
An Optimization-Based Iterative Approach
to Tetrahedral Mesh Smoothing

Zhanheng Gao, Zeyun Yu, and Jun Wang

Abstract The optimal Delaunay triangulation (ODT) is an effective approach in
improving the quality of inner vertices of a tetrahedral mesh. Recently it had been
extended boundary-optimized Delaunay triangulation (B-ODT), in which both in-
ner and boundary vertices are repositioned by analytically minimizing the L1 error
between a paraboloid function and its piecewise linear interpolation over the neigh-
borhood of each vertex. In the present work, we describe a smoothing method that is
based on the B-ODT method but has better performance. We smooth the mesh in an
edge-by-edge fashion by adjusting each pair of vertices of every edge. This method
has the volume-preserving and sharp-feature-preserving properties. A number of
experiments are included to demonstrate the performance of our method.

1 Introduction

The finite element method (FEM) has been a very popular numerical approach for
solving partial differential equations (PDEs) in many applications. In the method,
the domain over which the PDEs are defined is partitioned into a mesh containing
a large number of simple elements, such as triangles and quadrilaterals in 2D cases
and tetrahedra and hexahedra in 3D cases [1–6]. The quality of the mesh, typically
measured by the minimum and maximum angles, can significantly affect the inter-
polation accuracy and solution stability of the FEA [7, 8]. Therefore, improving the
mesh quality has been an active research area in computational mathematics and
computer science. Due to the great popularity in the FEM, 3D tetrahedral meshes
will be the focus of our present work.

The methods of mesh quality improvement can be classified into three cate-
gories as follows. (1) topology optimization, which modifies the connectivity be-
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tween mesh vertices while keeping vertex positions unchanged. The edge- or face-
swapping methods are commonly used in topology optimization [9, 10]. (2) vertex
insertion/deletion, which inserts/deletes vertices to/from the mesh [10–13]. (3) ver-
tex smoothing, which repositions the coordinates of the vertices while keeping the
connectivity unchanged [14–16]. Generally speaking, mesh quality improvement
is best achieved when all the three methods are properly combined in the mesh
smoothing scheme [10]. In our method described below, we shall focus on the ver-
tex repositioning strategy, i.e. vertex smoothing.

One of the most popular vertex smoothing method is Laplacian smoothing,
which moves a mesh vertex to the weighted average of its incident vertices [17–19].
If the neighborhood of the vertex is not a convex polyhedron, the Laplacian smooth-
ing may not lead to a well-positioned mesh. Some angle-based methods were pro-
posed for smoothing 2D triangular and 3D surface meshes [20–22]. However, these
methods are difficult to extend to 3D tetrahedral meshes. [23] presented a method
based on the Centroid Voronoi Tessellation (CVT) concept that is restricted to inner
vertices of a mesh. A peeling off operation has to be taken to improve bad tetrahedra
on boundaries. [24] proposed a method of smoothing planar quadrilateral meshes.
Some researchers presented methods for smoothing hexahedral mesh [25–29]. More
recently, some new techniques of vertex smoothing were proposed. [30, 31] pre-
sented methods of stretching the vertices of a tetrahedron at one time. The methods
were extended by [32] to hexahedral mesh. [33] assigned a quality coordinate for
every vertex and calculated the new position by maximizing the combined quality of
tetrahedra incident to it. [34] used a metric non-conformity driven method to smooth
hybrid meshes such as a mesh with hexahedral and tetrahedral elements.

In addition to the above methods, approaches using numerical optimization to
compute the new position of a vertex has been an important branch of the vertex
smoothing category. The new position of a vertex is computed by optimizing a func-
tion that measures the local or global quality of the mesh [35–44]. In particular, the
optimal Delaunay triangulation (ODT) approach [45] tries to minimize the L1 error
between a paraboloid function and its piecewise linear interpolation over the neigh-
borhood of a vertex. This idea has been extended to 3D tetrahedral mesh smoothing
in [46]. Despite its great success in mesh quality improvement, the original ODT
method was derived to optimize the positions of inner vertices only. In other words,
the tetrahedral mesh to be smoothed must possess quality triangles on boundaries.
In many real mesh models, however, “bad” tetrahedra often occur near or on the
boundaries of a domain [47, 48]. Therefore, in our previous work, we provided an
analytical method named boundary-optimized Delaunay triangulation (B-ODT) to
find the optimal positions of all mesh vertices, including those on boundaries, by
minimizing an L1 error function that is defined in the incident neighborhood of
each vertex. The minimization is an unconstrained quadratic optimization problem
and has an exact analytic solution when the coefficient matrix of the problem is
positive definite.

In this work, we extend our previous B-ODT method by performing it edge by
edge. The new method achieves better results than the original B-ODT method by
considering the local configuration of every vertex before performing the B-ODT
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Fig. 1 The framework of our
mesh quality improvement
method

algorithm. The remainder of the present work is organized as follows. In Sect. 2,
we start with a brief introduction to our tetrahedral mesh generation from an initial
triangular surface mesh. We then review the ODT and B-ODT methods, provide the
edge-based B-ODT (so-called eB-ODT) method. We present some experimental
results and quality analysis in Sect. 3, followed by our conclusions in Sect. 4.

2 Methods

The framework of our mesh quality improvement method is shown in Fig. 1. The
vertex insertion operation is performed prior to the vertex repositioning. We try to
insert as few vertices as possible in order to maintain the size of the original mesh.
We give a brief introduction to our tetrahedral mesh generation using an octree-
based method in Sect. 2.1. As for vertex smoothing, the algorithms of original B-
ODT and eB-ODT are given in Sects. 2.2 and 2.3 respectively.

2.1 Tetrahedral Mesh Generation Algorithm

Our tetrahedral mesh generation algorithm is based on the body centered cubic
(BCC) tetrahedral lattice, a common crystal structure in nature with many desir-
able properties [49]. The BCC lattice is constructed by adding a new node at each
cell center and connecting it to the eight vertices of the cell and six neighboring
cell centers. The BCC lattice is highly structured and computationally efficient, and
has been utilized in various types of numerical simulation. When dealing with a
bounded domain, however, the BCC lattice must be carefully remeshed near the do-
main boundary so that the tetrahedral mesh generated agrees with the given bound-
ary. To this end, our method consists of the following four steps (see Fig. 2 for a two
dimensional illustration):

1. Subdivide the octree of an input surface mesh based on Euclidean distance trans-
formation. A few geometric properties of the input mesh are utilized to refine the
subdivision adaptively from interior to boundary, and from low curvature to high
curvature areas.

2. Compute the sign of every node in the BCC lattice. For each edge of the BCC
grid, if the corresponding signs of the two endpoints are different, then calculate
the cutting (intersecting) point where the edge crosses the input surface mesh.



146 Z. Gao et al.

Fig. 2 A two dimensional illustration of our tetrahedral generation algorithm. Note that the octree
subdivision is adaptive in our algorithm. However, we do not show the adaptivity here for simplic-
ity. (a) Computing the signs for each BCC grid; (b) Calculating the cutting points; (c) Detecting
the “too close” cutting points; (d) Snapping the “too close” cutting points to the corresponding
BCC lattice grids; (e) Decomposing the boundary polyhedra into tetrahedra; (f) Obtaining the final
tetrahedral mesh

3. Detect the cutting points that are “too close” to the original BCC nodes and snap
them to the corresponding nodes. Equivalently, we adjust the sign of that node to
zero. We refer to this process as cutting point snapping.

4. Decompose the boundary polyhedra into tetrahedra. For each BCC tetrahedron,
if all signs of its vertices are negative (meaning “outside”), we ignore it (we
assume that only the interior tetrahedralization is of interest). If all signs are
positive (meaning “inside”), we leave it as the final tetrahedron. Otherwise, the
tetrahedron is split by the input surface mesh into inside and outside parts and
we further decompose the inside part (a polyhedron) into tetrahedra.

2.2 ODT and B-ODT Algorithms

For any vertex x0 in a tetrahedral mesh T , suppose the neighborhood of x0 is Ω0
consisting of a set of tetrahedra {τ }. Let x∗ be the smoothing result of x0 and Ω∗
the neighborhood of x∗ (or the union of tetrahedra incident to x∗) in T .

If x0 is an inner vertex, x∗ can be computed by the following ODT formula [45]:

x∗ = x0 − 1

2|Ω0|
∑

τ∈Ω0

(
1

3
Sτ nτ

3∑

i=1

‖xτ,i − x0‖2

)
. (1)

Here Sτ and nτ are the area and unit normal vector of tτ , which is the opposite
triangle of x0 in τ , nτ points to the inside of τ , xτ,i are the (three) vertices of tτ .
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If x0 is a boundary vertex, x∗ can be computed by the following B-ODT formula:

x∗ = x0 + us + vt (2)

where s and t are two orthonormal vectors in the tangent plane of the boundary
surface of T at x0, the coefficients u and v are computed by solving the following
linear equation system:

[
2E G

G 2F

][
u

v

]
=

[−H

−I

]
. (3)

The calculations of E, F , G, H , I are given below in Algorithm 1. Here, we directly
give the algorithm of smoothing inner and boundary vertices of T using ODT and
B-ODT methods respectively (Algorithm 1). Note that the tangent plane restriction
of x∗ guarantees the volume of the smoothed mesh coincides with that of the original
mesh.

Theoretically, both (1) and (2) are the unique solutions of the optimization prob-
lem which minimizes the L1 interpolation error between a paraboloid function
fI (x) = ‖x − x0‖2 and its piecewise linear interpolation over Ω∗:

Error∗ = ‖f − fI‖L1 =
∫

x∈Ω∗

∣∣f (x) − fI (x)
∣∣dx. (4)

Algorithm 1 (ODT and B-ODT smoothing for inner and boundary vertices)

for every vertex x0 do

a. if x0 is an inner vertex, then
x∗ is computed by (1).

b. else
x∗ is computed using the following scheme:

i. Compute the normal vector of the tangent plane at x0, then select
two orthogonal unit vectors s, t on the tangent plane.

ii. Compute the following coefficients:
A. E = 1

4 |Ω0| − 1
60

∑m
i=1 s(Yi + Yi+1)s(Yi × Yi+1)

B. F = 1
4 |Ω0| − 1

60

∑m
i=1 t(Yi + Yi+1)t(Yi × Yi+1)

C. G = − 1
60

∑m
i=1[s(Yi + Yi+1)t(Yi × Yi+1) + t(Yi + Yi+1) ×

s(Yi × Yi+1)]
D. H = 1

12 s
∑

τ∈Ω∗ Sτ nτLτ − 1
60

∑m
i=1(Y

2
i + Y2

i+1 + YiYi+1) ×
s(Yi × Yi+1)

E. I = 1
12 t

∑
τ∈Ω∗ Sτ nτLτ − 1

60

∑m
i=1(Y

2
i +Y2

i+1 +YiYi+1)t(Yi ×
Yi+1)

iii. Solve the linear system (3).
iv. Compute x∗ using x∗ = x0 + us + vt.

Here, Yi = yi − x0, {yi}mi=1 are the neighboring vertices of x0 on the boundary
of the tetrahedral mesh T . The order of yi is determined in the following way: for
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any i = 1, . . . ,m, the cross product between −−→x0yi and −−−→x0yi+1 points to the outside
of Ω0 (let ym+1 = y1), Lτ = ∑3

j=1 ‖xτ,j − x0‖2.
For a boundary vertex x0, in order to preserve the sharp features, we further

restrict x∗ moving along the features of the mesh. Here, we refer to the feature
direction at x0 as the line that passes through x0 and has the minimal curvature
value among all the directions. This line is on the tangent plane, thus the volume is
still preserved when x∗ moves along this feature line. The direction of the feature
line is found by computing the eigenvalues of the following tensor voting matrix at
x0:

M =
m∑

i=1

SininT
i . (5)

Here Si is the area of surface triangle Δx0yiyi+1 and ni = (nix, niy, niz)
T is the

unit normal vector of Δx0yiyi+1. The matrix M is a positive definite matrix and has
three orthogonal eigenvectors. The feature line is determined in the following way.
Suppose that the three eigenvalues of M are μ0, μ1, μ2 with μ0 ≥ μ1 ≥ μ2 and e0,
e1, e2 are the corresponding eigenvectors. If μ0 � μ1 ≈ μ2 ≈ 0, then the neighbor-
hood of x0 corresponds to a planar feature. In this case, the above Algorithm 1 is
used to smooth x0. If μ0 ≈ μ1 � μ2 ≈ 0, then x0 lies on an crease (linear) feature
and the direction of the crease is e2. In this case, the following Algorithm 2 is used
to smooth x0. If μ0 ≈ μ1 ≈ μ2 � 0, then x0 is at a corner which should not be
changed during the vertex smoothing process.

Algorithm 2 (B-ODT smoothing with feature preserving)

for every crease vertex x0 do

a. Set the feature direction at x0 to be d = e2/‖e2‖.
b. Compute the following coefficients:

i. A = 1
4 |Ω0| − 1

60

∑m
i=1 d(Yi + Yi+1)d(Yi × Yi+1)

ii. B = 1
12 d(

∑
τ∈Ω∗ Sτ nτLτ )− 1

60

∑m
i=1(Y

2
i + Y2

i+1 + YiYi+1)d(Yi ×
Yi+1)

c. Compute x∗ as x∗ = x0 + f d with f = − B
2A

.

2.3 Edge-Based B-ODT Algorithm

In practice, the improvement of x0 is always affected by the configuration of the
vertices around x0. When the vertices around x0 has good configuration, the quality
can be significantly improved. Based on this observation, we presented a modified
strategy here to smooth a tetrahedral mesh: smoothing the mesh in an edge-by-edge
way. That is, to smooth the two end vertices of each edge recursively. By this way,
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the angle quality can be improved more than simply performing Algorithm 2. The
detail is given in the following algorithm:

Algorithm 3 (eB-ODT smoothing for boundary vertices)

for every edge e in the mesh (Let x0 and x1 be the two vertices of e), do

a. Smooth x0 using Algorithm 1 or Algorithm 2 according to the type of
x0

b. Smooth x1 using Algorithm 1 or Algorithm 2 according to the type of
x1

c. Compute s, which is the sum of the movements of x0 and x1
d. If s ≤ ε, go to next edge

else, go to step a

3 Results

The proposed eB-ODT algorithms were tested on several tetrahedral meshes gen-
erated from triangular surface meshes that serve as the boundaries of the domains.
For every mesh, the smoothing process shown in Fig. 1 is repeated for 20 times.
The mesh smoothing results are summarized in Table 1. The comparisons between
the eB-ODT algorithm (Algorithm 3) and several other approaches, including the
ODT algorithm, B-ODT algorithm, topology optimization and the Natural ODT al-
gorithm [46], are also provided in Table 1. In Figs. 3–9, the original and smoothed
meshes are compared and from the histograms we can see significant improvement
of dihedral angles in these meshes.

We compare the smoothing results by using the ODT, B-ODT and eB-ODT al-
gorithms. In Table 1, all the minimum and maximum dihedral angles by using the
B-ODT algorithm are better than those by the ODT algorithm and the results by
using eB-ODT are better than B-ODT, especially on the Retinal model. Note that
the minimum dihedral angle in Retinal model is very small and likely occurs on the
boundary of the model. Therefore, the B-ODT and eB-ODT algorithm can perform
much better than the original ODT method.

Although the topology optimization is utilized in many mesh smoothing algo-
rithms, this technique alone may not always improve the quality of a mesh. To show
this, we smooth all the meshes in Table 1 using only the topology optimization
and compare the results with those obtained by using our eB-ODT algorithm. From
Table 1, we can see that the ability of improving mesh quality by using topology
optimization alone is limited, compared to the eB-ODT algorithm.

The tetrahedral mesh in Fig. 3 is generated by tetrahedralizing randomly-sampled
point set on a unit sphere [50]. There are 642 points on the sphere and 87 inner ver-
tices are inserted by the tetrahedralization algorithm. The minimum and maximum
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Table 1 Comparisons of dihedral angles using different methods

Model Algorithm Vertex number min max

Random Sphere Original mesh 729 5.86◦ 164.70◦

eB-ODT 767 18.20◦ 145.56◦

B-ODT 731 15.20◦ 150.25◦

ODT 729 6.28◦ 162.46◦

Topology optimization 729 5.86◦ 164.70◦

NODT 729 6.21◦ 173.64◦

2Cmp Original mesh 10415 5.57◦ 163.24◦

eB-ODT 10488 21.68◦ 145.56◦

B-ODT 10415 18.10◦ 147.21◦

ODT 10415 11.64◦ 158.06◦

Topology optimization 10415 5.57◦ 163.24◦

NODT 10415 10.70◦ 157.19◦

Retinal Original mesh 14921 1.25◦ 173.85◦

eB-ODT 15030 19.86◦ 160.14◦

B-ODT 14948 15.10◦ 164.58◦

ODT 14921 1.29◦ 168.13◦

Topology optimization 14921 1.25◦ 172.09◦

NODT 14921 0.00◦ 179.99◦

RyR Original mesh 18585 6.19◦ 170.74◦

eB-ODT 18601 22.57◦ 143.56◦

B-ODT 18585 18.52◦ 149.25◦

ODT 18585 10.34◦ 158.32◦

Topology optimization 18585 6.19◦ 170.74◦

NODT 18585 7.78◦ 162.74◦

2Torus Original mesh 4635 5.96◦ 164.92◦

eB-ODT 4731 21.37◦ 146.81◦

B-ODT 4656 16.92◦ 152.05◦

ODT 4635 9.46◦ 157.53◦

Topology optimization 4635 6.85◦ 164.75◦

NODT 4635 0.01◦ 179.98◦

FanDisk Original mesh 9131 6.04◦ 164.98◦

eB-ODT 9173 20.32◦ 154.96◦

B-ODT 9162 16.80◦ 160.53◦

ODT 9131 9.59◦ 163.53◦

Topology optimization 9131 6.78◦ 164.98◦

NODT 9131 0.08◦ 179.86◦
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Fig. 3 The original mesh
model (a) and the smoothed
result (b). In both meshes, the
outer and cross-section views
are shown. The minimum
dihedral angles of these two
meshes are 5.86◦ and 18.20◦
respectively, and the
maximum dihedral angles are
164.70◦ and 145.56◦
respectively

Fig. 4 Original and smoothed 2CMP models. The minimum dihedral angles of these two meshes
are 5.57◦ and 21.68◦ respectively, and the maximum dihedral angles are 163.24◦ and 145.56◦
respectively



152 Z. Gao et al.

Fig. 5 Original and smoothed Retinal models. The minimum dihedral angles of these two meshes
are 1.25◦ and 19.86◦ respectively, and the maximum dihedral angles are 173.85◦ and 160.14◦
respectively

Fig. 6 Original and smoothed RyR models. The minimum dihedral angles of these two meshes
are 6.19◦ and 22.57◦ respectively, and the maximum dihedral angles are 170.74◦ and 143.56◦
respectively
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Fig. 7 The convergence of
minimum and maximum
dihedral angles with respect
to the number of iterations on
the Retinal model using the
eB-ODT algorithm. Note that
on the left the curves of ODT
and topology optimization are
almost identical

dihedral angles of this Random Sphere model are 5.86◦ and 164.70◦ respectively.
After 20 times of running the eB-ODT algorithm, the minimum and maximum dihe-
dral angles are improved to 18.20◦ and 145.56◦ respectively. Note that the distribu-
tion of the boundary vertices of the smoothed mesh is much more uniform than that
of the original mesh, demonstrating that the eB-ODT algorithm can smooth both
inner and boundary vertices in a tetrahedral mesh.

The eB-ODT algorithm is also tested on tetrahedral meshes generated from sev-
eral biomedical molecules: 2CMP molecule in Fig. 4, Retinal molecule in Fig. 5
and Ryanodine receptor (RyR) in Fig. 6. The quality of 2CMP and RyR meshes
reaches the best after no more than 10 iterations although all the models in Table 1
are processed 20 times. In Fig. 7, we demonstrate the convergence of minimum and
maximum dihedral angles with respect to the number of iterations on the Retinal
model using the eB-ODT algorithm.

Fig. 8 Original and smoothed 2Torus models. The minimum dihedral angles of these two meshes
are 5.96◦ and 21.37◦ respectively, and the maximum dihedral angles are 164.92◦ and 146.81◦
respectively
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Fig. 9 Original and smoothed FanDisk models. The minimum dihedral angles of these two meshes
are 6.04◦ and 20.32◦ respectively, and the maximum dihedral angles are 164.98◦ and 154.96◦
respectively

Table 2 Relative Hausdorff distance between original and smoothed meshes

Models Random Sphere 2Cmp Retinal RyR 2Torus FanDisk

Rel. Hausdorff distance 0.40% 1.11% 0.52% 0.77% 0.18% 0.25%

The 2Torus (Fig. 8) and FanDisk (Fig. 9) models show the feature-preserving
property of the eB-ODT algorithm. In order to measure the difference between the
original and smoothed meshes, we compute the relative Hausdorff distances be-
tween the surface meshes of the original and smoothed models, as shown in Table 2.
Here, the Hausdorff distance is first computed using the standard definition and then
scaled as follows. Let h be the absolute Hausdorff distance between the original and
smoothed meshes, and L be the largest side length of the bounding box of the orig-
inal mesh. The relative Hausdorff distances is defined by h

L
, which measures the

difference of the original and smoothed models relative to the size of the original
model. From Table 2 we can see that the relative Hausdorff distances between the
original and smoothed models are very small showing that our eB-ODT algorithm
preserves the shape of the original models quite well.

The original ODT has also been extended by [46] to 3D tetrahedral mesh smooth-
ing and the method is called Natural ODT (NODT). The NODT method computes
the new position of a boundary vertex x0 in a tetrahedral mesh T by adding a certain
amount of compensation to the weighted centroid of the neighborhood of x0. The
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Table 3 Comparison of running time (20 iterations)

Random Sphere 2Cmp Retinal RyR 2Torus FanDisk

eB-ODT 305.84 s 5175.6 s 10272.8 s 9086.0 s 2258.4 s 4522.0 s

NODT 11.85 s 159.80 s 323.12 s 291.24 s 64.08 s 124.24 s

compensation is a weighted sum of the normal vectors of the boundary triangles
around x0. Although boundary vertices are considered in the NODT method, the
new positions calculated have to be projected onto the boundary of T to preserve
the volume and shape of the original mesh. Therefore, the NODT method does not
optimize the positions for boundary vertices. The smoothing results by using the
afore-mentioned NODT method are shown in Table 1, where we can see that our
eB-ODT algorithm significantly outperforms the NODT method. Sometimes the re-
sults obtained by the NODT method are even worse than the original meshes. The
running time of eB-ODT and NODT is compared in Table 3.

4 Conclusions

We described a method of simultaneously smoothing both inner and boundary ver-
tices of a tetrahedral mesh under a unified optimization framework. The eB-ODT
algorithm presented can preserve sharp features very well and is guaranteed to pre-
serve the volume of the original mesh. For every boundary vertex, the optimal posi-
tion is computed by solving a linear system. The algorithm is numerically robust and
easy to implement because the order of the linear equation system is only degree 2.
The experimental results have shown the effectiveness of the proposed method.

Acknowledgements The work described was supported in part by an NIH Award (Number
R15HL103497) from the National Heart, Lung, and Blood Institute (NHLBI) and by a subcon-
tract from the National Biomedical Computation Resource (NIH Award Number P41 RR08605).
The content is solely the responsibility of the authors and does not necessarily represent the official
views of the sponsors.

References

1. Djidjev H (2000) Force-directed methods for smoothing unstructured triangular and tetrahe-
dral meshes. In: 9th international meshing roundtable, pp 395–406

2. Phillippe P, Baker T (2001) A comparison of triangle quality measures. In: 10th international
meshing roundtable, pp 327–340

3. Ohtake Y, Belyaev A, Bogaevski I (2001) Mesh regularization and adaptive smoothing. Com-
put Aided Des 33(11):789–800

4. Knupp PM (2002) Algebraic mesh quality metrics. SIAM J Sci Comput 23(1):193–218
5. Knupp PM (2003) Algebraic mesh quality metrics for unstructured initial meshes. Finite Elem

Anal Des 39(3):217–241



156 Z. Gao et al.

6. Brewer M, Freitag Diachin L, Knupp P, Leurent T, Melander D (2003) The mesquite mesh
quality improvement toolkit. In: 12th international meshing roundtable, pp 239–250

7. Babuska I, Aziz AK (1976) On the angle condition in the finite element method. SIAM J
Numer Anal 13(2):214–226

8. Shewchuk JR (2002) What is a good linear element? Interpolation, conditioning, and quality
measures. In: 11th international meshing roundtable, pp 115–126

9. Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and
smoothing. Int J Numer Methods Eng 40(21):3979–4002

10. Klingner BM, Shewchuk JR (2008) Aggressive tetrahedral mesh improvement. In: 16th inter-
national meshing roundtable. Springer, Berlin, pp 3–23

11. Chew LP (1997) Guaranteed-quality Delaunay meshing in 3D. In: 13th annual symposium on
computational geometry, pp 391–393

12. Nave D, Chrisochoides N, Chew LP (2004) Guaranteed-quality parallel Delaunay refinement
for restricted polyhedral domains. Comput Geom, Theory Appl 28(2–3):191–215

13. Escobar JM, Montenegro R, Montero G, Rodríguez E, Gonzáez-Yuste JM (2005) Smoothing
and local refinement techniques for improving tetrahedral mesh quality. Comput Struct 83(28–
30):2423–2430

14. Bank RE, Smith RK (1997) Mesh smoothing using a posteriori error estimates. SIAM J Numer
Anal 34(3):979–997

15. Freitag LA (1997) On combining Laplacian and optimization-based mesh smoothing tech-
niques. In: Trends in unstructured mesh generation. AMD, vol 220, pp 37–43

16. Canann SA, Tristano JR, Staten ML (1998) An approach to combined Laplacian and
optimization-based smoothing for triangular, quadrilateral and quad-dominant meshes. In: 7th
international meshing roundtable, pp 419–494

17. Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div
102(5):749–907

18. Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Numer
Methods 4(6):709–712

19. Hansbo P (1995) Generalized Laplacian smoothing of unstructured grids. Commun Numer
Methods Eng 11(5):455–464

20. Zhou T, Shimada K (2000) An angle-based approach to two-dimensional mesh smoothing. In:
9th international meshing roundtable, pp 373–384

21. Xu H, Newman TS (2006) An angle-based optimization approach for 2D finite element mesh
smoothing. Finite Elem Anal Des 42(13):1150–1164

22. Yu Z, Holst MJ, McCammon JA (2008) High-fidelity geometric modeling for biomedical
applications. Finite Elem Anal Des 44(11):715–723

23. Du Q, Wang D (2003) Tetrahedral mesh generation and optimization based on centroidal
Voronoi tessellations. Int J Numer Methods Eng 56:1355–1373

24. Freitag L, Plassmann P (2001) Local optimization-based untangling algorithms for quadrilat-
eral meshes. In: 10th international meshing roundtable, pp 397–406

25. Li X, Freitag LA, Freitag LA (1999) Optimization-based quadrilateral and hexahedral mesh
untangling and smoothing techniques. Technical report, Argonne National Laboratory

26. Knupp PM (2001) Hexahedral and tetrahedral mesh untangling. Eng Comput 17(3):261–268
27. Knupp PM (2000) Hexahedral mesh untangling & algebraic mesh quality metrics. In: 9th

international meshing roundtable, pp 173–183
28. Delanaye M, Hirsch C, Kovalev K (2003) Untangling and optimization of unstructured hexa-

hedral meshes. Comput Math Math Phys 43(6):807–814
29. Menédez-Díaz A, González-Nicieza C, Álvarez-Vigil AE (2005) Hexahedral mesh smoothing

using a direct method. Comput Geosci 31(4):453–463
30. Vartziotis D, Athanasiadis T, Goudas I, Wipper J (2008) Mesh smoothing using the geometric

element transformation method. Comput Methods Appl Mech Eng 197(45–48):3760–3767
31. Vartziotis D, Wipper J, Schwald B (2009) The geometric element transformation method for

tetrahedral mesh smoothing. Comput Methods Appl Mech Eng 199(1–4):169–182



An Optimization-Based Iterative Approach to Tetrahedral Mesh Smoothing 157

32. Vartziotis D, Wipper J (2011) A dual element based geometric element transformation method
for all-hexahedral mesh smoothing. Comput Methods Appl Mech Eng 200(9–12):1186–1203

33. Xu K, Cheng Z-Q, Wang Y, Xiong Y, Zhang H (2009) Quality encoding for tetrahedral mesh
optimization. Comput Graph 33(3):250–261. IEEE international conference on shape mod-
elling and applications 2009

34. Sirois Y, Dompierre J, Vallet M-G, Guibault F (2010) Hybrid mesh smoothing based on Rie-
mannian metric non-conformity minimization. Finite Elem Anal Des 46(1–2):47–60

35. Parthasarathy V, Kodiyalam S (1991) A constrained optimization approach to finite element
mesh smoothing. Finite Elem Anal Des 9(4):309–320

36. Canann SA, Stephenson MB, Blacker T (1993) Optismoothing: an optimization-driven ap-
proach to mesh smoothing. Finite Elem Anal Des 13(2–3):185–190

37. Chen CL, Szema KY, Chakravarthy SR (1995) Optimization of unstructured grid. In: 33rd
aerospace sciences meeting and exhibit, Reno, NV, January, pp 1–10. AIAA 95-0217

38. Zavattieri PD, Dari EA, Buscaglia GC (1996) Optimization strategies in unstructured mesh
generation. Int J Numer Methods Eng 39(12):2055–2071

39. Freitag Diachin L, Knupp P (1999) Tetrahedral element shape optimization via the Jacobian
determinant and condition number. In: 8th international meshing roundtable, pp 247–258

40. Knupp PM (2000) Achieving finite element mesh quality via optimization of the Jacobian
matrix norm and associated quantities. Part I—a framework for surface mesh optimization.
Int J Numer Methods Eng 48(3):401–420

41. Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and
improvement. Int J Numer Methods Eng 49(1–2):109–125

42. Freitag LA, Knupp PM (2002) Tetrahedral mesh improvement via optimization of the element
condition number. Int J Numer Methods Eng 53(6):1377–1391

43. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simulta-
neous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng
192(25):2775–2787

44. Mezentsev A (2004) A generalized graph-theoretic mesh optimization model. In: 13th inter-
national meshing roundtable, pp 255–264

45. Chen L, Xu J (2004) Optimal Delaunay triangulations. J Comput Math 22(2):299–308
46. Tournois J, Wormser C, Alliez P, Desbrun M (2009) Interleaving Delaunay refinement and

optimization for practical isotropic tetrahedron mesh generation. ACM Trans Graph 28:75–
1759

47. Labelle F, Shewchuk JR (2007) Isosurface stuffing: fast tetrahedral meshes with good dihedral
angles. ACM Trans Graph 26:57–15710

48. Zhang Y, Hughes TJR, Bajaj CL (2010) An automatic 3D mesh generation method for do-
mains with multiple materials. Comput Methods Appl Mech Eng 199(5–8):405–415

49. Molino N, Bridson R, Teram J, Fedkiw R (2003) A crystalline, red green strategy for meshing
highly deformable objects with tetrahedra. In: 12th international meshing roundtable, pp 103–
114

50. Si H, Gärtner K, Fuhrmann J (2010) Boundary conforming Delaunay mesh generation. Com-
put Math Math Phys 50(1):38–53


	An Optimization-Based Iterative Approach to Tetrahedral Mesh Smoothing
	1 Introduction
	2 Methods
	2.1 Tetrahedral Mesh Generation Algorithm
	2.2 ODT and B-ODT Algorithms
	2.3 Edge-Based B-ODT Algorithm

	3 Results
	4 Conclusions
	References


