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Abstract This paper presents a new quality improvement algorithm for segmented
quadrilateral/hexahedral meshes which are generated from multiple materials. The
proposed algorithm combines mesh pillowing, curve and surface fairing driven by
geometric flows, and optimization-based mesh regularization. The pillowing tech-
nique for quadrilateral/hexahedral meshes is utilized to eliminate doublets with two
or more edges/faces located on boundary curves/surfaces. The non-manifold bound-
ary for multiple materials is divided into several surface patches with common
curves. Then curve vertices, surface vertices, and interior vertices are optimized
via different strategies. Various geometric flows for surface smoothing are com-
pared and discussed as well. Finally, the proposed algorithm is applied to three
mesh datasets, the resulting quadrilateral meshes are well smoothed with volume
and feature preserved, and hexahedral meshes have desirable Jacobians.

1 Introduction

In many applications such as computer graphics, finite element analysis and nu-
merical simulations, 3D objects are usually discretized as polygonal meshes, typi-
cally tetrahedral and hexahedral meshes. For example, in biomedical modeling and
material property analysis, 3D objects are often partitioned into multiple domains
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according to different physical/chemical attributes, or material properties. In com-
putational simulations, quadrilateral and hexahedral meshes are often preferred [9].
For a segmented domain, the hexahedral mesh for each component composes the
whole hexahedral mesh with conforming quadrilateral meshes on common surfaces.
The union of boundary meshes for all components forms a non-manifold quadrilat-
eral mesh. Compared to traditional mesh improvement problem for single-material
domains, the problem is much more challenging for segmented meshes.

In this paper, we will focus on quality improvement of quadrilateral/hexahedral
meshes for multiple materials. The pillowing technique for quadrilateral/hexahedral
meshes is utilized to remove doublets. Then hexahedral mesh vertices are catego-
rized into four types: fixed vertices, curve vertices, surface vertices, and interior ver-
tices; while quadrilateral meshes only contain the first three types. Curve vertices
and surface vertices are modified along the tangent directions to regularize the non-
manifold boundary mesh. Moreover, geometric flows are applied for curve fairing
and surface smoothing, which relocate curve and surface vertices along the normal
directions. We will apply four typical geometric flows for surface smoothing, and
discuss their effectivity of evolving the surface. Then the best feature-preserving ge-
ometric flow will be selected in our quality improvement algorithm. Interior vertices
in hexahedral meshes are relocated via an optimization-based method. Finally, the
proposed algorithms are validated on three application examples.

The rest of this paper is organized as follows. Section 2 reviews related previous
work. We describe the quality improvement problem of quadrilateral/hexahedral
meshes for multiple materials in Sect. 3. Section 4 presents algorithms and imple-
mentation details for quality improvement. We give several experimental results in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Previous Work

Hexahedral Mesh Generation The existing methods for unstructured hex-
ahedral mesh generation can be grouped into four categories [15]: grid-based
[18, 21, 22], medial surface [13], plastering [3], and whisker weaving [19]. The
grid-based approaches generate a three dimensional grid of hexahedral elements
in the interior of the domain. Grid-based methods are robust, but tend to gener-
ate poor quality elements near the boundary. Medial surface methods divide the
whole domain into map-meshable regions by a set of medial surfaces, and then a
series of templates are utilized to fill those regions. Plastering methods start with
the boundaries, new hexahedra are attached to the meshing front until the volume
is completely meshed. Whisker weaving builds the combinatorial dual of the mesh,
then the dual mesh is converted into the primal mesh, and finally embedded into the
given domain.

For multiple materials, mesh generation is a much more challenge problem. In
[24], an octree-based isocontouring method [21, 22] was extended to multiple-
material regions. However, the generated hexahedral meshes always have poorly
shaped elements near the boundary.
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Quality Improvement for Quadrilateral/Hexahedral Meshes The pillowing
technique [14] was proposed to remove the cases that two neighboring elements
share two edges/faces by inserting new vertices. Relocating mesh vertices is another
popular approach to improve mesh quality. Laplacian smoothing [6] which relocates
vertices to the arithmetic average of its neighboring vertices is simple and inexpen-
sive, but it does not guarantee an improvement of the mesh quality and also results in
degraded or inverted elements. Therefore, a number of optimization-based methods
[8, 10, 11] were developed to improve the mesh quality by optimizing an objective
function which reflects the element quality. Most of these improvement approaches
were designed for manifold meshes. Due to the complexity of segmented meshes,
quality improvement for segmented meshes is much more challenging.

Surface Smoothing Using Geometric Flows Geometric flows have been suc-
cessfully used for surface modeling and designing because they are good at con-
trolling geometric shape evolution. In the process of surface evolution, the geo-
metric partial differential equations (PDEs) are discretized on a given mesh. On
the other hand, geometric flows can also be used to fair zigzag meshes. In [4], an
approach was described to fair meshes with rough features using diffusion and cur-
vature flows. Surface diffusion flow and averaged mean curvature flow were used to
smooth surface meshes in [16, 23] and [12], respectively.

In our previous paper [12], we have proposed an geometric flow-based method
for quality improvement of segmented tetrahedral meshes. The experimental results
demonstrate the proposed method is effective. The generalization of improvement
approach from tetrahedral meshes to hexahedral meshes is not straightforward, since
a hexahedron has higher flexibility to become extremely distorted. In this paper, we
will focus on quality improvement of quadrilateral/hexahedral meshes.

3 Problem Description and Preparation

In this section, we first provide the problem description of quality improvement for
quadrilateral/hexahedral meshes, and then classify mesh vertices into four groups.
Before introducing our mesh improvement algorithms, we should select proper qual-
ity metrics.

3.1 Problem Description

For a given mesh, quality improvement aims to make each element of the mesh has
an optimal shape. A segmented hexahedral mesh for multiple regions is composed of
several separated sub-meshes for each component with conforming boundaries. The
union of component boundaries forms a complicated non-manifold quadrilateral
mesh. Due to the complexity of segmented meshes, quality improvement is much
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Fig. 1 An illustration
example of a multi-material
domain. (a) is a cube consists
of eight components, which
are marked by different
colors. (b) is the
non-manifold lattice
boundary made up of eight
component boundaries

more intractable than the traditional improvement problem for single-material re-
gions. The quadrilateral/hexahedral mesh for a segmented domain is referred as high
quality, if all the elements are well shaped, and the boundary surfaces are smooth. In
this paper, we intend to develop a novel geometric flow-based approach to optimize
hexahedral elements in each component, and improve non-manifold quadrilateral
boundary meshes simultaneously.

To simplify the non-manifold boundary, we divide the whole boundary into sev-
eral surface patches sharing common boundary curves with each other. Here, the
common surface shared by any two components is referred as a boundary surface
patch, and the exterior boundary of each component is regarded as a boundary sur-
face patch as well. The common curve of any two surfaces is defined as a boundary
curve. As shown in Fig. 1, the cube is composed of eight small cubes represent-
ing different materials. The common faces shared by any pair of neighboring cubes
are called surface patches, and black lines with red end points are boundary curves.
Therefore, the boundary smoothing problem is converted to fairing and regularizing
curves and surface patches.

Due to the complexity of meshes for multiple regions, we categorize mesh ver-
tices into the following four groups:

Interior vertices: Vertices inside one volumetric component.
Surface vertices: Manifold vertices on boundary surface patches, which can move

along the normal direction to smooth the surface, and can also move along the
tangent direction to improve the Jacobian.

Curve vertices: Vertices located on boundary curves, which can only move along
the tangent direction.

Fixed vertices: End points of boundary curves and other non-manifold vertices,
which are fixed during the mesh improvement process.

Then we will handle various vertices using different algorithms. For quadrilateral
meshes, there are only three types of vertices: surface vertices, curve vertices, and
fixed vertices.
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3.2 Quality Metrics

Various quantities have been used to measure the shape or quality of a hexahedron.
Here, we choose the determinant and the condition number of Jacobian matrix [7]
as quality metrics for hexahedral meshes.

Let H be a hexahedron with eight vertices xijk (i, j, k = 0,1), then the hexahe-
dron can be represented as a trilinear parametric volume defined on a unit cube,

x(u, v,w) =
1∑

i=0

1∑

j=0

1∑

k=0

ui(1 − u)1−ivj (1 − v)1−jwk(1 − w)1−kxijk. (1)

The Jacobian matrix

J (x) = J (x, y, z) =
⎛

⎜⎝

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

⎞

⎟⎠

describes the linear transformation from the ideal shape (unit cube) to hexahe-
dron H . If the determinant of the Jacobian matrix at all the eight vertices are posi-
tive, then the hexahedron is valid, otherwise, the hexahedron is regarded as inverted.
We call the determinant of Jacobian matrix as Jacobian, and the determinant of the
column-normalized Jacobian matrix as the scaled Jacobian.

The condition number of the Jacobian matrix is defined as κ(J ) = 1
3‖J‖F ×

‖J−1‖F , where ‖J‖F = [tr(J T J )]1/2 denotes the Frobenius norm. It is easy to

derive that κ(J ) = 1
3

√∑
i,j (σi/σj )2 ≥ 1 is a metric with respect to the singular

values {σi}3
i=1 of the Jacobian matrix. The condition number reaches minimum iff

σ1 = σ2 = σ3.
For a quadrilateral [x1,x2,x3,x4], we define the following metric

J (xj ) = det(xj+1 − xj ,xj+3 − xj ,nj )

named the Jacobian for each vertex, where “det” denotes determinant, the subscript
of xj is in module of 4, and nj is the unit normal vector at vertex xi . The corre-

sponding scaled Jacobian is det(
xj+1−xj

‖xj+1−xj ‖ ,
xj+3−xj

‖xj+3−xj ‖ ,nj ).

4 Quality Improvement Algorithm and Implementation

Our quality improvement algorithm is composed of four parts: pillowing, boundary
curve fairing and regularization, boundary surface fairing and regularization, and
volume mesh optimization. The pillowing technique is used to remove the hexahe-
dra with two or more faces on the boundary surface. To fair a curve/surface mesh,
the vertices are relocated along its normal direction to make the curve/surface as
smooth as possible. To regularize a curve/surface mesh, we intend to modify the
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Fig. 2 Procedure of the pillowing technique applied on a surface patch. (a) is a given surface patch,
red curves with black end points are boundary curves; (b) shows the shrink set (red) and a pillowed
layer (orange); and (c) the inserted layer is dragged inside using the regularization technique

vertices along the tangent direction such that each quadrilateral element becomes
similar to a square.

4.1 The Pillowing Technique

In a quadrilateral mesh, a doublet occurs when two elements share two edges. For
non-manifold boundary, if a quadrilateral has more than two edges located on a
boundary curve, we regard it as a doublet. Doublets will result in poor quality ele-
ments, and one effective method is to change the connectivity of doublet vertices.
The pillowing technique can be used to improve the mesh quality by inserting one
layer around the boundary curves [14]. Since the whole boundary has been divided
into several manifold surface patches, mesh pillowing can be operated on each sur-
face patch independently.

Figure 2 shows the pillowing procedure for a surface patch. First, we set the
whole surface patch as a shrink set. If there is a quadrilateral with two edges forming
a small angle on boundary curves (Fig. 2(b)), it would be excluded from the shrink
set. The shrink set boundary is the outer layer. Second, we create a parallel layer
which is a shrinkage of the outer layer. Vertex connections in the shrink set with
respect to the outer layer vertices are replaced with the corresponding newly added
vertices. Then, each newly added vertices is connected to its corresponding vertex
on the outer layer to fill the gap between the two layers. Finally, we utilize the
regularization technique introduced later to drag the inserted layer inside so as to
improve the mesh quality.

For hexahedral meshes, the pillowing technique is also a popular approach to
remove doublets so that any two elements have at most one common face. The
pillowing idea can be generalized to eliminate the doublet that one hexahedron has
two or more faces on the mesh boundary. In segmented hexahedral meshes, this kind
of doublet is much more common and results in low quality elements.

We apply the pillowing algorithm (Algorithm 1) to pillow each component of the
segmented meshes. Since one component shares boundary with other components,
the shrink set does not shrink actually. We insert inner vertices on the pillowed layer
without interfering the common boundary mesh. Figure 3 shows a simple illustration
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Fig. 3 An illustration of pillowing a cube component. (a) A hexahedral mesh of a cube; (b) the
pillowed mesh, the black vertices are on the outer layer, and the red vertices are newly added; and
(c) hexahedral elements after pillowing

Fig. 4 (a) The outer layer (black) and the pillowed layer (red) of a closed component; (b) the
outer layer (black one) and the pillowed layer (red) of an open component; and (c) hexahedra
surrounding the non-manifold edge (red) should be eliminated from the shrink set

of hexahedral mesh pillowing. It can be seen that all the hexahedra have at most one
face on the boundary after pillowing.

Algorithm 1 (Pillowing one component of the segmented hexahedral meshes)

1. Find the shrink set and the outer layer of the component.
a. Set the whole component as the shrink set;
b. For a closed component (see Fig. 4(a)), the outer layer is just the shrink set

boundary; for an open component (see Fig. 4(b)), the outer layer is open as
well; and

c. Find out non-manifold boundary edges (see Fig. 4(c)), and eliminate all the
hexahedra surrounding these edges from the shrink set.

2. Mesh pillowing.
a. Create a copy of the outer layer, which is the pillowed layer. Shrink the pil-

lowed layer along the normal direction toward the interior of the component;
b. Loop for each hexahedron contained in the shrink set, replace the outer layer

vertices by the corresponding vertices on the pillowed layer. Hence, there
forms a gap between the two layers; and
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c. Fill the gap by connecting each pair of opposite vertices on the two layers,
and obtain several new hexahedra sandwiched between the outer layer and
the pillowed layer.

3. Update the data information such as vertex type, face neighbor, and hexahedron
neighbor.

4.2 Curve Smoothing Driven by Curve Diffusion Flow

Let [x0x1 · · ·xn] be a boundary curve with two fixed end points x0 and xn. To fair
the curve, we introduce a temporal variable t , and evolve the curve along the normal
direction at a speed with respect to curvature. Simply choosing the curvature as the
speed can fair the curve but can not preserve shape features. Here, we construct a
shape-preserving curve diffusion flow to evolve the curve,

dxi

dt
= −[

(Δκ i )
T ni

]
ni , i = 1, . . . , n − 1, (2)

where

κ i = ti+1 − ti
si

, ni = κ i

‖κ i‖ , (3)

si = ‖xi − xi−1‖ + ‖xi − xi+1‖
2

, ti = xi − xi−1

‖xi − xi−1‖ , (4)

and Δ is the Laplace operator. ni is a discretization of the normal direction at vertex
xi , and ‖κ i‖ is the corresponding curvature.

Equation (2) can be solved using the explicit Euler scheme

x(k+1)
i = x(k)

i − τ
[
(Δκ i )

T ni

]
ni , i = 1, . . . , n − 1, (5)

where τ is a temporal step-size, x(0)
i = xi , and x(k)

0 = x(k+1)
0 = x0, x(k)

n = x(k+1)
n =

xn. κ i and ni are defined in Eq. (3) by taking xi = x(k)
i , i = 1, . . . , n − 1. Δκ i is

discretized as (
κ i+1−κ i

‖xi+1−xi‖ − κ i−κ i−1
‖xi−xi−1‖ )/si , with i = 1, . . . , n − 1, κ0 and κn are taken

as zero vectors.

4.3 Curve Regularization

The boundary curve [x0x1 · · ·xn] is referred as regular if vertices are uniformly dis-
tributed on the curve. Therefore, it can be regularized by minimizing the following
energy functional

E(C) = 1

2

n∑

i=1

(‖xi − xi−1‖ − h
)2

, (6)
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where h = 1
n

∑n
i=1 ‖xi − xi−1‖ is the averaged length of each two neighboring ver-

tices. At each free vertex xi of the curve, we vary xi as xi → xi + εiΦi , Φi ∈ R
3,

i = 1, . . . , n − 1. Then we obtain the first-order variation

δ(E,Φi) = ∂E(C, εi)

∂εi

∣∣∣∣
εi=0

= (‖xi+1 − xi‖ − h
)ΦT

i (xi − xi+1)

‖xi − xi+1‖ + (‖xi − xi−1‖ − h
)ΦT

i (xi − xi−1)

‖xi − xi−1‖ .

To keep the curve shape, Φi is chosen as ei which is the unit tangential direction at
xi , then a set of L2-gradient flows are derived as

dxi

dt
+ δ(E, ei )ei = 0, (7)

i = 1, . . . , n − 1. The discretization of Eq. (7) can be written as

x(k+1)
i − x(k)

i

τ
+ (∥∥x(k)

i+1 − x(k)
i

∥∥ − h
)eieT

i (x(k)
i − x(k)

i+1)

‖x(k)
i − x(k)

i+1‖

+ (∥∥x(k)
i − x(k)

i−1

∥∥ − h
)eieT

i (x(k)
i − x(k)

i−1)

‖x(k)
i − x(k)

i−1‖
= 0. (8)

The initial value is chosen as x(0)
i = xi . Each ei is calculated as the unit tangent

direction of a fitting quadratic curve with respect to xi−1, xi and xi+1.

4.4 Surface Smoothing Using Various Geometric Flows

Geometric flows have been successfully used in surface modeling since they are in-
herently good at controlling geometric shape evolution. Let S0 be a piece of compact
orientable surface in R

3 with the boundary denoted as Γ . Introducing the temporal
variable t , the surface evolution can be formularized as

∂x(t)

∂t
= Vn(x)n(x), S(0) = S0, ∂S(t) = Γ, (9)

where x(t) is surface point located on S(t), Vn(x) denotes the normal velocity on
S(t) at x, and n(x) stands for the unit normal. Since the velocity Vn(x) usually
represents several geometric quantities which reflect geometric properties of the
evolving surface, Eq. (9) is referred as a geometric flow.

Various geometric flows can be constructed to meet different application require-
ments by choosing an appropriate normal velocity Vn(x). Curvature is an important
descriptor reflecting the flexibility of surface, hence geometric PDEs are basically
expressed by curvatures. The most common used geometric flows include Mean
Curvature Flow (MCF), Averaged Mean Curvature Flow (AMCF), Surface Diffu-
sion Flow (SDF) and Willmore Flow (WF). MCF can be used to get the minimum
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surface with respect to fixed boundary. AMCF and SDF are volume-preserving dur-
ing the evolution. At first, we would like to introduce definitions of these four well-
used geometric flows [17, 20].

Definition 1 (Mean curvature flow (MCF))

∂x
∂t

= 2H, S(0) = S0, ∂S(t) = Γ, (10)

where H denotes the mean curvature vector. MCF is an area-reducing flow, which
can be used to get the minimum surface with respect to a fixed boundary.

Definition 2 (Averaged mean curvature flow (AMCF))

∂x
∂t

= [
H − h(t)

]
n, S(0) = S0, ∂S(t) = Γ, (11)

where

h(t) =
∫

S

H dA
/∫

S

dA.

Since h(t) is the average of the mean curvature H on the whole surface, hence
Eq. (11) is called the averaged mean curvature flow [5].

Definition 3 (Surface diffusion flow (SDF))

∂x
∂t

= −2ΔsHn, S(0) = S0, ∂S(t) = Γ, (12)

where Δs is the Laplace–Beltrami operator. It is an area-reducing and volume-
preserving flow which can be used for noise removing in surface design.

Definition 4 (Willmore flow (WF))

∂x
∂t

= −[
ΔsH + 2H

(
H 2 − K

)]
n, S(0) = S0, ∂S(t) = Γ, (13)

where H and K are the mean curvature and Gaussian curvature, respectively. WF
has been investigated and used widely in computational geometry and other fields.
Suppose the initial surface is a sphere, WF can keep the sphere without evolution.

The following theorems [20] describe area variation and volume variation of the
evolving surface, respectively.

Theorem 1 Let V (t) denote the (directional) volume of the region enclosed by S(0)

and S(t) (see Fig. 5 for a 2D curve case). Then we have

dV (t)

dt
=

∫

S(t)

Vn(x)dA. (14)
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Fig. 5 The directional area between the curves S(0) and S(t). The area of the region with normal
velocity Vn > 0 (or Vn < 0)

Taking Vn = H(t) − h(t), where h(t) = ∫
S(t)

H dA/
∫
S(t)

dA, then we have

dV (t)

dt
=

∫

S(t)

(
H(x) − h(t)

)
dt =

∫

S(t)

H dA − h(t)

∫

S(t)

dA = 0.

Hence AMCF is volume-preserving. Similarly, with Vn = −2ΔsH ,

d

dt
V (t) = −2

3

∫
divs(∇sH)dA = 2

3

∫
(∇sH)T∇s(1)dA = 0,

where divs and ∇s are the tangential divergence operator and the tangential gradient
operator, respectively. Thus, SDF is volume-preserving as well.

Theorem 2 Let A(t) be the are S(t), then we have

dA(t)

dt
= −

∫

S(t)

Vn(x)TH dA. (15)

For MCF, we have
dA(t)

dt
= −2

∫

S(t)

H 2 dA < 0,

which means the surface area keeps reducing until the mean curvature H = 0 all
over the surface. Hence, the steady solution depends upon the fixed boundary curves,
while the enclosed surface will shrink to a point. SDF is another area-reducing flow,
unlike MCF, SDF decreases the surface area until H is constant. WF is a gradient
flow corresponding to the Willmore energy [1, 2]

E(S) =
∫

S

H 2 dA,

which evolves the surface S by decreasing the Willmore energy at the steepest direc-
tion. The Willmore energy is a scale invariant. For any sphere, the Willmore energy
is 4π , and the sphere is a global minimum for an enclosed surface.

All the above four geometric flows will be applied for surface fairing. Since
the geometric flows evolve surface within a pre-defined range, the initial fea-
tures will not be destroyed seriously. Let S be a quadrilateral surface patch
and {xi}Ni=1 be its free vertex set. For a vertex xi with valence 2ni , N(i) =
{i1, i2, . . . , ini

, i′1, i′2, . . . , i′ni
} denotes the index set of the first-ring neighbors of xi .

Geometric PDEs are solved on the quadrilateral mesh S using an explicit discretiza-
tion method, where the discrete approximation of the mean curvature vector, mean
curvature, Gaussian curvature, and surface normal are required. These approxima-
tions can be obtained from the quadratic fitting surface with respect to xi and its
first-ring neighbors [20].
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Fig. 6 The first ring
neighborhood of xi

Discretization of Geometric PDEs An Euler explicit discrete scheme

dx
dt

= x(k+1)
i − x(k)

i

τ

is used in the temporal direction. In the averaged mean curvature flow, h(t) can
be discretized as h(t) = ∫

S(t)
H dA/

∫
S(t)

dA = ∑N
i=1[H(xi )AS(t)(xi )]/A(S(t)),

A(S(t)) is the total area of the quadrilateral mesh S(t), AS(t)(xi ) is one fourth of
the first ring neighbor area surrounding vertex xi , where the first ring neighborhood
of xi is shown in Fig. 6.

Next, we compute the mean curvature H(xi ), the Gaussian curvature K(xi ), and
the Laplace–Beltrami operator Δs at vertex xi on quadrilateral meshes. Suppose the
vertex xi has a valence of n, and its neighboring vertices are xij (ij ∈ N(i)). First,
we fit xi and its neighboring vertices to a quadric surface in the local coordinate
system via the algorithm proposed in [20]. The basis function is chosen as

{
Bl(u, v)

}5
l=0 =

{
1, u, v,

1

2
u2, uv,

1

2
v2

}
,

then the problem is to determine coefficients cl ∈ R
3 for the parametric-form fitted

surface x(u, v) := ∑5
l=0 clBl(u, v), such that

5∑

l=0

clBl(qk) = xik , k = 0, . . . , n

in the least square sense. Here i0 is denoted as i, and qk is the local coordinate of xik

on the tangent plane of xi . After determining {cl}5
l=0, it is easy to compute xu, xv ,

g11 = 〈xu,xu〉, g12 = 〈xu,xv〉, g22 = 〈xv,xv〉, g = g11g22 − g12g12, b11 = 〈xuu,n〉,
b12 = 〈xuv,n〉, b22 = 〈xvv,n〉, gαβγ = 〈xuα ,xuβuγ 〉 (α,β, γ = 1,2), and xuαuβ =

∂2x
∂uα ∂uβ (α,β = 1,2).

Using the approximate equation given in [20], we can calculate the mean curva-
ture vector, the Gaussian curvature, and the Laplace–Beltrami operator as follows.

H(xi )n = H(xi ) = 1

2
Δsxi ≈ 1

2

n∑

j=0

wΔ
ij xij ,

where we use the superscript “Δ” to denote the approximation coefficient for the
Laplacian–Beltrami operator Δs .



Quality Improvement of Segmented Hexahedral Meshes 207

wΔ
i,j = gΔ

u c
(j)

1 + gΔ
v c

(j)

2 + gΔ
uuc

(j)

3 + gΔ
uvc

(j)

4 + gΔ
vvc

(j)

5 ,

gΔ
u = −[

g11(g22g122 − g12g222) + 2g12(g12g212 − g22g112)

+ g22(g22g111 − g12g211)
]
/g2,

gΔ
v = −[

g11(g11g222 − g12g122) + 2g12(g12g112 − g11g212)

+ g22(g11g211 − g12g111)
]
/g2,

gΔ
uu = g22

g
, gΔ

uv = −2g12

g
, gΔ

vv = g11

g
,

and c
(j)
l (l = 1, . . . ,5, j = 0, . . . , n) is the (l + 1, j + 1)-th element of C.

For the Gaussian curvature, we have

K(xi )n = K(xi ) = 1

2
�xi ≈ 1

2

n∑

j=1

w�
ij xij ,

where “�” denotes the Giaquinta–Hildebrandt operator,

w�
i,j = g�

u c
(j)

1 + g�
v c

(j)

2 + g�
uuc

(j)

11 + g�
uvc

(j)

12 + g�
vvc

(j)

22 ,

g�
u = −[

b11(g22g122 − g12g222) + 2b12(g12g212 − g22g112)

+ b22(g22g111 − g12g211)
]
/g2,

g�
v = −[

b11(g11g222 − g12g122) + 2b12(g12g112 − g11g212)

+ b22(g11g211 − g12g111)
]
/g2,

g�
uu = b22

g
, g�

uv = −2b12

g
, and g�

vv = b11

g
.

4.5 Regularization of Boundary Quadrilateral Mesh

Generally, a quadrilateral mesh is referred as regular if its vertices are equally dis-
tributed, and each quadrilateral is close to a square. For a given quadrilateral surface
patch S , we use the following energy functional to describe its regularity,

E(S) = 1

2

N∑

i=1

(
E1(xi ) + λ1E2(xi ) + λ2E3(xi )

)
, (16)

where

E1(xi ) =
ni∑

j=1

(‖xij − xi‖ − h
)2

,

E2(xi ) =
ni∑

j=1

(‖xi′j − xi‖ − √
2h

)2
, (17)
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E3(xi ) =
ni∑

j=1

(
det(xij − xi ,xij+1 − xi ,ni ) − Ji

)2
.

In Eq. (16), {xi}Ni=1 are free vertices of surface S . For the vertex xi with
the quadrilateral valence of ni , let xi1, . . . ,xini

be the neighboring vertices con-
nected with xi , and xi′1 , . . . ,xi′ni

be the opposite vertices of xi in the quadrilateral

[xixij xi′j xij+1] (j = 1, . . . , ni ), ni + 1 � 1. Figure 6 illustrates the case with ni = 5.
We intend to regularize the quadrilateral mesh by minimizing the energy functional
(16) which is the combination of three terms:

(1) Obviously,
∑N

i=1 E1(xi ) is globally minimized when the distance between each
pair of neighboring vertices equals to h, where h = √

Am, and Am is the average
area of all the quadrilaterals.

(2)
∑N

i=1 E2(xi ) is used to force the diagonals of each quadrilateral as long as
√

2h,
so as to avoid the existence of slender elements.

(3) In the third term E3(xi ), Ji stands for the averaged Jacobian with respect to xi ,
and ni is the unit normal direction at xi .

At each free vertex xi , we vary xi as xi → xi + εiΦi , where Φi ∈ R
3, i =

1, . . . ,N . It is easy to derive the following first order variation form

δ
(
E(S),Φi

) =
ni∑

j=1

(‖xij − xi‖ − h
)ΦT

i (xi − xij )

‖xi − xij ‖

+ λ1

ni∑

j=1

(‖xi′j − xi‖ − √
2h

)ΦT
i (xi − xi′j )

‖xi − xi′j ‖

+ λ2

ni∑

j=1

(
det(xij − xi ,xij+1 − xi ,ni ) − Ji

)
det(Φi,xij − xij+1,ni ).

To preserve the surface shape, all the free vertices are forced to move on its
tangential plane. Let e(1)

i and e(2)
i be two unit orthogonal tangential directions at

xi , we construct the following two sets of L2-gradient flows from the first-order
variations,

dxi

dt
+ δ

(
E(S), e(l)

i

)
e(l)
i = 0, l = 1,2. (18)

An explicit Euler scheme is applied to solve the L2-gradient flows with unknown
xi , i = 1, . . . ,N .

Remark 1 In the energy functional (16), h is global. In practice, the local hi = √
Ai

can be used for each xi as well, where Ai is the average area of quadrilaterals sur-
rounding xi . During the iteration process, either the global h or the local hi should
be updated.
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4.6 Hexahedral Mesh Optimization

For hexahedral mesh optimization, the above algorithms can be used to improve
boundary quadrilateral meshes. Here, we introduce three approaches to optimize
the shape of hexahedra elements by modifying the interior vertices.

4.6.1 Local Optimization

During the process of curve fairing and surface smoothing, elements nearby curves
and surfaces maybe inverted. Here, we use a simple and fast local optimization
approach proposed in [8] to untangle the hexahedral mesh. The vertex with negative
Jacobian is relocated such that

max min
j=1,...,ni

Jacobianj (xi ), (19)

where Jacobianj (xi ) denotes the Jacobian of xi with respect to its j -th neighboring
hexahedron, ni is the vertex valence of xi . The optimization problem (19) is a linear
programming problem which can be solved by the simplex method.

4.6.2 Global Optimization

Suppose {xi}Ni=1 is the set of all interior vertices in a hexahedral mesh, for each xi ,
ni , n′

i , and n′′
i are the vertex valence, quadrilateral valence, and hexahedral valence,

respectively. To optimize the whole quality of the hexahedral mesh, we minimize
the following energy functional,

E(H) = 1

2

N∑

i=1

E1(xi ) + λ

N∑

i=1

E2(xi ), (20)

where

E1(xi ) =
ni∑

j=1

(‖xij − xi‖ − h
)2 +

n′
i∑

j=1

(‖xi′j − xi‖ − √
2h

)2

+
n′′

i∑

j=1

(‖xi′′j − xi‖ − √
3h

)2
, (21)

E2(xi ) =
n′′

i∑

j=1

(
det(xij1

− xi ,xij2
− xi ,xij3

− xi ) − Ji

)2
.

In Eq. (21), h = 3
√

A, and A is the average volume of hexahedra in one component.
Ji stands for the averaged Jacobian with respect to xi . {xij }ni

j=1 is the neighbor-

ing vertices connected with xi , {xi′j }
n′

i

j=1 are opposite vertices of each neighboring
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Fig. 7 Neighboring vertices of xi in a hexahedron. Green points are neighboring vertices con-
nected with xi ; red points are opposite vertices of neighboring quadrilaterals; the blue point is
the diagonal vertex of xi in the hexahedron. Distances between neighboring vertices and xi are
expected to be h,

√
2h, and

√
3h, respectively

quadrilateral, and {xi′′j }n′′
i

j=1 are opposite vertices of each neighboring hexahedron.

det(xij1
− xi ,xij2

− xi ,xij3
− xi ) is the Jacobian of xi with respect to its j -th neigh-

boring hexahedron, and xij1
, xij2

, xij3
are the three neighboring vertices connected

with xi in the hexahedron.
The first term of the energy functional attempts to make the vertex distance in

each hexahedron satisfy the relationship as shown in Fig. 7. The second term intends
to make the Jacobians of xi equal to the averaged Jacobian Ji . We can derive the
first order variation of the energy functional (20) as follows:

δ
(
E(H),Φi

) =
ni∑

j=1

(‖xij − xi‖ − h
)ΦT

i (xi − xij )

‖xi − xij ‖

+
n′

i∑

j=1

(‖xi′j − xi‖ − √
2h

)ΦT
i (xi − xi′j )

‖xi − xi′j ‖

+
n′′

i∑

j=1

(‖xi′′j − xi‖ − √
3h

)ΦT
i (xi − xi′′j )

‖xi − xi′′j ‖

− λ

n′′
i∑

j=1

(
det(xij1

− xi ,xij2
− xi ,xij3

− xi ) − Ji

)

× ΦT
i

(
(xij2

− xi ) × (xij3
− xi )

) + (
(xij3

− xi ) × (xij1
− xi )

)

+ (
(xij1

− xi ) × (xij2
− xi )

)
.

Then we move each interior vertices using the L2-gradient flow:

dxi

dt
+

3∑

l=1

δ
(
E(S), e(l)

)
e(l) = 0. (22)

Where e(1) = (1,0,0)T , e(2) = (0,1,0)T , e(3) = (0,0,1)T . The equation is solved
using explicit Euler scheme with unknown interior vertices.
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The global optimization method has the advantage of improving the whole mesh
quality, but it cannot guarantee all the hexahedra are valid. Thus, we combine the
global optimization with the local optimization in our mesh improvement algorithm.

4.6.3 Further Improvement

Generally, after local and global optimization, we can get high quality hexahedral
meshes with no degraded or inverted elements. However, for the meshes with com-
plicated boundaries, there still exists several negative Jacobians for boundary ver-
tices, since the above two optimization approaches only optimize the interior vertex
Jacobians. Hence, we intend to modify neighboring interior vertices of those bound-
ary vertices to eliminate negative Jacobians.

The concrete procedure has three steps. First, we loop for all the hexahedra and
compute eight Jacobians for each vertex. Second, loop for each vertex, if the vertex
has any Jacobian less than a given threshold, then move its neighboring interior
vertices along the gradient direction of Jacobian to increase the Jacobian. Third,
gradually increase the threshold, and repeat the previous two steps.

5 Application Examples and Discussion

In this section, we choose one biological dataset and two microstructure datasets
to demonstrate the effectiveness of the proposed quality improvement method. For
each of dataset, two meshes were generated by an octree-based method [24]: one
is the boundary quadrilateral mesh, and the other is the hexahedral mesh. In the
following, we will show the improvement results for these meshes.

5.1 Surface Smoothing Using Various Geometric Flows

In Sect. 4.4, we introduced four typical geometric flows: mean curvature flow
(MCF), averaged mean curvature flow (AMCF), surface diffusion flow (SDF), and
Willmore flow (WF). These geometric flows have their own specific properties,
and can be used in different applications. In some practical applications, it is pre-
requested that the object volume, the boundary area, or the shape features should
be preserved. All the four geometric flows can be applied for surface smoothing.
To compare the smoothing effects, we validate the four geometric flows on a bio-
logical mesh dataset named ATcpnα, which is a chaperonin subunit of an archaea
Acidianus tengchongensis strain S5T.

As shown in Fig. 8(a) and Fig. 9(a), the original quadrilateral mesh consists of
103,746 vertices and 104,366 quadrilaterals. Before surface smoothing, vertices are
modified along the tangent directions to get a relatively regular mesh, since geo-
metric PDEs discretized on irregular meshes always result in numerical error or
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Fig. 8 Quadrilateral mesh of ATcpnα (side view). (a) The original mesh; (b) the smoothed mesh
using surface diffusion flow; (c) the enlargement for the red window in (a); (d) the regularized
mesh; and (e)–(h) are smoothed results using MCF, AMCF, SDF and WF, respectively

even divergence. By minimizing the energy functional (16), we obtain a regularized
mesh with well-shaped elements, and the statistics of Jocabians are given in Table 1.
Then, MCF, AMCF, SDF, and WF are applied to denoise the regularized but bumpy
quadrilateral mesh.

For these four geometric flows, we choose the same temporal step size and
iteration number. The smoothing process has 400 iterations, and vertices are re-
regularized along the tangent directions for every 100 iterations. The total area of
quadrilateral meshes for each iterative step is plotted in Fig. 10. The quality statistics
of mesh smoothing by various geometric flows are given in Table 1. Moreover, the
volume enclosed by the meshes are calculated to investigate the volume-preserving
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Fig. 9 Quadrilateral mesh of ATcpnα (top view). (a) The original mesh; (b) the smoothed mesh
using surface diffusion flow; (c) the enlargement for the red window in (a); (d) the regularized
mesh; and (e)–(h) are smoothed results using MCF, AMCF, SDF and WF, respectively

Table 1 Mesh quality comparison for using different geometric flows

Mesh Jacobian Number of Jacobian Volume

Worst Best Negative 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

Original −0.9798 1.0000 1,214 2,175 7,242 19,922 62,442 324,469 143309.9

Regularized 0.0324 1.0000 0 147 1,288 6,626 47,657 361,746 143357.0

MCF −0.3490 1.0000 9 165 1,244 5,000 35,989 375,057 140378.1 (2.07%)

AMCF 0.0105 1.0000 0 18 815 4,082 34,459 378,090 143344.6 (0.01%)

SDF 0.0561 1.0000 0 81 735 3,841 32,497 380,310 143690.9 (0.23%)

WF 0.0767 1.0000 0 87 706 3,993 33,891 378,787 143393.0 (0.02%)
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Fig. 10 Surface area changes
during the evolution driven by
four geometric flows

property of those geometric flows. Except for MCF, the other three geometric flows
keep the volume well (the volume change is within 0.3%).

The MCF aims to evolve the surface along the normal direction at the speed of
the mean curvature, which is simple and intuitive. From the definition of MCF (10),
the evolution stops when H = 0 all over the surface. Therefore, the enclosed surface
will shrink to a point eventually. Moreover, MCF can be used to get the minimum
surface according to the given boundary curve. In Fig. 10, it is clear that the MCF
reduces the surface area at the fastest speed among the four flows. As shown in
Fig. 8(e) and Fig. 9(e), the bumpy surface can be well-smoothed using the MCF, but
also along with the inevitable shrinkage.

AMCF and SDF are two volume-preserving flows. AMCF intends to equalize the
mean curvature all over the surface, which seems unreasonable for a complicated
surface. As a fourth order geometric flow, SDF takes account of the 1-ring and 2-
ring neighbor vertices, and intends to make the mean curvature vary gradually. In
Fig. 10, it can be seen that, AMCF decreases the surface area slower than MCF but
faster than SDF.

WF has the property of driving a surface to a sphere, no matter how small the
neck is, and the terminate sphere radius depends on the initial surface. Figure 8(h)
shows the tiny expansion of thin necks. Theoretically, WF is not area-preserving
and volume-preserving. However, in this example, WF almost keeps the surface
area (see Fig. 10) and the enclosed volume (see Table 1).

Comparing the resulting meshes in Fig. 8 and Fig. 9, we discovered that the
SDF preserves surface feature better than the other three flows. In the process of
mesh smoothing, the area reduction is reasonable since the given mesh is bumpy.
In the following application examples, we choose the SDF to evolve the boundary
surfaces.
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Fig. 11 92-grain microstructure. (a) The exterior of the original mesh; (c) the exterior of the
improved mesh; (d) the interior of the original mesh; (f) the interior of the improved mesh; and
(e)–(h) show the enlargement of red windows in (a)–(d), respectively

5.2 Quality Improvement for Quadrilateral Meshes

The proposed approach is then applied to two titanium alloy microstructure datasets.
The two datasets are composed of 92 grains (see Fig. 11) and 52 grains (see Fig. 12),
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Fig. 12 52-grain microstructure. (a) The exterior of the original mesh; (c) the exterior of the
improved mesh; (d) the interior of the original mesh; (f) the interior of the improved mesh; and
(e)–(h) show the enlargement of red windows in (a)–(d), respectively

respectively. The union of all the grain boundaries forms a non-manifold boundary.
The given quadrilateral meshes of the two non-manifold boundaries are given in
Fig. 11(a) and Fig. 12(a). There are a great number of poorly-shaped quadrilaterals
in the original meshes. Mesh vertices are irregularly distributed, the boundary curves
and surfaces are bumpy.
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Table 2 Quality comparison of quadrilateral meshes before and after improvement

Mesh Mesh size
(vertex, quad)

Jacobian Number of Jacobian

Worst Best Negative 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

92-grain Original (13,690, 15,459) −0.8711 1.0000 151 336 965 2,855 7,966 49,561

Improved (24,258, 26,027) 0.1052 1.0000 0 21 323 2,426 9,963 91,375

52-grain Original (13,511, 14,738) −0.6129 1.0000 150 397 1,082 2,520 7,778 47,023

Improved (20,823, 22,050) 0.1221 1.0000 0 26 258 2,053 11,461 74,402

To improve the quadrilateral meshes, we first divide the mesh into several man-
ifold surface patches and boundary curves. Since the outline of the two data vol-
umes is a cuboid, we treat the eight corners as fixed vertices, and cuboid edges as
boundary curves. Then the algorithms presented in Sects. 4.2–4.5 are applied to the
boundary curves and surface patches. Since there are several poor quality quadrilat-
erals with more than two edges on the boundary curve, the pillowing technique is
used to eliminate these cases by inserting some vertices.

After quality improvement, we obtain remarkable optimized quadrilateral
meshes. Fig. 11 and Fig. 12 show the contrast between meshes before and after
quality improvement. It is obvious that both curves and surfaces in the improved
meshes are smooth. Moreover, the vertices are uniformly distributed with no poorly
shaped quadrilaterals. Table 2 lists the statistics of the scaled Jacobian for the two
meshes. As shown in the table, there are a great number of negative Jacobians in
the original mesh. Our improvement method makes all the Jacobian greater than
0.1, the overall mesh quality is significantly upgraded with the number of good el-
ements (Jacobian > 0.6) increased and the number of poor elements (Jacobian <

0.4) reduced.

5.3 Quality Improvement for Hexahedral Meshes

We further validate the proposed improvement method on the hexahedral meshes
of the three datasets: ATcpnα, 92-grain, and 52-grain titanium alloy microstruc-
ture. Approaches proposed in Sects. 4.2–4.5 are applied to smooth and regularize
boundary meshes. Since there are several hexahedra with more than one face on
the boundary, mesh pillowing should be implemented. Then, the local improvement
method is used to modify the vertices near the boundary surface, which can elimi-
nate most negative Jacobians. The whole mesh quality is improved by minimizing
the energy functional (20). Finally, further optimization is implemented to eliminate
the Jacobians less than the threshold 0.1.

The mesh quality statistics before and after improvement are listed in Table 3,
which shows the significant improvement of the mesh quality. There are thousands
of negative Jacobians in the original meshes, while the improved meshes are high
quality, either scaled Jacobians or condition numbers are desirable. The cross sec-
tions for the three meshes are shown in Figs. 13, 14, 15. It can be seen that the
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Table 3 Quality comparison of hexahedral meshes before and after improvement

Mesh Mesh size
(vertex, quad)

Jacobian Number of Jacobian Condition number

Worst Best Negative 0.0–0.2 0.2–0.6 0.6–1.0 Min Max

ATcpnα Original (196,042, 141,979) −0.9337 1.0000 45,306 41,747 78,117 970,662 1.0000 4.9e6

Improved (299,916, 246,277) 0.0375 1.0000 0 221 190,355 1,779,640 1.0000 328.3

92-grain Original (27,720, 25,024) −0.7993 1.0000 1,783 3,215 14,723 180,473 1.0004 1.2e5

Improved (49,072, 44,994) 0.1000 1.0000 0 1,885 47,896 310,171 1.0000 815.6

52-grain Original (32,768, 29,791) −0.6861 1.0000 2,178 4,204 15,157 216,789 1.0000 2.6e15

Improved (50,756, 46,695) 0.1002 1.0000 0 226 24,842 348,492 1.0017 1.6e4

Fig. 13 Cross sections for ATcpnα hexahedral meshes. (a) The original mesh; and (b) the im-
proved mesh

newly added vertices by the pillowing technique are distributed regularly after mesh
improvement.

6 Conclusion

We have developed a series of algorithms to improve the mesh quality of quadri-
lateral/hexahedral meshes for segmented multiple regions. Our proposed method
combines the pillowing technique, geometric flow method, and optimization-based
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Fig. 14 Cross sections of the 92-grain hexahedral meshes. (a) The original mesh; and (b) the
improved mesh

Fig. 15 Cross sections of the 52-grain hexahedral meshes. (a) The original mesh; and (b) the
improved mesh

approaches. The pillowing technique is applied to eliminate the cases that two
or more edges/faces of one quadrilateral/hexahedron are located on a boundary
curve/surface. Driven by geometric flows, vertices located on boundary curves and
boundary surfaces move along the normal direction to remove the zigzag and bumpi-
ness. Energy functionals, which are minimized using L2-gradient flows, are con-
structed to regularly distribute vertices and improve vertex Jacobians.

We compared the surface smoothing effects of four typical geometric flows,
and utilized the surface diffusion flow, which is feature-preserving and volume-
preserving, to smooth surfaces in our quality improvement algorithm. Finally, we
validated the proposed method on three application examples. The experimental
results and quality statistics results demonstrate the remarkable improvement ef-
ficiency of our method. The improved quadrilateral/hexahedral meshes have high
quality and the shape feature of boundary curves/surfaces are well preserved.
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