichia coli ,  Salmonella  sp. and  Pseudomonas aeruginosa  are eliminated after 
CR3-mediated internalization. In contrast,  Bordetella  sp. avoid killing by taking 
advantage of CR3 uptake (Agramonte-Hevia et al.  2002  ) . CR3 engagement does not 
affect the intracellular survival of  Mycobacterium tuberculosis  (Hirsch et al.  1994  )  and 
CR3 is not involved in the development of  M. tuberculosis  infection (Hu et al.  2000  ) .  

      Cytoskeleton Remodelling 

  C. burnetii  virulence is associated in monocytes with cytoskeletal rearrangement 
(Meconi et al.  1998  ) . NMI stimulates membrane protrusions accompanied with 
increased content in F-actin and transient and intense reorganization of F-actin. 
In contrast, NMII does not induce any change in cell morphology, actin polymeriza-
tion and F-actin reorganization. The mechanism used by NMI to induce cytoskeletal 
rearrangement likely requires actin polymerization and the tension of actin-myosin 
 fi laments since F-actin colocalizes with myosin in cell protrusions. It has also been 
demonstrated that contact between  C. burnetii  and monocytes is necessary to induce 
cytoskeleton reorganization: bacterial supernatants do not stimulate F-actin reorga-
nization and bacteria are in close apposition with F-actin protrusions. 

 The cytoskeletal reorganization induced by NMI is related to its inef fi cient 
uptake by human monocytes (Capo et al.  2003  ) . Indeed, CD11b and CD18 molecules, 
the two components of CR3, are excluded from the protrusions induced by these 
bacteria, but not  a v b 3 integrin, suggesting that a physical cross-talk between  a v b 3 
integrin and CR3 is needed to activate CR3. When CR3 is localized within protrusions 
induced by unrelated inducers of cytoskeletal rearrangement, including a chemoat-
tractant such as RANTES (Regulated on Activation Normal T cell Expressed and 
Secreted), or THP-1 monocytes expressing Nef protein, the uptake of NMI is increased, 
demonstrating that the localization of CR3 in the vicinity of  a v b 3 integrin facilitates 
 C. burnetii  uptake. In RANTES-stimulated monocytes and Nef-expressing mono-
cytes, in which CR3 is distributed in the proximity of  a v b 3 integrin, the replication 
of NMI is inhibited. Again, the mode of entry of  C. burnetii  into monocytes 
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seems to govern the intracellular fate of organisms. Hence, the localization of CR3 
is critical for  C. burnetii  uptake and also for the control of bacterial replication. 

 The cytoskeleton reorganization induced in monocytes by NMI is related to 
activation of protein tyrosine kinases (PTK). NMI induces early PTK activation and 
the tyrosine phosphorylation of several endogenous proteins, including Hck and 
Lyn, two Src-related kinases (Meconi et al.  2001  ) . PTK activation re fl ects  C. burnetii  
virulence since NMII bacteria do not stimulate PTK. Tyrosine-phosphorylated 
molecules colocalize with F-actin inside cell protrusions induced by NMI. PTK and 
Src kinase inhibitors block the formation of cell protrusions and F-actin rearrange-
ment induced by NMI, demonstrating that tyrosine kinases are involved in the 
cytoskeletal reorganization induced by these bacteria. These inhibitors also increase 
the uptake of NMI but have no effect on the uptake of NMII, demonstrating func-
tional links between PTK activation, cytoskeletal reorganization and  C. burnetii  
uptake. It has been demonstrated that the activation of PTK also provides an uptake 
signal for several invasive pathogens such as  Listeria monocytogenes , entero-
pathogenic  E. coli ,  Helicobacter pylori  and  Campylobacter  species (Cossart and 
Sansonetti  2004  ) . Concerning the interaction of  C. burnetii  and monocytes, PTK 
activation may result in the formation of membrane ruf fl es that limit the redistribu-
tion of CR3 in contact areas between  a v b 3 integrin and  C. burnetii . Alternatively, 
PTK may target  a v b 3 integrin, thus interfering with the cross-talk between  a v b 3 
integrin, CR3, and the actin cytoskeleton (Meconi et al.  1998 ; Patil et al.  1999  ) . In contrast, 
some bacterial pathogens inhibit PTK and PTK-mediated microbicidal responses. 
For example, a tyrosine phosphatase of  Yersinia  spp. and  Salmonella enterica  
serovar Typhimurium induces the disruption of the actin cytoskeleton and regulates 
bacterial uptake (Cossart and Sansonetti  2004  ) .  

      Involvement of Toll-Like Receptors 

 Innate and adaptive immune responses are initiated by the recognition of microbial 
molecules through TLRs. Among TLRs, TLR4 and TLR2 are involved in the 
recognition of Gram-negative bacteria and Gram-positive bacteria, respectively. 
TLR4 speci fi cally recognizes prototypic LPSs whereas TLR2 recognizes bacterial 
lipoproteins, proteoglycans, lipopeptides or LPS from  Porphyromonas gingivalis  
(Underhill  2004  ) . 

 TLR4 is involved in uptake of NMI by macrophages (Honstettre et al.  2004  ) . 
Polymyxin B, which interferes with LPS binding, inhibits uptake of NMI, but not 
NMII. The uptake of NMI is also reduced in murine macrophages that do not express 
TLR4 whereas the uptake of NMII organisms remains unaffected. It has been also 
demonstrated that the uptake of NMI is independent of TLR2. Besides its role in the 
uptake of NMI, TLR4 is also involved in  C. burnetii -induced F-actin reorganization, 
highlighting again the close relationship between  C. burnetii  uptake and cytoskele-
ton organization. The mechanism that connects TLR4 and the actin cytoskeleton 
remains hypothetical, even if the LPS-TLR complex is known to induce a transient 
F-actin remodeling in a p38- and ERK-dependent pathway (West et al.  2004  ) . 
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 TLR4 controls the immune response against  C. burnetii  through granuloma 
formation and cytokine production (Honstettre et al.  2004  ) . NMI infection of wild 
type mice results in sustained formation of granulomas, indicative of a protective 
immune response, but granuloma formation is only transient in TLR4-de fi cient 
mice. The altered granuloma formation is associated with decreased levels of inter-
feron (IFN)- g . The levels of interleukin (IL)-10, known to impair the production of 
in fl ammatory type 1 cytokines, are also reduced in TLR4-de fi cient mice, suggesting 
that cytokines are involved in the defective formation of granulomas. 

 In contrast, TLR4 is dispensable for the survival of NMI in macrophages as 
growth occurs in TLR4-de fi cient macrophages (Honstettre et al.  2004  ) . TLR4 is 
also dispensable for NMI infection of mice. Indeed, NMI infection of tissues and 
bacterial clearance are similar in wild type and TLR4-de fi cient mice (Honstettre 
et al.  2004  ) . Similarly to TLR4, TLR2 is involved in in fl ammatory and immune 
responses to NMI but is not necessary for bacterial clearance (Meghari et al.  2005  ) . 
These results may be explained by the results of Zamboni et al.  (  2004  )  who demon-
strated that puri fi ed lipid A from NMI or NMII fails to activate TLR2 and TLR4. We 
can suppose that some functions induced by  C. burnetii  need TLR4 (and/or TLR2) 
whereas other functions are independent of TLR4 (and/or TLR2). It has been 
suggested that TLRs may regulate phagosome maturation in macrophages (Blander 
and Medzhitov  2004  )  even if this hypothesis has been debated (Yates and Russell 
 2005  ) . TLR4 does not control the maturation of  C. burnetii  phagosomes since NMI 
colocalize with LAMP-1 but not with cathepsin D in wild type and TLR4-de fi cient 
macrophages (Honstettre et al.  2004  ) .  

      Intracellular Traf fi cking 

 In human monocytes and macrophages, NMI survive and replicate whereas NMII is 
eliminated (Fig.  8.3a , b) (Ghigo et al.  2002,   2006  ) . During the  fi rst hours after 
uptake, nascent NMI and NMII phagosomes interact with intracellular compartments 
related to the early endosomal network, as revealed by the presence of a marker 
such as EEA1. This association of  C. burnetii  with the early endocytic network 
is transient, demonstrating that the interaction between the early endosomal com-
partment and  C. burnetii  phagosomes is normal. Later,  C. burnetii  phagosomes 
interact with late endosomes, as demonstrated by their colocalization with LAMP-1, 
CD63, and mannose-6-phosphate receptor. Mature PV containing NMI and NMII 
also accumulate V-H + -ATPase and acquire a pH around 4.5–5, demonstrating that 
 C. burnetii  virulence is not related to the acidic pH of PV. In contrast,  C. burnetii  
virulence seems associated with a defective acquisition of Rab7, a small GTPase 
involved in phagosome maturation (Desjardins et al.  1994  ) . Indeed, Rab7 is acquired 
by PV containing NMII but only in part by those containing NMI (Ghigo et al. 
 2002  ) . The different levels of Rab7 acquisition may explain the defective fusion 
of PV containing NMI with lysosomes because the amount of Rab proteins on 
endocytic organelles is critical for the fusion process (Henry et al.  2004 ; Rink et al. 
 2005  ) . The partial acquisition of Rab7 by PV containing NMI also suggests that 
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downstream maturation events are impaired. Cathepsin D, a lysosomal protease, 
does not accumulate in PV containing NMI. The lack of cathepsin D colocalization 
with NMI is due to defective fusion of PV with lysosomes, as evidenced with a 
lysosomotropic probe. The impaired acquisition of cathepsin D by PV containing 
NMI is related to bacterial virulence since NMII colocalize with cathepsin D 
(Fig.  8.3c , d). Taken together, these data indicate that the survival of NMI in mono-
nuclear phagocytes is associated with an altered maturation of PV.  

 This hijacking strategy is reminiscent of the escape mechanism used by 
 S. typhimurium  (Holden  2002  ) . However, the involved molecular mechanisms are 
different: while NMI PV acquire Rab7 only in part,  Salmonella -containing vacuoles 
recruit LAMP-1 in a Rab7-dependent manner (Meresse et al.  1999a  ) . It is hypoth-
esized that Rab7 regulates vesicle traf fi c in late endocytosis (Bucci et al.  2000 ; 

  Fig. 8.3     Differential traf fi cking of   C. burnetii   Nine Mile phase I (NMI) and Nine Mile phase 
II (NMII) in human mononuclear phagocytes . ( a  and  b ) Electron micrographs of vacuoles 
containing NMI in human monocyte-derived macrophages. A dividing organism is observed in 
( b ). Confocal microscopy of human monocyte-derived macrophages infected with NMI ( c ) or 
NMII ( d ) for 96 h. Cells were stained by immuno fl uorescence using antibodies directed against 
 C. burnetii  ( red ), LAMP-1 ( blue ), and cathepsin D ( green ). Cathepsin D localizes with NMII, but 
not NMI ( arrowheads ) (Images courtesy of Eric Ghigo, Université de la Méditerranée)       
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Zerial and McBride  2001  ) . The fact that NMI does not modify the early acquisition 
of EEA1 but alters the acquisition of Rab7 by its PV strengthens this hypothesis. 
It is likely that the survival strategy of  C. burnetii  in mononuclear phagocytes is 
based on the interference of Rab7 recruitment at the surface of  C. burnetii -containing 
vacuoles, thus leading to the formation of PV unable to interact with lysosomes. 

 The discrepancies in the literature regarding NMI and NMII traf fi cking may 
re fl ect the nature of engaged receptors. As discussed earlier, the route of  C. burnetii  
internalization may in fl uence the intracellular fate of the bacteria (Capo et al.  1999, 
  2003  ) . The importance of pathogen routes of internalization has been clearly dem-
onstrated for mycobacteria. Indeed, IgG-opsonised mycobacteria internalized 
via Fc receptors are delivered to phagolysosomes and killed whereas unopsonized 
mycobacteria replicate in vacuoles having characteristics of an early endosome 
(Scott et al.  2003  ) . These observations suggest that the nature of the receptor 
engaged during bacterial entry may govern the molecular mechanisms involved in 
phagosome maturation (Scott et al.  2003  ) .  

      Modulation of Traf fi cking by Cytokines 

 Cytokines are well known to modulate the microbicidal activity of macrophages. 
IFN- g , an in fl ammatory Th1 cytokine, activates macrophages, leading to the 
control or elimination of several intracellular pathogens (Santic et al.  2005  ) . 
Intracellularly, IFN- g  induces the killing of NMI by naive monocytes (Dellacasa-
grande et al.  1999  )  and the maturation of PV containing NMI as demonstrated by 
their acquisition of cathepsin D (Ghigo et al.  2002  ) . IFN- g  acts through two distinct 
mechanisms. First, the addition of IFN- g  to monocytes infected with NMI stimulates 
PV-lysosome fusion without affecting PV pH. In contrast, IFN- g  decreases the pH of 
 Mycobacterium -containing phagosomes (Schaible et al.  1999  )  and rescues phagosome 
maturation (Tsang et al.  2000  ) . Second, the treatment of monocytes by IFN- g  prior 
to infection with NMI induces the alkalinization of  C. burnetii  PV independently of 
V-H + -ATPase exclusion. IFN- b  also induces the alkalinization of the trans-Golgi 
network by inhibiting V-H + -ATPase activity (Sidhu et al.  1999  ) . The mechanism of 
phagosome alkalinization mediated by IFN- g  is still unknown. It has been shown 
that IFN- g  inhibits the remodeling of  Legionella -containing phagosomes into 
endoplasmic reticulum-derived vesicles (Santic et al.  2005  ) . It is noteworthy that 
acute Q fever is characterized by the production of IFN- g  whereas in patients 
with chronic Q fever, the production of IFN- g  is defective (Koster et al.  1985 ; Izzo 
and Marmion  1993  ) . Monocytes from patients with chronic Q fever are unable to 
kill NMI and exhibit a defective maturation of bacterial phagosomes (Ghigo et al. 
 2004  ) . The production of IFN- g  by patients with acute Q fever may control  C. burnetii  
infection through PV-lysosome fusion (Ghigo et al.  2002,   2004  ) . 

 IL-10, an immunoregulatory cytokine, also modulates traf fi cking of NMI. IL-10 
is known to support the intracellular replication of numerous bacterial pathogens 
(Blauer et al.  1995 ; Park and Skerrett  1996  ) . Q fever is characterized by the overpro-
duction of IL-10 (Capo et al.  1996a,   b ; Honstettre et al.  2003  )  and IL-10 stimulates 
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NMI replication (Ghigo et al.  2004  ) . Monocytes from convalescent patients recovering 
from acute Q fever exhibit fusion of NMI PV with lysosomes and, subsequently, 
ef fi cient bacterial killing. It is related to the activity of the disease since NMI killing 
and PV-lysosome fusion are restored in patients who have recovered from chronic 
Q fever. Interestingly, NMI killing by monocytes and PV maturation are modulated 
by IL-10. The neutralization of endogenous IL-10 overproduced by patients with 
ongoing chronic Q fever enhances NMI killing by monocytes to the level of cured 
patients and restores PV-lysosome fusion. Similarly, adding recombinant IL-10 to 
monocytes from patients with cured chronic Q fever prevents NMI killing and 
induces PV maturation blockage (Ghigo et al.  2004  ) . These results concerning the 
role of IL-10 in the inhibition of phagolysosome fusion are consistent with those 
of Via et al .   (  1998  )  who found that maturation of mycobacterial phagosomes is 
improved in macrophages from IL-10 de fi cient mice.   

    8.3.2.2   NMI and NMII: Similar Traf fi cking (ST) Model 

 An opposing model by Howe et al.  (  2010  )  proposes similar traf fi cking (ST) of NMI 
and NMII in human mononuclear phagocytes, and that the virulence of  C. burnetii  
is unrelated to PV maturation status. Data for the ST model is primarily derived 
using human THP-1 cells, differentiated into macrophage-like cells using phorbol 
12-myristate 13-acetate, and primary human peripheral blood monocyte-derived 
macrophages (HMDM). 

 In both HMDM and THP-1 cells, coinfection experiments show a common PV 
can support growth of both NMI and NMII (Howe et al.  2010  ) . In THP-1 cells, there 
is no difference in the percentage of NMI and NMII PV decorated with Rab5, Rab7, 
CD63, and cathepsin D at early (8 h) and late (72 h) time points post-infection. 
At 72 h post-infection, greater than 80% of NMI and NMII PV colocalize with 
the late endosomal/lysosomal markers Rab7, CD63, and cathepsin D. Mature PV 
containing NMI or NMII readily degrade bovine serum albumin in a cathepsin 
D-dependent manner, and contain proteolytically-active cathepsins B, K and L as 
assessed by the cleavage of cathepsin-speci fi c  fl uorogenic peptides. Protease activity 
correlates with the ability of NMI and NMII PV to completely degrade  E. coli  within 
15 min. Collectively, these data suggest NMI and NMII reside in phenotypcially-
indistinguishable PV that fully mature through the endolysosomal pathway. In both 
HMDM and THP-1 cells, phase variants replicate with similar kinetics, achieving 
roughly 2–3 logs of growth before reaching stationary phase (Howe et al.  2010  ) . 
Thus, in the ST model, NMI and NMII phase variants replicate in PV that retain 
phagolysosome degradative activities, and  C. burnetii  resistance to this environment 
represents a pathogenic strategy. 

 Using microscopy and/or genome equivalent PCR assays, several independent 
studies have also revealed growth of NMII in human monuclear phagocytes. 
NMII grows robustly in CD63-positive PV of human monocyte-derived dendritic cells 
(Shannon et al.  2005 ; Omsland et al.  2010 ; Sauer et al.  2005  ) . Primary alveolar mac-
rophages from humans (Fig.  8.4a , b) and cynomolgous monkeys ( Macaca fascicularis ) 
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also support growth of NMII, with an approximately 3 log increase in genome 
equivalents at 6 days post-infection documented for the latter cell type (J. Hill and 
R. A. Heinzen, unpublished data). With respect to human monocyte/macrophage-
like cell lines, NMII infection of THP-1 cells was used to decipher  C. burnetii  anti-
apoptotic signaling (Voth et al.  2007 ; Voth and Heinzen  2009b  ) , probe the roles 
of kinases/phosphatases in PV formation (Hussain et al.  2010  ) , identify pathogen 
proteins secreted into the host cell cytoplasm (Chen et al.  2010 ; Voth et al.  2011  ) , 
and to de fi ne host cell transcriptional responses to infection (Mahapatra et al. 
 2010 ; Ren et al.  2003  ) . Furthermore, NMII-infected MonoMac-1 cells were 
employed to characterize pathogen clearance activities of TLR agonists (Lubick 
et al.  2007  ) . Electron micrographs of PV harboring NMII in THP-1 cells are depicted 
in Fig.  8.4c , d.   

    8.3.2.3   Reconciliation of DT and ST Traf fi cking Models 

 Subtleties between laboratories in the microscopic scoring of PV cellular mark-
ers might partially explain the different phenotypes of vacuoles harboring NMI 
in the DT and ST models. The complicated post-translational processing of 
cathepsin D makes this marker particularly problematic (Zaidi et al.  2008  ) . 
What is more dif fi cult to reconcile is why NMII grows robustly in the ST model 
while showing no growth in the DT model. Studies related to both models used 
non-opsonized bacteria; thus, the routes of NMI and NMII entry should be similar. 
In fact, Fc receptor-mediated uptake of NMI by HMDM, J774 cells, or primary 
guinea pig peritoneal macrophages does not inhibit pathogen replication 
(Hinrichs and Jerrells  1976 ; Baca et al.  1984 ; Shannon et al.  2009  ) . An intriguing 
possibility is that the NMII strain used in DT studies has a novel genetic 
mutation(s) that restricts growth in human mononuclear phagocytes, but not in 
continuous lines such as L929 cells (Ghigo et al.  2002  ) . NMII is a high passage 
derivative of low passage NMI that was plaque-cloned after 90 egg passages 
(Amano and Williams  1984  ) . The strain has subsequently undergone extensive 
(and undocumented) laboratory passages in various labs. Thus, it is possible 
that the NMII strains used in ST and DT studies are genetically different. Minor 
genetic differences can confer permissive or non-permissive inter-strain growth 
phenotypes in intracellular bacteria. For example, mutations in  C. trachomatis 
trpA , encoding tryptophane synthase, are associated with growth in the presence 
of IFN g  and implicated in tissue tropisms (Caldwell et al.  2003  ) . A  C. burnetii  
strain that cannot adequately metabolize and grow inside a given host cell should, 
by default, traf fi c to a phagolysosomal compartment, a behavior observed with 
chloramphenicol-treated organisms (Howe et al.  2003  ) . The NMII used in studies 
related to the ST model was derived from a single source (Rocky Mountain 
Laboratories, Hamilton, Montana). Recent derivation of this strain’s genome 
sequence shows that, in addition to the 25,992 bp deletion of LPS biosynthesis 
genes, it has 18 single nucleotide polymorphisms relative to NMI, none of which 



1598 The  Coxiella burnetii  Parasitophorous Vacuole

are predicted to disrupt proteins required for intracellular growth (P. A. Beare 
and R. A. Heinzen, unpublished data). Comparison of the genome sequence of 
NMII organisms associated with DT and ST models might be illuminating. 
Perhaps more informative would be testing of additional non-revertable phase II 
clones of different  C. burnetii  strains. Unfortunately, such clones are currently 
unavailable.   

  Fig. 8.4     Growth of   C. burnetii   Nine Mile (phase II) in mononuclear phagocytes.  Phase contrast 
( a ) and immuno fl uorescence ( b ) images of primary human alveolar macrophages infected with 
 C. burnetii  Nine Mile (phase II) for 3 days. Cells in ( b ) were stained by immuno fl uorescence using 
antibodies directed against  C. burnetii  ( red ) and the LAMP-3 (CD-63) ( green ). Host and  C. burnetii  
DNA were stained with DRAQ5 ( blue ). Large PV ( arrows ) containing  C. burnetii  are seen in both 
micrographs. ( c ) and ( d ) Electron micrographs of THP-1 human monocyte-like cells infected with 
 C. burnetii  Nine Mile (phase II) for 4 days. Prior to infection, cells were differentiated into adherent, 
macrophage-like cells by treatment with PMA. Micrographs show large and spacious PV harboring 
multiple  C. burnetii . Many organisms have intimate contact with the PV membrane that may facilitate 
cytosolic delivery of effector proteins required for PV biogenesis (Images in panel  a  and  b  are courtesy 
of Dan Voth, University of Arkansas for Medical Science. Images in panels  c  and  d  are courtesy of 
Dale Howe and Beth Fischer, Rocky Mountain Laboratories)       
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    8.3.3   The Murine Macrophage Anomaly 

 While debate continues on the outcome of NMII infection of human mononuclear 
phagocytes, the strain clearly has severe growth defects relative to NMI in primary 
mouse macrophages (Honstettre et al.  2004 ; Sauer et al.  2005 ; Zamboni et al.  2002, 
  2004 ; Zamboni  2004 ; Zamboni and Rabinovitch  2003,   2004  ) . This behaviour 
contrasts markedly with the pro fi cient growth observed in multiple mouse 
macrophage-like cells (Baca et al.  1981 ; Briggs et al.  2008 ; Roman et al.  1986 ; 
Maurin et al.  1992b ; Zamboni et al.  2002  )  and L929  fi broblasts (Howe et al.  2002 ; 
Baca et al.  1985 ; Burton et al.  1978 ; Roman et al.  1986 ; Maurin et al.  1992b ; 
Zamboni et al.  2002  ) . As mentioned above, surface TLR ligands of NMII, such as 
lipoproteins, are thought to be more accessible due the strain’s lack of LPS  O -antigen 
(Shannon et al.  2005  ) . Thus, potent activation of the primary mouse macrophage 
pathogen recognition system by NMII may induce production of a cellular effector 
that limits replication. Consistent with this idea is the observation that primary 
mouse macrophages from TLR2 knockout mice are markedly more permissive for 
growth of NMII than wild type macrophages, and produce less pro-in fl ammatory 
IL-12 and TNF- a  (Zamboni et al.  2004  ) . Moreover, the corresponding knockout 
mouse is more susceptible to NMII infection (Ochoa-Reparaz et al.  2007  ) . Nitric 
oxide (NO) induced by TNF- a  may be the critical effector limiting NMII growth in 
primary mouse macrophages (Brennan et al.  2004 ; Zamboni and Rabinovitch 
 2003,   2004 ; Howe et al.  2002  ) . NMII infection induces signi fi cant amounts of NO 
and treatment of macrophages with inducible NO synthase (iNOS) inhibitors, such 
as aminoguanidine, enhances NMII replication (Zamboni and Rabinovitch  2003  ) . 
Furthermore, NMII growth is improved in macrophages from iNOS knockout mice 
(Zamboni and Rabinovitch  2004  ) . TNF- a  also controls mycobacteria infection of 
primary mouse macrophages in an iNOS-dependent manner (Bekker et al.  2001  ) . 

  C. burnetii  appears exquisitely sensitive to oxidative and nitrosative stress 
(Brennan et al.  2004  )  and the organism has evolved active mechanisms of avoidance. 
For example, infection of J774 macrophages or human neutrophils by  C. burnetii  
results in little superoxide anion production (Baca et al.  1984 ; Akporiaye et al.  1990 ; 
Hill and Samuel  2011 ; Siemsen et al.  2009  ) . In human neutrophils, this behavior 
involves pathogen inhibition of the host cell NADPH oxidase complex via the activity 
of a secreted acid phosphatase (Hill and Samuel  2011 ; Siemsen et al.  2009 ; Baca 
et al.  1993b,   1994 ; Li et al.  1996  ) . The heightened sensitivity of  C. burnetii  to oxidants 
may partially explain the requirement for a microaerobic (2.5% O 

2
 ) environment 

to support pathogen growth in a recently established host cell-free growth system 
(Omsland et al.  2009  ) . 

 Interestingly, relative to NMI, NMII also stimulates potent activation and matu-
ration of human monocyte-derived dendritic cells and their subsequent release of 
pro-in fl ammatory cytokines (i. e., IL-12 and TNF- a ) (Shannon et al.  2005  ) . Despite 
activation, NMI grows with the same kinetics as NMII in these cells (Shannon et al. 
 2005  ) . However, this behavior is predicted to result in potentiated innate and 
adaptive immune responses that prevents productive NMII infection of animals 
(Shannon et al.  2005  ) .   



1618 The  Coxiella burnetii  Parasitophorous Vacuole

    8.4   Summary 

 The  C. burnetii  PV is a unique intracellular niche and a fascinating example of 
pathogen-host adaptation. The acid activated metabolism of the organism represents 
a biochemical strategy that ensures replication only within an acidi fi ed compart-
ment while also conferring metabolic quiescence and stability outside the host cell 
(Hackstadt and Williams  1981  ) . Lysosomal fusion with the PV is documented in 
many cells types (Voth and Heinzen  2007  ) . How does  C. burnetii  resist degradation 
by lysosomal hydrolases and other toxic elements such as antimicrobial peptides? 
Resistance appears to be an inherent property of  C. burnetii , as non-metabolizing 
organisms remain viable for several days in lysosome-like vacuoles of Vero cells 
(Howe et al.  2003  ) . Full-length LPS is not required for resistance as NMI and NMII 
grow equally well in multiple cells types. An unusual cell wall containing protease-
resistant peptidoglycan-associated proteins may be a resistance mechanism (Amano 
et al.  1984  ) . 

 Early elucidation of  C. burnetii ’s metabolic requirements set the stage for the 
recent development of a hypoxic (2.5% O 

2
 ) host cell-free growth method using 

Acidi fi ed Citrate Cysteine Medium (ACCM) (Omsland et al.  2009  ) . The precise 
biochemical and physiochemical character of the PV luminal environment remains 
an interesting question. However, one would surmise that it likely resembles ACCM 
in being rich in amino acids/peptides, critical carbon and energy sources of  C. burnetii , 
with low oxygen content. Amino acids are likely delivered to the PV via fusion 
with autophagosomes and/or late endosomes/lysosomes carrying cargo expected to 
be rich in peptides (Gutierrez et al.  2005 ; Heinzen et al.  1996  ) . A similar mechanism 
for nutrient delivery is proposed for  Leishmania mexicana , a protozoan pathogen 
with a PV phenotypically similar to  C. burnetii ’s (Schaible et al.  1999  ) . Furthermore, 
oxygen gradients across biological membranes can be associated with oxygen 
concentrations considerably lower than atmospheric oxygen levels (i.e., ~20%) 
(Hu et al.  1992  ) . 

 Biogenesis of the PV begins with receptor-mediated phagocytosis. The  C. burnetii  
protein adhesin(s) mediating internalization is unknown. The organism encodes 
multiple proteins with integrin binding RGD motifs that could potentially interact 
with cellular integrin receptors (Ruoslahti  1996 ; Seshadri et al.  2003 ; Beare et al. 
 2009b  ) . The nascent phagosome quickly becomes fusogenic with other cellular 
vesicles, including autophagosomes, that contribute membrane to the enlarging PV. 
Bacterial pathogens utilize several strategies to manipulate the host cell membrane 
machinery including subversion of phosphoinosotide metabolism (Weber et al. 
 2009  ) , and the functions of SNAREs and Rab family GTPases (Wesolowski and 
Paumet  2010 ; Cossart and Roy  2010  ) .  C. burnetii  proteins predicted to modulate 
these and other host factors reside within a repertoire of proteins secreted into 
the host cytosol by the pathogen’s Dot/Icm T4SS. To date, 49  C. burnetii  Dot/Icm 
secretion substrates have been identi fi ed (Voth et al.  2009,   2011 ; Pan et al.  2008 ; 
Luhrmann et al.  2010  ) . However, only AnkG currently has a de fi ned function in 
inhibiting apopotosis via a mechanism involving binding of the pro-apoptotic 
protein gC1qR (p32) (Luhrmann et al.  2010  ) . An F-actin mesh surrounds the mature 
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PV, but what functional role(s) does this structure play and are other cytoskeletal 
elements, such as microtubules, involved in PV development? 

 Another lingering question regards the immune function of  C. burnetii  PV. In HeLa 
cells, the vacuole functions as the loading compartment of the class II antigen 
presentation pathway (Lem et al.  1999  ) . The class II MHC molecules HLA-DM 
and HLA-DR accumulate in the vacuole, which seems to affect the dynamics and 
repertoire of peptide loading. Consequently, defects in immune recognition of 
 C. burnetii  may occur. The distribution of MHC class I is unaffected by  C. burnetii  
infection (Lem et al.  1999  ) ; however, whether the PV participates in antigen cross-
presentation (Houde et al.  2003  )  is unknown. 

 The prior obligate intracellular nature of  C. burnetii  imposed signi fi cant experimental 
obstacles to unraveling the molecular details of PV biogenesis and host cell manipula-
tion. However, novel genetic tools and host cell-free growth (Beare et al.  2011 ; Omsland 
et al.  2009  )  will enable novel lines of investigation that should entice new investigators 
into the  fi eld. Studies from additional research groups will eventually resolve discrepant 
data on NMI and NMII traf fi cking in human mononuclear phagocytes. An improved 
understanding of  C. burnetii  cellular microbiology will aid our ability to model mecha-
nisms used by the pathogen to cause animal and human disease.      
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