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Abstract An accurate finite element method is introduced to solve the two
most commonly used continuum models in computational biophysics: Poisson–
Boltzmann (PB) equation and Poisson–Nernst–Planck (PNP) equations. They de-
scribe equilibrium and non-equilibrium (with diffusion existed) properties of ionic
liquid, respectively. Both models involve two domains (solvent and solute) with
distributed singular permanent charges inside biomolecules (solute domain) and a
dielectric jump at the interface between solvent and solute. A stable regularization
scheme is described to remove the singular component of the electrostatic poten-
tial induced by the permanent charges inside biomolecules, and regular, well-posed
PB/PNP equations are formulated. The interface conditions for electric potential
are also explicitly enforced to be satisfied. An inexact-Newton method is used to
solve the nonlinear elliptic PB equation and the coupled steady-state PNP equations;
while an Adams–Bashforth–Crank–Nicolson method is devised for time integration
for the unsteady electrodiffusion. The numerical methods are shown to be accurate
and stable by various tests of real biomolecular electrostatic and diffusion problems.

1 Introduction

All biomolecules in cell are solvated in ionic solution which supplies an essential
environment to molecular activities. These activities are generally involved in multi-
scale processes. Explicit molecular dynamics (MD) or Monte Carlo (MC) simula-
tions that includes all the solute and solvent particles are known to be limited in size
and time scales of simulated systems. To overcome the shortage, implicit simulation
approaches were developed to significantly reduce the degree of freedom of the sys-
tem by treating the solvent as a continuum medium. The continuum models focus
on the average properties of solvent through a solution of partial differential equa-
tion(s), and is therefore computationally more efficient. Furthermore, continuum
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model can conveniently include different types of physical interactions/processes
and bridge different temporal-spatial scales, e.g. by coupling electrostatics with dif-
fusion convection, or/and elasticity, the Navier–Stokes equations and so on. These
features have made the continuum model very appealing and useful. The Poisson–
Boltzmann equation (PBE) and the Poisson–Nernst–Planck equations (PNPEs) are
the two most studied and established continuum models in computational molec-
ular biology. The former is usually used for equilibrium simulation of molecular
electrostatic solvation effects, and the later for non-equilibrium simulation of ionic
diffusion processes interacting with biomolecular systems.

Efficiency and accuracy are two central issues in applying the PBE/PNPEs to
biophysical modeling. First, a typical macromolecule may consist of a few to hun-
dreds of thousand atoms (point charges in the PBE), which significantly challenges
the current computer memory and speed. Secondly, in order to incorporate the PB
electrostatics (on the fly) in a typical MD, MC, or Brownian dynamics (BD) simu-
lation that could involve tens of millions of steps to get converged statistical results,
a single solution of the PBE has to be completed within no more than a few tenths
of a second on a modern workstation to meet the total wall-clock time constraint.
Based on this estimation, the current solvers are still, e.g., about one to two orders
of magnitude slower [56]. Thirdly, a similar demand of efficiency lies in virtual high
throughput screening in drug discovery from many candidate structures and differ-
ent conformations. This screening is usually based on free energy calculations (e.g.,
binding affinity) to an accuracy of a few kcal/mol. However, these free energies nor-
mally result from the cancellation of energies of several orders of magnitude larger
terms such as electrostatic energies. This demand poses another numerical challenge
for electrostatic computations with the PBE.

Finite element method (FEM) is an efficient and powerful numerical method
for solution of nonlinear elliptic equation(s). Adaptive mesh refinement is a ma-
ture strategy developed in FEM to control the accuracy and efficiency of the solu-
tion. While a complicated situation in both PB and PNP models is that the solvated
biomolecular systems are usually modeled by dielectrically distinct regions with
singular charges distributed in the molecular region. Specific strategies are needed
in FEM framework to accurately treat the singular charges and the dielectric jump
at molecular boundary.

In this chapter, the two models and related methodologies will be briefly re-
viewed. We apply a stable regularization scheme to remove the singular component
of the electrostatic potential induced by the permanent charges inside biomolecules,
and formulate a regular, well-posed PB equation. The interface conditions can be
explicitly enforced in the solution through using boundary conforming meshes in
the FEM simulations. Then, a corresponding FEM algorithm is given. Similar regu-
larization scheme and interface condition treatment are applied to PNP system. An
inexact-Newton method is used to solve the nonlinear elliptic PBE or the coupled
PNP equations for steady problems; while an Adams–Bashforth–Crank–Nicolson
method is devised for time integration for the unsteady electrodiffusion. The numer-
ical methods are shown to be accurate and stable by various test problems, and are
applicable to real large-scale biophysical electrostatics and electrodiffusion prob-
lems.
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A mesh is required in finite element method. Molecular mesh generation is a
very technical and challenging task for practical FEM simulation of biomolecular
systems. The topic is briefly discussed in Sect. 4. Interested readers are refereed to
chapter “Surface Triangular Mesh and Volume Tetrahedral Mesh Generations for
Biomolecular Modeling” on biomolecular meshing of this book.

The rest of the chapter is organized as follows. The PB and PNP models and their
FEM treatments are introduced in Sects. 2 and 3, respectively. Each section contains
a brief history of the equation(s) and related methodologies, descriptions of the reg-
ularization scheme, the numerical strategies and properties for the equation(s). Nu-
merical examples for real biomolecular electrostatics and diffusion problems are
given in Sect. 5. The chapter ends with a summary in Sect. 6.

2 PB Model

Poisson–Boltzmann (PB) theory has been a well-established model in a broad range
of scientific research areas. In eletrochemistry, it is known as Gouy–Chapman (GC)
theory [15, 37]; in solution chemistry, it is known as Debye–Hückel theory [24]; in
colloid chemistry, it is known as the Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory [25, 79]; and in biophysics, it is known as PB theory [23, 47]. The Poisson–
Boltzmann equation (PBE) represents a typical implicit solvent model, and provides
a simplified continuum description of the discrete particle (e.g., water, ion, and/or
protein molecule) distributions in solution. In particular, the PBE describes the elec-
trostatic interaction and ionic density distributions of a solvated system at the equi-
librium state. Since the first application of the PBE in a biomolecular system [80],
a large amount of literatures and many solution techniques have been produced in
this area and directed to studies of diverse biological processes.

A number of review papers can be found that focus on the physical fundamen-
tals [66, 71], brief history [30], the methodology and applications in biomolecular
modeling [3, 6], the methodological developments in both PB and the related gen-
eralized Born models [51]. A more recent review [58] focused on the numerical
aspects of PB methodology covering several major numerical methods. This chap-
ter will present detailed techniques in use of finite element approach.

Solvated biomolecular systems are usually modeled by dielectrically distinct re-
gions with singular charges distributed in the molecular region. Systems without
singular charges or dielectric discontinuities are usually found in simplified models
with planar or cylindrical boundary geometries in electrochemistry and biopoly-
mer science, and can be regarded as a special case of the systems in this investiga-
tion. Figure 1 schematically illustrates a solvated biomolecular system occupying
a domain Ω with a smooth boundary ∂Ω . The solute (molecule) region is repre-
sented by Ωm and the solvent region by Ωs . The dielectric interface Γ is defined
by the molecular surface, which can be defined as the solvent-excluded surface,
solvent-accessible surface, Gaussian surface [81], or some other appropriately de-
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Fig. 1 2-D schematic illustration of the computational domain modeling a solvated biomolecular
system. The biomolecular (solute) region is Ωm with dielectric constant εm and the aqueous solu-
tion (solvent) is domain Ωs with dielectric constant εs . The molecular surface is Γ = Ω̄s ∩ Ω̄m.
The circles with plus or minus sign inside represent the diffusive charged particles which move
only in Ωs . The singular charges inside molecules are signified by plus or minus sign in Ωm. The
active reaction center Γa ⊂ Γ is also highlighted in red where a different boundary condition may
be applied in the PNP model

fined solvent-molecular interface. n is the unit normal vector at Γ , pointing from
Ωm to Ωs . The nonlinear Poisson–Boltzmann equation in Ω reads

−∇ · (ε∇u) − λ

K∑

j=1

cj qj e
−βqj u =

N∑

i=1

qiδ(x − xi), x ∈ Ω, (1)

where ε is a spatial-dependent dielectric coefficient, the characteristic function
λ = 0 in Ωm (impenetrable to ions) and 1 in Ωs , cj is the bulk density of mo-
bile ion species j with charge qj , β = 1/kT , k is the Boltzmann constant, T is the
absolute temperature, qi is the singular charge located at xi within solute region.
For symmetric 1 : 1 salt (the bulk densities of cation and anion need to be equal,
C+ = C− = C, to satisfy the neutrality condition), to simplify the presentation we
use

−∇ · (ε∇u) + λκ2 sinh(u) = ρf , x ∈ Ω, (2)

and

−∇ · (ε∇u) + λκ2u = ρf , x ∈ Ω, (3)

for the linearized Poisson–Boltzmann equation in case of weak electrostatic po-
tential, where κ2 = 2βe2C absorbing the related parameters (e is the elementary
charge), and u → βeu and ρf → βeρf are the scaled electrostatic potential and
singular charge distribution, respectively. Note that κ = 0 in Ωm because the mobile
ions only present in the solvent region Ωs . An additional region called the Stern
layer might be present in some Poisson–Boltzmann models. This Stern layer is part
of the solvent but is not penetrable for the mobile ions so κ = 0 there. The transition



Finite Element Modeling of Biomolecular Systems in Ionic Solution 275

from the low-dielectric solute region to the high-dielectric solvent region is usually
modeled to be abrupt, which gives rise to a dielectric interface Γ . This interface is
usually identified as the molecular surface. There are two conditions on Γ needed
to be satisfied from the dielectric theory:

um = us, εm

∂um

∂n
= εs

∂us

∂n
, x ∈ Γ. (4)

These conditions are explicitly used in boundary integral equations based ap-
proaches, but may not be exactly satisfied in other approaches such as the tradi-
tional finite difference methods, or finite element methods without special interface
treatment. An approximated Dirichlet boundary condition is normally imposed on
∂Ω . The dielectric permittivity is usually assumed to be a piecewise constant with
ε = εmε0 in Ωm and ε = εsε0 in Ωs , where ε0 is the dielectric constant of vacuum.
This is indispensable to the regularization schemes to be introduced later. The inter-
nal dielectric interface separating the molecules and solvent regions is defined to be
the molecular surface, but other definitions of dielectric interface might apply also.
Typical values of εm and εs are 2 and 80, respectively. The singular charge distribu-
tion within biomolecules, discontinuous dielectric constant, exponential nonlinear-
ity at strong potential, and the highly irregular molecular surface constitute the most
prominent features of the Poisson–Boltzmann equation.

2.1 Regularization Schemes of the Poisson–Boltzmann Equation

The presence of the singular charge distribution in the PBE indicates that its solution
is not continuous and does not belong to H 1(Ω) [16], which directly challenges
the solution theory of standard finite difference methods, finite volume methods
or finite element methods for the PBE. In many finite difference or finite element
solvers of the Poisson–Boltzmann equation, the singular charges are distributed onto
the grid points near the singular charges by using polynomial interpolations. These
approximations work well for electrostatic solvation energy ΔGele calculations. The
solvation energy is defined as

ΔGele = Gsys − Gref , (5)

where Gsys is the electrostatic free energy of the biomolecular system in the sol-
vated state and the Gref is the electrostatic free energy of the system assuming it
is in space of uniform dielectric constant εm and without mobile ions. By using a
finite difference method, finite volume method or a finite element method, the PBE
is solved twice with corresponding parameters for Gsys and Gref , respectively. Lin-
ear interpolation or higher order polynomial interpolation are usually used in these
numerical methods for approximating the singular charge distribution. Although the
potentials from these two calculations might suffer from large error near the singu-
lar charges, it is believed that this error would cancel in computing the ΔGele via
Eq. (5) if the same mesh and charge interpolation are used in these two solutions
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of the PBE. This treatment is widely applied in computational chemistry and is
somehow validated by many numerical experiments [28, 29, 35, 36, 61, 74, 86, 89].
However, the quality of the potential near the molecular surface is actually critically
dependent on the specific treatment of the singular charges [32]. If the gradient of
the electrostatic potential is needed, such as force calculation on atoms in the MD
simulation, or electric field calculation at the boundary in the diffusion-reaction sim-
ulation by PNP equations studied in next section, more rigorous treatments of the
singular charges are needed.

The regularization schemes aim at removing the singular component of the po-
tential from the equation such that the remaining component has higher regularity
and thus is solvable by using general numerical methods. The straightforward de-
composition [36] considers the singular Coulomb potential us of all singular charges

−εmΔus = ρf in Ω (6)

The corresponding regular potential component ur is then found by subtracting
Eq. (6) from Eq. (2) to be

−∇ · (ε∇ur
) + λκ2 sinh

(
ur + us

) = 0 in Ω, (7)

The singular component φs should also be subtracted from the interface condi-
tions (4), generating the following interface conditions for Eq. (8):

ur
s − ur

m = 0, εs

∂ur
s

∂n
− εm

∂ur
m

∂n
= (εm − εs)

∂us

∂n
, x ∈ Γ. (8)

This approach is applied to solve the Poisson–Boltzmann equation by Zhou et al.
[89] to completely remove the self-energy so that the equation need not to be solved
twice for computing the electrostatic energy. Another slightly different decomposi-
tion but leading to quite different numerical strategies using a similar equation as (6)
but with varying dielectric were proposed in a hybrid finite difference/boundary ele-
ment method [12] and a hybrid finite element/boundary element method [57, 87] for
solving the nonlinear PBE. These two methodologies take the advantage of bound-
ary element method to conveniently handle the singular point charges and also leads
to stable and accurate numerical solution. The removal of the singular potential
makes it possible for the first time to analyze the Poisson–Boltzmann equation rig-
orously in Sobolev spaces [16]. However, it is found that the first scheme suffers a
numerical instability that will lead to a substantial error in FEM numerical solution
of the full potential [45]. This is because that the total potential φ is relatively weak
while the singular potential φs and the regular potential are both strong. In partic-
ular, the regular potential in Ωs is larger than the total potential φ by εs/εm ≈ 40
times. Consequently, when the numerical solution of φh is added to the analytical
solution of φs to get the total potential, the relative numerical error will be amplified
by about 40 times. For this reason we will apply a stable decomposition in this FEM
study. This decomposition is first introduced by Chern et al. for solving the PBE
with an interface method [19], and is implemented later in finite different method
[32] and finite element method [58, 59].



Finite Element Modeling of Biomolecular Systems in Ionic Solution 277

We define the singular component us to be the restriction on Ωm of the solution
of

−εmΔφs(x) = ρf (x), x ∈R
3, (9)

and the harmonic component uh(x) to be the solution of a Laplace equation:

−Δuh(x) = 0, x ∈ Ωm,

uh(x) = −us(x), x ∈ Γ.
(10)

It is seen that us(x) can be given analytically by the sum of Coulomb potentials.
This us(x) is then used to compute the boundary condition for uh(x), the latter is
to be solved numerically from Eq. (10), for which we use a finite element method
in this study. Subtracting these two components from Eq. (2) we get the governing
equation for the regular component ur(x):

−∇ · (ε∇ur(x)
) + λκ2 sinh

(
ur(x)

) = 0, x ∈ Ω, (11)

and the interface conditions

ur
s − ur

m = 0, εs

∂ur
s

∂n
− εm

∂ur
m

∂n
= εm

∂(us + uh)

∂n
, x ∈ Γ. (12)

It is worth noting that there is no decomposition of the potential in the solvent region,
thus φ(x) = φr(x) in Ωs . There is no decomposition in Ωs in the second scheme,
and thus the numerical solution of φr in Ωs does not suffer the instability [45].

2.2 Finite Element Methods

The adaptive finite element method developed by Holst et al. in [4, 16, 41, 44] tack-
led some of the numerical issues of the Poisson–Boltzmann equation. This method
uses the piecewise-linear finite element and a well-defined error indicator for driv-
ing the local mesh refinement [16, 41]. The nonlinear Poisson–Boltzmann equation
is solved using Newton-AMG iterations [42, 43, 46]. After discretization by either
finite difference or finite element techniques, the inexact Newton-AMG approach
results in linear memory and computational complexity solution of the nonlinear
algebraic equations produced by finite difference, finite volume, or finite element
discretization methods. In the case of adaptivity, non-standard variations of multi-
grid solvers must be used to preserve both linear memory and linear computational
complexity; see [2, 45] for a detailed discussion.

Instead of using the Newton-AMG iterations for the nonlinear PBE, the finite
element method of Shestakov et. al [75] uses Newton–Krylov iterations for the non-
linearity. The applications of this finite element method have not been extended from
colloid systems with rather simple geometry to biomolecular systems with compli-
cated dielectric interfaces. A mortar finite element discretization was also introduced
recently by Xie et al. for numerical solutions of the PBE, which explicitly computed
dielectric interface so that the interface conditions are satisfied naturally [82].
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Though the new regularization scheme [19] and inclusion of molecular surface
have been practically used for PB solution for real biomolecule [32, 58, 59], the
analysis of a convergent adaptive finite element method was only made recently
[45]. With this scheme, the accuracy of the potential near the molecular surface
is substantially improved, becoming comparable to that of the interface Poisson–
Boltzmann solvers [45, 86]. The finite element method advanced by Cortis et al. [21]
makes use of the similar Galerkin formulation but lack a treatment of the nonlinear
Poisson–Boltzmann equation. Moreover, there is no enforcement of the interface
conditions on the molecular surface so the results of this method agree well with
those of DelPhi. A recently proposed discontinuous Galerkin method for elliptic in-
terface problems [38] might also be customized for solving the Poisson–Boltzmann
equation provided a good description of the molecular surface.

Now we describe the FEM computational algorithm with the new regularization
scheme for 3D molecular simulations. To consider the finite element solution of the
PBE (11) (Eq. (10) is a simpler and special case), we define the solution space

H := {
u ∈ H 1

0 (Ω)
}

(13)

and its finite dimensional subspace

S := {
u ∈ P1(Ω)

}
, (14)

where P1 is the space consisting of piecewise linear tetrahedral finite elements.
Functions in the space

H 1
0 = {

v ∈ H 1(Ω) :v = 0 on ∂Ω
}
,

satisfy the Dirichlet boundary condition on the exterior boundary ∂Ω . We assume
that the finite elements are regular and quasi-uniform. The weak formulation of the
problem now is:

Find u =∈ S such that
〈
F(u), v

〉 = 0 ∀v ∈ S. (15)

Here the nonlinear mapping F :H 	→ H ∗ and 〈·, ·〉 is the standard duality paring
between the dual space H ∗ and H . Specifically, the nonlinear weak form 〈F(u), v〉
is defined to be

〈
F(u), v

〉 = (ε∇u,∇v) + (
λκ2 sinhu,v

) + 〈p,v〉Γ , (16)

where

p = εm

∂(us + uh)

∂n

is the jump in electric displacement defined in Eq. (12), 〈·, ·〉Γ denotes the L2 inner
product defined on the interface Γ , and the L2 scalar inner product over the do-
main Ω is denoted by (·, ·). It is worth noting that the interface integral 〈·, ·〉Γ is
conveniently and directly evaluated in FEM by using a boundary conforming mesh
(Γ is a collection of some faces of the tetrahedral mesh). This type of meshes, as
generated by TMSmesh [17] are used in all of our FEM simulations. To solve the
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nonlinear problem (15) we employ the damped inexact-Newton method [41] which
necessitates the Gâteaux derivative DF(u) defined by the bilinear form

〈
DF(u)w,v

〉 = d

dτ

〈
F(u + τw), v

〉∣∣∣∣
τ=0

= (ε∇w,∇v) + (
λκ2w coshu,v

)
(17)

With these well-defined operators the complete algorithm can be given as follows:

Algorithm 1

• Choose the initial approximation u, the nonlinear tolerance ε, the residual r in
approximately solving the linear system, and the damping factor c.

• Do until |〈F(u), v〉| < ε

1. Solve the correction w from 〈DF(u)w,v〉 = −〈F(u), v〉 + r .
2. u ⇐ u + cw.

A constant damping parameter c = 1 is chosen in this study. We note here that
the step in the algorithm to solve the correction w leads to a linear system to be
solved. Denoting the solution u(x) by its expansion in the test function space, i.e.,
u(x) = ∑

j aj vj (x), the weak form (16) essentially produces two matrices: a stiff
matrix A associated with the product ε∇u · ∇v and the mass matrix M associated
with the product λκ2w(coshu)v. The solution of w(x) (correction of u(x) at each
Newton iteration step) from the bilinear form (17) is therefore equivalent to the
solution of a linear algebraic system

(A + M)a = −f, (18)

where unknown vector a = {aj } is the expansion coefficients of w(x), and vector
f is 〈F(u), v〉 for all given test functions v. The system of equations implied by
Eq. (16) and the linearization Eq. (17) are then solved by a FEM software package
like FETK [40] or PHG [85].

3 PNP Model

Under non-equilibrium condition(s), net ionic fluxes are produced in solution, to
which case the PB model does not apply. The diffusive fluxes and the relevant elec-
trostatic interactions in ionic solution are described as electrodiffusion. When small
charged molecules are approximated as diffusive ions, the electrodiffusion frame-
work can also be adopted to study their transportation and/or diffusion-reaction pro-
cesses. Electrodiffusion is a rate-limiting step in numerous biological processes,
such as ligand-enzyme binding, protein-protein diffusive encounter. An example is
neurotransmission within synapses between adjacent nerve cells [9]. The kinetic
properties of these processes are mostly governed by the multi-scale electrodiffu-
sion of charged molecules in aqueous solution with various ionic concentrations,
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molecular charges and complicated solvent-solute interface geometries. The con-
tinuum model is more straightforward and efficient to determine the kinetics than
discrete particle simulations. Furthermore, continuum electrodiffusion models can
be readily modified to incorporate other types of physical interactions, such as vary-
ing molecular conformation or flow convection, by coupling with elasticity equation
or the Navier–Stokes equations. These appealing features have made the continuum
electrodiffusion models very useful not only for the quantitative analysis of the bio-
logical ion channels [27, 33], substrate-enzyme diffusion-reactions [54, 76, 77], and
cellular electrophysiology [62, 63], but also for investigating ion-separation mem-
branes in non-biological applications [72] and the transport of electrons and holes
in semiconductors [49].

The Poisson–Nernst–Planck equations are commonly used to describe the elec-
trodiffusion of mobile ions and charged substrates, all modeled as diffusive particles
with vanishing size, in solvated biomolecular systems. Here the electrostatic poten-
tial is induced by the mobile ions, charged substrates, and the fixed charges car-
ried by biomolecules. The system setup is similar to the PB case (see Fig. 1). The
diffusive particles (ions and substrates) are distributed in Ωs . Charged substrates
might react with the biomolecules on a part of the molecular surface Γa , for which
a suitable boundary condition for the diffusion equations of the particles is needed.
On the non-reactive molecular surface Γ \ Γa appropriate boundary condition is
needed to model the vanishing macroscopic flux. In a typical solvated biomolecular
system there are multiple species of ions and substrates; each species may have its
own boundary condition on molecular surface. We assume that the exterior bound-
ary ∂Ω is connected to a particle reservoir maintained at constant concentrations,
and hence a Dirichlet boundary condition for particle concentration can be applied.
Compared to the pure diffusion [78], or the Nernst–Planck equation (also called
Smoluchowski equation) [77] which characterizes diffusional drift by a given fixed
potential, the Poisson–Nernst–Planck model is able to generate a self-consistent, full
electrostatic potential and the non-equilibrium densities of ions/substrates [57, 87].
Similar to PBE, the PNP equations for describing the electrodiffusion around the
biomolecules modeled at atomistic level also have the two features: presence of sin-
gular permanent charges and highly irregular surfaces not penetrable to diffusive
particles.

Mathematical analysis of the Poisson–Nernst–Planck equations have been devel-
oped long after the introduction of the equation by Nernst and Planck [65, 67]. The
existence and stability for the solutions of the steady PNP equations are established
by Jerome [48] in studying the steady Van Roostbroeck model for electron flows in
semiconductors, via a delicate construction of a Schauder fixed point mapping. Al-
though this mapping is not shown to be contractive, an alternative pseudo-monotone
mapping is constructed which guarantees the convergence of the Galerkin approx-
imations of the equations. It noted that the permanent charges in this study are lo-
cated in the same domain as that in the diffusion process, and are assumed to be
in L∞ which ensures the H 1 ∩ L∞ regularity of the electrostatic potential and the
charge densities. Existence and long time behavior of the unsteady PNP equations
were studied in [10]. The analysis and computation of the PNP equations can be
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further simplified by reducing the 3-D system to 1-D models. Singular perturbation
methods and asymptotic analysis can then be applied to study the solution proper-
ties of these simplified 1-D equations. For example, 1-D steady PNP equations for
modeling physiological channels are investigated in [8, 53] in the absence of per-
manent charges by using various singular perturbation theories. The effects of the
permanent charges are considered in [1, 26], where the permanent charge density
is vanishing in the reservoirs at the two ends of the channel and is constant at the
center of the channel. The piecewise constant form of the permanent charges im-
plies that the electrostatic potential and ionic densities are still differentiable. The
reduction of the dimensionality greatly simplifies the mathematical analysis of the
electrodiffusion systems, and the results provide useful guide lines for the analy-
sis of the corresponding fully 3-D systems at some limit cases. As a trade-off they
are generally unable to reproduce the diffusion and reaction processes that critically
depend on the geometry of the system and complicated boundary conditions.

In contrast to the limited amount of work on the mathematical analysis of the
PNP equations for biophysical applications, numerical computations with the PNP
and the PNP-like systems have been widely conducted by computational physicists
and biophysicists. Finite difference methods are particularly popular due to the sim-
plicity in their implementation, and have been applied to a large extent to 1-D or 3-
D ion conduction characteristics of biological ion channels or other transmembrane
pores [11, 14, 20, 27, 52]. The lattice nature of the finite difference method makes
it difficult to model the highly irregular surface of the ion channel or the active
sites of the enzymes. This difficulty can be readily overcome by using finite element
methods, which have been well developed for simulating semiconductor devices
[31, 50] and were recently introduced to simulate the electrodiffusion with realistic
molecular structures [76, 77]. In many of the PNP solvers developed thus far such
as [11, 14, 52] the electrostatic part is solved by using well-established finite differ-
ence or finite element Poisson–Boltzmann solvers [5, 13, 34]. These PB solvers use
polynomial interpolations to approximate the singular charges. As described in last
section, the treatments do not supply an electric field of high fidelity at molecular
boundary to the Nernst–Planck equation. A similar decomposition scheme to that
used in the PB equation will be adopted for the PNP equations.

The objective of this section is to present the regularized PNP equations with
singular permanent charges, and to develop finite element methods for them with
realistic biomolecular structures. A symmetric transformation of PNP will be men-
tioned. We will show that the electrostatic potential that couples the Nernst–Planck
equation is indeed the regular component. Therefore the framework established in
[48] for general L2 permanent charges could be utilized to show the well-posedness
of the regularized PNP system. An inexact-Newton method will be used to solve the
nonlinear differential equations. Since the Poisson–Nernst–Planck equations can be
derived from the first variations of a free energy functional, the Newton-like meth-
ods can produce a convergent solution that corresponds to the minimization of the
free energy.
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3.1 PNP Equations

The continuum PNP equations can be derived via different routes. They can be ob-
tained from the microscopic model of Langevin trajectories in the limit of large
damping and absence of correlations of different ionic trajectories [64, 73], or from
the variations of the free energy functional that includes the electrostatic free energy
and the ideal component of the chemical potential [33]. The former gives the PNP
model a sound theoretical basis while the latter provides a flexible framework to in-
clude more physical interactions, most prominently the correlations among particles
with finite sizes, into the continuum model. In this chapter, we are concentrated in
the development of numerical techniques for the standard nonlinear PNP equations,
i.e., we treat all diffusive particles, including mobile ions and charged substrates, as
particles with vanishing size. This is a reasonable assumption in case that solution
is dilute and the characteristic dimension of space for diffusion is much larger than
the particle size.

We obtain the PNP equations by coupling the Nernst–Planck equation

∂ρi

∂t
= ∇ · Di(∇ρi + βqiρi∇φ), x ∈ Ωs,1 ≤ i ≤ n, (19)

and the electrostatic Poisson equation with interface Γ = Ω̄s ∩ Ω̄m:

−∇ · (ε∇φ) − λ
∑

i

qiρi = ρf , x ∈ Ω, (20)

where ρi(x, t) is the concentration of the i-th species particles carrying charge qi ,
Di(x) is the spatial-dependent diffusion coefficient, and φ is the electrostatic po-
tential. The interface conditions for PE is similar to that for PBE. If the mobile
charge density ρi(x) in Eq. (20) is assumed to follow the Boltzmann distribution,
the equation converts to the nonlinear Poisson–Boltzmann equation. The readers are
referred to [58] for discussions on the derivation and relations of these equations.
The time-dependence of the electrostatic potential is seen from the appearance of
time-dependent particle concentrations in Eq. (20).

Because the singular charge ρf (x) poses the same numerical issue to the Poisson
equation as to the PBE, a similar potential decomposition as described in the PB
model (the second scheme) is adopted here to achieve a stable FEM solution for
the Poisson equation. The singular and harmonic components follow the equation
and boundary condition as in (9) and (10). The governing equation for the regular
component φr(x):

−∇ · (ε∇φr(x, t)
) − λ

∑

i

qiρi(x, t) = 0, r ∈ Ω, (21)

and the interface conditions

φr
s − φr

m = 0, εs

∂φr
s

∂n
− εm

∂φr
m

∂n
= εm

∂(φs + φh)

∂n
, x ∈ Γ. (22)
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It is worth noting that there is no decomposition of the potential in the solvent re-
gion, thus φ(x) = φr(x) in Ωs . Hence the final regularized Poisson–Nernst–Planck
equations consist of the regularized Poisson equation (21) and

∂ρi(x)

∂t
= ∇ · Di(x)

(∇ρi(x) + βqiρi(x)∇φr(x)
)
, x ∈ Ωs. (23)

To simplify the presentation we use φ to denote the electrostatic potential coupled
with the Nernst–Planck equation, but keep in mind that the singular and harmonic
components are to be added to get the full potential inside molecules.

The singular and harmonic components only need to be solved one time a priori
the coupled solutions of the regularized PNP equations. Indeed, it is the regular
potential in solvent region that couples the Nernst–Planck equation and the regular
Poisson equation. The singular and harmonic components serve only for providing
a fixed interface conditions for solving the regular component, which varies with the
ionic concentrations.

We apply the following boundary conditions for the PNP equations. The approx-
imate Debye law is used to compute the value of φr = φ on the exterior bound-
ary ∂Ω :

φ(x) =
∑

j

qj e
−|x−xj |/λd

εs |x − xj | ,

where λd being the Debye length computed from the bulk concentrations of all
species of charged particles. For all species of particles ρi on ∂Ω is given by its
bulk concentration. A zero macroscopic normal flux

Di(∇ρi + βqiρi∇φ) · n = 0

is prescribed on the non-reactive molecular surface Γ \Γa with outer normal vector
n for all species. For particles that react with the molecule on the surface Γa we ap-
ply the homogeneous Dirichlet boundary condition, i.e., ρi = 0. This models the fact
that the diffusion time scale is much larger than the reactive time scale, and that in
the solution there is a sufficient large number of solute molecules which are able to
hydrolyze all substrates that migrate to the reaction centers of solute molecules. The
non-zero flux on the reactive surface makes the particle concentrations described
by PNP differ fundamentally from the Boltzmann distribution, which can be repro-
duced if the macroscopic flux is vanishing everywhere [72].

3.2 Finite Element Algorithms

The numerical methods are focused at some major aspects of the PNP model: the
nonlinearity of the system due to the drift term; the coupling between Poisson and
NP equations for both steady and unsteady diffusions.
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3.2.1 Steady-State Diffusion

We first consider the finite element solution of the steady state PNP equations (21),
(23). To this end we define the solution space

H := {
(φ,ρ) ∈ H 1

0 (Ω) × H 1
01

(Ωs) × · · · × H 1
0n

(Ωs)
}

(24)

and its finite dimensional subspace

S := {
(φ,ρ) ∈ P1(Ω) × (

P1(Ωs)
)n}

, (25)

where the vector ρ = {ρj }nj=1, and P1 is the space consisting of piecewise linear
tetrahedral finite elements. Functions in the space

H 1
0i

= {
v ∈ H 1(Ωs) :v = 0 on ∂Ω,v = 0 on ΓDi

}

satisfy the Dirichlet boundary condition on the exterior boundary ∂Ω and the essen-
tial or Dirichlet boundary condition on the molecular surface Γ if there is one. We
assume that the finite elements are regular and quasi-uniform. The weak formulation
of the problem now is:

Find u = (φ,ρ) ∈ S such that
〈
F(u), v

〉 = 0, ∀v = (ψ,η) ∈ S. (26)

Here the nonlinear mapping F :H 	→ H ∗ and 〈·, ·〉 is the standard duality paring
between the dual space H ∗ and H . Specifically, the nonlinear weak form 〈F(u), v〉
is defined to be

〈
F(u), v

〉 =
[

(ε∇φ,∇ψ) − (λ
∑

i qiρi,ψ) + 〈p,ψ〉Γ
(Di∇ρi,∇ηi) + (Diβqiρi∇φ,∇ηi)

]
, (27)

where

p = εm

∂(φs + φh)

∂n

is the jump in electric displacement defined in Eq. (22), 〈·, ·〉Γ denotes the L2 inner
product defined on the interface Γ , and the L2 scalar inner product over the do-
main Ω or Ωs is denoted by (·, ·). To solve the nonlinear problem (26) we employ
the damped inexact-Newton method [41] which necessitates the Gâteaux derivative
DF(u) defined by the bilinear form

〈
DF(u)w,v

〉 = d

dτ

〈
F(u + τw), v

〉∣∣∣∣
τ=0

=
[

(ε∇ϕ,∇ψ) − (λ
∑

i qiζi ,ψ)

(Di∇ζi,∇ηi) + Diβqi(ρi∇ϕ + ζi∇φ,∇ηi)

]
(28)

where w = (ϕ, ζ ). With these well-defined operators the complete algorithm can be
given as follows:
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Algorithm 2

• Choose the initial approximation u = (φ,ρ), the nonlinear tolerance ε, the resid-
ual r in approximately solving the linear system, and the damping factor c.

• Do until |〈F(u), v〉| < ε

1. Solve the correction w from 〈DF(u)w,v〉 = −〈F(u), v〉 + r .
2. u ⇐ u + cw.

A constant damping parameter c = 1 is chosen in this study, with which the
convergence is reached in less than 20 steps in all simulations.

It is noted here that the above algorithm solves the steady-state PNP equations
as a whole system. A commonly used approach is also to solve the NPEs and PE
separately. That means iteration is needed between NPEs and PE until the solutions
are self-consistently converged. A standard Gummel iteration proceeds as follow-
ing: given any initial solution function φ0 (or ρ0), solve the NP equations Eq. (23)
in steady state (or the PE (21)) to get a solution ρ0 (φ0), then solve the PE (NPEs)
with these ρ0 (φ0) to get an updated solution φ1 (ρ1), and with φ1 (ρ1) get an up-
dated solution of NPEs ρ2 (φ2 of the PE), continue this iteration until approaching
a converged solution (ρ, φ) of the PE and the NPEs. It is found that the standard
Gummel iteration converges slowly, and may diverge in some circumstances. A γ -
iteration procedure for the iteration between the NP and PE as used in our former
PNP solution [55, 57] appears helpful in assisting convergence of solution for the
PNP system. When obtained a solution (ρn, φn) of the PNP equations at the n-th
step during the iterations between solutions of the PE and NPEs, we modify them
for use in next iteration step by a γ -relaxation

ρn
i = γρn

i + (1 − γ )ρn−1
i , (29)

φn = γφn + (1 − γ )φn−1. (30)

It is found that usually under-relaxation, i.e. γ < 1 is helpful or necessary for large-
sized PNP system, while over-relaxation does not help the convergence.

3.2.2 Unsteady-State Diffusion

For time-dependent problems the elliptic equation for the electrostatic potential and
parabolic equations for the particle concentrations are solved sequentially. The weak
form of the unsteady Nernst–Planck equation for i-th species of particle is

〈
F(ρi), v

〉 =
∫

Ωs

[
Di

(∇ρi + βqiρi∇φr
) · ∇v

+ ∂ρi

∂t
v

]
dx, ∀v ∈ H 1

0i
(Ωs). (31)

Various schemes can be used for the time discretization of this equation. For ex-
ample, Prohl and Schmuck proposed convergent schemes based on different types



286 B. Lu

of fixed-point mappings [68]. Due to the nonlinearity of the equation, the applica-
tion of these and high order methods such as a third-order Runge–Kutta method
or its combination with the exponential time differencing (ETD) method [22, 60]
demands solving the electrostatic potential multiple times in each step of time evo-
lution. To reduce the computational cost and maintain the stability, we adopt the
Crank–Nicolson method for the time discretization. This gives rise to the following
semi-discrete equation at tn+1/2 for n > 0:

〈
F

(
ρ

n+1/2
i

)
, v

〉 =
∫

Ωs

[
Di

(
∇ ρn+1

i + ρn
i

2
+ βqi

ρn+1
i + ρn

i

2
∇φn+1/2

)
· ∇v

+ ρn+1
i − ρn

i

Δt
v

]
dx (32)

for a constant time increment Δt . Here the electrostatic potential φn+1/2 is solved
from the Poisson equation (21) with particle concentrations at tn+1/2 computed with
an Adams–Bashforth scheme

−∇ · (ε∇φn+1/2) − λ
∑

i

qi

3ρn
i − ρn−1

i

2
= 0. (33)

We then use the inexact-Newton approach presented above to solve ρn+1
i from the

equation
〈
F

(
ρ

n+1/2
i

)
, v

〉 = 0. (34)

To this end we need the Gâteaux derivative DF(ρn+1
i ), which is now defined by

〈
DF

(
ρ

n+1/2
i

)
w,v

〉 = d

dτ

〈
F

(
ρ

n+1/2
i + τw

)
, v

〉∣∣∣∣
τ=0

=
∫

Ωs

[
1

2
Di

(∇w · ∇v + βqiw∇φn+1/2) + w

Δt
v

]
dx, (35)

where w ∈ H 1
0i

. The solutions of (34)–(35) follow Algorithm 2 with residual r = 0.

Since Eq. (32) is linear in ρn+1
i , only one solution of w is needed for an arbitrary

initial guess of ρn+1
i at each time step. We note that a similar Adams–Bashforth–

Crank–Nicolson (ABCN) method was used for solving the Navier–Stokes equations
and ensuring divergence-free velocity field [69, 84]. The extrapolation of source
term at tn, tn−1 in Eq. (33) is similar to the construction of the pressure Poisson
equation at tn+1/2 in those studies.

3.2.3 A Symmetric Transform of the Electro-Diffusion Equations

We here introduce a commonly used transformation to the NP equations, which
might be useful in future PNP-like simulations in biomolecular systems. It is known
that by introducing the Slotboom variables

D̄i = Die
−βqiφ, ρ̄i = ρie

βqiφ, (36)
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the Nernst–Planck equation can be transformed to be

∂(ρ̄ie
−βqiφ)

∂t
= ∇ · (D̄∇ρ̄). (37)

These transformations, frequently used in solving the PNP equations for semicon-
ductor device simulations [7, 49], hence give rise to a symmetric, uniformly elliptic
operator in case of a fixed potential. The application of transformations (36) to the
electrostatic Poisson equation (21) will lead to

−∇ · (ε∇φ) − λ
∑

i

qi ρ̄ie
−βqiφ = 0. (38)

While the Eq. (38) appears identical to the nonlinear Poisson–Boltzmann equation,
the actual particle concentrations, nevertheless, do not follow the Boltzmann distri-
bution if there is a non-zero macroscopic flux inside the domain or on the boundary.

We also consider the finite element solution of transformed PNP equations (37),
(38). For which the solution u = (φ, ρ̄) contains the transformed particle concentra-
tions and nonlinear weak form 〈F(u), v〉 is given by

〈
F(u), v

〉 =
[

(ε∇φ,∇ψ) − (λ
∑

i qi ρ̄ie
−βqiφ,ψ) + 〈p,ψ〉Γ

(D̄i∇ρ̄i ,∇η̄i )

]
, (39)

where v = (ψ, η̄). Accordingly, the bilinear form now is

〈
DF(u)w,v

〉 = d

dτ

〈
F(u + τw), v

〉∣∣∣∣
τ=0

=
[

(ε∇ϕ,∇ψ) − (λ
∑

i (qi ζ̄i − βq2
i ρ̄iϕ)e−βqiφ,ψ)

(D̄i(∇ ζ̄i − βqiϕ∇ρ̄i ),∇η̄i )

]
(40)

where w = (ϕ, ζ̄ ). The complete algorithm for solving the transformed PNP equa-
tions is the same as Algorithm 2 but with 〈F(u), v〉 and 〈DF(u)w,v〉 defined by
(39) and (40), respectively. It is worth noting that the operator DF(u)w defining the
linearized equation for solving correction variable w is not symmetric regardless of
the transformation due to the nonlinearity of the PNP model.

It is worth noting that the Slotboom variables are associated with the weighted in-
ner product in many finite element approximations of semiconductor NP equations
[31], for which exponential fitting techniques are usually used to obtain numerical
solutions free of non-physical spurious oscillations. Although the solutions in our
numerical experiments and biophysical applications presented below do not show
significant non-physical oscillations, these methods can be adopted if needed. Our
previous work [59] analyzed the condition number of the transformed NP equa-
tions (37) and shew that the Slotboom variables (36) can lead to quick growth of
the condition number either due to large molecular permanent charge(s) or due to
large difference in potential near molecular surface. However, the partial charge car-
ried by any atom in real biomolecule is generally smaller than 2 folds of the elemen-
tary charge. Besides, solving the non-linear equation (38), instead of the linear form
(21), at each step results in improved solution for the potential, especially when the
density solutions of NPEs from last step deviate largely from the correct ones during
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the iteration. This can actually make the solution of the PNP equations converged
within less iteration steps for real protein systems. The numerical properties of the
Slotboom transformation or similar transform in other system [55] and its applica-
tion to solution of nonlinear coupled systems need further systematic exploration.
As an illustration of the usage of FEM, we shall still use the primitive formulation
in this book.

3.3 PB Model as a Special Case of PNP Model

Physically, the equilibrium state is a special case of non-equilibrium state when no
flux existed for any ionic species. This implies that the PB results can be obtained
from the PNP system. The mathematical procedure corresponds to a relaxation of
the total energy of the solvated solute-ions system.

To this end, we can numerically solve the PNPEs (either steady state or non-
steady state, but non-steady state needs finally reach steady state) using the similar
boundary conditions as in the usual solution of the PBE for φ, such as φ = 0 or the
Debye–Huckel approximation, at the outer boundary ∂Ω , and using the ionic bulk
densities as boundary conditions for ρi . In addition, we use a reflective condition for
each ion species in the molecular interface Γ (no Γa for PB calculation) to enforce
zero-flux across the interface

J (r)i = 0, r ∈ Γ.

Then, the solution leads to the PB results. The reason is as following: We know
that the steady state PNP system has only one solution [55], and we also know
that the solution of zero-flux-everywhere Ji = 0 (equilibrium) is a solution of the
PNP system (see Eq. (19)) satisfying the interface condition, which is corresponding
to the special case of the PB model. The equilibrium distribution with zero-flux
condition

Ji = Di(r)
(∇ρi(r, t) + βρi(r, t)qi∇φ(r)

) = 0

can be seen equivalent to the Boltzmann distribution condition

ρi ∼ e−βqiφ.

Therefore, the PNP solution obtained from above procedure with zero-flux condi-
tions at Γ must satisfy the zero-flux condition everywhere. This indicates that the
solution of PNP is exactly the solution of the PBE. The equivalence is numerically
proven true in our previous work [57], where it was shown that PBE and PNPE
have essentially the same results despite a small numerical error. This fact leads to
an indirect approach to solve the PB model, which sometimes shows indispensable
advantage to treat certain difficult modified PB models [55].
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4 Finite Element Implementation and Mesh Generation

As described above, FEM is convenient to treat the nonlinearity and complex ge-
ometries. When qualified mesh generation is available, FEMs can achieve good per-
formance in the accuracy and memory demands.

The numerical implementation of Algorithm 1 for solving Eq. (15) for PBE,
and of Algorithm 2 for solving Eq. (26), Eq. (34) and the Poisson equation (33)
for the PNPEs are carried out using FETK, an expandable collection of the adaptive
finite element method (AFEM) software libraries [40]. Standard linear finite element
spaces and Galerkin approximation are adopted in these solutions. Recently we also
improved the algorithm stability and developed a parallel solver for these equations
by using the parallel AFEM software package PHG [85]. The work will be reported
[83].

A volumeric mesh is prerequisite to FEM calculations. How to stably, efficiently
generate a molecular mesh with correct representation of the irregular and complex
molecular boundary is a challenging task in the area of mathematical continuum
modeling of biomolecular systems. A mesh generation tool chain described in our
former work [57] only works for not big biomolecular systems. We recently devel-
oped a new technique and software TMSmesh [17] for molecular surface meshing
for general larger systems. And based on this, a tool chain can be setup for vol-
ume mesh generation. Interested readers are referred to chapter “Surface Triangular
Mesh and Volume Tetrahedral Mesh Generations for Biomolecular Modeling” on
molecular mesh generation of the book. It is worth noting that for PNP system, the
Poisson equation and the NP equations are solved in different domains, and usually
only one file of the mesh in the entire Ω and conforming to Γ is necessary for input
to the code. One way to tackle this issue as in [59] is that the mesh of Ω̄s is extracted
by a subprogram embedded in the solver when solving the NP equations. Another
way is to solve the NP equations in the entire domain Ω , but with special numerical
treatments in domain Ωm [83].

Combined with our new mesh generation tool TMSmesh [17], the FEM solver
can serve as a standalone, complete computational tool for modeling protein/DNA
systems in ionic solution.

5 Numerical Experiments and Biophysical Applications

Because PB results can be generated from the more general PNP model, and the
main numerical properties of the PB solution are similar to that of the PNP solu-
tion due to similar FEM schemes applied to treat the singular charges and interface
conditions, in this section we will mainly focus on numerical experiments and ap-
plications of the PNP model.
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Table 1 Accuracy of the numerical solutions for Eq. (41)

hmax 3.277 1.821 0.965 0.574 0.297

L2 2.872(-3) 9.747(-4) 2.908(-4) 1.152(-4) 3.271(-4)

Order 1.84 1.90 1.78 1.91

kr 1.373(11) 1.806(11) 2.149(11) 2.378(11) 2.519(11)

5.1 Steady-State Diffusion: Numerical Accuracy

Due to the intrinsic nonlinearity of the equation, the analytical solutions for the
steady-state PNP equations are not available in general, even for the simplest prob-
lems such as the electrodiffusion in the spherical annulus exterior to a charged
sphere. Here we choose two examples to examine the accuracy of our algorithm.
The first example is to solve the Nernst–Planck system for the concentration of a
single species at a given potential φ(r) = Q/(εsr) in a spherical annulus:

− 1

r2

d

dr

(
r2D

(
dρ

dr
− βρq

Q

εsr2

))
= 0, r1 < r < r2

ρ(r1) = 0, ρ(r2) = ρ0,

(41)

where ρ0 is the bulk concentration. Note here we are applying a reactive boundary
condition on the whole sphere r = r1. The analytical solution for Eq. (41) is

ρ(r) = ρ0
e−βw(r) − e−βw(r1)

e−βw(r2) − e−βw(r1)
, where w(r) = qQ

εsr
. (42)

The reactive rate constant kr is then computed from the flux J (r) on the reactive
surface via

−kr ≡
∫
SA

J (r) ds(r)

ρ0
= 4πr2

1J (r1)

ρ0
= 4πDw(r1)r1

−e−βw(r1)

e−βw(r2) − e−βw(r1)
(43)

where SA is the reactive surface. In this case we choose r1 = 1, r2 = 40, εs = 78ε0,
ρ0 = 50 mM, D = 78000 Å/μs, q = −1, Q = 1, and thus the exact kr = 2.5315 ×
1011 M−1 min−1. Table 1 lists the relative L2 errors of the computed particle con-
centration, the asymptotic order of error reduction and the reaction rate constants.
These results demonstrate that our finite element method is convergent for this prob-
lem, with an asymptotic rate of convergence close to 2 as anticipated for a linear
finite element method. It is also noticed that the errors in the computed reactive rate
constant are large for all the mesh sizes considered. This is related to the very large
gradient of concentration close the reactive surface, as seen in Fig. 2 where the ex-
act and computed concentration profiles are plotted. Physically, this large gradient
is induced by the electrostatic attraction of the negatively charged particles to the
positively charged sphere. In this study we use finite element meshes refined toward
the molecular surface to improve the local numerical resolution. Other higher order
methods can also be introduced to this problem to resolve this large gradient and
improve the numerical accuracy.
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Fig. 2 The exact and
computed concentration
profiles for the Nernst–Planck
equation in the spherical
annulus 1 < r < 40 for a
given potential. The x-axis is
truncated at r = 10 in the
illustration. hmax = 3.277

The second example is to solve the full steady-state PNP equations for two
species of particles, one carries charge −1 and the other has charge +1, in the same
spherical annulus as in the last example. We prescribe the flux J (r) = 0 for both
species on the unit sphere, and the particle concentrations on the exterior bound-
ary are set to be the respective bulk concentrations. The macroscopic flux of either
species of particles is therefore zero everywhere in the domain, and thus the PNP
model shall produce the nonlinear PBE and the particle concentrations shall follow
the Boltzmann distribution. This criterion is used to examine the numerical solu-
tions of the PNP equations. We would note that there is no analytical solution of
the potential available for the nonlinear PBE. Rather, we will compare the com-
puted concentration profiles of the PNP equations and those predicted by using the
Boltzmann distribution and the computed electrostatic potential. In particular, let
the numerical solutions of the potential and the particle concentration be φ and ρ,
and the exact solutions of them be φ̂ and ρ̂, respectively. Let the particle concentra-
tion computed from the solved potential φ be ρ̃, then the error we are measuring is
ρ − ρ̃. It follows that for any Sobolev norm ‖ · ‖ we have

‖ρ − ρ̃‖ ≤ ‖ρ − ρ̂‖ + ‖ρ̂ − ρ̃‖
= ‖ρ − ρ̂‖ + ∥∥ρ0e

−qβφ̂ − ρ0e
−qβφ

∥∥

≤ ‖ρ − ρ̂‖ + ∥∥ρ0e
−qβφ̂

∥∥∞
∥∥e−qβ(φ−φ̂) − 1

∥∥

≈ ‖ρ − ρ̂‖ + ∥∥ρ0e
−qβφ̂

∥∥∞
∥∥qβ(φ − φ̂)

∥∥

= ‖ρ − ρ̂‖ + C‖φ − φ̂‖, (44)

where the constant C is independent of the numerical methods. This estimate sug-
gests that the error we are measuring has the same rate of convergence as the error
of solutions of the PNP equations. Table 2 shows that the rate with respect to L2
norm is about 1, which is close to the one predicted for the linear elliptic interface

Table 2 L2 errors between the computed particle concentrations and those predicted by the Boltz-
mann distribution

hmax 3.277 1.821 0.965 0.574 0.297

L2(ρ) 1.715(-2) 9.437(-3) 5.095(-3) 2.726(-3) 1.280(-3)
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Fig. 3 Computed
concentration profiles and the
Boltzmann distribution for
particles with q = 1.
hmax = 3.277

problems in [18]. Figure 3 plots the computed particle concentration and that pre-
dicted by the Boltzmann distribution. The flattening of the profile close to r = 1
indicates the vanishing concentration due to the electrostatic repulsion and the van-
ishing macroscopic flux as prescribed by the boundary condition.

5.2 Accuracy for Solving the Unsteady-State Diffusion

To examine the accuracy of the time integration method we design a problem that
has the essential features of the PNP and admits an analytical solution:

−∇ · (εs∇φ) = qρ + f (r), (45)
∂ρ

∂t
= ∇ · (D∇ρ + βqρ∇φ) + g(r). (46)

This equation is solved in the spherical annulus 1 ≤ r ≤ 4. The analytical solutions
for φ and ρ are prescribed to be

φ = r2

εs

e−δt , (47)

ρ = ρe−βqr2/εs e−δt . (48)

These two analytical solutions determine the functions f (r), g(r) and the Dirichlet
boundary conditions for both equations. A very fine mesh with 40859 unknowns is
used to ensure that the error due to the time discretization is dominant in the nu-
merical approximation. The equations are integrated to t = 200 with various time
increments Δt and fixed parameter δ = 0.01. The relative L2 errors are collected
in Table 3, which features a convergence of approximately second-order for both
variables. This agrees with the convergence of the ABCN scheme applied for solv-
ing the Navier–Stokes equations [69]. It is worth noting that here we are using large
time increments in time integration; the convergence properties we observed in this
study agree with the theoretical analysis [39] which proves that the ABCN for time-
dependent Navier–Stokes equations is almost unconditionally stable.
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Table 3 Numerical error and
asymptotic order of
convergence for time
integration

Δt eφ Order eρ Order

2 5.33(-3) 1.16(-2)

1 1.47(-3) 1.86 3.65(-3) 1.67

0.5 3.86(-4) 1.93 9.33(-4) 1.97

0.25 1.02(-4) 1.92 2.52(-4) 1.89

5.3 Biophysical Applications: Diffusion-Reaction Study of
AChE-ACh System

Finally we apply the regularized PNP solver to compute the reaction rate constant
of neurotransmitter acetylcholine (ACh) at the reaction center of the enzyme acetyl-
cholinesterase (AChE). The electrodiffusion reaction for the same system has been
studied by using the Smoluchowski equation [77], in which the electric field is fixed
and approximated by a PB solution. This approximation agrees with the underlying
assumption of the well-known Debye–Hückel limiting law (DHL) describing the
ionic screening effect to reaction rate constant. The DHL for AChE-ACh system is
[70]:

kon = (
k0

on − kH
on

)
10−1.18|zEzI |√I + kH

on,

where kon, k0
on, and kH

on are second-order association rate constants at the specified
ionic strength I , zero ionic strength, and infinite ionic strength, respectively. zE and
zI are the charges of the enzyme and substrate involved in the interaction. With
the same assumption, Song et al.’s numerical results recover the DHL. The more
complete PNP model also takes into account the charged substrate influence to the
electric field around the enzyme, therefore leads to improved rate prediction. Here,
we will show by using a more sophisticated PNP model the reaction rate coefficient
obviously depends not only on the ionic strength, but also on the substrate concen-
tration itself [54, 57, 87]. We treat the ACh molecules as particles with +1 charge.
The computation domain is chosen to be a ball with a radius 400 Å centered at the
geometric center of the AChE molecule. We consider two species of background
“spectator” ions (non-reactive), one is cation with +1 charge and the other is an-
ion with −1 charge. The boundary conditions for these two species of particles are
therefore Ji(r) = 0 on the whole surface of AChE. The reaction center of the AChE
is signified in Fig. 4 in red where ρi = 0 is set for ACh as the reactive boundary
conditions, and on the rest surface the Ji(r) = 0 is prescribed. Suppose that C+
and C− are the bulk concentrations of cation and anion respectively, and that Csubs
is the bulk concentration of substrate ACh. These bulk concentrations are used as
the outer boundary conditions of the diffusion domain in solving the NP equations.
Therefore, to make a closer connection with physiology, it is reasonable to consider
a neutrality condition of the bulk solution in this work as C+ + Csubs − C− = 0.
The same mesh as that in [87] is used in this study. The electrostatic potential on the
surface of AChE is shown in Fig. 4 along with the surface mesh and a close view of
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Fig. 4 The discretized
molecular surface of AChE
with the region around the
reaction center colored red
(left); The electrostatic
potential on the surface
(middle) and the surface
potential around the reaction
center (right). Ionic
strength = 50 mM

the potential around the reaction center. The surface potential is smooth overall and
the negative potential near the reaction center is well reproduced.

The reaction rate coefficient is shown as a function of ionic strength (= “specta-
tor” + bulk substrate) for different prescribed substrate concentrations in Fig. 5(a)
and as a function of bulk substrate concentration for different prescribed ionic
strengths in Fig. 5(b). The results show that the reaction rate coefficients strongly
depend on both ionic strength and substrate concentration. At very low substrate
concentration, e.g., 1 mM or less, the results show asymptotic agreement with the
DHL (see red line in Fig. 5(a)). The find also agrees with the continuum model when
the substrate density is not coupled into the full electric field [57, 77, 87]). However,
at moderate concentrations of the substrate, the curves are shifted. A general trend is
observed: the rate coefficient increases as the bulk/distant concentration of substrate
increases for a fixed overall ionic strength. For instance, for a fixed ionic strength of
300 mM (C+ +Csubs = 300 mM), the rate coefficient is 1.36×1011 M−1 min−1 for
Csubs = 1 mM and is increased to 3.28×1011 M−1 min−1 for Csubs = 300 mM. The
physical origins of the observed behavior can be explained as follows. If substrate
concentration is not considered, as in most previous work based on the DHL, the
concentration of the counter ion of the enzyme, i.e., C+ here, is equal to the concen-
tration of the co-ion, i.e., C+ = C−. The counter ions are attracted and concentrated
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Fig. 5 Reaction rate
coefficients for ACh-AChE
reaction system. p0 is bulk
substrate concentration
(Csubs); I is total ionic
strength (spectator ions plus
substrate)

around the negatively charged active site, which serves to screen the Coulomb in-
teraction between ACh molecules and AChE, hence slowing the association. When
Csubs is considered in the PNP model, to maintain the same ionic strength, C+ needs
to be reduced by Csubs compared with that in the familiar Debye–Hückel theory.
This leads to a thinner counter-ion atmosphere around the active site, and it can not
be compensated by the additional substrate (ACh) density that is relatively low due
to reactant depletion that results from the absorbing boundary condition. In other
words, in the resulting non-equilibrium state, the sum of counter-ion density and
ACh density near the active site is lower than that obtained with the Boltzmann dis-
tribution for a +1e particle. The consequences are a reduced overall screening effect
and thereby an enhanced reaction rate.

The ionic atmosphere always screens the electrostatic interactions, and hence re-
duces the rate coefficients. At very high ionic strength, due to strong ionic screening
effects, the electrostatic interactions become very weak. This is close to the pure
diffusion case, and all the rate constants for different substrate concentrations are
close to the pure diffusion-reaction rate constant.
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The phenomena observed in above rate coefficient predictions are expected to be
general for attractive substrate-enzyme systems.

6 Conclusions

A finite element method is described for solving the PBE and PNP equations with
permanent atomic charges within molecular region. The electrostatic PB or Pois-
son equation is regularized by analytically removing the singular component of the
electrostatic potential from the numerical solution. A harmonic component is de-
fined inside biomolecules to partially compensate the removed singular component
such that the remaining electrostatic component is continuous on the molecular sur-
face. This remaining regular component is governed by an elliptic interface problem,
with interface conditions computed from the singular and the harmonic components.
For PNP system, it is shown that the diffusion in the solvent region is completely
drifted by the regular component, which gives rise to regularized Poisson–Nernst–
Planck equations. An inexact-Newton method was used to solve the regular PBE
and the regular steady-state PNP systems. For unsteady diffusion a second-order
Adams–Bashforth–Crank–Nicolson method is proposed for time integration. Vari-
ous test problems to examine the accuracy and the stability of the proposed 3D finite
element methods and time integration scheme.

In the application to simulations of the electro-diffusion controlled reaction pro-
cesses, we find that the DHL only applies to very dilute situations. Our numerical re-
sults show that for electrostatically steered diffusion-controlled reaction processes,
the rate coefficients strongly depend on both ionic strength and substrate concen-
tration. In particular, at the same ionic strength, the current model predicts that in-
creasing substrate concentration results in significant increase in rate coefficients
for the attractive substrate-enzyme systems in case the product concentration can be
ignored (the product effects is not considered in current model).

We also show that the non-linear PB model is a special case of the PNP model,
and can be implicitly achieved through the solution of the PNP model by appropri-
ately controlling the boundary/interface conditions. By taking such an advantage,
a recent work [55] shew that a more complicated, non-uniform ionic size-modified
PB model can be numerically achieved through solution of a size-modified PNP
model. This indicates that PNP-like model seems a powerful framework to achieve
extended PB or PNP models beyond the current mean field approximation. Because
all of those models, in addition to possessing all the features such as permanent
charges, irregular interface and so on as aforementioned, are intrinsically strong
non-linear, and may be coupled, finite element method can serve as a powerful tool
for numerical simulation of these models. The other type of nonlinear models, such
as a coupled elastic equation and a Poisson equation describing the elastic deforma-
tion of a protein-membrane interacting system was also effectively solved using a
finite element method [88].

The accurate and stable FEM scheme can also achieve high efficiency with
contemporary developments in adaptive, multi-level multi-grid, and parallelization
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techniques in FEM area. Some FEM soft packages, such as FETK [40] that uses
AMG technique, PHG [85] that is parallelized, are also available. This makes it a
promising numerical method for some future applications to such as supermolecular
energy/mechanics analysis, ion-channel simulation, molecular conformation sam-
pling, and multi-scale multi-physics modeling of other molecular/cellular activities.
Finally, the current FEM PB/PNP solvers, combining with our new mesh genera-
tion tool TMSmesh [17], can be standalone and complete computational tools for
modeling protein/DNA systems in ionic solution.
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