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The research related to the analysis of living structures (Biomechanics) has been a source of recent re-
search in several distinct areas of science, for example, Mathematics, Mechanical Engineering, Physics,
Informatics, Medicine and Sport. However, for its successful achievement, numerous research topics
should be considered, such as image processing and analysis, geometric and numerical modelling,
biomechanics, experimental analysis, mechanobiology and enhanced visualization, and their applica-
tion to real cases must be developed and more investigation is needed. Additionally, enhanced hardware
solutions and less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of high level
information from static images or dynamic image sequences. Examples of applications involving image
analysis can be the study of motion of structures from image sequences, shape reconstruction from
images and medical diagnosis. As a multidisciplinary area, Computational Vision considers techniques
and methods from other disciplines, such as Artificial Intelligence, Signal Processing, Mathematics,
Physics and Informatics. Despite the many research projects in this area, more robust and efficient
methods of Computational Imaging are still demanded in many application domains in Medicine, and
their validation in real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered to be strongly
connected and related. Hence, the main goal of the LNCV&B book series consists of the provision of a
comprehensive forum for discussion on the current state-of-the-art in these fields by emphasizing their
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Preface

As a new interdisciplinary research area, “image-based geometric modeling and
mesh generation” integrates image processing, geometric modeling and mesh gen-
eration with finite element method (FEM) to solve problems in computational
biomedicine, materials sciences and engineering. It is well known that FEM is cur-
rently well-developed and efficient, but mesh generation for complex geometries
(e.g., the human body) still takes about 80% of the total analysis time and is the ma-
jor obstacle to reduce the total computation time. It is mainly because none of the
traditional approaches is sufficient to effectively construct finite element meshes for
arbitrarily complicated domains, and generally a great deal of manual interaction is
involved in mesh generation.

This contributed volume book, the first for such an interdisciplinary topic, col-
lects the latest research of experts in this area. Of the fourteen invited book chapters,
three of them were selected from high quality accepted papers in MeshMed, a work-
shop on mesh processing in medical image analysis in conjunction with the 14th
International Conference on Medical Image Computing and Computer Assisted In-
tervention (MICCAI) 2011. These papers cover a broad range of topics, including
medical imaging, image alignment and segmentation, image-to-mesh conversion,
quality improvement, mesh warping, heterogeneous materials, biomolecular mod-
eling and simulation, as well as medical and engineering applications.

We would like to thank all the authors for submitting their excellent research, and
also the main organizers of the MeshMed workshop, Drs. Rasmus R. Paulsen and
Joshua A. Levine, for their support.

Jessica ZhangPittsburgh, USA
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Challenges and Advances in Image-Based
Geometric Modeling and Mesh Generation

Yongjie Zhang

Abstract Image-based geometric modeling and mesh generation play a critical
role in computational medicine and biology. This paper presents challenges and
advances in this area along with a comprehensive computational framework for
analysis-suitable geometric modeling and mesh generation, which integrates im-
age processing, geometric modeling, mesh generation and quality improvement
with multi-scale analysis at molecular, cellular, tissue and organ scales. The in-
put imaging data are passed through an image-processing module where the im-
age quality is improved. The improved images are then fed to an in-house mesh-
ing software, LBIE-Mesher (Level-set Boundary Interior and Exterior Mesher), to
construct 2D or 3D finite element meshes. Given geometry or atomic resolution
data in the Protein Data Bank (PDB), we first construct volumetric density map
using a signed distance function or a summation of Gaussian Kernel functions,
and then use LBIE-Mesher to generate various kinds of meshes. Furthermore, the
constructed unstructured meshes can be used as control meshes to construct high-
order elements such as volumetric T-splines. In addition, a skeleton-based sweeping
method is used to generate hexahedral control meshes and solid NURBS (Non-
Uniform Rational B-Spline) or cubic Hermite for cardiovascular system. Different
from other existing methods, the presented framework supports five important fea-
tures: multiscale geometric modeling, automatic mesh generation for heterogeneous
domains, all-hexahedral mesh generation with sharp feature preservation, robust
quality improvement for non-manifold meshes, and high-order element construc-
tion.

Keywords Image-based geometric modeling ·Multi-scale modeling ·
Heterogeneous material · All-hexahedral mesh generation · Sharp feature
preservation · Quality improvement · High-order element construction

Y. Zhang (�)
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: jessicaz@andrew.cmu.edu

Y.(J.) Zhang (ed.), Image-Based Geometric Modeling and Mesh Generation,
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2 Y. Zhang

1 Introduction

With finite element method (FEM) and scanning technology seeing increased use in
active research areas such as multi-scale modeling and analysis, there is an emerg-
ing need for quality mesh generation of the spatially realistic domains that are being
studied. In images obtained from Computer Tomography (CT) imaging, Magnetic
Resonance Imaging (MRI) or microscopy scanning, the domain of focus often pos-
sesses complicated geometry, topology, and sometimes heterogeneous materials at
molecular, cellular, tissue and organ scales. For example in Fig. 1, the MRI brain
data is segmented into 48 sub-areas, with each colored area demarked as possessing
specific characteristic functionality. In finite element analysis, high-fidelity geomet-
ric models and quality meshes are needed, with meshes conforming at the bound-
aries. It is known that FEM is currently well-developed and efficient, but mesh gen-
eration for complex geometries still takes approximately 80% of the total analysis
time and is the major obstacle to reduce the total computation time.

Image-based mesh generation is a relatively new field. Normally researchers first
extract boundary surfaces using isocontouring [5, 9] which usually involves man-
ual interaction, then construct tetrahedral or hexahedral (hex) meshes. The research
on mesh generation is dominated by tetrahedral meshing algorithms, which can be
grouped into Delaunay triangulation [3, 20], advancing front [7, 8], or grid-based
methods [16, 17]. Fewer algorithms exist for automatic all-hex mesh generation due
to its intrinsic complexities. But all these methods have limitations. For example,
the frequently used, easy to implement block-structured method [2, 10] produces
non-conforming boundaries and large number of elements; The grid-based method
[14, 15], which puts structured grids inside the volume while adding elements at
the boundaries afterward, cannot be extended to all-hex mesh generation for hetero-
geneous domains with non-manifold boundaries. Today, the key barriers scientists
face are:

• A lack of automatic meshing techniques for multi-scale modeling and heteroge-
neous domains;

• Robust unstructured all-hex mesh generation with sharp feature preservation for
complicated geometry and topology is still a challenge;

• The inability of existing methods to effectively improve the quality of non-
manifold meshes with feature preservation and topology validation; and

• A lack of high-order element construction techniques for complicated domains.

Many simulations cannot hereby be effectively carried out due to the lack of
analysis-suitable meshes.

In this paper, a novel computational framework is presented for analysis-suitable
geometric modeling and mesh generation. Starting from scanned images, geometry
or atomic resolution data in the Protein Data Bank (PDB), quality 2D/3D meshes as
well as high-order elements are constructed. This comprehensive framework sup-
ports the following five unique features different from other existing methods:

1. Multi-scale geometric modeling and mesh generation at molecular, cellular, tis-
sue and organ scales;
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4 Y. Zhang

2. Automatic mesh generation for heterogeneous materials with non-manifold
boundaries;

3. Unstructured all-hex mesh generation with sharp feature preservation for do-
mains with arbitrarily complicated geometry and topology;

4. Robust quality improvement for non-manifold meshes with volume-preserving
and feature preservation; and

5. High-order element construction for complicated domains, e.g., solid NURBS,
cubic Hermite and T-spline.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the computational framework and then the following sections explain
each module in detail. Section 3 discusses piecewise-linear mesh generation, and
Sect. 4 describes high-order element construction. Finally, Sect. 5 draws conclu-
sions.

2 Meshing Pipelines

Figure 1 shows the computational framework for mesh generation from volumetric
imaging data which are scanned images, or constructed from geometry or PDB data.

2.1 Meshing Pipelines Starting from Scanned Images

The first meshing pipeline (Pipeline 1: 1→ 2→ 3→ 4) starts from imaging data,
which are often of poor quality and make it difficult to generate quality meshes for
regions of interest. To circumvent this problem we pass the raw images through an
image-processing module (Module 1) where the image quality is improved by en-
hancing the contrast, filtering noise, and segmenting regions of various materials. In
order to enhance the image contrast, a stretching function is designed and applied
on each individual voxel based on the intensities in a suitable local neighborhood
[22]. Noise may exist in the scanned imaging data, therefore we choose a bilat-
eral pre-filtering coupled with an evolution driven anisotropic diffusion equation [1]
to remove noise. The imaging data contains heterogeneous materials, here the fast
marching method [21] is adopted to find the clear boundary of each material region.
Registration is another important image processing technique which geometrically
matches two different images. It can be used to track the organ (e.g., lung and heart)
motion during breath or match one atlas with a new patient’s data.

The improved imaging data is then fed to the meshing software named LBIE-
Mesher (Module 2, Level-set Boundary Interior and Exterior Mesher) [23, 24], to
construct piecewise-linear meshes using an octree-based isocontouring method or
a sweeping method (Module 2, see Sects. 3–4). The mesh is then improved (Mod-
ule 3) and imported into finite element analysis (Module 4). Mesh adaptation can
be controlled by surface features, regions of interest, simulation results or physical
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domains. The constructed meshes can also be utilized as control meshes to construct
high-order elements (Module 8, see Sect. 4).

Sometimes, applying image processing techniques may not be enough to identify
the regions of interest. We need to first extract the surface model via isocontouring,
and then edit the geometry to suit particular application requirements (Pipeline 2:
1→ 5→ 6→ 2→ 3→ 4). The edited geometry can be converted into volumet-
ric gridded data using the signed distance function method, which puts the geometry
into grids, calculate the shortest distance from each grid to the geometry surface, and
assign an interior-exterior sign to the distance. LBIE-Mesher then takes the signed
distance function data as its input to generate quality meshes for finite element anal-
ysis.

2.2 Meshing Pipelines Starting from Geometry or PDB Data

Given geometry or atomic resolution data from the PDB (Pipelines 3–4: 6/7 →
2→ 3→ 4), a volumetric density map is first constructed using a signed distance
function (Module 6) or weighted Gaussian isotropic kernel functions coupled with
a two-level clustering technique (Module 7) [25]. The latter enables the selection of
a smooth implicit solvation surface approximation to the Lee–Richards molecular
surface. Efficient and accurate computation of biomolecular surfaces is essential in
computational biology. Next, LBIE-Mesher is used to extract 2D/3D meshes for the
volume inside or outside the boundary surface but within a bounding sphere/box of
influence. Finally, the mesh quality is improved for analysis.

3 Piecewise-Linear Mesh Generation

The imaging data V is a scalar field over sampled rectilinear grids, V = {F(i, j, k)|
i, j , k are indices of x, y, z coordinates in a rectilinear grid}. An isosurface is de-
fined as SF (α) = {(x, y, z)|F(x, y, z) = α}, where α represents the corresponding
isovalue. In the octree-based method in LBIE-Mesher (Module 2), we analyze edges
with two endpoints lying on different sides of an isosurface (sign change edge), or in
different material regions (material change edge) for a heterogeneous domain [28].
Each sign/material change edge is shared by four (uniform case) or three (adaptive
case) cells. Only one minimizer is calculated for one boundary cell by minimiz-
ing a predefined Quadratic Error Function, QEF(x) =∑i (ni · (x − pi))

2 (where
pi , ni represent the position and unit normal vectors of the intersection point), no
matter how many materials are contained in it. For each sign/material change edge,
one quadrilateral (quad) or triangle is constructed by connecting these minimizers,
which form a manifold/non-manifold boundary and guarantee conformal meshes.
Both sign/material changed edges and interior edges are analyzed to generate tetra-
hedral meshes for the volume of interest. For quad/hex mesh generation, a bottom-
up surface topology preserving octree-based algorithm is first applied to select a
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Fig. 2 (a–b): Tetrahedral meshes for a human heart (organ scale, one cross-section) and cerebral
aneurysm (tissue scale); and (c–d): hex meshes of Ribosome 30S (molecular scale, the top-right
corner shows cross-sections) and a designed geometry with sharp features

starting octree level, and a preliminary uniform mesh is generated and decomposed
into finer elements adaptively without introducing any hanging nodes. Finally, all
boundary vertices are projected to the boundary surface.

Figure 2 shows adaptive tetrahedral meshes of a human heart and cerebral
aneurysm, as well as hex meshes of Ribosome 30S and a computer designed ge-
ometry. The surface diffusion flow [25, 26] is selected to improve the mesh quality
because this geometric flow is volume-preserving and it also preserves spherical
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property accurately when the initial mesh is embedded and close to a sphere, while
biomolecules are usually modeled as a union of hard spheres.

Sharp feature may exist in geometry such as medical devices. First, sharp curves
and surface patches are extracted and then imported into mesh generation via a
curve and surface parametrization [11]. Features shared by multiple material re-
gions (demarked by different colors in Fig. 2(d)) are identified and distinguished.
During quality improvement, all the mesh nodes are categorized into several groups
and each group is improved differently with feature/volume preservation [6, 13].
The edge contraction and smoothing methods are used for quality improvement of
triangular and tetrahedral meshes, and a combination of pillowing, geometric flow
[25, 26] and optimization techniques is used for quad and hex meshes.

Challenges In image-based geometric modeling and mesh generation, image pro-
cessing especially segmentation and deformable registration is still a challenge. The
existing segmentation techniques always need more or less user interactions such
as seed point selection. Sometimes, it is difficult to automatically detect the clear
boundary for the regions of interest and accurately match two images due to the lim-
itation of image resolution and quality. In addition, efficient, accurate and parallel
computation of large, multiscale geometric modeling is often the biggest challenge
or barrier in a lot of biomedical applications.

Another important challenge is topology preservation for heterogeneous domains
with complicated non-manifold boundaries, which have a lot of applications in
biomedical and polycrystalline materials such as human brain and beta titanium
alloy. How to define the correct topology within a voxel cell especially for cases
with ambiguity [12], and how to preserve and validate the topology are still not
fully-understood and solved.

4 High-Order Element Construction

In addition to the octree-based method, LBIE-Mesher (Module 2) also supports a
skeleton-based sweeping method to generate hexahedral control meshes for cardio-
vascular solid NURBS construction [27]. First, luminal surfaces are extracted and
edited from the segmented images, and then the vascular skeleton is generated via
Voronoi and Delaunay diagrams. Following the skeleton, hexahedral control meshes
are generated. Templates are designed for various branching configurations to de-
compose the geometry into mapped meshable patches. Each patch is then meshed
using a one-to-one sweeping technique, and boundary vertices are projected to the
luminal surface. Finally, solid NURBS are constructed and used in isogeometric
analysis [4]. Cubic Hermite can also be constructed from the same control mesh by
assigning normal and tangential vectors at each node of one element.

The octree-based method in LBIE-Mesher generates unstructured meshes for any
complicated domain. Can these meshes be directly converted to high-order elements
such as T-spline? Recently, we started to work on converting any unstructured quad
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Fig. 3 (a): Cubic Hermite of the heart constructed from MRI data; and (b): T-spline model of the
atria converted from unstructured meshes

or hex meshes to T-spline [18, 19] with C2-continuous except for the local region
around extraordinary nodes. There are two stages in the algorithm: the topology
stage and the geometry stage. In the topology stage, templates are designed for
each element type, and then generate valid T-meshes. Two sufficient conditions are
proved and they serve as a theoretical basis for the template development. In the ge-
ometry stage, an efficient surface fitting technique is developed to improve the geo-
metric accuracy. In addition, the surface continuity around extraordinary nodes are
improved by adjusting surrounding control nodes. The algorithm can also preserve
sharp features in the input mesh. Finally, a Bézier extraction technique is used to
facilitate T-spline based isogeometric analysis. In addition, we also recently devel-
oped a novel algorithm to construct solid T-splines from boundary representations
for genus-zero geometry via a parametric mapping [29]. The obtained T-spline sur-
face is C2-continuous everywhere except only a few extraordinary nodes.

Figure 3 shows a cubic Hermite model of the heart constructed from MRI data,
and a T-spline atria model converted from unstructured meshes. The Hermite surface
is C1-continuous and the T-spline surface is C2-continuous, except for the local
region around extraordinary nodes.

Challenges A good skeleton is very important for the sweeping method. How-
ever, the luminal surface is generally noisy and sometimes aneurysm blebs exist.
Moreover, the local geometry around a bifurcation or trifurcation is complicated.
All these factors hinder producing a good enough skeleton for solid NURBS con-
struction. In addition, the vessel wall-thickness and anisotropic material properties
are hard to obtain from measurements, and using inaccurate material properties may
produce wrong predictions sometimes.

In recently years, isogeometric analysis [4] has been developed rapidly and sig-
nificantly matured as a technology combining geometry representation and com-
putational analysis. In addition to NURBS, a standard geometric modeling tool in
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CAD and isogeometric analysis, T-splines were introduced as a superior alternative
to NURBS allowing for local mesh refinement. However, how to create volumetric
models such as solid T-splines in an automatic manner for complicated geometry
still remains a challenge. This is an active research area which is in its infancy nowa-
days. In addition, subdivision and hermite models can also be used in simulations
via isogeometric analysis. How to create such volumetric high-order element mod-
els with good surface continuity especially around extraordinary nodes also needs a
lot of study.

5 Conclusion

This paper presents insights of challenges and advances in image-based geometric
modeling and mesh generation along with a comprehensive computational frame-
work consisting of four main pipelines and eight modules. Starting from scanned
images, geometry or PDB data, this comprehensive framework generates analysis-
suitable piecewise-linear and high-order meshes. Different from other existing
methods, this framework supports five important features: multi-scale geometric
modeling, heterogeneous domains, all-hex meshing, robust quality improvement
with feature preservation, and high-order element construction.
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3D Surface Realignment Tracking for Medical
Imaging: A Phantom Study with PET Motion
Correction
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Merence Sibomana, Liselotte Højgaard, Bjarne Roed, and Rasmus Larsen

Abstract We present a complete system for motion correction in high resolution
brain positron emission tomography (PET) imaging. The system is based on a com-
pact structured light scanner mounted above the patient tunnel of the Siemens High
Resolution Research Tomograph (HRRT) PET brain scanner. The structured light
system is equipped with a near infrared diode and uses phase-shift interferometry
(PSI) to compute 3D point clouds of the forehead of the patient. These 3D point
clouds are progressively aligned to a reference surface, thereby giving the head
pose changes. The estimated pose changes are used to reposition a sequence of
reconstructed PET frames. To align the structured light system with the PET coor-
dinate system, a novel registration algorithm based on the PET transmission scan
and an initial surface has been developed. The performance of the complete setup
has been evaluated using a custom-made phantom, based on a plastic mannequin
head equipped with two positron-emitting line sources. Two experiments were per-
formed. The first simulates rapid and short head movements, while the second simu-
lates slow and continuous movements. In both cases, the system was able to produce
PET scans with focused PET reconstructions. The system is nearly ready for clinical
testing.
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1 Introduction

Patient head movement during high resolution brain positron emission tomography
(PET) scanning will cause blurring and ghosting [3]. The low count rate and re-
sulting low contrast makes it almost impossible to perform motion correction on
raw PET data, and therefore most methods rely on external tracking of the head
movement [10–12, 16]. The Polaris Vicra (Northern Digital Inc.) tracking system
has been used as the reference on many PET installations [6]. While the Polaris
system is well tested and accurate, it suffers from problems related to attaching op-
tical markers to the patient’s head. Experience shows that in a clinical setting, the
markers are difficult to attach such that they stay in position during the entire scan.
A markerless system that fits into the narrow PET tunnel will improve the clinical
acceptance and the diagnostic value of PET brain scans.

We have previously described a structured light based system that is based on
a small projector and two small cameras [7] for tracking patient head pose. This
system has been modified as described below and it is referred to as Tracoline. The
Tracoline system has been designed to fit into the patient tunnel of the Siemens
High Resolution Research Tomograph (HRRT) PET brain scanner. The HRRT PET
scanner has a spatial resolution down to 1.4 mm [8] and is therefore well suited
for testing new motion correction methods. The Tracoline system is based on the
progressive reconstruction of 3D surfaces of the upper face region of the patient
in the scanner. The pose changes are found by computing the rigid transformation
between the current scan and the initial surface scan. The system described in [7]
was based on visible light and did not operate in real time. Visible light scanners
are not suited for repeated human facial scans. Furthermore, to be functional the
system needs to acquire frames sufficiently fast to faithfully capture patient head
movements. In this paper, we describe a system using invisible light with a camera
acquisition rate of 30 frames per second.

While the previous paper focused on measuring the accuracy of the structured
light tracking system using a rotation stage as ground truth [7], the real interest is
the improvement of the PET scans. To be able to evaluate the quality improvement
of the PET scan, a scan using a radioactive tracer must be performed. A common
approach is to use a phantom and compare the resulting PET scan with the known
geometry of the phantom [8]. We have therefore designed a customized phantom
with a radioactive source and used this in the evaluation of the Tracoline based mo-
tion correction. Our system setup with the Tracoline system and the custom phan-
tom can be seen in Fig. 1. Compared to other external tracking systems, where the
geometric alignment between the tracking system and the PET scanner can be prob-
lematic, we investigate a novel alignment approach based on aligning the Tracoline
system scan directly to the PET transmission scan.

2 Experiments and Methods

The Tracoline system consists of two Point Grey Flea2 cameras (1288×964 pixels),
each running at 30 frames per second. The Pico Digital Light Processing (DLP) pro-
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Fig. 1 Left: The patient tunnel of the HRRT PET scanner with the Tracoline system mounted. The
phantom is mounted on a rotating stage rotated to the right (−10 degrees). Right: The phantom
including one of the two radioactive line sources. It is placed in the head in the same angle as
shown here to simulate the brain

jector from Texas Instruments is used to project phase-modulated patterns. One of
the light diodes of the Pico projector has been replaced with a near infrared (NIR)
diode resulting in a non-visible projected pattern. The projector is controlled by
a GFM Pico developer kit board that also sends trigger pulses to the cameras, in
order to synchronize the projected patterns and the shutter of the cameras. A multi-
threaded C++ program running on a standard portable computer acquires the real
time camera data and stores them as image files. The 3D point cloud generation,
surface reconstruction, and alignment are done in a post-processing step. The Tra-
coline system and HRRT PET acquisition computer are synchronized through an
internal network time protocol (NTP) server.

The 3D point cloud generation is based on phase-shifting interferometry (PSI) [5]
where a set of 2D interferograms are projected and projector-camera correspon-
dence can be found using phase unwrapping. This is explained in detail in [5, 7].
While three patterns are used in [7], the system is now extended to use six patterns
with varying wavelengths to make the phase unwrapping more robust to disconti-
nuities in the surface. Since each point cloud computation requires six frames, the
effective tracking frequency is 5 Hz. A surface is reconstructed using a modern
algorithm [9] based on the point cloud acquired in the initial position. The facial
pose changes are then found by rigidly aligning the following surface scans to this
reference surface using an optimized, iterative, closest point (ICP) algorithm [15].

To correct for motion, we need to know the transformation between the HRRT
PET scanner coordinate system and the Tracoline system. To estimate this transfor-
mation, we use the transmission scan of the HRRT PET scanner, which is also used
for the attenuation and scatter correction within normal PET reconstruction. The
transmission scan is a voxel volume similar to a computed tomography (CT) scan.
The initial reference surface scan is captured by the Tracoline system during the
transmission scan, thus creating correspondence. The transformation is computed
using a pseudo-ICP algorithm [13]. The surface scan is scaled to fit the volume,
and manually rotated and translated into an initial position. To find correspondence
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between surface sample points and the volume, the volume is sampled in the nor-
mal direction (both positive and negative) of the surface scan to find the point with
maximum gradient. Knowing the general orientation of the patient in the PET scan-
ner, we use the absolute gradient in the x (left/right) and z (axial) direction and the
negative gradient for the y (anterior/posterior) direction:
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With a point correspondence, a rigid transformation is found using the closed-form
loop to estimate the absolute transformation [4]. With an initialization, transforma-
tion, this process is iterated until the transformation of the Tracoline scan converges
to the volume data.

In order to apply the motion correction to the PET data, we apply the multiple
acquisition frames (MAF) method [10]. In [8] the MAF method was demonstrated
on the Siemens HRRT PET scanner using the tracking input from the Polaris Vicra
system. We divide the PET emission list mode data into equal time length intervals
and, for each interval, a PET frame is reconstructed using the 3D ordered subset
expectation maximization (3D-OSEM) algorithm with resolution modeling and in-
corporating a spatially invariant point spread function [14]. These frames are then
repositioned to a reference position using the Tracoline tracking system.

A custom phantom with known geometry was designed. It consists of a hollow
plastic mannequin head with a very low attenuation coefficient. Two radioactive line
sources are inserted into the head to provide activity for the HRRT PET scanner.
The activities of the line sources are 2 × 7.8 MBq each, created by a positron-
emitting germanium-68/gallium-68 generator. As can be seen in Fig. 1, the line
sources go through the head from the back of the skull to the forehead. The phantom
was mounted onto a rotation stage by Thorlabs and placed in the patient tunnel of
the HRRT PET scanner.

Two experiments where performed using the stage to rotate the head. In exper-
iment one, the head was rotated from −20 to 20 degrees in steps of 5 degrees.
At each position a 30 s frame was PET reconstructed and repositioned. Data with
motion was excluded from the reconstruction. In experiment two, the head was ro-
tated from −10 to 10 degrees in a continuous motion with a maximum speed of
one degree per second. The PET data was reconstructed using one second frames in
experiment two. Experiment one simulates the clinical situation where the patient
is performing a rapid head motion followed by a stationary period. State of the art
practice is to discard PET data during such rapid motions. The second experiment
simulates e.g. a patient falling asleep, where the head is slowly drifting from side to
side.

We evaluate the effect of the motion correction on the reconstructed PET images
by calculating Dice’s coefficient (percent volume overlap) [1] between a reference
image recorded without phantom motion, the motion distorted image, and the Tra-
coline based motion-corrected image. The number of voxels, N , included in the
calculation is set to a value corresponding to the number of voxels inside the tubes
2.5 times the diameter of the PET sources used (outer diameter 3.2 mm and active
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Fig. 2 (a) shows the alignment between maximum gradient points in the transmission scan shown
as red dots and the Tracoline face scan shown as a blue surface. (b) shows quantitative results
of the stepwise experiment. Top: the percentage of overlapping points in the reference PET image
compared to the unaligned/aligned PET images based on either the right or the left camera. Bottom:
the cross correlation between the reference PET image and the unaligned/aligned PET images

length 168 mm) [8]. The extended volume is used in order to compensate for partial
volume effects. In each image to be studied, the set of the N most intense voxels is
extracted and used for the Dice’s coefficient computation, presented as the percent-
age of overlapping voxels. In addition we compute the normalized cross correlation
between the reference image and each image frame, either motion-corrected or un-
corrected [2].

3 Results and Discussion

The rigid transformation between the coordinate system of the Tracoline system
and the PET image frame is obtained from using the described surface-to-volume
alignment. Figure 2(a) shows the reference surface aligned to maximum gradient
points in the transmission scan.

Figure 2(b) shows the results of the first experiment with stepwise rotation of the
phantom. The top figure shows the percentage overlap between PET frames of the
line sources in the reference position and a scan position as a function of the per-
formed rotation of the head. Similarly, the bottom plot of Fig. 2(b) shows the corre-
lation coefficient between the reference image and a motion-corrected/uncorrected
image for the different scan positions. Results based on tracking information from
the left and right camera of the Tracoline system are shown in green and blue col-
ors respectively, while the red curve represents the uncorrected image results. The
overlap and the correlation measures are in agreement. The results of the uncor-
rected frames decrease with the size of performed rotation from an overlap of 100%
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Fig. 3 The figure shows the summation of the PET images along 3 different axes for a reference
image (shown in green) and a target image (shown in red) with a 20 degree rotation (overlap =
89%, shown in yellow). The uncorrected image is shown as captured in the first row, while the
second row shows the image after motion correction

down to 2% at ±20 degrees. The overlap of the motion-corrected reconstruction
is improved significantly for all positions with percentage overlap of 71–93%. The
overlap is not 100%, which is mainly due to the internal calibration of the Tracol-
ine system, the ICP alignment, and the geometrical alignment with the HRRT PET
scanner. In addition, the interpolation error, combined with the straight and narrow
line sources of the phantom (with a diameter similar to the voxel size of 1.2 mm),
induces partial volume effects and thereby decreases the overlap and correlation
measure. The differences between the left camera and the right camera could be
explained by the construction of the reference surface scan, where left camera was
chosen as the basis. The result is similar to [8], where the overlap was 65–85% for a
10 degrees corrected rotation. However, the two studies cannot be directly compared
since the phantom designs are different.

A visual evaluation of the motion correction is shown in Fig. 3 for the maxi-
mum rotation of 20 degrees. The PET images are summed along one dimension and
visualized on top of each other pairwise in the red and green color channels. The
overlapping pixels of the two PET images appear yellow. The top row of the figure
shows the reference image and the uncorrected image as two sets of rods rotated
approximately 2 cm at the end points. These correspond to the relevant brain re-
gions: the frontal lobe and cerebellum. The bottom row shows the reference image
and the corrected image seen as two yellow rods, demonstrating a near-perfect mo-
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Fig. 4 Results of the dynamic PET scan. One-hundred, one-second frames uncorrected (top) and
MAF motion corrected (bottom) are summed and fused with a transmission scan. The frame repo-
sitioning is based on the left camera alignment

tion correction. This position has an overlap of 89% in contrast to the rotation of
−20 degrees with an overlap of 71%.

The results of the second experiment, with a continuous rotation of 20 degrees
demonstrating the realtime pose registration of the Tracoline system, are presented
in Fig. 4. The one second PET frames are summed and fused with the transmission
image of the phantom. The top of the figure shows a row of uncorrected images,
where the motion of the line sources is seen as blurred circle parts. The bottom row
shows the motion-corrected image, where the previously blurred parts appear in
focus and with high intensity. The cross section of the line sources shows dots with
a diameter of only a few pixels. Long drift motion is a very complex problem to
overcome using image registration methods for motion estimation, and this is why
an external tracking system is of great value. Our latest results show that continuous
motion can be tracked in real time and PET frames successfully corrected.

4 Summary and Conclusions

This paper describes a complete system for motion correction in high resolution PET
brain imaging. It is based on a small and flexible structured light scanner mounted
above the patient tunnel of the PET scanner. The scanner is equipped with a near in-
frared light source, making it suitable for future patient examinations. Furthermore,
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the system tracks the head pose changes with a frequency of 5 Hz, which is suitable
for the head movement experienced during real clinical PET scanning. In order to
align the two systems, a novel algorithm using the HRRT PET transmission scan and
the initial surface scan was presented. The performance of the system was evaluated
using a custom-designed phantom with two radioactive line sources mounted on a
programmable rotation stage. The results of the two experiments are very promis-
ing. The first experiment simulates rapid but short head movements and the second
experiment simulates slow but longer head movements. Quantitative analysis shows
that the combined system is able to robustly reduce motion artifacts and greatly
improve PET scans for scenarios involving both slow and rapid movements. The
system is nearly ready for actual clinical testing.
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Flexible Multi-scale Image Alignment Using
B-Spline Reparametrization

Yanmei Zheng, Zhucui Jing, and Guoliang Xu

Abstract We present a new flexible alignment method to align two images. By
minimizing an energy functional measuring the difference between the initial image
and the target image, an L2-gradient flow is derived for determining a map between
the images. The flow is integrated by a finite element method in the spatial direc-
tion and an explicit Euler scheme in the temporal direction. Multi-resolution repre-
sentations are used for achieving efficient multi-scale alignment. The experimental
results show that the proposed method is effective, robust and capable of capturing
the variation of the initial and target images, from large scale to small. We show that
the map of two images in the alignment model is injective and surjective under ap-
propriate conditions, and the solution of the alignment model exists. The results on
the existence and uniqueness of the solution for the ordinary differential equation
derived from the finite element discretization of our flexible alignment model are
established.

1 Introduction

Image alignment (or registration) is a fundamental task in image processing. It refers
to the geometric alignment of a set of images. The set may consist of two or more
digital images taken from a single scene at different time, different sensors, differ-
ent viewpoints, or different cross sections of biological tissues. The goal of image
alignment is to establish a geometric correspondence between the images so that
they can be compared, interpolated for further study. Image alignment has been used
in many fields such as medical diagnosis, satellite remote sensing, weather forecast
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and computer vision [3, 32]. Basically, alignment methods can be classified into two
categories: rigid alignment and flexible alignment. The goal of rigid alignment is to
find parameters such as rotation angle, scale parameter and translation components.
Rigid alignment has been widely used and studied. Several approaches have been
proposed. Some of them are based on the intensity matching, such as correlation
(see [26]) and Fourier transform (see [8, 15, 20, 22, 23]). Some others are based on
feature matching (see [2, 6, 19, 28]). Flexible alignment [1] aims at finding a cor-
respondence between two images with certain similarities. Compared with the rigid
alignment, flexible alignment in general is more difficult.

In [9], a robust and efficient multiscale and multigrid method for the 2D flexible
alignment was introduced. In addition, the existence and uniqueness of the solution
were proved. The authors of [27] introduced another efficient flexible alignment
method. They used bicubic B-splines to model the images, and the deformation field
was estimated by solving a minimization problem. The objective function included
an energy of the error between both images, the error in the mapping of correspond-
ing landmarks and a regularization term that promoted a smooth deformation. They
used the optimization method of Levenberg and Marquardt (see [17, 18]) to solve
the problem. They lately added a consistency term into the energy function (see [7]).
One important feature of their algorithm was that it was particularly useful when
parts of the images contain very little information or when its repartition is uneven.
A general review of other flexible alignment methods are given in [11, 13, 24, 25].

In this paper, we assume that the rigid alignment has been conducted, such as
using the Fourier transform based method [8]. What we need to find is a corre-
spondence x(u, v) between two similar images. Given an error metric measuring
the similarity of the two images, we first deduce the Euler–Lagrange operator and
the geometric flow. Then we obtain the filtered initial image and target image using
Gaussian filter with carefully selected standard deviations, and represent x using
B-spline basis functions. After solving the ODE systems consisting of nonlinear
equations derived from using the explicit Euler scheme, we get the control points
and then the updated x. Through an iterative process we continuously change the
initial image to the target image and finally obtain their correspondence.

Many used algorithms were heuristic in nature: no proof was given on their cor-
rectness, and no attempt was made at the hypotheses under which they would work
or not. We also analyze in this paper our flexible alignment model from a theoretical
point of view. Under appropriate conditions on the deformation x(u, v), we show
that it is a one-to-one mapping and surjection. Based a on the well-defined func-
tional space, the solution of the energy model is studied. Furthermore, the existence
and uniqueness of the numerical solution are proved.

The main contribution of this paper includes: (i) an efficient multi-scale flexible
alignment method that combines the L2-gradient flow with multi-resolution repre-
sentations of images. (ii) a method for estimating the temporal step-size in solving
the ODE systems. (iii) an estimation method of the standard deviation in the Gaus-
sian filter. (iv) a fast solving approach for the large linear system yielded from solv-
ing the ODEs. (v) theoretical analysis on the regularity of the deformation x(u, v)

and on the existence and uniqueness of the solutions of the minimization problem
and the ODE systems.
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The rest of this paper is organized as follows. We describe the alignment problem
and deduce the Euler–Lagrange function and L2-gradient flows in Sects. 2 and 3,
and then construct numerical solving method in Sect. 4. Multi-scale alignment is
discussed in Sect. 5. In Sect. 6, we give proof details of the regularity of the map-
ping x(u, v). We consider in Sect. 7 the existence problem of the minimizer of the
alignment model. In Sect. 8, we discuss the existence and uniqueness problems of
the solution for the ordinary system derived from the finite element discretization.
We explain the algorithm details and give several experimental results in Sect. 9.
Section 10 concludes the paper.

2 Methodology

Problem Description Given two similar images It (u, v) (target image) and
Ii(u, v) (initial image) in R

2 with the same size defined on Ω = [0,1] × [0,1].
Suppose the size of the images is (w + 1) × (h + 1). We want to find a smooth
mapping x(u, v) : Ω →Ω , satisfying

(i) x is a C2 mapping;
(ii) x(0, v)= [0, v]T , x(1, v)= [1, v]T , x(u,0)= [u,0]T and x(u,1)= [u,1]T ;

(iii) For an arbitrary given ε (0 < ε < 1),

det[xu,xv] ≥ ε on Ω, (1)

such that

E(x)=
∫

Ω

∥
∥Ii

(
x(u, v)

)− It (u, v)
∥
∥2 dudv+ λ

∫

Ω

(
g
(
x(u, v)

)− 1
)2 dudv (2)

is minimized, where g(x) = g11g22 − g2
12 with g11 = (xu)

T xu, g12 = (xu)
T xv and

g22 = (xv)
T xv . xu and xu are partial derivatives of x(u, v) with respect to u and v,

respectively. In this paper, we choose x(u, v) as a bivariate cubic B-spline defined
on Ω . For the regularity of the mapping x and the existence of the solution of the
above minimization problem, we have established the following results (the proofs
are given in the Sects. 6 and 7).

Theorem 1 x : Ω →Ω satisfying (i)–(iii) is a one-to-one and surjective mapping.

Theorem 2 There exists a mapping x(u, v) satisfying (i)–(iii) such that (2) is mini-
mized.

Remark 1 If x(u, v) is the identity mapping, then g(x(u, v))= 1. Hence, the regu-
larization term

∫
Ω

(g(x(u, v))− 1)2 dudv can insure that the mapping x(u, v) is not
far away from the identity mapping.
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3 B-Spline Reparametrization by L2-Gradient Flow

Now we construct an L2-gradient flow to minimize the energy functional E(x) de-
fined by (2). Let

x(u, v, ε)= x+ εΦ(u, v) : u,v ∈Ω, Φ ∈ C1
0(Ω)2.

Then we have

δ
(
E(x),Φ

)= d

dε
E
(
x(·, ε))

∣
∣
∣
∣
ε=0

,

where

δ
(
E(x),Φ

) = 2
∫

Ω

[[
Ii(x)− It

]
(∇xIi)

T δ(x)
]

dudv

+ 2λ

∫

Ω

(
g(x)− 1

)
δ(g)dudv.

It follows from

x= x+ εΦ, (3)

we have

δ(x)=Φ, δ(g)= 2ΦT
u (g22xu − g12xv)+ 2ΦT

v (g11xv − g12xu).

Hence

δ
(
E(x),Φ

) = 2
∫

Ω

[[
Ii(x)− It

]
(∇xIi)

T Φ
]

dudv

+ 2λ

∫

Ω

(
ΦT

u α +ΦT
v β
)

dudv, (4)

where

α = 2
(
g(x)− 1

)
(g22xu − g12xv), β = 2

(
g(x)− 1

)
(g11xv − g12xu).

To construct L2-gradient flows moving x in the tangential directions Dlx, l = 1,2,
we take

Φ = (Dlx)(Dlx)T φ, φ ∈ C1
0(Ω), l = 1,2, (5)

where D1x= xu, D2x= xv . Therefore, we construct the following weak-form L2-
gradient flows moving x in the Dlx directions

∫

Ω

∂x
∂t

φ dudv

=−2
∫

Ω

[[
Ii(x)− It

]
(Dlx)T (∇xIi)(Dlx)φ

]
dudv
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− 2λ

∫

Ω

[(
DlxT αI2 +DlxαT

)
Dl1xφ + (DlxT α

)
DlxD1φ

+ (DlxT βI2 +DlxβT
)
Dl2xφ + (DlxT β

)
DlxD2φ

]
dudv, (6)

where l = 1,2, and

D11x= xuu, D12x=D21x= xuv, D22x= xvv,

I2 represents the 2 × 2 unit matrix. Using the fact that g(x) = g11g22 − g2
12 with

g11 = (xu)
T xu, g12 = (xu)

T xv and g22 = (xv)
T xv , we can rewrite (6) as

∫

Ω

∂x
∂t

φ dudv = −2
∫

Ω

[[
Ii

(
x(u, v)

)− It (u, v)
]
(Dlx)T (∇xIi)(Dlx)φ

]
dudv

− 2λ

∫

Ω

[(
γDllx+DlxDl1xT α +DlxDl2xT β

)
φ

+ γDlxDlφ
]

dudv, (7)

where γ = 2(g(x)− 1)g(x).

Remark 2 Let us explain the reason why we take Φ as (5). Taking Φ =Dlxφ, we
obtain the Euler–Lagrange operator for the first term of (4) as

2
[
Ii(x)− It

]
(∇xIi)

T Dlx.

Hence the L2-gradient flow, for the first term of (2), moving x in the direction Dlx
is

∂x
∂t
=−2

[
Ii(x)− It

][
(∇xIi)

T Dlx
]
Dlx. (8)

The weak-form of this equation is the first term of the right-hand side of (6). This is
the same as taking Φ = (Dlx)(Dlx)T φ in (4).

4 Numerical Solutions

In this section, we propose a few solving techniques for Eq. (7).

4.1 Spacial Discretization

We solve Eq. (7) in a bicubic B-spline vector-valued function space. Given two
positive integers m and n, let

x(u, v)=
m+2∑

i=0

n+2∑

j=0

pijN
(1/m)
i (u)N

(1/n)
j (v),
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where N
(1/m)
i (u) and N

(1/n)
j (v) are one-dimensional cubic B-spline basis functions

defined on the knots
[

0,0,0,0,
1

m
,

2

m
, . . . ,

m− 1

m
,1,1,1,1

]

and
[

0,0,0,0,
1

n
,

2

n
, . . . ,

n− 1

n
,1,1,1,1

]

,

respectively. pij is the corresponding two-dimensional control point.
For easy of description, we reorder the control points pij of the B-spline mapping

into a one-dimensional array and represent them as:

x0, . . . ,xn0,xn0+1, . . . ,xn1 ,

where x0, . . . ,xn0 are the control points pij with 0 < i < m + 2 when l = 1, and
0 < j < n + 2 when l = 2. The remaining control points are xn0+1, . . . ,xn1 . It is
easy to see that

n0 = (m+ 1)(n+ 3)− 1, if l = 1,

n0 = (m+ 3)(n+ 1)− 1, if l = 2,

n1 = (m+ 3)(n+ 3)− 1.

The B-spline basis functions N
(1/m)
i (u)N

(1/n)
j (v) are correspondingly reordered and

represented as

φ0, . . . , φn0 , φn0+1, . . . , φn1 .

Using this ordering of the basis functions and control points, mapping x can be
represented as

x(u, v)=
n0∑

j=0

xjφj (u, v)+
n1∑

j=n0+1

xjφj (u, v). (9)

Substituting x(u, v) into (7), and then taking the test function φ as φi , for i =
0, . . . , n0, we can discretize (7) as a system of the ordinary differential equations
(ODE) with the control points xj , j = 0, . . . , n0, as unknowns.

n0∑

j=0

mij

dxj (t)
dt =−q(l)

i , i = 0, . . . , n0, l = 1,2, (10)

where
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mij =
∫

Ω

φiφj dudv, (11)

q(l)
i = 2

∫

Ω

[[
Ii

(
x(u, v)

)− It (u, v)
]
(Dlx)T (∇xIi)(Dlx)φi

]
dudv

+ 2λ

∫

Ω

[(
γDllx+DlxDl1xT α +DlxDl2xT β

)
φi

+ γDlxDlφi

]
dudv. (12)

For the existence and uniqueness of the solution of system (10), we have the
following result (the proof is given in Sect. 8).

Theorem 3 There exists a unique solution of the problem (10) for a given initial
mapping x0(u, v) satisfying (i)–(iii).

4.2 Temporal Discretization

For the temporal direction discretization of the ODE systems (10), we use the for-
ward Euler scheme

dxj (t)

dt
≈ x(s)

j − x(s−1)
j

τl

, (13)

where τl is a temporal step-size, s is the iteration number.

Compute τl We can set a fixed temporal step-size τl in advance, but an arbitrarily
chosen τl may not be suitable for specified images. It may cause condition (1) invalid
if it is too big, or it leads to too much running time if it is too small. The ideal
strategy is to compute τl according to the specific characteristics of the images. We
first define

y(l)
j = dxj (t)

dt
, j = 0, . . . , n0, l = 1,2,

and solve the linear system (10) for the unknowns y(l)
j , and then let

δ
(s)
l (u, v)=

n0∑

j=0

y(l)
j φj (u, v), l = 1,2.

Using the increment δ
(s)
l (u, v), we can define a τl such that

∫

Ω

[
Ii

(
x(s,l−1) + τlδ

(s)
l

)− It

]2 dudv =min.

From this, we can derive that
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τl = −
∫

Ω

[
Ii

(
x(s,l−1)

)− It

](∇xIi

(
x(s,l−1)

))T
δ
(s)
l dudv

/∫

Ω

[[(∇xIi

(
x(s,l−1)

))T
δ
(s)
l

]2

+ [Ii

(
x(s,l−1)

)− It

](
δ
(s)
l

)T∇2
xIi

(
x(s,l−1)

)
δ
(s)
l

]
dudv. (14)

Using the inverse of the matrix [mij ] (see Sect. 4.3) to solve the linear systems

(10) for l = 1,2, we obtain
dxj (t)

dt
and the new control points of x from (13). We

treat the right-hand terms in (10) as the known quantities, and obtain the following
iterative algorithm.

Algorithm 1 (Explicit finite element method)

1. Set s = 0 and the initial B-spline representation of x(0)(u, v) such that

x(0)(u, v)=
∑

j

x(0)
j φj (u, v)= [u,v]T .

2. Set x(s,0)
j = x(s)

j , j = 0, . . . , n1.
3. For l = 1,2, do the following

a. Compute {q(l)
i } using (12).

b. Solve the linear system

n0∑

j=0

mij y(l)
j =−q(l)

i , i = 0, . . . , n0, l = 1,2, (15)

for the unknowns y(l)
j using the previously computed [mij ]−1.

c. Compute τl using (14), then compute

x(s,l)
j = x(s,l−1)

j + τly
(l)
j , j = 0, . . . , n0. (16)

4. Set x(s+1)
j = x(s,2)

j , check the terminate condition:

max
j

∥
∥x(s+1)

j − x(s)
j

∥
∥< ε.

If it is satisfied, stop the iteration; otherwise, set s to be s+1 and return to step 3.

Remark 3 After obtaining τl from (14), we first get the test control points xnew
j by

xnew
j = x(s,l−1)

j + τly
(l)
j , j = 0, . . . , n0, (17)

xnew
j = x(s,l−1)

j , j = n0 + 1, . . . , n1. (18)
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Then get the test mapping xnew(u, v) by (9) with control points xnew
j . Finally check

whether xnew(u, v) satisfies regularity constraint (1). If (1) is satisfied, use this τl .
Otherwise, decrease τl with the factor 0.618 until xnew(u, v) satisfies (1).

4.3 Calculation of Coefficient Matrix of (10) and Its Inverse

Let Ni(t), i = 1, . . . ,m, N̄j (t), j = 1, . . . , n, be any given two sets of basis func-
tions defined on R. Let

φ(i−1)n+j (x, y)=Ni(x)N̄j (y), i = 1, . . . ,m, j = 1, . . . , n,

be a set of two dimensional basis functions defined on the xy-plane. Define

dαβ =
∫

R2
φα(x)φβ(y)dx dy, α,β = 1, . . . ,mn,

and the matrix D = [dαβ ]mn
α,β=1, we want to compute D−1 efficiently. Suppose

α = (i − 1)n+ j, 1≤ i ≤m,1≤ j ≤ n,

β = (ī − 1)n+ j̄ , 1≤ ī ≤m,1≤ j̄ ≤ n.

Then

i = E
[
(α − 1)/n

]+ 1, j = α − (i − 1)n,

ī = E
[
(β − 1)/n

]+ 1, j̄ = β − (ī − 1)n,

where E[·] denotes taking integer part of a real number. Then we have

dαβ =
∫

R

Ni(x)Nī(x)dx

∫

R

N̄j (y)N̄j̄ (y)dy = ciī c̄j j̄ ,

with

ciī =
∫

R

Ni(x)Nī(x)dx, c̄j j̄ =
∫

R

N̄j (y)N̄j̄ (y)dy.

Therefore, D can be written as

D =

⎡

⎢
⎢
⎣

c11C̄ c12C̄ · · · c1mC̄

c21C̄ c22C̄ · · · c2mC̄

· · · · · · · · · · · ·
cm1C̄ cm2C̄ · · · cmmC̄

⎤

⎥
⎥
⎦

= C ⊗ C̄ = (C ⊗ In)diag[C̄, C̄, . . . , C̄], (19)
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Table 1 The values of cij when m > 4

i = 0 ci0 = 1
7 ci1 = 7

80 ci2 = 31
1680 ci3 = 1

840 cij = 0, j > 3

i = 1 ci1 = 31
140 ci2 = 5

32 ci3 = 29
840 ci4 = 1

3360 cij = 0, j > 4

i = 2 ci2 = 183
560 ci3 = 283

1260 ci4 = 239
10080 ci5 = 1

5040 cij = 0, j > 5

2 < i < m− 4 cii = 151
315 ci,i+1 = 397

1680 ci,i+2 = 1
42 ci,i+3 = 1

5040 ci,i+j = 0, j > 3

where⊗ denotes the Kronecker product of two matrices, In stands for the n×n unit
matrix, and C = [cij ]mi,j=1, C̄ = [c̄ij ]ni,j=1. Using (19), D−1 can be computed as

D−1 = C−1 ⊗ C̄−1 = (C−1 ⊗ In

)
diag

[
C̄−1, C̄−1, . . . , C̄−1].

Hence, we only need to inverse two small-sized matrices C and C̄. The computa-
tional complexity for computing D−1 is O(m3)+O(n3). The cost for computing
the multiplication of D−1 and a vector in R

mn is O(mn2)+O(m2n). For the cubic
B-spline basis functions, cij can be computed exactly. Now we consider two cases.

Example 1 If Ni(t), i = 1, . . . ,m, are the cubic B-spline basis functions defined on
the uniform knots with spacing 1, then

cij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

151
315 , i = j,
397
1680 , |i − j | = 1,
1
42 , |i − j | = 2,

1
5040 , |i − j | = 3,

0, |i − j | ≥ 4.

Hence C is a banded-matrix with band width 7. If Ni are cubic B-spline basis func-
tions defined on the uniform knots with spacing h, then cij have a factor h.

Example 2 If N0(t),N1(t), . . . ,Nm+2(t) are the cubic B-spline basis on the knots

[0,0,0,0,1,2, . . . ,m− 1,m,m,m,m].
The exact values of cij can be calculated using the closed form representations of
the B-spline basis. We put these values when m > 4 in Table 1. Using the relations
cm+2−i,m+2−j = cij and cji = cij , all the cij can be obtained from this table. The
values cij for the case m≤ 4 can be similarly calculated.

For the cubic B-spline basis N
(h)
i (t)=Ni(h

−1t), defined on the knots
[
0,0,0,0, h,2h, . . . , (m− 1)h,mh,mh,mh,mh

]
,

we obviously have

c
(h)
ij :=

∫

R

N
(h)
i (t)N

(h)
j (t)dt = hcij .
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If h= 1
m

, then c
(1/m)
ij = cij

m
.

5 Alignment Based on Multi-resolution Representations

In this section, we intend to achieve a multi-scale alignment using the multi-
resolution representations of the images to be aligned. We also deduce a relation-
ship between knots number of the used B-splines and the standard deviation σ of
the Gaussian filter.

5.1 Multi-resolution Representations

Given two images Ii and It with the size of (w + 1)× (h+ 1). To be able to align
them effectively from large structures to fine details, we use multi-resolution rep-
resentations of Ii and It . Let (w0, h0), . . . , (wK,hK) be a sequence (we call it N -
sequence for simplicity) of positive integer pairs satisfying

w0 =w, h0 = h, wi > wi+1, hi > hi+1, i = 0,1, . . . ,K − 1.

Each pair (wi, hi) is used to define B-spline representations of image Ii and It

with the interval numbers wi and hi in the u and v directions, respectively. In our
implementation, two types of N -sequence are used. The first one is

wi =E
[
w/λi

w

]
, hi =E

[
h/λi

h

]
, i = 0,1, . . . ,K, (20)

where λw > 1 and λh > 1 are the factors in the geometric proportional sequences,
E[·] denotes taking integer part operation. The second N -sequence is

wi =w− ρwi, hi = h− ρhi, i = 0,1, . . . ,K, (21)

where ρw and ρh are the factors in the arithmetic sequences.
We refer a bicubic B-spline function defined on the knots

[

0,0,0,0,
1

wk

,
2

wk

, . . . ,
wk − 1

wk

,1,1,1,1

]

×
[

0,0,0,0,
1

hk

,
2

hk

, . . . ,
hk − 1

hk

,1,1,1,1

]

as (wk,hk)-level bicubic B-spline function. Now we describe an alignment algo-
rithm based on the multi-resolution representations.

Algorithm 2 (Multi-resolution alignment)

1. For a given K > 0, set k =K and I
(k+1)
t = Ii .
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2. Compute (wk,hk)-level bicubic B-spline approximations Ĩ
(k)
i and Ĩ

(k)
t of I

(k+1)
i

and It , respectively, by smoothing I
(k+1)
i and It using Gaussian filter with de-

viation σk (see Sect. 5.2) and then converting the smoothed images to B-spline
representations in the least square sense (see Sect. 5.3).

3. Compute x(k)(u, v), which is a (wk,hk)-level bicubic B-spline vector-valued
function in R

2, such that
∫

Ω

[
Ĩ

(k)
i

(
x(k)(u, v)

)− Ĩ
(k)
t (u, v)

]2 dudv+ λ

∫

Ω

[
g
(
xk(u, v)

)− 1
]2 dudv =min.

4. Compute I
(k)
i (u, v) = I

(k+1)
i (x(k)(u, v)) and then convert I

(k)
i (u, v) to the

(w0, h0)-level bicubic B-spline representation using the least square approxi-
mation for the sake of efficient computation of next iteration (see Sect. 5.3).

5. If k > 0, set k as k − 1, go back to step 2. If k = 0, terminate the iteration.

The Outputs of the Algorithm The above algorithm yields a sequence of map-
pings

x(K)(u, v),x(K−1)(u, v), . . . ,x(0)(u, v)

and a sequence of in-between images

I
(K)
i (u, v), I

(K−1)
i (u, v), . . . , I

(0)
i (u, v),

and it is easy to observe that

I
(k)
i (u, v)= Ii

(
y(k)(u, v)

)

with

y(k)(u, v)= x(K)
(
x(K−1)

(· · · (x(k+1)
(
x(k)(u, v)

))))
, k =K,K − 1, . . . ,0.

The final mapping between Ii and It is x(u, v)= y(0)(u, v).

5.2 Gaussian Filter

Images usually are discontinuous, using (wk,hk)-level bicubic B-spline function to
approximate I

(k+1)
i and It may lead to the approximations Ĩ

(k)
i and Ĩ

(k)
t of I

(k+1)
i

and It having Gibbs phenomenon. To cope with this problem, we smooth the images
I

(k+1)
i and It using the Gaussian filter.

Since the smoothed result will be represented by (wk,hk)-level bicubic B-
splines, the smoothing effect should be consistent with the spline representation.
Therefore, we choose σk in two directions respectively such that

Gσk
(x) ∗N0(x)≈ 1

hk

N0

(
x

hk

)

, (22)
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where N0 is the cubic B-spline basis on the knots −2, −1, 0, 1, 2, hk is either of
the two knot spacings of (wk,hk)-level bicubic B-spline basis. Applying Fourier
transform to both sides of (22), we have

e−ω2σ 2
k /2
(

sin(ω/2)

ω/2

)4

≈
(

sin(hkω/2)

hkω/2

)4

,

or

−ω2σ 2
k

2
≈ log

[
1

h4
k

(
sin(hkω/2)

sin(ω/2)

)4]

.

Computing the second order Taylor expansion of the right-hand side with respect
to ω, we obtain the following approximation of σ 2

k :

σ 2
k =

h2
k − 1

3
.

Hence, a closed relationship between hk and σk is obtained. Note that if hk = 1,
which is the initial image knot spacing, then we have σk = 0. Namely, the Gaussian
filter has no smoothing effect.

5.3 Least Square Approximations

In this sub-section, we explain how the least square approximations of B-spline
function are efficiently computed. Let f (u, v) be a given function on Ω and m and
n two positive integers. Suppose we intend to approximate f by a bivariate cubic
B-spline function

F(u, v)=
m+2∑

i=0

n+2∑

j=0

fijN
(1/m)
i (u)N

(1/n)
j (v) (23)

in the least square sense;

E(F )=
∫

Ω

[
f (u, v)− F(u, v)

]2 dudv =min. (24)

From

∂E(F )

∂fαβ

= 0, α,β = 0,1, . . . ,m+ 2, n+ 2,

we obtain the following equations

c
(1/m)

00 C(1/n)F0 + c
(1/m)

10 C(1/n)F1 + · · · + c
(1/m)

m+2,0C
(1/n)Fm+2 = B0,

c
(1/m)

01 C(1/n)F0 + c
(1/m)

11 C(1/n)F1 + · · · + c
(1/m)

m+2,1C
(1/n)Fm+2 = B1,
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· · ·
c
(1/m)

0,m+2C
(1/n)F0 + c

(1/m)

1,m+2C
(1/n)F1 + · · · + c

(1/m)

m+2,m+2C
(1/n)Fm+2 = Bm+2,

where

C(1/n) = [c(1/n)
ij

]n+2,n+2
ij=0 ,

Fk = [fk0, . . . , fk,n+2]T , Bk = [bk0, . . . , bk,n+2]T ,

with

bij =
∫

Ω

f (u, v)N
(1/m)
i (u)N

(1/n)
j (v)dudv. (25)

These equations can be written as

c
(1/m)

00 F0 + c
(1/m)

10 F1 + · · · + c
(1/m)

m+2,0Fm+2 =
[
C(1/n)

]−1
B0,

c
(1/m)

01 F0 + c
(1/m)

11 F1 + · · · + c
(1/m)

m+2,1Fm+2 =
[
C(1/n)

]−1
B1,

· · ·
c
(1/m)

0,m+2F0 + c
(1/m)

1,m+2F1 + · · · + c
(1/m)

m+2,m+2Fm+2 =
[
C(1/n)

]−1
Bm+2.

Then the solution is obtained as

[F0,F1, . . . ,Fm+2] =
[
C(1/n)

]−1[B0,B1, . . . ,Bm+2]
[
C(1/m)

]−T
, (26)

where [·]−T denotes the transpose and inverse of a matrix, and C(1/m) =
[c(1/m)

ij ]m+2
ij=0. Therefore, the least square approximation problem (24) is efficiently

solved by inverting two small sized matrices C(1/m) and C(1/n), then computing
the matrix multiplications in (26). The total cost is in the order O(m3)+O(n3)+
O(m2n)+O(mn2). The integrals in (25) can be computed efficiently using Gaus-
sian quadrature formula (see [30]) on each of pixels.

6 Regularity Analysis of Mapping x

In this section, we first introduce the used definitions, terminologies and theorems.
Then we provide the details of proof for Theorem 1.

Definition 1 ([21]) Let X and Y be topological spaces, and f : X→ Y a bijection.
If both the function f and the inverse function f−1 : Y → X are continuous, then
f is called a homemorphism. f is a local homeomorphism, if for every point x

in X, there exists an open set U containing x, such that f (U) is open in Y and is a
homeomorphism.
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Definition 2 ([10]) Let B̃ and B be subsets of R
2. We say that π : B̃ → B is a

covering map if

1. π is continuous and π(B̃)= B .
2. Each point p ∈ B has a neighborhood U in B (called a distinguished neighbor-

hood of p) such that

π−1(U)=
⋃

α

Vα,

where Vα are pairwise disjoint open sets such that the restriction of π to Vα is a
homeomorphism of Vα onto U .

Definition 3 ([31]) Assuming that (X,ρ) is a metric space, A is a subspace of X. If
every sequence in A has a convergence subsequence and the limit point of the con-
vergence subsequence lies in A, we named that A is a self-sequentially compact set.

Definition 4 ([10]) A ⊂ R
n is arcwise connected if, given two points p,q ∈ A,

there exists an arc in A joining p to q .

Definition 5 ([10]) A⊂R
n is connected when it is not possible to write A= U1 ∪

U2, where U1 and U2 are nonempty open sets in A and U1 ∩U2 = ∅.

Theorem 4 ([4]) Let T be of class C1 in a set D with J (p) �= 0 for each p ∈ D,
and let T map D one-to-one onto a set T (D), where J (p) denotes the Jacobian
determinant of T at the point p. Then, the inverse T −1 of T is of class C1 on T (D)

and the differential of T −1 is (dT )−1, the inverse of the differential of T .

Theorem 5 ([10]) Let π : B̃ → B be a local homeomorphism, B̃ compact and B

connected. Then π is a covering map.

Theorem 6 ([10]) Let π : B̃→ B be a covering map, B̃ arcwise connected, and B

simply connected. Then π is a homeomorphism.

Now we prove that the correspondence x(u, v) is an injection and surjection.

Remark 4 [0,1]2 is regarded as a topological space, i.e. [0,1]2 is a clopen set.

Lemma 1 x : [0,1]2 →[0,1]2 satisfying (i)–(iii) is a locally one-to-one mapping.

Proof Let a point p ∈ [0,1]2, we determine a neighborhood B of p in which x is
a one-to-one map. Let p′ and p′′ be two points near p such that the line segment
jointing p′ and p′′ lies in [0,1]2. According to the mean value theorem, we may
choose two points p∗1 , p∗2 on this line segment such that

x
(
p′′
)− x

(
p′
)= L

(
p′′ − p′

)
, (27)
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where L is the linear transformation represented by L= (xu(p
∗
1),xv(p

∗
2)). Let

F(p1,p2)= det
(
xu(p1),xv(p2)

)
,

then F(p∗1,p∗2) = det(L). Moreover, since x is C2, then F is C1 continuous, and
F(p,p)≥ γ , there exists a circular neighborhood B of p lying in [0,1]2, such that
F(p1,p2) ≥ γ for all choices of the points p1, p2 in B . We shall prove that x is a
one-to-one mapping in B . Assuming that p′ and p′′ lies in B and x(p′) = x(p′′),
we will prove p′ = p′′. Since p′ and p′′ lies in B and B is convex, the entire line
segment joining p′ and p′′ also lies in B , hence both p∗1 and p∗2 are points of B .
Using the property of B , we have F(p∗1,p∗2)= det(L) �= 0. The linear transforma-
tion L is therefore nonsingular. According to (27) and using the assumption that
x(p′) = x(p′′), we have L(p′′ − p′) = 0. Since L is nonsingular, we deduce that
p′ = p′′, i.e. x is a one-to-one mapping in B . �

Lemma 2 x : [0,1]2 →[0,1]2 satisfying (i)–(iii) is a locally homeomorphism.

Proof According to Lemma 1, x is a locally one-to-one mapping in [0,1]2. Given
a point p ∈ [0,1]2, assuming that x is one-to-one in a neighborhood B of p, then it
is obvious that x : B → x(B) is surjective, where x(B) denotes the range of x in B .
From Theorem 4, we know that x−1 is continuous in x(B). Thus, x is homeomorphic
in B , i.e. x is a locally homeomorphism. �

Proof of Theorem 1 It is obvious that [0,1]2 is connected and compact. From
Lemma 2 and Theorem 5, we deduce that x is a covering map. Since [0,1]2 is
arcwise connected and simply connected, according to Theorem 6, x is a homeo-
morphism. Thus, we obtain that x is an injection and surjection. The theorem is
proved. �

7 Existence and Uniqueness of x

This section devotes to the proof of Theorem 2. Let

X =
{

x(u, v) : x(u, v)= [x1(u, v), x2(u, v)
]T =

m+2∑

i=0

n+2∑

j=0

pijN
(1/m)
i (u)N

(1/n)
j (v)

satisfying (i)–(iii)

}

.

Then we define the norm x ∈X as:

‖x‖X =
(∫

Ω

|x|2 dudv

)1/2

=
(∫

Ω

(
x2

1 + x2
2

)
dudv

)1/2

.
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Lemma 3 Let ρ(x,y)= ‖x− y‖X , then X is a metric space.

Proof It is obvious that X is a nonempty set, and ρ(x,y) satisfies,

(i) ρ(x,y)≥ 0 and ρ(x,y)= 0 if and only if x= y;
(ii) ρ(x,y)= ρ(y,x);

(iii)

ρ(x, z) =
(∫

Ω

|x− z|2 dudv

)1/2

=
(∫

Ω

|x− y+ y− z|2 dudv

)1/2

≤
(∫

Ω

|x− y|2 dudv

)1/2

+
(∫

Ω

|y− z|2 dudv

)1/2

= ρ(x,y)+ ρ(y, z).

Hence X is a metric space. Under the distance ρ, we denote this metric space as
(X,ρ). �

Lemma 4 (X,ρ) is a closed set.

Proof Suppose that {xk} is a fundamental sequence in the space (X,ρ). This se-

quence can be written as xk(u, v) =∑m+2
i=0

∑n+2
j=0(pij )kN

(1/m)
i (u)N

(1/n)
j (v). It is

easy to deduce that (pij )k are bounded, hence there exists a subsequence (pij )kl

converging to (pij )0. Because {xk} is a fundamental sequence, we obtain that,

lim
k→∞xk(u, v) = lim

l→∞xkl
(u, v)

= lim
l→∞

m+2∑

i=0

n+2∑

j=0

(pij )kl
N

(1/m)
i (u)N

(1/n)
j (v)

=
m+2∑

i=0

n+2∑

j=0

(pij )0N
(1/m)
i (u)N

(1/n)
j (v).

Let x0(u, v) =∑m+2
i=0

∑n+2
j=0(pij )0N

(1/m)
i (u)N

(1/n)
j (v). Because the range of xk is

[0,1]2 which is a closed set, we obtain that x0(u, v) ∈ [0,1]2. On the other hand, it
is obvious that

x0(0, v) = [0, v]T , x0(1, v)= [1, v]T ,

x0(u,0) = [u,0]T , x0(u,1)= [u,1]T .
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Moreover, since det((xk)u, (xk)v)≥ γ ,

det
(
(x0)u, (x0)v

)= lim
k→∞det

(
(xk)u, (xk)v

)≥ γ,

i.e. x0(u, v) ∈X. Therefore, X is a closed set. �

Lemma 5 X is a self-sequentially compact set.

Proof Because the number of the bicubic B-spline bases is finite, X is a fi-
nite dimensional space. On the other hand, x(u, v) : [0,1]2 → [0,1]2, hence
‖x(u, v)‖ ≤ 2. According to Lemma 4, X is a closed set. Then we conclude that
X is a self-sequentially compact set. �

Proof of Theorem 2 Let {xn} be a minimizing sequence for the model (2), i.e.

lim
n→∞E(xn)= inf

x∈X
E(x).

According to Lemma 5, X is a self-sequentially compact set. Hence, there exists a
subsequence xnk

and x0 in X such that xnk
→ x0.

Finally, since Ii(x) is a continuous function and X is a bounded closed set, Ii(x)

is a uniformly continuous function with respect to x. For every ε > 0, there exists a
δ > 0 such that |Ii(x)− Ii(y)|< ε when |x− y|< δ. Therefore,

∣
∣
∣
∣

∫

Ω

∣
∣Ii(x)− It

∣
∣2 dudv−

∫

Ω

∣
∣Ii(y)− It

∣
∣2 dudv

∣
∣
∣
∣

≤
∫

Ω

∣
∣Ii(x)− Ii(y)

∣
∣
∣
∣Ii(x)+ Ii(y)− 2It

∣
∣dudv ≤Mε

where M is a constant. Similarly, it is easy to see that
∫
Ω

(g(x(u, v))− 1)2 dudv is
a continuous functional with respect to x. Hence the energy functional

E(x)=
∫

Ω

∣
∣Ii(x)− It

∣
∣2 dudv+ λ

∫

Ω

(
g
(
x(u, v)

)− 1
)2 dudv

is continuous with respect to x. Thus,

E(x0)= lim
k→∞E(xnk

)= inf
x∈X

E(x),

i.e., x0 is a minimum point of ε(x). �

8 Existence and Uniqueness of ODE’s Solution

In this section, we show that Eq. (10) has a unique solution. First, we introduce
Gronwall’s inequality.
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Gronwall’s Inequality (See [14]) If (i) g(t) is continuous on t0 ≤ t ≤ t1, (ii) g(t)

satisfies the inequality

0≤ g(t)≤K +L

∫ t

t0

g(s)ds on t0 ≤ t ≤ t1,

then

0≤ g(t)≤KeL(t−t0) on t0 ≤ t ≤ t1.

Hence, if K = 0, then g(t)= 0.
Now we prove the existence and uniqueness for the solution of Eq. (10). Equa-

tion (10) can be written as
{

d x̃(t)
dt
=M−1Q(x̃(t)),

x̃(0)=C0,
(28)

where

x̃(t) = [xT
0 (t),xT

1 (t), . . . ,xT
n0−1(t),xT

n0
(t)
]T

,

M−1 = [mij ]−1 ⊗ I2, i, j = 1,2, . . . , n0,

Q
(
x̃(t)

) = −[qT
0 ,qT

1 , . . . ,qT
n0−1,qT

n0

]T
,

and

C0 =
[
cT

0 , cT
1 , . . . , cT

n0−1, cT
n0

]T
, (29)

with C0 satisfying

n0∑

j=0

cjφj (u, v)+
n1∑

j=n0+1

xjφj (u, v)= [u,v]T . (30)

Remark 5 Since xn0+1,xn0+2, . . . ,xn1 are fixed in the iterative process, [xT
n0+1,

xT
n0+2, . . . ,xT

n1−1,xT
n1
]T is a constant vector.

For simplicity of description, we denote M−1Q(x̃(t)) by f(x̃(t)), where

f
(
x̃(t)

)= [fT
0

(
x̃(t)

)
, fT

1

(
x̃(t)

)
, . . . , fT

n0−1

(
x̃(t)

)
, fT

n0

(
x̃(t)

)]T
.

Now we prove the existence and uniqueness of the solution for Eq. (28). First, a
positive number δ for the upper bound of t needs to be determined. Integrating both
sides of (28), we have

x̃(t)=C0 +
∫ t

0
f
(
x̃(t)

)
dt.
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Taking inner product of both sides with [φ0, . . . , φn0 ]T and using (30), we obtain

x(u, v)= [u,v]T +
n0∑

j=0

∫ t

0
fj
(
x̃(s)

)
φj (u, v)ds.

Let F(x̃(t), u, v) =∑n0
j=0 fj (x̃(t))φj (u, v). Then it is obvious that F(x̃(t), u, v) is

continuous with respect to t . Using mean value theorem of integrals, we have

∫ t

0

n0∑

j=0

f
(l)
j

(
x̃(s)

)
φj (u, v)ds = tF (l)

(
x̃(ξl), u, v

)
, where 0 < ξl < t, l = 1,2,

where [f (1)
j (x̃(s)), f

(2)
j (x̃(s))]T = fj (x̃(s)) and [F (1)(x̃(s), u, v),F (2)(x̃(s),

u, v)]T = F(x̃(s), u, v). Let

det(xu,xv)=
∣
∣
∣
∣
∣

1+ tF
(1)
u (x̃(ξ1)) tF

(1)
v (x̃(ξ1))

tF
(2)
u (x̃(ξ2)) 1+ tF

(2)
v (x̃(ξ2))

∣
∣
∣
∣
∣
= γ.

Computing the determinant above, we get

(
F (1)

u

(
x̃(ξ1)

)
F (2)

v

(
x̃(ξ2)

)− F (2)
u

(
x̃(ξ2)

)
F (1)

v

(
x̃(ξ1)

))
t2

+ (F (1)
u

(
x̃(ξ1)

)+ F (2)
v

(
x̃(ξ2)

))
t + 1− γ = 0. (31)

For the sake of easy description, let

a(xξ1 ,xξ2) = F (1)
u

(
x̃(ξ1)

)
F (2)

v

(
x̃(ξ2)

)− F (2)
u

(
x̃(ξ2)

)
F (1)

v

(
x̃(ξ1)

)
,

b(xξ1 ,xξ2) = F (1)
u

(
x̃(ξ1)

)+ F (2)
v

(
x̃(ξ2)

)
,

where xξ1 and xξ2 are the mappings in X defined by the coefficients x̃(ξ1) and x̃(ξ2),
respectively. Then we can get a minimal positive root of Eq. (31) as the following,

t (xξ1 ,xξ2)=
2(1− γ )

−b(xξ1,xξ2)+
√

b2(xξ1 ,xξ2)− 4a(xξ1,xξ2)(1− γ )

. (32)

Let

Ω(x,y)

= {[u,v]T ∈ [0,1]2 : b2(x(u, v),y(u, v)
)− 4a

(
x(u, v),y(u, v)

)
(1− γ )≥ 0,

√
b2
(
x(u, v),y(u, v)

)− 4a
(
x(u, v),y(u, v)

)
(1− γ )≥ b

(
x(u, v),y(u, v)

)}
.

Then Ω(x,y) is a closed set.
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Lemma 6 Let

δ = min
x,y∈X

min
[u,v]T ∈Ω(x,y)

t (x,y).

then δ > 0. Furthermore, if 0≤ t ≤ δ, then det(xu,xv)≥ γ .

Proof Let

y(t) = det(xu,xv)− γ = at2 + bt + 1− γ,

F
(
x̃(t), u, v

) =
n0∑

j=0

fj
(
x̃(t)

)
φj (u, v).

We can easily prove that F(x̃(t), u, v) is a C2 continuous vector-valued function in
the space X and [0,1]2. Since X and [0,1]2 are closed sets, F

(l)
u (x̃(ξl), u, v) and

F
(l)
v (x̃(ξl), u, v) (l = 1,2) are bounded functions. Hence, δ > 0 is proved. On the

other hand, since y(0)= 1− γ > 0, y(t) > 0 is true when 0≤ t ≤ δ. �

Lemma 7 Let

� =
{

x̃(t) : det(xu,xv)≥ γ,

where x=
n0∑

j=0

xjφj (u, v)+
n1∑

j=n0+1

xjφj (u, v)

}

. (33)

Then M−1Q(x̃(t)) is Lipschitz continuous with respect to x̃ on � when 0≤ t ≤ δ.

Proof From

D1x= ∂x
∂u
=

n1∑

j=0

xj

∂φj (u, v)

∂u
, D2x= ∂x

∂v
=

n1∑

j=0

xj

∂φj (u, v)

∂v
,

it is easy to see that Dlx are polynomials of xj (t) (j = 0,1, . . . , n0), l = 1,2. From

(D1x)u = ∂2x
∂u2

=
n1∑

j=0

xj

∂2φj (u, v)

∂u2
, (D1x)v = ∂2x

∂u∂v
=

n1∑

j=0

xj

∂2φj (u, v)

∂u∂v
,

we know that (D1x)u and (D1x)v are also polynomials of xj (t) (j = 0,1, . . . , n0).
Similarly, (D2x)u and (D2x)v are polynomials of xj (t) (j = 0,1, . . . , n0). From

Φu = (Dlx)u(Dlx)Tφi + (Dlx)(Dlx)T
uφi + (Dlx)(Dlx)T(φi)u,

it is easy to see that Φu is a polynomial of xj (t). Similarly Φv and g(x) are poly-
nomials of xj (t). Since � is a closed set on the interval [0, δ], we conclude that
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∫
Ω

(ΦT
u α +ΦT

v β)dudv is Lipschitz continuous on �. Furthermore, since Ii(x) and

It are C2,
∫ 1

0

∫ 1
0 ((Ii(x) − It )(Dlx)T(∇xIi)(Dlx)φi)dudv is Lipschitz continuous

on �. Thus, M−1Q(x̃(t)) is Lipschitz continuous on �. �

Now we construct successive approximations which are defined as follows:

{
x̃k+1(t)=C0 +

∫ t

0 f(x̃k(s))ds, k = 0,1,2, . . .

x̃0(t)=C0.
(34)

Theorem 7 Each vector-valued function x̃k defined by (34) lies in � for 0≤ t ≤ δ,
k = 0,1,2, . . . .

Proof From x̃0(t)=C0 and the equality (30), we know that x̃0 lies in �. Moreover,
according to

x̃k+1(t)=C0 +
∫ t

0
f
(
x̃k(s)

)
ds, (35)

we obtain that

xk+1 =
n0∑

j=0

(xk+1)j (t)φj (u, v)+
n1∑

j=n0+1

xjφj (u, v)

= [u,v]T +
n0∑

j=0

∫ t

0
fj
(
x̃k(s)

)
φj (u, v)ds.

Let Fk(t, u, v)=∑n0
j=0 fj (x̃k(t))φj (u, v). It is obvious that Fk(t, u, v) is contin-

uous with respect to t . From the mean value theorem of integrals, we have

∫ t

0

n0∑

j=0

f
(l)
j

(
x̃k(s)

)
φj (u, v)ds = tF

(l)
k (ξl, u, v), l = 1,2,

where 0≤ ξl ≤ t ≤ δ. From Lemma 6, we have

det
(
(xk+1)u, (xk+1)v

)

=
∣
∣
∣
∣
∣

1+ t (Fk)
(1)
u (ξ1) t (Fk)

(1)
v (ξ1)

t (Fk)
(2)
u (ξ2) 1+ t (Fk)

(2)
v (ξ2)

∣
∣
∣
∣
∣
≥ γ when 0≤ t ≤ δ.

Thus, xk+1 ∈ � for 0≤ t ≤ δ. �

The proofs of Lemmas 8, 9 in the following are similar to that of Theorem I-1-4
in [14]. For completeness, we give the details.
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Lemma 8 The successive approximations given by (34) satisfy the estimates

∣
∣x̃k+1(t)− x̃k(t)

∣
∣≤ MLk

(k + 1)! t
k+1 for 0≤ t ≤ δ, k = 0,1,2, . . . . (36)

Proof We use mathematical induction. When k = 0, we have |x̃1(t) − x̃0(t)| =
| ∫ t

0 f(C0)ds| ≤Mt . Assume (36) is true for k, then

∣
∣x̃k+1(t)− x̃k(t)

∣
∣ =

∣
∣
∣
∣

∫ t

0

(
f
(
x̃k(s)

)− f
(
x̃k−1(s)

))
ds

∣
∣
∣
∣

≤ L

∣
∣
∣
∣

∫ t

0

∣
∣x̃k(s)− x̃k−1(s)

∣
∣ds

∣
∣
∣
∣

≤ MLk

k!
∣
∣
∣
∣

∫ t

0
sk ds

∣
∣
∣
∣=

MLk

(k + 1)! t
k+1. (37)

�

Lemma 9 The sequence x̃k(t), k = 0,1,2, . . . , converges to

x̃(t)=C0 +
∞∑

k=1

(
x̃k(t)− x̃k−1(t)

)
(38)

uniformly on 0≤ t ≤ δ as k→∞.

Proof According to Lemma 8, for a given ε > 0, there exists a positive integer N

such that

∞∑

k=N

∣
∣x̃k(t)− x̃k−1(t)

∣
∣≤ M

L

∞∑

k=N

(Lt)k

k! ≤ M

L

∞∑

k=N

(Lδ)k

k! < ε. (39)

Thus the series
∑∞

k=1(x̃k(t)− x̃k−1(t)) is uniformly convergent on 0 ≤ t ≤ δ. On
the other hand, since x̃N(t)=C0 +∑N

k=1(x̃k(t)− x̃k−1(t)), the result is proved. �

Proof of Theorem 3 Because

x̃k+1(t)=C0 +
∫ t

0
f
(
x̃k(s)

)
ds, (40)

from the continuity of x̃ and Lemma 9, we conclude that

x̃(t)=C0 +
∫ t

0
f
(
x̃(s)

)
ds. (41)

Then

d x̃(t)

dt
= f
(
x̃(t)

)
, (42)
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Fig. 1 Experiment to show the effect of the constraint (1)

Fig. 2 Three different boundary conditions. The thick lines are the fixed boundaries

hence x̃(t) is a solution of (28).
To prove the uniqueness, suppose that ỹ(t) is another solution of problem (28)

on the interval [0, δ]. Note that

ỹ(t)=C0 +
∫ t

0
f
(
ỹ(s)

)
ds (43)

on 0≤ t ≤ δ. Hence using the Lipschitz continuity of f, we have

∣
∣x̃(t)− ỹ(t)

∣
∣=

∣
∣
∣
∣

∫ t

0

(
f
(
x̃(s)

)− f
(
ỹ(s)

))
ds

∣
∣
∣
∣≤ L

∫ t

0

∣
∣x̃(s)− ỹ(s)

∣
∣ds (44)
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Fig. 3 Experiment to show the effect of different λ

on 0≤ t ≤ δ. Applying Gronwall’s inequality, we conclude that |x̃(t)− ỹ(t)| = 0 on
0≤ t ≤ δ. Hence we complete the proof of the theorem. �

9 Experiments

In this section, we verify the performance of our algorithm from two aspects,
namely, the illustrative figures and the numerical data. In each of the experiments,
we first construct the mapping x so that Ii(x)= It approximately, meanwhile obtain
error images between the target images and our result images, that is

E(u,v)= ∣∣Ii

(
x(u, v)

)− It (u, v)
∣
∣. (45)

Finally compute the numerical data from various similarity metrics.
We first present some algorithm details including the usage of the regularity con-

straint of the mapping x, the choice of N -sequences and the setting of the boundary
conditions. Then compare our method with other two methods through several ex-
periments.

As we know that, when evaluating the alignment effect of two images, similarity
metric reaches the extremum when the alignment result is completely identical to
the target image. Hence, we will apply the following similarity metrics (SM): Mean
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Fig. 4 Experiment to show that bigger λ will lead to a less accurate alignment result (see the part
in box of figure (e)

Squared Difference (MSD); Normalized cross correlation (NCC) in [16]; Entropy
of the Difference Image (EDI) in [5]; Mutual Information (MI) in [29]; Number of
sites of disagreement (NSD), Largest difference (LD) and Total unsigned difference
(TUD) in [12].

Regularity of Mapping x A necessary and sufficient condition for x(u, v) to be
a regular parametric surface is that the normal vector is non-zero everywhere on the
surface, i.e. xu × xv �= 0, where xu and xv are the two tangential vectors. We use
the inequality (1) as the regularity constraint. In our examples, we take ε = 0.001.
Figure 1 shows the effect of using constraint (1), where the target image is the mirror
projection of the initial image about its vertical middle-axis. It is easy to see that the
employment of the constraint leads to smoother x. Singularities occur without using
the constraint.

Boundary Conditions According to the specific feature of the given images, we
can set different boundary conditions. Figure 2(a) shows a case where four bound-
aries are fixed. In this case, the computation can be accelerated by replacing Φ in (5)
with [(D1x)(D1x)T + (D2x)(D2x)T ]φ. The other two cases are moving x in D1x
direction (see Fig. 2(b)) with fixed the vertical boundaries and in D2x direction (see
Fig. 2(c)) with fixed horizontal boundaries, respectively.
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Fig. 5 xk at (wk,hk )-level of Fig. 4(c)

Fig. 6 The effects of different N -sequences. (c) and (d) are the result of using N -sequence (20).
(e) is the result using N -sequence (21)

Table 2 Numerical results obtained from different similarity metrics of experiment 6, the results
with bold face are the best

SM Primary metric Figure 6(c) Figure 6(d) Figure 6(e)

λ= 10.0,
λw = λh = 2

λ= 10.0,
λw = λh = 1.2

λ= 10.0,
ρw = ρh = 8

NSD 8210 1890 0 37

MSD 0.245269 0.071634 0.006070 0.020314

NCC 0.710945 0.976657 0.999823 0.998297

EDI 3.853722 2.817571 0.835384 1.538645

MI 1.569308 2.246680 4.054850 3.459266

LD 72.00000 37.00000 6.000000 22.00000

TUD 365845.0 99490.00 7183.000 21869.00

Regularization Term
∫
Ω

(g−1)2 The second item of the energy functional (2) is
used to make g as close to one as possible. It is well known that

√
g is the area ele-

ment of the surface x(u, v). Forcing g close to one everywhere yields a smoother x.
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Fig. 7 Result of an artificially deformed, initial image is the distorted image of target image

Figure 3 shows the effect of the coefficient λ of
∫
Ω

(g−1)2. The target image in this
figure is a rotation of the initial image. It is obvious that larger λ makes x smoother.
However, the alignment result may be less accurate in the details. This property is
also observed from Fig. 4, where the target image is the mirror projection of the
initial image about its vertical middle-axis.

The Choice of the N -Sequence By choosing an appropriate N -sequence which
is increasingly ordered, we can align the structures in the images from coarse to
fine. Figure 5 is used to illustrate such a process for aligning the images shown
in Fig. 4, where x(k) at (wk,hk)-level are presented. Each figure is the plot of the
isoparametric curves of x(k)(u, v). We can easily see that the variations are aligned
from large scale to small gradually. As the level number k from 15 approaching to 3,
the isoparametric curves of x(k)(u, v) close to uniform grids. We therefore stop the
computation at (w3, h3)-level.

It should be pointed out that the choice of the N -sequence has significant influ-
ence on the alignment result. In Fig. 6, we intend to align two 128×128 images. We
use N -sequence defined by (20) with λw = λh = 2 for figure (c), and λw = λh = 1.2
for figure (d). We use (21) with ρw = ρh = 8 for figure (e). Clearly using sequence
(20) with λw = λh = 1.2 leads to more desirable results, similar conclusion can be
seen from Table 2.



Flexible Multi-scale Image Alignment Using B-Spline Reparametrization 49

Fig. 8 Result of an artificially deformed MRI-slices, target image is the mirrored image of initial
image

Image Sampling After the deformation mapping x is finally determined,
Ii(x(u, v)) is the aligned image of It (u, v). To obtain a discrete version of
Ii(x(u, v)) at the grid points (ui, vj ) with

ui = i

M
, vj = j

N
, i = 0, . . . ,M, j = 0, . . . ,N,

we first compute xij = x(ui, vj ) ∈Ω , then find k and l, such that

xij ∈
[
k/M, (k + 1)/M

]× [l/N, (l + 1)/N
]
.

Then the discrete version of Ii(x(u, v)) at the grid points (ui, vj ) is computed as
the bilinear interpolation of Ii(x(u, v)) over the rectangle [k/M, (k + 1)/M] ×
[l/N, (l + 1)/N ] at the point xij .

In order to obtain reasonable results, we choose the N -sequence as (21) with
ρw = ρh = 8, and we set λ = 10.0 and ε = 0.001 in the Figs. 7 and 8 below. The
target image in Fig. 7 is obtained by representing the initial image as a bicubic B-
spline function (see (23)), then perturbing randomly the coefficients fij and finally
re-sampling the perturbed one. The target image in Fig. 8 is the mirrored image of
the initial images.

From the mappings as shown in each experiments which are the plots of the
isoparametric curves of maps x of the corresponding experiments, we can apparently
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Fig. 9 Comparison of our results of Figs. 1, 4 and 8 with Sorzano et al.’s results and Clarenz et
al.’s results. Sorzano et al.’s method does not yield correct results for these experiments. Some
flaws (see the parts in the boxes) can be observed in Clarenz et al.’s results in the second column

see that our method yields C2 smooth x which satisfies conditions (i)–(iii). From the
error images (45) as shown, we can easily observe that the error images are almost
black in the experiments conducted.

Finally, we compare the performance of our method with two popular methods
of Sorzano et al. (see [27]) and Clarenz et al. (see [9]) through Fig. 9 and Table 3, 4
and 5. The initial and target images from the first row to the third row of Fig. 9 are
the same as the ones of Figs. 1, 4 and 8, respectively. The first column shows that
Sorzano et al.’s method does not yield correct alignment results. The figures in the
second column show that Clarenz et al.’s method works for these examples but there
are tiny flaws in their results. The images in the third column show that our method
yields very desirable results.
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Table 3 Numerical results obtained from different similarity metrics of experiment 1, the results
with bold face are the best

SM Primary metric Figure 1(d) Figure 1(e) Sorzano et al.’s Clarenz et al.’s

NSD 2936 231 621 3572 1301

MSD 0.147169 0.031137 0.053215 0.147306 0.072775

NCC 0.915203 0.996315 0.989065 0.956905 0.979665

EDI 2.152111 1.428342 1.644643 2.220481 1.860739

MI 1.178106 1.494839 1.362743 1.264463 1.252158

LD 145.0000 49.00000 100.0000 177.0000 194.0000

TUD 130177.0 25091.00 40830.00 173051.0 63886.00

Table 4 Numerical results obtained from different similarity metrics of experiment 4, the results
with bold face are the best

SM Primary metric Figure 4(d) Figure 4(e) Sorzano et al.’s Clarenz et al.’s

NSD 3372 182 254 5906 1258

MSD 0.160801 0.030659 0.035476 0.201012 0.070510

NCC 0.888354 0.996038 0.994656 0.927741 0.979117

EDI 2.714375 1.697832 1.803896 2.981768 2.241050

MI 1.233013 1.769513 1.698944 1.364450 1.455032

LD 144.0000 55.00000 87.00000 176.0000 102.0000

TUD 158586.0 29530.00 34361.00 268187.0 70375.00

Table 5 Numerical results obtained from different similarity metrics of experiment 8, the results
with bold face are best

SM Primary metric Our method Sorzano et al.’s Clarenz et al.’s

NSD 4995 177 3317 709

MSD 0.244006 0.029471 0.111717 0.057463

NCC 0.822478 0.997423 0.974174 0.993691

EDI 3.053663 1.618538 2.640437 2.275920

MI 1.236784 2.008639 1.524631 1.815054

LD 164.0000 68.00000 93.00000 140.0000

TUD 262917.0 26907.00 147383.0 64245.00

Tables 3, 4 and 5 are the numerical results of experiments 1, 4 and 8 for differ-
ent similarity metrics. Although various similarity metrics emphasize on different
aspects, it can be seen from the data in the table that, our method performs the best
under various similarity metrics.
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10 Conclusions

A new algorithm for flexible alignment has been presented. It combines the ideas of
flexible alignment based on B-spline reparametrization, L2-gradient flow and multi-
resolution. The L2-gradient flow is efficiently solved in the B-spline finite element
space. Our method is effective, robust and capable of capturing the variation of the
initial and target images, from large scale to small. We have proved the regularity
of the mapping x(u, v) under certain conditions. We also proved that there exists
a mapping x0(u, v) ∈ X satisfying (i)–(iii) such that the energy functional (2) is
minimized. For the systems of ordinary differential equations derived from the fi-
nite element discretization in the spatial direction, the existence and uniqueness of
solution have been proved.
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10990013, NSFC Funds for Creative Research Groups of China (grant No. 11021101) and NSFC
project under the grant 81173663.

References

1. Bajcsy R, Kovacic S (1989) Multiresolution elastic matching. Comput Vis Graph Image Pro-
cess 46(1):1–21

2. Besl P, McKay H (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal
Mach Intell 14(2):239–256

3. Brown L (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–
376

4. Buck RC (1956) Advanced calculus. McGraw-Hill, New York
5. Buzug T, Weese J, Fassnacht C, Lorenz C (1997) Image registration: convex weighting func-

tions for histogram-based similarity measures. In: Proceedings of the first joint conference on
computer vision, virtual reality and robotics in medicine and medial robotics and computer-
assisted surgery, pp 203–212

6. Capel D, Zisserman A (1998) Automatic mosaicing with super-resolution zoom. In: Proceed-
ings of the IEEE computer society conference on computer vision and pattern recognition,
pp 885–891

7. Carreras I, Sorzano C, Marabini R, Carazo J, Solorzano C, Kybic J (2006) Consistent and
elastic registration of histological sections using vector-spline regularization. In: Computer
vision approaches to medical image analysis, vol 4241, pp 85–95

8. Chen Q, Defrise M, Deconinck F (1994) Symmetrical phase-only matched filtering of Fourier–
Mellin transforms for image registration and recognition. IEEE Trans Pattern Anal Mach Intell
16(12):1156–1168

9. Clarenz U, Droske M, Rumpf M (2002) Towards fast non-rigid registration. In: Inverse prob-
lems, image analysis and medical imaging, AMS special session interaction of inverse prob-
lems and image analysis. Am Math Soc, Providence, pp 67–84

10. do Carmo MP (2004) Differential geometry of curves and surfaces. China Machine Press,
Beijing

11. Droske M, Rumpf M (2003) A variational approach to non-rigid morphological image regis-
tration. SIAM J Appl Math 64(2):668–687

12. Grevera G, Udupa J (1998) An objective comparison of 3-D image interpolation methods.
IEEE Trans Med Imaging 17(4):642–652



Flexible Multi-scale Image Alignment Using B-Spline Reparametrization 53

13. Haber E, Modersitzki J (2006) A multilevel method for image registration. SIAM J Sci Com-
put 27(5):1594–1607

14. Hsieh PF, Sibuya Y (1999) Basic theory of ordinary differential equations. Springer, Berlin
15. Keller Y, Shkolnisky Y, Averbuch A (2005) The angular difference function and its applica-

tion to image registration. IEEE Trans Pattern Anal Mach Intell 27(6):969–976
16. Lemieux L, Jagoe R, Fish D, Kitchen N, Thomas D (1994) A patient-to-computed tomog-

raphy image registration method based on digitally reconstructed radiographs. Med Phys
21(11):1749–1760

17. Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl
Math 2:164–168

18. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM
J Appl Math 11(2):431–441

19. McLauchlan PF, Jaenicke A (2002) Image mosaicing using sequential bundle adjustment.
Image Vis Comput 20(9–10):751–759

20. Milanfar P (1999) Two-dimensional matched filtering for motion estimation. IEEE Trans Im-
age Process 8(3):438–444

21. Munkres JR (2004) Topology. China Machine Press, Beijing
22. Porat B (1996) A course in digital signal processing, 1st edn. Wiley, New York
23. Reddy B, Chatterji B (1996) An FFT-based technique for translation, rotation, and scale-

invariant image registration. IEEE Trans Image Process 5(8):1266–1271
24. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid reg-

istration using free-form deformations: application to breast MR images. IEEE Trans Med
Imaging 18(8):712–721

25. Sdika M (2008) A fast nonrigid image registration with constraints on the Jacobian using large
scale constrained optimization. IEEE Trans Med Imaging 27(2):271–281

26. Segman J (1992) Fourier cross correlation and invariance transformations for an optimal
recognition of functions deformed by affine groups. J Opt Soc Am A 9(6):895–902

27. Sorzano C, Thévenaz P, Unser M (2005) Elastic registration of biological images using vector-
spline regularization. IEEE Trans Biomed Eng 52(4):652–663

28. Van den Elsen P, Maintz J, Pol E, Viergever M (1995) Automatic registration of CT and MR
brain images using correlation of geometrical features. IEEE Trans Med Imaging 2(14):384–
396

29. Viola P, Wells W III (1995) Alignment by maximization of mutual information. In: Proceed-
ings of the fifth international conference on computer vision, pp 16–23

30. Xu G, Shi Y (2006) Progressive computation and numerical tables of generalized Gaussian
quadrature formulas. J Numer Methods Comput Appl 27(1):9–23

31. Zhang GQ (1997) Functional analysis lecture. Peking University Press, Beijing
32. Zitová B, Flusser J (2003) Image registration methods: a survey variational problems. Image

Vis Comput 21(11):977–1000



Shape Based Conditional Random Fields
for Segmenting Intracranial Aneurysms

Sajjad Baloch, Erkang Cheng, and Tong Fang

Abstract Studies have found strong correlation between the risk of rupture of in-
tracranial aneurysms and various physical measurements on the aneurysms, such as
volume, surface area, neck length, among others. Accuracy of risk prediction relies
on the accuracy of these quantities, which in turn, is determined by the precision
of the underlying segmentation algorithm. In this paper, we propose an algorithm
for the separation of aneurysms in pathological vessels. The approach is based on
conditional random fields (CRF), and exploits regional shape properties for unary,
and layout constraints for pair-wise potentials to achieve a high degree of accuracy.
To this end, we construct very rich rotation invariant shape descriptors, and cou-
ple them with randomized decision trees to determine posterior probabilities. These
probabilities define weak priors in the unary potentials, which are also combined
with strong priors determined from user interaction. Pairwise potentials are used to
impose smoothness as well as spatial ordering constraints. The proposed descrip-
tor is independent of surface orientation, and is richer than existing approaches due
to attribute weighting. The conditional probability of CRF is maximized through
graph-cuts, and the approach is validated with real dataset w.r.t. the groundtruth,
resulting in the area overlap ratio of 88.1%. Most importantly, it successfully solves
the “touching vessel leaking” problem.

1 Introduction

Intracranial aneurysms is a major vascular disease in the brain, attributed to lo-
cal weakening of the vessel wall. It manifests in the form of bulging (saccu-
lar aneurysm) or dilation (fusiform aneurysm) as shown in Fig. 1. Intracranial
aneurysms frequently occur near areas of high arterial curvature or bifurcations,
as these regions usually experience more hemodynamic stress [7]. If left untreated,
an aneurysm grows in size, thereby further weakening the wall strength and increas-
ing the risk of rupture, which may lead to subarachnoid hemorrhage, neurological
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Fig. 1 Examples of intracranial sidewall aneurysms

deficits, and in up to 56% of cases mortality [14]. In order to prevent its growth and
reduce the risk of rupture, surgical intervention is required, where stents, wire coils,
and other embolic material or devices are placed not only to enforce the vessel wall,
but also to alter the blood flow pattern, thereby reducing the pressure on regions
more prone to rupture.

Once diagnosed, aneurysms are carefully monitored and examined, before mak-
ing a surgical decision. To this end, geometry of aneurysm plays a crucial role.
Physicians analyze various measurements of geometric primitives [5] evaluated on
an aneurysm, which allows them to carry out surgical planning. Separation of the
aneurysm from the healthy vessel, therefore, serves as a critical step, whose accu-
racy determines the eventual outcome in terms of surgical decisions, device selec-
tion, as well as patient recovery. The problem is, however, very challenging due to
the complex topology and geometry of the underlying blood vessel, and its large
inter-patient variation.

Early approaches on aneurysms separation mainly focused on deformable mod-
els. By grouping local shape descriptors, McLaughlin and Nobel [10] employed a
region-splitting algorithm to segment the aneurysm from the neighboring vascula-
ture. Their approach, however, fails to yield reliable results for wide-neck saccular
aneurysms. Wong and Chung [16] modeled the healthy part of the vessel as a tubular
deformable model, and determine the abnormal structure of aneurysms as the com-
plement of the healthy model. Their approach does not provide protection against
the leaking of the deformable model inside the aneurysm. Ford et al. [6], on the other
hand, presented a method to reconstruct the parent artery by removing the aneurysm.
They also utilized deformable model to model vessel of parent. The method needs
smooth surface and is limited to the morphology of parent artery surface.

More recently, Mohamed et al. [11] utilized mesh based snakes for computer-
aided planning for endovascular treatment of intracranial aneurysms (CAPETA).
A major limitation of their approach was its inability to adapt to topological changes
in the aneurysm boundary, resulting in erroneous results for meshes with touching
vessels. Furthermore, due to the local nature of the snakes, their proposed method
fails to guarantee a globally optimal solution. To address these issues, Sgouritsa et
al. [13] proposed a curvature based graph-cut strategy for segmenting the 3D vessel
mesh, guided by strong priors, which in turn were determined from user input in
the form of 3 seed points. Due to its dependence on strong priors, the accuracy of
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this approach is determined by the accuracy of the prior computation algorithm, and
remains highly sensitive to the manual user input. Also, in practical situations, the
Gaussian curvature is too coarse to adequately capture underlying shape variations.
It is, therefore, required to construct richer shape representations, which adequately
capture the vessel-aneurysm differences.

In this paper, we propose a novel method for aneurysm separation based on con-
ditional random fields (CRF) by augmenting both unary and pairwise potentials.
Unary potentials are decomposed into strong and weak priors. The former are de-
termined from interactive user input, and the latter are estimated via randomized
decision forest as posterior probabilities of novel shape descriptors. More specif-
ically, we propose algorithms for accurate strong prior determination. The shape
descriptors, in turn, are constructed from underlying local and regional geometry.
Pairwise potentials are encoded to impose spatial ordering as well as smoothness
constraints. The conditional probability of CRF is maximized through graph-cuts.
This formulation allows multitude of improvements over existing approaches. Like
[13], our method is not limited by topological variations. Unlike [13], we construct
shape descriptors specifically tailored for the problem under consideration, i.e., for
the separation of blob like aneurysms on tubular vessels. Inferencing from examples
allows us to specify weak priors, thereby allowing more flexibility. Smoothness and
layout constraints penalize the assignment of inconsistent labels. We validate the
proposed method with real dataset comprising of 27 3D digital subtraction angio-
graphic (DSA) images in the CAPETA framework [11], and carry out a comparison
with [13]. The experimental results demonstrate that (1) in all cases our improved
prior seeds were in accordance with the groundtruth, and (2) our aneurysm method
consistently outperforms [13].

The rest of the paper is organized as follows: We first formulate aneurysm sepa-
ration as CRF in Sect. 2, followed by the construction of shape descriptors in Sect. 3.
Unary and pairwise potentials are developed in Sect. 4, along with the algorithms
for finding strong priors. Experimental results are presented in Sect. 5, before we
concluded in Sect. 6.

2 Problem Formulation

For robust aneurysm separation algorithm, we formulate the problem as Conditional
Random Fields (CRF) that are driven by rich shape descriptors.

2.1 Conditional Random Fields

Given a triangular mesh T := (P,E) representing a surface M embedded in R
3,

with P := {pi = p(vi)} denoting the set of positions at vertices V = {vi}, and
E = {ek} denoting the edges connecting the respective vertices. p :V → P,vi �→ pi ,



58 S. Baloch et al.

therefore, forms an isomorphism from the undirected graph G := (V ,E) to T . The
problem under consideration is to find a binary labeling l :V → L= {lv, la}, vi �→
li := l(vi) that partitions G into two segments. For aneurysm separation problem,
this amounts to segmenting a mesh into the healthy vessel and the aneurysm regions,
and is dictated by some feature properties of the underlying geometry.

Suppose xi defines a shape or geometric descriptor of vi in T possibly with
a non-local region of support, then the isomorphism x :V → X,vi �→ xi := x(vi)

captures the underlying geometric description of vi and the corresponding graph
X := (xi, ei) may be exploited to find the partitioning. The optimal partition is the
one that maximizes the joint distribution of (X,L):

l∗ = arg max
l

P (X, l; θ)

= arg max
l

P (X; θ)P (l|X; θ)

= arg max
l

P (l|X; θ), (1)

where θ represents a distribution parameter. Conditional random field setting allows
one to simplify the above expression, by considering a local (1-ring) neighborhood
N(vi) at each vertex, vi :

P(l|X; θ)= 1

Z(θ,X)

∏

i

φi(li ,X; θ)
∏

(i,j)

ψij (li , lj ,X; θ), (2)

where the unary potential, φi , captures the posterior distribution of labels at vi , and
the pairwise potential, ψij , models the neighborhood labeling relations allowing one
to impose spatial constraints. Depending on the application, one may incorporate
various constraints, such as smoothing or spatial ordering, in the form of soft layout
consistency or hard layout consistency [18].

The problem is, therefore, reduced to constructing appropriate shape descriptors
x, estimating posterior probabilities, and specifying a pairwise potential that is suit-
able for the application. Maximization of Eq. (2) is identical to the minimization of
the following energy functional:

E(l|X)=−
∑

i

logφi(li ,X; θ)−
∑

(i,j)

logψij (li , lj ,X; θ). (3)

3 Shape Descriptors

We are interested in separating blob like structures, such as aneurysms, from some-
what tubular regions, such as blood vessels. For each point pi on T , we extract
surface features, Fi , that are highly discriminating between these kind of regions.
They include regional shape as well as local geometry.
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3.1 Local Descriptors

For local descriptors, we rely on the curvature information. We exploit Gaussian cur-
vature κ , mean curvature H , and maximum and minimum principal curvatures, κ1
and κ2. In addition, we also consider maximum and minimum principal directions,
v1 and v2, and the shape index, s:

s = 2

π
arctan

κ2 + κ1

κ2 − κ1
, κ2 ≥ κ1. (4)

3.2 Regional Shape Descriptors

The regional shape information is captured through various shape descriptors,
namely (1) Wilmore energy, and (2) regional attribute weighted geodesic shape con-
texts.

3.2.1 Wilmore Energy

The Wilmore energy of a vertex vi ∈ G is defined in terms of the isomorphism T ,
and its n-ring neighborhood, Si :

W :=
∫

Sp

(
H 2 − κ

)
dA, (5)

where dA is a surface area element of Sp .
Note that W(p)≥ 0, with W(p)= 0 if and only if p is convex, and v and all of

its neighbors, Sp lie on a common sphere [2]. Consequently, big blob like structures,
such as aneurysms, are characterized by small Wilmore energy.

3.2.2 Regional Attribute Weighted Geodesic Shape Contexts

Shape contexts [1] are defined by creating bins of various spatial parameters, fol-
lowed by constructing a histogram that counts points falling in each bin. [12] pro-
posed 3D shape contexts for surface matching, which bin the 3D space via spherical
coordinates. Such descriptors, however, are not invariant to the orientation of the
surface. To overcome this problem, we carry out geodesic binning for each point
p ∈M, as illustrated in Fig. 2. Geodesic distances are intrinsic to a surface, and,
therefore, lead to rotation invariance. If g(p, ·) is the geodesic distance from point p,
then geodesic binning, within a local neighborhood Gr (p) := {∀q ∈M :g(p,q) ≤
r}, is defined as {i = 0, . . . , k − 1 :gi ≤ gi(p, q) < gi+1} with gk = r . Histograms
are then generated by computing the concentration of various surface attributes
within each bin. Although apparently similar to [18], which has also utilized
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Fig. 2 Geodesic binning at
selected vertices

geodesic binning for layout consistent segmentation of ear impressions, we con-
sider regional binning instead of doing it globally. In problem under consideration,
global binning causes a confounding effect, as random branching across individuals
introduces noise in the sample data. Furthermore, we consider various histograms
of diverse surface attributes, such as Gaussian curvature weighted point distribution,
area distribution, and the distribution of connected components.

The Gaussian curvature weighted point distribution shape context fg = (f
g

0 , . . . ,

f
g

k−1) computes the number of points falling within each bin normalized by the total
number of points in all bins to create a distribution. Finally each bin is weighted by
the Gaussian curvature averaged within it. For meshes with non-uniform triangula-
tion, the discrete number of points does not truly represent the underlying geometry.
For this reason, we augment our feature set, by computing the surface area of each
bin to create a second shape context distribution fa = (f a

0 , . . . , f a
k−1). It should be

noted that this does not make the previous shape context redundant, since for non-
uniform triangulation the point density is related to interesting features. We, there-
fore, retain both descriptors, and will later carry out feature selection strategy to
retain the most distinguishing features.

The third and final shape context fc = (f c
0 , . . . , f c

k−1) captures the number of
connected components in each bin. This shape context is particularly important to
differentiate flat or thick regions from narrow tubular areas. The hypothesis is that
such a descriptor will help in segmenting a touching vessel from an aneurysm.

Visibility from Reference Point Due to their almost convex shape, most points
on an aneurysm are visible from their centroid r . This allows us to consider a very
powerful feature in our feature design:

νr(p) :=
{

1 if p is visible from c

0 o.w.
(6)

Since the centroid is not known a priori, we assume that its rough location is speci-
fied by a user as a reference point.

All these features are combined in a feature vector Fp := (κ,H,κ1, κ2, s,v1,v2,

W, fg, fa, fc, νr ) as a local and regional descriptor of a point p ∈ T .



Shape Based Conditional Random Fields 61

Fig. 3 Reference input
provided by a user in the form
of dome, proximal, and distal
points

4 Potential Specification

After constructing the shape descriptors, we are in a position to specify unary po-
tentials and pairwise potentials. Unary potentials are determined from the probabil-
ity of aneurysm and pairwise potentials are used to impose smoothness and layout
constraints. In this paper, we decompose the unary potentials into strong and weak
priors; the former is determined from the user input and latter incorporates poste-
rior probabilities learned from shape descriptors. The term strong highlights high
confidence, and hence, large weights for such priors.

Major differences of our approach from [13] include: (1) rich shape descrip-
tors, as opposed to scalar descriptor (Gaussian curvature) in [13]; (2) we employ
CRF framework, which naturally encodes the posterior probabilities of aneurysm;
(3) weak prior unary potentials are estimated by randomized decision trees; (4) new
robust algorithms for finding strong priors, where [13] finds erroneous priors;
(5) smoothness and layout constraints in pairwise potentials.

4.1 Strong Unary Potentials

For strong priors, we adopt an approach similar to recently proposed CAPETA
framework [11], where a user specifies so-called dome, proximal and distal points
as shown in Fig. 3. The dome point pD very roughly provides the location of the
aneurysm relative to the vessel, and proximal pp and distal pd points specify the
region of interest for subsequent analysis in CAPETA. The aneurysm, therefore, al-
ways falls between the proximal and distal point input. It should be noted that these
points do not lie on the surface, but are centered inside the vessel in the viewing
direction. The closest point projection p̃D of pD is used as pref in Eq. (10), and pD

is employed as the reference point r for the visibility feature of Eq. (6).

Vessel Prior We exploit these points for establishing strong priors in our unary
potential. [13] used two kind of contours for strong priors. The strong prior for the
vessel was determined from the proximal pp and distal pd points, by projecting
them to the mesh, p̃p and p̃d , and then using the geodesic h between them as the
vessel prior. The limitation of this approach is that frequently touches the bound-
ary between the aneurysm and the healthy vessel, therefore, leading to incorrect
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Fig. 4 Problems with the strong priors of [13]: (a) Vessel prior; (b) Aneurysm prior. Small spheres
represent the reference points that lie inside the vessel. Big spheres are the mapping of the refer-
ences points to the vessel surface

specification of the strong vessel priors as illustrated in Fig. 4(a). To overcome this
limitation, we enforce the geodesic to stay away from the boundary. The optimal
geodesic is the one that simultaneously minimizes the distance between p̃p and p̃d ,
as well as the minimum mean curvature along the path:

h∗(p̃p, p̃d) := arg min
g∈M

∫ p̃d

p̃p

ϕ(H)π
(
h(p̃p, p̃d)

)
dh, (7)

where ϕ is a decreasing functional of mean curvature H , and π is the length of the
geodesic. As shown in Fig. 4(b), the modified geodesic leads to more reliable vessel
prior Av .

Aneurysm Prior In [13], aneurysm prior was based on a planar contour C :=
T ∩ P found as an intersection between T and a plane P centered at the dome
point pD . The plane normal n was defined as the direction of a vector found as
follows. First, the closest point pc to the dome point pD is determined on the vessel
centerline between pp and pd . n is then:

n := pD − pc

‖pD − pc‖2
. (8)

Finally, the intersection contour is employed as the strong prior for the aneurysm
region. The utility of this prior is limited to the extent that there is only one intersec-
tion contour, which is usually not true. This problem can be resolved by selected the
correct single connected component, in the case of touching vessels. In addition, the
plane may cut across at the touching point, and the intersection contour may consist
of both aneurysm and the touching vessel part. We exploit the minimum principal
curvature to decompose the contour into various segments, and eventually use the
largest connected segment as the strong aneurysm prior Aa .
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4.2 Weak Unary Potential

Weak unary potentials are learned from examples. In general, xi can reside in some
high dimensional space, and the learning process may be quite challenging. Given
a dataset of pathological vessels, and the associated expert labeled groundtruth, a
randomized decision forest is constructed for the classification similar to [15, 18],
based on the extraction of the above mentioned shape descriptors. The advantages
of randomized forests include: (1) its built-in feature selection mechanism, where
maximum information gain is used for node splitting, and (2) its ability to avoid
over-fitting without pruning. For test vessels, posterior probabilities are computed
and used as weak priors.

The strong priors are incorporated in the unary potential as follows:

− logφi(li ,X; θ)=
{

γ3 if pi ∈Aa and li = lv
γ4 if pi ∈Av and li = la
− logφi(li ,X; θ) o.w.

(9)

where γ3, γ4 are the penalization costs for incorrect label assignments.

4.3 Pairwise Potential

In order to derive pairwise potential, we assume that a reference point pref is given
in the region la . A spatial layout constraint is then introduced that penalizes the
assignment of lv to a vertex that is closer in geodesic distance sense to pref than its
neighbor with a label la . Similarly, we penalize the assignment of different labels to
neighboring vertices to ensure a smoothness constraint:

− logψij (li , lj ,X; θ)= exp
(
α(κi + κj )

)

+

⎧
⎪⎨

⎪⎩

0 if li = lj
γ1 if li �= lj , li = la ,

g(pi,pref)≥ g(pj ,pref)

γ2 if li �= lj

(10)

where κi and κj denote the Gaussian curvature at points pi,pj ∈ T . The first term
on the right hand side, therefore, penalizes the assignment of identical labels to
neighboring vertices with high curvature edges. γ1 and γ2 are the costs assigned
empirically or inferred from data. α is an exponential shaping coefficient.

Eventually segmentation is carried out by minimizing Eq. (3) through the α-
expansion algorithm [3, 4, 9].

5 Experiments

In this section, we compare the proposed method with [13]. 3D Digital Subtraction
Angiographic (DSA) images of 30 patients are acquired, and subsequently thresh-
olded as described in [11], to extract the pathological vessels. 3D triangular meshes
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Fig. 5 Posterior label probabilities for example cases

Fig. 6 Strong prior labels determined by the method proposed in Sect. 4.1 for the problem cases
of Fig. 4: (a) Aneurysm strong prior labels; (b) Vessel strong prior labels. Note that the modified
aneurysm prior (green contour) does not go inside the touching vessel, and the vessel prior (green
contour) stays away from aneurysm region

were constructed through marching cubes, and were then decimated using quadric
decimation [8]. An expert is asked to provide manual labeling on these meshes. Var-
ious features were computed to construct regional shape descriptors at each mesh
vertex. Curvature estimates were based on adaptive ball approach [17] due to its ro-
bustness to noise. 10-ring neighborhood was utilized for Wilmore energy, and 3 mm
neighborhood was considered for computing geodesic shape contexts.

4 problem cases were identified, where [13] had failed to provide reasonable
results. These examples, along with 4 additional randomly selected meshes were
considered as the test dataset. The remaining meshes were added to the training
dataset, and training of randomized forest (comprising of 60 trees) was carried out,
to compute coarse aneurysm separation and posterior estimates. Some examples are
given in Fig. 5.

For the test cases, vessel and aneurysm labels for strong priors were determined
as described in Sect. 4.1. For comparison, results are shown in Fig. 6 for the problem
cases highlighted in Fig. 4.



Shape Based Conditional Random Fields 65

Fig. 7 Comparison with [13]. (a) and (c) [13]; (b) and (d) The proposed method. Latter outper-
forms [13] especially for the touching vessels

Energy functional of Eq. (3) was minimized via two iterations of α-expansion
algorithm. A quantitative measure was defined as QM := (A∩B)/(A∪B), where
A is an automatic separation, whereas B is the groundtruth. γ1 = 3.5, γ2 = 5, γ3 =
γ4 = 109 in Eqs. (9) and (10) were determined by maximizing QM via alternating
variables. Results are given in Fig. 7, providing a qualitative comparison with [13].
Overall, the average QM for our method was computed to be 88.1%, compared with
73.0% for [13]. Most importantly, the leaking problem with [13] into the touching
vessels is completely resolved by our approach.

6 Conclusions

We have proposed a CRF based method for the separation of aneurysms from
healthy vessel regions. A unique strength of the method is that it effectively com-
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bines two sources of information, patient specific strong priors in the form of user
input, and data-driven shape priors learned from a large number of aneurysm ex-
amples. Along with strong prior obtained from user’s interactive input, posterior
probabilities learned by randomized decision trees with rich shape descriptors are
considered as unary potentials. Smoothness of the segmentation is ensured through
pairwise potentials, which are also enriched with spatial ordering constrains. Final
segmentation is achieved by minimizing the resulting energy functional with graph-
cuts. The proposed method is validated with a real dataset with outstanding results
(an accuracy measure of 88.1%). It also perfectly resolves the touching vessel leak-
ing problem.

Acknowledgements We gratefully acknowledge Dr. Michael E. Mawad, St. Luke’s Episcopal
Hospital, for providing with the valuable data used in the experiments in the paper.
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Tetrahedral Image-to-Mesh Conversion
Approaches for Surgery Simulation and
Navigation
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Andinet Enquobahrie, and Nikos P. Chrisochoides

Abstract In this paper we evaluate three different mesh generation approaches
with respect to their fitness for use in a surgery simulation and navigation system.
The behavior of such a system can be thought of as a trade-off between material
fidelity and computation time. We focus on one critical component of this system,
namely non-rigid registration, and conduct an experimental study of the selected
mesh generation approaches with respect to material fidelity of the resulting meshes,
shape of mesh elements, condition number of the resulting stiffness matrix, and the
registration error. We concluded that meshes with very bad fidelity do not affect
the accuracy drastically. On the contrary, meshes with very good fidelity hurt the
speed of the mesher due to the poor quality they exhibit. We also observed that
the speed of the solver is very sensitive to mesh quality rather than to fidelity. For
these reasons, we think that mesh generation should first try to produce high quality
meshes, possibly sacrificing fidelity.
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Fig. 1 Commercial haptic devices: (a) Sensable’s 6 degree-of-freedom (d.o.f.) Phantom 6S/1.5;
(b) MPB Technologies’ 7 d.o.f. Freedom 7S

1 Introduction

Surgical simulation is the application of computers to synthesizing an anatomical
response to a simulated therapy. This is achieved through a software program that
synthesizes tissue response to virtual surgical tools, typically a mechanical response
to cutting or manipulation. This behavior can be thought of as a trade-off between
material fidelity and computation time, whose weighted emphasis on one or the
other can be characterized as a spectrum. At one end of the spectrum we have pre-
dictive simulation, which consists of highly faithful off-line computations used by
expert surgeons to predict the outcome of, and optimize, an intervention, on the ba-
sis of an anatomical model of the patient derived from that individual’s preoperative
image dataset. At the other end of the spectrum, the objective of interactive simula-
tion is to offer a means of training surgical residents in order to improve their skill
without risk to a real patient, by way of a haptic device manipulated by the user
to position a virtual surgical tool, while producing a force feedback that simulates
tissue resistance and a real-time graphical rendering of an anatomical model at that
point in simulated time. Figure 1 illustrates some commonly used haptic devices.

Typically, the biomechanics engine used to achieve a response at near-haptic
rates (some interpolation is feasible for haptic rates of 500 Hz or more), in the con-
text of interactive simulation, is less constitutively faithful than that of predictive
simulation, although much recent work is devoted to reconciling the conflicting re-
quirements of interactivity and material faithfulness.

Irrespective of whether a medical simulator emphasizes interactivity or predictive
computation, the simulation requires an anatomical model on which to carry out its
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synthesized therapy. For most clinical applications, such a model is not drawn with
3D CAD software, but rather extracted by image analysis from a patient dataset.
As a result, the starting point for this model is one or more MR or CT volumes,
which in the multi-modal case can be co-registered and resampled, which leads
to a volumetric scalar or vector image, typically of several hundred voxels along
each axis. For example, a 1 mm isotropic MR image of the head is usually at least
256× 256× 256, which equates with more than 16 million voxels, which in turn
precludes efficient computation directly based on raw or segmented image data. In
addition, many biomechanical engines require the decomposition of a geometrically
complex body into simple shapes, e.g.: elements, given that the computation itself is
typically a matrix equation based on simple, well understood elemental expressions.

These requirements, computational efficiency and geometric decomposition, mo-
tivate the need for a representation of the anatomy in terms of simple shapes, such
as triangles and tetrahedra. It is worth noting that in the mesh generation commu-
nity, the generation of tetrahedra corresponds to unstructured mesh generation as
contrasted from structured meshes which are typically comprised of hexahedra. The
latter elements are not generally used in medical simulation, because this meshing
approach requires a significant amount of user interaction (in contrast with tetra-
hedral meshing, which can be automated). The reason is that hexahedral meshes
are more rigid structures and cannot be always automatically constructed for com-
plex geometries [23]. Moreover, the subdivision of a hexahedron does not reduce to
more hexahedra, which limits their applicability to interactive simulation, whereas
a tetrahedron ultimately is divisible into more tetrahedra.

Finally, recent surgery simulation research emphasizes so-called meshless meth-
ods [4], which involve a system of equations derived from point-centered shape
functions. Meshless methods discretize partial differential equations, including con-
tinuum mechanics expressions, through shape functions with compact support de-
fined on a local cloud of points (or nodes), rather than on non-overlapping elements.
Despite the name that implies that no mesh is involved, the latter approach requires
a preliminary meshing that establishes neighboring vertices in the point cloud used
in the discretization.

2 Background

2.1 Non-rigid Registration

We used the non-rigid registration method described by Clatz et al. [7] which is
shown to be robust enough to be usable to clinical studies. Below, we outline the
main aspects of this NRR method.

The method consists of three steps, namely, feature points selection, block match-
ing, and system solution. See Fig. 2 for an illustration. During feature points selec-
tion, a sparse set of points is chosen from the pre-operative image. These points are
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Fig. 2 The non-rigid
registration procedure

called registration points. Then, the correspondence of these points into the intra-
operative image is found via a block matching scheme. Specifically, for a given reg-
istration point r , a small window around it in the intra-operative image is searched;
the corresponding point r ′ reported is the one that maximizes the correlation coeffi-
cient between r ′ and r .

Having computed the deformation vector D on the registration points (as a result
of the block matching step), the deformation vector on the mesh vertices U (the
unknowns) is calculated so that the following energy is minimized:

W = (HU−D)�(HU−D)
︸ ︷︷ ︸

Error energy

+ U�KU︸ ︷︷ ︸
Mechanical energy

(1)

In the above equation, K is the |U | × |U | mechanical stiffness matrix. H is the
linear interpolating matrix of size |D| × |U |; this matrix contains the measurements
of the linear shape functions on every registration point. The contributing shape
functions for each registration point ri are those defined over the mesh nodes whose
forming mesh element includes ri .

The block matching deformation di of a registration point ri affects the deforma-
tion of a mesh node vj , only if vj is incident upon a mesh element e that contains
rj . In fact, if the minimization of the error energy (also known as matching energy)
was perfect (i.e., if it vanished), then the linear interpolation (of the solution of the
mesh nodes of e) on ri would give the value di . As Clatz et al. show [7], this method
tries to minimize this exact error energy E:

E =
√

(HU−D)�(HU−D)= |HU−D| (2)

which is the interpolation error on the registration points r1, r2, . . . , r|D|.
Since the minimization of only the error energy is under-constrained, the me-

chanical energy in Eq. (1) is used to model the deformation of the brain as a phys-
ical body based on FEM. This, in turn, is used to discover and discard the outlier
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registration points, i.e., points whose deformation estimation from block matching
contradicts the physical properties of the brain. For information about the construc-
tion of the mechanical stiffness matrix K, see Delingette and Ayache [8].

The deformation vector U, over which energy W is minimized, is computed
through the following iterative equations:

F0 = 0,
(
K+H�H

)
Ui =H�D+ Fi−1, i = 1,2, . . . ,

Fi =KUi , i = 1,2, . . .

Clatz et al. [7] showed that the system above converges. Also, observe that K+H�H
is the matrix responsible for the robustness of NRR; its condition number affects
both the accuracy and the speed of the solution.

2.2 Image-to-Mesh Conversion

The problem of unstructured Image-To-Mesh conversion (I2M) is the following.
Given an image as a collection of voxels, such that each voxel is assigned a label
of a single tissue or of the background, construct a tetrahedral mesh that overlays
the tissues and conforms to their boundaries. In this paper we study three I2M algo-
rithms with respect to their suitability for real-time finite element analysis, based on
the following requirements:

• The mesh offers a reasonably close representation (fidelity) of the underlying
tissues. Our approach is to expose parameters that allow for a trade-off between
the fidelity and the final number of elements with the goal of improving the end-
to-end execution time of the FE analysis codes.

• The number of tetrahedra in the mesh is as small as possible provided the two
requirements above are satisfied. This requirement is based on the cost of assem-
bling and solving a sparse system of linear equations in the finite element method,
which directly depends on the number of tetrahedra.

• Elements do not have very small angles which lead to poor conditioning of the
stiffness matrix in Finite Element (FE) Analysis for biomechanics applications.

There is a large body of work on constructing guaranteed quality meshes for
Computer Aided Design (CAD) models. The specificity of CAD-oriented ap-
proaches is that the meshes have to match exactly to the boundaries of the models. In
contrast, the I2M problem allows for a certain distance between the mesh boundary
and the image boundary, usually specified as a fidelity tolerance.

Labelle and Shewchuk [15] described an Isosurface Stuffing method for guaran-
teed quality tetrahedral meshing of domains defined by general surfaces. They offer
a one-sided fidelity guarantee (from the mesh to the model) in terms of Hausdorff
distance, and, provided the surface is sufficiently smooth, also in the other direction
(from the model to the mesh). Their algorithm first constructs a body-centered cubic
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(BCC) lattice that covers the model, then fills the BCC with high quality template
elements, and warps the mesh vertices onto the model surface, or inserts vertices
on the surface, and modifies the mesh. Using interval arithmetic, they prove that
new elements have dihedral angles above a certain threshold. However, images are
not smooth surfaces, and to the best of our knowledge, this technique has not been
extended to mesh images. One approach could be to interpolate or approximate the
boundary pixels by a smooth surface, for example using the m-reps segmentation
technique [20], but it would be complicated by the need to control the maximum
approximation (interpolation) error. On the other hand, an I2M solution can benefit
from the fact that images provide more information on their structure than gen-
eral surfaces. For example, the tasks of finding the local feature size [12] and all
connected components can be done relatively easily on images since they already
provide the finest known sampling of the space.

There are also heuristic solutions to the I2M problem, some of them developed
in our group [10, 16], that fall into two categories: (1) first coarsen the boundary
of the image, and then apply CAD-based algorithms to construct the final mesh,
(2) construct the mesh which covers the image, and then warp some of the mesh
vertices onto the image surface. The first approach tries to address the fidelity and
then the quality requirements, while the second approach does it in reverse order.
Unfortunately, neither of these approaches can guarantee the quality of elements in
terms of dihedral angles. Both of them face the same underlying difficulty which
consists in separating the steps that attempt to satisfy the quality and the fidelity
requirements. As a result, the output of one step does not produce an optimal in-
put for the other step. An approach based on filling in brick elements with quality
tetrahedra was developed by Hartmann and Kruggel [14], however, it keeps an over-
refined mesh near the boundaries. Another method by Dogan et al. [9] produces a
mesh as a by-product of an iterative segmentation procedure, by an application of a
CAD-oriented mesh generator Triangle [24] to the segmented boundaries.

Zhang et al. [28] described an algorithm to construct adaptive and quality 3D
meshes from imaging data. Similar to our approach, they create an initial octree-
based mesh, and then improve its quality using iterative edge contraction. Specifi-
cally, their approach removes tetrahedra with the worst ratio of the longest to short-
est edge length by contracting their shortest edges; however, when it is detected that
a requested ratio threshold cannot be reached the strategy is reversed to point inser-
tion through longest edge bisection. Another approach proposed by Reid et al. [21]
and Goksel et al. [13] is to iteratively deform an initial mesh by vertex movement
and other operations to conform to the boundaries in the image.

In Computer Aided Surgery (CAS) and specifically in image guided neuro-
surgery, Magnetic Resonance Images (MRI) obtained before the procedure (pre-
operative) provide extensive information which can help surgeons to plan a resection
path. Careful planning is important to achieve the maximal removal of malignant tis-
sue from a patient’s brain, while incurring the minimal damage to healthy structures
and regions of the brain. However, current practices of neurosurgical resection in-
volve the opening of the scull and the dura. This results in a deformation of the
brain (known as the brain shift problem) which creates discrepancies between the
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Fig. 3 The dihedral angle
between two triangular faces
abc and abd is the angle
between two planes
containing each of these faces

pre-operative imaging data and the reality during the operation. A correction is pos-
sible using non-rigid registration (NRR) of intra-operative MRI with pre-operative
data.

In this paper, we target Finite Element (FE) based approaches for the non-rigid
registration [7]. These methods use real-time landmark tracking across the entire
image volume which makes the non-rigid registration more accurate but computa-
tionally expensive, as compared to similar methods that use surface tracking [11].
The non-rigid registration problem should be solved fast enough, so that it can be
usable in clinical studies [1, 2].

Image-to-Mesh (I2M) conversion is a critical component of real-time FE-based
non-rigid registration of brain images. In this paper one of the I2M evaluation crite-
ria is the wall-clock time to construct the mesh. While in the current formulation the
NRR approach makes use of a single mesh constructed before the surgery, we aim
to address a general scenario, i.e., when the changes in the object geometry caused
by the surgical intervention cannot be accommodated by a pre-existing mesh.

3 Evaluation of Mesh Generation Techniques

3.1 Mesh Fitness Criteria

A mesh is characterized by its fidelity and quality. Fidelity measures how well the
mesh boundary resembles the surface of the biological object. Quality assesses the
shape of mesh elements; the higher the minimum dihedral angle of the mesh ele-
ments is, the higher the quality. See Fig. 3 for an illustration of a dihedral angle.

It is well known that the quality of the mesh affects both the accuracy and the
speed of the solver [25], because the angles of the elements influence the condition
number of the stiffness matrix. In the literature, a good deal of effort has been put
toward high-quality mesh generation [6, 12, 15, 18, 27].

It is not clear, however, what the impact of fidelity on the accuracy and speed
of the solver is. The reason is because there is a complicated trade-off between
quality and fidelity. The need for a better surface approximation always implies a
deterioration of mesh quality, simply because well-shaped elements cannot fill the
space formed by sharp surface creases or by surface parts of high curvature. Also,
higher fidelity usually results in an increase of the number of mesh elements which
in turn affects both the mesher’s and the solver’s speed.
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In this paper, we evaluated the impact of three public mesh generators [12, 16, 26]
on the accuracy and speed of NRR. The meshers were chosen carefully to cover a
wide range of mesh generation approaches. The Delaunay mesh algorithm in [12]
offers simultaneous meshing of the surface and the volume of the object. The al-
gorithm in [26] is Delaunay but requires the surface of the object as input. Finally,
the algorithm in [16] is an optimization-based technique which compresses an ini-
tial body-centered cubic lattice (BCC) to the surface. (See Sect. 4 for more details.)
For each mesher, we conducted an extensive series of experiments controlling the
fidelity of the output mesh used for the subsequent NRR [7].

3.2 Mesh Generation Libraries

In this paper, we tested the influence of three meshers on NRR, namely, High Qual-
ity Delaunay mesher (HQD) [12], Tetgen [26], and Point Based Matching mesher
(PBM) [17]. Below, we briefly describe each of them.

HQD meshes both the surface and the volume of the object at the same time with-
out an initial dense sampling of the object surface, as is the case in other Delaunay
volume techniques [19, 22]. As a result, the number of elements of the output mesh
is small.

Tetgen is a Delaunay mesh generator as well. However, it assumes that the sur-
face of the object is already meshed and represented as a polyhedron. This polyhe-
dron is also known as a Piecewise Linear Complex (PLC). Tetgen requires a PLC of
the object surface as its input. We used the algorithm in [3] for the PLC generation,
implemented in the Computational Geometry Algorithms Library (CGAL) [5].

PBM is an optimization-based approach. It starts with a triangulation of a regular
grid, i.e., a body-centered cubic lattice (BCC), and then it compresses the outer
nodes closer to the object surface as a result of energy minimization. In fact, the
smaller the energy achieved, the better the fidelity of the output mesh. This method
is able to recover the surface of multi-tissue objects. In this paper, only the single-
tissue version of PBM is considered.

3.3 Evaluation Methodology

As mentioned in Sect. 2.1, registration computes the deformation on the mesh nodes,
so that the error energy E = |HU−D| is minimized. Mesh generation affects how
accurately the error energy is minimized. Therefore, we assess the accuracy of reg-
istration by keeping track of this error E. There are two nested loops in the registra-
tion algorithm. The outer loop, which is run 10 times following the original paper
by Clatz et al. [7], is used to discard outlier registration points. The inner loop runs
the FE solution and has a fixed threshold on the convergence of the linear solver.
This threshold, however, does not translate to a fixed error in the registration result
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due to the influence of mesh fidelity. Below we describe and report the results of
two types of experiments. In the experiments of the first type we vary mesh fidelity
and measure the registration error for the selected meshing algorithms. In the ex-
periments of the second type we fix both the fidelity and the registration error, and
measure the wall-clock time for the mesher and the solver.

Observe, however, that the outcome of the registration depends on the accuracy
of the block matching step (vector D). Also, notice that the mesh does not affect the
result of block matching (see Fig. 2). Since we are interested in evaluating the im-
pact of mesh generation on registration, we wanted to make registration independent
of block matching. For this reason, we synthetically deformed the pre-operative im-
age according to the bio-mechanical properties of the brain. More specifically, we
initially ran the registration procedure to register the pre-operative with the intra-
operative image as shown in Fig. 2, but that time we did not focus on the behavior
of the mesh. We just wanted the solution on the mesh nodes. Then, by (linearly)
interpolating the solution of the mesh nodes on any point of the image, we obtained
a synthetically deformed (intra-operative) image. After this initial registration, all
the other registrations (aiming at evaluating mesh generation) are performed be-
tween the pre-operative and the synthetically deformed image; that is, the real intra-
operative image is replaced by the deformed one. In this way, we achieve two things:

• we know the “true” deformation on any point, and therefore we know the “true”
block matching result on any set of registration points, and

• we do not simulate an arbitrary deformation, but rather a realistic one, because
the deformed image was obtained taking into account the elasticity properties of
the brain through the stiffness matrix K of Eq. (1).

Since we want to measure the influence of mesh generation, only the mesh
changes in every experiment. That is, for all the various meshes, the pre-operative
image and the set of registration points (together with their deformation D of course)
remain fixed.

As mentioned above, we wish to have control over the fidelity of the output mesh
produced by the different meshers. In this paper, we use the two-sided Hausdorff
distance DH to measure fidelity.

In our case, metric DH is defined upon two finite sets A, B as follows:

DH (A,B)=max
{
h(A,B),h(B,A)

}
, where

h(A,B)=max
a∈A

min
b∈B

|a − b|

The lower the value of DH (A,B), the more similar sets A, B are. In fact, DH (A,B)

is equal to 0 if and only if sets A, B are identical.
Fidelity of a mesh is measured as the 2-sided Hausdorff distance DH of the

following sets:

• set A: a densely sampled point set on the surface of the biological object, and
• set B: a densely sampled point set on the boundary facets of the mesh.
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Notice that the mesh boundary point set B does not consist of only boundary mesh
vertices. The reason is because otherwise, the Hausdorff distance of the meshes pro-
duced by HQD would always be 0 (or very close to 0), since this method guarantees
that the boundary mesh vertices lie precisely on the object surface.

Having defined fidelity, we proceed by explaining how we control fidelity for
each mesher.

For HQD, this is possible through the parameter δ (see [12] for a more detailed
explanation). Low values of δ increase the sampling on the object surface which
yields better fidelity. High values of δ produce meshes whose boundary crudely
approximates the real surface.

For Tetgen, we had to change the fidelity of the PLC given by CGAL. We, there-
fore, had to adjust two parameters responsible for the PLC’s fidelity. The first im-
poses an upper bound on the circumradius of the Delaunay balls and the second
forces an upper bound on the distance between the circumcenter of the boundary
facets and the corresponding center of their Delaunay balls. More information can
be found in [3].

For PBM, control of fidelity is accomplished by adjusting the parameter λ. This
parameter defines the trade-off between quality and fidelity: high values of λ make
the optimization more sensitive to good fidelity, while low values do not change
a lot the position of the initial (high-quality) BCC. However, we observed that λ

does not offer a very flexible control over flexibility. Therefore, to get meshes of
substantially different fidelity, we had to change not only λ but also the density of
the initial BCC.

An important indicator of solution accuracy is the numerical conditioning of the
linear system measured by the condition number. The condition number measures
the extent by which a relative perturbation of the input affects the relative per-
turbation of the output. In the experimental evaluation below, we used Matlab’s
cond(A) function which computes the condition number as the ratio of the largest
singular value of A to the smallest.

3.4 Results

Figure 4 presents the results obtained by various meshes produced by High Quality
Delaunay (HQD), Tetgen+CGAL, and Point Based Matching (PBM) approaches.
On all plots, the x-axis measures mesh fidelity in terms of the Hausdorff distance
DH between the mesh and the object surface. All distances are shown with respect
to the unit voxel width, and each voxel has physical dimensions 1 mm × 1 mm ×
1 mm. The condition number depicted is of the matrix K+H�H which is respon-
sible for the accuracy and speed of the NRR solver (see Sect. 2.1). The registration
error—as defined in Eq. (2)—obtained after the end of the registration process. Fig-
ure 5 illustrates the meshes obtained by the three meshing approaches for the best
and the worst fidelity.

For HQD, we observe that the error does not fluctuate considerably. All the errors
are about less than half the size of a voxel, even when the DH distance is very large.
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Fig. 4 Mesh properties and the resulting solution characteristics, depending on mesh fidelity mea-
sured in terms of symmetric Hausdorff distance. The x-axis measures the same fidelity values for
all plots, and therefore is annotated only once

For Tetgen+CGAL, similarly, fidelity does not seem to affect the error considerably.
Also, although the minimum dihedral angles are larger than those in HQD, the av-
erage minimum dihedral angles are 10 to 15 degrees less than those in HQD. This
results in generally higher error than the error in HQD, but still the differences in
accuracy are not very obvious. However, the much larger condition numbers affect
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Fig. 5 The rows show the
meshes obtained with the
three studied approaches,
from top to bottom: HQD,
Tetgen+CGAL, and PBM. In
each row the left image shows
the mesh with the lowest DH

value, and the right image
shows the mesh with the
highest DH value

the speed of the FEM solver a lot. The FEM solver we use relies on the bicgstab
linear solver of the GMM library. Actually, for the two runs corresponding to the
meshes with the two best fidelity values and with the two higher condition numbers,
the solver could not even converge. For the PBM mesh we observe that the quality
is very good: the minimum and the average minimum dihedral angles reach perfec-
tion. This results in much lower condition numbers and generally lower error than
HQD and Tetgen. Again, we observe that fidelity does not play that important role
in the accuracy of the NRR. Even meshes with very bad fidelity yield an error less
than half the size of the voxel.

Also, see that for the two runs when the solver using the Tetgen meshes did
not converge, the condition number is extremely large. We wanted to look into the
timings of both the meshers and the solver in more depth, and to determine what
the influence of fidelity on speed is. We selected 5 meshes from each method of
approximately the same fidelity respectively and measured the time for meshing
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Table 1 Timings (in seconds) for various meshes obtained by different methods. Both the mesh
and the solver execution times are reported

DH HQD Tetgen+CGAL PBM

Mesher Solver Total Mesher Solver Total Mesher Solver Total

15–16.5 6.89 0.04 6.93 0.01 0.06 0.07 132.34 0.05 132.39

14–15.5 6.4 0.05 6.45 0.01 0.17 0.18 165.02 0.06 165.08

13–14.5 10.23 0.06 10.29 0.02 0.16 0.18 164.93 0.06 164.99

8.5–9.5 21.57 0.08 21.65 0.09 4.88 4.97 189.19 0.09 189.28

7–8 17.62 0.46 18.08 0.13 45 45.13 263.39 0.19 263.58

and the time for solving the registration problem. For each case, the solver has been
running until the error becomes less than 0.5 (half the size of the voxel). Table 1
summarizes the results.

We observe that the meshing time of PBM is extremely large: more than 2 min-
utes in all cases. Actually, most of this time is spent for the initial BCC creation.
On the other hand, the Tetgen+CGAL scheme is very fast: less than 2 seconds in all
cases, even for the bottom mesh which consists of 2,539 elements.

As far as the solver’s time is concerned, PBM yields the best meshes. Overall,
however, the registration process is much slower than the other methods due to the
time consuming mesh generation time. For Tetgen, the solver took much time, when
the Hausdorff distance dropped below 8.5 (see bold entries). The minimum dihedral
angle for this fidelity is more than 1◦, but the very low average minimum dihedral
angle (the lowest among all the methods) seems to affect the condition number a lot
and consequently the speed of the solver. Although the HQD meshes have elements
with very small angles, the average minimum angle is much better than Tetgen (10 to
15 degrees larger). This is why when the solver ran on HQD’s meshes, its execution
time was less than 2 seconds in all cases, yielding a good overall execution time,
even when the DH distance drops below 8.5.

4 Discussion

In this section, we summarize our findings.
The two Delaunay meshes (i.e., HQD and Tetgen) exhibit low quality when the

fidelity increases substantially (when the Hausdorff distance drops below 8 units
approximately, in our case studies). This quality deterioration yields a very large
condition number which affects the execution time of the solver (see Table 1). We
also observe that not only the minimum but also the average minimum dihedral
angle plays an important role to the solver’s speed. To see it, compare the solver’s
speed of HQD to the solver’s speed of Tetgen when the Hausdorff distance of the
meshes is between 7 and 8 units. When Tetgen’s mesh was used, the solver was
45 times slower. For these values of fidelity, Tetgen meshes have better minimum
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dihedral angles than HQD meshes, but they also have much lower average minimum
dihedral angles (15 degrees smaller), which is likely to be the reason for a much
worse condition number and the consequent large solver’s speed.

The accuracy of the solver on the meshes produced by the two Delaunay meshers
does not fluctuate significantly by the different fidelity values. That means that the
need for good surface approximation does not seem to affect the accuracy of the
solver. Meshes approximating very crudely the object surface yielded an error less
than half the voxel size.

The main characteristic of the optimization-based mesher (i.e., PBM) is the high
minimum and average dihedral angles, even in the case of very good fidelity. The
reason is because relatively dense initial BCCs can easily capture the object surface
without so much compression, thus preserving the good angles of the BCC triangu-
lation. Of course, the number of elements increases significantly, which makes the
mesh generation time extremely slow (see Table 1). We also observe that the solver
on PBM’s meshes exhibit the least error which in fact is achieved when fidelity is
very good (less than 5 units approximately). This is reasonable because good fidelity
does not deteriorate the quality as much as is the case of the two Delaunay meshes.
Notice, however, that even when the PBM meshes have very bad fidelity, the error
does not increase significantly.
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Surface Triangular Mesh and Volume
Tetrahedral Mesh Generations for Biomolecular
Modeling

Minxin Chen, Bin Tu, and Benzhuo Lu

Abstract Qualified, stable and efficient molecular surface/volume meshing ap-
pears to be necessitated by recent developments for realistic mathematical modeling
and numerical simulation of biomolecules, especially in implicit solvent modeling.
The chapter first describes a tool, TMSmesh, for surface meshing through tracing
a molecular Gaussian surface. The method computes the surface points by solv-
ing a nonlinear equation directly, polygonizes by connecting surface points through
a trace technique, and finally outputs a triangulated mesh. TMSmesh has a linear
complexity with respect to the number of atoms and is shown to be capable of han-
dling molecules consisting of more than one million atoms, which is usually difficult
for the existing methods for surface generation used in molecular visualization and
geometry analysis. Then, based on the surface mesh, a tool chain is built up to gener-
ate high-quality biomolecular volume tetrahedral mesh. The performances of these
meshing tools are analyzed, and the surface/volume meshes are shown to be applica-
ble to boundary element/finite element types of simulations of Poisson–Boltzmann
electrostatics.

1 Introduction

Molecular surface mesh is widely used for visualization and geometry analysis in
computational structural biology and structural bioinformatics. Volume mesh also
emerges to be useful in finite element modeling of molecular structure, interac-
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tion and dynamics. Recent developments in realistic mathematical modeling and
numerical simulation of biomolecular systems raise new demands for qualified, sta-
ble, and efficient surface and volume meshing, especially in implicit-solvent mod-
eling (e.g., see a review in [30]). Main concerns for improvement on existing meth-
ods for molecular surface/volume mesh generation are efficiency, robustness, and
mesh quality. Efficiency is necessary for simulations/computations requiring fre-
quent mesh generation or requiring mesh of large systems. Robustness here means
the meshing method is stable and can treat various, even arbitrary, sizes of molecular
systems within computer power limitations. Mesh quality relates to mesh smooth-
ness (avoiding sharp solid angles, etc.), uniformness (avoiding elements with very
sharp angles or zero area), and topological correctness (avoiding isolated vertices,
element intersection, single-element-connected edges, etc.). The mesh quality is
critical for some numerical techniques, such as boundary element/finite element
methods, to achieve converged and reasonable results, which makes it a more de-
manding task in this respect than the mesh generations only for the purposes of
visualization or some structural geometry analysis.

Various definitions of molecular surface, including the van der Waals (VDW)
surface, solvent accessible surface (SAS), solvent excluded surface (SES), molec-
ular skin surface [14], minimal molecular surface [1] and Gaussian surface, etc.,
have been proposed to describe the shapes of molecular structure. The VDW sur-
face is defined as the surface of the union of the spherical atomic surfaces with the
VDW radius of each atom in the molecule. The SAS and SES are represented by the
trajectory of the center and the interboundary of a rolling probe on the VDW sur-
face, respectively. The molecular skin surface is the envelope of an infinite family
of spheres derived from atoms by convex combination and shrinking. The minimal
molecular surface is defined as a result of the surface free energy minimization. Dif-
ferent from these definitions, the Gaussian surface is defined as a level set of the
summation of the Gaussian kernel functions as follows

{
x ∈R

3, φ(x)= t0
}
, (1)

where

φ(x)=
N∑

i=1

ed(‖x−ci‖2/r2
i −1), (2)

ci and ri are the location and radius of atom i, the parameter d is negative and
controls the decay speed of the kernel functions. When |d| increased, the resulting
Gaussian surface is closer to the VDW surface. In this work, the value of d and t0 are
set as−1 and 1, respectively. Compared with other definitions of molecular surface,
Gaussian surface is smooth and more suitable to represent the electron density of
a molecule [13]. The VDW surface, SAS, and SES can be approximated well by
the Gaussian surface with proper parameter selection [2, 13]. The Gaussian surface
has been widely used in many problems in computational biology, such as docking
problems [33], molecular shape comparisons [18], calculating SAS areas [48] and
the generalized Born models [49].
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With various definitions of molecular surface that have been proposed, numer-
ous works have been devoted to the computation of molecular surface. The repre-
sentative ones are described as follows. In 1983, Connolly proposed algorithms to
calculate the molecular surface and SAS analytically [9, 10]. In 1995, a popular
program, GRASP, for visualizing molecular surfaces was presented [36]. In 1997,
Vorobjev et al. proposed SIMS, a method of calculating a smooth invariant molec-
ular dot surface, in which an exact method for removing self-intersecting parts and
smoothing the singular regions of the SES was presented [45]. Sanner et al. pre-
sented a tool based on α shapes [15], named MSMS, for meshing the SES [39]. Ryu
et al. proposed a method based on β shapes that are a generalization of α shapes
[38]. More recently, Zhang et al. used a modified dual contouring method to gener-
ate mesh for biomolecular structures [52], and a later tool, GAMer, was developed
for improving the mesh quality [50]. Can et al. proposed LSMS to generate the
SES on grid points using level-set methods [5]. Chavent et al. presented MetaMol
to visualize the molecular skin surface using ray-casting method [6], and Cheng et
al. used restricted union of balls to generate mesh for molecular skin surface [8].
So far, these methods or tools usually successfully calculated different surfaces of
small- or medium-sized biomolecules, but they are not suitable for large molecules
with more than hundreds of thousands of atoms. Moreover, most of these methods,
such as GRASP, MSMS, and LSMS were designed for molecular visualization and
geometry analysis in computational structure biology or structural bioinformatics.
Among those, MSMS is the most widely used one for molecular surface triangula-
tion because of its high efficiency. However, the generated mesh is not a manifold
and is composed of very irregular triangles. For some numerical modeling using,
for instance, finite element/boundary element methods, the mesh quality usually
needs to be improved through mesh topology checking (picking out the irregular
nodes/edges/elements and rearranging the mesh), surface mesh smoothing, and so
on [30]. In this chapter, we describe a recently developed robust method, named
TMSmesh [7, 43] that is capable of meshing the Gaussian surface for biomolecules
consisting of more than one million atoms in 30 min on a typical 2010 PC, and the
mesh quality is shown to be applicable to boundary element method simulations of
biomolecular electrostatics.

As the Gaussian surface is an implicit surface, the existing techniques for trian-
gulating implicit surface can be used for the Gaussian surface. These methods are
divided into two main categories: spatial partition and continuation methods. The
well-known marching cubes [28] and dual contouring methods [24] are examples of
the spatial partition methods. This kind of method divides the space into cells and
polygonizes the implicit surface in the cell whose vertices have different signs of
the implicit function. An assumption is required that the implicit function is almost
linear in the cell. As shown in the following sections, TMSmesh does not require
this assumption. The continuation methods [19, 20, 25] are of another category.
These methods mesh the implicit surface by growing current polygonization’s bor-
der through the predictor–corrector method which predicts the next surface point in
the tangent direction of the current one and corrects it on the surface. The predictor–
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corrector method is used in TMSmesh to generate the next corrected point on the
surface from current one, and the topology connection is confirmed by checking
the continuity between the corrected and current points, otherwise we restart the
predictor–corrector from current point with a smaller step size, until the continuity
is fulfilled. The above process is defined as the trace technique in this chapter, and
it can be seen as a generalization of the predictor–corrector method. The quality of
mesh triangles is well controlled in continuation methods, but techniques for avoid-
ing overlapping, filling the gap between adjacent branches, and selecting proper
initial triangles are required. In TMSmesh, no problems of overlapping, gap filling,
and selecting initial seeds need to be considered, because the Gaussian surface is
polygonized by connecting presampled surface points.

Once a surface mesh is obtained, we can generate a volume mesh conforming
to the molecular surface. The Advancing Front technique (AFT) [27, 32, 34, 37],
Octree methods [40] and Voronoi Delaunay based methods [3, 4, 16] are some
of the well studied techniques in unstructured mesh generation. There are some
software packages for tetrahedral mesh generation such as TetGen [42], NetGen
[35], and CAMAL [11]. TetGen corresponds to a suite of techniques to gen-
erate different tetrahedral meshes from three-dimensional point sets or domains
with piecewise linear boundaries. NetGen is an automatic 3D advancing-front
tetrahedral mesh generator that accepts input from constructive solid geometry
(CSG) or boundary representations (BRep) from the STL file format. CAMAL
(the CUBIT Adaptive Meshing Algorithm Library) contains several of the CUBIT
projects mesh generation algorithms. The tetrahedral mesh generation tool included
in CAMAL is TetMesh-GHS3D [17], a package to automatically create tetrahe-
dral meshes from closed triangular surface meshes, with little or no user interac-
tion.

A tetrahedral mesh is created by two steps: first, generating a triangular mesh of
the boundary of the target volume, then filling the inside of the triangular mesh with
tetrahedral elements. A surface mesh may include two types of defects, geometric
defects and topological defects. A self intersection is one of the common geometric
defects, and a common topological defect is a gap or a hole located where the mesh
needs to be closed. Due to complexity of molecular structure, the surface mesh is
often of poor quality, even has defects. This makes it difficult to get high-quality
tetrahedral mesh. In this chapter, we have built a tool chain to generate high-quality
biomolecule mesh by combining a number of mesh generation tools. TMSmesh is
first used to generate the molecular surface triangular mesh. The mesh quality is
then improved through topology check and smoothing. Finally, the volume mesh is
generated using TetGen.

This chapter is organized as follows. In Method section (Sect. 2), we present our
method for polygonizing the Gaussian surface and a tool chain for generating tetra-
hedral volume mesh. Some examples and applications are presented in the Results
section (Sect. 3). The final section, Conclusion (Sect. 4), gives some concluding
remarks.
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2 Method

2.1 Surface Triangular Mesh Generation

In this section, we describe the algorithm for meshing the Gaussian surface. Our
algorithm contains two stages. The first stage is to compute the points on the surface
by solving a nonlinear equation φ(x) = t0. The second stage is to polygonize the
Gaussian surface by connecting the generated points. In the following subsections,
each stage is described in detail.

2.1.1 Computing the Points on the Gaussian Surface

From the definition of Gaussian surface, the points on the Gaussian surface are the
roots of nonlinear equation φ(x, y, z)= t0, where φ(x, y, z) is defined in (2). There-
fore, solving φ(x, y, z)= t0 is equivalent to computing the points on the Gaussian
surface. In this method the equation is solved by the following steps.

Suppose the molecule is placed on a three-dimensional orthogonal grid consist-
ing of nx×ny×nz cubes. For an arbitrary cube [xi, xi+h]×[yi, yi+h]×[zi, zi+
h], where (xi, yi, zi) is the lower-left front corner, and h is the edge length of the
cube. To decide whether the cube has intersection with the surface, we proposed the
following lower and upper bounds of φ(x) in the cube for Gaussian surface:

Li =
N∑

k=1

e−dLx
k,iL

y
k,iL

z
k,i ≤ φ(x, y, z)≤

N∑

k=1

e−dUx
k,iU

y
k,iU

z
k,i =Ui, (3)

for (x, y, z) ∈ [xi, xi + h] × [yi, yi + h] × [zi, zi + h], where

Uα
k,i =

{
1, ck

α ∈ [αi,αi + h]
max{ed(αi−ck

α)2/r2
k , ed(αi+h−ck

α)2/r2
k }, ck

α /∈ [αi,αi + h] (4)

Lα
k,i = min

{
ed(αi−ck

α)2/r2
k , ed(αi+h−ck

α)2/r2
k
}
, (5)

with α ∈ {x, y, z} and ck = (ck
x, c

k
y, c

k
z ). Uα

k,i and Lα
k,i are the upper and lower

bounds along α-dimension of the kernel located at atom k in the cube, respectively.
Uα

k,i and Lα
k,i take either 1 or a value of the kernel at the boundary of the cube.

If t0 ∈ [Li,Ui], then the Gaussian surface φ(x, y, z)= t0 may have an intersection
with cube [xi, xi + h] × [yi, yi + h] × [zi, zi + h], otherwise there is no surface
point in the cube. Note that the upper-bound Ui and the lower-bound Li depend on
the edge length of the cube h. The bounds are sharper when h is smaller. Above
estimation is easy to combine with an octree data structure to decide intersection
more adaptively. Figure 1 shows a two dimensional case that uses a quadtree data
structure with bounds in Eqs. (4) and (5) to find the cubes intersecting the surface.
In Fig. 1, the black curves represent the surface φ(x)= c, and the red cubes are the
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Fig. 1 A two dimensional
case that using a quadtree
data structure with bounds in
Eqs. (4) and (5) to find the
cubes intersecting the surface.
The black curves represent
the surface φ(x)= c, and the
red cubes are the left cubes
whose lower bounds are
smaller than c and upper
bonds are larger then c. Most
of the red cubes intersect the
surface

left cubes whose lower bounds are smaller than c and upper bonds are larger then c.
Most of the red cubes intersect the surface. This figure shows that the smaller the
cube size, the shaper the bounds are in Eqs. (4) and (5).

The above estimation technique allows the deletion of the majority of cubes,
which do not intersect the surface. In each of the left cubes, some surface points
are sampled through root finding. Suppose the cube [xi0, xi0 + h] × [yi0, yi0 + h] ×
[zi0, zi0 + h] is one of them, we solve the nonlinear equation φij (x) � φ(x, yi0 +
ih̃, zi0 + j h̃)= t0, for each {i, j}, i, j = 1, . . . , [h/h̃]. Then h̃ is to control the vertex
density of the mesh. To find the roots, φ(x, yi, zj ), x ∈ [xi0, xi0 + h], is approxi-
mated by the following M th-degree polynomial

pij

(
2(x − xi0)/h+ 1

)=
M∑

n=1

(2i + 1)anLn

(
2(x − xi0)/h+ 1

)
/2, (6)

where an =
∫ 1
−1 φ[hx/2 + (xi0 + h/2), yi, zj ]Ln(x)dx, Ln(x) is the nth-degree

Legendre polynomial, M is set as 10, and h is 4 Å in our work. Then pij [2(x −
xi0)/h + 1] = t0 is solved using Jenkins–Traub method [22]. The real roots of
pij [2(x−xi0)/h+1] = t0 in [xi0, xi0+h] should be checked by |φ(x, yi, zj )− t0|<
ε (ε is an error tolerance) and be improved by Newton iterations, if needed. This pro-
cess may lose some roots of φij (x) = t0, due to approximation of pij [2(x − xi0)/

h+1] to φij (x), but they would be found through trace processes in the polygoniza-
tion stage.

2.1.2 Trace Step

In this subsection, the trace step employed in polygonization stage is described in
detail. The objective of the trace step is to connect two (previously identified) grid–
surface intersection points. In the trace step, the next connected surface point is
predicted and corrected from the initial point with an initial step size, and the con-
nection is confirmed through checking the continuity between the two points. If the
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Algorithm 1 Trace step
Input: Initial step size h1 and initial surface point p0. The y-coordinates of two
adjacent lines on xy-plane, y0 and y1. User defined small positive value ε and the
bound for the cosine value δ (0< δ <1).
Step 1, initialize h2 = h1 and p0 = (x0, y0).
Step 2, let p′0 = p0 + h2(−φy(p0),φx(p0)).
Step 3, use Newton iterations to find t , s.t.

φ
(
p′0 + t

(
φx

(
p′0
)
, φy

(
p′0
)))= t0.

Let p1 = p′0 + t (φx(p0),φy(p0)).
Step 4, if |φx(p1)| < ε, p1 is an extreme point along x direction, add it to the
extreme point list.
Step 5, if cos((φx(p1),φy(p1)), (φx(p0),φy(p0))) < δ (condition �1) or
(φx(p1)φx(p0) < 0 and min(|φx(p1)|, |φx(p0)|) > ε) (condition �2), let h2 =
h2/2 and go to step 2.
Step 6, if (p0(y) − y0)(p1(y) − y0) < 0 (or (p0(y) − y1)(p1(y) − y1) < 0)a ,
interpolate p0 and p1 to get the connected point (x1, y0) (or (x1, y1)), let p1 =
(x1, y0) (or p1 = (x1, y1)) and stop.
Step 7, let p0 = p1 and go to step 1.
Output: The final connected surface point (x1, y0) on y = y0 (or (x1, y1) on
y = y1), and the extreme point(s) if exist.
aWhere p0(y) and p1(y) denote y-coordinates of point p0 and p1, respectively.

continuity is not fulfilled, then restart the prediction and the correction process from
the initial point with a smaller step size. Because every trace step is performed either
on xy or yz-planes between lines parallel to x-axis in the polygonization stage, we
discuss the details of the trace step on the xy-plane between two lines parallel to x-
axis as an example. Suppose there are two lines y = y0, and y = y1 on the xy-plane
with four surface points (x0, y0), (x1, y0), (x2, y1), (x3, y1) on them and y1 > y0,
φx(x0, y0) > 0, Algorithm 1 connects (x0, y0) and (x1, y0) (see Fig. 2). Moreover,
the extreme point (x∗, y∗) is caught during the trace step to preserve the details of
the surface.

In the step 2 of Algorithm 1, p′0 is the predicted surface point from p0 along the
tangent direction at p0 with step size h2. Step 3 is to correct p′0 back to the sur-
face along the gradient direction of φ(x) at p′0. Step 4 is to check whether p1 is
an extreme point along the x-direction. In step 5, condition (�1) is used to deter-
mine if the step-size h2 is acceptable through checking whether the angle between
the normal directions at p0 and p1 is small enough, otherwise restart the predic-
tion and correction from p0 with a smaller step size; δ is a user-specified bound
for cosine value of the angle. If the condition is not sufficient in some cases, then
other conditions can be added, such as continuity of higher order derivatives. In
the case that an extreme point along the x-direction exists between p0 and p1,
condition (�2) is used to detect it. In step 6, if the line segment connecting p0
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Fig. 2 Schematic picture of Algorithm 1. Curved lines indicate the surface on the xy-plane. Arrows
on the surface denote the normal directions of the Gaussian surface on xy-plane pointing to the
outside of the molecule. The p0 is the initial point, (x∗, y∗) is an extreme point along x-direction,
and (x1, y0) is the final connected point on the surface obtained through the trace step from p0.
As an illustration, p̃′0 and p̃1 on the dashed line that kinks near the curve on the right-hand side
are the predicted and corrected points with a larger initial step h1, which can be avoided through
conditions (�1) in Algorithm 1. While p′0 is the predicted point along the tangent direction of p0
with a smaller step size h1/2, and p1 is the corrected surface point from p′0

and p1 crosses line y = y0 (or y = y1), then the point of intersection is the final
trace point. In step 7, p0 is replaced by p1 and starts tracing the next connect sur-
face point from step 1. This process indicates that the final connected point can
be located through trace step from initial point, therefore, the position of the final
point needs not be known before the trace process. For this reason, a disjointed
part of the whole surface will not be missed after the polygonization stage un-
less no points from the disjointed part are found in the stage of surface point sam-
pling.

2.1.3 Polygonization

This section is devoted to the polygonization step which connects the presampled
points obtained through the process described in the section of computing surface
points. Because solving φ(x, y, z) = t0 for different y, z values is equivalent to
finding the intersection points of the surface and the different lines parallel to x-
axis, polygonization of the whole surface can be achieved through connecting these
points on every adjacent four lines. The problem is how to connect the surface points
on the adjacent four lines. Suppose we have surface points set P consisting of four
lists of points:

{
xi

1, y0, z0
}
, i = 1, . . . , n1, (7)

{
xi

2, y0 + h̃, z0
}
, i = 1, . . . , n2, (8)
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Algorithm 2 Connecting the points on the four adjacent lines from the initial point
p0 to form one polygon

Input: The set P containing coordinates of all sampled points on the four adjacent
lines. The grid space h̃. The yz-coordinates of lower-left line {y0, z0}. The initial
point p0.

Find the connected point p1 on adjacent line using trace step on xy-plane from the
initial point p0 along the tangent direction (−sigxφy(p0), sigxφx(p0),0), where
sigx is the sign of φx(p0).
Let idx= 1, i = 1 and P = P − {p0}.
while pi �= p0 do

if pi is in set P then
Let P = P − {pi}.

end if
if idx= 1 then

if pi (y)= y0 then
Find the connected point pi+1 on adjacent line using trace step on xz-
plane from pi along the tangent direction (−sigxφz(pi ),0, sigxφx(pi )).

else if pi (y)= y0 + h̃ then
Find the connected point pi+1 on adjacent line using trace step on xz-
plane from pi along the tangent direction (sigxφz(pi ),0,−sigxφx(pi )).

end if
Let idx= 2.

else if idx= 2 then
if pi (3)= z0 then

Find the connected point pi+1 on adjacent line using traces step on xy-
plane from pi along the tangent direction (−sigxφy(pi ), sigxφx(pi ),0).

else if pi (3)= z0 + h̃ then
Find the connected point pi+1 on adjacent line using trace step on xy-
plane from pi along the tangent direction (sigxφz(pi ),−sigxφx(pi ),0).

end if
Let idx= 1.

end if
Let i = i + 1.

end while
Output: The polygon whose vertices are pj , j = 1, . . . , i, and the extreme points
(if they exist) along x-direction obtained during the trace steps.

{
xi

3, y0, z0 + h̃
}
, i = 1, . . . , n3, (9)

{
xi

4, y0 + h̃, z0 + h̃
}
, i = 1, . . . , n4, (10)

in the four adjacent lines:
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Fig. 3 Schematic picture of
connecting surface points on
the four adjacent lines parallel
to x-axis to form small close
loops, i.e. polygons

{
y = y0
z= z0

,

{
y = y0 + h̃

z= z0
,

{
y = y0

z= z0 + h̃
,

{
y = y0 + h̃

z= z0 + h̃
.

(11)

Without loss of generality, assume n1 > 0 and (x1
1 , y0, z0) � p0 is chosen to be

the initial point. Through invoking the trace step described in former subsection,
Algorithm 2 is to connect the points on the four adjacent lines to form small closed
loops, i.e. polygons, on the surface. This is illustrated in Fig. 3.

Algorithm 2 is repeated until all points are connected, i.e., P is empty. This al-
gorithm traces vertices of polygons in xy- and xz-planes alternately. The variable
idx records the location of the last trace step and the sigx records the direction of
the first trace step. If the traced vertex is not in the same xy-plane or xz-plane as
p0, then the next trace direction will be reversed. After Algorithm 2 is finished, pj ,
j = 0, . . . , i − 1, and the extreme points (if they exist) along x-direction obtained
during the trace steps are connected and form a polygon on the surface. Figure 4
shows some examples of polygons with a different number of vertices obtained with
Algorithm 2. The polygon can be simpler when the distances between the adjacent
lines are shorter due to the smoothness of Gaussian surface. Based on the poly-
gonized surface, the triangulation of the surface can be produced using standard
polygon triangulation methods [12].

2.2 Volume Tetrahedral Mesh Generation

We have built a tool chain for high-quality biomolecule volume mesh generation
by using a number of existing mesh generation tools. The tool chain has essentially
three components: surface meshing, quality improving, and volume mesh genera-
tion. First, a triangulation of the Gaussian surface is generated using the program
TMSmesh. The unaltered TMSmesh surface meshes for large molecules sometimes
have a few geometric defects. Therefore, in the second step, we firstly use the pro-
gram ISO2Mesh [21] to simplify the surface mesh, which is the process of reduc-
ing the number of faces or adding some points used in the surface while keeping
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Fig. 4 Some polygons with different numbers of vertices obtained from Algorithm 2. The unla-
beled vertices are extreme points obtained from the trace steps

manifold, the overall shape, volume and boundaries preserved as much as possible.
Subsequently, the program TransforMesh [44] is used to remove self-intersecting
faces. Finally, in the third step, the tetrahedral volume mesh is generated using the
program TetGen. TetGen uses a set of switches to control the behavior of TetGen.
In general, we use the switch command “-pq” to get high-quality tetrahedral mesh.
The -p switch reads a piecewise linear complex (PLC) stored in file .poly or .smesh
and generates a constrained Delaunay tetrahedralization (CDT) of the PLC. The -q
switch performs quality mesh generation by Shewchuk’s Delaunay refinement algo-
rithm [41].

3 Results

3.1 Performance

In this section, we will present the performance of TMSmesh and the tool chain
for tetrahedral mesh generation. The performance of TMSmesh is compared with
those of LSMS and MSMS. LSMS is a very fast program using a level-set method
to present the surface based on cubic grids. MSMS is a typical and efficient soft-
ware to triangulate the SES in modeling area. A set of biomolecules with different
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Table 1 Description of molecules in the PQR benchmark

Molecule
(name or PDB code)

Number
of atoms

Description

GLY 7 A single glycine residue

ADP 39 ADP molecule

2JM0 589 PDB code, chicken villin headpiece subdomain
containing a fluorinated side chain in the core

FAS2 906 fasciculin2, a peptidic inhibitor of AChE

AChE monomer 8280 Mouse acetylcholinesterase monomer

AChE tetramer 36638 The structure of AChE tetramer, taken from Ref. [51]

30S ribosome 88431 30S ribosome, the PDB code is 1FJF

70S ribosome 165337 Obtained from 70S_ribosome3.7A_model140.pdb.gz on
http://rna.ucsc.edu/rnacenter/ribosome_downloads.html

3K1Q 203135 PDB code, a backbone model of an aquareovirus virion

2X9XX 510727 A complex structure of the 70S ribosome bound to
release factor 2 and a substrate analog, which has 4
split PDB entries: 2X9R, 2X9S, 2X9T, and 2X9U [23]

1K4R 1082160 PDB code, the envelope protein of the dengue virus [26]

sizes is chosen as a test benchmark. The meshing software run on the molecular
PQR files (PDB + atomic charges and radii information). For tests of TMSmesh
and the tool chain, we prepare a PQR benchmark (see Table 1) that can be found
and is downloadable at our web page http://lsec.cc.ac.cn/~lubz/Meshing.html. It is
worth making a note here about the vertex density used in TMSmesh and LSMS for
comparison with MSMS surface density. For TMSmesh, grid spaces 1.0 and 0.7 Å
are chosen to approximate the molecular surface vertex densities 1/Å2 and 2/Å2, re-
spectively. For LSMS, the current implementation works only on the following grid
sizes: 163, 323, 643, 1283, 2563, and 5123 (requiring a 4 GB memory machine).
Therefore, for each molecule, a proper grid size in LSMS is chosen to achieve the
approximate density of 1/Å2 or 2/Å2, according to the maximum molecular length
in xyz directions.

Table 2 shows the CPU time and memory use for these methods with 1 and
2 vertex/Å2 mesh densities. All computations run on Dell Precision T7500 with In-
tel(R) Xeon(R) CPU 3.3 GHz and 48 GB memory under 64 bit Linux system. As
shown in Table 2, TMSmesh costs less memory than LSMS and MSMS but much
more CPU time for small- or medium-sized molecules. The main cost of TMSmesh
is in the polygonization stage that connects the presampled surface points on par-
allel lines through invoking the trace steps intensively. During each trace step, pre-
diction and correction need to be performed several times with a small step size
about 0.1 to 0.2 Å, i.e., there needs 5–10 prediction–correction steps within 1 Å dis-
tance on the surface to ensure the continuity of curves connecting vertices. However,
LSMS directly searches and approximates the molecular surface based on cubic
grid points using the level-set method. MSMS analytically computes molecular sur-

http://rna.ucsc.edu/rnacenter/ribosome_downloads.html
http://lsec.cc.ac.cn/~lubz/Meshing.html
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Table 2 CPU time and memory use for molecular surface generation by TMSmesh, LSMS and
MSMSa

Molecule Number of atoms CPU time (s) Memory use (MB)

TMSmesh LSMSb MSMS TMSmesh LSMS MSMS

FAS2 906 1.2 0.05 0.1 2 10 2

1.8 0.1 0.1 4 19 2

AChE monomer 8280 12 0.1 0.6 11 21 21

19 0.4 0.8 19 33 21

AChE tetramer 36638 40 0.5 5.9 36 346 75

62 3.6 7.1 54 257 79

30S ribosome 88431 92 3.6 16.2 64 260 198

151 28.1 19.1 100 2016 212

70S ribosome 165337 180 3.8 46.2 127 262 469

283 28.6 Fail 185 2100 –

3K1Q 203135 226 4.0 51.5 131 262 383

359 28.9 55.1 192 2100 410

2X9XX 510727 577 30.5 Fail 271 2100 –

910 Fail Fail 410 – –

1K4R 1082160 1260 30.5 Fail 630 2168 –

2080 Fail Fail 890 – –

aThe data in the first and second row for each molecule are corresponding to density 1 vertex/Å2

and 2 vertex/Å2, respectively
bThe fail cases in this column require grid size 10243 or larger, which is not supported by LSMS

face by first generating the so-called reduced surface that is obtained directly from
atomic geometry information. Both LSMS and MSMS avoid the time-consuming
step, polygonization. This makes LSMS and MSMS cost less CPU time than that
of TMSmesh. Nevertheless, either the surface topology or the smoothness may not
be guaranteed in LSMS and MSMS. TMSmesh is expected to be speeded up using
an adaptive box structure, parallel computing, and more sophisticated polygoniza-
tion algorithm. For LSMS, the cost is proportional to L3, where L is the number
of grids in one dimension. Therefore, the memory requirement and the CPU time
increase dramatically when L becomes large. For MSMS, the computational com-
plexity is O(N log(N)), where N is the number of atoms, but the singularity of the
molecular surface may cause numerical instability and produce incorrect results. In
TMSmesh, the number of cubes is proportional to the number of atoms, since the
edge length of cube is fixed to be 4 Å in this work. In addition, the calculations are
done locally, and no global information is needed during the process of estimating
the bounds of φ(x) in each cube, computing surface points, and tracing of the left
cubes intersecting the surface. The reason is that calculating the values of φ(x) and
its gradients only need to sum Gaussian kernels for near atoms, as the Gaussian



98 M. Chen et al.

Fig. 5 Computational performance of TMSmesh

Fig. 6 A Surface triangular mesh of the envelope protein of the dengue virus (PDB code 1K4R
[26]). The left-hand side is the whole surface mesh, and the right-hand side is a close view of a
selected part with a gap on the surface (surrounded by the box). Because the structure is a shell,
the inner surface of the other side of the shell is also shown through the gap

kernel ed(‖x−ci‖2/ri−1) decreases to 0 faster when ‖x − ci‖ is larger. As shown in
Table 2 and Fig. 5, the complexity of TMSmesh is O(N). Compared to LSMS and
MSMS, TMSmesh produces triangulations of a smooth surface, and it can be suc-
cessfully applied to biomolecule consisting of more than one million atoms, such
as dengue virus as shown in Fig. 6. Because the virus structure is among the largest
ones in the Protein Data Bank (PDB), together with consideration of good algorithm
stability, TMSmesh can be expected to be capable of handling the arbitrary size of
molecules available in PDB.

Because MSMS is a widely used tool for surface meshing in molecular mod-
eling, we compare the qualities, in particular uniformness, of triangles produced
by TMSmesh and MSMS. The distributions of angles of each triangle are used to
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Fig. 7 Distributions of angles of each triangle produced by MSMS (left column) and TMSmesh
(right column). The first row is for AChE tetramer meshes with densities 2 vertex/Å2. The second
row is for FAS2 meshes with densities 2 vertex/Å2

describe the uniformness of meshes. The angle distributions of meshes for a large
molecule, AChE tetramer, and a relatively small one, FAS2, are shown in Fig. 7.
TMSmesh and MSMS meshes with density 2 vertex/Å2 are compared. It is shown
that at 2 vertex/Å2, the angles of TMSmesh meshes are clustered around 50 de-
grees. Comparatively, at a low density of 2 vertex/Å2 the angles of MSMS meshes
distribute more evenly in [0,180]. In addition, successful applications (see the fol-
lowing subsection) of all of our meshes to boundary element simulations also in-
dicate improvement in mesh quality relative to MSMS mesh in the sense of right
topology (e.g., without single-element-connected edges, isolated points), uniform-
ness, and smoothness.

It is worth making a note of the molecular cavity as explored by many other
surface meshing tools. TMSmesh does not differentiate the outer surfaces and inte-
rior surfaces of cavities in the meshing process. The cavities can be located through
the connectivities of the triangle elements, because an internal cavity is a disjointed
component of Gaussian surface (Eq. (1)) and its normal directions ∇φ(x) are in-
ward. The same method of finding internal cavities is used in GRASP [36].

The volume tetrahedral mesh is generated by TetGen, whose quality closely relies
on the TMSmesh mesh quality and the sequential simplification/smoothing treat-
ment of our tool chain. Figure 8 shows an example of the unstructured tetrahedral
volume mesh and triangulated surface mesh of AChE tetramer that has 36638 atoms
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Fig. 8 An example of mesh generation for AChE tetramer. (a) Cross section of the whole tetrahe-
dral volume mesh. (b) A close-up view of the fine mesh around the molecule, whose body is col-
ored by red. (c) The triangular boundary mesh conforming to the molecular surface. (d) A close-up
view of the molecular surface mesh

(see in Table 1). The molecular surface mesh is smoothed from the original surface
mesh created by TMSmesh. The figures are mainly done by TetGen.

Mesh quality is an important factor influencing the convergence and stability of
finite element solvers. We choose aspect ratio to measure the quality of tetrahe-
dral meshes. The aspect ratio is defined as the ratio of the longest edge length to
the smallest side height in a tetrahedron. The aspect ratio distributions of tetra-
hedral meshes for a large molecule, AChE tetramer, and a relatively small one,
FAS2, are shown in Fig. 9. The tetrahedral mesh of AChE tetramer has 940588
vertices and 5948823 simplices, and that of FAS2 has 45098 vertices and 280786
simplices. Fig. 9 displays the aspect ratio distributions for the AChE tetramer and
FAS2 meshes, which shows that most tetrahedrons have aspect ratios between 1 to 4.

As the CPU time observed in our test cases, the volume meshing takes about
double of that spent on surface meshing stage using TMSmesh for most molecules.



Surface Triangular Mesh and Volume Tetrahedral Mesh Generations 101

Fig. 9 Distributions of the aspect ratio for an AChE tetramer mesh (left) and a FAS2 mesh (right)

3.2 Applications

Similar to other surface generation software, such as MSMS, the surface mesh gen-
erated by TMSmesh preserves molecular surface features and thus can be applied to
molecular visualization and analysis of surface area, topology, and volume in com-
putational structure biology and structural bioinformatics. Furthermore, the goal of
this work is to extend applications to some advanced mathematical modeling of
biomolecules, which places demands upon the quality and the rigorous topology of
the surface and volume meshes.

In this part, we test the meshes in computation of the Poisson–Boltzmann electro-
statics. It is known that the PB electrostatic energy is sensitive to molecular surface
definition and meshing method. Since the MSMS meshes based on SES have al-
ready been used in many previous works for small and medium sized molecules and
have demonstrated to generate reasonable results, we first quantitatively compare
the properties of surface meshes generated by TMSmesh and MSMS. A detailed
comparison of the surface areas and molecular volumes computed from the two
types of meshes is shown in Fig. 10 for three small molecules, GLY, ADP, and
2JM0 (see Table 1) using different mesh densities. In our previous work [7, 43],
we have already shown that the mesh generated by TMSmesh can be successfully
applied to boundary element method calculations (for example, see [31]) with better
convergence performance and lead to reasonable results.

The volume tetrahedral mesh generated from the TMSmesh surface mesh by the
tool chain described in this chapter can also show good performance in the usage
of finite element method. Figure 11 shows the FEM results of Poisson–Boltzmann
electrostatic potential of AChE tetramer. A very smooth numerical solution is ob-
tained over the whole domain.
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Fig. 10 Area (first column) and volume (second column) for GLY (top row), ADP (middle row),
and 2JM0 (bottom row)

4 Conclusion

We have described a method for molecular surface meshing by a tracing surface
technique and a tool chain for generating high-quality tetrahedral mesh based on
the surface mesh. The implemented software TMSmesh is shown as a robust tool
for meshing molecular Gaussian surfaces in the sense that: (1) It can stably handle
arbitrary sizes of molecules available in PDB on a typical desktop or laptop ma-
chine, even for the not “good” molecular structures (such as ones with strong atomic
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Fig. 11 Electrostatic potential of AChE tetramer. (a) Surface electrostatic potential from the Pois-
son–Boltzmann solution. The color scale is from −3 (red) to 2 (blue) kcal/mol·e. (b) A cross
section view of the electrostatic potential (note: the potential shown inside the molecule is only
corresponding to the reaction field part)

clash) and (2) the generated mesh has good quality (smoothness, uniformness, and
topological correctness). The mesh converges to the smooth Gaussian surface when
the mesh resolution increased and from which the calculations of surface area and
molecular volume show good convergence performance and reasonable results. The
tool chain described in this chapter is an effective way to get high-quality volume
tetrahedral mesh. In addition to usual applications of molecular visualization and
geometry analysis, the meshes are also shown to be applicable for numerical simu-
lations with boundary element/finite element methods.

In order to simulate more complicated and wider ranges of biophysical processes
using a variety of numerical techniques and modeling approaches, the current mesh-
ing methods need further improvements. First, efficiency seems to be the current
bottleneck in some possible applications where the mesh needs to be either gener-
ated for large systems or generated frequently, such as in multiple-conformational
analysis, BEM or FEM-based implicit solvent MD simulations [29, 46] (whereas in
some finite difference-based MD simulations [47], surface meshing is not required),
or elastic modeling of conformational changes. Second, mesh quality needs to be
further improved, especially for the surface mesh as its quality also influences the
generation and quality of volume mesh.

Finally, it is worth a mention regarding PB calculations. It is hard to conclude so
far which surface specification is the best for biophysical studies due to being com-
plicated by some other factors (like the atomic radii) in the setup of a PB calculation
that can also affect the final results. Likewise, the Gaussian surface model and the
meshing approach adopted in this work for PB electrostatic calculations will need
further systematic studies and comparisons with experiments or other computational
methods.
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A Combined Level Set/Mesh Warping Algorithm
for Tracking Brain and Cerebrospinal Fluid
Evolution in Hydrocephalic Patients

Jeonghyung Park, Suzanne M. Shontz, and Corina S. Drapaca

Abstract Hydrocephalus is a neurological disease which occurs when normal cere-
brospinal fluid (CSF) circulation is impeded within the cranial cavity. As a result,
the brain ventricles enlarge, and the tissue compresses, causing physical and men-
tal problems. Treatment has been mainly through CSF flow diversion by surgically
implanting a CSF shunt in the brain ventricles or by performing an endoscopic third
ventriculostomy (ETV). However, the patient response to either treatment continues
to be poor. Therefore, there is an urgent need to design better therapy protocols for
hydrocephalus. An important step in this direction is the development of predic-
tive computational models of the mechanics of hydrocephalic brains. In this paper,
we propose a combined level set/mesh warping algorithm to track the evolution
of the ventricles in the hydrocephalic brain. Our combined level set/mesh warping
method is successfully used to track the evolution of the brain ventricles in two
hydrocephalic patients.

1 Introduction

Hydrocephalus (also called water on the brain) is a serious neurological disorder
which occurs when normal cerebrospinal fluid (CSF) circulation is impeded within
the cranial cavity. If hydrocephalus develops in infancy, the intracranial pressure is
raised, and, as the CSF accumulates in the ventricles, the brain tissue compresses,
and both the ventricles and the skull expand. The most common cause of infan-
tile hydrocephalus in the U.S. is hemorrhage in the neonatal period, particularly in
premature infants [13]. With approximately four million births occurring annually
in the U.S., it is estimated that about 20%–74% of the approximately 50,000 very-
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low-birth-weight infants born yearly will develop post-hemorrhagic hydrocephalus.
On the other hand, in the Sub-Saharan Africa which has one of the world’s greatest
disease burdens of bacterial meningitis, post-infectious hydrocephalus is the most
common form of infantile hydrocephalus with more than 100,000 cases arising each
year.

The treatment of hydrocephalus is based on CSF flow diversion. The dilation of
the ventricles can be reversed by either CSF shunt implantation or by performing
an endoscopic third ventriculostomy (ETV) surgery, resulting in a relief from the
symptoms of hydrocephalus. Despite the technical advances in shunt technology
and endoscopy, the two treatment options display no statistically significant dif-
ference in the efficacy for treating hydrocephalus [84]. Endoscopic third ventricu-
lostomy works well only in appropriately selected clinical cases of hydrocephalus
[11], whereas shunt failure occurs in over 60% of patients [29]. Considering that
many shunt recipients are children, and that shunts are lifelong commitments, these
statistics underscore the importance of improving therapy. Furthermore, the postop-
erative persistence of the ventricular dilation constitutes a diagnostic limit for ver-
ifying the adequate functioning of ventriculostomy procedures in comparison with
the treatment based on the placement of CSF shunt devices [13]. Therefore, there is
an earnest need to design better therapy protocols for hydrocephalus.

An important step in this direction is the development of predictive mathemat-
ical and computational models of the mechanics of hydrocephalic brains. Many
mathematical models have been proposed to explore the pathophysiology of hy-
drocephalus. The Monro–Kellie hypothesis [34, 49] simplifies the dynamics of the
cranium to an underlying competition for space between CSF, blood, and brain
parenchyma. This idea leads to numerous pressure-volume models where the CSF
is contained within one compartment surrounded by compliant walls representing
the brain parenchyma. These time-dependent models [16, 42, 78] (and references
therein) are incapable of representing the complex dynamics of the cranium and
provide little insight toward a more fundamental understanding of the development
of hydrocephalus. Hakim [23] introduced a mechanical model describing the brain
parenchyma as a porous sponge of viscoelastic material that compressed due to a
pressure gradient causing the sponge cells to collapse. Nagashima [51] extended
this model by applying Biot’s theory of consolidation [7] and carried out simula-
tions of the resulting mathematical model using the finite element method. This
introduced one of the two current approaches to modeling the biomechanics of the
brain parenchyma, namely the poroelastic model [32, 59, 79, 82, 85], in which the
brain is considered to be a porous linearly elastic sponge saturated in a viscous in-
compressible fluid. These models account for the interaction of CSF with the brain
parenchyma and thus can be used to model long-time scale phenomena such as the
development of hydrocephalus. The second main approach is to model the brain
parenchyma as a linear viscoelastic material [44–46, 89, 91]. Both linear viscoelas-
tic and poroelastic models are based on the assumption of small strain theory which
means that they are capable of predicting only small deformations. To correctly
model the large deformations seen in hydrocephalus, nonlinear material laws are
required and such models for brain parenchyma have been recently proposed in
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[14, 21]. These models are able to successfully predict the large ventricular dis-
placements seen in hydrocephalus. However, most of the above mentioned mechan-
ical models suffer from the assumption that the brain’s geometry is either a cylinder
or a sphere.

In order for mechanical models of brain to be of clinical relevance their corre-
sponding computational algorithms and software must incorporate the anatomical
geometry of the brain as seen in medical images as well as efficient and robust
numerical solvers. Therefore, the aim of our paper is to propose an elegant com-
putational approach that combines medical image processing, level set methods,
and moving meshes to simulate the mechanical response of hydrocephalic brains to
treatments.

We propose a computational pipeline approach for evolution of the brain ventri-
cles involving the following steps: image denoising, image segmentation based on a
threshold method, prediction of the ventricular boundaries via the level set method,
generation of computational meshes of the brain, mesh deformation using the finite
element-based mesh warping (FEMWARP) method, and mesh quality improvement
of the deformed meshes.

We review the literature in these areas in Sect. 2. We give a general introduction
to level set methods and mesh warping methods and describe the specific meth-
ods being used in our combined level set/mesh warping approach in Sect. 3. Our
computational pipeline approach for tracking the evolution of the brain ventricles is
given in Sect. 4. Simulation results for the evolution of the brain ventricles in hydro-
cephalic patients post-treatment via shunt insertion are reported in Sect. 5. Section 6
explains our conclusions and future research plans.

2 Generation of Dynamic Biomedical Computational Models
and Simulations

2.1 Generation of Image-Based Computational Models

Biomedical computational models which are derived from images are often created
by following a specific pipeline approach [12]: (1) image processing and (2) sur-
face/volume mesh generation. Dynamic computational models also require the in-
clusion of a third step, i.e., (3) mesh motion. We highlight several of the existing
techniques in these three areas found in the literature. A comprehensive review is
not the focus of this section, as the literature is extensive; hence, we focus on the
most similar approaches to the proposed approaches.

2.2 Image Segmentation

The image segmentation problem [64] is to partition an image into nonoverlapping
regions whose union is the entire image; each identified region shares a characteris-



110 J. Park et al.

tic such as image intensity or texture [22, 24, 56]. For segmentation of the image, it
is also important that each region be connected. (Pixel classification [35] is a related
problem whereby the constraint that each region be connected is removed. Although
this can sometimes be desirable in medical image analysis, we seek to determine a
classical segmentation of the image into regions as opposed to a discrete, pixel clas-
sification segmentation.) In medical image segmentation, each region would ideally
represent an anatomical structure.

There are numerous image segmentation techniques available to researchers to-
day. Popular approaches for medical image segmentation [40, 64, 92] include:
thresholding methods (e.g., [66]), region growing methods (e.g., [27] and [28]),
classifier methods from pattern recognition (e.g., [2] and [6]), clustering methods
(e.g., [6]), Markov random field model methods (e.g., [25]), artificial neural network
approaches (e.g., [41]), deformable models (e.g., [33, 43, 68]), and atlas-guided ap-
proaches (e.g., [19, 69]).

Level-set methods (e.g., [1, 17, 48, 52–54, 60, 68, 88]) represent one very popular
deformable model approach that have been used extensively for image segmentation
and for other image processing problems, such as image registration. In particular,
the level set approach delineates region boundaries using closed parametric curves
(or surfaces) that deform under the influence of a PDE; the problem is cast as a front
evolution problem. This front propagation approach is different from the earlier en-
ergy minimization evolution approaches, such as snakes (e.g., [33, 43]). The speed
of the deformation is essential to the position of the final contours. Local curvature
of the contour, intensity gradient, shape, and position contours have all been used
for the speed term [68]. One important advantage of level set methods is they permit
easier handling of topological changes.

2.3 Mesh Generation

The classical approach for generating computational meshes from images that have
been segmented and registered has been to perform a surface interpolation between
the contours describing the segmented volume [18, 65, 67]. Often this is done us-
ing the marching cubes (MC) algorithm [39]. However, the regularized marching
tetrahedron (RMT) algorithm [83] yields topologically-consistent surface meshes,
whereas the MC method does not.

Computational biomedical meshes with tetrahedral [12, 20, 30, 37, 81, 95] or
hexahedral [47, 70, 87, 96] elements are typically created for finite element or finite
volume simulations based on the surface mesh input. Hybrid meshes [15, 58, 94]
have also been used when high accuracy is required but hexahedral mesh generation
is infeasible due to biomedical data complexity. Another possibility is to generate
a mesh based on the input of a level set [9]. Mesh optimization methods are used
to improve the quality of biomedical meshes [26, 38, 86]; only recently have such
techniques been designed for hybrid meshes [15].
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2.4 Moving Meshes

Persson et al. [61–63, 80] developed a moving mesh technique based on the incor-
poration of level sets into an adaptive mesh refinement technique. They applied their
moving mesh technique to image-based problems [61, 62]. Despite the fact that their
applications involved a mesh, their algorithm does not compute the motion based
upon the mesh; rather the motion is computed based upon the use of a Cartesian or
octree background mesh and adaptive mesh refinement for mesh density control.

Mesh warping algorithms compute the deformation of the mesh from the source
to the target domain based upon interpolation and/or extrapolation of the vertex
coordinates. Typically the topology of the mesh is held fixed in order to allow for
seamless integration with a numerical partial differential equation solver. Several
mesh warping techniques for biomedical applications have been developed [3, 5,
36, 75–77]. However, they cannot be used for the development of computational
models for tracking the evolution of the brain ventricles for hydrocephalus, as they
do not incorporate the physics of the brain deformation due to the disease or its
treatment.

2.5 Motivation for Current Study

Despite all of the research that has been performed in the areas of image processing,
level sets, and dynamic mesh generation, there is no algorithm or software pack-
age which combines level sets with mesh warping. In addition, no such algorithms
have been developed for tracking the evolution of the brain ventricles pre- and post-
treatment of hydrocephalus.

3 Introduction to the Level Set Method and FEMWARP

In this section, we give an introduction to level set methods and mesh warping meth-
ods for applications with deforming domains. In addition, we describe the specific
level set and mesh warping methods used to develop our combined level set/mesh
warping approach in this paper. These methods are the energy minimization formu-
lation of the level set method due to Chan and Vese and the finite element-based
mesh warping (FEMWARP) method due to Shontz and Vavasis.

3.1 Level Set Methods

In this section, we give an introduction to the level set method and describe the
particular level set method used in our work. The level set method is a numerical
technique for tracking evolving interfaces, shapes, curves, or surfaces. The level set
method was developed by Osher and Sethian in 1987 initially for problems in fluid
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dynamics [55]. However, there has been a significant amount of research on level set
methods by numerous researchers, which has allowed for numerous extensions of
the method and its applications to numerous other fields. Two significant advantages
of level set methods are: (1) the deforming curve or shape need not be parametrized
and (2) deforming shapes undergoing topological changes can easily be tracked.
These advantages make the level set method ideal for tracking the evolution of the
ventricles of the hydrocephalic brain.

3.1.1 The Chan and Vese Level Set Method for Curve Evolution

Here we describe the basic level set method for curve evolution [55]. First we de-
fine some notation. Let Ω prescribe a bounded open subset of R2, with boundary
given by δΩ . Let u0 : Ω̄ → R denote a given image and C(s) : [0,1] → R

2 denote
a parametrized curve. In level set methods, implicit representation of the curve C is
given by a Lipschitz function φ. That is, C = {(x, y)|φ(x, y) = 0}. The zero-level
curve of the function at time t of the function φ(t, x, y) is used to evolve C. In order
to evolve the curve C, a speed and direction must be prescribed.

The level set method we use in this paper is due to Chan and Vese and evolves the
level set curve based on a level set formulation of an energy functional minimization
[10]. In particular, suppose that C ⊂Ω is given by the zero level set of a Lipschitz
function φ :Ω →R satisfying the following properties:

C = ∂ω= {(x, y) ∈Ω :φ(x, y)= 0
}

inside(C)= ω= {(x, y) ∈Ω :φ(x, y) > 0
}

(1)

outside(C)=Ω \ ω̄= {(x, y) ∈Ω :φ(x, ) < 0
}
,

where C is the boundary of ω.
Let c1 and c2 denote constants depending on C which denote the averages of u0

inside and outside of C, respectively, and let F(c1, c2, φ) denote the energy func-
tional to be minimized. Furthermore, denote by μ ≥ 0, ν ≥ 0, λ1, and λ2 fixed
parameters and by Hε and δε regularized Heaviside functions and one-dimensional
Dirac measures.

Then the regularized energy functional which is minimized to obtain the curve
evolution is defined as follows:

Fε(c1, c2, φ)= μ

∫

Ω

δε

(
φ(x, y)

)∣
∣∇φ(x, y)

∣
∣dx dy

+ ν

∫

Ω

He

(
φ(x, y)

)
dx dy

+ λ1

∫

Ω

∣
∣u0(x, y)− c1

∣
∣2Hε

(
φ(x, y)

)
dx dy

+ λ2

∫

Ω

∣
∣u0(x, y)− c2

∣
∣2
(
1−Hε

(
φ(x, y)

))
dx dy. (2)
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Letting φ(0, x, y) = φ0(x, y) denote the initial contour, then the speed of the
level set is given by

∂φ

∂t
= δε(φ)

[

μdiv

( ∇φ

|∇φ|
)

− ν − λ1(u0 − c1)
2 + λ2(u0 − c2)

2
]

= 0 in (0,∞)×Ω,

φ(0, x, y) = φ0(x, y) in Ω,

δε(φ)

|∇φ|
∂φ

∂n
= 0 on ∂Ω,

(3)

where n denotes the exterior normal boundary ∂Ω , and ∂φ/∂n denotes the normal
derivative of φ at the boundary. More details are given in [10].

We solve the energy minimization problem given by (2) and (3) for the curve
evolution using the Matlab implementation by Wu in [93].

3.2 Mesh Warping Methods

In this section, we describe mesh warping techniques for biomedical applications
and the three-step finite element-based mesh warping (FEMWARP) method (see,
e.g., [4]). Mesh warping methods are numerical techniques for deforming a mesh
from a source to a target domain. Such techniques are needed when the geometric
domain of interest deforms as a function of time, and the mesh must be updated at
each time step in response to the deforming domain boundary in order for the mesh
to remain a valid approximation of the geometry.

3.2.1 The Shontz and Vavasis Finite Element-Based Mesh Warping
(FEMWARP) Algorithm

We base our description of the FEMWARP method upon the presentation of the
algorithm given in [74]. Let M denote a triangular finite element mesh on a two-
dimensional domain, Ω . Let b and m denote the numbers of boundary and interior
vertices of M , respectively, and let n=m+ b denote the total number of vertices.

The first step of the FEMWARP algorithm is to represent each interior vertex in
M as a specific linear combination of its neighboring vertices. In order to determine
the weights the linear combination for each interior vertex, the (m+ b)× (m+ b)

global stiffness matrix A for the following boundary value problem

�u= 0 on Ω

with u= u0 on ∂Ω is formed, where A is computed based on piecewise linear finite
elements on M . Because only the relevant matrix is kept, any u0 may be prescribed.
(For a mathematical description of the entries in A, see [31].)
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For simplicity, assume that the interior vertices of M are labeled 1,2, . . . ,m and
that the boundary vertices are labeled m+ 1,m+ 2, . . . , n. Next, partition A as

A=
(

AI AB

AT
B X

)

,

where AI is m×m, AB is m× b, and X is b× b.
Next, let x be a vector containing the x-coordinates of the initial mesh vertices.

Because any linear function of the coordinates lies in the null-space of the dis-
cretized Laplacian operator, it follows that [AI ,AB ]x = 0. A similar identity holds
for the y-coordinates. Equivalently,

AIxI =−ABxB. (4)

To represent each interior vertex as a linear combination of its neighboring ver-
tices, one can divide each row of [AI ,AB ] by the diagonal element in that row. This
yields a linear system whose diagonal entries are 1’s and whose row sums are 0’s.
Hence, each interior vertex is represented as a linear combination of its neighboring
vertices.

The second step of the FEMWARP method is to transform the boundary vertices
to new positions by applying a user-prescribed boundary deformation. Denote the
new boundary vertex positions by [xB, yB ]→ [x̂B, ŷB ].

The third step of the FEMWARP algorithm is to solve the above linear system of
equations, i.e., (4) with a new right-hand side vector based on the new positions of
the boundary vertices for the new coordinates of the interior vertices of M̂ on Ω̂ . In
particular, we solve (5)

AI [x̂I , ŷI ] = −AB [x̂B, ŷB ] (5)

for [x̂I , ŷI ].
FEMWARP maintains the topology of the mesh when warping M to M̂ ; hence

the mesh is fully satisfied after solving (5).

4 Ventricular Deformation for Boundaries Obtained from the
Level Set Method and FEMWARP in Hydrocephalic Patients

Assuming as input medical images of the brain of a hydrocephalic patient taken
at different times, a combined level set/mesh warping approach can be designed
in order to track the evolution of the brain ventricles. In particular, the level set
method given by (2) and (3) can be used in order to segment the medical images
and determine the ventricular boundaries. The FEMWARP mesh warping technique
described in Sect. 3.2 can used to deform the ventricular geometry from the source
to the target ventricular boundary. Our combined approach is used in a computa-
tional pipeline involving the following steps: image denoising, image segmentation,
obtaining boundary vertices via the level set method, mesh generation, mesh warp-
ing, and mesh quality improvement. Pseudocode for our proposed computational
pipeline is shown in Algorithm 1. The following subsections give more details about
each step in our computational pipeline.
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Algorithm 1 Mesh warping with the level set method
1: Input: X ← medical image having initial ventricular boundary
2: Y ← medical image having goal ventricular boundary
3: Image denoising using mask filters
4: Image segmentation via thresholding method
5:

6: Obtain ventricular boundary vertices from segmented X and Y medical images
via level set method

7: A ← ventricular boundary vertices for X
8: B ← ventricular boundary vertices for Y
9:

10: Generate initial mesh with A using Triangle
11:

12: LOOP 1: Deform mesh from A to B using FEMWARP
13: if mesh is valid then
14: Mesh quality improvement on the deformed mesh
15: return mesh
16: else
17: n = 1 // Intermediate mesh deformation
18: while mesh is invalid do
19: C← ( 1

2 )n(B −A)

20: Deform mesh from A to C using small-step FEMWARP
21: n = n + 1
22: end while
23: Mesh quality improvement on the deformed mesh
24: A ← C
25: end if
26:

27: Go to LOOP 1

4.1 Image Denoising

In order to obtain the boundary vertices of the ventricles in the medical images,
image denoising is first performed. By applying the appropriate mask filter to the
image, the image is denoised and the image becomes easy to recognize the object.

4.2 Image Segmentation

After image denoising is performed, the image is segmented by a thresholding
method. The method selects an appropriate threshold value for the image and di-
vides the image into two parts: the ventricles and outside the ventricles based on the
threshold value. In the segmented image (Fig. 1), the white-colored parts represent
the ventricles we want to deform.
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4.3 Obtaining Boundary Vertices

The level set method is then employed in order to obtain the boundary vertices of
the ventricles in the post-treatment image. The contour constructed by the boundary
vertices for the ventricles in the segmented pre-treatment image is used as the zero
level set which is the input of the level set method.

Given the zero level set, the level set method moves the contour along its interior
normal, and the contour evolves until it matches the boundary of the ventricles in
the segmented post-treatment image.

4.4 Mesh Generation

The mesh used as an input for mesh warping is generated based on the boundary
vertices of the ventricles in the segmented pre-treatment image. To generate the
initial mesh, Triangle [71] is employed.

4.5 Mesh Deformation

To track the movement of the ventricles in the brain when hydrocephalus is treated
by shunt insertion, the initial mesh is deformed until it matches the target ventricu-
lar boundary vertices for post-treatment. To deform the mesh, the FEMWARP [74]
algorithm (see Sect. 3.2 for a description) is used.

When mesh deformation is performed, the deformed mesh may become tangled
due to a large deformation. In this case, intermediate deformation steps are gen-
erated based on performing a backtracking line search between the pre- and post-
treatment ventricular boundary vertices. Thus, a target which will yield a valid de-
formed mesh can be designed. An invalid mesh element can be detected by comput-
ing the sign of the determinant of an element’s Jacobian matrix and comparing it to
its original sign. If a tangled mesh is generated by the deformation, a backtracking
line search brings the deformed vertices back to the halfway point of the deforma-
tion between the source and target vertex locations. This reduces the deformation
size and prevents tangling. Small-step FEMWARP can then be used to successfully
deform the mesh.

4.6 Mesh Quality Improvement

The deformed meshes often have poor mesh quality since large deformations cause
poorly-shaped elements near to the moving ventricular boundary. It is well-known
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that the mesh quality effects the time to solve PDE, the condition number of the
numerical linear system, and the accuracy of the PDE solution [72].

Hence, in order to improve the quality of the deformed meshes, mesh quality
improvement is performed using the Mesh Quality Improvement Toolkit (Mesquite)
Version 2.1.4 [8]. The objective function used in this study is

f (x)= 1

n

∑

1≤i≤n

q2
i , (6)

where f is the overall mesh quality as measured by the average of the sequence of
the element qualities, qi is the quality of element i, and n is the number of elements
in the mesh.

The inverse mean ratio metric [50] was used as the mesh quality metric for the
mesh optimization in (6). The formula for computing the inverse mean ratio of an
element is given by

q = ‖AW−1‖2
F

2 det(AW−1)
, (7)

where A is the Jacobian matrix for the physical triangle, and W is a Jacobian matrix
for the reference triangle. The range for this quality metric is 1 to∞ for non-inverted
elements. Inverted elements correspond to a negative value of the metric. Since an
equilateral triangle is the ideal element for the mesh optimization procedure in this
study, 1 is the ideal value of the metric. Hence, lower values of the metric correspond
to meshes with better quality.

During the mesh optimization process, the boundary vertices are held fixed. In
addition, the initial meshes and subsequent meshes are not allowed to contain any
inverted elements. In order to minimize (6), a local implementation of the feasible
Newton method [50] is employed. We terminate the mesh optimization process af-
ter obtaining the same value of the objective function to six digits of accuracy on
successive iterations.

5 Simulations of the Evolution of the Brain Ventricles in
Hydrocephalic Patients

Three simulations were designed to track the evolution of the brain ventricles upon
treatment of hydrocephalus via shunt insertion. The simulations were performed
based on our proposed combined level set/mesh warping algorithm (see Algo-
rithm 1). The level of difficulty varied in these simulations, from simple to complex
based on the specific deformation of the ventricles. Two medical image sets derived
from [90] were used in simulations. The first set of medical images included two CT
images, corresponding to pre- and post-treatment. The second set included three CT
images, corresponding to pre-treatment and two time periods post-treatment. The
Solaris machine used for the simulations of the evolutions of the ventricles was an
UltraSPARC-III CPU with a 750 MHz processor, 1 GB SDRAM of memory, and
an 8 MB L2 cache.
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Fig. 1 Two segmented
images: pre- and
post-treatment. The image
was denoised with a 4× 4
mask filter. After image
denoising, the images were
segmented

Fig. 2 Boundary vertices
obtained from pre- and
post-treatment segmented
images. The ventricular
boundary movement due to
shunt insertion is shown

5.1 Simulation 1: Small Decrease in the Area of the Ventricles

We obtained pre- and post-treatment (three months later) CT images [90] for a hy-
drocephalic patient who was treated by shunt insertion. In this simulation, the sixth
line in Algorithm 1 was performed manually without using the level set method.
Since we tested a simple case of the deformation in this simulation, the lines from
16 to 25 in Algorithm 1 (intermediate mesh deformation) were not performed. To
track the evolution of the brain ventricles, the images were first denoised by using a
4× 4 mask filter for both images.

After denoising the images, the images were segmented based on a threshold
value for the pixels. For this simulation, a threshold value of 20 was applied. The
images obtained from image denoising and image segmentation are shown in Fig. 1.
In the segmented images, the white-colored parts represent the ventricles containing
CSF whose evolution was tracked in our numerical simulation.

Once image segmentation was performed, the boundary vertices were easily ob-
tained. By tracing the shape of the ventricles, the boundary vertices used in the
mesh generation step were obtained. Figure 2 shows the boundary vertices obtained
from the segmented images. Each ventricular boundary contains 225 vertices in the
boundary. Each vertex has the same Euclidean distance from itself to its neighboring
vertices.
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Table 1 Inverse mean ratio mesh quality statistics for several meshes used in the simulation. The
feasible Newton method [50] implemented in Mesquite [8] was used for average mesh quality
improvement

Mesh Inverse mean ratio mesh quality

min avg rms max std

Initial mesh 1.00002 1.05555 1.05816 2.0110 0.07427

Deformed mesh 1.00001 1.31565 2.36839 82.6890 1.96934

Optimized mesh 1.00000 1.14067 1.15345 3.8571 0.18090

Fig. 3 (a) Initial mesh generated by Triangle [71] and (b) the deformed mesh generated by
FEMWARP mesh warping algorithm. (c) Mesh quality improvement was performed on the de-
formed mesh to improve the mesh quality

After the boundary vertices were obtained from the segmented images, the initial
mesh for the boundary vertices of pre-treatment image was generated using Triangle
[71]. The mesh contained 2298 vertices and 4245 elements, and its initial quality
is given in Table 1. Based on the initial mesh and the final ventricular boundary
vertices obtained from the post-treatment image, mesh deformation for tracking the
shape evolution of the brain ventricles was performed via FEMWARP [74].

The initial mesh and the deformed meshes resulting from mesh deformation and
mesh quality improvement procedures are shown in Fig. 3. Since the area of the
ventricles was decreased as keeping similar shapes in this simulation, the deforma-
tion was small. Because of this, FEMWARP easily controlled the deformation, so a
tangled mesh was not generated.

As the final step of the simulation, the deformed mesh was optimized to improve
the mesh quality by using Mesquite [8]. Table 1 and Fig. 4 show the mesh quality
statistics and the quality distribution for each mesh generated during the simulation.

The average mesh quality of the initial mesh was 1.05555. After mesh defor-
mation, the mesh quality of the deformed mesh was 1.31565. The number of good
quality elements decreased from 1550 to 1050. By performing mesh quality im-
provement, the quality of the deformed mesh was improved to 1.14067. The number
of poor quality elements decreased by more than half compared to the unoptimized
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Fig. 4 Inverse mean ratio mesh quality distribution for meshes generated in Simulation 1

Fig. 5 Boundary movement
of each vertex and their
corresponding distances
between pre- and
post-treatment deformation

deformed mesh. The number of high quality elements (i.e., those with quality values
ranging from 1 to 1.2) increased from 1700 to 2400 due to the mesh optimization
process. Also, the quality of the worst element in the deformed mesh improved sig-
nificantly from 82.689 to 3.857.

The distances for each boundary vertex during the deformation are visualized
in Fig. 5. The distances were computed by calculating the Euclidean distance be-
tween corresponding ventricular boundary vertices in the pre- and post-treatment
images. During the mesh deformation, the shapes of the ventricles containing the
CSF changed. Since the sizes of the vectors in the middle-left and the upper-right
parts of the ventricles were bigger than the corresponding vectors for the other parts,
more boundary vertex movement occurred in the middle-left and the upper-right
parts of the ventricles compared to the other parts. It is also shown in Fig. 5(b) that
the boundary vertex movements around the vertices indexed 50 and 200 were larger
than those of other vertices. Note that the boundary vertices were indexed from the
starting point (90,59) and moving in a clockwise direction.
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Fig. 6 Segmented images for obtaining the boundary vertices from the given three CT images:
(a) pre-treatment, (b) period 1 (six months later), and (c) period 2 (one year later). The white-
colored parts represent the ventricles which deform as their fluid volume decrease after shunt
insertion

5.2 Simulation 2: Asymmetric Ventricular Shape Change

Three CT images [90] were used in the simulation: pre-treatment, period 1 (six
months later), and period 2 (one year later). The goal of this experiment was to
simulate ventricular deformation from pre-treatment to period 1 and from period 1
to period 2. In this simulation, the intermediate mesh deformation in Algorithm 1
(i.e., lines 16 through 25) was performed. Also, similar to the previous simulation,
the ventricular boundary vertices were obtained with a manual process, and not with
the level set method specified in the sixth line in Algorithm 1.

To reduce the noise in the image, a 3 × 3 mask filter for the pre-treatment CT
image, a 6× 6 mask filter for the period 1 CT image, and a 4× 4 mask filter for the
period 2 CT image were applied. After image denoising was performed, the images
were segmented based on an appropriate threshold value. In this simulation, the
threshold values 20, 77, 45 were used for the pre-treatment, period 1, and period 2
images. The segmented images to be used for obtaining the boundary vertices are
shown in Fig. 6. The white-colored parts in the segmented images represent the
brain ventricles which deform as their fluid volumes decrease after the treatment via
shunt insertion.

The boundary vertices obtained from the segmented images are shown in Fig. 7.
For each boundary vertex, the next vertex is selected from the boundary vertices
with a fixed Euclidean distance from the given vertex. The boundary vertices were
computed and ordered by repeating this process.

Using the ventricular boundary vertices for pre-treatment, the initial mesh was
generated using Triangle [71]. The mesh contained 4311 vertices and 8166 ele-
ments; its mesh quality in given in Table 2. By using the boundary vertices obtained
from the segmented images, the first mesh deformation step from pre-treatment to
the period 1 boundary was performed via FEMWARP [74]. Mesh deformation re-
sults from the initial mesh to the period 1 boundary are shown in Fig. 8.

As can be seen in Fig. 8, since inverted elements were generated during mesh
warping, the deformed mesh cannot be used as an input mesh for the next deforma-
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Fig. 7 Boundary vertices obtained from the segmented images: pre-treatment, period 1, and pe-
riod 2

Table 2 Inverse mean ratio mesh quality statistics for several meshes used in the simulation of the
ventricular mesh deformation from pre-treatment to period 1. The feasible Newton method [50]
implemented in Mesquite [8] was used for average mesh quality improvement

Mesh Inverse mean ratio mesh quality

min avg rms max std

Initial mesh 1.00000 1.11483 1.12096 2.4723 0.11708

6th deformation 1.00000 1.13918 1.17003 10.9184 0.26693

Opt. 6th deformation 1.00002 1.13266 1.16431 5.1703 0.26964

9th deformation 1.00001 1.16464 1.19760 14.5821 0.27905

Opt. 9th deformation 1.00001 1.15143 1.19106 6.5797 0.30469

tion step, as tangled meshes are not allowed to be used as an input for finite element
methods, including methods such as FEMWARP which are based on a finite ele-
ment method. The majority of the inverted elements were located in the marked area
shown in Fig. 8(b). Compared to the other ventricular boundary areas, the mesh de-
formation in the marked areas was larger. To avoid tangled mesh generation, several
intermediate mesh deformation steps for use with small-step FEMWARP [73] were
designed. The intermediate steps showed more details of the ventricular evolution
when the hydrocephalus was treated by shunt insertion.

To generate the intermediate mesh deformation steps, the new boundary vertices
between the pre-treatment and period 1 boundary vertices were obtained by man-
ual selection of the intermediate boundary vertices. By using the newly obtained
boundary vertices, the mesh deformation was performed. Since adding the inter-
mediate mesh deformation steps decreased the size of the deformation, small-step
FEMWARP easily handled the deformation without generating inverted elements in
the deformed meshes.

Nine total intermediate mesh deformation steps were designed from the initial
mesh generated by pre-treatment boundary vertices to the deformed mesh to be
generated by period 1 boundary vertices. Figure 9 shows the mesh deformation re-
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Fig. 8 The first mesh
deformation of the ventricular
boundary from pre-treatment
to period 1. Inverted elements
exist in the marked areas
where a large deformation
occurred

sults from pre-treatment to the period 1 ventricular boundaries with intermediate
deformation steps. In Fig. 9, the initial mesh, the meshes resulting from the sixth
deformation, and the meshes resulting from the ninth deformation are shown.

Mesh quality improvement was performed for each deformed mesh before de-
forming the mesh again in order to improve the mesh quality. The inverse mean
ratio mesh quality statistics and element quality distribution results are shown in
Table 2 and Fig. 10.

Fig. 9 (a) The initial mesh generated by using Triangle [71] and (b) and (d) the deformed meshes
generated by the FEMWARP algorithm [74]. The mesh resulting from the ninth deformation
matched to the boundary vertices of the ventricles for period 1. (c) and (e) The improved deformed
meshes after use of mesh quality improvement
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Fig. 10 Inverse mean ratio element quality distribution for the meshes generated in Simulation 2
(ventricular mesh deformation from pre-treatment to period 1). Quality distributions for (a) the
initial mesh, (b) the sixth intermediate mesh, (c) the sixth intermediate mesh after mesh quality
improvement was performed, (d) the ninth intermediate mesh, and (e) the ninth intermediate mesh
after mesh quality improvement was performed

The average quality of the initial mesh was 1.11483 according to the inverse
mean ratio mesh quality metric. The average quality of the sixth intermediate mesh
improved from 1.13918 to 1.1326 by performing mesh quality improvement. The
worst mesh quality of an element in the sixth intermediate mesh showed a noticeable
improvement as a result of mesh quality improvement, as it decreased from 10.9184
to 5.1703.

The ventricular boundary vertices in the ninth intermediate mesh matched exactly
the ventricular boundary vertices obtained from the segmented image for period 1.
Due to mesh quality improvement, the average mesh quality improved from 1.16464
to 1.15143; the worst mesh quality of an element in the ninth intermediate mesh
improved from 14.5821 to 6.57973.

In Fig. 10, it can be seen that most of the mesh elements (approximately 90% of
the elements) for the ninth intermediate mesh had good mesh qualities after mesh
quality improvement was performed. Also, the number of poor quality mesh ele-
ments decreased. Since the poor quality mesh elements tended to generate inverted
elements if the mesh was used as an input for the mesh deformation, reducing the
number of poor quality mesh elements makes the next intermediate mesh deforma-
tion step more likely to succeed.
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Fig. 11 (a) The mesh with the ventricular boundary vertices matched to the period 1 ventricular
boundary vertices. (b) and (d) The deformed meshes generated by FEMWARP [74]. The fifteenth
intermediate deformed mesh result matched exactly to the boundary vertices for the ventricles in
the segmented period 2 image. (c) and (e) Mesh quality improvement was performed to improve
the quality of the meshes at each step of the ventricular deformation

From the ninth intermediate mesh, the deformation to the ventricular boundary
for period 2 was performed. After six of the intermediate meshes were generated,
the boundary vertices of the deformed mesh matched to the boundary vertices of
the ventricles in the segmented period 2 image. Figure 11 shows the mesh defor-
mation results from period 1 to period 2. Six intermediate deformation steps were
generated for this part of the simulation. In this figure, the mesh which having the
boundary vertices matched to the ventricular boundary vertices for period 1, the
twelfth intermediate step, and the fifteenth intermediate step are shown. The ven-
tricular boundary vertices in the fifteenth intermediate mesh matched exactly the
ventricular boundary vertices for period 2.

Mesh deformation from period 1 to period 2 boundary of the ventricles was eas-
ier than that for pre-treatment to period 1. Mesh deformation from period 1 to the
period 2 ventricular boundary required fewer intermediate mesh deformation steps
than did the earlier part of the simulation. This is because the ventricles shrunk
significantly, allowing for more feasible possibilities for interior vertex positions.

Table 3 and Fig. 12 show the inverse mean ratio mesh quality improvement re-
sults and the quality distribution for the deformed meshes from the simulation of the
ventricular deformation from period 1 to period 2.
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Table 3 Inverse mean ratio mesh quality statistics for several meshes used in the simulation. The
feasible Newton method [50] implemented in Mesquite [8] was used for average mesh quality
improvement. For improving the worst quality of the final mesh, the PS mesh quality improvement
algorithm [57] was applied to obtain further improvement

Mesh Inverse mean ratio mesh quality

min avg rms max std

12th deformation 1.00001 1.26625 1.36000 20.1674 0.49619

Opt. 12th deformation 1.00001 1.24535 1.34960 11.8054 0.52010

15th deformation 1.00020 1.57492 1.70020 6.7762 0.64054

Opt. 15th deformation 1.00002 1.53606 1.81146 18.4508 0.96015

Opt. 15th deformation (with PS) 1.00015 1.68952 1.78281 4.3440 0.56913

Fig. 12 Inverse mean ratio mesh quality distribution for meshes generated in Simulation 2 (ven-
tricular mesh deformation from period 1 to period 2). Quality distribution for (a) the twelfth inter-
mediate mesh, (b) the twelfth intermediate mesh after mesh quality improvement was performed,
(c) the fifteenth intermediate mesh, (d) the fifteenth intermediate mesh after mesh quality im-
provement was performed, and (e) the fifteenth intermediate mesh after the worst quality element
improvement was performed
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Fig. 13 (a) Boundary
movement of each vertex
from pre-treatment to
period 1; (b) boundary
movement of each vertex
from period 1 to period 2;
(c) the distance between the
pre-treatment and period 1
vertices; (d) the distance
between the period 1 and
period 2 vertices

As shown in Table 3, the average mesh quality for the twelfth intermediate mesh
improved from 1.2625 to 1.24535. The worst mesh quality also improved from
20.1674 to 11.8054. Figure 12 shows that approximately 90% of the mesh elements
in the twelve intermediate mesh have good mesh qualities after mesh quality im-
provement was performed.

Although the average mesh quality of the fifteenth intermediate mesh improved
from 1.57492 to 1.53606 by performing mesh quality improvement with Mesquite
[8], still many poor mesh quality elements existed in the mesh, and the worst mesh
quality of the fifteenth intermediate mesh degraded from 6.7762 to 18.4508. Thus, to
reduce the number of poor quality mesh elements, mesh quality improvement of the
worst mesh element was performed by using the pattern search (PS) mesh quality
improvement algorithm [57]. By using this algorithm, the quality of the worst mesh
element improved from 18.4508 to 4.3440. Most of the mesh elements had good
mesh qualities, in spite of the fact that the average quality of the mesh increased
slightly to 1.68952.

The distances for boundary vertex movement during the deformations are visual-
ized in Fig. 13. For the deformation from pre-treatment to period 1, most of the ven-
tricular boundary vertices moved symmetrically except in the middle-left parts of
the ventricles. The shapes for the middle-left parts of the ventricles changed signifi-
cantly more than that of middle-right parts. This is because the shunt was inserted in
the ventricles in this spot in order to treat the hydrocephalus. The sizes of the vectors
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Fig. 14 Brain boundary
vertices obtained from the
segmented images. The ×, ◦,
and ∗ symbols represent the
pre-treatment, period 1, and
period 2 brain boundaries,
respectively

in the two lower parts and upper-left parts of the ventricles were bigger than the sizes
of the corresponding vectors for the other parts. Figure 13(c) shows the distances
from the pre-treatment to the period 1 ventricular boundary vertices. The distances
are computed by calculating the Euclidean distance from pre-treatment ventricular
boundary vertices the corresponding vertices in period 1. Note that they do not rep-
resent the cumulative distances moved during the mesh warping procedure. As can
be seen in Fig. 13(c), the boundary vertex movements around the vertices indexed
5, 100, and 240 were larger than those of the other vertices.

In the case of the deformation from period 1 to period 2, most of the ventricular
boundary vertices showed large movements during the deformation. In Fig. 13(b),
the changing shapes of the lower parts of the ventricles were especially noticeable.
As can be seen in Fig. 13(d), although the boundary vertex movements for most
of the vertices were large, the boundary vertices located in the lower parts of the
ventricles (indexed between 0 and 70 and between 230 and 250) showed the largest
movement in the deformation from period 1 to period 2.

During the treatment of hydrocephalus, the brain size also changed. In particular,
the brain size increased due to infant growth. The brain boundaries obtained from
the segmented images are shown in Fig. 14.

Mesh deformation results from pre-treatment to period 1 and from period 1 to
period 2 are shown in Fig. 15. In each step, deformation of both the ventricles and
the brain were performed.

5.3 Simulation 3: Ventricular Deformation with Boundaries
Obtained via the Level Set Method

In simulation 2, the ventricular boundary vertices in the segmented images were
manually determined. Furthermore, the intermediate steps for avoiding the gener-
ation of inverted elements in the meshes used for the simulation of the ventricular
deformations were computed by manually selecting the vertices between the pre-
treatment and period 1 or between the period 1 and period 2 boundary vertices of
the ventricles.

The main new aspect of this simulation is that the level set method [68] was
applied to automatically obtain the boundary vertices of the ventricles in the seg-
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Fig. 15 (a) The initial mesh generated by Triangle [71] and (b), (d), (f), and (h) the deformed
meshes generated by the FEMWARP algorithm [74]. The fifteenth intermediate mesh deformation
result matched exactly to the boundary vertices of the ventricles and the brain in segmented period 2
image. (c), (e), (g), and (i) Mesh quality improvement was performed to improve the quality of the
meshes at each step of ventricular deformation for hydrocephalus

mented images. Using the boundary vertices, the initial mesh was generated using
Triangle [71]. The mesh contained 2392 vertices and 4422 elements; its quality
is given in Table 4. Also, with the boundary vertices of the ventricles in the pre-
treatment, period 1, and period 2 images, the intermediate steps were automatically
computed by using a backtracking line search method to obtain valid intermediate
meshes.
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Table 4 Inverse mean ratio mesh quality statistics for several meshes used in the simulation. The
feasible Newton method [50] implemented in Mesquite [8] was used for average mesh quality
improvement. For improving the worst quality of the final mesh, the PS mesh quality improvement
algorithm [57] was applied to obtain further improvement

Mesh Inverse mean ratio mesh quality

min avg rms max std

Initial mesh 1.00001 1.05380 1.05731 2.3513 0.08604

6th deformation 1.00000 1.20431 1.50967 36.3021 0.91035

Opt. 6th deformation 1.00001 1.18070 1.22330 5.5055 0.32000

9th deformation 1.00005 1.38846 1.51427 11.3377 0.60432

Opt. 9th deformation 1.00007 1.37350 1.53049 9.1011 0.67520

12th deformation 1.00043 1.50317 1.65771 21.9930 0.69892

Opt. 12th deformation 1.00004 1.47862 1.67494 9.0810 0.78682

16th deformation 1.00061 1.86964 2.24460 14.0210 1.24204

Opt. 16th deformation 1.00002 1.53606 1.81146 18.4508 0.96015

Opt. 16th deformation (with PS) 1.00073 1.91943 2.37001 8.9290 1.24050

Similar to the previous simulation, image denoising was performed as the first
step of the simulation. The same mask filters were applied to denoise each medical
image. After the images were denoised, image segmentation was performed based
on the same threshold values used in the previous simulation. The segmented images
were the same as before and are shown in Fig. 6.

The level set method was applied to obtain the boundary vertices of the ventricles
in the period 1 and period 2 images. To use the level set method, the zero level set
was defined and used as an input. The contour constructed by the boundary vertices
for the ventricles in the segmented pre-treatment image was used as the zero level
set.

To obtain the boundary vertices of the ventricles in the segmented pre-treatment
image, the contours were first generated in the segmented pre-treatment image. The
pixel values of the segmented images were used to generate the contours. Since the
ventricles in the segmented image were represented as pixels with a value of zero
and all the other parts were represented as pixels with a value of one, the contours
were plotted around the ventricles in the segmented image. The contour for the zero
function matched the ventricular boundary in the segmented pre-treatment image.

The contour with the zero function was used as an input of the level set method
and has used to obtain the boundary of the ventricles in the segmented image for
period 1. Given the zero level set, the level set method moved the contour toward its
interior normal with constant speed (a value of approximately 8.854e−12 was used
for ε0 in this simulation). The evolution was stopped when the contour matched the
ventricular boundary in the segmented period 1 image. Sixty iterations of the level
set method were required to evolve the contour.

The level set method was also used to generate the boundary of the ventricles for
period 1 with complicated changes of shape (where the shunt was inserted). With
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Fig. 16 Pre-treatment,
period 1, and period 2
boundaries obtained from the
level set method. The dotted
boundaries represent the
initial contour, and the solid
line boundaries represent the
evolved contour, which is
matched to the boundary

the ventricular boundaries obtained from the level set method, several intermediate
steps were generated automatically via linear interpolation. However, it was chal-
lenging to compute the intermediate boundaries near the inserted shunt via linear in-
terpolation. This technique generated meshes with several inverted elements; most
of them were located near where the shunt was inserted. Also, determining other
types of interpolation automatically would be difficult since it is hard to know what
type to use. Thus, in order to avoid generation of inverted elements and to reduce
the number of intermediate steps for ventricular deformation from pre-treatment to
period 1, the boundary of the ventricles for period 1 was obtained by deleting the
shunt in the segmented period 1 image.

When the ventricular boundary for period 1 was obtained, the boundary was used
as an input contour of the level set method which was used to obtain the ventricular
boundary for period 2. Similar to the process performed for obtaining the ventricular
boundary vertices for period 1, the level set method evolved the boundary of the
ventricles for period 1 along its interior normal with the constant speed given above.
After 53 iterations, the level set method was terminated after the new boundary
matched the ventricular boundary for the segmented period 2 image.

The contours obtained by the level set method for representing the boundary
of the ventricles in each segmented image included a different number of vertices.
However, the same number of boundary vertices for each ventricular boundary is
required for deformation using FEMWARP.

To represent the contours with the same number of vertices, an identical number
of vertices were chosen from the starting positions in each segmented image. For the
pre-treatment boundary, the vertex with the xy-coordinates (300,200) was used as a
starting point, and every fourth vertex in the contour was selected as vertices used for
representing the boundary of the ventricles for pre-treatment. From the vertex with
the xy-coordiates (300,230), every third vertex in the contour was selected to use
as vertices used for the period 1 ventricular boundary. For the period 2 boundary,
the vertex with the xy-coordinates (295,250) was used as a starting point for the
vertex selection. Every second vertex in the contour was selected as the ventricular
boundary vertices for period 2.
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The boundaries of the ventricles for pre-treatment, period 1, and period 2 ob-
tained from the level set method are shown in Fig. 16. The dotted plot in Fig. 16(a)
represents the boundary for pre-treatment generated by the contour plot with the
zero function value, and the solid line plot shows the boundary for period 1 ob-
tained by evolving the contour (dotted plot) by the level set method. In Fig. 16(b),
the dotted plot is the contour which represents the boundary for period 1, and the
solid line plot shows the evolved contour for the period 2 boundary obtained from
the level set method.

With the boundary vertices obtained from the level set method, the evolution
of the ventricles containing cerebrospinal fluid was simulated. Since the ventricu-
lar deformation both from the pre-treatment to period 1 boundaries and from the
period 1 to period 2 boundaries was too large to be handled by FEMWARP [74] in
just one step, intermediate small deformations were performed (i.e. using small-step
FEMWARP [73]).

The intermediate steps were computed based on application of a backtracking
line search method for each boundary vertex. The pseudocode for computing the
intermediate steps is shown in Algorithm 1 line from 17 to 22. Mesh quality im-
provement for the intermediate step is performed once the deformed mesh is valid.
The optimized mesh is used as an input in the computation of the next intermediate
step.

Figure 17 shows the initial mesh generated using Triangle [71] with the ven-
tricular boundary vertices for pre-treatment and the intermediate meshes generated
during ventricular mesh deformation. For each intermediate mesh, mesh quality im-
provement was performed.

To obtain the mesh matched to the ventricular boundary vertices for period 2,
sixteen intermediate steps were performed to deform the mesh from pre-treatment
to period 2. Stretched triangular elements occurred near the brain boundary in the
sixteenth intermediate mesh are seen in the Fig. 17(i). This is because the significant
shrinkage of the ventricles happened in the sixteenth intermediate step compared
to the initial mesh. Thus, the interior vertices and correspondingly the triangular
elements were strained toward the ventricular boundary for period 2 in order to
cover the increased area.

The inverse mean ratio mesh quality statistics and quality distribution for the de-
formed meshes generated during the simulation are shown in Table 4 and Fig. 18.
The average mesh quality of the initial mesh was 1.0538. When each mesh deforma-
tion was performed, the average mesh quality observed for the meshes on the inter-
mediate steps degraded. By performing mesh quality improvement with Mesquite
[8], the average mesh qualities improved from 1.20431 to 1.18070, from 1.38840
to 1.37350, and from 1.50317 to 1.47862 for the sixth, ninth, twelfth, and sixteenth
intermediate meshes, respectively.

Table 4 shows that the worst mesh qualities of the intermediate meshes also
improved by performing mesh quality improvement with [8]. In the case of the
sixteenth intermediate mesh, the worst mesh quality was degraded from 14.021 to
19.4508, even though mesh quality improvement was performed via Mesquite [8].
To obtain further mesh quality improvement for the final mesh, mesh quality im-
provement of the worst quality element was performed by using the PS algorithm
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Fig. 17 (a) Initial mesh generated by Triangle [71] and (b), (d), (f), and (h) the deformed meshes
generated by FEMWARP [74]. The sixteenth intermediate mesh deformation result matched ex-
actly the boundary vertices of the ventricles for period 2. (c), (e), (g), and (i) Mesh quality im-
provement was performed to improve the quality of the meshes at each intermediate deformation
step of ventricular deformation

[57]. The worst mesh quality of the sixteenth intermediate mesh improved from
18.4508 to 8.9290, despite the fact that the average mesh quality of the mesh was
slightly degraded to 1.91943.

Figure 18(i) shows that the number of poor mesh quality elements of the sixteenth
intermediate mesh increased regardless of performing mesh quality improvement.
After the PS algorithm for improving the worst quality element was performed, the
number of poor mesh quality elements of the mesh decreased (seen in Fig. 18(j)).
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Fig. 18 Inverse mean ratio mesh quality distribution for meshes generated in Simulation 3. Quality
distribution for the (a) initial mesh, (b) the sixth intermediate mesh, (c) the sixth intermediate mesh
after mesh quality improvement was performed, (d) the ninth intermediate mesh, (e) the ninth in-
termediate mesh after mesh quality improvement was performed, (f) the twelfth intermediate mesh,
(g) the twelfth intermediate mesh after mesh quality improvement was performed, (h) the sixteenth
intermediate mesh, (i) the sixteenth intermediate mesh after mesh quality improvement was per-
formed, and (j) the sixteenth intermediate mesh after the worst quality element improvement was
performed

The distances for boundary vertex movement during the deformations are visual-
ized in Fig. 19. The distances were computed by calculating the Euclidean distance
between the vertices in each boundary, and not by summing each distance traveled
in an intermediate step. The arrows shown in Fig. 19 were generated by connecting
two vertices having the same index in each boundary.

When ventricular mesh deformation from pre-treatment to period 1 was per-
formed, the boundary vertices in the lower-left parts of the ventricles moved more
than that of the vertices in the other parts of the ventricles. These vertices, which
were indexed between 40 to 60, were included in the lower-left parts of the ventri-
cles, and their movement was approximately 80.

The boundary vertex movement from period 1 to period 2 was significantly large.
The size of vectors for most of the vertices were larger than that of the previous de-
formation from pre-treatment to period 1. As can be seen in Fig. 19(d), the distances
for most of the vertices were larger than 50 except the vertices indexed between 120
and 130, whose movement was around 10.
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Fig. 18 (Continued)

6 Conclusions and Future Work

We proposed an image-based computational technique for use in tracking the evolu-
tion of the brain ventricles in hydrocephalic patients pre- and post-treatment. Such
simulations could be used by neurosurgeons in order to design personalized medi-
cal treatments for a given patient in that the simulations could be used to determine
how a particular treatment may perform on a given patient. Our image-based com-
putational technique is based on a combination of the level set method and the fi-
nite element mesh warping (FEMWARP) method [74]. Our computational pipeline
involves the pre-processing steps of image denoising and segmentation. The seg-
mented medical images are then used as input to the combined level set/mesh warp-
ing algorithm. Next, the level set method is used to predict the next position of the
brain ventricles, and the mesh warping method, i.e., FEMWARP, is used to deform
the mesh to the new target. The prediction and deformation steps are performed
several times until the final target of the brain ventricles is reached.

Using our approach, we were able to perform three numerical simulations in or-
der to track the evolution of the brain ventricles post-treatment of hydrocephalus
via shunt insertion in two patients. In Simulation 1, the ventricular mesh deforma-
tion was performed for a case in which the ventricular area decreased while the
ventricular shape was preserved. In this case, the ventricular mesh deformation was
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Fig. 19 (a) Boundary
movement of each vertex
from pre-treatment to
period 1; (b) boundary
movement of each vertex
from period 1 to period 2, and
(c) the distance between the
pre-treatment and period 1
vertices; (d) the distance
between the period 1 and
period 2 vertices

easy to perform using FEMWARP, and coupling with the level set method was not
necessary.

The brain ventricles changed their shapes asymmetrically during their evolu-
tion in Simulation 2. Because the deformation of the ventricles was rather large
in this case, intermediate mesh deformation steps were designed, and small-step
FEMWARP [74] was used in order to deform the mesh. In total, fifteen intermediate
deformation steps were performed to track the evolution of the ventricles from pre-
to Period 2 of post-treatment. The ninth intermediate mesh matched the ventricu-
lar boundary for period 1; the fifteenth mesh matched the ventricular boundary for
period 2.

Finally, the level set method was coupled with FEMWARP in Simulation 3 in
order to obtain the ventricular boundary vertices in the segmented medical images.
Linear interpolation based on the level sets was performed in order to predict the
location of the brain ventricles on the intermediate steps. Mesh deformation was
again performed via small-step FEMWARP in combination with the predicted tar-
get locations. Sixteen intermediate deformation steps were designed, and the ninth
intermediate mesh and the sixteenth mesh matched the ventricular boundary for pe-
riod 1 and period 2, respectively.

Mesh quality improvement was performed on the deformed meshes from all three
simulations in order to improve their overall quality. For the sixteenth deformed
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mesh in Simulation 3, it was also necessary to prove worst element quality mesh
improvement in order to further improve the quality of the mesh to an acceptable
level for computational purposes.

Our combined level set/mesh warping technique performed semi-automatic ven-
tricular mesh deformation and evolution of the brain ventricles. Future research will
focus on fully automating the level set method in its ability to predict the loca-
tion of the brain ventricles at the next time step. This will require a technique for
determining which speed should be applied to each boundary vertex in the level
set contour to prescribe its evolution. We will also extend our approach to han-
dle three-dimensional ventricular evolution. It should be noted that a 3D version
of FEMWARP is already in existence [74] and can be used for this purpose. In
addition, we will extend the FEMWARP method so that it can handle topological
changes during the ventricular deformation; mesh adaptation will need to be added
to FEMWARP for this purpose. It should be noted that the level set method can
already handle topological changes. Finally, it should be noted that FEMWARP is
a geometric mesh warping approach. We plan to extend FEMWARP so that it also
incorporates brain biomechanics which can be used to predict the evolution of the
brain ventricles.

It should also be mentioned that our combined level set/mesh warping method
can also be used to analyze other medical conditions for which medical images are
acquired. For example, such an approach could also be used to analyze geometric
changes in the brain due to normal brain growth or the growth of a tumor, the change
in the brain due to a stroke, or the impact of a traumatic injury on the brain. Our
approach can also be applied to other medical conditions involving medical images
and deformations including several applications in cardiology or orthopaedics.
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An Optimization-Based Iterative Approach
to Tetrahedral Mesh Smoothing

Zhanheng Gao, Zeyun Yu, and Jun Wang

Abstract The optimal Delaunay triangulation (ODT) is an effective approach in
improving the quality of inner vertices of a tetrahedral mesh. Recently it had been
extended boundary-optimized Delaunay triangulation (B-ODT), in which both in-
ner and boundary vertices are repositioned by analytically minimizing the L1 error
between a paraboloid function and its piecewise linear interpolation over the neigh-
borhood of each vertex. In the present work, we describe a smoothing method that is
based on the B-ODT method but has better performance. We smooth the mesh in an
edge-by-edge fashion by adjusting each pair of vertices of every edge. This method
has the volume-preserving and sharp-feature-preserving properties. A number of
experiments are included to demonstrate the performance of our method.

1 Introduction

The finite element method (FEM) has been a very popular numerical approach for
solving partial differential equations (PDEs) in many applications. In the method,
the domain over which the PDEs are defined is partitioned into a mesh containing
a large number of simple elements, such as triangles and quadrilaterals in 2D cases
and tetrahedra and hexahedra in 3D cases [1–6]. The quality of the mesh, typically
measured by the minimum and maximum angles, can significantly affect the inter-
polation accuracy and solution stability of the FEA [7, 8]. Therefore, improving the
mesh quality has been an active research area in computational mathematics and
computer science. Due to the great popularity in the FEM, 3D tetrahedral meshes
will be the focus of our present work.

The methods of mesh quality improvement can be classified into three cate-
gories as follows. (1) topology optimization, which modifies the connectivity be-
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tween mesh vertices while keeping vertex positions unchanged. The edge- or face-
swapping methods are commonly used in topology optimization [9, 10]. (2) vertex
insertion/deletion, which inserts/deletes vertices to/from the mesh [10–13]. (3) ver-
tex smoothing, which repositions the coordinates of the vertices while keeping the
connectivity unchanged [14–16]. Generally speaking, mesh quality improvement
is best achieved when all the three methods are properly combined in the mesh
smoothing scheme [10]. In our method described below, we shall focus on the ver-
tex repositioning strategy, i.e. vertex smoothing.

One of the most popular vertex smoothing method is Laplacian smoothing,
which moves a mesh vertex to the weighted average of its incident vertices [17–19].
If the neighborhood of the vertex is not a convex polyhedron, the Laplacian smooth-
ing may not lead to a well-positioned mesh. Some angle-based methods were pro-
posed for smoothing 2D triangular and 3D surface meshes [20–22]. However, these
methods are difficult to extend to 3D tetrahedral meshes. [23] presented a method
based on the Centroid Voronoi Tessellation (CVT) concept that is restricted to inner
vertices of a mesh. A peeling off operation has to be taken to improve bad tetrahedra
on boundaries. [24] proposed a method of smoothing planar quadrilateral meshes.
Some researchers presented methods for smoothing hexahedral mesh [25–29]. More
recently, some new techniques of vertex smoothing were proposed. [30, 31] pre-
sented methods of stretching the vertices of a tetrahedron at one time. The methods
were extended by [32] to hexahedral mesh. [33] assigned a quality coordinate for
every vertex and calculated the new position by maximizing the combined quality of
tetrahedra incident to it. [34] used a metric non-conformity driven method to smooth
hybrid meshes such as a mesh with hexahedral and tetrahedral elements.

In addition to the above methods, approaches using numerical optimization to
compute the new position of a vertex has been an important branch of the vertex
smoothing category. The new position of a vertex is computed by optimizing a func-
tion that measures the local or global quality of the mesh [35–44]. In particular, the
optimal Delaunay triangulation (ODT) approach [45] tries to minimize the L1 error
between a paraboloid function and its piecewise linear interpolation over the neigh-
borhood of a vertex. This idea has been extended to 3D tetrahedral mesh smoothing
in [46]. Despite its great success in mesh quality improvement, the original ODT
method was derived to optimize the positions of inner vertices only. In other words,
the tetrahedral mesh to be smoothed must possess quality triangles on boundaries.
In many real mesh models, however, “bad” tetrahedra often occur near or on the
boundaries of a domain [47, 48]. Therefore, in our previous work, we provided an
analytical method named boundary-optimized Delaunay triangulation (B-ODT) to
find the optimal positions of all mesh vertices, including those on boundaries, by
minimizing an L1 error function that is defined in the incident neighborhood of
each vertex. The minimization is an unconstrained quadratic optimization problem
and has an exact analytic solution when the coefficient matrix of the problem is
positive definite.

In this work, we extend our previous B-ODT method by performing it edge by
edge. The new method achieves better results than the original B-ODT method by
considering the local configuration of every vertex before performing the B-ODT
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Fig. 1 The framework of our
mesh quality improvement
method

algorithm. The remainder of the present work is organized as follows. In Sect. 2,
we start with a brief introduction to our tetrahedral mesh generation from an initial
triangular surface mesh. We then review the ODT and B-ODT methods, provide the
edge-based B-ODT (so-called eB-ODT) method. We present some experimental
results and quality analysis in Sect. 3, followed by our conclusions in Sect. 4.

2 Methods

The framework of our mesh quality improvement method is shown in Fig. 1. The
vertex insertion operation is performed prior to the vertex repositioning. We try to
insert as few vertices as possible in order to maintain the size of the original mesh.
We give a brief introduction to our tetrahedral mesh generation using an octree-
based method in Sect. 2.1. As for vertex smoothing, the algorithms of original B-
ODT and eB-ODT are given in Sects. 2.2 and 2.3 respectively.

2.1 Tetrahedral Mesh Generation Algorithm

Our tetrahedral mesh generation algorithm is based on the body centered cubic
(BCC) tetrahedral lattice, a common crystal structure in nature with many desir-
able properties [49]. The BCC lattice is constructed by adding a new node at each
cell center and connecting it to the eight vertices of the cell and six neighboring
cell centers. The BCC lattice is highly structured and computationally efficient, and
has been utilized in various types of numerical simulation. When dealing with a
bounded domain, however, the BCC lattice must be carefully remeshed near the do-
main boundary so that the tetrahedral mesh generated agrees with the given bound-
ary. To this end, our method consists of the following four steps (see Fig. 2 for a two
dimensional illustration):

1. Subdivide the octree of an input surface mesh based on Euclidean distance trans-
formation. A few geometric properties of the input mesh are utilized to refine the
subdivision adaptively from interior to boundary, and from low curvature to high
curvature areas.

2. Compute the sign of every node in the BCC lattice. For each edge of the BCC
grid, if the corresponding signs of the two endpoints are different, then calculate
the cutting (intersecting) point where the edge crosses the input surface mesh.
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Fig. 2 A two dimensional illustration of our tetrahedral generation algorithm. Note that the octree
subdivision is adaptive in our algorithm. However, we do not show the adaptivity here for simplic-
ity. (a) Computing the signs for each BCC grid; (b) Calculating the cutting points; (c) Detecting
the “too close” cutting points; (d) Snapping the “too close” cutting points to the corresponding
BCC lattice grids; (e) Decomposing the boundary polyhedra into tetrahedra; (f) Obtaining the final
tetrahedral mesh

3. Detect the cutting points that are “too close” to the original BCC nodes and snap
them to the corresponding nodes. Equivalently, we adjust the sign of that node to
zero. We refer to this process as cutting point snapping.

4. Decompose the boundary polyhedra into tetrahedra. For each BCC tetrahedron,
if all signs of its vertices are negative (meaning “outside”), we ignore it (we
assume that only the interior tetrahedralization is of interest). If all signs are
positive (meaning “inside”), we leave it as the final tetrahedron. Otherwise, the
tetrahedron is split by the input surface mesh into inside and outside parts and
we further decompose the inside part (a polyhedron) into tetrahedra.

2.2 ODT and B-ODT Algorithms

For any vertex x0 in a tetrahedral mesh T , suppose the neighborhood of x0 is Ω0
consisting of a set of tetrahedra {τ }. Let x∗ be the smoothing result of x0 and Ω∗
the neighborhood of x∗ (or the union of tetrahedra incident to x∗) in T .

If x0 is an inner vertex, x∗ can be computed by the following ODT formula [45]:

x∗ = x0 − 1

2|Ω0|
∑

τ∈Ω0

(
1

3
Sτ nτ

3∑

i=1

‖xτ,i − x0‖2

)

. (1)

Here Sτ and nτ are the area and unit normal vector of tτ , which is the opposite
triangle of x0 in τ , nτ points to the inside of τ , xτ,i are the (three) vertices of tτ .
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If x0 is a boundary vertex, x∗ can be computed by the following B-ODT formula:

x∗ = x0 + us+ vt (2)

where s and t are two orthonormal vectors in the tangent plane of the boundary
surface of T at x0, the coefficients u and v are computed by solving the following
linear equation system:

[
2E G

G 2F

][
u

v

]

=
[−H

−I

]

. (3)

The calculations of E, F , G, H , I are given below in Algorithm 1. Here, we directly
give the algorithm of smoothing inner and boundary vertices of T using ODT and
B-ODT methods respectively (Algorithm 1). Note that the tangent plane restriction
of x∗ guarantees the volume of the smoothed mesh coincides with that of the original
mesh.

Theoretically, both (1) and (2) are the unique solutions of the optimization prob-
lem which minimizes the L1 interpolation error between a paraboloid function
fI (x)= ‖x− x0‖2 and its piecewise linear interpolation over Ω∗:

Error∗ = ‖f − fI‖L1 =
∫

x∈Ω∗

∣
∣f (x)− fI (x)

∣
∣dx. (4)

Algorithm 1 (ODT and B-ODT smoothing for inner and boundary vertices)

for every vertex x0 do

a. if x0 is an inner vertex, then
x∗ is computed by (1).

b. else
x∗ is computed using the following scheme:

i. Compute the normal vector of the tangent plane at x0, then select
two orthogonal unit vectors s, t on the tangent plane.

ii. Compute the following coefficients:
A. E = 1

4 |Ω0| − 1
60

∑m
i=1 s(Yi +Yi+1)s(Yi ×Yi+1)

B. F = 1
4 |Ω0| − 1

60

∑m
i=1 t(Yi +Yi+1)t(Yi ×Yi+1)

C. G = − 1
60

∑m
i=1[s(Yi + Yi+1)t(Yi × Yi+1) + t(Yi + Yi+1)×

s(Yi ×Yi+1)]
D. H = 1

12 s
∑

τ∈Ω∗ Sτ nτLτ − 1
60

∑m
i=1(Y

2
i + Y2

i+1 + YiYi+1)×
s(Yi ×Yi+1)

E. I = 1
12 t
∑

τ∈Ω∗ Sτ nτLτ− 1
60

∑m
i=1(Y

2
i +Y2

i+1+YiYi+1)t(Yi×
Yi+1)

iii. Solve the linear system (3).
iv. Compute x∗ using x∗ = x0 + us+ vt.

Here, Yi = yi − x0, {yi}mi=1 are the neighboring vertices of x0 on the boundary
of the tetrahedral mesh T . The order of yi is determined in the following way: for
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any i = 1, . . . ,m, the cross product between −−→x0yi and −−−→x0yi+1 points to the outside
of Ω0 (let ym+1 = y1), Lτ =∑3

j=1 ‖xτ,j − x0‖2.
For a boundary vertex x0, in order to preserve the sharp features, we further

restrict x∗ moving along the features of the mesh. Here, we refer to the feature
direction at x0 as the line that passes through x0 and has the minimal curvature
value among all the directions. This line is on the tangent plane, thus the volume is
still preserved when x∗ moves along this feature line. The direction of the feature
line is found by computing the eigenvalues of the following tensor voting matrix at
x0:

M =
m∑

i=1

SininT
i . (5)

Here Si is the area of surface triangle Δx0yiyi+1 and ni = (nix, niy, niz)
T is the

unit normal vector of Δx0yiyi+1. The matrix M is a positive definite matrix and has
three orthogonal eigenvectors. The feature line is determined in the following way.
Suppose that the three eigenvalues of M are μ0, μ1, μ2 with μ0 ≥ μ1 ≥ μ2 and e0,
e1, e2 are the corresponding eigenvectors. If μ0 � μ1 ≈ μ2 ≈ 0, then the neighbor-
hood of x0 corresponds to a planar feature. In this case, the above Algorithm 1 is
used to smooth x0. If μ0 ≈ μ1 � μ2 ≈ 0, then x0 lies on an crease (linear) feature
and the direction of the crease is e2. In this case, the following Algorithm 2 is used
to smooth x0. If μ0 ≈ μ1 ≈ μ2 � 0, then x0 is at a corner which should not be
changed during the vertex smoothing process.

Algorithm 2 (B-ODT smoothing with feature preserving)

for every crease vertex x0 do

a. Set the feature direction at x0 to be d= e2/‖e2‖.
b. Compute the following coefficients:

i. A= 1
4 |Ω0| − 1

60

∑m
i=1 d(Yi +Yi+1)d(Yi ×Yi+1)

ii. B = 1
12 d(

∑
τ∈Ω∗ Sτ nτLτ )− 1

60

∑m
i=1(Y

2
i +Y2

i+1+YiYi+1)d(Yi ×
Yi+1)

c. Compute x∗ as x∗ = x0 + f d with f =− B
2A

.

2.3 Edge-Based B-ODT Algorithm

In practice, the improvement of x0 is always affected by the configuration of the
vertices around x0. When the vertices around x0 has good configuration, the quality
can be significantly improved. Based on this observation, we presented a modified
strategy here to smooth a tetrahedral mesh: smoothing the mesh in an edge-by-edge
way. That is, to smooth the two end vertices of each edge recursively. By this way,
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the angle quality can be improved more than simply performing Algorithm 2. The
detail is given in the following algorithm:

Algorithm 3 (eB-ODT smoothing for boundary vertices)

for every edge e in the mesh (Let x0 and x1 be the two vertices of e), do

a. Smooth x0 using Algorithm 1 or Algorithm 2 according to the type of
x0

b. Smooth x1 using Algorithm 1 or Algorithm 2 according to the type of
x1

c. Compute s, which is the sum of the movements of x0 and x1
d. If s ≤ ε, go to next edge

else, go to step a

3 Results

The proposed eB-ODT algorithms were tested on several tetrahedral meshes gen-
erated from triangular surface meshes that serve as the boundaries of the domains.
For every mesh, the smoothing process shown in Fig. 1 is repeated for 20 times.
The mesh smoothing results are summarized in Table 1. The comparisons between
the eB-ODT algorithm (Algorithm 3) and several other approaches, including the
ODT algorithm, B-ODT algorithm, topology optimization and the Natural ODT al-
gorithm [46], are also provided in Table 1. In Figs. 3–9, the original and smoothed
meshes are compared and from the histograms we can see significant improvement
of dihedral angles in these meshes.

We compare the smoothing results by using the ODT, B-ODT and eB-ODT al-
gorithms. In Table 1, all the minimum and maximum dihedral angles by using the
B-ODT algorithm are better than those by the ODT algorithm and the results by
using eB-ODT are better than B-ODT, especially on the Retinal model. Note that
the minimum dihedral angle in Retinal model is very small and likely occurs on the
boundary of the model. Therefore, the B-ODT and eB-ODT algorithm can perform
much better than the original ODT method.

Although the topology optimization is utilized in many mesh smoothing algo-
rithms, this technique alone may not always improve the quality of a mesh. To show
this, we smooth all the meshes in Table 1 using only the topology optimization
and compare the results with those obtained by using our eB-ODT algorithm. From
Table 1, we can see that the ability of improving mesh quality by using topology
optimization alone is limited, compared to the eB-ODT algorithm.

The tetrahedral mesh in Fig. 3 is generated by tetrahedralizing randomly-sampled
point set on a unit sphere [50]. There are 642 points on the sphere and 87 inner ver-
tices are inserted by the tetrahedralization algorithm. The minimum and maximum
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Table 1 Comparisons of dihedral angles using different methods

Model Algorithm Vertex number min max

Random Sphere Original mesh 729 5.86◦ 164.70◦

eB-ODT 767 18.20◦ 145.56◦

B-ODT 731 15.20◦ 150.25◦

ODT 729 6.28◦ 162.46◦

Topology optimization 729 5.86◦ 164.70◦

NODT 729 6.21◦ 173.64◦

2Cmp Original mesh 10415 5.57◦ 163.24◦

eB-ODT 10488 21.68◦ 145.56◦

B-ODT 10415 18.10◦ 147.21◦

ODT 10415 11.64◦ 158.06◦

Topology optimization 10415 5.57◦ 163.24◦

NODT 10415 10.70◦ 157.19◦

Retinal Original mesh 14921 1.25◦ 173.85◦

eB-ODT 15030 19.86◦ 160.14◦

B-ODT 14948 15.10◦ 164.58◦

ODT 14921 1.29◦ 168.13◦

Topology optimization 14921 1.25◦ 172.09◦

NODT 14921 0.00◦ 179.99◦

RyR Original mesh 18585 6.19◦ 170.74◦

eB-ODT 18601 22.57◦ 143.56◦

B-ODT 18585 18.52◦ 149.25◦

ODT 18585 10.34◦ 158.32◦

Topology optimization 18585 6.19◦ 170.74◦

NODT 18585 7.78◦ 162.74◦

2Torus Original mesh 4635 5.96◦ 164.92◦

eB-ODT 4731 21.37◦ 146.81◦

B-ODT 4656 16.92◦ 152.05◦

ODT 4635 9.46◦ 157.53◦

Topology optimization 4635 6.85◦ 164.75◦

NODT 4635 0.01◦ 179.98◦

FanDisk Original mesh 9131 6.04◦ 164.98◦

eB-ODT 9173 20.32◦ 154.96◦

B-ODT 9162 16.80◦ 160.53◦

ODT 9131 9.59◦ 163.53◦

Topology optimization 9131 6.78◦ 164.98◦

NODT 9131 0.08◦ 179.86◦



An Optimization-Based Iterative Approach to Tetrahedral Mesh Smoothing 151

Fig. 3 The original mesh
model (a) and the smoothed
result (b). In both meshes, the
outer and cross-section views
are shown. The minimum
dihedral angles of these two
meshes are 5.86◦ and 18.20◦
respectively, and the
maximum dihedral angles are
164.70◦ and 145.56◦
respectively

Fig. 4 Original and smoothed 2CMP models. The minimum dihedral angles of these two meshes
are 5.57◦ and 21.68◦ respectively, and the maximum dihedral angles are 163.24◦ and 145.56◦
respectively
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Fig. 5 Original and smoothed Retinal models. The minimum dihedral angles of these two meshes
are 1.25◦ and 19.86◦ respectively, and the maximum dihedral angles are 173.85◦ and 160.14◦
respectively

Fig. 6 Original and smoothed RyR models. The minimum dihedral angles of these two meshes
are 6.19◦ and 22.57◦ respectively, and the maximum dihedral angles are 170.74◦ and 143.56◦
respectively
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Fig. 7 The convergence of
minimum and maximum
dihedral angles with respect
to the number of iterations on
the Retinal model using the
eB-ODT algorithm. Note that
on the left the curves of ODT
and topology optimization are
almost identical

dihedral angles of this Random Sphere model are 5.86◦ and 164.70◦ respectively.
After 20 times of running the eB-ODT algorithm, the minimum and maximum dihe-
dral angles are improved to 18.20◦ and 145.56◦ respectively. Note that the distribu-
tion of the boundary vertices of the smoothed mesh is much more uniform than that
of the original mesh, demonstrating that the eB-ODT algorithm can smooth both
inner and boundary vertices in a tetrahedral mesh.

The eB-ODT algorithm is also tested on tetrahedral meshes generated from sev-
eral biomedical molecules: 2CMP molecule in Fig. 4, Retinal molecule in Fig. 5
and Ryanodine receptor (RyR) in Fig. 6. The quality of 2CMP and RyR meshes
reaches the best after no more than 10 iterations although all the models in Table 1
are processed 20 times. In Fig. 7, we demonstrate the convergence of minimum and
maximum dihedral angles with respect to the number of iterations on the Retinal
model using the eB-ODT algorithm.

Fig. 8 Original and smoothed 2Torus models. The minimum dihedral angles of these two meshes
are 5.96◦ and 21.37◦ respectively, and the maximum dihedral angles are 164.92◦ and 146.81◦
respectively
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Fig. 9 Original and smoothed FanDisk models. The minimum dihedral angles of these two meshes
are 6.04◦ and 20.32◦ respectively, and the maximum dihedral angles are 164.98◦ and 154.96◦
respectively

Table 2 Relative Hausdorff distance between original and smoothed meshes

Models Random Sphere 2Cmp Retinal RyR 2Torus FanDisk

Rel. Hausdorff distance 0.40% 1.11% 0.52% 0.77% 0.18% 0.25%

The 2Torus (Fig. 8) and FanDisk (Fig. 9) models show the feature-preserving
property of the eB-ODT algorithm. In order to measure the difference between the
original and smoothed meshes, we compute the relative Hausdorff distances be-
tween the surface meshes of the original and smoothed models, as shown in Table 2.
Here, the Hausdorff distance is first computed using the standard definition and then
scaled as follows. Let h be the absolute Hausdorff distance between the original and
smoothed meshes, and L be the largest side length of the bounding box of the orig-
inal mesh. The relative Hausdorff distances is defined by h

L
, which measures the

difference of the original and smoothed models relative to the size of the original
model. From Table 2 we can see that the relative Hausdorff distances between the
original and smoothed models are very small showing that our eB-ODT algorithm
preserves the shape of the original models quite well.

The original ODT has also been extended by [46] to 3D tetrahedral mesh smooth-
ing and the method is called Natural ODT (NODT). The NODT method computes
the new position of a boundary vertex x0 in a tetrahedral mesh T by adding a certain
amount of compensation to the weighted centroid of the neighborhood of x0. The
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Table 3 Comparison of running time (20 iterations)

Random Sphere 2Cmp Retinal RyR 2Torus FanDisk

eB-ODT 305.84 s 5175.6 s 10272.8 s 9086.0 s 2258.4 s 4522.0 s

NODT 11.85 s 159.80 s 323.12 s 291.24 s 64.08 s 124.24 s

compensation is a weighted sum of the normal vectors of the boundary triangles
around x0. Although boundary vertices are considered in the NODT method, the
new positions calculated have to be projected onto the boundary of T to preserve
the volume and shape of the original mesh. Therefore, the NODT method does not
optimize the positions for boundary vertices. The smoothing results by using the
afore-mentioned NODT method are shown in Table 1, where we can see that our
eB-ODT algorithm significantly outperforms the NODT method. Sometimes the re-
sults obtained by the NODT method are even worse than the original meshes. The
running time of eB-ODT and NODT is compared in Table 3.

4 Conclusions

We described a method of simultaneously smoothing both inner and boundary ver-
tices of a tetrahedral mesh under a unified optimization framework. The eB-ODT
algorithm presented can preserve sharp features very well and is guaranteed to pre-
serve the volume of the original mesh. For every boundary vertex, the optimal posi-
tion is computed by solving a linear system. The algorithm is numerically robust and
easy to implement because the order of the linear equation system is only degree 2.
The experimental results have shown the effectiveness of the proposed method.
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High-Quality Multi-tissue Mesh Generation
for Finite Element Analysis

Panagiotis A. Foteinos and Nikos P. Chrisochoides

Abstract Mesh generation on 3D segmented images is a fundamental step for the
construction of realistic biomechanical models. Mesh elements with low or large
dihedral angles are undesirable, since they are known to underpin the speed and
accuracy of the subsequent finite element analysis. In this paper, we present an al-
gorithm for meshing 3D multi-label images. A notable feature of our method is its
ability to produce tetrahedra with very good dihedral angles respecting, at the same
time, the interfaces created by two or more adjoining tissues. Our method employs a
Delaunay refinement scheme orchestrated by special point rejection strategies which
remove poorly shaped elements without deteriorating the representation of the ob-
jects’ anatomical boundaries. Experimental evaluation on CT and MRI atlases have
shown that our algorithm produces watertight meshes consisting of elements of very
good quality (all the dihedral angles were between 19 and 150 degrees) which makes
our method suitable for finite element simulations.

1 Introduction

Meshing multi-labeled medical images (like those obtained by segmenting MRI
or CT images) provides the means for constructing accurate bio-mechanical mod-
els for subsequent finite element analysis. Multi-material mesh generation imposes
challenges, since it should meet two conflicting requirements: fidelity and quality.

Fidelity measures the capability of the mesher to preserve the boundaries formed
by two or more adjoining tissues. Quality regards the shape of the elements: tetra-
hedra with small or large dihedral angles (i.e., low quality tetrahedra) result in in-
terpolation errors and in ill-conditioned stiffness matrices undermining in this way
the accuracy and speed of the associated finite element analysis [19].
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The difficulty in mesh generation is that the need to preserve high-curvature
creases of the object’s surface (i.e., high fidelity) deteriorates the quality of the
meshes; on the other hand, the quality of mesh elements should be as high as possi-
ble when dealing with isotropic materials [8].

In this paper, we propose a Delaunay meshing algorithm able to respect the in-
terfaces of multi-material domains and produce tetrahedra with very good dihedral
angles and radius-edge ratios (and therefore very good aspect ratios), offering at the
same time control over the size of the mesh.

1.1 Previous Work

In the literature, there has been work on multi-tissue meshing but the issue of high
quality has not been adequately addressed.

Meyer et al. [14] employ a particle-based scheme producing watertight meshes
that respect the interfaces formed by adjoining tissues. However, elements with
practically zero dihedral angles (slivers) do appear in the final meshes. Furthermore,
the execution times reported range from 3 to 12 hours even for small datasets.

Liu et al. [13] compress a body-centered cubic lattice (BCC) using a point-based
registration method. The dihedral angles, however, can be as low as 4°. Also, the
uniform lattice results in an unnecessary large number of elements in the interior of
the objects.

Chentanez et al. [5] model the insertion of needles into soft tissues. The resulting
conforming meshes are observed to consist of elements of angles more than 10.3°
and less than 160°. It is worth noting that their goal is to represent a 1-dimensional
curvilinear object (the needle) as a subset of a single-tissue mesh, which is a goal
quite different from ours.

Goksel and Salcudean [9] present a variational meshing technique which com-
bines both meshing and segmentation. They report minimum angles as large as 20°.
The synthetic data they used for the evaluation is a sphere, that is, a 2-manifold. Usu-
ally, multi-tissue domains consists of complicated geometries, i.e., non-manifold
parts which intersect with more than one tissues. These domains impose challenges
to any meshing technique and are the focus of this work.

Zhang et al. [20] develop an octree-based meshing algorithm. Although edge-
contraction and smoothing schemes are employed for quality improvement, the au-
thors do not report the dihedral angles observed in their meshes.

Hu et al. [11] and Hartmann and Kruggel [10] develop uniform meshes for multi-
material domains achieving dihedral angles more than 10°, albeit without good fi-
delity: their meshes suffer from the “staircase” effect.

Based on previous work on single material Delaunay surface [2] and volume
meshing [15], Pons et al. [16] present a meshing algorithm for multi-tissue do-
mains. Recently, Boltcheva et al. [3] extend the work of Pons et al. [16], so that
0- and 1-junctions are preserved in the final meshes. Both these methods apply
sliver exudation [4] in order to improve the quality of the mesh. Edelsbrunner and
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Guoy [7], however, have shown that in most cases sliver exudation does not remove
all poor tetrahedra: elements with dihedral angles less than 5° survive. Indeed, Pons
et al. [16] and Boltcheva et al. [3] report dihedral angles as low as 4°.

1.2 Our Contribution

In this paper, we present a Delaunay refinement algorithm for meshing multi-tissue
medical data so that the boundaries between neighboring tissues are conforming. It
works directly on segmented images meshing both the surface and the volume of
the tissues.

A notable feature of our method is its ability to produce tetrahedra with very
good dihedral angles: in all the experiments on synthetic and real images we ran,
our algorithm produces watertight meshes consisting of tetrahedra with dihedral
angles larger than 19° and smaller than 150°.

The technique we employ for quality improvement is inspired by the work
of Shewchuk [18]. Therein, poor tetrahedra are eliminated by inserting the cen-
ter of their circumball, giving priority to tetrahedra with larger radius-edge ratio.
Shewchuk, however, meshes input domains bounded by polyhedral surfaces. In
this paper, we extend this technique to deal with multi-tissue domains bounded by
curved surfaces. The main difficulty is that vertices near the surface might be in-
serted during quality improvement. This fact in turn hurts fidelity: edges that cross
interfaces or holes appear. To overcome this problem, we propose special point re-
jection strategies. They improve the quality of elements preventing the insertion of
points near the surface; rather, carefully chosen points are inserted precisely on the
surface. This allows to achieve both good quality and good fidelity meshes.

The rest of the paper is organized as follows: Sect. 2 outlines the concept of
Delaunay refinement. The multi-tissue capability of our algorithm and the point
rejection strategies are described in Sect. 3. Lastly, Sect. 4 presents results on CT
and MR multi-label images and Sect. 5 concludes the paper.

2 Background

Delaunay meshes have been shown to successfully approximate the surface of both
manifold and non-manifold surfaces [2], due to the properties of the restricted De-
launay triangulations, first introduced by Amenta and Bern [1].

Let V ⊂ R3 be a set of vertices and D(V ) their Delaunay triangulation. Any
Delaunay triangulation satisfies the empty ball property: the circumscribing open
ball (a.k.a. circumball) of each tetrahedron in D(V ) does not contain any vertex.

The Voronoi point of a tetrahedron t ∈ D(V ) is defined as the center (a.k.a.
circumcenter) of t’s circumball. The Voronoi edge of a triangle f ∈ D(V ) is the
segment containing those points of R3 such that (a) they are equidistant from f ’s
vertices and (b) they are closer to f ’s vertices than to any other vertex in V .
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Fig. 1 (a) Sample set V of a liver’s surface. (b) The Delaunay triangulation D(V ) of the samples.
(c) The restricted triangulation D|O(V )

Let O be the multi-label domain to be meshed. We denote O’s surface with
∂O. The restriction of D(V ) to O (denoted with D|O(V )) is defined as the set of
tetrahedra in the triangulation whose circumcenter lies inside O.

It can be shown [2, 15] that if V samples ∂O sufficiently densely, then the set of
boundary triangles (a.k.a. restricted facets) of D|O(V ) is a good approximation of
∂O in a both topological and geometric sense. The approximation guarantees hold
as long as ∂O does not have sharp corners. This is a reasonable assumption, since
biological tissues do not exhibit sharp features on their surface. See Fig. 1 for a
single-tissue example. The same idea extends to more than one tissues as well.

As an interesting consequence of the way D|O(V ) is defined, only the Voronoi
edges of the restricted facets intersect the surface ∂O, a property that we will exploit
in Sect. 3 to improve quality.

3 Our Method

The input of our algorithm is an image I containing the multi-material object O.
Image I can be seen as a function f :R3 �→ {0,1,2, . . . , n}, such that f (p) is the
label that point p ∈R3 belongs to. More precisely, f (p) is the label of the voxel
that p lies in. Usually, a label of 0 denotes voxels outside O.

Points on the surface ∂O of object O are classified as those points lying in a voxel
of label i which is incident to at least one other voxel of label j , such that i < j .
In this way, surface ∂O contains not only the portions of the image that separate O
from the background, but it also contains the interfaces that separate any adjoining
tissues. The goal is to recover ∂O and mesh the volume (induced by ∂O) at the same
time.

Our algorithm first creates a box by inserting its 8 corners. The box contains
O such that the (shortest) distance between the box and ∂O is larger than 2δ

√
2.

Parameter δ is the only parameter that the users have to specify. This parameter de-
termines how densely ∂O will be sampled: lower values indicate a denser sampling
which in turn implies a better surface approximation. Notice that the calculation of
the corners of the box is a quite trivial task, since it requires just one image traversal.
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Next, the Delaunay triangulation of these corners is computed. This triangulation
is the initial mesh (consisting of 12 tetrahedra) where the actual refinement starts
from.

The refinement is governed by 2 steps, namely, mesh conformity and point re-
jection quality improvement. Upon termination, the tetrahedra whose circumcenter
belongs to label i constitute the mesh representing the ith tissue. Below, we outline
each step separately.

3.1 Mesh Conformity

As noted in Sect. 2, vertices on ∂O have to be inserted in order for the mesh bound-
ary (i.e., triangles incident to 2 or more tetrahedra of different labels) to be a good
approximation of ∂O. For this reason, we keep track of the tetrahedra whose cir-
cumball B intersects the surface ∂O. We call such elements intersecting tetrahedra.

Suppose that an intersecting tetrahedron t is found. We compute the closest sur-
face point—say p—to the center c of t’s circumball B. To facilitate the computation
of such a point, we make use of an image Euclidean distance transformation [6]. If
p is not closer than δ to any other surface vertex (already inserted in the mesh), then
p is inserted (see Fig. 2(a)). Otherwise, and if the radius of B is larger than 2δ, c

is inserted instead (see Fig. 2(b)). In this way, we can show that this step does not
cause the insertion of infinite number of vertices and therefore, termination is not
compromised.

For the same reason, we also require that no vertex is ever inserted outside the
box. When the circumcenter c of an intersecting tetrahedron is chosen for insertion,
however, c might lie outside the box. To prevent such cases, c is rejected and its
projection on the box is inserted instead. See Figs. 2(c) and 2(d) for a couple of
examples.

At the end of this step, all the vertices that do not lie on ∂O are deleted from
the triangulation. At this moment, the restricted facets of the mesh are a good ap-
proximation of ∂O, because the vertices remained in the triangulation form a dense
sample of ∂O (see Sect. 2). Also, we can show that no 2 vertices are closer than δ

and this is why δ controls the size of the mesh.

3.2 Point Rejection Quality Improvement

Our algorithm keeps track of poor tetrahedra, i.e., tetrahedra with small or large
dihedral angles. Poor tetrahedra are eliminated by inserting their circumcenter. Pri-
ority is given to the tetrahedra with higher radius-edge ratio as in [18]. The radius-
edge ratio of a tetrahedron t is defined as the length of t’s circumball radius divided
by the length of t’s shortest edge.

Problems arise, however, when the circumcenter of a poor tetrahedron (about to
be eliminated) lies close to the surface. If this is the case, the restricted facets in the
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Fig. 2 (a) The closest surface point p to circumcenter c is inserted, (b) c is inserted but p is not,
(c)–(d) c does not lie inside the box and therefore it is not inserted. Its projection c′ is inserted and
the vertices closer than δ to c′ are deleted from the mesh

Fig. 3 Meshes for a kidney. All dihedral angles are between 19° and 150°. (a) No extra care has
been taken to preserve fidelity and holes appear. (b) The point rejection strategies prevented the
creation of holes. (c) A cross section of the mesh in (b)

triangulation are not any more a good approximation of ∂O. See Fig. 3(a) for an
example: the boundary facets have vertices that do not lie precisely on the surface.
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Fig. 4 The point rejection strategies. (a) t is an illegal facet. (b) t is a legal facet

To overcome this issue, we propose special point rejection strategies. Their goal
is to make sure that all poor tetrahedra are eliminated without inserting points close
to the surface.

Our algorithm first tries to convert illegal facets to legal ones. We define legal
facets to be those restricted facets whose thee vertices lie precisely on ∂O. Con-
versely, a restricted facet with at least one vertex not lying on ∂O is called an illegal
facet.

Let t be an illegal facet and e its Voronoi edge (see Fig. 4(a) for an illustration).
Recall that e has to intersect ∂O (see Sect. 2) at a point p. Any vertex v of t which
does not lie precisely on ∂O is deleted from the triangulation, while point p is
inserted. Note that since only non-surface vertices are deleted from the triangulation
and since p is inserted on ∂O, this step does not introduce an infinite loop: points
that are inserted are never deleted.

In addition, the algorithm tries to keep in the Delaunay triangulation as many
legal facets as possible. Let c be the circumcenter of a poor tetrahedron considered
for insertion. If the insertion of c eliminates a legal facet t (see Fig. 4(b)), then c is
not inserted. Instead, a point p on the intersection of ∂O and t’s Voronoi edge e is
inserted.

Figures 3(b) and 3(c) show how our algorithm meshed a kidney; observe that now
the boundary facets have vertices lying precisely on ∂O. In the next section, we will
demonstrate that our point rejection strategies work also very well on multi-material
domains.

4 Results

We ran our experiments on a 64 bit machine equipped with a 2.80 GHz quad-core
Intel i7 processor and 8 GB of memory. Our algorithm was built on top of the Com-



166 P.A. Foteinos and N.P. Chrisochoides

putational Geometry Algorithms Library (CGAL, http://www.cgal.org). We used
the Insight Toolkit (ITK, http://www.itk.org) for image processing. Lastly, the Visu-
alization Toolkit (VTK, http://www.vtk.org) rendered the meshes.

Figure 5(a) illustrates the output mesh obtained for a segmented CT image taken
from IRCAD (http://www.ircad.fr). Similarly, Fig. 5(b) depicts the output mesh
obtained for the MR Brodmann atlas (http://www.sph.sc.edu/comd/rorden/mricro.
html). Observe that the mesh elements are of excellent quality. Although we do not
give guarantees on the minimum and maximum angles achieved by our method, we
observed that the point rejection strategies are able to remove elements with angles
less than 19° and more than 150° (in any image input we tried) without creating
an edge smaller than δ

10 . It would be interesting to theoretically investigate why
elements of worse quality are eliminated so easily without introducing very small
edges. We leave that exploration as a future work. See the columns “ircad” and
“brodmann” of Table 1 for some statistical results.

The last row of Table 1 shows the largest tetrahedron aspect ratio. Aspect ratio
is defined as the ratio of a tetrahedron’s circumradius to its inradius. The reported
aspect ratio is normalized such that the best aspect ratio equals 1. Therefore, the
aspect ratio ranges from 1 to+∞. A high aspect ratio is an indication of bad quality.

Lastly, we show that the size of the mesh can be controlled directly by param-
eter δ. For this reason, we ran our mesher on the same CT image (obtained by
IRCAD), but this time we set the value of δ at 8. That is, we double the value of
δ used to obtain the mesh of Fig. 5(a). See Fig. 5(c) for an illustration and the last
column of Table 1 for some statistical results. Observe that the number of elements,
the number of vertices, and the execution time are greatly reduced, in the expense
of worse fidelity. This is an expected trade-off: the fewer elements a mesh has, the
less likely it is to represent complex surface creases accurately.

To evaluate our method, we compare it with CGAL (http://www.cgal.org).
A comparison with other popular meshing techniques like Tetgen (http://tetgen.
berlios.de/) or Netgen (http://www.hpfem.jku.at/netgen/) is omitted in this paper,
because they do not operate directly on images. Rather, they require that the surface
is already meshed as a piecewise linear complex. In contrast, both our algorithm and
CGAL mesh the surface and the volume at the same time.

We run CGAL on the ircad CT image and report the achieved quality. We set
CGAL’s sizing parameters to values that gave output meshes with size similar to the
size of our mesh depicted in Fig. 5(a). Furthermore, we set the quality parameters
to their best theoretical values as described in [15]. Quantitative results for CGAL’s
output mesh are shown in Table 2. Compare it with the first column of Table 1.
Observe that the quality of the CGAL mesh is lower than ours in terms of dihedral
angles and aspect ratios. Another popular quality metric is the minimum scaled Ja-
cobian value [12, 17]. It ranges from−1 to 1 with 1 being the best value. A negative
value means that some elements are inverted. Both our algorithm and CGAL report
positive scaled Jacobian values. In fact, the minimum Jacobian value achieved by
our algorithm is 30 times larger than that achieved by CGAL. In terms of absolute
numbers, we feel that the Jacobian values of our method is low, an issue we are
looking into as future work.

http://www.cgal.org
http://www.itk.org
http://www.vtk.org
http://www.ircad.fr
http://www.sph.sc.edu/comd/rorden/mricro.html
http://www.sph.sc.edu/comd/rorden/mricro.html
http://www.cgal.org
http://tetgen.berlios.de/
http://tetgen.berlios.de/
http://www.hpfem.jku.at/netgen/


High-Quality Multi-tissue Mesh Generation for Finite Element Analysis 167

Fig. 5 Whole meshes, zoomed views, cross sections, and distributions of the dihedral angles for
(a) the CT multi-label image and (b) the MR brain atlas. In (c), we show a coarser mesh on the
same input image that was used in (a)
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Table 1 Information about the images used for the evaluation, the chosen value for parameter δ,
and some quantitative results of the final meshes produced by our algorithm

Experiment ircad brodmann ircad(coarse)

Image size 512× 512× 219 181× 217× 181 512× 512× 219

Image resolution (mm) 0.961× 0.961× 2.4 1× 1× 1 0.961× 0.961× 2.4

#Labels 20 41 20

δ (mm) 4 2 8

Time (sec) 421 1,066 96

#Vertices 139,740 473,994 41,097

#Tetrahedra 783,445 2,575,220 173,575

Dihedral angles (degrees) 19–150 19–150 19–150

Max. aspect ratio (normalized) 4.67 6.22 4.55

Table 2 Quantitative results
of the final mesh produced by
CGAL

Experiment ircad

#Vertices 156,902

#Tetrahedra 756,462

Dihedral angles (degrees) 3–174

Max. aspect ratio (normalized) 16,823

5 Conclusions and Future Work

In conclusion, we have shown that Delaunay refinement techniques are able to
mesh multi-material domains with tetrahedra of very good angles, which makes our
method suitable for subsequent finite element analysis. The point rejection strate-
gies proposed in this work maintain mesh conformity and high quality offering, at
the same time, control over the mesh size.

Note that surface patches of high curvature need to be meshed with more ele-
ments than patches that are not sharp. In its current state, our method meshes the
surfaces uniformly. In the future, we plan to extend our method to produce graded
triangular surfaces and, therefore, smaller meshes.
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Construction of Models and Meshes
of Heterogeneous Material Microstructures
from Image Data

Ottmar Klaas, Mark W. Beall, and Mark S. Shephard

Abstract This chapter presents a set of procedures that start from image data to
construct a non-manifold geometric model that supports the effective generation
of meshes with the types of mesh configurations and gradations needed for efficient
simulations. The types of operations needed to process the image information before
and during the creation of the non-manifold geometric domains are outlined, with
emphasis on those methods that are most appropriate for the analysis of materials
system’s behavior.

1 Introduction

One of the most important scales quantifying the behavior of materials is the
mesoscale at which the mechanics of grain interfaces, voids and inclusions can be
modeled. Often neglected in the development of mesoscale simulation technolo-
gies are the tools needed to support the accurate definition of the heterogeneous
mesoscale geometry and automatic generation of meshes for the accurate prediction
of the critical solution parameters. The accurate representation of the mesoscale ge-
ometry requires a statistically accurate representation of the grains, interfaces, voids,
and inclusions as they exist in the as processed material systems.

Imaging technologies, such as X-ray computed microtomography (XCMT), have
continued to develop to the point that they can provide a voxel level description of
many important materials systems with sufficient resolution to construct the needed
mesoscale geometries.
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This paper presents a set of components that take 3D voxel data, originating
from either a statistically generated 3D description of a polycrystal material or a
set of image slices, as input and, in combination with knowledge of the material
systems involved and simulation methods to be applied, construct proper geomet-
ric representations and associated simulation discretizations (meshes) suitable for
use in mesoscale analyzes. The methods used in the generation of these representa-
tions and discretizations include (i) tools to deal with irregularities at the level of the
voxel data set (elimination of physically impossible voxel constellations and small
features introduced by scanning or segmentation errors) (ii) tools to treat quanti-
zation artifacts at the level of the geometric model, and (iii) methods to enforce
periodic boundaries when desired. With a geometric model as one of the outcomes
of the presented process, the user has the ability to set mesh control such that the
meshes generated support the simulation requirements in terms of parameters to be
predicted and accuracy required.

Examples are presented to show the effectiveness of the presented methods. They
start from data represented as a series of images representing a 3D volume, or data
sets generated by an electron back scatter diffraction method.

2 Image Data Input

The continued advancement of image techniques is providing “geometric informa-
tion” in terms of discrete gray scale levels over a uniform grid of voxels. The use
of such information in many medical related areas is common place with its use in
combination with various simulation techniques increasing at a dramatic rate. An-
other area of application where image data is beginning to be used on a more regular
basis is the quantification of as processed materials.

2.1 3D Voxel Using XCMT

Commercially available imaging systems such as X-ray computed microtomogra-
phy (XCMT) [6] systems have advanced to the point that they can provide accurate
microstructural information for many materials (for examples see e.g. [5]). The out-
put of the imaging system is a set of image slices that, put together provide a set
of voxels with image intensity data associated with each voxel. The first step in the
process of constructing the geometric model is to convert that image data into voxel
sets where each voxel is labeled such that voxels with similar characteristics receive
the same label. The labeled voxel set is called a segmentation of the original data
set. The characteristics to consider vary depending on the application. In medical
imaging different distinct tissues may have the same gray-level appearance and thus
the gray level alone is not a sufficient indicator to assign a voxel label. On the other
hand, due to deficiencies of the imaging process, materials that ought to be identical
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Fig. 1 Image slice of a
XCMT dataset of a concrete
specimen

can be represented with different gray levels. This effect is often seen by comparing
the gray level of objects in the center of the image with the gray level of objects
closer to the boundary of the image.

There are a number of algorithmic approaches, and associated software, to carry
out the segmentation process [3]. The open source Insight Segmentation and Reg-
istration Toolkit (ITK) [12] includes a wide variety of these algorithms and is used
in this work. 3DSlicer is a graphical front end to a subset of the ITK algorithms
[8, 22, 23, 31].

The basic segmentation algorithms are thresholding procedures, which group
gray values into buckets based on a threshold value and their location in the his-
togram. Edge detection algorithms try to find connected voxels forming regions by
locating rapid changes in the image. Region growing methods [30] start from a set
of seed points that are iteratively grown by comparing the points identified with the
neighboring voxels and deciding whether they are to be included into the region or
not based on information gathered from already segmented areas.

The complexity of the algorithms and the parameters to control the behavior of
those algorithms that need to be applied is a function of the degree of contrast of
the constituent materials to be detected as well as the level and type of noise present
in the image data. When noise is present, this image needs to be preprocessed with
noise filtering algorithms before it can be handed to the segmentation procedures.
Again there are a wide variety of noise filters available, each with different charac-
teristics and thus they have to be appropriately paired with the segmentation method
to be used. As an example, many noise filters will by their very nature smear out
distinct sharp jumps in gray level values, thus making their choice inadequate for
segmentation algorithms that operate on detecting such features (e.g. edge detection
segmentation procedures). Other noise filters, e.g. the so called anisotropic diffusion
filter, are designed to reduce noise while preserving the features that edge detection
algorithms rely on for the segmentation process.

Figure 1 shows an example of image deficiencies that the segmentation process
has to contend with. The image shows significant randomly distributed noise, imag-
ing artifacts presenting themselves as concentric circles, and a very visible change
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Fig. 2 Unacceptable segmentation results obtained using tresholding

Fig. 3 Image slice of Large
Glass beads suspended in
hydroxyl-terminated
polybutadiene

in the average gray level toward the boundary of the circular image domain. Trying
to simply apply global tresholding to segment this data leads to inadequate results,
capturing either the center area or the boundary area (Fig. 2 left and right, respec-
tively) correctly, leaving some particles undetected or detecting the matrix material
as particles as well.

Note that in the case of imaging of inanimate objects many of the problems may
be overcome as the imaging process can use higher doses of radiation without hav-
ing to worry about harming the object. Figure 3 shows an image slice of glass beads
suspended in hydroxyl-terminated polybutadiene. One can see that the noise level is
reduced and there are less artifacts from the imaging process (no visual concentric
circles). However, there are still some issues with varying gray levels throughout
the image, causing a fully automatic segmentation process to miss some parts of the
glass beads on the boundary (see Fig. 4 at the bottom right). The Simple Region
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Fig. 4 Segmentation of
Large Glass Beads

Growing algorithm, which is part of 3DSlicer was used for the segmentation in this
example.

For imaging done on living subjects there are a wide variety of issues that typi-
cally make it harder to create images that are optimal for the segmentation process.
Movement of the subject (e.g. due to breathing) can cause image artifacts and dis-
tortions. Some scanning methods rely on radiation (e.g. CT scans), and while for
imaging purposes a high dose of radiation would be beneficial, the negative health
effects require lower radiation doses that cause substantial noise and artifacts in the
created images.

2.2 2D Slices Plus Statistical Processing

Electron back-scatter diffraction (EBSD) is a highly accurate method to provide
a spatially resolved orientation map of a sample surface [1]. Its primary use has
been focused on two-dimensional surfaces [1, 24], since the accuracy of the method
is quite high when applied to a properly prepared surface. Efforts on methods to
directly construct 3D representations are under consideration [17], but are not cur-
rently of high accuracy.

One method that has been developed for the automatic construction of fully
three-dimensional representations is to combine statistical methods with a limited
set of two-dimensional sections to construct statistically equivalent microstructures
[17, 24]. The most well known tool for this type of construction is the Microstructure
builder [19]. The input to the Microstructure builder consists of grain size and shape
data as obtained from orthogonal images. The output is a 3-D voxel structure that
matches the size and shape statistics provided as input. Microstructure builder is cur-
rently to create microstructures for (i) single-phase, equiaxised and non-equiaxised
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microstructures, (ii) single-phase, variable grain shape (with certain limits), (iii) ori-
entation distribution matching only, or both orientation and misorientation matching
and (iv) two-phase with either high volume fraction of second phase particle or with
smaller particles.

3 Construction of Geometric Model

There are a number of potential methods to go from the segmented voxel data to
meshes that could be used in the simulation. However, these methods yield a fine
uniform mesh that is over resolved in many areas while still providing what is typ-
ically a poor geometric representation of the material phases, which can violate
known properties of the given material system. The alternative, used in this work,
is to convert the image data into a multi-material non-manifold boundary represen-
tation [34] that accounts for both the specifics of the given image data and known
properties of the material system.

Given the finite size of the image voxels, the limited level of contrast produced,
and the presence of noise in the results, any geometric representation produced from
material microstructural image data is an approximation of the constituents present.
The level of fidelity of the resulting representation with respect to the operations of
interest, in this case the evaluation of mechanical behavior, can be further enhanced
by accounting for known geometric properties of the constituents in the heteroge-
neous material system. Examples of properties of the material system can include:
The material components (crystals or inclusions) are of a minimum size. The mate-
rial components faces are flat with sharp edges or are rounded and are surrounded
by filler. The interface between components will not be of dimension lower than
two, or one. When known, accounting for such properties, which are material sys-
tem dependent, can yield statistically more accurate geometric representations of
these heterogeneous systems.

Taking account of knowledge of the accuracy limitation of the imaging modality
in terms of voxel resolution relative to feature size, contrast level and/or consistency,
is also important. When detected features are smaller than meaningful for the given
resolution, their inclusion in the geometric model should be questioned, and in the
case where those features are not consistent with known properties they should be
eliminated.

3.1 Voxel Data Processing

Voxel input data produced by the methods above can present situations that lead to
topological inconsistencies that, in turn, prevent construction of non-manifold solid
models that are physically consistent with the properties of the microstructure. The
typical example is a situation where two voxels representing the same grain touch in
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Fig. 5 Elimination of corner
singularity in voxel data set

such a manner that at a single common vertex or a single common edge is created be-
tween two components. Figure 5 illustrates the situation in 2D, where the voxels of
the same material (indicated by the colors) touch through a single common vertex at
the center. Although physically implausible with actual materials, these conditions
can occur in datasets because they are a quantized representation. To eliminate these
situations one of the local voxels is reassigned a different material label to correct
it. For common vertices, the logic uses voting to select which voxel to reassign and
what grain to reassign it to based on the neighboring voxels. The same approach
is used for common-edge conditions, with a generalization allowing any one of the
four voxels connected to the common edge to be selected for reassignment. In some
cases, the reassignment can create another topological inconsistency in the dataset,
so a multiple-pass algorithm is used to iteratively remove all of these conditions. Be-
cause these conditions are sparsely distributed, originate from inaccurate processing
of the original data to begin with, and involve single-voxel modifications only, the
impact on final model construction is negligible.

The process just described is the last to be executed before the non-manifold
model is constructed. This is as important as other processes run on the voxel data
set (e.g., small object removal, erosion/dilation) have the potential to introduce sit-
uations that would yield the generation of a non-realistic non-manifold model from
the voxel data set.

As an example of the importance of processing a dataset, a synthetic volume with
5269 grains [10] was processed. In that dataset, which contains slightly more than
10 million voxels, the procedures above corrected 150,000 physically implausible
conditions in order to create a valid geometric model. In some places, the voxel data
exhibits a check board pattern, indicating that the quantization level was very close
to the Nyquist limit for reliable reconstruction.

Another significant issue is the underlying quantization of the voxel data. In some
cases, datasets contain very small individual grains on the order of 10 or 100 total
voxels. Those voxel groups could have been generated for example because changes
in gray level of the input image were large enough to cause the segmentation pro-
cess to assume a different material at that location. Those small voxel groups lead
to difficulties downstream as they are turned into small geometric objects in the
non-manifold model. That not only leads to a highly refined mesh were none is
needed, due to the small size of the geometric objects that need to be resolved,
but often self-intersections occur in the resulting discretization. This leads to a dis-
cussion of what constitutes an acceptable quantization level and some evolution in
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knowledge from recent experiences about the problem of representing microstruc-
tures with voxel data. When characterizing a specific grain boundary plane, the error
can be readily quantified, and it appears that in 2-D at least ten voxels are required
to capture a straight-line segment and maintain acceptable confidence that the fea-
ture is captured at the appropriate angle. If this holds for 3-D as well, a given flat
grain interface should have a diameter of at least ten voxels, or an area of at least 79
square voxels. Extending this thinking to the volume, measured in terms of square
voxels, we begin to lose confidence for a “spherical grain” with a diameter of less
than ten voxels which translates to a volume of 523 voxels. A more liberal threshold
of seven voxels/linear boundary section has also been suggested, which translates to
a spherical volume of 180 voxels.

Recognizing that there is some minimum resolution at which grain geometry can
no longer be accurately captured, an algorithm was developed that first filteres the
data to detect grains with sub-minimal volume followed by voxel reassignment by
neighbor voting. For larger objects made up of hundreds of voxels, however, voxel
reassignment can only be applied at the object boundaries, where there are one or
more “external” voxel neighbors to use for voting. So the process works iteratively,
reassigning voxels on the object boundary each pass, thereby making the object
smaller and smaller, until the object is removed. The software takes a threshold
value as input to specify the size of objects, in voxels, that are removed by this
processing.

While the small object removal process can eliminate artifacts that represent
themselves as disconnected groups of a small number of voxels making up the ob-
ject, it will not remove objects that are small (on the order of one or two voxels) in
one or two dimensions, but connected to a larger object. These objects significantly
influence mesh generation since their small size requires extremely fine meshes so
they can be resolved appropriately without causing mesh self-intersections. As they
are often artifacts of the imaging and segmentation process, they don’t represent
real data that needs to be resolved, and thus it is advisable to eliminate them be-
fore the non-manifold model is constructed. One method that can successfully be
used for this purpose is an erosion/dilation procedure. Erosion/dilation algorithms
belong to a set of algorithms developed as part of mathematical morphology [9, 32].
Morphology operations change the input voxel data set by applying a structuring
element, effectively changing the shape of objects in the underlying voxel data set.
In the case of erosion/dilation the erosion operation deletes voxels on the boundary
of objects, while the dilation operation adds voxels. Together they have the effect to
leave the boundary of larger smooth objects mostly untouched, while small outliers
of one or two voxels thickness will be eliminated. The strength of the operation can
be controlled by the shape and size of the structuring elements as well as how many
passes the algorithms takes through the data set.

While originally developed for binary images, we have extended the algorithm to
work on voxel data sets of multiple materials. Similar to the process of eliminating
physically implausible situations from the voxel data set, for multi-material situa-
tions decisions have to be made during erosion to determine what material label to
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give to the voxel to be eroded, and similarly during dilation. A careful implementa-
tion of the neighbor voxel voting process can make sure that a data set without any
small artifacts does not get disturbed in the areas where several materials meet.

3.2 Construction of Non-manifold Model Topology

The most basic of the procedures to convert segmented voxel data to a form useful
for the definition of a non-manifold geometric model is a marching cube type of pro-
cedure, originally defined for the extraction of a single triangulated isosurface [18].
Recent versions of this class of method are better able to account for information
from neighboring voxels/octants to produce more controlled triangulations [13, 26]
and to account for non-manifold multimaterial interaction [35]. A drawback of the
marching cube type method is that the triangulations are at the resolution of the
voxel/sampling size, which is typically higher than needed for a non-sampled repre-
sentation, thus methods that reduce the size and complexity of these triangulations
are typically applied [7, 11]. In the present work, an initial triangulation is created
based on voxel level operations like those in [13, 26, 35] however, mesh coarsening
is not preformed for this mesh until after the grain topology is determined and the
surface triangulation is smoothed to get an accurate description of the geometry.

The process of defining the non-manifold boundary representation for a surface
triangulation is focused on processes that group sets of triangles into faces and
applying feature detection methods to define edges and vertices that bound faces
[14, 21].

Due to the voxel nature of the initial geometry information the surface geometries
created contain quantization artifacts on the scale of the individual voxels. Thus
some form of surface smoothing method is needed to create more realistic shapes
of the faces. Conventional data-smoothing methods, however, are not well suited to
removing the quantization artifacts found in voxel datasets. Laplacian smoothing,
for example, is only effective when the perturbations to be removed obey a smoothly
varying statistical distribution. Volume-preserving smoothing filters [20] have been
developed for medical imaging applications, however, such filters distort the surface
geometry at grain/grain boundaries. Although overall grain volume is important,
preserving the fidelity of the grain interfaces is much more important to obtaining
the most accurate simulation results.

Therefore, a new algorithm for data smoothing designed specifically to remove
quantization artifacts and recover the underlying surface geometry was developed.
The algorithm is applied on a geometric face-by-face basis such that for each face
the following steps are performed: (i) Calculate the surface normal at each mesh face
based on the normal vector of its neighboring mesh faces. (ii) Smooth the surface
normals to obtain the normals of the desired surface. (iii) Iteratively adjust the mesh
vertex positions to create a surface matching the smoothed surface normals.

Figure 6 shows an example of this process. Image (a) shows the triangulation
before normal smoothing and triangulation adjustment, while image (b) shows the
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Fig. 6 Geometry smoothing and mesh coarsening

triangulation after smoothing and triangulation adjustment. It is the surface mesh in
image (b) that is then coarsened to the mesh to be used for simulations, shown in
image (c) using general mesh modification operations [16].

3.3 Non-manifold Models for Periodic Representative Volumes

Tools, such as the Microstructure builder [19], that construct microstructural geome-
tries using limited numbers of image slices, often support features to define periodic
representative volume elements (RVEs). The use of such periodic RVEs is advanta-
geous when the microstructure analysis is to calculate material properties that will
be used in a macro-scale simulation. The use of periodic RVEs requires that the
geometric model have matching geometry and topology on opposing sides.

When there is periodicity, the voxel description of the microstructure is such that
moving to the right from the rightmost voxel you end up in a voxel that is equivalent
to the leftmost voxel (as expected, this means that there is effectively a copy of
the RVE repeated in space). However, this means that the boundaries of the entire
RVE are not periodic in the sense that they can be a voxel off which leads to the
introduction on one voxel thin sliver faces at the intersection of the RVE boundary
with a face between two grains. The top two images of Fig. 7 show an example of
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Fig. 7 Elimination of boundary artifacts in RVE

these artifacts. In downstream processes, these small model entities lead to reduced
mesh quality and higher computational load in finite element simulation.

To eliminate this problem a procedure was developed that, in effect, splits the
first voxel plane in half and wraps it around, so as to place the periodic surface in
the middle of this voxel plane. Doing this removes grain-grain boundaries spanning
the outside boundary, thereby removing these one voxel misalignments. The bottom
two images of Fig. 7 show the results using this procedure.

Small features can still occur at the outside/periodic boundary, depending on how
the boundary interacts with the grains. Since for periodic RVEs the location of the
boundary is arbitrary, a preprocessing step is carried out that allows the positions of
the periodic unit cell boundaries to be adjusted so that the least number of small fea-
tures are created. This step leads to improved quality in the final mesh and reduces
the computational size of the subsequent finite element simulation.

For domains that are periodic the final step in non-manifold model construction
is to identify which grain corresponds to each region in the model, so that suitable
material models and boundary conditions can be applied. Because the input data
set is periodic, each grain can intersect the boundary of the RVE and therefore end
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Fig. 8 Example of the ability
to overlay geometry on an
image to identify problems
and verify the results

up with portions in multiple parts of the model. These parts need to be properly
matched so the same material properties are assigned to each portion of the grain.
For example, a simple test case was produced by Microstructure builder compris-
ing 14 grains. The corresponding non-manifold model produced contains 84 model
regions, or an average of six model regions per grain.

The approach used to track grain assignments updates the model conversion soft-
ware to tag each face (triangle) in the initial tessellation with the id numbers of the
grains on either side. After the model is constructed, the software transfers these
grain numbers from the mesh faces to the corresponding model faces. For model
regions intersecting the RVE boundary, the grain number can be obtained from the
data attached to its model faces. For internal regions, a multiple pass algorithm was
implemented to derive the grain number from the data previously transferred to the
model faces plus already assigned regions. Using the 14-grain, 84-region example
mentioned above, all model regions were resolved in two passes, with 78 regions
resolved on the first pass and the remaining 6 on the second pass.

3.4 User Interface Functions to Support Image to Geometry
Operations

Even with the level of effort that has gone into the development of good algorithms
for the automatic construction of the non-manifold geometric model, there are cases
where the image data is not of sufficient quality for the fully automatic execution of
this process. Thus a user interface is available for the user to compare image data to
the extracted non-manifold model data. One specific interface function allows the
user to overlay the geometry along planes representing each slice onto the original
image data. Figure 8 shows an example of this functionality on a slice of data that
has been partially segmented using some preliminary settings. One can see where
particles are not included in the geometry and where the geometry does and does
not match well with the image. In cases like that in Fig. 8, one has to ability to alter
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the settings used by the segmentation procedures and can have them re-executed.
While somewhat similar functionalities exists at the level of the segmentation tools
to compare the segmentation with the image data, the tool here displays the inter-
section of the constructed geometric model with a plane at the location of the image
slice. This opens up the possibility to make changes at the level of the geometry, for
example through dragging control points for the surface until the geometry matches
with the underlying image. Given a 3D visualization of the surface these operations
can conceivably be done in three dimensional space, clearly superior to the manual
editing of individual voxels for individual slices that segmentation tools provide.

Additional functions allow one to perform local geometric modifications to the
geometry by introducing additional geometric features. Boolean operations (inter-
sections, union) are supported such that the final geometric model is a valid non-
manifold model that includes the feature and can be meshed. Such tools can be
applied where there are a small number of modifications needed, or where one or
several items that are not part of the scan need to be inserted to evaluate its impact
during simulation. Examples are individual parts like implants, or simple “what if”
scenarios where the user might want to introduce e.g. a certain amount of void or
other particles. Procedures to determine various geometric properties are also avail-
able. Since all geometric entities representing the particles have a known relation to
the segmentation of the original scan, geometric quantities like determination of the
surface area and/or volume of selected particles or voids are readily available.

4 Mesh Generation

Once the geometry is fully defined, generation of a mesh requires determination of
appropriate mesh control information to ensure that the initial mesh has mesh sizes,
configurations, and gradations appropriate for the execution of the simulations, and
mesh generation algorithms to automatically create a mesh that matches the speci-
fied mesh control information.

Although there is reasonable a priori geometry-based knowledge of areas where
meshes should be refined (e.g., material faces and sharp geometric features), it is
often desirable to be able to adapt the mesh during the analysis process based on
simulation results information obtained from the analysis steps performed to that
point. Thus the mesh adaptivity procedures need to include mesh refinement and
coarsening that can be driven by mesh discretization error control and can account
for the influence of geometric changes including large deformations, fracture or
fragmentation, or evolving contact.

The automatic mesh generator used has been designed to generate valid meshes
for general non-manifold objects [27, 29] which includes multi-material geometric
models with voids acting through a direct interface with the native system using the
abstraction of topological entities and their adjacencies, and the modeling system
libraries to support the geometric interrogations needed by the automatic mesh gen-
erator [4, 27]. The automatic mesh generation [27, 29], and adaptive mesh modifi-
cation procedures [28] have been integrated with the geometric modeling kernels of
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Fig. 9 Model and mesh of a polycrystal with finer mesh in selected crystals

Siemens’s NX, Dassault’s CATIA V5, and PTC’s Pro/Engineer CAD systems, and
Spatial’s ACIS, Siemens’s Parasolid and PTC’s Granite modeling kernels which are
the basis for the majority of other CAD systems. The mesh generation and adapta-
tion procedures also support discrete model representations such as mesh models for
large deformation analyzes including multiple materials and fracture and classified
voxel data for use in meshing microstructures.

A broad range of mesh control functions can be invoked for the generation of
graded meshes where the mesh can be refined at critical geometric features and
material interfaces and coarsened elsewhere. For example, Fig. 9 shows a mesh in
which two particular grains are refined and the remaining mesh graded appropriately
around those areas. The rate of gradation in mesh size can also be controlled.

Figure 10 shows some examples of the various types of mesh control available.
These are close-up images of the concrete dataset showing where one of the aggre-
gate pieces meets the boundary of the domain. These images show a range of mesh
sizes applied to the entire domain and the interior faces as well as using boundary
layer meshing to provide a graded mesh along the aggregate boundary. Anisotropic
unstructured mesh gradation is supported when an anisotropic mesh metric field is
specified. The definition of automatic procedures to set either gradations, boundary
layers, anisotropic metrics or any combination of mesh specification at the material
interfaces is easily supported by linking that information to the material interfaces in
the non-manifold geometric model [29]. The mesh generators also include the abil-
ity to create periodic meshes from voxel data that is non-periodic. This can be used
with procedures such as those in reference [15] to use non-periodic microstructural
representations rather than requiring periodic unit cells.

Anisotropic mesh adaptation to account for discretization errors [16, 28] includ-
ing procedures to maintain boundary layers [25], and/or evolving geometry [33] is
based on local mesh modification of the model.

Figure 11 shows the overall workflow for an adaptive finite element analysis in-
corporating the described technologies. Note that besides the initial step of creating
a discrete model from the voxel data input, the remaining part of the analysis work-
flow is identical to a process where the input is a CAD model. In both cases the
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Fig. 10 Example mesh gradation for concrete data

Fig. 11 Overall workflow

user will attribute the geometric model to apply non-geometric attribute informa-
tion (meshing parameters, boundary conditions, material information etc.), export
the problem setup to a Finite Element solver of their choice and perform simu-
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Fig. 12 Grain data set
produced by Microstructure
Builder

lations followed by error estimation and the construction of an adaptively refined
mesh. That loop continues until the desired solution accuracy is obtained. In the
work flow shown in Fig. 11, all steps within the blue boxes indicate Simmetrix tech-
nology, green boxes indicate user input, and red boxes indicate third party software
technologies.

5 Results

The first example demonstrates the model and mesh generation starting from a Mi-
crostructure Builder dataset consisting of 25 grains. Figure 12 shows the dataset
after the grains constructed by the Microstructure Builder were clipped to a cubical
domain. Figure 13 shows the model and a mesh that was generated from the model.
One geometric face on the boundary of the model and the corresponding mesh were

Fig. 13 Model and mesh generated from data set from Microstructure Builder
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Fig. 14 Non-manifold model
of image data set of concrete

highlighted to make it easier to see the periodicity condition across the boundary of
the RVE. The Microstructure Builder generates periodic grain structures, and thus
the periodicity is maintained in the model and meshes generated.

The second example starts from segmented data stored in an Analyze 7.5 file
format. Analyze 7.5 is a file format commonly used to store MRI data [2]. For
this example, the original data was given as a set of 678 slices stored as 16 bit
TIFF files of 943 × 943 pixels resolution produced by a 3D scan of a cylindrical
block of concrete. Figure 1 shows one slice of the input data set, from which a
cubical domain was cut out from the center to avoid irregularities of the imaging
data at the boundaries of the cylinder that was scanned. The segmentation of the
data was performed using 3DSlicer [31]. Figure 14 shows the non-manifold model
constructed for the cubical domain. At this stage no further processing has been
done on the original voxel data set. In a next step the user removes the quantization
artifacts using the discrete model smoothing operation described earlier by selecting
the desired number of smoothing iterations (see previous section), and then proceeds
to generate the finite element mesh (Fig. 15). It should be noted that the meshes
shown for all examples in this paper are the surface meshes of otherwise full 3D
tetrahedral meshes of the cubical domains. However, for the purpose of visualization
only the surface mesh of the various geometric regions is shown.

The next image dataset was obtained from an XCMT scan of an aluminum foam
sample. This dataset consists of 845 TIFF image files, each 950×950 pixels. An ini-
tial review shows that the gray-level histogram for this data has two distinct regions,
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Fig. 15 Mesh for concrete
image data

so that segmentation could be carried out using a single threshold value. Visual in-
spection also shows that this dataset has very high surface complexity relative to
the sampling (voxel) size. Because of this the segmentation was directly used with-
out additional processing which would have likely eliminated some of the small
features, which in the case of such sharp image data do in fact exist. The model
produced was a 100 × 100 × 100 subset of the aluminum foam data. Figure 16
shows the surface mesh generated including a close-up showing the level of detail
contained in the model.

The last data set is a set of partially shattered glass beads enclosed in hydroxyl-
terminated polybutadiene. The data set contained a total of 990 jpg images, each
954×915 pixels. It was downsampled by a factor of two to a final data set consisting
of 495 images, each 477× 458 pixels.

As it can be seen in Fig. 3 the contrast is very high between the glass beads and
the material they were embedded in. For this example only the glass beads were
segmented and it was assumed they are encapsulated in a homogenous material.

Given the high contrast of the pictures, the Simple Region Growing segmentation
method available in 3DSlicer [31] was used to create the segmentation.

Figures 17 and 18 show the discrete model that was constructed from the seg-
mentation. Note that the colors in those pictures indicate the separate regions that
were detected, not the different materials found in the voxel data set (the glass beads
were all segmented with just one label).
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Fig. 16 Surface mesh detail
for the aluminum foam image
data set

Fig. 17 Discrete model
created from Glass Beads
image data set

The discrete model was created by first eliminating small objects (any discon-
nected object with less than 180 voxels in volume), followed by an erosion/dilation
step to eliminate small artifacts that are the size of a voxel in one or two dimensions.
The discrete smoothing procedure described earlier was applied to the resulting dis-
crete model to eliminate the voxel artifacts. At this point in the process the discrete
model can be saved and, for the most part, treated as any other geometric model
coming from CAD systems or geometric kernels for the purpose of creating simu-
lation inputs.
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Fig. 18 Close up of discrete
model create from Glass
Beads image data set

Fig. 19 Mesh for Large
Glass Beads image data set

The mesh created from the discrete model is shown in Figs. 19 and 20. Meshing
attributes were chosen such that local mesh refinement are applied on the interface
between the glass beads and the material they are embedded in. The difference can
be seen in Fig. 19 when the mesh of the glass beads is compared to the mesh on the
outer faces of the enclosing cube.
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Fig. 20 Close up of mesh for
Large Glass Beads image data
set

6 Closing Remarks

This paper has presented a set of procedures for creating simulation ready unstruc-
tured meshes from image data of the microstructure of material systems. Given the
image data for a given microstructure the steps in the process include:

• Performing the segmentation of the image data to identify the material regions.
• Constructing a simulation appropriate non-manifold geometric model, including

the application of automated procedures to correct the non-manifold model as
needed to properly represent the material system and to make the model more
appropriate for the creation of meshes to be used in simulations. There are also
options for the user to interact with the non-manifold model and original image
data to compare them and modify the non-manifold model if desired.

• Automatic and/or user controlled specification of mesh control information as
desired for the simulations to be performed. This is followed by fully automatic
mesh generation.

• Execution of the desired simulation, which can include the application of adaptive
mesh control (not covered in the current paper).

The process of constructing a proper non-manifold geometric model from the im-
age data is a critical technical step in this process. Image data segmentation and the
interactions of the resulting data with the procedures to construct the non-manifold
geometric model is the most complex step in the process and the one that can benefit
the most form the continued development of improved methods.
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Quality Improvement of Segmented Hexahedral
Meshes Using Geometric Flows

Juelin Leng, Guoliang Xu, Yongjie Zhang, and Jin Qian

Abstract This paper presents a new quality improvement algorithm for segmented
quadrilateral/hexahedral meshes which are generated from multiple materials. The
proposed algorithm combines mesh pillowing, curve and surface fairing driven by
geometric flows, and optimization-based mesh regularization. The pillowing tech-
nique for quadrilateral/hexahedral meshes is utilized to eliminate doublets with two
or more edges/faces located on boundary curves/surfaces. The non-manifold bound-
ary for multiple materials is divided into several surface patches with common
curves. Then curve vertices, surface vertices, and interior vertices are optimized
via different strategies. Various geometric flows for surface smoothing are com-
pared and discussed as well. Finally, the proposed algorithm is applied to three
mesh datasets, the resulting quadrilateral meshes are well smoothed with volume
and feature preserved, and hexahedral meshes have desirable Jacobians.

1 Introduction

In many applications such as computer graphics, finite element analysis and nu-
merical simulations, 3D objects are usually discretized as polygonal meshes, typi-
cally tetrahedral and hexahedral meshes. For example, in biomedical modeling and
material property analysis, 3D objects are often partitioned into multiple domains
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according to different physical/chemical attributes, or material properties. In com-
putational simulations, quadrilateral and hexahedral meshes are often preferred [9].
For a segmented domain, the hexahedral mesh for each component composes the
whole hexahedral mesh with conforming quadrilateral meshes on common surfaces.
The union of boundary meshes for all components forms a non-manifold quadrilat-
eral mesh. Compared to traditional mesh improvement problem for single-material
domains, the problem is much more challenging for segmented meshes.

In this paper, we will focus on quality improvement of quadrilateral/hexahedral
meshes for multiple materials. The pillowing technique for quadrilateral/hexahedral
meshes is utilized to remove doublets. Then hexahedral mesh vertices are catego-
rized into four types: fixed vertices, curve vertices, surface vertices, and interior ver-
tices; while quadrilateral meshes only contain the first three types. Curve vertices
and surface vertices are modified along the tangent directions to regularize the non-
manifold boundary mesh. Moreover, geometric flows are applied for curve fairing
and surface smoothing, which relocate curve and surface vertices along the normal
directions. We will apply four typical geometric flows for surface smoothing, and
discuss their effectivity of evolving the surface. Then the best feature-preserving ge-
ometric flow will be selected in our quality improvement algorithm. Interior vertices
in hexahedral meshes are relocated via an optimization-based method. Finally, the
proposed algorithms are validated on three application examples.

The rest of this paper is organized as follows. Section 2 reviews related previous
work. We describe the quality improvement problem of quadrilateral/hexahedral
meshes for multiple materials in Sect. 3. Section 4 presents algorithms and imple-
mentation details for quality improvement. We give several experimental results in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Previous Work

Hexahedral Mesh Generation The existing methods for unstructured hex-
ahedral mesh generation can be grouped into four categories [15]: grid-based
[18, 21, 22], medial surface [13], plastering [3], and whisker weaving [19]. The
grid-based approaches generate a three dimensional grid of hexahedral elements
in the interior of the domain. Grid-based methods are robust, but tend to gener-
ate poor quality elements near the boundary. Medial surface methods divide the
whole domain into map-meshable regions by a set of medial surfaces, and then a
series of templates are utilized to fill those regions. Plastering methods start with
the boundaries, new hexahedra are attached to the meshing front until the volume
is completely meshed. Whisker weaving builds the combinatorial dual of the mesh,
then the dual mesh is converted into the primal mesh, and finally embedded into the
given domain.

For multiple materials, mesh generation is a much more challenge problem. In
[24], an octree-based isocontouring method [21, 22] was extended to multiple-
material regions. However, the generated hexahedral meshes always have poorly
shaped elements near the boundary.
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Quality Improvement for Quadrilateral/Hexahedral Meshes The pillowing
technique [14] was proposed to remove the cases that two neighboring elements
share two edges/faces by inserting new vertices. Relocating mesh vertices is another
popular approach to improve mesh quality. Laplacian smoothing [6] which relocates
vertices to the arithmetic average of its neighboring vertices is simple and inexpen-
sive, but it does not guarantee an improvement of the mesh quality and also results in
degraded or inverted elements. Therefore, a number of optimization-based methods
[8, 10, 11] were developed to improve the mesh quality by optimizing an objective
function which reflects the element quality. Most of these improvement approaches
were designed for manifold meshes. Due to the complexity of segmented meshes,
quality improvement for segmented meshes is much more challenging.

Surface Smoothing Using Geometric Flows Geometric flows have been suc-
cessfully used for surface modeling and designing because they are good at con-
trolling geometric shape evolution. In the process of surface evolution, the geo-
metric partial differential equations (PDEs) are discretized on a given mesh. On
the other hand, geometric flows can also be used to fair zigzag meshes. In [4], an
approach was described to fair meshes with rough features using diffusion and cur-
vature flows. Surface diffusion flow and averaged mean curvature flow were used to
smooth surface meshes in [16, 23] and [12], respectively.

In our previous paper [12], we have proposed an geometric flow-based method
for quality improvement of segmented tetrahedral meshes. The experimental results
demonstrate the proposed method is effective. The generalization of improvement
approach from tetrahedral meshes to hexahedral meshes is not straightforward, since
a hexahedron has higher flexibility to become extremely distorted. In this paper, we
will focus on quality improvement of quadrilateral/hexahedral meshes.

3 Problem Description and Preparation

In this section, we first provide the problem description of quality improvement for
quadrilateral/hexahedral meshes, and then classify mesh vertices into four groups.
Before introducing our mesh improvement algorithms, we should select proper qual-
ity metrics.

3.1 Problem Description

For a given mesh, quality improvement aims to make each element of the mesh has
an optimal shape. A segmented hexahedral mesh for multiple regions is composed of
several separated sub-meshes for each component with conforming boundaries. The
union of component boundaries forms a complicated non-manifold quadrilateral
mesh. Due to the complexity of segmented meshes, quality improvement is much
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Fig. 1 An illustration
example of a multi-material
domain. (a) is a cube consists
of eight components, which
are marked by different
colors. (b) is the
non-manifold lattice
boundary made up of eight
component boundaries

more intractable than the traditional improvement problem for single-material re-
gions. The quadrilateral/hexahedral mesh for a segmented domain is referred as high
quality, if all the elements are well shaped, and the boundary surfaces are smooth. In
this paper, we intend to develop a novel geometric flow-based approach to optimize
hexahedral elements in each component, and improve non-manifold quadrilateral
boundary meshes simultaneously.

To simplify the non-manifold boundary, we divide the whole boundary into sev-
eral surface patches sharing common boundary curves with each other. Here, the
common surface shared by any two components is referred as a boundary surface
patch, and the exterior boundary of each component is regarded as a boundary sur-
face patch as well. The common curve of any two surfaces is defined as a boundary
curve. As shown in Fig. 1, the cube is composed of eight small cubes represent-
ing different materials. The common faces shared by any pair of neighboring cubes
are called surface patches, and black lines with red end points are boundary curves.
Therefore, the boundary smoothing problem is converted to fairing and regularizing
curves and surface patches.

Due to the complexity of meshes for multiple regions, we categorize mesh ver-
tices into the following four groups:

Interior vertices: Vertices inside one volumetric component.
Surface vertices: Manifold vertices on boundary surface patches, which can move

along the normal direction to smooth the surface, and can also move along the
tangent direction to improve the Jacobian.

Curve vertices: Vertices located on boundary curves, which can only move along
the tangent direction.

Fixed vertices: End points of boundary curves and other non-manifold vertices,
which are fixed during the mesh improvement process.

Then we will handle various vertices using different algorithms. For quadrilateral
meshes, there are only three types of vertices: surface vertices, curve vertices, and
fixed vertices.
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3.2 Quality Metrics

Various quantities have been used to measure the shape or quality of a hexahedron.
Here, we choose the determinant and the condition number of Jacobian matrix [7]
as quality metrics for hexahedral meshes.

Let H be a hexahedron with eight vertices xijk (i, j, k = 0,1), then the hexahe-
dron can be represented as a trilinear parametric volume defined on a unit cube,

x(u, v,w)=
1∑

i=0

1∑

j=0

1∑

k=0

ui(1− u)1−ivj (1− v)1−jwk(1−w)1−kxijk. (1)

The Jacobian matrix

J (x)= J (x, y, z)=
⎛

⎜
⎝

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

⎞

⎟
⎠

describes the linear transformation from the ideal shape (unit cube) to hexahe-
dron H . If the determinant of the Jacobian matrix at all the eight vertices are posi-
tive, then the hexahedron is valid, otherwise, the hexahedron is regarded as inverted.
We call the determinant of Jacobian matrix as Jacobian, and the determinant of the
column-normalized Jacobian matrix as the scaled Jacobian.

The condition number of the Jacobian matrix is defined as κ(J ) = 1
3‖J‖F ×

‖J−1‖F , where ‖J‖F = [tr(J T J )]1/2 denotes the Frobenius norm. It is easy to

derive that κ(J ) = 1
3

√∑
i,j (σi/σj )2 ≥ 1 is a metric with respect to the singular

values {σi}3i=1 of the Jacobian matrix. The condition number reaches minimum iff
σ1 = σ2 = σ3.

For a quadrilateral [x1,x2,x3,x4], we define the following metric

J (xj )= det(xj+1 − xj ,xj+3 − xj ,nj )

named the Jacobian for each vertex, where “det” denotes determinant, the subscript
of xj is in module of 4, and nj is the unit normal vector at vertex xi . The corre-

sponding scaled Jacobian is det(
xj+1−xj

‖xj+1−xj ‖ ,
xj+3−xj

‖xj+3−xj ‖ ,nj ).

4 Quality Improvement Algorithm and Implementation

Our quality improvement algorithm is composed of four parts: pillowing, boundary
curve fairing and regularization, boundary surface fairing and regularization, and
volume mesh optimization. The pillowing technique is used to remove the hexahe-
dra with two or more faces on the boundary surface. To fair a curve/surface mesh,
the vertices are relocated along its normal direction to make the curve/surface as
smooth as possible. To regularize a curve/surface mesh, we intend to modify the
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Fig. 2 Procedure of the pillowing technique applied on a surface patch. (a) is a given surface patch,
red curves with black end points are boundary curves; (b) shows the shrink set (red) and a pillowed
layer (orange); and (c) the inserted layer is dragged inside using the regularization technique

vertices along the tangent direction such that each quadrilateral element becomes
similar to a square.

4.1 The Pillowing Technique

In a quadrilateral mesh, a doublet occurs when two elements share two edges. For
non-manifold boundary, if a quadrilateral has more than two edges located on a
boundary curve, we regard it as a doublet. Doublets will result in poor quality ele-
ments, and one effective method is to change the connectivity of doublet vertices.
The pillowing technique can be used to improve the mesh quality by inserting one
layer around the boundary curves [14]. Since the whole boundary has been divided
into several manifold surface patches, mesh pillowing can be operated on each sur-
face patch independently.

Figure 2 shows the pillowing procedure for a surface patch. First, we set the
whole surface patch as a shrink set. If there is a quadrilateral with two edges forming
a small angle on boundary curves (Fig. 2(b)), it would be excluded from the shrink
set. The shrink set boundary is the outer layer. Second, we create a parallel layer
which is a shrinkage of the outer layer. Vertex connections in the shrink set with
respect to the outer layer vertices are replaced with the corresponding newly added
vertices. Then, each newly added vertices is connected to its corresponding vertex
on the outer layer to fill the gap between the two layers. Finally, we utilize the
regularization technique introduced later to drag the inserted layer inside so as to
improve the mesh quality.

For hexahedral meshes, the pillowing technique is also a popular approach to
remove doublets so that any two elements have at most one common face. The
pillowing idea can be generalized to eliminate the doublet that one hexahedron has
two or more faces on the mesh boundary. In segmented hexahedral meshes, this kind
of doublet is much more common and results in low quality elements.

We apply the pillowing algorithm (Algorithm 1) to pillow each component of the
segmented meshes. Since one component shares boundary with other components,
the shrink set does not shrink actually. We insert inner vertices on the pillowed layer
without interfering the common boundary mesh. Figure 3 shows a simple illustration
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Fig. 3 An illustration of pillowing a cube component. (a) A hexahedral mesh of a cube; (b) the
pillowed mesh, the black vertices are on the outer layer, and the red vertices are newly added; and
(c) hexahedral elements after pillowing

Fig. 4 (a) The outer layer (black) and the pillowed layer (red) of a closed component; (b) the
outer layer (black one) and the pillowed layer (red) of an open component; and (c) hexahedra
surrounding the non-manifold edge (red) should be eliminated from the shrink set

of hexahedral mesh pillowing. It can be seen that all the hexahedra have at most one
face on the boundary after pillowing.

Algorithm 1 (Pillowing one component of the segmented hexahedral meshes)

1. Find the shrink set and the outer layer of the component.
a. Set the whole component as the shrink set;
b. For a closed component (see Fig. 4(a)), the outer layer is just the shrink set

boundary; for an open component (see Fig. 4(b)), the outer layer is open as
well; and

c. Find out non-manifold boundary edges (see Fig. 4(c)), and eliminate all the
hexahedra surrounding these edges from the shrink set.

2. Mesh pillowing.
a. Create a copy of the outer layer, which is the pillowed layer. Shrink the pil-

lowed layer along the normal direction toward the interior of the component;
b. Loop for each hexahedron contained in the shrink set, replace the outer layer

vertices by the corresponding vertices on the pillowed layer. Hence, there
forms a gap between the two layers; and
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c. Fill the gap by connecting each pair of opposite vertices on the two layers,
and obtain several new hexahedra sandwiched between the outer layer and
the pillowed layer.

3. Update the data information such as vertex type, face neighbor, and hexahedron
neighbor.

4.2 Curve Smoothing Driven by Curve Diffusion Flow

Let [x0x1 · · ·xn] be a boundary curve with two fixed end points x0 and xn. To fair
the curve, we introduce a temporal variable t , and evolve the curve along the normal
direction at a speed with respect to curvature. Simply choosing the curvature as the
speed can fair the curve but can not preserve shape features. Here, we construct a
shape-preserving curve diffusion flow to evolve the curve,

dxi

dt
=−[(Δκ i )

T ni

]
ni , i = 1, . . . , n− 1, (2)

where

κ i = ti+1 − ti
si

, ni = κ i

‖κ i‖ , (3)

si = ‖xi − xi−1‖ + ‖xi − xi+1‖
2

, ti = xi − xi−1

‖xi − xi−1‖ , (4)

and Δ is the Laplace operator. ni is a discretization of the normal direction at vertex
xi , and ‖κ i‖ is the corresponding curvature.

Equation (2) can be solved using the explicit Euler scheme

x(k+1)
i = x(k)

i − τ
[
(Δκ i )

T ni

]
ni , i = 1, . . . , n− 1, (5)

where τ is a temporal step-size, x(0)
i = xi , and x(k)

0 = x(k+1)
0 = x0, x(k)

n = x(k+1)
n =

xn. κ i and ni are defined in Eq. (3) by taking xi = x(k)
i , i = 1, . . . , n − 1. Δκ i is

discretized as (
κ i+1−κ i

‖xi+1−xi‖ −
κ i−κ i−1
‖xi−xi−1‖ )/si , with i = 1, . . . , n− 1, κ0 and κn are taken

as zero vectors.

4.3 Curve Regularization

The boundary curve [x0x1 · · ·xn] is referred as regular if vertices are uniformly dis-
tributed on the curve. Therefore, it can be regularized by minimizing the following
energy functional

E(C)= 1

2

n∑

i=1

(‖xi − xi−1‖ − h
)2

, (6)
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where h= 1
n

∑n
i=1 ‖xi − xi−1‖ is the averaged length of each two neighboring ver-

tices. At each free vertex xi of the curve, we vary xi as xi → xi + εiΦi , Φi ∈ R
3,

i = 1, . . . , n− 1. Then we obtain the first-order variation

δ(E,Φi)= ∂E(C, εi)

∂εi

∣
∣
∣
∣
εi=0

= (‖xi+1 − xi‖ − h
)ΦT

i (xi − xi+1)

‖xi − xi+1‖ + (‖xi − xi−1‖ − h
)ΦT

i (xi − xi−1)

‖xi − xi−1‖ .

To keep the curve shape, Φi is chosen as ei which is the unit tangential direction at
xi , then a set of L2-gradient flows are derived as

dxi

dt
+ δ(E, ei )ei = 0, (7)

i = 1, . . . , n− 1. The discretization of Eq. (7) can be written as

x(k+1)
i − x(k)

i

τ
+ (∥∥x(k)

i+1 − x(k)
i

∥
∥− h

)eieT
i (x(k)

i − x(k)
i+1)

‖x(k)
i − x(k)

i+1‖

+ (∥∥x(k)
i − x(k)

i−1

∥
∥− h

)eieT
i (x(k)

i − x(k)
i−1)

‖x(k)
i − x(k)

i−1‖
= 0. (8)

The initial value is chosen as x(0)
i = xi . Each ei is calculated as the unit tangent

direction of a fitting quadratic curve with respect to xi−1, xi and xi+1.

4.4 Surface Smoothing Using Various Geometric Flows

Geometric flows have been successfully used in surface modeling since they are in-
herently good at controlling geometric shape evolution. Let S0 be a piece of compact
orientable surface in R

3 with the boundary denoted as Γ . Introducing the temporal
variable t , the surface evolution can be formularized as

∂x(t)

∂t
= Vn(x)n(x), S(0)= S0, ∂S(t)= Γ, (9)

where x(t) is surface point located on S(t), Vn(x) denotes the normal velocity on
S(t) at x, and n(x) stands for the unit normal. Since the velocity Vn(x) usually
represents several geometric quantities which reflect geometric properties of the
evolving surface, Eq. (9) is referred as a geometric flow.

Various geometric flows can be constructed to meet different application require-
ments by choosing an appropriate normal velocity Vn(x). Curvature is an important
descriptor reflecting the flexibility of surface, hence geometric PDEs are basically
expressed by curvatures. The most common used geometric flows include Mean
Curvature Flow (MCF), Averaged Mean Curvature Flow (AMCF), Surface Diffu-
sion Flow (SDF) and Willmore Flow (WF). MCF can be used to get the minimum



204 J. Leng et al.

surface with respect to fixed boundary. AMCF and SDF are volume-preserving dur-
ing the evolution. At first, we would like to introduce definitions of these four well-
used geometric flows [17, 20].

Definition 1 (Mean curvature flow (MCF))

∂x
∂t
= 2H, S(0)= S0, ∂S(t)= Γ, (10)

where H denotes the mean curvature vector. MCF is an area-reducing flow, which
can be used to get the minimum surface with respect to a fixed boundary.

Definition 2 (Averaged mean curvature flow (AMCF))

∂x
∂t
= [H − h(t)

]
n, S(0)= S0, ∂S(t)= Γ, (11)

where

h(t)=
∫

S

H dA
/∫

S

dA.

Since h(t) is the average of the mean curvature H on the whole surface, hence
Eq. (11) is called the averaged mean curvature flow [5].

Definition 3 (Surface diffusion flow (SDF))

∂x
∂t
=−2ΔsHn, S(0)= S0, ∂S(t)= Γ, (12)

where Δs is the Laplace–Beltrami operator. It is an area-reducing and volume-
preserving flow which can be used for noise removing in surface design.

Definition 4 (Willmore flow (WF))

∂x
∂t
=−[ΔsH + 2H

(
H 2 −K

)]
n, S(0)= S0, ∂S(t)= Γ, (13)

where H and K are the mean curvature and Gaussian curvature, respectively. WF
has been investigated and used widely in computational geometry and other fields.
Suppose the initial surface is a sphere, WF can keep the sphere without evolution.

The following theorems [20] describe area variation and volume variation of the
evolving surface, respectively.

Theorem 1 Let V (t) denote the (directional) volume of the region enclosed by S(0)

and S(t) (see Fig. 5 for a 2D curve case). Then we have

dV (t)

dt
=
∫

S(t)

Vn(x)dA. (14)
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Fig. 5 The directional area between the curves S(0) and S(t). The area of the region with normal
velocity Vn > 0 (or Vn < 0)

Taking Vn =H(t)− h(t), where h(t)= ∫
S(t)

H dA/
∫
S(t)

dA, then we have

dV (t)

dt
=
∫

S(t)

(
H(x)− h(t)

)
dt =

∫

S(t)

H dA− h(t)

∫

S(t)

dA= 0.

Hence AMCF is volume-preserving. Similarly, with Vn =−2ΔsH ,

d

dt
V (t)=−2

3

∫

divs(∇sH)dA= 2

3

∫

(∇sH)T∇s(1)dA= 0,

where divs and ∇s are the tangential divergence operator and the tangential gradient
operator, respectively. Thus, SDF is volume-preserving as well.

Theorem 2 Let A(t) be the are S(t), then we have

dA(t)

dt
=−

∫

S(t)

Vn(x)TH dA. (15)

For MCF, we have
dA(t)

dt
=−2

∫

S(t)

H 2 dA < 0,

which means the surface area keeps reducing until the mean curvature H = 0 all
over the surface. Hence, the steady solution depends upon the fixed boundary curves,
while the enclosed surface will shrink to a point. SDF is another area-reducing flow,
unlike MCF, SDF decreases the surface area until H is constant. WF is a gradient
flow corresponding to the Willmore energy [1, 2]

E(S)=
∫

S

H 2 dA,

which evolves the surface S by decreasing the Willmore energy at the steepest direc-
tion. The Willmore energy is a scale invariant. For any sphere, the Willmore energy
is 4π , and the sphere is a global minimum for an enclosed surface.

All the above four geometric flows will be applied for surface fairing. Since
the geometric flows evolve surface within a pre-defined range, the initial fea-
tures will not be destroyed seriously. Let S be a quadrilateral surface patch
and {xi}Ni=1 be its free vertex set. For a vertex xi with valence 2ni , N(i) =
{i1, i2, . . . , ini

, i′1, i′2, . . . , i′ni
} denotes the index set of the first-ring neighbors of xi .

Geometric PDEs are solved on the quadrilateral mesh S using an explicit discretiza-
tion method, where the discrete approximation of the mean curvature vector, mean
curvature, Gaussian curvature, and surface normal are required. These approxima-
tions can be obtained from the quadratic fitting surface with respect to xi and its
first-ring neighbors [20].
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Fig. 6 The first ring
neighborhood of xi

Discretization of Geometric PDEs An Euler explicit discrete scheme

dx
dt
= x(k+1)

i − x(k)
i

τ

is used in the temporal direction. In the averaged mean curvature flow, h(t) can
be discretized as h(t) = ∫

S(t)
H dA/

∫
S(t)

dA = ∑N
i=1[H(xi )AS(t)(xi )]/A(S(t)),

A(S(t)) is the total area of the quadrilateral mesh S(t), AS(t)(xi ) is one fourth of
the first ring neighbor area surrounding vertex xi , where the first ring neighborhood
of xi is shown in Fig. 6.

Next, we compute the mean curvature H(xi ), the Gaussian curvature K(xi ), and
the Laplace–Beltrami operator Δs at vertex xi on quadrilateral meshes. Suppose the
vertex xi has a valence of n, and its neighboring vertices are xij (ij ∈ N(i)). First,
we fit xi and its neighboring vertices to a quadric surface in the local coordinate
system via the algorithm proposed in [20]. The basis function is chosen as

{
Bl(u, v)

}5
l=0 =

{

1, u, v,
1

2
u2, uv,

1

2
v2
}

,

then the problem is to determine coefficients cl ∈ R
3 for the parametric-form fitted

surface x(u, v) :=∑5
l=0 clBl(u, v), such that

5∑

l=0

clBl(qk)= xik , k = 0, . . . , n

in the least square sense. Here i0 is denoted as i, and qk is the local coordinate of xik

on the tangent plane of xi . After determining {cl}5l=0, it is easy to compute xu, xv ,
g11 = 〈xu,xu〉, g12 = 〈xu,xv〉, g22 = 〈xv,xv〉, g = g11g22 − g12g12, b11 = 〈xuu,n〉,
b12 = 〈xuv,n〉, b22 = 〈xvv,n〉, gαβγ = 〈xuα ,xuβuγ 〉 (α,β, γ = 1,2), and xuαuβ =

∂2x
∂uα ∂uβ (α,β = 1,2).

Using the approximate equation given in [20], we can calculate the mean curva-
ture vector, the Gaussian curvature, and the Laplace–Beltrami operator as follows.

H(xi )n=H(xi )= 1

2
Δsxi ≈ 1

2

n∑

j=0

wΔ
ij xij ,

where we use the superscript “Δ” to denote the approximation coefficient for the
Laplacian–Beltrami operator Δs .
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wΔ
i,j = gΔ

u c
(j)

1 + gΔ
v c

(j)

2 + gΔ
uuc

(j)

3 + gΔ
uvc

(j)

4 + gΔ
vvc

(j)

5 ,

gΔ
u =−

[
g11(g22g122 − g12g222)+ 2g12(g12g212 − g22g112)

+ g22(g22g111 − g12g211)
]
/g2,

gΔ
v =−

[
g11(g11g222 − g12g122)+ 2g12(g12g112 − g11g212)

+ g22(g11g211 − g12g111)
]
/g2,

gΔ
uu =

g22

g
, gΔ

uv =−
2g12

g
, gΔ

vv =
g11

g
,

and c
(j)
l (l = 1, . . . ,5, j = 0, . . . , n) is the (l + 1, j + 1)-th element of C.

For the Gaussian curvature, we have

K(xi )n=K(xi )= 1

2
�xi ≈ 1

2

n∑

j=1

w�
ij xij ,

where “�” denotes the Giaquinta–Hildebrandt operator,

w�
i,j = g�

u c
(j)

1 + g�
v c

(j)

2 + g�
uuc

(j)

11 + g�
uvc

(j)

12 + g�
vvc

(j)

22 ,

g�
u =−

[
b11(g22g122 − g12g222)+ 2b12(g12g212 − g22g112)

+ b22(g22g111 − g12g211)
]
/g2,

g�
v =−

[
b11(g11g222 − g12g122)+ 2b12(g12g112 − g11g212)

+ b22(g11g211 − g12g111)
]
/g2,

g�
uu =

b22

g
, g�

uv =−
2b12

g
, and g�

vv =
b11

g
.

4.5 Regularization of Boundary Quadrilateral Mesh

Generally, a quadrilateral mesh is referred as regular if its vertices are equally dis-
tributed, and each quadrilateral is close to a square. For a given quadrilateral surface
patch S , we use the following energy functional to describe its regularity,

E(S)= 1

2

N∑

i=1

(
E1(xi )+ λ1E2(xi )+ λ2E3(xi )

)
, (16)

where

E1(xi )=
ni∑

j=1

(‖xij − xi‖ − h
)2

,

E2(xi )=
ni∑

j=1

(‖xi′j − xi‖ −
√

2h
)2

, (17)
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E3(xi )=
ni∑

j=1

(
det(xij − xi ,xij+1 − xi ,ni )− Ji

)2
.

In Eq. (16), {xi}Ni=1 are free vertices of surface S . For the vertex xi with
the quadrilateral valence of ni , let xi1, . . . ,xini

be the neighboring vertices con-
nected with xi , and xi′1 , . . . ,xi′ni

be the opposite vertices of xi in the quadrilateral

[xixij xi′j xij+1] (j = 1, . . . , ni ), ni + 1 � 1. Figure 6 illustrates the case with ni = 5.
We intend to regularize the quadrilateral mesh by minimizing the energy functional
(16) which is the combination of three terms:

(1) Obviously,
∑N

i=1 E1(xi ) is globally minimized when the distance between each
pair of neighboring vertices equals to h, where h=√Am, and Am is the average
area of all the quadrilaterals.

(2)
∑N

i=1 E2(xi ) is used to force the diagonals of each quadrilateral as long as
√

2h,
so as to avoid the existence of slender elements.

(3) In the third term E3(xi ), Ji stands for the averaged Jacobian with respect to xi ,
and ni is the unit normal direction at xi .

At each free vertex xi , we vary xi as xi → xi + εiΦi , where Φi ∈ R
3, i =

1, . . . ,N . It is easy to derive the following first order variation form

δ
(
E(S),Φi

)=
ni∑

j=1

(‖xij − xi‖ − h
)ΦT

i (xi − xij )

‖xi − xij ‖

+ λ1

ni∑

j=1

(‖xi′j − xi‖ −
√

2h
)Φ

T
i (xi − xi′j )

‖xi − xi′j ‖

+ λ2

ni∑

j=1

(
det(xij − xi ,xij+1 − xi ,ni )− Ji

)
det(Φi,xij − xij+1,ni ).

To preserve the surface shape, all the free vertices are forced to move on its
tangential plane. Let e(1)

i and e(2)
i be two unit orthogonal tangential directions at

xi , we construct the following two sets of L2-gradient flows from the first-order
variations,

dxi

dt
+ δ

(
E(S), e(l)

i

)
e(l)
i = 0, l = 1,2. (18)

An explicit Euler scheme is applied to solve the L2-gradient flows with unknown
xi , i = 1, . . . ,N .

Remark 1 In the energy functional (16), h is global. In practice, the local hi =√Ai

can be used for each xi as well, where Ai is the average area of quadrilaterals sur-
rounding xi . During the iteration process, either the global h or the local hi should
be updated.
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4.6 Hexahedral Mesh Optimization

For hexahedral mesh optimization, the above algorithms can be used to improve
boundary quadrilateral meshes. Here, we introduce three approaches to optimize
the shape of hexahedra elements by modifying the interior vertices.

4.6.1 Local Optimization

During the process of curve fairing and surface smoothing, elements nearby curves
and surfaces maybe inverted. Here, we use a simple and fast local optimization
approach proposed in [8] to untangle the hexahedral mesh. The vertex with negative
Jacobian is relocated such that

max min
j=1,...,ni

Jacobianj (xi ), (19)

where Jacobianj (xi ) denotes the Jacobian of xi with respect to its j -th neighboring
hexahedron, ni is the vertex valence of xi . The optimization problem (19) is a linear
programming problem which can be solved by the simplex method.

4.6.2 Global Optimization

Suppose {xi}Ni=1 is the set of all interior vertices in a hexahedral mesh, for each xi ,
ni , n′i , and n′′i are the vertex valence, quadrilateral valence, and hexahedral valence,
respectively. To optimize the whole quality of the hexahedral mesh, we minimize
the following energy functional,

E(H)= 1

2

N∑

i=1

E1(xi )+ λ

N∑

i=1

E2(xi ), (20)

where

E1(xi )=
ni∑

j=1

(‖xij − xi‖ − h
)2 +

n′i∑

j=1

(‖xi′j − xi‖ −
√

2h
)2

+
n′′i∑

j=1

(‖xi′′j − xi‖ −
√

3h
)2

, (21)

E2(xi )=
n′′i∑

j=1

(
det(xij1

− xi ,xij2
− xi ,xij3

− xi )− Ji

)2
.

In Eq. (21), h= 3
√

A, and A is the average volume of hexahedra in one component.
Ji stands for the averaged Jacobian with respect to xi . {xij }ni

j=1 is the neighbor-

ing vertices connected with xi , {xi′j }
n′i
j=1 are opposite vertices of each neighboring
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Fig. 7 Neighboring vertices of xi in a hexahedron. Green points are neighboring vertices con-
nected with xi ; red points are opposite vertices of neighboring quadrilaterals; the blue point is
the diagonal vertex of xi in the hexahedron. Distances between neighboring vertices and xi are
expected to be h,

√
2h, and

√
3h, respectively

quadrilateral, and {xi′′j }
n′′i
j=1 are opposite vertices of each neighboring hexahedron.

det(xij1
− xi ,xij2

− xi ,xij3
− xi ) is the Jacobian of xi with respect to its j -th neigh-

boring hexahedron, and xij1
, xij2

, xij3
are the three neighboring vertices connected

with xi in the hexahedron.
The first term of the energy functional attempts to make the vertex distance in

each hexahedron satisfy the relationship as shown in Fig. 7. The second term intends
to make the Jacobians of xi equal to the averaged Jacobian Ji . We can derive the
first order variation of the energy functional (20) as follows:

δ
(
E(H),Φi

)=
ni∑

j=1

(‖xij − xi‖ − h
)ΦT

i (xi − xij )

‖xi − xij ‖

+
n′i∑

j=1

(‖xi′j − xi‖ −
√

2h
)Φ

T
i (xi − xi′j )

‖xi − xi′j ‖

+
n′′i∑

j=1

(‖xi′′j − xi‖ −
√

3h
)Φ

T
i (xi − xi′′j )

‖xi − xi′′j ‖

− λ

n′′i∑

j=1

(
det(xij1

− xi ,xij2
− xi ,xij3

− xi )− Ji

)

×ΦT
i

(
(xij2

− xi )× (xij3
− xi )

)+ ((xij3
− xi )× (xij1

− xi )
)

+ ((xij1
− xi )× (xij2

− xi )
)
.

Then we move each interior vertices using the L2-gradient flow:

dxi

dt
+

3∑

l=1

δ
(
E(S), e(l)

)
e(l) = 0. (22)

Where e(1) = (1,0,0)T , e(2) = (0,1,0)T , e(3) = (0,0,1)T . The equation is solved
using explicit Euler scheme with unknown interior vertices.
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The global optimization method has the advantage of improving the whole mesh
quality, but it cannot guarantee all the hexahedra are valid. Thus, we combine the
global optimization with the local optimization in our mesh improvement algorithm.

4.6.3 Further Improvement

Generally, after local and global optimization, we can get high quality hexahedral
meshes with no degraded or inverted elements. However, for the meshes with com-
plicated boundaries, there still exists several negative Jacobians for boundary ver-
tices, since the above two optimization approaches only optimize the interior vertex
Jacobians. Hence, we intend to modify neighboring interior vertices of those bound-
ary vertices to eliminate negative Jacobians.

The concrete procedure has three steps. First, we loop for all the hexahedra and
compute eight Jacobians for each vertex. Second, loop for each vertex, if the vertex
has any Jacobian less than a given threshold, then move its neighboring interior
vertices along the gradient direction of Jacobian to increase the Jacobian. Third,
gradually increase the threshold, and repeat the previous two steps.

5 Application Examples and Discussion

In this section, we choose one biological dataset and two microstructure datasets
to demonstrate the effectiveness of the proposed quality improvement method. For
each of dataset, two meshes were generated by an octree-based method [24]: one
is the boundary quadrilateral mesh, and the other is the hexahedral mesh. In the
following, we will show the improvement results for these meshes.

5.1 Surface Smoothing Using Various Geometric Flows

In Sect. 4.4, we introduced four typical geometric flows: mean curvature flow
(MCF), averaged mean curvature flow (AMCF), surface diffusion flow (SDF), and
Willmore flow (WF). These geometric flows have their own specific properties,
and can be used in different applications. In some practical applications, it is pre-
requested that the object volume, the boundary area, or the shape features should
be preserved. All the four geometric flows can be applied for surface smoothing.
To compare the smoothing effects, we validate the four geometric flows on a bio-
logical mesh dataset named ATcpnα, which is a chaperonin subunit of an archaea
Acidianus tengchongensis strain S5T.

As shown in Fig. 8(a) and Fig. 9(a), the original quadrilateral mesh consists of
103,746 vertices and 104,366 quadrilaterals. Before surface smoothing, vertices are
modified along the tangent directions to get a relatively regular mesh, since geo-
metric PDEs discretized on irregular meshes always result in numerical error or
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Fig. 8 Quadrilateral mesh of ATcpnα (side view). (a) The original mesh; (b) the smoothed mesh
using surface diffusion flow; (c) the enlargement for the red window in (a); (d) the regularized
mesh; and (e)–(h) are smoothed results using MCF, AMCF, SDF and WF, respectively

even divergence. By minimizing the energy functional (16), we obtain a regularized
mesh with well-shaped elements, and the statistics of Jocabians are given in Table 1.
Then, MCF, AMCF, SDF, and WF are applied to denoise the regularized but bumpy
quadrilateral mesh.

For these four geometric flows, we choose the same temporal step size and
iteration number. The smoothing process has 400 iterations, and vertices are re-
regularized along the tangent directions for every 100 iterations. The total area of
quadrilateral meshes for each iterative step is plotted in Fig. 10. The quality statistics
of mesh smoothing by various geometric flows are given in Table 1. Moreover, the
volume enclosed by the meshes are calculated to investigate the volume-preserving
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Fig. 9 Quadrilateral mesh of ATcpnα (top view). (a) The original mesh; (b) the smoothed mesh
using surface diffusion flow; (c) the enlargement for the red window in (a); (d) the regularized
mesh; and (e)–(h) are smoothed results using MCF, AMCF, SDF and WF, respectively

Table 1 Mesh quality comparison for using different geometric flows

Mesh Jacobian Number of Jacobian Volume

Worst Best Negative 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

Original −0.9798 1.0000 1,214 2,175 7,242 19,922 62,442 324,469 143309.9

Regularized 0.0324 1.0000 0 147 1,288 6,626 47,657 361,746 143357.0

MCF −0.3490 1.0000 9 165 1,244 5,000 35,989 375,057 140378.1 (2.07%)

AMCF 0.0105 1.0000 0 18 815 4,082 34,459 378,090 143344.6 (0.01%)

SDF 0.0561 1.0000 0 81 735 3,841 32,497 380,310 143690.9 (0.23%)

WF 0.0767 1.0000 0 87 706 3,993 33,891 378,787 143393.0 (0.02%)
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Fig. 10 Surface area changes
during the evolution driven by
four geometric flows

property of those geometric flows. Except for MCF, the other three geometric flows
keep the volume well (the volume change is within 0.3%).

The MCF aims to evolve the surface along the normal direction at the speed of
the mean curvature, which is simple and intuitive. From the definition of MCF (10),
the evolution stops when H = 0 all over the surface. Therefore, the enclosed surface
will shrink to a point eventually. Moreover, MCF can be used to get the minimum
surface according to the given boundary curve. In Fig. 10, it is clear that the MCF
reduces the surface area at the fastest speed among the four flows. As shown in
Fig. 8(e) and Fig. 9(e), the bumpy surface can be well-smoothed using the MCF, but
also along with the inevitable shrinkage.

AMCF and SDF are two volume-preserving flows. AMCF intends to equalize the
mean curvature all over the surface, which seems unreasonable for a complicated
surface. As a fourth order geometric flow, SDF takes account of the 1-ring and 2-
ring neighbor vertices, and intends to make the mean curvature vary gradually. In
Fig. 10, it can be seen that, AMCF decreases the surface area slower than MCF but
faster than SDF.

WF has the property of driving a surface to a sphere, no matter how small the
neck is, and the terminate sphere radius depends on the initial surface. Figure 8(h)
shows the tiny expansion of thin necks. Theoretically, WF is not area-preserving
and volume-preserving. However, in this example, WF almost keeps the surface
area (see Fig. 10) and the enclosed volume (see Table 1).

Comparing the resulting meshes in Fig. 8 and Fig. 9, we discovered that the
SDF preserves surface feature better than the other three flows. In the process of
mesh smoothing, the area reduction is reasonable since the given mesh is bumpy.
In the following application examples, we choose the SDF to evolve the boundary
surfaces.
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Fig. 11 92-grain microstructure. (a) The exterior of the original mesh; (c) the exterior of the
improved mesh; (d) the interior of the original mesh; (f) the interior of the improved mesh; and
(e)–(h) show the enlargement of red windows in (a)–(d), respectively

5.2 Quality Improvement for Quadrilateral Meshes

The proposed approach is then applied to two titanium alloy microstructure datasets.
The two datasets are composed of 92 grains (see Fig. 11) and 52 grains (see Fig. 12),
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Fig. 12 52-grain microstructure. (a) The exterior of the original mesh; (c) the exterior of the
improved mesh; (d) the interior of the original mesh; (f) the interior of the improved mesh; and
(e)–(h) show the enlargement of red windows in (a)–(d), respectively

respectively. The union of all the grain boundaries forms a non-manifold boundary.
The given quadrilateral meshes of the two non-manifold boundaries are given in
Fig. 11(a) and Fig. 12(a). There are a great number of poorly-shaped quadrilaterals
in the original meshes. Mesh vertices are irregularly distributed, the boundary curves
and surfaces are bumpy.
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Table 2 Quality comparison of quadrilateral meshes before and after improvement

Mesh Mesh size
(vertex, quad)

Jacobian Number of Jacobian

Worst Best Negative 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

92-grain Original (13,690, 15,459) −0.8711 1.0000 151 336 965 2,855 7,966 49,561

Improved (24,258, 26,027) 0.1052 1.0000 0 21 323 2,426 9,963 91,375

52-grain Original (13,511, 14,738) −0.6129 1.0000 150 397 1,082 2,520 7,778 47,023

Improved (20,823, 22,050) 0.1221 1.0000 0 26 258 2,053 11,461 74,402

To improve the quadrilateral meshes, we first divide the mesh into several man-
ifold surface patches and boundary curves. Since the outline of the two data vol-
umes is a cuboid, we treat the eight corners as fixed vertices, and cuboid edges as
boundary curves. Then the algorithms presented in Sects. 4.2–4.5 are applied to the
boundary curves and surface patches. Since there are several poor quality quadrilat-
erals with more than two edges on the boundary curve, the pillowing technique is
used to eliminate these cases by inserting some vertices.

After quality improvement, we obtain remarkable optimized quadrilateral
meshes. Fig. 11 and Fig. 12 show the contrast between meshes before and after
quality improvement. It is obvious that both curves and surfaces in the improved
meshes are smooth. Moreover, the vertices are uniformly distributed with no poorly
shaped quadrilaterals. Table 2 lists the statistics of the scaled Jacobian for the two
meshes. As shown in the table, there are a great number of negative Jacobians in
the original mesh. Our improvement method makes all the Jacobian greater than
0.1, the overall mesh quality is significantly upgraded with the number of good el-
ements (Jacobian > 0.6) increased and the number of poor elements (Jacobian <

0.4) reduced.

5.3 Quality Improvement for Hexahedral Meshes

We further validate the proposed improvement method on the hexahedral meshes
of the three datasets: ATcpnα, 92-grain, and 52-grain titanium alloy microstruc-
ture. Approaches proposed in Sects. 4.2–4.5 are applied to smooth and regularize
boundary meshes. Since there are several hexahedra with more than one face on
the boundary, mesh pillowing should be implemented. Then, the local improvement
method is used to modify the vertices near the boundary surface, which can elimi-
nate most negative Jacobians. The whole mesh quality is improved by minimizing
the energy functional (20). Finally, further optimization is implemented to eliminate
the Jacobians less than the threshold 0.1.

The mesh quality statistics before and after improvement are listed in Table 3,
which shows the significant improvement of the mesh quality. There are thousands
of negative Jacobians in the original meshes, while the improved meshes are high
quality, either scaled Jacobians or condition numbers are desirable. The cross sec-
tions for the three meshes are shown in Figs. 13, 14, 15. It can be seen that the
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Table 3 Quality comparison of hexahedral meshes before and after improvement

Mesh Mesh size
(vertex, quad)

Jacobian Number of Jacobian Condition number

Worst Best Negative 0.0–0.2 0.2–0.6 0.6–1.0 Min Max

ATcpnα Original (196,042, 141,979) −0.9337 1.0000 45,306 41,747 78,117 970,662 1.0000 4.9e6

Improved (299,916, 246,277) 0.0375 1.0000 0 221 190,355 1,779,640 1.0000 328.3

92-grain Original (27,720, 25,024) −0.7993 1.0000 1,783 3,215 14,723 180,473 1.0004 1.2e5

Improved (49,072, 44,994) 0.1000 1.0000 0 1,885 47,896 310,171 1.0000 815.6

52-grain Original (32,768, 29,791) −0.6861 1.0000 2,178 4,204 15,157 216,789 1.0000 2.6e15

Improved (50,756, 46,695) 0.1002 1.0000 0 226 24,842 348,492 1.0017 1.6e4

Fig. 13 Cross sections for ATcpnα hexahedral meshes. (a) The original mesh; and (b) the im-
proved mesh

newly added vertices by the pillowing technique are distributed regularly after mesh
improvement.

6 Conclusion

We have developed a series of algorithms to improve the mesh quality of quadri-
lateral/hexahedral meshes for segmented multiple regions. Our proposed method
combines the pillowing technique, geometric flow method, and optimization-based
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Fig. 14 Cross sections of the 92-grain hexahedral meshes. (a) The original mesh; and (b) the
improved mesh

Fig. 15 Cross sections of the 52-grain hexahedral meshes. (a) The original mesh; and (b) the
improved mesh

approaches. The pillowing technique is applied to eliminate the cases that two
or more edges/faces of one quadrilateral/hexahedron are located on a boundary
curve/surface. Driven by geometric flows, vertices located on boundary curves and
boundary surfaces move along the normal direction to remove the zigzag and bumpi-
ness. Energy functionals, which are minimized using L2-gradient flows, are con-
structed to regularly distribute vertices and improve vertex Jacobians.

We compared the surface smoothing effects of four typical geometric flows,
and utilized the surface diffusion flow, which is feature-preserving and volume-
preserving, to smooth surfaces in our quality improvement algorithm. Finally, we
validated the proposed method on three application examples. The experimental
results and quality statistics results demonstrate the remarkable improvement ef-
ficiency of our method. The improved quadrilateral/hexahedral meshes have high
quality and the shape feature of boundary curves/surfaces are well preserved.
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Patient-Specific Model Generation and
Simulation for Pre-operative Surgical Guidance
for Pulmonary Embolism Treatment

Shankar P. Sastry, Jibum Kim, Suzanne M. Shontz, Brent A. Craven,
Frank C. Lynch, Keefe B. Manning, and Thap Panitanarak

Abstract Pulmonary embolism (PE) is a potentially-fatal disease in which blood
clots (i.e., emboli) break free from the deep veins in the body and migrate to the
lungs. In order to prevent PE, anticoagulation therapy is often used; however, for
some patients, it is contraindicated. For such patients, a mechanical filter, namely
an inferior vena cava (IVC) filter, is inserted into the IVC to capture and prevent
emboli from reaching the lungs. There are numerous IVC filter designs, and it is
not well understood which particular IVC filter geometry will result in the best
clinical outcome for a given patient. Patient-specific computational fluid dynamic
(CFD) simulations may be used to aid physicians in IVC filter selection and place-
ment. In particular, such computational simulations may be used to determine the
capability of various IVC filters in various positions to capture emboli, while not
creating additional emboli or significantly altering the flow of blood in the IVC. In
this paper, we propose a computational pipeline that can be used to generate patient-
specific geometric models and computational meshes of the IVC and IVC filter for
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various IVC anatomies based on the patient’s computer tomography (CT) images.
Our pipeline involves several steps including image processing, geometric model
construction, surface and volume mesh generation, and CFD simulation. We then
use our patient-specific meshes of the IVC and IVC filter in CFD simulations of
blood flow, whereby we demonstrate the potential utility of this approach for opti-
mized, patient-specific IVC filter selection and placement for improved prevention
of PE. The novelty of our approach lies in the use of a superelastic mesh warping
technique to virtually place the surface mesh of the IVC filter (which was created
via computer-aided design modeling) inside the surface mesh of the patient-specific
IVC, reconstructed from clinical CT data. We also employ a linear elastic mesh
warping technique to simulate the deformation of the IVC when the IVC filter is
placed inside of it.

1 Introduction

Venous thromboembolic disease is a process that begins with blood clot formation
in the legs known as deep vein thrombosis (DVT). If left untreated these blood clots
can progress and eventually migrate to the lungs, causing a pulmonary embolism
(PE). The progression of venous thromboembolic disease from DVT to PE is often
asymptomatic, but once PE occurs, it is associated with high morbidity and mor-
tality. Over 10% of patients with acute PE die in the first hour. If not adequately
treated, the overall mortality of PE is over 30%. The incidence of PE in the United
States is estimated to be over 600,000 cases per year. Approximately 200,000 deaths
are attributed to PE in the United States annually [4].

Both the occurrence of DVT and its progression to PE can be prevented with
the use of anticoagulants, medications that prevent blood from clotting. However,
anticoagulation therapy carries with it the risk of bleeding complications. There are
patients who cannot receive anticoagulation therapy because of comorbid factors
that put them at increased risk for bleeding complications or for whom anticoagu-
lation has failed to prevent the occurrence or progression of DVT. As an alternative
to anticoagulation therapy, these patients often undergo implantation of a device
known as an inferior vena cava filter (IVC filter) (Fig. 1).

IVC filters are mechanical devices that are placed into the IVC using percuta-
neous catheter based techniques. The IVC filter functions as a mechanical barrier
that can capture large clots and prevent them from reaching the lungs. Most DVT
occurs in the legs and pelvis. Since the inferior vena cava (IVC) is the common ve-
nous pathway that drains the majority of blood from the lower half of the body, it
makes sense to place a barrier there since it is the common route that any blood clot
must traverse in order to reach the lungs.

While clinical studies have shown that IVC filters are effective in preventing PE,
especially during the period shortly after they have been placed [16], PE still occurs
in up to 5% of the cases, despite the presence of an IVC filter [36]. Experiments
designed to study the factors that determine the clot trapping efficiency of IVC fil-
ters have largely focused on device design. Little attention has been given to other
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Fig. 1 X-ray image (left) and digital subtraction angiography (right) of a G2 filter (Bard Periph-
eral, Phoenix, AZ) in the inferior vena cava

factors that might affect IVC filter effectiveness, which include the size and shape
of the cava, anatomic variations of the IVC and its tributaries, the site of IVC filter
implantation, and the effect of respiratory variation in caval size and blood flow.

The IVC is the dominant venous structure in the abdomen. It is generally oval
in shape with a major axis measuring between 14 and 33 mm. It is formed as the
confluence of the right and left common iliac veins at approximately the level of the
fourth lumbar vertebral body. The largest tributaries are the single left and right renal
veins that typically enter the IVC at the level of the first lumbar segment. Typically,
IVC filters are placed in the infrarenal IVC, that segment of the IVC between the
confluence of the iliac veins and the insertion of the renal veins. Filters are placed
here so that clots captured in the filter do not propagate back into the renal veins and
cause renal failure.

A high degree of anatomic variability is seen in the human infrarenal IVC. Struc-
tural anatomic variants of the infrarenal IVC are common and have been well de-
scribed in the literature [82] (Fig. 2). Duplication of the infrarenal IVC occurs 1–3%
of the time. In this case, the second IVC drains into the left renal vein. While the
two infrarenal IVCs may be equal in size, the variant represents a spectrum in caval
anatomy. In the extreme case, the right infrarenal IVC is entirely absent leaving only
a left-sided IVC. This occurs in 0.2–0.5% of patients.

Anatomic variations of the renal veins also greatly impact IVC anatomy and
therefore affect IVC filter placement and function [82]. While duplication of the
right renal vein has a relatively minor impact on caval anatomy, duplication of the
left renal vein usually results in one renal vein that passes anterior to the aorta and
one that passes posterior to the aorta. This circumaortic left renal vein occurs in
up to 9% of patients, and in its extreme form, which occurs in approximately 3%
of patients, only the retroaortic left renal vein is present. These variants are signif-
icant because the retroaortic vein inserts into the IVC much more caudally, greatly
shortening the effective length of the infrarenal IVC (Fig. 2).
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Fig. 2 Common IVC/renal
vein variants: (a) duplicated
IVC, (b) left sided IVC,
(c) circumaortic left renal
vein, (d) retroaortic left renal
vein

These variations in infrarenal IVC size and anatomy may significantly impact
IVC filter function. IVC filters are generally designed with self expanding filter
elements that become constrained against the caval wall. This “one size fits all”
approach leads to instances where the clot trapping elements of the filter are more
closely aligned in cavae of smaller cross sectional area (Fig. 3). Variations in branch
anatomy may lead to different flow patterns that significantly affect how a clot is
presented to the IVC filter, potentially influencing the chances that it is captured.
Abnormalities of the spine may lead to curvature or angulation of the infrarenal IVC.
Even in cases of “usual” caval size and anatomy, the location of filter implantation
(high or low in the IVC) may impact its ability to capture clots. Blood flow through
a filter as well as its ability to capture clots also changes as clots accumulate in the
filter.

Historically, information regarding the clot trapping effectiveness of IVC filters
has been derived from in vivo animal studies [8, 31, 34, 52] and increasingly from
in vitro modeling [12, 34, 52, 70]. However, information derived by these means
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Fig. 3 Celect IVC filters (Cook, Bloomington, IN) placed in a 15 mm diameter cava (left) and
a 26 mm diameter cava (right). In the smaller diameter cava, the filter elements are more closely
compressed, potentially leading to a higher clot trapping efficiency

is limited by several factors. Animal studies typically involve a small number of
subjects and are performed in species where IVC anatomy and size only approxi-
mate that of humans. Real time evaluation of blood flow characteristics in animal
models is difficult or impossible given that methods to measure flow characteristics
tend to be optically based, requiring an optically clear caval wall and blood. Evalu-
ation of clot trapping in live animal models usually requires the creation and use of
radiopaque thrombi, which must be observed using radiographic techniques.

In vitro experiments are typically performed by placing the filter in a Silastic or
Plexiglas tube, which is then perfused with a medium that approximates the fluid
characteristics of blood. These models are limited since they are based on an ide-
alized IVC that lacks the biomechanical properties, anatomic variation, respiratory
variation in size, and flow disturbances from branch vessels that are seen in actual
human IVCs. Until recently, evaluation of flow characteristics and clot trapping effi-
ciency has been based on subjective observations, such as observations made when
artificially created thrombi are introduced into the flow model.

Given the sheer number of combinations of the factors discussed, exhaustive
modeling of all possibilities by in vivo and in vitro techniques is impractical. How-
ever, computational modeling has been one approach to overcome this and other
limitations of in vivo and in vitro experimentation. Several papers have been written
to date concerning computational fluid dynamic (CFD) studies of the flow charac-
teristics of various combinations of the IVC, IVC filter, and blood clots [54, 67–
69, 71, 72, 78]. An important limitation of the majority of these studies is the sim-
plistic and unrealistic geometric modeling of the IVC with the exception of [54].
In their paper, Moore et al. employ a realistic, compliant model to represent the
IVC, its branching vessels (including the iliac and renal veins), and lumbar curva-
ture based on an average of the normal IVC anatomy of a patient. In addition, none
of these studies examined the impact of anatomic IVC variant on the flow results.
Simplistic, idealized geometric models of the blood clots were all used in all of these
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CFD studies. In contrast, accurate models of the IVC filters are used in each of the
studies with the exception of [54], which studied only the realistic IVC model in
conjunction with blood clots.

Accurate anatomic models of normal and variant IVCs combined with accurate
models of IVC filters can be used for CFD studies, providing a tool that can then
be used to make predictions about the flow characteristics, biological response, and
clot trapping ability of a given IVC filter design across a wide range of anatomic
and physiologic variables. Predictions about differences in clot trapping ability of
various filter designs, deployment locations, and deployment configurations might
also be derived with the technique. Finally, CFD studies on anatomically correct
models could also prove useful in the development of novel IVC filter designs.

The rest of the paper is organized as follows. In Sect. 2, we describe the state-of-
the-art techniques for patient-specific mesh generation for use in CFD simulations.
In Sect. 3, we describe our previous attempts at generating accurate geometric mod-
els of the IVC and the IVC filter using only computer tomography (CT) images as
input. In Sect. 4, we describe our computational pipeline for generating geomet-
ric models and computational meshes of the IVC and IVC filter and performing
CFD simulations of blood flow. In Sect. 5, we present our results on generation
of patient-specific meshes for various IVC anatomies. We also present our results
from the CFD simulations of blood flow in which use our patient-specific meshes.
Conclusions and some directions for future research are presented in Sect. 6.

2 Generation of Patient-Specific Meshes for CFD Simulations

Generation of patient-specific meshes for CFD simulations from medical im-
ages (e.g., CT, MRI, etc.) usually follow a computational pipeline approach (e.g.,
[7, 9, 37]). The computational pipeline typically involves many of the following
steps [15]: (1) segmentation of the medical image; (2) modeling of invisible struc-
tures (if applicable); (3) surface mesh generation; (4) volume mesh generation;
(5) optimization of the mesh. The main criteria for computational meshes gener-
ated via this pipeline to satisfy are: mesh validity, geometric accuracy, smoothness
and resolution control, and adequate mesh quality. Below we summarize state-of-
the-art techniques for Steps 1 and 3–5 in the above pipeline, as these steps are the
most relevant to our proposed research.

2.1 Image Segmentation

Region growing methods [28] and level-set methods [57] are two popular ap-
proaches for segmentation of medical images [51]. Region growing methods re-
quire an initial seed to be manually chosen and extract a region connected to the
seed by growing until predefined criteria (such as intensity information or edges
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in images) [28] are met; however, they are sensitive to noise. Level-set methods are
techniques for delineating region boundaries using closed parametric curves (or sur-
faces) that deform under the influence of a PDE; however, they require initial input.
Region-growing methods can be combined with level-set methods to obtain initial
and improved medical image segmentations, respectively (e.g., [27]).

2.2 Surface Mesh Generation

The classical approach for generating computational meshes from segmented medi-
cal images has been to perform a surface interpolation between the contours describ-
ing the segmented volume [21, 53, 56]. Several researchers have used the marching
cubes algorithm [41] or one of its improvements [13, 14, 24, 29, 32] to create an
initial surface mesh from the 3D segmented data set. The marching cube method is
fast and relatively simple, but may not generate a topologically-consistent surface
mesh. This limitation was removed in the regularized marching tetrahedron (RMT)
algorithm [74].

Virtual implantation of a medical device into a patient anatomy has also been
used to create patient-specific geometric models of implanted stents [26]. In this
technique, a series of Boolean operations are performed in order to implant the stent
geometry into the patient anatomy, yielding an embedded surface.

2.3 Volume Mesh Generation

Numerous researchers have developed techniques for generating computational vol-
ume meshes for use in biomedical simulations. Typically, finite element or finite vol-
ume simulations are performed using tetrahedral [15, 23, 33, 73, 80] or hexahedral
volume meshes [58, 76, 81]; although hybrid meshes [20, 47, 79] represent a trade-
off between the higher accuracy of hexahedral meshes and the ease of generation of
tetrahedral meshes.

Dynamic mesh generation is the problem of maintaining a mesh for a geomet-
ric domain whose shape changes, e.g., as a function of time. Various techniques,
such as mesh warping or adaptivity can be used to update the mesh as the domain
deforms. Mesh warping (or morphing) is the process of determining a one-to-one
transformation which maps the original 3D mesh to a target domain specified by its
boundary surface. Several biomedical mesh warping algorithms have been devel-
oped (e.g., [5, 6, 38, 46, 60, 62–65, 81]). Typically the mesh topology is maintained
throughout the mesh warping process; however, moving mesh techniques employ-
ing adaptive mesh refinement [49, 50] have been used when topological changes
occur in the domain.
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2.4 Mesh Optimization

Recent research has shown the importance of performing mesh quality improve-
ment before solving PDEs in order to: improve the condition number of the linear
systems being solved [59], reduce the time to solution [22], and increase the accu-
racy of the partial differential equation (PDE) solution. Therefore, mesh optimiza-
tion methods are often used to obtain high-quality biomedical meshes [30, 40, 75]
for numerical modeling and simulation. Only recently have mesh optimization tech-
niques been designed for improving the quality of hybrid biomedical meshes. Dye-
dov et al. [20] recently introduced a variational approach for smoothing prismatic
boundary-layer meshes based on improving triangle shape and edge orthogonality
in prism elements; their smoothing approach is based upon their scaled aspect ratio
prism mesh quality metric, which is one of only two such metrics in the literature
[17].

2.5 Motivation for Current Study

Despite all of the research that has been performed to date in image processing
and dynamic mesh generation, there is no computational pipeline or algorithm
for generation of anatomically-accurate, patient-specific computational meshes of
an IVC filter implanted in the IVC for use in CFD simulations of blood flow.
Thus, in this chapter, we focus on the development of such a computational
pipeline.

3 Patient-Specific Geometric Modeling of an IVC Filter
Implanted in the IVC

A high-resolution geometric model of an IVC filter is necessary for generation of an
accurate geometric model of an IVC filter implanted in an anatomically-accurate,
patient-specific IVC model. The use of such a model will permit accurate CFD
simulations of blood flow on the IVC models. Thus, although a completely image-
based technique for geometric modeling of the IVC, its surrounding veins, and the
IVC filter may seem desirable, in this section, we illuminate the difficulties expe-
rienced in trying to generate such a high-resolution model solely from patient CT
images.

An example of an IVC filter is shown in Fig. 4(a). The challenge in generat-
ing a high-resolution model of such an IVC filter lies in extracting it from relatively
low-resolution clinical CT images. This is particularly difficult for the following rea-
sons: (1) the IVC filter is composed of extremely thin nitinol wires (approximately
0.2 mm in diameter); (2) a radiologist typically acquires a low-resolution CT scan of
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Fig. 4 An initial, unsuccessful attempt at creating a high-resolution IVC filter models from CT
data alone, illustrating the shortcomings of this approach: (a) G2 Express IVC filter (Bard Periph-
eral, Tempe, AZ), (b) low-resolution IVC filter model (created from a low-resolution patient CT
scan), which would result in a severely-obstructed IVC if virtually implanted, (c) high-resolution
IVC filter model (created via CAD)

the patient after filter implantation to minimize radiation exposure; (3) beam hard-
ening artifacts distorts the wires in the CT images. Consequently, using the IVC
filter extracted from patient CT images results in a low-resolution IVC filter model
(Fig. 4(b)), which is unrealistic in size and shape (i.e., it is too thick, and the geom-
etry is underresolved), and leads to unrealistic obstruction of the IVC in the blood
flow simulation.

Initial, unsuccessful attempts at creating high-resolution models of the IVC fil-
ter have included: (1) segmentation of higher-resolution CT images of an ideal-
ized model (i.e., one constructed for performing in vitro experiments), (2) mod-
ification of the low-resolution IVC model using surface offsetting methods, and
(3) skeletonization of the low-resolution IVC filter model. Segmentation of the
higher-resolution CT images resulted in an IVC filter model which was some-
what improved in terms of size but was still too thick, as the IVC filter arms/legs
were still inadequately resolved. Modification of the original low-resolution IVC
filter model by surface offsetting techniques led to a thinner, but still unrealis-
tic IVC filter model in terms of the geometry. The skeletonization approach also
led to a thin IVC filter model with unrealistic geometry. Thus, more sophisti-
cated techniques are needed for creation of a high-resolution IVC filter model
to be virtually implanted in a patient’s IVC. Consequently, to obtain a high-
resolution model of the IVC filter, we propose a virtual filter implantation tech-
nique, whereby a high-resolution IVC filter model created using computer-aided
design (CAD) (Fig. 4(c)) is implanted into the IVC using mesh warping tech-
niques.
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4 A Combined CAD- and CT Image-Based Model Creation
Technique for CFD Simulations of Blood Flow in
Patient-Specific Models

In this section, we describe our computational pipeline for generation of patient-
specific geometric models and computational meshes of the IVC and IVC filter,
suitable for use in CFD simulations of blood flow.

Our computational pipeline consists of several steps. The process begins with
acquisition and then segmentation of a patient’s CT images in order to obtain a ge-
ometric model of the patient’s IVC and its adjacent veins such as the renal and iliac
veins. A surface mesh is then generated on the geometry using the marching cubes
algorithm. The surface mesh generation step is followed by surface reconstruction
and smoothing resulting in an optimized surface such as is required for subsequent
volume mesh generation. A geometric model (i.e., a CAD model) of the IVC filter is
then generated and virtually placed in the IVC at an appropriate location specified
by a vascular surgeon or at the location observed in the CT images. Superelastic
and linear elastic constitutive laws are used to simulate the deformations of the IVC
filter and the IVC, respectively. In particular, the IVC surface mesh and IVC filter
volume mesh are warped using these constitutive laws. A volume mesh with prop-
erties suitable for CFD simulations, i.e., with high-quality boundary layer elements,
is then generated on this anatomically-accurate, patient-specific geometry. The final
step is to perform CFD simulations of the blood flow using the high-fidelity volume
mesh of the IVC and IVC filter.

We now describe each step in our computational pipeline in more detail.

4.1 Image Acquisition

The first step in our computational pipeline is image acquisition. After obtaining
Institutional Review Board exemption, two sets of CT images representing different
IVC anatomies were obtained from a retrospective review of patient records. In par-
ticular, the CT images obtained for use in this study represent the left and retroaortic
IVC anatomies. The CT image data sets have 0.87 mm/pixel in-plane resolution and
a 1.5 mm out-of-plane resolution. In addition, we designed an idealized IVC model
based on a normal IVC anatomy. A data set of high-resolution CT images were
obtained using a multi-slice spiral CT scanner for our idealized IVC model. The
image data set has a 0.44 mm/pixel in-plane resolution and a 0.6 mm out-of-plane
resolution.

4.2 Image Segmentation

The second step of our pipeline is segmentation of the patient’s CT images; this is
done in order to determine the geometry of the patient’s IVC. In our study, image
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segmentation is a semi-automatic process in which we mark the regions correspond-
ing to IVC and its adjacent veins in each 2D CT image in order to obtain an accurate
geometry. The regions are then extracted using one of the algorithms described be-
low, which are implemented in Amira [3], an image segmentation software package.

4.2.1 Region Growing

The region growing technique [28] takes a medical image and seeds as input, where
each seed denotes a region that needs to be segmented. The seeds are progressively
grown from one pixel to the neighboring pixels based on the pixel intensity and its
distance from the seed pixel.

4.2.2 Gradient-Based Region Growing

The gradient-based region growing technique, as implemented in Amira, is similar
to the region growing technique. The difference is in the stopping criteria used to
terminate the progressive growth of the regions. In the former case, termination was
based on the intensity of the pixels. In the latter case, it is based on the magnitude
of the gradient of the pixel intensity [42]. The gradient of the pixel intensity is given
by

G=
√

I 2
x + I 2

y ,

where Ix and Iy are the partial derivatives of the image intensity with respect to the
horizontal and the vertical direction, respectively.

4.2.3 Intelligent Scissors

The intelligent scissors algorithm [44] constructs an underlying graph for an image
in which the pixels are interpreted as nodes and adjacent pixels are connected by
edges. As the gradient of the magnitude of the pixel intensity is an excellent edge
indicator for medical image segmentation, the weight of the edges is a function of
the gradient of the magnitude of the pixel intensity between two adjacent pixels. In
order to enable the shortest path between each pair of pixels to correspond to edges
in the images, the gradients are scaled so that a high gradient results in lower edge
cost. The intelligent scissors algorithm finds the shortest path between a set of user-
chosen pixels using Dijkstra’s algorithm. An ordered set of pixels whose shortest
paths from one pixel to the next one form a closed loop successfully completes the
segmentation of an image. This technique is used to segment patient images when
the other techniques failed due to image noise.
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4.3 Surface Mesh Generation

After the geometry of the IVC and its adjacent veins are extracted using one of the
above segmentation algorithms, a surface mesh of their geometry is generated using
the marching cubes algorithm in Amira. The surface mesh which is generated by this
algorithm is often not of good quality and hence often needs to be smoothed before
being used for further computational analysis. If the surface mesh is overrefined, it
may also need to be coarsened before smoothing.

4.3.1 Marching Cubes

The marching cubes algorithm [24, 29, 41] constructs a triangular surface mesh from
segmented images by evaluating the pixels from multiple images and determining
the optimal triangulation that best describes the isosurface obtained from the seg-
mented images. The pixels from multiple images form imaginary cubes, where each
pixel represents each vertex of the cubes. Each pixel is deemed either inside the re-
gion of interest (i.e., inside either the IVC or its adjacent veins) or outside the region
of interest. For a set of eight pixels forming a cube, this results in 28 = 256 possible
combinations for the cube. Due to symmetry, the number of combinations can be
reduced to around 15. Every cube is evaluated to find the combination to which the
configuration reduces, and a topologically-consistent triangulation is constructed
based on the configuration to obtain a triangular surface mesh.

4.3.2 Poisson Surface Reconstruction

For the idealized IVC model, the surface mesh of the IVC and the adjacent veins
obtained from the marching cube algorithm was overrefined. Thus, the mesh was be
simplified before using it for further analysis. For this purpose, we use the Poisson
surface reconstruction approach [35], which has been implemented in Meshlab [43].
Here, an indicator function is constructed, whose value is 1 inside the surface or 0
outside the surface. Since this function is discontinuous, the indicator function is
convolved with a smoothing function, and the gradient of the resulting function, V,
is computed. In order to reconstruct the surface using the gradient, a function, χ , is
computed such that it gradient is equal to the vector field, i.e.,

∇χ =V,

where ∇ is a gradient operator. Applying the divergence operator on both sides, we
obtain

Δχ =∇ ·V.

In order to solve the Poisson system, an adaptive octree mesh of the surface mesh
is constructed such that there is a greater resolution near the original surface mesh.
After solving the Poisson equation with Neumann boundary conditions, a coarser
surface mesh is constructed using the solution.
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4.3.3 Surface Mesh Smoothing

The image segmentation and surface reconstruction steps are usually affected by
image noise. Construction of volume meshes using noisy surface meshes results in
failure of the mesh generator or in poor quality meshes for CFD simulations. Thus,
the surface meshes must be smoothed before they are used to generate a volume
mesh of the IVC and IVC filter. Because the naive implementation of the Laplacian
smoothing algorithm results in the reduction of the volume of the models, we use
the Humphrey’s Classes (HC) Laplacian smoothing algorithm [77] implemented in
Meshlab to smooth our surface meshes. Unlike the Laplacian smoothing algorithm,
the HP-Laplacian smoothing algorithm preserves the volume of the surface meshes
during smoothing [77].

We briefly summarize the HP-Laplacian smoothing algorithm as follows. First,
we define some notation. Let the original mesh vertices be denoted by vector o, and
let oi denote the coordinates of the ith vertex in the mesh. Let vector q denote the
mesh vertex positions prior to the beginning of the current iteration. Now define vec-
tor p to be the new vertex positions after the current iteration. In the HC-Laplacian
algorithm, the modified vertices, represented by vector p, are first computed by
Laplacian smoothing. They are then pushed back toward their original positions,
vector o, or their positions from the previous iteration, i.e., vector q, by taking the
average of the differences between their original positions and their positions in
their previous iteration as shown:

bi = pi −
(
αoi − (1− α)qi

)
, i.e., by

di = βbi − 1− β

| adj(i)|
∑

j∈adj(i)

bj ,

where adj(i) is the set of vertices adjacent to vertex i and di is the vector by which
the vertex pi is pushed back. In the final step of the algorithm, the final positions,

pfinal
i = pi − di,

are computed.

4.4 Generation of a Geometric Model of the IVC Filter

The next step in our pipeline is to generate a geometric model of the IVC filter.
We obtained a Computer-Aided Design (CAD) model of the G2 Express IVC filter,
which was generated using the Siemens NX 6 software package [61], from Rick
Schraf and Todd Fetterolf for use in our study.
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4.5 Virtual IVC Filter Placement

The subsequent step in the pipeline is to virtually place the geometric model of the
IVC filter (i.e., the CAD model) inside the IVC by simulating the bending of the
filter arms and legs which occur during the IVC filter insertion procedure using fi-
nite element modeling and a superelastic constitutive law. We simulate the resulting
deformation of the IVC based on a linear elastic constitutive law. We now describe
the two-step process of setting up the forces to compress the filter and then releas-
ing the forces until the filter arms and legs touch the walls of the IVC, which then
slightly deforms the IVC.

4.5.1 Superelasticity-Based Mesh Warping

The arms and legs of the IVC filter are made from nitinol wires; nitinol is a supere-
lastic material [19]. Nitinol is a shape memory alloy [18], i.e., it can revert back its
original shape after undergoing large deformations. Such materials are also used to
manufacture stents, which are used to dilate constricted blood vessels. Nitinol also
has applications in orthodontics [48].

In order to simulate the mechanical behavior of the IVC filter during the IVC
filter insertion procedure, the undeformed filter is first moved to a location recom-
mended by a physician or to the location observed in the patient’s CT images. Since
the IVC’s diameter is smaller than the IVC filter’s diameter, in our numerical model,
the IVC filter wires protrude out of the IVC surface mesh after this step has been
performed. Cylindrically-inward forces are then applied on each of the arms and
legs of the IVC filter in order to compress it so that it completely fits inside the IVC.
In the next step, the forces are reduced until the IVC filter legs become close to the
IVC walls.

This two-step process is necessary because the stress versus strain curve for the
loading and unloading of nitinol follow different paths. During the IVC filter inser-
tion procedure, the IVC filter is first compressed and is then fed into a thin tube
called a deployment sheath. The sheath as well as the IVC filter are then inserted
into the body either through the groin or the neck and are guided into place in the
IVC. The IVC filter is then released at the desired location inside the IVC. Our two-
step process mimics the loading and unloading processes acting on the IVC filter
during the procedure. The forces on the filter legs in the IVC are used to deform the
IVC.

Abaqus [1] was used to perform the finite element modeling for virtual filter
placement of the IVC filter surface mesh inside the IVC. Numerical models for niti-
nol and the constitutive law for superelasticity which we employ are implemented
in Abaqus. Nitinol’s superelastic behavior is implemented in the Nitinol Umat sub-
routine in Abaqus [66]. The model is based on the uniaxial behavior of a thin nitinol
wire. Table 1 shows the values of the parameters used as input to the Umat subrou-
tine in Abaqus. These values were obtained from [11]. The deformation of the IVC
filter is modeled using a superelastic constitutive law [55].
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Table 1 Values of the parameters for the superelastic material properties of nitinol [55]

Parameter Description Value

EA Austenite elasticity 35877 MPa

νA Austenite Poisson’s ratio 0.33

EM Martensite elasticity 24462 MPa

νB Martensite Poisson’s ratio 0.33

eL Transformation strain 0.0555

(∂σ/∂T )L Loading 6.7

σS
L Start of transformation loading 489 MPa

σE
L End of transformation loading 572 MPa

T0 Temperature 37°C

(∂σ/∂T )U Unloading 6.7

σS
U Start of transformation unloading 230 MPa

σE
U End of transformation unloading 147 MPa

4.5.2 Linear Elasticity-Based Mesh Warping

It has been observed in some patient images that the circular or elliptical cross-
section of the IVC deforms into a hexagonal cross-section upon insertion of the
IVC filter due to the forces applied by the deformed filter. Once the IVC filter mesh
is virtually warped to be completely inside the IVC, the IVC is deformed based on
the forces acting on the filter. The forces on the IVC filter are cylindrically inward,
and, thus, the forces on the IVC are of the same magnitude but are cylindrically
outward. The vein surface vertices on which the forces are applied are chosen such
that they are close to the filter vertices with which they are most likely to come in
contact. Once the deformation of the vertices is obtained, we use the final vertex
positions to create the volume mesh for the CFD simulations of blood flow.

Abaqus was also used for numerical modeling of the deformation of the IVC.
For modeling the IVC’s linear elastic behavior, we used a value of E = 2.6 ∗
106 dyn/cm2 for the Young’s modulus of the IVC. This value corresponds to the
Young’s modulus of an artery [25], which we used since its value has not yet been
determined for a vein.

A surface interaction module is present in Abaqus in which it is possible to detect
and impose conditions on contact interaction between the surfaces of the IVC filter
and the IVC. We have found that the numerical solvers in Abaqus fail to converge
when this module is used for our specific application. Because the module also
failed to provide an accurate solution for modeling force interaction between a stent
and a blood vessel in [11], we modified our computational technique so that the
IVC filter legs come close to the IVC wall but do not come in contact with it. This
was necessary in order to obtain convergence of the solvers. However, the CFD
results should not be significantly affected by this modification because the distance
between the IVC filter legs and the IVC wall is minimal.
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4.6 Volume Mesh Generation

The next step in the computational pipeline is generation of the volume mesh using
the surface meshes obtained from the above steps. We generate a volume mesh
outside of the IVC filter and inside the walls of the IVC and its surrounding veins.
As blood cannot flow into the surface of the filter wall, a volume mesh of the IVC
filter is not needed for our CFD analysis (however; for fluid-structure interaction
problems, a volume mesh of the filter may be necessary). The AFLR3 software
package [2] allows us to generate such meshes using the advancing front technique
with local reconnection, which we explain below.

4.6.1 Advancing Front Technique

The advancing front technique [39] generates a volume mesh from a valid surface
mesh of the computational domain. A front, which is defined as a set of 2D elements,
propagates from the boundary of the computational domain (i.e., its surface mesh)
toward its interior. As the front propagates, volume elements are generated and are
added to the volume mesh. AFLR3 generates prismatic elements on the boundary
and pyramidal and tetrahedral elements elsewhere in the domain. The distance by
which the front propagates inward from the surface mesh is controlled by setting
the initial distance and increasing it geometrically. Boundary layers are also gen-
erated in the mesh near the IVC walls in order to obtain physically-accurate CFD
simulations of the blood flow in these areas.

4.7 Computational Fluid Dynamics

Given a high-fidelity volume mesh, the final step in the computational pipeline is
the simulation of blood flow in the patient-specific IVC model using CFD. Depend-
ing on the problem of interest, steady or unsteady, laminar or turbulent calculations
may be carried out. In this study, the open-source computational continuum me-
chanics library OpenFOAM [45] was utilized to simulate steady, laminar blood flow
through the IVC. Blood was assumed to behave as a Newtonian fluid with a kine-
matic viscosity of 4.4 cSt. The flow rate in each renal and iliac vein was specified
as 0.75 L/min and 0.6 L/min, respectively, yielding infrarenal and suprarenal IVC
flow rates of 1.2 L/min and 2.7 L/min, respectively [10].

The semi-implicit method for pressure linked equations (SIMPLE) algorithm was
used to solve the incompressible continuity and Navier–Stokes equations, i.e.,

∇ · u= 0
∂u
∂t
+ u · ∇u=−∇p

ρ
+ ν∇2u.

Iterative convergence of the SIMPLE solver was guaranteed by forcing the so-
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Algorithm 1 The computational pipeline to generate patient-specific volume
meshes of the IVC and IVC filter from patient CT images and a CAD model of
the IVC filter and to perform CFD simulations of blood flow on them

1: Acquire patient CT images
2: Segment each patient CT image using one of the following image segmentation

techniques:

• Region growing
• Gradient-based region growing
• Intelligent scissors

3: Generate the surface mesh using the marching cubes algorithm.
4: if the surface is overrefined then
5: Coarsen the mesh using the Poisson surface reconstruction algorithm.
6: end if
7: Smooth the mesh using the HC-Laplacian smoothing algorithm.
8: Generate a geometric model (e.g., a CAD model) of the IVC filter
9: Virtually place the geometric model of the IVC filter in the smooth surface mesh

of the IVC and deform the legs and arms of the IVC filter by simulating the IVC
filter insertion procedure using a superelastic constitutive law for the IVC filter
and a linear elastic constitutive law for the IVC.

10: Generate a volume mesh with boundary layer elements using the advancing
front algorithm.

11: Perform CFD simulations of the blood flow.

lution residuals to be less than approximately 10−4. Additionally, various solu-
tion variables were monitored throughout the simulation to ensure convergence of
the computed result. Computations were performed on 120 processors of a high-
performance parallel computer cluster at Penn State, each simulation requiring ap-
proximately 6 h of wall clock time to obtain a converged solution.

Our computational pipeline is summarized in Algorithm 1.

5 Results from Our Computational Pipeline

In the previous section, we described our computational pipeline for generation of
high-fidelity, patient-specific volume meshes of the IVC anatomy and the IVC filter
and CFD simulation of blood flow on these meshes. In this section, we discuss the
results we obtained from each step in the pipeline.

5.1 Image Segmentation

We use the region growing technique for segmentation of our high-quality idealized
IVC model CT images. Because the images had very little noise, the edge detection
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Fig. 5 Image segmentation
of various patient CT images
using the region growing
method, gradient-based
region growing method, and
the intelligent scissors
method: (a) idealized IVC
model, (b) left IVC model,
and (c) retroaortic IVC model

process was rather easy. Figure 5(a) shows the segmentation of the one of the CT
images of the idealized model using this technique.

As patients cannot be subjected to high-level radiation, the patient CT images
we obtained were of lower resolution. Figure 5(b) shows the segmentation of the
one of the patient CT images from the left IVC model using the gradient-based
region growing technique. Figure 5(c) shows the segmentation of another patient
CT image from the retroaortic model using the intelligent scissors technique. The
blue border shows the path traced by the algorithm, and the black square dots are
the pixels using which the relevant shortest paths were found. Because the patient
images we obtained were not taken at high resolution, we were only able to identify
and segment the renal veins and not all of their branching vessels in the left IVC
patient model. Similarly, we were only able to identify and segment one renal vein
in the retroaortic IVC patient model. The renal veins are upstream of the IVC filter,
and, thus, the results from our CFD simulations of blood flow using these volume
meshes should not be significantly affected due to the absence of one renal vein or
the branching vessels from each IVC model.

5.2 Surface Mesh Generation

After segmentation of the images, we generate a surface mesh of the IVC model
using the marching cubes algorithm. Figure 6 shows the surface meshes generated
for the three models, i.e., the idealized, left, and retroaortic IVC models generated
using the marching cubes algorithm.
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Fig. 6 Surface meshes of the
three IVC models on which
the blood flow simulation
were carried out: (a) idealized
IVC model, (b) left IVC
model, and (c) retroaortic
IVC model

The idealized IVC mesh is overrefined, and hence it is reconstructed using Pois-
son’s reconstruction technique and smoothed using the HC-Laplacian smoothing
algorithm. The meshes of the left and retroaortic IVC models are also smoothed
using this algorithm. Figures 7(a) and (b) show the overrefined mesh of the ideal-
ized model and the reconstructed and smoothed mesh of the same model, respec-
tively. Figures 8(a) and (b) show the unsmoothed and final smoothed meshes of the
retroaortic IVC model, respectively.

Fig. 7 Meshes generated from reconstruction and smoothing: (a) the original mesh of the idealized
IVC model constructed using the marching cubes algorithm; (b) the mesh reconstructed using the
Poisson equation-based algorithm and smoothed using the HC-Laplacian algorithm
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Fig. 8 (a) The original mesh
of the retroaortic IVC model
constructed using the
marching cubes algorithm.
(b) The mesh smoothed using
the HC-Laplacian algorithm

5.3 Virtual IVC Filter Placement

Virtual placement of the IVC filter was performed as described in Sect. 4.5. Figure 9
shows the deformed filter and the deformed IVC surface meshes. Since arteries are
less elastic than veins, we did not see a major deformation in the IVC due to the
forces applied by the IVC filter.

5.4 Volume Mesh Generation

In each of our volume meshes, we generated 10 boundary layers composed of pris-
matic elements. The initial boundary layer thickness is set to 0.00005 meters, and
the geometric ratio by which the thickness increases is set to 1.1. After the boundary
layer elements are constructed, tetrahedral and pyramidal elements are generated in
the interior of the domain and added to the volume mesh. The quality of the ele-
ments are then improved using local reconnection (i.e., edge swaps and face swaps)
subject to min-max type quality criteria in which the quality of the worst element
improved by targeted local reconnection operations. A cut-away view of each of the
volume meshes for the three IVC models are shown in Fig. 10.
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Fig. 9 Surface meshes of the
three IVC models with the
deformed filter inside: (a)
idealized IVC model, (b) left
IVC model, and (c)
retroaortic IVC model. The
IVC filter undergoes a
superelastic deformation, and
the IVC undergoes a linear
elastic deformation during the
IVC filter insertion
procedure, which we simulate
using a finite element method

Fig. 10 Cut-away views of
the volume meshes on the
(a) idealized, (b) left, and
(c) retroaortic IVC models
showing the IVC filter and
boundary layer

5.5 Computational Fluid Dynamics

As shown in Fig. 11, blood flow in the IVC is quite complex, consisting of vortical
structures downstream of the iliac veins, where mixing of the inflow occurs. Based
on the present CFD results, for steady flow at physiologically-realistic flow rates,
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Fig. 11 Transverse contours of velocity magnitude extracted from CFD simulation results in the
(a) idealized, (b) left, and (c) retroaortic IVC models

blood flow in the anatomically-accurate models is less disturbed, consisting of less
separated flow, at the level of the IVC filter compared to the idealized model. Such
differences in flow patterns may significantly affect clot capture and optimal IVC
filter location. Additionally, since such disparate flow patterns likely occur in differ-
ent patient anatomies, this suggests the need for patient-specific modeling of blood
flow in the IVC for optimized filter selection and placement.

6 Conclusions and Future Work

We have proposed a computational pipeline approach for generation of patient-
specific geometric models and computational meshes of the IVC and IVC filter
based on patient CT images and a CAD model of the IVC filter. Our computa-
tional pipeline generates anatomically-correct geometric models of the IVC and its
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surrounding veins by processing patient CT images. In particular, the 2D CT im-
ages are segmented and are formed into a 3D geometric model using the marching
cubes algorithm. A high-quality surface mesh is then generated on the IVC model.
Mesh smoothing is then used to improve the quality of the surface mesh. A geo-
metric model (represented as a surface mesh) of the IVC filter is then created. The
IVC filter model is then virtually placed inside the IVC model using a superelas-
tic mesh warping algorithm which simulates the compression and expansion of the
IVC filter arms and legs which are composed of nitinol. The corresponding defor-
mation of the IVC is simulated using a linear elastic mesh warping algorithm. The
inlet and outlet surfaces of the IVC are rebuilt to be planar and perpendicular to
the blood flow as necessary. A volume mesh of the IVC and IVC filter for the left,
retroaortic, and idealized IVC models is then generated and is then generated and is
used in CFD simulations of blood flow, whereby we illustrate the potential utility of
this approach for optimized, patient-specific IVC filter selection and placement for
improved treatment of PE.

Our computational pipeline approach is the first semi-automatic technique for
generation of patient-specific models and computational meshes of the IVC and
IVC filter based on patient CT images of the IVC and surrounding veins and a CAD
model of the IVC filter. The novelty in our approach lies in the use of a superelastic
mesh warping method to perform virtual implantation of the IVC filter in the IVC.
Other virtual implantation techniques, such as those used for implantation of stents,
have been solely geometric, as opposed to geometric and physical, in nature. How-
ever, the use of physics-based mesh warping techniques allows us to simulate more
closely the IVC filter insertion procedure.

We are also the first group to have investigated the effect that patient anatomy has
on the performance of an IVC filter. In particular, we investigated the performance
of the G2 Express filter in the left IVC, retroaortic IVC, and normal IVC patient
anatomies. Earlier work by other researchers has focused on the performance of
various IVC filters in the normal IVC anatomy.

The strength of our computational pipeline lies in its ability to be used to in-
vestigate the performance of other IVC filters in various IVC anatomies. Because
our approach is semi-automatic, several patient-specific geometric models and com-
putational meshes can be generated with less effort by researchers. Previous tech-
niques for generating these involved manual insertion of the IVC filter into the IVC
and were more time consuming. Another advantage of our computational pipeline
is its flexibility which allows for it to be used to generate patient-specific geometric
models and computational meshes for other implanted medical devices composed
of nitinol, such as stents or orthodontics.

Future work will focus on automation of the virtual implantation aspect of the
computational pipeline, as well as further studies involving patient-specific geomet-
ric models and computational meshes of the IVC and IVC filter.
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Computational Techniques for Analysis of Shape
and Kinematics of Biological Structures

Jia Wu and John C. Brigham

Abstract This chapter presents state-of-the-art methods for statistical shape analy-
sis of biological structures obtained from sets of medical images. In particular, em-
phasis is placed on the techniques necessary to parameterize and then decompose
a given set of 3D surfaces extracted from medical images. Shape representation
methods such as medial representation (i.e., skeletonization) and harmonic topolog-
ical mapping are presented as tools for parameterizing a given set of surfaces so that
they can be quantitatively compared. Then, methods for statistical decomposition
including the proper orthogonal decomposition (also called principal component
analysis) and independent component analysis are shown for the decomposition of
the set of parameterized shapes into the set of fundamental shape features that can
be applied to cluster the shapes and build classifiers with the potential for relating
shape characteristics to pathology. An example analysis is presented which applies
these techniques to parameterize and decompose the shape change of two human
right ventricles from cardiac CT scans throughout the cardiac cycle. Advantages,
disadvantages, and the relevance of the described methods in clinical medical im-
age applications will be addressed throughout the chapter.

1 Introduction

There are a multitude of pathologies that significantly and adversely affect human
health, which are also known to induce noticeable changes in the shape and/or me-
chanical behavior of certain organs or other biological structures [4, 17, 18, 25,
29, 32]. For example, as shown in Fig. 1, pulmonary hypertension (PH) has been
found to significantly alter both the shape and mechanical function of the right heart
[8, 28, 29]. Developments in medical imaging methods and associated image pro-
cessing techniques have gone a long way to aid physicians in both observing the na-
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Fig. 1 Right ventricle endocardial surfaces segmented from ECG-gated cardiac CT scans for
(a) a patient with normal hemodynamics and (b) a patient with pulmonary hypertension

ture of such shape changes and identifying diagnostic relationships between shape
change and a particular pathology. However, there are situations where although a
shape change is known to occur and the nature of this change is suspected to be
linked with pathology, clinical scientists have been so far unable to find measur-
able quantitative features that discriminate various states in the pathology and/or
treatment outcomes. For example, while PH is observed to dramatically change the
size and shape of the right ventricle, features of this shape change have yet to be
identified to accurately predict the likelihood of right ventricle failure that is often
fatal.

There have been several efforts for various applications to choose specific (ei-
ther local or global) features of shape a priori to quantitatively understand organ
function and/or pathology. For example, the work by Vuille et al. and Lorenz et al.
studied the left ventricle globally with respect to its bulk volume and mass [20, 33].
Alternatively, examples of local organ features include the work by Sacks et al. [26]
that characterized right ventricle free wall geometry through curvature measures
and Simon et al. [28] that analyzed PH’s effect on the right ventricle with respect to
regional wall thickness. However, there is typically no more statistical or physical
reasoning for referencing the chosen organ features other than that they are intuitive,
observable, and/or comparable among individuals, and the consistency and predic-
tive capabilities of these metrics may therefore suffer. Efforts are made even more
challenging when the shape of the anatomical structure of interest does not conform
to standard geometric definitions, limiting the ability to make consistent quantitative
comparisons among individuals and thus observe patterns within a set.

Some recent work has taken a more generalized approach to analyzing and con-
trasting the shape of a collection of biological structures from medical imaging data
(see [14] and the references therein for examples of such approaches). What is par-
ticularly notable about these efforts is that at their foundation they attempt to develop
a generalized mathematical description (i.e., parameterization) of the organ shapes.
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Fig. 2 Framework for 3D
statistical shape analysis
methods

Once parameterized such that each shape is uniquely comparable to one another,
pattern recognition approaches can be applied to optimally decompose, cluster, and
build classifiers from a collection of shapes, with no a priori selection of the nature
or location of the most significant discerning features. By not preselecting the fea-
tures of interest, but rather allowing them to be naturally extracted from the data,
the hope is that more statistically significant and physically meaningful features and
classifications can be obtained than would be possible otherwise.

This chapter presents several modern approaches to analyze organ shape de-
scribed by 3D surfaces through quantitative parameterizations and statistical pattern
recognition techniques. Section 2 outlines a standard structure for this statistical
shape analysis process as well as the details of several common parameterization
and pattern recognition methods. Section 3 presents an example analysis and de-
composition of human right ventricles from cardiac CT scans, which is followed by
thoughts on potential future directions for this area of research.

2 Methods

The overall structure for the approach to statistical shape analysis considered herein
is shown in Fig. 2. Provided a collection (either multiple time frames, several differ-
ent patients, or both) of 3D medical image stacks, the first step is to extract the 3D
surfaces that describe the anatomical structures of interest from each stack, which
typically takes the form of a set of Cartesian point clouds and their connectivity
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along the surface. Note that in general even if all surfaces were properly registered
(which is also not a trivial act), other than any given fiducial points, there is no inher-
ent relationship between the points on any two surfaces within a population to allow
for quantitative comparison in this state (e.g., the difference shape cannot be calcu-
lated and one shape cannot be projected onto another). There exist several examples
of work that attempt to directly relate a collection of points on several surfaces
through anatomical and/or geometric feature tracking, minimizing the average dis-
tance between corresponding points, or through various other similar metrics (e.g.,
[19, 21, 23]). However, relating surfaces directly in such ways is generally only ap-
plicable to sets of shapes with relatively small changes, which typically implies the
shapes compared can only correspond to a single individual’s biological structure
(e.g., one patient’s vessel at several instances during the cardiac cycle). As such,
the second critical step is to parameterize each surface with respect to a common
domain so that any two surfaces, whether selected from a single patient at different
times or across a population, may be quantitatively compared. Next, the collection
of parameterized surfaces can be decomposed to identify the fundamental shape
features, and lastly those features can be used to cluster the shapes into significant
categories and/or build classifiers for diagnostic purposes.

The focus of this chapter is on the analysis occurring after the given collection of
medical images has been segmented and initially processed (e.g., smoothed to re-
move image noise and high-frequency segmentation error). Therefore, it is assumed
for the following discussion that a collection of continuous, three-dimensional (3D),
non-overlapping surfaces describing anatomical structures is provided, with the kth

surface domain labeled as Ωk ⊂�3, and all surfaces are defined in some consistent
global coordinate system with spatial coordinates x. Provided with such a dataset,
the key components of the analysis approach presented are to uniquely map each
surface to a unified reference state (i.e., parameterize) and then apply suitable pat-
tern recognition techniques to decompose, cluster, and build classifiers. In particular,
the focus herein will be on parameterization and decomposition, and approaches to
accomplish these steps are detailed in the following subsections.

2.1 Parameterization

There are a variety of methods that have been implemented for the quantitative
comparison of 3D shapes with different benefits and shortcomings (see [10] for an
overview of several approaches to parameterize surfaces). However, while param-
eterization is an inherently ill-posed problem and there are many ways to perform
such a mapping, of critical importance is that the mapping consistently provides
unique and one-to-one representations of each surface. In other words, the param-
eters of the chosen mapping process should be unique and clearly defined for each
surface, and once mapping is completed each point on a surface must have one
unique corresponding point on every other surface and vice versa. An additional is-
sue for clinical applications in medical imaging is that the parameterization should
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Fig. 3 Schematic of the
grassfire analogy to define the
medial axis of a shape
showing (a) the initial shape
as a grass field, (b) the early
stages of the grass burning,
(c) the fire beginning to
quench, and (d) the final
medial axis

ideally require minimal user input (e.g., anatomically defined reference points). This
constraint is mainly due to current limitations on image tagging and implanting
markers in a clinical setting leading to few possible fiducial points in many bio-
logical structures. Two very different parameterization approaches that are actively
used for statistical analysis of shapes are the medial representation and harmonic
mapping, and these methods will be focused on here.

2.1.1 Medial Representation

Medial representation is a widely used object representation method that has been
successfully applied in several cases to biological structure shape analysis [34]. The
purpose of this method is to define a unique collection of points within the object
known as medial loci, which combine to form the medial axis or “skeletonization”
of the object’s surface. An intuitive way to picture these medial loci of an object and
how they could be attained is through the grassfire burning analogy [5]. One can
imagine the volume enclosed by the object’s surface as a field of grass with uniform
density, and then the entire surface of the object is instantaneously and simulta-
neously ignited with fire as shown in Fig. 3a. The front of the fire will propagate
inward at uniform speed as shown in Fig. 3b until the front propagating from mul-
tiple directions meets at some point(s), which then causes the fire to quench at the
meeting point as shown in Fig. 3c. Finally, when the entire fire is extinguished the
collection of all points where fronts met and quenched is the collection of medial
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loci (Fig. 3d), and every point on the object surface is associated with a locus and
a “burning time” that is simply the distance from the locus to the boundary point.
Then the medial axis combined with the corresponding distance between the medial
axis and the shape boundary (i.e., radius function) is sufficient to uniquely define
the original surface. Once each shape has been skeletonized, the medial axes can
be compared directly to analyze the shape differences, such as through the relative
length and curvature of the axis segments. Alternatively, the medial axis can be used
to register the shapes with respect to one another, and then the radius functions de-
scribing each shape can be used to quantitatively compare each shape continuously
or point by point.

This approach is readily applicable to compare shapes with large variations and
across populations. In addition, the medial axis approach is particularly unique
to other shape analysis methods in that it allows for direct comparison of points
throughout the entire volume of each shape, not only the surface points. However,
conceptually this method tends to be best used with shapes that are cylindrical in
nature, such as vessels, or generally shapes with a somewhat consistent skeletoniza-
tion. Furthermore, obtaining the medial loci for any given shape is not a trivial prob-
lem in practice, and there are a large number of formal algorithms that have been
developed to extract the medial axis of objects, including shocks of boundary evo-
lution, Voronoi skeletons, grayscale, core tracking, distance transform, and so on
[27].

As an example, the shocks of boundary evolution method is in essence an attempt
to numerically simulate the grassfire burning analogy [31]. For the simplest possible
cases, the approach starts by assuming that the boundary of interest is described by
the vector S and the volume enclosed by the surface (i.e., inner grass) is isotropic
and homogeneous (meaning the fire will flow at a constant rate in all directions).
Then the evolution of the fire’s front can be described by the rate equation

∂C(t)

∂t
=−κN, (1)

where C(t) is the front of the fire at time t , N is the unit outward normal vector to
C(t), κ is the flow speed of the fire, and the initial condition for the front corresponds
to the original boundary such that C(0)= S (note that time is an artificial parameter
here, used to track the front evolution throughout the volume). Equation (1) can
easily be solved incrementally, and then all that is necessary is to track the evolution
of the front and cease the evolution of points when their position coincides with any
other part of the front.

There also exist several methods that are not directly based on the grassfire anal-
ogy, such as the methods derived from Voronoi skeletons [22]. One such approach
for a given surface begins by sampling the surface at n locations as shown in Fig. 4a
(note that Fig. 4a shows a very small number of locations for illustrative purposes).
Next, the domain is divided into n subvolumes based on the n points selected by
drawing the midperpendicular surfaces for each pair of points so that each subvol-
ume contains exactly one boundary point and all spatial locations within a sub-
volume are closer to the boundary point contained than any other point in the set
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Fig. 4 Schematic of the
Voronoi diagram method to
obtain the medial axis of a
shape showing (a) six
boundary points sampled,
(b) the midperpendicular
surfaces for the six points,
(c) the medial axis for the six
points, and (d) the medial
axis corresponding to a larger
number of boundary points

(Fig. 4b). The medial axis is then defined by all finite segments of the midperpen-
dicular surfaces that are wholly contained within the original surface (Fig. 4c). As
the number of points selected from the boundary increases, the representation ap-
proaches the “true” medial axis (Fig. 4d), and in the limit matches the definition of
the medial axis exactly.

2.1.2 Harmonic Mapping

Harmonic mapping to the unit sphere is an alternate parameterization approach that
has seen considerable recent development for parameterization of 3D closed sur-
faces for statistical shape analysis. Harmonic mapping approaches have been shown
to produce unique, one-to-one, and non-overlapping surface representations, but
a key constraint of these approaches is that the shapes of interest must be closed
genus-0 topologies. However, the genus-0 description can be a suitable approxima-
tion for many biological structures such as regions of the brain and heart, among
others. If the shapes are suitable, some variation of harmonic mapping can be ap-
plied to map each shape to the surface of a unit sphere (i.e., transform the Cartesian
coordinates to the spherical latitude and longitude) from which they can be quantita-
tively compared to one another. These techniques have been shown to be applicable
to a wide variety of shapes and have been coupled with several decomposition and
pattern recognition techniques [3, 6, 11, 14].

By definition, a harmonic mapping (i.e., change in coordinates) is simply a pa-
rameterization that satisfies Laplace’s equation for each new parameter. As such,
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choosing the new parameters to be the spherical coordinates, φ (longitude) and θ

(latitude), the spherical coordinates for each point on the given surface (i.e., loca-
tion on the surface of the unit sphere) can be determined from the solution of the
following differential equations

∇2θ(x)= 0 in Ωk,

∇2φ(x)= 0 in Ωk.
(2)

Defining sufficient boundary conditions on φ and θ is then all that is necessary to
uniquely determine a value of latitude and longitude on the unit sphere for every
point on the original surface Ωk . Once mapped, any given surface (defined by all
x ∈Ωk) can be described continuously with respect to a common domain as

x= x(θ,φ) in θ ∈ [0,π], φ ∈ [0,2π]. (3)

Therefore, the mapped shapes can be quantitatively compared continuously over
the entire surfaces in terms of the spherical coordinates to assess variations, identify
patterns, etc.

One perceived downside to directly applying the harmonic mapping is that the
surface may be distorted in the mapped domain as a majority of the surface may
have φ and/or θ values within a relatively small range, which may degrade the sub-
sequent analysis. Therefore, a common practice is to add an additional relaxation
step in the mapping process [12]. In the cases that define the original surface as a
mesh, this relaxation typically seeks to optimize the mapping so that the elements
in the mapped domain are as regularly distributed as possible (e.g., so that element
internal angles and area are nearly constant in the range of φ and θ ). Alternatively,
the authors have developed and implemented a direct (i.e., no iterative optimization)
two-step process for a consistent harmonic mapping that is completely deterministic
and requires minimal user-defined referential data.

The harmonic mapping approach developed by the authors begins by solving
Eq. (2) using a variation of the techniques shown in [6, 24, 35] to the define and
implement the necessary boundary conditions for the spherical coordinates φ and
θ in a way that requires a minimal amount of referential data and is not signifi-
cantly dependent upon the surface mesh dimensions. For this approach each surface
must have at minimum two reference points and a reference line: a point defined as
the north pole (Γn), a point defined as the south pole (Γs ), and a continuous non-
overlapping line defined as the dateline (Γd ) that connects the two poles. In practice,
the references should be related to some identifiable component of the anatomy for
consistent comparisons between surfaces. It should also be noted that the dateline
has a nonunique mapped value as it represents where the longitude passes 360◦. As
such, the surface is cut along the dateline to create two overlapping, but indepen-
dent boundaries: an east dateline (Γd ) and west dateline (Γ o

d ). Thus, the values of
the spherical coordinates along the references will be assigned as

θ = 0 on Γn, θ = π on Γs,

φ = 0 on Γd, φ = 2π on Γ o
d .

(4)
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Fig. 5 Example of (a) a 3D genus-0 shape, (b) the results of the initial harmonic parameterization,
and (c) the results of the secondary harmonic parameterization

The reference choices are entirely at the discretion of the user, and additional
anatomical information can be easily added beyond the minimal data requirement
through intermediate datelines or other similar boundary conditions. In addition,
since the poles of a sphere have nonunique values for longitude, to solve for the
longitudinal mapping, a region around each pole must be removed in the domain for
the boundary value problem of φ in Eq. (2). This can typically be done by remov-
ing all elements connected to the poles when solving for φ. This is the only directly
mesh-dependent step in the mapping process being presented. However, several tests
have shown that the mapping results are not sensitive to changes in the overall mesh
size, particularly the region eliminated for the longitudinal mapping. The resulting
boundary value problems described by Eqs. (2) and (4) can then be solved through
any preferred approach (e.g., finite element or boundary element method) for the
spherical coordinates of each surface point. Lastly, the region removed for the lon-
gitudinal mapping is replaced in the mapped domain by connecting all of the north-
most and southmost points to the pole and adding a vertex with the latitude value of
the corresponding pole and longitude value of the connecting points.

As discussed, the results from this initial parameterization may not be ideal for
further statistical analysis. As shown in the example in Fig. 5, the vertices (i.e.,
nodes) of the original surface mesh are relatively uniformly distributed over the
original surface (Fig. 5a), but after mapping most of the vertices are concentrated
in the middle third of the latitude domain (Fig. 5b). While not necessarily an issue
in all circumstances, depending on the subsequent statistical analysis used, details
may be lost due to the concentration of the surface information over a relatively
small portion of the referential domain. To compensate for these potential difficulties
(if necessary) a secondary mapping is performed to more uniformly distribute the
mapped vertices over the domain of the spherical coordinates.
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To improve the parameterization it can first be recognized that the harmonic pa-
rameterization of a perfect sphere defines the relationship between a uniformly dis-
tributed mesh over the unit sphere domain (the same domain as the mapped domain)
and the distortion caused by the mapping. As such, the assumption can be made that
the inverse of the harmonic mapping of the sphere will in some sense bring any dis-
torted mapped mesh “closer” to a uniformly distributed mesh over the unit sphere
domain. To apply this concept the initial parameterization procedure is performed
for a unit sphere as the surface (Ω) to produce the mapping

X(θu,φu)= x(θ,φ), (5)

where

X(θu,φu)=
⎡

⎣
sin(θu) cos(φu)

sin(θu) sin(φu)

cos(θu)

⎤

⎦ , (6)

and θu and φu are the latitude and longitude of the unit sphere without mapping, re-
spectively. Equations (5) and (6) can then be rearranged to produce the relationship
between distorted and undistorted spherical coordinates as

θu = θu(θ,φ),

φu = φu(θ,φ).
(7)

To apply this secondary parameterization to a given surface, it is then only necessary
to substitute the results from the initial parameterization (Eq. (2)) into Eq. (7) to
obtain the parameterization of the given surface in terms of θu and φu. Figure 5c
shows an example of a parameterized surface after the secondary parameterization,
with the final mesh being clearly more uniformly distributed than the mesh after only
the initial parameterization. Of particular significance is that since both the initial
and secondary mappings are unique and one-to-one, the final mapping between the
original surface and the unit sphere (x(θu,φu) for Ωk) will also be unique and one-
to-one.

2.2 Decomposition

Once a set of n biological shapes is converted to a set of shape functions (i.e., pa-
rameterized), the application of a decomposition strategy to determine and rank the
fundamental shape components that exist within the set is relatively straightforward.
In general, most techniques to decompose a dataset can be formulated as identifying
the m basis functions (i.e., modes) {vi (θ,φ)}mi=1 that are optimal in some sense for
representing the given set of data. For a linear form, each surface is approximated
as a combination of these global shape modes as

xk(θ,φ)≈ x(θ,φ)+
m∑

i=1

akivi (θ,φ), for k = 1,2, . . . , n, (8)



Shape and Kinematics Analysis of Biological Structures 261

where aki is the coefficient that best approximates the kth shape with the i th mode,
and x(θ,φ) accounts for a possible translation in the dataset. Depending on any prior
knowledge of the nature of the dataset and the objective of the analysis, the trans-
lation function x(θ,φ) can be taken as the null shape (i.e., zero), the mean shape
(i.e., the average of the dataset), or some reference shape so that the analysis corre-
sponds to change in shape (i.e., pseudo-deformation), which will all lead to different
results and different physical interpretations. There are also a variety of decompo-
sition procedures to identify the optimal set of modes with respect to Eq. (8), with
varying benefits and shortcomings. Two of the relatively popular such techniques
will be discussed in more detail in the following: proper orthogonal decomposition
and independent component analysis.

2.2.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD), depending on context, is often inter-
changeably referred to as principal component analysis or the Karhunen–Loeve
transform, but is differentiated here as POD since it will be formulated in the space
of continuous functions. POD has been used successfully in a variety of pattern
recognition and reduced-order modeling applications [1, 2, 7], and it is particularly
beneficial to the shape analysis problem as it is well known to be tolerant to noise,
and the continuous function formulation allows for a set of shape functions to be
analyzed without further processing regardless of mesh conformity (e.g., varying
mesh density and/or node distribution throughout the set).

The main feature of POD is that it defines the optimal basis {vi (θ,φ)}mi=1 as that
which minimizes the average of the L2-norm of the difference (i.e., mean squared
error) between each shape function (referred to as a snapshot) and the best approxi-
mation of the snapshot leading to the following optimization problem

min
{vi (θ,φ)}mi=1

〈∥
∥xk(θ,φ)− x∗k(θ,φ)

∥
∥2

L2

〉
, (9)

where

〈xk〉 = 1

n

n∑

k=1

xk, (10)

and x∗k(θ,φ) is the best approximation to xk(θ,φ) through Eq. (8), which can be ob-
tained using the projection operator. Lastly, through several manipulations including
applying the method of snapshots, the optimal modes can be solved deterministi-
cally through the following eigenvalue problem (see [1] and the references therein
for details)

1

n

n∑

k=1

AjkC
(i)
k = λ(i)C

(i)
j , (11)
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where

Ajk =
∫ 2π

0

∫ π

0
(xj − x) · (xk − x) dθ dφ, (12)

and

C
(i)
k =

∫ 2π

0

∫ π

0
(xk − x) · vi dθ dφ. (13)

The n-dimensional eigenvalue problem can be solved to obtain at most n modes as

vi (θ,φ)= 1

λ(i)n

n∑

k=1

(
xk(θ,φ)− x(θ,φ)

)
C

(i)
k . (14)

An important note is that the corresponding eigenvalues (λ(i)) relate to the rela-
tive importance of each mode, with the larger eigenvalues corresponding to modes
that are more significantly representative of the dataset. As an added benefit, the
lowest eigenvalues (i.e., lowest energy modes) are typically associated with noise,
allowing for spurious components to be identified and ultimately removed. In prac-
tice, the modes themselves could provide a physical understanding of the fundamen-
tal aspects of shape and kinematics of a given biological structure. For classification
purposes the highest energy modes are typically chosen (one rule of thumb used
is to choose enough modes to capture 99% of the total eigenvalue sum of the set),
and the coefficients of these modes for each surface in the set, which are obtained
by projecting the surface onto each mode, are used to define the surfaces and build
classifiers.

2.2.2 Independent Component Analysis

From a statistical point of view, since the POD modes are orthonormal, the linear
transformation to these orthonormal bases decorrelates the data (i.e., removes the
second-order dependence between the variables) if the translation function x(θ,φ)

is taken to be the mean shape. Independent Component Analysis (ICA) can be con-
sidered as an extension of POD as it considers not only these second-order statistics,
but higher-order statistics as well. ICA does not constrain the modes to be orthogo-
nal; rather, the criteria for the basis functions (independent components) is that they
be as statistically independent as possible.

Similarly to POD, it is assumed that the observed data is a linear combination of
these components (Eq. (8)). There are many approaches which attempt to solve this
problem, the most popular of which are based on maximizing the non-Gaussianity of
the independent components (motivated by the Central Limit Theorem). The Central
Limit Theorem states that given n independent random variables, the probability
distribution of the sum of these random variables approaches a normal distribution
under certain general conditions as n→∞. Note that these random variables need



Shape and Kinematics Analysis of Biological Structures 263

not be identically distributed. To summarize how the Central Limit Theorem is used,
first let

X=AS, (15)

where X, A, and S are matrices containing the observed data ({xi (θ,φ)}ni=1), the
weights (aki ) (which dictate how the independent components are mixed to produce
the observed data), and the independent components ({vi (θ,φ)}mi=1), respectively.
A is also referred to as the “mixing” matrix. Further, a linear combination of the
observed data yields

y=wT X=wT AS= bT S. (16)

Therefore, y is a linear combination of the independent components S. According
to the Central Limit Theorem, since the sum of as few as two independent random
variables is more Gaussian than one independent random variable, it follows that
y is least Gaussian when it equals one of the independent components. Therefore,
finding the vector w that maximizes the non-Gaussianity of y should yield a b that
has only one nonzero component, thus recovering one of the independent compo-
nents. Two commonly used quantitative measures of non-Gaussianity are kurtosis
and negentropy. There are also other approaches to solving the ICA problem, e.g.,
minimization of the mutual information between the components or maximum like-
lihood estimation. More details on these approaches and others can be found in [16].

3 Example

To show a potential clinical application for the methods discussed, this example
shows the mapping and decomposition of two human right ventricle endocardial
surfaces (RVES) throughout the cardiac cycle. Sets of clinically obtained cardiac
ECG-gated computed tomography images were taken from a study relating to patho-
logical changes in the right heart due to pulmonary hypertension. Both patients were
symptomatic, however one patient had normal hemodynamics while the other was
classified as having pulmonary hypertension [29]. Since the data was obtained from
humans, there were of course no implanted markers, and only a select number of
anatomical locations can be identified from the images making this an ideal exam-
ple to show the unique capabilities of the shape analysis approach. Each patient had
nine time frames captured during the cardiac cycle and all time frames were ana-
lyzed, leading to a total of 18 shapes to map and decompose. It should be acknowl-
edged that this dataset is nowhere near sufficient to draw any legitimate conclusions
about heart function and its relationship to pathology, but serves only as an academic
example to contrast the nature of potential shape analysis results.

The RVES of both patients at each time frame was manually segmented and
smoothed using a standard recursive and discrete Gaussian filter within the com-
mercial medical image processing software Simpleware [15] to remove the high-
frequency surface oscillations that occur from the segmentation of stacked images.
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Fig. 6 Relative volume
enclosed by the RVES during
the cardiac cycle for a patient
with normal hemodynamics
(Normal) and a patient with
pulmonary hypertension
(PH). End diastole is
indicated by (ED) and end
systole is indicated by (ES)

For a basis of comparison, the volume enclosed by each RVES was calculated and
normalized by the volume at end diastole. Figure 6 shows the relative volume of the
two patients’ RVES over the cardiac cycle. It should be noted that the total enclosed
volume is one of the only few unambiguous metrics that can be directly obtained
from the segmented surfaces. As can be seen, the volume for both patients follows
a similar path, with volume dropping relatively quickly during ejection, whereas
the filling appears to follow two stages: a relatively fast volume increase followed
by a more gradual filling. More importantly, while there are clearly similarities and
differences between the two patients, these differences are relatively subtle and it is
difficult to identify a specific portion of the volume curves that would differentiate
the individuals.

To analyze the shapes of the RVES throughout the cardiac cycle, the method of
harmonic parameterization described in Sect. 2.1.2 was applied to map each shape
to the unit sphere referential domain, and then POD (Sect. 2.2.1) was used to de-
compose each RVES into its fundamental shape components and the coefficients
of those components as the shapes change during the cardiac cycle. In addition, to
show the consistency of the shape components found relative to the dataset size, the
sets of RVES were mapped and decomposed for each patient individually (i.e., each
set of 9) and then combined (i.e., 18 total).

The mapping reference points (i.e., poles and dateline) were chosen as the ante-
rior border between the free wall and the septum with endpoints at the pulmonary
valve and the apex. These points were chosen as they can be consistently and accu-
rately identified for each individual at each time frame. Figure 7 shows the RVES
shape at end diastole with the pulmonic valve (PV), tricuspid valve (TV), free wall
(FW), and septal wall (SW) labeled, as well as the reference points and the distri-
bution of latitude (θ ) and longitude (φ) over the surface after the initial parameter-
ization. After the segmented surfaces were topologically mapped, the difference
between each shape function and the corresponding patient’s end systole shape
function was calculated, and these functions (i.e., the change in shape or pseudo-
displacement fields) were used as the snapshot functions for decomposition. In other
words, the translation shape (x(θ,φ) in (8)) was taken to be this patient’s end sys-
tole shape. By converting the data to relative change in shape, there is no need to
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Fig. 7 Example of the RVES shape at end diastole with (a) the anatomical features labeled, (b) the
latitude distribution, and (c) the longitude distribution after the initial harmonic parameterization

Fig. 8 First three POD
modes for the two RVES
plotted with respect to the end
systole shape with the patient
datasets analyzed both
individually and combined

register the shapes for further analysis, preventing a potentially time consuming and
uncertain additional step.

Figure 8 shows the first three modes (i.e., fundamental components of the shape
change) ranked from highest energy in the set to lowest graphically that were ob-
tained by the decomposition of each patient individually and then combined. These
three modes captured more than 99% of the total energy of the datasets, and for
display purposes the modes were plotted individually for each patient using their
respective end systole coefficients. Similarly, Fig. 9 shows the coefficients for each
set of modes over the cardiac cycle for the two patients.

It can be observed that the first mode for the patient with normal hemodynamics
is highly consistent, as can be seen from both Figs. 8 and 9, regardless of whether
the analysis included only that patient or both patients combined. The second mode
of the normal patient also remains consistent (to a slightly lesser extent than the first
mode) in appearance and with respect to the coefficients over the cardiac cycle. Of
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Fig. 9 Relative value of the first three POD modal coefficients defining the shape change of the
RVES during the cardiac cycle with the patient datasets analyzed both individually and combined
for (a) a patient with normal hemodynamics and (b) a patient with pulmonary hypertension. End
diastole is indicated by (ED) and end systole is indicated by (ES)

particular interest is that the first mode for the patient with pulmonary hypertension
(PH patient) when analyzed individually corresponds to the second mode for that
patient from the combined analysis, and therefore corresponds to the second mode
for the normal patient. What is significant is that this finding of the consistency of
the modes, particularly the second mode from the combined analysis which occurs
in both patients when analyzed individually as well, implies that the analysis was
able to uncover an intrinsic physiological feature from the right ventricle, not just
a statistic (e.g., average shape) of the dataset that would change depending on the
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amount and composition of the data. In addition, the modal coefficients over the car-
diac cycle can be seen to be highly unique for each individual. Whereas the volume
change over the cardiac cycle (Fig. 6) was nearly indistinguishable between patients,
the shape change (especially with respect to the second mode) is completely distinct
between individuals even for though the features are shared. As such, although the
number of patients is far too small to draw significant conclusions, especially re-
garding the pathology, these results would imply that the shape analysis method is
capable of deriving an intrinsic biometric relating to the right ventricle, that in the
very least uniquely identifies individuals and could potentially distinguish patholog-
ical stages.

While it is never possible to say exactly how much data would be necessary to
obtain the most significant features that unequivocally describe the desired relation-
ships in a given dataset, the obvious next step to this analysis process of the human
RVES would be to expand the dataset by nearly an order of magnitude at least.
Given a sufficiently large dataset, the decomposition results could be used to iden-
tify the most consistently shared modes throughout patients, regardless of pathol-
ogy, and each patient would be described by their associated coefficients for these
shared modes. Then, supervised or unsupervised data clustering (e.g., k-means or
hierarchical clustering [9]) could be used to identify any relevant groupings of the
patients as they relate to the pathology and/or any other relevant patient statistics.
Lastly, the modal descriptions of the patients and their associated groupings could
be applied to build classifiers (e.g., linear discriminant analysis or support vector
machines [9]) that could be used for future diagnostic purposes, to determine for
instance the pathological classification of a new patient to estimate prognosis and/or
the effects of treatment.

4 Future Directions

The techniques presented in this chapter have all shown promise for use in the statis-
tical analysis of the shape of biological structures. However, above and beyond the
obvious need for clinical validation, further advancements are still required before
these methods will be sufficient for clinical practice. For instance, there is substan-
tial need to enhance the automation of the entire process, particularly with regard
to the initial steps of segmenting the desired biological structure through to pa-
rameterizing each shape. It is imperative to clinical use that the procedure from
the point of imaging the patient to obtaining the diagnostic information is at least
semi-automated to a point where a reasonably trained technician could complete the
process consistently accurately and efficiently. In addition, future work will likely
seek to employ developments in the state-of-the-art in medical imaging, such as
tagged MRI [13], that will improve the number of fiducial points that can be ac-
quired and therefore the accuracy of the parameterizations. Similarly, for applica-
tions to deformable structures such as the heart, these methods could also incor-
porate mechanical modeling (e.g., fluid-structure interaction [30]) to better predict
the “expected” shape change in time, thereby further improving the consistency and
adding important physical interpretation to the shape analysis.
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Finite Element Modeling of Biomolecular
Systems in Ionic Solution

Benzhuo Lu

Abstract An accurate finite element method is introduced to solve the two
most commonly used continuum models in computational biophysics: Poisson–
Boltzmann (PB) equation and Poisson–Nernst–Planck (PNP) equations. They de-
scribe equilibrium and non-equilibrium (with diffusion existed) properties of ionic
liquid, respectively. Both models involve two domains (solvent and solute) with
distributed singular permanent charges inside biomolecules (solute domain) and a
dielectric jump at the interface between solvent and solute. A stable regularization
scheme is described to remove the singular component of the electrostatic poten-
tial induced by the permanent charges inside biomolecules, and regular, well-posed
PB/PNP equations are formulated. The interface conditions for electric potential
are also explicitly enforced to be satisfied. An inexact-Newton method is used to
solve the nonlinear elliptic PB equation and the coupled steady-state PNP equations;
while an Adams–Bashforth–Crank–Nicolson method is devised for time integration
for the unsteady electrodiffusion. The numerical methods are shown to be accurate
and stable by various tests of real biomolecular electrostatic and diffusion problems.

1 Introduction

All biomolecules in cell are solvated in ionic solution which supplies an essential
environment to molecular activities. These activities are generally involved in multi-
scale processes. Explicit molecular dynamics (MD) or Monte Carlo (MC) simula-
tions that includes all the solute and solvent particles are known to be limited in size
and time scales of simulated systems. To overcome the shortage, implicit simulation
approaches were developed to significantly reduce the degree of freedom of the sys-
tem by treating the solvent as a continuum medium. The continuum models focus
on the average properties of solvent through a solution of partial differential equa-
tion(s), and is therefore computationally more efficient. Furthermore, continuum
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model can conveniently include different types of physical interactions/processes
and bridge different temporal-spatial scales, e.g. by coupling electrostatics with dif-
fusion convection, or/and elasticity, the Navier–Stokes equations and so on. These
features have made the continuum model very appealing and useful. The Poisson–
Boltzmann equation (PBE) and the Poisson–Nernst–Planck equations (PNPEs) are
the two most studied and established continuum models in computational molec-
ular biology. The former is usually used for equilibrium simulation of molecular
electrostatic solvation effects, and the later for non-equilibrium simulation of ionic
diffusion processes interacting with biomolecular systems.

Efficiency and accuracy are two central issues in applying the PBE/PNPEs to
biophysical modeling. First, a typical macromolecule may consist of a few to hun-
dreds of thousand atoms (point charges in the PBE), which significantly challenges
the current computer memory and speed. Secondly, in order to incorporate the PB
electrostatics (on the fly) in a typical MD, MC, or Brownian dynamics (BD) simu-
lation that could involve tens of millions of steps to get converged statistical results,
a single solution of the PBE has to be completed within no more than a few tenths
of a second on a modern workstation to meet the total wall-clock time constraint.
Based on this estimation, the current solvers are still, e.g., about one to two orders
of magnitude slower [56]. Thirdly, a similar demand of efficiency lies in virtual high
throughput screening in drug discovery from many candidate structures and differ-
ent conformations. This screening is usually based on free energy calculations (e.g.,
binding affinity) to an accuracy of a few kcal/mol. However, these free energies nor-
mally result from the cancellation of energies of several orders of magnitude larger
terms such as electrostatic energies. This demand poses another numerical challenge
for electrostatic computations with the PBE.

Finite element method (FEM) is an efficient and powerful numerical method
for solution of nonlinear elliptic equation(s). Adaptive mesh refinement is a ma-
ture strategy developed in FEM to control the accuracy and efficiency of the solu-
tion. While a complicated situation in both PB and PNP models is that the solvated
biomolecular systems are usually modeled by dielectrically distinct regions with
singular charges distributed in the molecular region. Specific strategies are needed
in FEM framework to accurately treat the singular charges and the dielectric jump
at molecular boundary.

In this chapter, the two models and related methodologies will be briefly re-
viewed. We apply a stable regularization scheme to remove the singular component
of the electrostatic potential induced by the permanent charges inside biomolecules,
and formulate a regular, well-posed PB equation. The interface conditions can be
explicitly enforced in the solution through using boundary conforming meshes in
the FEM simulations. Then, a corresponding FEM algorithm is given. Similar regu-
larization scheme and interface condition treatment are applied to PNP system. An
inexact-Newton method is used to solve the nonlinear elliptic PBE or the coupled
PNP equations for steady problems; while an Adams–Bashforth–Crank–Nicolson
method is devised for time integration for the unsteady electrodiffusion. The numer-
ical methods are shown to be accurate and stable by various test problems, and are
applicable to real large-scale biophysical electrostatics and electrodiffusion prob-
lems.
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A mesh is required in finite element method. Molecular mesh generation is a
very technical and challenging task for practical FEM simulation of biomolecular
systems. The topic is briefly discussed in Sect. 4. Interested readers are refereed to
chapter “Surface Triangular Mesh and Volume Tetrahedral Mesh Generations for
Biomolecular Modeling” on biomolecular meshing of this book.

The rest of the chapter is organized as follows. The PB and PNP models and their
FEM treatments are introduced in Sects. 2 and 3, respectively. Each section contains
a brief history of the equation(s) and related methodologies, descriptions of the reg-
ularization scheme, the numerical strategies and properties for the equation(s). Nu-
merical examples for real biomolecular electrostatics and diffusion problems are
given in Sect. 5. The chapter ends with a summary in Sect. 6.

2 PB Model

Poisson–Boltzmann (PB) theory has been a well-established model in a broad range
of scientific research areas. In eletrochemistry, it is known as Gouy–Chapman (GC)
theory [15, 37]; in solution chemistry, it is known as Debye–Hückel theory [24]; in
colloid chemistry, it is known as the Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory [25, 79]; and in biophysics, it is known as PB theory [23, 47]. The Poisson–
Boltzmann equation (PBE) represents a typical implicit solvent model, and provides
a simplified continuum description of the discrete particle (e.g., water, ion, and/or
protein molecule) distributions in solution. In particular, the PBE describes the elec-
trostatic interaction and ionic density distributions of a solvated system at the equi-
librium state. Since the first application of the PBE in a biomolecular system [80],
a large amount of literatures and many solution techniques have been produced in
this area and directed to studies of diverse biological processes.

A number of review papers can be found that focus on the physical fundamen-
tals [66, 71], brief history [30], the methodology and applications in biomolecular
modeling [3, 6], the methodological developments in both PB and the related gen-
eralized Born models [51]. A more recent review [58] focused on the numerical
aspects of PB methodology covering several major numerical methods. This chap-
ter will present detailed techniques in use of finite element approach.

Solvated biomolecular systems are usually modeled by dielectrically distinct re-
gions with singular charges distributed in the molecular region. Systems without
singular charges or dielectric discontinuities are usually found in simplified models
with planar or cylindrical boundary geometries in electrochemistry and biopoly-
mer science, and can be regarded as a special case of the systems in this investiga-
tion. Figure 1 schematically illustrates a solvated biomolecular system occupying
a domain Ω with a smooth boundary ∂Ω . The solute (molecule) region is repre-
sented by Ωm and the solvent region by Ωs . The dielectric interface Γ is defined
by the molecular surface, which can be defined as the solvent-excluded surface,
solvent-accessible surface, Gaussian surface [81], or some other appropriately de-
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Fig. 1 2-D schematic illustration of the computational domain modeling a solvated biomolecular
system. The biomolecular (solute) region is Ωm with dielectric constant εm and the aqueous solu-
tion (solvent) is domain Ωs with dielectric constant εs . The molecular surface is Γ = Ω̄s ∩ Ω̄m.
The circles with plus or minus sign inside represent the diffusive charged particles which move
only in Ωs . The singular charges inside molecules are signified by plus or minus sign in Ωm. The
active reaction center Γa ⊂ Γ is also highlighted in red where a different boundary condition may
be applied in the PNP model

fined solvent-molecular interface. n is the unit normal vector at Γ , pointing from
Ωm to Ωs . The nonlinear Poisson–Boltzmann equation in Ω reads

−∇ · (ε∇u)− λ

K∑

j=1

cj qj e
−βqj u =

N∑

i=1

qiδ(x − xi), x ∈Ω, (1)

where ε is a spatial-dependent dielectric coefficient, the characteristic function
λ = 0 in Ωm (impenetrable to ions) and 1 in Ωs , cj is the bulk density of mo-
bile ion species j with charge qj , β = 1/kT , k is the Boltzmann constant, T is the
absolute temperature, qi is the singular charge located at xi within solute region.
For symmetric 1 : 1 salt (the bulk densities of cation and anion need to be equal,
C+ = C− = C, to satisfy the neutrality condition), to simplify the presentation we
use

−∇ · (ε∇u)+ λκ2 sinh(u)= ρf , x ∈Ω, (2)

and

−∇ · (ε∇u)+ λκ2u= ρf , x ∈Ω, (3)

for the linearized Poisson–Boltzmann equation in case of weak electrostatic po-
tential, where κ2 = 2βe2C absorbing the related parameters (e is the elementary
charge), and u→ βeu and ρf → βeρf are the scaled electrostatic potential and
singular charge distribution, respectively. Note that κ = 0 in Ωm because the mobile
ions only present in the solvent region Ωs . An additional region called the Stern
layer might be present in some Poisson–Boltzmann models. This Stern layer is part
of the solvent but is not penetrable for the mobile ions so κ = 0 there. The transition
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from the low-dielectric solute region to the high-dielectric solvent region is usually
modeled to be abrupt, which gives rise to a dielectric interface Γ . This interface is
usually identified as the molecular surface. There are two conditions on Γ needed
to be satisfied from the dielectric theory:

um = us, εm

∂um

∂n
= εs

∂us

∂n
, x ∈ Γ. (4)

These conditions are explicitly used in boundary integral equations based ap-
proaches, but may not be exactly satisfied in other approaches such as the tradi-
tional finite difference methods, or finite element methods without special interface
treatment. An approximated Dirichlet boundary condition is normally imposed on
∂Ω . The dielectric permittivity is usually assumed to be a piecewise constant with
ε = εmε0 in Ωm and ε = εsε0 in Ωs , where ε0 is the dielectric constant of vacuum.
This is indispensable to the regularization schemes to be introduced later. The inter-
nal dielectric interface separating the molecules and solvent regions is defined to be
the molecular surface, but other definitions of dielectric interface might apply also.
Typical values of εm and εs are 2 and 80, respectively. The singular charge distribu-
tion within biomolecules, discontinuous dielectric constant, exponential nonlinear-
ity at strong potential, and the highly irregular molecular surface constitute the most
prominent features of the Poisson–Boltzmann equation.

2.1 Regularization Schemes of the Poisson–Boltzmann Equation

The presence of the singular charge distribution in the PBE indicates that its solution
is not continuous and does not belong to H 1(Ω) [16], which directly challenges
the solution theory of standard finite difference methods, finite volume methods
or finite element methods for the PBE. In many finite difference or finite element
solvers of the Poisson–Boltzmann equation, the singular charges are distributed onto
the grid points near the singular charges by using polynomial interpolations. These
approximations work well for electrostatic solvation energy ΔGele calculations. The
solvation energy is defined as

ΔGele =Gsys −Gref , (5)

where Gsys is the electrostatic free energy of the biomolecular system in the sol-
vated state and the Gref is the electrostatic free energy of the system assuming it
is in space of uniform dielectric constant εm and without mobile ions. By using a
finite difference method, finite volume method or a finite element method, the PBE
is solved twice with corresponding parameters for Gsys and Gref , respectively. Lin-
ear interpolation or higher order polynomial interpolation are usually used in these
numerical methods for approximating the singular charge distribution. Although the
potentials from these two calculations might suffer from large error near the singu-
lar charges, it is believed that this error would cancel in computing the ΔGele via
Eq. (5) if the same mesh and charge interpolation are used in these two solutions
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of the PBE. This treatment is widely applied in computational chemistry and is
somehow validated by many numerical experiments [28, 29, 35, 36, 61, 74, 86, 89].
However, the quality of the potential near the molecular surface is actually critically
dependent on the specific treatment of the singular charges [32]. If the gradient of
the electrostatic potential is needed, such as force calculation on atoms in the MD
simulation, or electric field calculation at the boundary in the diffusion-reaction sim-
ulation by PNP equations studied in next section, more rigorous treatments of the
singular charges are needed.

The regularization schemes aim at removing the singular component of the po-
tential from the equation such that the remaining component has higher regularity
and thus is solvable by using general numerical methods. The straightforward de-
composition [36] considers the singular Coulomb potential us of all singular charges

−εmΔus = ρf in Ω (6)

The corresponding regular potential component ur is then found by subtracting
Eq. (6) from Eq. (2) to be

−∇ · (ε∇ur
)+ λκ2 sinh

(
ur + us

)= 0 in Ω, (7)

The singular component φs should also be subtracted from the interface condi-
tions (4), generating the following interface conditions for Eq. (8):

ur
s − ur

m = 0, εs

∂ur
s

∂n
− εm

∂ur
m

∂n
= (εm − εs)

∂us

∂n
, x ∈ Γ. (8)

This approach is applied to solve the Poisson–Boltzmann equation by Zhou et al.
[89] to completely remove the self-energy so that the equation need not to be solved
twice for computing the electrostatic energy. Another slightly different decomposi-
tion but leading to quite different numerical strategies using a similar equation as (6)
but with varying dielectric were proposed in a hybrid finite difference/boundary ele-
ment method [12] and a hybrid finite element/boundary element method [57, 87] for
solving the nonlinear PBE. These two methodologies take the advantage of bound-
ary element method to conveniently handle the singular point charges and also leads
to stable and accurate numerical solution. The removal of the singular potential
makes it possible for the first time to analyze the Poisson–Boltzmann equation rig-
orously in Sobolev spaces [16]. However, it is found that the first scheme suffers a
numerical instability that will lead to a substantial error in FEM numerical solution
of the full potential [45]. This is because that the total potential φ is relatively weak
while the singular potential φs and the regular potential are both strong. In partic-
ular, the regular potential in Ωs is larger than the total potential φ by εs/εm ≈ 40
times. Consequently, when the numerical solution of φh is added to the analytical
solution of φs to get the total potential, the relative numerical error will be amplified
by about 40 times. For this reason we will apply a stable decomposition in this FEM
study. This decomposition is first introduced by Chern et al. for solving the PBE
with an interface method [19], and is implemented later in finite different method
[32] and finite element method [58, 59].
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We define the singular component us to be the restriction on Ωm of the solution
of

−εmΔφs(x)= ρf (x), x ∈R
3, (9)

and the harmonic component uh(x) to be the solution of a Laplace equation:

−Δuh(x) = 0, x ∈Ωm,

uh(x) = −us(x), x ∈ Γ.
(10)

It is seen that us(x) can be given analytically by the sum of Coulomb potentials.
This us(x) is then used to compute the boundary condition for uh(x), the latter is
to be solved numerically from Eq. (10), for which we use a finite element method
in this study. Subtracting these two components from Eq. (2) we get the governing
equation for the regular component ur(x):

−∇ · (ε∇ur(x)
)+ λκ2 sinh

(
ur(x)

)= 0, x ∈Ω, (11)

and the interface conditions

ur
s − ur

m = 0, εs

∂ur
s

∂n
− εm

∂ur
m

∂n
= εm

∂(us + uh)

∂n
, x ∈ Γ. (12)

It is worth noting that there is no decomposition of the potential in the solvent region,
thus φ(x) = φr(x) in Ωs . There is no decomposition in Ωs in the second scheme,
and thus the numerical solution of φr in Ωs does not suffer the instability [45].

2.2 Finite Element Methods

The adaptive finite element method developed by Holst et al. in [4, 16, 41, 44] tack-
led some of the numerical issues of the Poisson–Boltzmann equation. This method
uses the piecewise-linear finite element and a well-defined error indicator for driv-
ing the local mesh refinement [16, 41]. The nonlinear Poisson–Boltzmann equation
is solved using Newton-AMG iterations [42, 43, 46]. After discretization by either
finite difference or finite element techniques, the inexact Newton-AMG approach
results in linear memory and computational complexity solution of the nonlinear
algebraic equations produced by finite difference, finite volume, or finite element
discretization methods. In the case of adaptivity, non-standard variations of multi-
grid solvers must be used to preserve both linear memory and linear computational
complexity; see [2, 45] for a detailed discussion.

Instead of using the Newton-AMG iterations for the nonlinear PBE, the finite
element method of Shestakov et. al [75] uses Newton–Krylov iterations for the non-
linearity. The applications of this finite element method have not been extended from
colloid systems with rather simple geometry to biomolecular systems with compli-
cated dielectric interfaces. A mortar finite element discretization was also introduced
recently by Xie et al. for numerical solutions of the PBE, which explicitly computed
dielectric interface so that the interface conditions are satisfied naturally [82].
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Though the new regularization scheme [19] and inclusion of molecular surface
have been practically used for PB solution for real biomolecule [32, 58, 59], the
analysis of a convergent adaptive finite element method was only made recently
[45]. With this scheme, the accuracy of the potential near the molecular surface
is substantially improved, becoming comparable to that of the interface Poisson–
Boltzmann solvers [45, 86]. The finite element method advanced by Cortis et al. [21]
makes use of the similar Galerkin formulation but lack a treatment of the nonlinear
Poisson–Boltzmann equation. Moreover, there is no enforcement of the interface
conditions on the molecular surface so the results of this method agree well with
those of DelPhi. A recently proposed discontinuous Galerkin method for elliptic in-
terface problems [38] might also be customized for solving the Poisson–Boltzmann
equation provided a good description of the molecular surface.

Now we describe the FEM computational algorithm with the new regularization
scheme for 3D molecular simulations. To consider the finite element solution of the
PBE (11) (Eq. (10) is a simpler and special case), we define the solution space

H := {u ∈H 1
0 (Ω)

}
(13)

and its finite dimensional subspace

S := {u ∈ P1(Ω)
}
, (14)

where P1 is the space consisting of piecewise linear tetrahedral finite elements.
Functions in the space

H 1
0 =

{
v ∈H 1(Ω) :v = 0 on ∂Ω

}
,

satisfy the Dirichlet boundary condition on the exterior boundary ∂Ω . We assume
that the finite elements are regular and quasi-uniform. The weak formulation of the
problem now is:

Find u=∈ S such that
〈
F(u), v

〉= 0 ∀v ∈ S. (15)

Here the nonlinear mapping F :H �→ H ∗ and 〈·, ·〉 is the standard duality paring
between the dual space H ∗ and H . Specifically, the nonlinear weak form 〈F(u), v〉
is defined to be

〈
F(u), v

〉= (ε∇u,∇v)+ (λκ2 sinhu,v
)+ 〈p,v〉Γ , (16)

where

p = εm

∂(us + uh)

∂n

is the jump in electric displacement defined in Eq. (12), 〈·, ·〉Γ denotes the L2 inner
product defined on the interface Γ , and the L2 scalar inner product over the do-
main Ω is denoted by (·, ·). It is worth noting that the interface integral 〈·, ·〉Γ is
conveniently and directly evaluated in FEM by using a boundary conforming mesh
(Γ is a collection of some faces of the tetrahedral mesh). This type of meshes, as
generated by TMSmesh [17] are used in all of our FEM simulations. To solve the
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nonlinear problem (15) we employ the damped inexact-Newton method [41] which
necessitates the Gâteaux derivative DF(u) defined by the bilinear form

〈
DF(u)w,v

〉= d

dτ

〈
F(u+ τw), v

〉
∣
∣
∣
∣
τ=0

= (ε∇w,∇v)+ (λκ2w coshu,v
)

(17)

With these well-defined operators the complete algorithm can be given as follows:

Algorithm 1

• Choose the initial approximation u, the nonlinear tolerance ε, the residual r in
approximately solving the linear system, and the damping factor c.

• Do until |〈F(u), v〉|< ε

1. Solve the correction w from 〈DF(u)w,v〉 = −〈F(u), v〉 + r .
2. u⇐ u+ cw.

A constant damping parameter c = 1 is chosen in this study. We note here that
the step in the algorithm to solve the correction w leads to a linear system to be
solved. Denoting the solution u(x) by its expansion in the test function space, i.e.,
u(x) =∑j aj vj (x), the weak form (16) essentially produces two matrices: a stiff
matrix A associated with the product ε∇u · ∇v and the mass matrix M associated
with the product λκ2w(coshu)v. The solution of w(x) (correction of u(x) at each
Newton iteration step) from the bilinear form (17) is therefore equivalent to the
solution of a linear algebraic system

(A+M)a=−f, (18)

where unknown vector a = {aj } is the expansion coefficients of w(x), and vector
f is 〈F(u), v〉 for all given test functions v. The system of equations implied by
Eq. (16) and the linearization Eq. (17) are then solved by a FEM software package
like FETK [40] or PHG [85].

3 PNP Model

Under non-equilibrium condition(s), net ionic fluxes are produced in solution, to
which case the PB model does not apply. The diffusive fluxes and the relevant elec-
trostatic interactions in ionic solution are described as electrodiffusion. When small
charged molecules are approximated as diffusive ions, the electrodiffusion frame-
work can also be adopted to study their transportation and/or diffusion-reaction pro-
cesses. Electrodiffusion is a rate-limiting step in numerous biological processes,
such as ligand-enzyme binding, protein-protein diffusive encounter. An example is
neurotransmission within synapses between adjacent nerve cells [9]. The kinetic
properties of these processes are mostly governed by the multi-scale electrodiffu-
sion of charged molecules in aqueous solution with various ionic concentrations,



280 B. Lu

molecular charges and complicated solvent-solute interface geometries. The con-
tinuum model is more straightforward and efficient to determine the kinetics than
discrete particle simulations. Furthermore, continuum electrodiffusion models can
be readily modified to incorporate other types of physical interactions, such as vary-
ing molecular conformation or flow convection, by coupling with elasticity equation
or the Navier–Stokes equations. These appealing features have made the continuum
electrodiffusion models very useful not only for the quantitative analysis of the bio-
logical ion channels [27, 33], substrate-enzyme diffusion-reactions [54, 76, 77], and
cellular electrophysiology [62, 63], but also for investigating ion-separation mem-
branes in non-biological applications [72] and the transport of electrons and holes
in semiconductors [49].

The Poisson–Nernst–Planck equations are commonly used to describe the elec-
trodiffusion of mobile ions and charged substrates, all modeled as diffusive particles
with vanishing size, in solvated biomolecular systems. Here the electrostatic poten-
tial is induced by the mobile ions, charged substrates, and the fixed charges car-
ried by biomolecules. The system setup is similar to the PB case (see Fig. 1). The
diffusive particles (ions and substrates) are distributed in Ωs . Charged substrates
might react with the biomolecules on a part of the molecular surface Γa , for which
a suitable boundary condition for the diffusion equations of the particles is needed.
On the non-reactive molecular surface Γ \ Γa appropriate boundary condition is
needed to model the vanishing macroscopic flux. In a typical solvated biomolecular
system there are multiple species of ions and substrates; each species may have its
own boundary condition on molecular surface. We assume that the exterior bound-
ary ∂Ω is connected to a particle reservoir maintained at constant concentrations,
and hence a Dirichlet boundary condition for particle concentration can be applied.
Compared to the pure diffusion [78], or the Nernst–Planck equation (also called
Smoluchowski equation) [77] which characterizes diffusional drift by a given fixed
potential, the Poisson–Nernst–Planck model is able to generate a self-consistent, full
electrostatic potential and the non-equilibrium densities of ions/substrates [57, 87].
Similar to PBE, the PNP equations for describing the electrodiffusion around the
biomolecules modeled at atomistic level also have the two features: presence of sin-
gular permanent charges and highly irregular surfaces not penetrable to diffusive
particles.

Mathematical analysis of the Poisson–Nernst–Planck equations have been devel-
oped long after the introduction of the equation by Nernst and Planck [65, 67]. The
existence and stability for the solutions of the steady PNP equations are established
by Jerome [48] in studying the steady Van Roostbroeck model for electron flows in
semiconductors, via a delicate construction of a Schauder fixed point mapping. Al-
though this mapping is not shown to be contractive, an alternative pseudo-monotone
mapping is constructed which guarantees the convergence of the Galerkin approx-
imations of the equations. It noted that the permanent charges in this study are lo-
cated in the same domain as that in the diffusion process, and are assumed to be
in L∞ which ensures the H 1 ∩ L∞ regularity of the electrostatic potential and the
charge densities. Existence and long time behavior of the unsteady PNP equations
were studied in [10]. The analysis and computation of the PNP equations can be
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further simplified by reducing the 3-D system to 1-D models. Singular perturbation
methods and asymptotic analysis can then be applied to study the solution proper-
ties of these simplified 1-D equations. For example, 1-D steady PNP equations for
modeling physiological channels are investigated in [8, 53] in the absence of per-
manent charges by using various singular perturbation theories. The effects of the
permanent charges are considered in [1, 26], where the permanent charge density
is vanishing in the reservoirs at the two ends of the channel and is constant at the
center of the channel. The piecewise constant form of the permanent charges im-
plies that the electrostatic potential and ionic densities are still differentiable. The
reduction of the dimensionality greatly simplifies the mathematical analysis of the
electrodiffusion systems, and the results provide useful guide lines for the analy-
sis of the corresponding fully 3-D systems at some limit cases. As a trade-off they
are generally unable to reproduce the diffusion and reaction processes that critically
depend on the geometry of the system and complicated boundary conditions.

In contrast to the limited amount of work on the mathematical analysis of the
PNP equations for biophysical applications, numerical computations with the PNP
and the PNP-like systems have been widely conducted by computational physicists
and biophysicists. Finite difference methods are particularly popular due to the sim-
plicity in their implementation, and have been applied to a large extent to 1-D or 3-
D ion conduction characteristics of biological ion channels or other transmembrane
pores [11, 14, 20, 27, 52]. The lattice nature of the finite difference method makes
it difficult to model the highly irregular surface of the ion channel or the active
sites of the enzymes. This difficulty can be readily overcome by using finite element
methods, which have been well developed for simulating semiconductor devices
[31, 50] and were recently introduced to simulate the electrodiffusion with realistic
molecular structures [76, 77]. In many of the PNP solvers developed thus far such
as [11, 14, 52] the electrostatic part is solved by using well-established finite differ-
ence or finite element Poisson–Boltzmann solvers [5, 13, 34]. These PB solvers use
polynomial interpolations to approximate the singular charges. As described in last
section, the treatments do not supply an electric field of high fidelity at molecular
boundary to the Nernst–Planck equation. A similar decomposition scheme to that
used in the PB equation will be adopted for the PNP equations.

The objective of this section is to present the regularized PNP equations with
singular permanent charges, and to develop finite element methods for them with
realistic biomolecular structures. A symmetric transformation of PNP will be men-
tioned. We will show that the electrostatic potential that couples the Nernst–Planck
equation is indeed the regular component. Therefore the framework established in
[48] for general L2 permanent charges could be utilized to show the well-posedness
of the regularized PNP system. An inexact-Newton method will be used to solve the
nonlinear differential equations. Since the Poisson–Nernst–Planck equations can be
derived from the first variations of a free energy functional, the Newton-like meth-
ods can produce a convergent solution that corresponds to the minimization of the
free energy.
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3.1 PNP Equations

The continuum PNP equations can be derived via different routes. They can be ob-
tained from the microscopic model of Langevin trajectories in the limit of large
damping and absence of correlations of different ionic trajectories [64, 73], or from
the variations of the free energy functional that includes the electrostatic free energy
and the ideal component of the chemical potential [33]. The former gives the PNP
model a sound theoretical basis while the latter provides a flexible framework to in-
clude more physical interactions, most prominently the correlations among particles
with finite sizes, into the continuum model. In this chapter, we are concentrated in
the development of numerical techniques for the standard nonlinear PNP equations,
i.e., we treat all diffusive particles, including mobile ions and charged substrates, as
particles with vanishing size. This is a reasonable assumption in case that solution
is dilute and the characteristic dimension of space for diffusion is much larger than
the particle size.

We obtain the PNP equations by coupling the Nernst–Planck equation

∂ρi

∂t
=∇ ·Di(∇ρi + βqiρi∇φ), x ∈Ωs,1≤ i ≤ n, (19)

and the electrostatic Poisson equation with interface Γ = Ω̄s ∩ Ω̄m:

−∇ · (ε∇φ)− λ
∑

i

qiρi = ρf , x ∈Ω, (20)

where ρi(x, t) is the concentration of the i-th species particles carrying charge qi ,
Di(x) is the spatial-dependent diffusion coefficient, and φ is the electrostatic po-
tential. The interface conditions for PE is similar to that for PBE. If the mobile
charge density ρi(x) in Eq. (20) is assumed to follow the Boltzmann distribution,
the equation converts to the nonlinear Poisson–Boltzmann equation. The readers are
referred to [58] for discussions on the derivation and relations of these equations.
The time-dependence of the electrostatic potential is seen from the appearance of
time-dependent particle concentrations in Eq. (20).

Because the singular charge ρf (x) poses the same numerical issue to the Poisson
equation as to the PBE, a similar potential decomposition as described in the PB
model (the second scheme) is adopted here to achieve a stable FEM solution for
the Poisson equation. The singular and harmonic components follow the equation
and boundary condition as in (9) and (10). The governing equation for the regular
component φr(x):

−∇ · (ε∇φr(x, t)
)− λ

∑

i

qiρi(x, t)= 0, r ∈Ω, (21)

and the interface conditions

φr
s − φr

m = 0, εs

∂φr
s

∂n
− εm

∂φr
m

∂n
= εm

∂(φs + φh)

∂n
, x ∈ Γ. (22)
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It is worth noting that there is no decomposition of the potential in the solvent re-
gion, thus φ(x)= φr(x) in Ωs . Hence the final regularized Poisson–Nernst–Planck
equations consist of the regularized Poisson equation (21) and

∂ρi(x)

∂t
=∇ ·Di(x)

(∇ρi(x)+ βqiρi(x)∇φr(x)
)
, x ∈Ωs. (23)

To simplify the presentation we use φ to denote the electrostatic potential coupled
with the Nernst–Planck equation, but keep in mind that the singular and harmonic
components are to be added to get the full potential inside molecules.

The singular and harmonic components only need to be solved one time a priori
the coupled solutions of the regularized PNP equations. Indeed, it is the regular
potential in solvent region that couples the Nernst–Planck equation and the regular
Poisson equation. The singular and harmonic components serve only for providing
a fixed interface conditions for solving the regular component, which varies with the
ionic concentrations.

We apply the following boundary conditions for the PNP equations. The approx-
imate Debye law is used to compute the value of φr = φ on the exterior bound-
ary ∂Ω :

φ(x)=
∑

j

qj e
−|x−xj |/λd

εs |x − xj | ,

where λd being the Debye length computed from the bulk concentrations of all
species of charged particles. For all species of particles ρi on ∂Ω is given by its
bulk concentration. A zero macroscopic normal flux

Di(∇ρi + βqiρi∇φ) · n= 0

is prescribed on the non-reactive molecular surface Γ \Γa with outer normal vector
n for all species. For particles that react with the molecule on the surface Γa we ap-
ply the homogeneous Dirichlet boundary condition, i.e., ρi = 0. This models the fact
that the diffusion time scale is much larger than the reactive time scale, and that in
the solution there is a sufficient large number of solute molecules which are able to
hydrolyze all substrates that migrate to the reaction centers of solute molecules. The
non-zero flux on the reactive surface makes the particle concentrations described
by PNP differ fundamentally from the Boltzmann distribution, which can be repro-
duced if the macroscopic flux is vanishing everywhere [72].

3.2 Finite Element Algorithms

The numerical methods are focused at some major aspects of the PNP model: the
nonlinearity of the system due to the drift term; the coupling between Poisson and
NP equations for both steady and unsteady diffusions.
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3.2.1 Steady-State Diffusion

We first consider the finite element solution of the steady state PNP equations (21),
(23). To this end we define the solution space

H := {(φ,ρ) ∈H 1
0 (Ω)×H 1

01
(Ωs)× · · · ×H 1

0n
(Ωs)

}
(24)

and its finite dimensional subspace

S := {(φ,ρ) ∈ P1(Ω)× (P1(Ωs)
)n}

, (25)

where the vector ρ = {ρj }nj=1, and P1 is the space consisting of piecewise linear
tetrahedral finite elements. Functions in the space

H 1
0i
= {v ∈H 1(Ωs) :v = 0 on ∂Ω,v = 0 on ΓDi

}

satisfy the Dirichlet boundary condition on the exterior boundary ∂Ω and the essen-
tial or Dirichlet boundary condition on the molecular surface Γ if there is one. We
assume that the finite elements are regular and quasi-uniform. The weak formulation
of the problem now is:

Find u= (φ,ρ) ∈ S such that
〈
F(u), v

〉= 0, ∀v = (ψ,η) ∈ S. (26)

Here the nonlinear mapping F :H �→ H ∗ and 〈·, ·〉 is the standard duality paring
between the dual space H ∗ and H . Specifically, the nonlinear weak form 〈F(u), v〉
is defined to be

〈
F(u), v

〉=
[

(ε∇φ,∇ψ)− (λ
∑

i qiρi,ψ)+ 〈p,ψ〉Γ
(Di∇ρi,∇ηi)+ (Diβqiρi∇φ,∇ηi)

]

, (27)

where

p = εm

∂(φs + φh)

∂n

is the jump in electric displacement defined in Eq. (22), 〈·, ·〉Γ denotes the L2 inner
product defined on the interface Γ , and the L2 scalar inner product over the do-
main Ω or Ωs is denoted by (·, ·). To solve the nonlinear problem (26) we employ
the damped inexact-Newton method [41] which necessitates the Gâteaux derivative
DF(u) defined by the bilinear form

〈
DF(u)w,v

〉= d

dτ

〈
F(u+ τw), v

〉
∣
∣
∣
∣
τ=0

=
[

(ε∇ϕ,∇ψ)− (λ
∑

i qiζi ,ψ)

(Di∇ζi,∇ηi)+Diβqi(ρi∇ϕ + ζi∇φ,∇ηi)

]

(28)

where w = (ϕ, ζ ). With these well-defined operators the complete algorithm can be
given as follows:
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Algorithm 2

• Choose the initial approximation u= (φ,ρ), the nonlinear tolerance ε, the resid-
ual r in approximately solving the linear system, and the damping factor c.

• Do until |〈F(u), v〉|< ε

1. Solve the correction w from 〈DF(u)w,v〉 = −〈F(u), v〉 + r .
2. u⇐ u+ cw.

A constant damping parameter c = 1 is chosen in this study, with which the
convergence is reached in less than 20 steps in all simulations.

It is noted here that the above algorithm solves the steady-state PNP equations
as a whole system. A commonly used approach is also to solve the NPEs and PE
separately. That means iteration is needed between NPEs and PE until the solutions
are self-consistently converged. A standard Gummel iteration proceeds as follow-
ing: given any initial solution function φ0 (or ρ0), solve the NP equations Eq. (23)
in steady state (or the PE (21)) to get a solution ρ0 (φ0), then solve the PE (NPEs)
with these ρ0 (φ0) to get an updated solution φ1 (ρ1), and with φ1 (ρ1) get an up-
dated solution of NPEs ρ2 (φ2 of the PE), continue this iteration until approaching
a converged solution (ρ, φ) of the PE and the NPEs. It is found that the standard
Gummel iteration converges slowly, and may diverge in some circumstances. A γ -
iteration procedure for the iteration between the NP and PE as used in our former
PNP solution [55, 57] appears helpful in assisting convergence of solution for the
PNP system. When obtained a solution (ρn, φn) of the PNP equations at the n-th
step during the iterations between solutions of the PE and NPEs, we modify them
for use in next iteration step by a γ -relaxation

ρn
i = γρn

i + (1− γ )ρn−1
i , (29)

φn = γφn + (1− γ )φn−1. (30)

It is found that usually under-relaxation, i.e. γ < 1 is helpful or necessary for large-
sized PNP system, while over-relaxation does not help the convergence.

3.2.2 Unsteady-State Diffusion

For time-dependent problems the elliptic equation for the electrostatic potential and
parabolic equations for the particle concentrations are solved sequentially. The weak
form of the unsteady Nernst–Planck equation for i-th species of particle is

〈
F(ρi), v

〉=
∫

Ωs

[

Di

(∇ρi + βqiρi∇φr
) · ∇v

+ ∂ρi

∂t
v

]

dx, ∀v ∈H 1
0i

(Ωs). (31)

Various schemes can be used for the time discretization of this equation. For ex-
ample, Prohl and Schmuck proposed convergent schemes based on different types
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of fixed-point mappings [68]. Due to the nonlinearity of the equation, the applica-
tion of these and high order methods such as a third-order Runge–Kutta method
or its combination with the exponential time differencing (ETD) method [22, 60]
demands solving the electrostatic potential multiple times in each step of time evo-
lution. To reduce the computational cost and maintain the stability, we adopt the
Crank–Nicolson method for the time discretization. This gives rise to the following
semi-discrete equation at tn+1/2 for n > 0:

〈
F
(
ρ

n+1/2
i

)
, v
〉=

∫

Ωs

[

Di

(

∇ ρn+1
i + ρn

i

2
+ βqi

ρn+1
i + ρn

i

2
∇φn+1/2

)

· ∇v

+ ρn+1
i − ρn

i

Δt
v

]

dx (32)

for a constant time increment Δt . Here the electrostatic potential φn+1/2 is solved
from the Poisson equation (21) with particle concentrations at tn+1/2 computed with
an Adams–Bashforth scheme

−∇ · (ε∇φn+1/2)− λ
∑

i

qi

3ρn
i − ρn−1

i

2
= 0. (33)

We then use the inexact-Newton approach presented above to solve ρn+1
i from the

equation
〈
F
(
ρ

n+1/2
i

)
, v
〉= 0. (34)

To this end we need the Gâteaux derivative DF(ρn+1
i ), which is now defined by

〈
DF

(
ρ

n+1/2
i

)
w,v

〉= d

dτ

〈
F
(
ρ

n+1/2
i + τw

)
, v
〉
∣
∣
∣
∣
τ=0

=
∫

Ωs

[
1

2
Di

(∇w · ∇v+ βqiw∇φn+1/2)+ w

Δt
v

]

dx, (35)

where w ∈H 1
0i

. The solutions of (34)–(35) follow Algorithm 2 with residual r = 0.

Since Eq. (32) is linear in ρn+1
i , only one solution of w is needed for an arbitrary

initial guess of ρn+1
i at each time step. We note that a similar Adams–Bashforth–

Crank–Nicolson (ABCN) method was used for solving the Navier–Stokes equations
and ensuring divergence-free velocity field [69, 84]. The extrapolation of source
term at tn, tn−1 in Eq. (33) is similar to the construction of the pressure Poisson
equation at tn+1/2 in those studies.

3.2.3 A Symmetric Transform of the Electro-Diffusion Equations

We here introduce a commonly used transformation to the NP equations, which
might be useful in future PNP-like simulations in biomolecular systems. It is known
that by introducing the Slotboom variables

D̄i =Die
−βqiφ, ρ̄i = ρie

βqiφ, (36)
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the Nernst–Planck equation can be transformed to be

∂(ρ̄ie
−βqiφ)

∂t
=∇ · (D̄∇ρ̄). (37)

These transformations, frequently used in solving the PNP equations for semicon-
ductor device simulations [7, 49], hence give rise to a symmetric, uniformly elliptic
operator in case of a fixed potential. The application of transformations (36) to the
electrostatic Poisson equation (21) will lead to

−∇ · (ε∇φ)− λ
∑

i

qi ρ̄ie
−βqiφ = 0. (38)

While the Eq. (38) appears identical to the nonlinear Poisson–Boltzmann equation,
the actual particle concentrations, nevertheless, do not follow the Boltzmann distri-
bution if there is a non-zero macroscopic flux inside the domain or on the boundary.

We also consider the finite element solution of transformed PNP equations (37),
(38). For which the solution u= (φ, ρ̄) contains the transformed particle concentra-
tions and nonlinear weak form 〈F(u), v〉 is given by

〈
F(u), v

〉=
[

(ε∇φ,∇ψ)− (λ
∑

i qi ρ̄ie
−βqiφ,ψ)+ 〈p,ψ〉Γ

(D̄i∇ρ̄i ,∇η̄i )

]

, (39)

where v = (ψ, η̄). Accordingly, the bilinear form now is

〈
DF(u)w,v

〉= d

dτ

〈
F(u+ τw), v

〉
∣
∣
∣
∣
τ=0

=
[

(ε∇ϕ,∇ψ)− (λ
∑

i (qi ζ̄i − βq2
i ρ̄iϕ)e−βqiφ,ψ)

(D̄i(∇ ζ̄i − βqiϕ∇ρ̄i ),∇η̄i )

]

(40)

where w = (ϕ, ζ̄ ). The complete algorithm for solving the transformed PNP equa-
tions is the same as Algorithm 2 but with 〈F(u), v〉 and 〈DF(u)w,v〉 defined by
(39) and (40), respectively. It is worth noting that the operator DF(u)w defining the
linearized equation for solving correction variable w is not symmetric regardless of
the transformation due to the nonlinearity of the PNP model.

It is worth noting that the Slotboom variables are associated with the weighted in-
ner product in many finite element approximations of semiconductor NP equations
[31], for which exponential fitting techniques are usually used to obtain numerical
solutions free of non-physical spurious oscillations. Although the solutions in our
numerical experiments and biophysical applications presented below do not show
significant non-physical oscillations, these methods can be adopted if needed. Our
previous work [59] analyzed the condition number of the transformed NP equa-
tions (37) and shew that the Slotboom variables (36) can lead to quick growth of
the condition number either due to large molecular permanent charge(s) or due to
large difference in potential near molecular surface. However, the partial charge car-
ried by any atom in real biomolecule is generally smaller than 2 folds of the elemen-
tary charge. Besides, solving the non-linear equation (38), instead of the linear form
(21), at each step results in improved solution for the potential, especially when the
density solutions of NPEs from last step deviate largely from the correct ones during
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the iteration. This can actually make the solution of the PNP equations converged
within less iteration steps for real protein systems. The numerical properties of the
Slotboom transformation or similar transform in other system [55] and its applica-
tion to solution of nonlinear coupled systems need further systematic exploration.
As an illustration of the usage of FEM, we shall still use the primitive formulation
in this book.

3.3 PB Model as a Special Case of PNP Model

Physically, the equilibrium state is a special case of non-equilibrium state when no
flux existed for any ionic species. This implies that the PB results can be obtained
from the PNP system. The mathematical procedure corresponds to a relaxation of
the total energy of the solvated solute-ions system.

To this end, we can numerically solve the PNPEs (either steady state or non-
steady state, but non-steady state needs finally reach steady state) using the similar
boundary conditions as in the usual solution of the PBE for φ, such as φ = 0 or the
Debye–Huckel approximation, at the outer boundary ∂Ω , and using the ionic bulk
densities as boundary conditions for ρi . In addition, we use a reflective condition for
each ion species in the molecular interface Γ (no Γa for PB calculation) to enforce
zero-flux across the interface

J (r)i = 0, r ∈ Γ.

Then, the solution leads to the PB results. The reason is as following: We know
that the steady state PNP system has only one solution [55], and we also know
that the solution of zero-flux-everywhere Ji = 0 (equilibrium) is a solution of the
PNP system (see Eq. (19)) satisfying the interface condition, which is corresponding
to the special case of the PB model. The equilibrium distribution with zero-flux
condition

Ji =Di(r)
(∇ρi(r, t)+ βρi(r, t)qi∇φ(r)

)= 0

can be seen equivalent to the Boltzmann distribution condition

ρi ∼ e−βqiφ.

Therefore, the PNP solution obtained from above procedure with zero-flux condi-
tions at Γ must satisfy the zero-flux condition everywhere. This indicates that the
solution of PNP is exactly the solution of the PBE. The equivalence is numerically
proven true in our previous work [57], where it was shown that PBE and PNPE
have essentially the same results despite a small numerical error. This fact leads to
an indirect approach to solve the PB model, which sometimes shows indispensable
advantage to treat certain difficult modified PB models [55].
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4 Finite Element Implementation and Mesh Generation

As described above, FEM is convenient to treat the nonlinearity and complex ge-
ometries. When qualified mesh generation is available, FEMs can achieve good per-
formance in the accuracy and memory demands.

The numerical implementation of Algorithm 1 for solving Eq. (15) for PBE,
and of Algorithm 2 for solving Eq. (26), Eq. (34) and the Poisson equation (33)
for the PNPEs are carried out using FETK, an expandable collection of the adaptive
finite element method (AFEM) software libraries [40]. Standard linear finite element
spaces and Galerkin approximation are adopted in these solutions. Recently we also
improved the algorithm stability and developed a parallel solver for these equations
by using the parallel AFEM software package PHG [85]. The work will be reported
[83].

A volumeric mesh is prerequisite to FEM calculations. How to stably, efficiently
generate a molecular mesh with correct representation of the irregular and complex
molecular boundary is a challenging task in the area of mathematical continuum
modeling of biomolecular systems. A mesh generation tool chain described in our
former work [57] only works for not big biomolecular systems. We recently devel-
oped a new technique and software TMSmesh [17] for molecular surface meshing
for general larger systems. And based on this, a tool chain can be setup for vol-
ume mesh generation. Interested readers are referred to chapter “Surface Triangular
Mesh and Volume Tetrahedral Mesh Generations for Biomolecular Modeling” on
molecular mesh generation of the book. It is worth noting that for PNP system, the
Poisson equation and the NP equations are solved in different domains, and usually
only one file of the mesh in the entire Ω and conforming to Γ is necessary for input
to the code. One way to tackle this issue as in [59] is that the mesh of Ω̄s is extracted
by a subprogram embedded in the solver when solving the NP equations. Another
way is to solve the NP equations in the entire domain Ω , but with special numerical
treatments in domain Ωm [83].

Combined with our new mesh generation tool TMSmesh [17], the FEM solver
can serve as a standalone, complete computational tool for modeling protein/DNA
systems in ionic solution.

5 Numerical Experiments and Biophysical Applications

Because PB results can be generated from the more general PNP model, and the
main numerical properties of the PB solution are similar to that of the PNP solu-
tion due to similar FEM schemes applied to treat the singular charges and interface
conditions, in this section we will mainly focus on numerical experiments and ap-
plications of the PNP model.



290 B. Lu

Table 1 Accuracy of the numerical solutions for Eq. (41)

hmax 3.277 1.821 0.965 0.574 0.297

L2 2.872(-3) 9.747(-4) 2.908(-4) 1.152(-4) 3.271(-4)

Order 1.84 1.90 1.78 1.91

kr 1.373(11) 1.806(11) 2.149(11) 2.378(11) 2.519(11)

5.1 Steady-State Diffusion: Numerical Accuracy

Due to the intrinsic nonlinearity of the equation, the analytical solutions for the
steady-state PNP equations are not available in general, even for the simplest prob-
lems such as the electrodiffusion in the spherical annulus exterior to a charged
sphere. Here we choose two examples to examine the accuracy of our algorithm.
The first example is to solve the Nernst–Planck system for the concentration of a
single species at a given potential φ(r)=Q/(εsr) in a spherical annulus:

− 1

r2

d

dr

(

r2D

(
dρ

dr
− βρq

Q

εsr2

))

= 0, r1 < r < r2

ρ(r1)= 0, ρ(r2)= ρ0,

(41)

where ρ0 is the bulk concentration. Note here we are applying a reactive boundary
condition on the whole sphere r = r1. The analytical solution for Eq. (41) is

ρ(r)= ρ0
e−βw(r) − e−βw(r1)

e−βw(r2) − e−βw(r1)
, where w(r)= qQ

εsr
. (42)

The reactive rate constant kr is then computed from the flux J (r) on the reactive
surface via

−kr ≡
∫
SA

J (r) ds(r)

ρ0
= 4πr2

1J (r1)

ρ0
= 4πDw(r1)r1

−e−βw(r1)

e−βw(r2) − e−βw(r1)
(43)

where SA is the reactive surface. In this case we choose r1 = 1, r2 = 40, εs = 78ε0,
ρ0 = 50 mM, D = 78000 Å/μs, q =−1, Q= 1, and thus the exact kr = 2.5315×
1011 M−1 min−1. Table 1 lists the relative L2 errors of the computed particle con-
centration, the asymptotic order of error reduction and the reaction rate constants.
These results demonstrate that our finite element method is convergent for this prob-
lem, with an asymptotic rate of convergence close to 2 as anticipated for a linear
finite element method. It is also noticed that the errors in the computed reactive rate
constant are large for all the mesh sizes considered. This is related to the very large
gradient of concentration close the reactive surface, as seen in Fig. 2 where the ex-
act and computed concentration profiles are plotted. Physically, this large gradient
is induced by the electrostatic attraction of the negatively charged particles to the
positively charged sphere. In this study we use finite element meshes refined toward
the molecular surface to improve the local numerical resolution. Other higher order
methods can also be introduced to this problem to resolve this large gradient and
improve the numerical accuracy.
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Fig. 2 The exact and
computed concentration
profiles for the Nernst–Planck
equation in the spherical
annulus 1 < r < 40 for a
given potential. The x-axis is
truncated at r = 10 in the
illustration. hmax = 3.277

The second example is to solve the full steady-state PNP equations for two
species of particles, one carries charge −1 and the other has charge +1, in the same
spherical annulus as in the last example. We prescribe the flux J (r) = 0 for both
species on the unit sphere, and the particle concentrations on the exterior bound-
ary are set to be the respective bulk concentrations. The macroscopic flux of either
species of particles is therefore zero everywhere in the domain, and thus the PNP
model shall produce the nonlinear PBE and the particle concentrations shall follow
the Boltzmann distribution. This criterion is used to examine the numerical solu-
tions of the PNP equations. We would note that there is no analytical solution of
the potential available for the nonlinear PBE. Rather, we will compare the com-
puted concentration profiles of the PNP equations and those predicted by using the
Boltzmann distribution and the computed electrostatic potential. In particular, let
the numerical solutions of the potential and the particle concentration be φ and ρ,
and the exact solutions of them be φ̂ and ρ̂, respectively. Let the particle concentra-
tion computed from the solved potential φ be ρ̃, then the error we are measuring is
ρ − ρ̃. It follows that for any Sobolev norm ‖ · ‖ we have

‖ρ − ρ̃‖ ≤ ‖ρ − ρ̂‖ + ‖ρ̂ − ρ̃‖
= ‖ρ − ρ̂‖ + ∥∥ρ0e

−qβφ̂ − ρ0e
−qβφ

∥
∥

≤ ‖ρ − ρ̂‖ + ∥∥ρ0e
−qβφ̂

∥
∥∞
∥
∥e−qβ(φ−φ̂) − 1

∥
∥

≈ ‖ρ − ρ̂‖ + ∥∥ρ0e
−qβφ̂

∥
∥∞
∥
∥qβ(φ − φ̂)

∥
∥

= ‖ρ − ρ̂‖ +C‖φ − φ̂‖, (44)

where the constant C is independent of the numerical methods. This estimate sug-
gests that the error we are measuring has the same rate of convergence as the error
of solutions of the PNP equations. Table 2 shows that the rate with respect to L2
norm is about 1, which is close to the one predicted for the linear elliptic interface

Table 2 L2 errors between the computed particle concentrations and those predicted by the Boltz-
mann distribution

hmax 3.277 1.821 0.965 0.574 0.297

L2(ρ) 1.715(-2) 9.437(-3) 5.095(-3) 2.726(-3) 1.280(-3)
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Fig. 3 Computed
concentration profiles and the
Boltzmann distribution for
particles with q = 1.
hmax = 3.277

problems in [18]. Figure 3 plots the computed particle concentration and that pre-
dicted by the Boltzmann distribution. The flattening of the profile close to r = 1
indicates the vanishing concentration due to the electrostatic repulsion and the van-
ishing macroscopic flux as prescribed by the boundary condition.

5.2 Accuracy for Solving the Unsteady-State Diffusion

To examine the accuracy of the time integration method we design a problem that
has the essential features of the PNP and admits an analytical solution:

−∇ · (εs∇φ)= qρ + f (r), (45)
∂ρ

∂t
=∇ · (D∇ρ + βqρ∇φ)+ g(r). (46)

This equation is solved in the spherical annulus 1≤ r ≤ 4. The analytical solutions
for φ and ρ are prescribed to be

φ = r2

εs

e−δt , (47)

ρ = ρe−βqr2/εs e−δt . (48)

These two analytical solutions determine the functions f (r), g(r) and the Dirichlet
boundary conditions for both equations. A very fine mesh with 40859 unknowns is
used to ensure that the error due to the time discretization is dominant in the nu-
merical approximation. The equations are integrated to t = 200 with various time
increments Δt and fixed parameter δ = 0.01. The relative L2 errors are collected
in Table 3, which features a convergence of approximately second-order for both
variables. This agrees with the convergence of the ABCN scheme applied for solv-
ing the Navier–Stokes equations [69]. It is worth noting that here we are using large
time increments in time integration; the convergence properties we observed in this
study agree with the theoretical analysis [39] which proves that the ABCN for time-
dependent Navier–Stokes equations is almost unconditionally stable.
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Table 3 Numerical error and
asymptotic order of
convergence for time
integration

Δt eφ Order eρ Order

2 5.33(-3) 1.16(-2)

1 1.47(-3) 1.86 3.65(-3) 1.67

0.5 3.86(-4) 1.93 9.33(-4) 1.97

0.25 1.02(-4) 1.92 2.52(-4) 1.89

5.3 Biophysical Applications: Diffusion-Reaction Study of
AChE-ACh System

Finally we apply the regularized PNP solver to compute the reaction rate constant
of neurotransmitter acetylcholine (ACh) at the reaction center of the enzyme acetyl-
cholinesterase (AChE). The electrodiffusion reaction for the same system has been
studied by using the Smoluchowski equation [77], in which the electric field is fixed
and approximated by a PB solution. This approximation agrees with the underlying
assumption of the well-known Debye–Hückel limiting law (DHL) describing the
ionic screening effect to reaction rate constant. The DHL for AChE-ACh system is
[70]:

kon =
(
k0

on − kH
on

)
10−1.18|zEzI |

√
I + kH

on,

where kon, k0
on, and kH

on are second-order association rate constants at the specified
ionic strength I , zero ionic strength, and infinite ionic strength, respectively. zE and
zI are the charges of the enzyme and substrate involved in the interaction. With
the same assumption, Song et al.’s numerical results recover the DHL. The more
complete PNP model also takes into account the charged substrate influence to the
electric field around the enzyme, therefore leads to improved rate prediction. Here,
we will show by using a more sophisticated PNP model the reaction rate coefficient
obviously depends not only on the ionic strength, but also on the substrate concen-
tration itself [54, 57, 87]. We treat the ACh molecules as particles with +1 charge.
The computation domain is chosen to be a ball with a radius 400 Å centered at the
geometric center of the AChE molecule. We consider two species of background
“spectator” ions (non-reactive), one is cation with +1 charge and the other is an-
ion with −1 charge. The boundary conditions for these two species of particles are
therefore Ji(r)= 0 on the whole surface of AChE. The reaction center of the AChE
is signified in Fig. 4 in red where ρi = 0 is set for ACh as the reactive boundary
conditions, and on the rest surface the Ji(r) = 0 is prescribed. Suppose that C+
and C− are the bulk concentrations of cation and anion respectively, and that Csubs
is the bulk concentration of substrate ACh. These bulk concentrations are used as
the outer boundary conditions of the diffusion domain in solving the NP equations.
Therefore, to make a closer connection with physiology, it is reasonable to consider
a neutrality condition of the bulk solution in this work as C+ + Csubs − C− = 0.
The same mesh as that in [87] is used in this study. The electrostatic potential on the
surface of AChE is shown in Fig. 4 along with the surface mesh and a close view of
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Fig. 4 The discretized
molecular surface of AChE
with the region around the
reaction center colored red
(left); The electrostatic
potential on the surface
(middle) and the surface
potential around the reaction
center (right). Ionic
strength = 50 mM

the potential around the reaction center. The surface potential is smooth overall and
the negative potential near the reaction center is well reproduced.

The reaction rate coefficient is shown as a function of ionic strength (= “specta-
tor” + bulk substrate) for different prescribed substrate concentrations in Fig. 5(a)
and as a function of bulk substrate concentration for different prescribed ionic
strengths in Fig. 5(b). The results show that the reaction rate coefficients strongly
depend on both ionic strength and substrate concentration. At very low substrate
concentration, e.g., 1 mM or less, the results show asymptotic agreement with the
DHL (see red line in Fig. 5(a)). The find also agrees with the continuum model when
the substrate density is not coupled into the full electric field [57, 77, 87]). However,
at moderate concentrations of the substrate, the curves are shifted. A general trend is
observed: the rate coefficient increases as the bulk/distant concentration of substrate
increases for a fixed overall ionic strength. For instance, for a fixed ionic strength of
300 mM (C++Csubs = 300 mM), the rate coefficient is 1.36×1011 M−1 min−1 for
Csubs = 1 mM and is increased to 3.28×1011 M−1 min−1 for Csubs = 300 mM. The
physical origins of the observed behavior can be explained as follows. If substrate
concentration is not considered, as in most previous work based on the DHL, the
concentration of the counter ion of the enzyme, i.e., C+ here, is equal to the concen-
tration of the co-ion, i.e., C+ = C−. The counter ions are attracted and concentrated
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Fig. 5 Reaction rate
coefficients for ACh-AChE
reaction system. p0 is bulk
substrate concentration
(Csubs); I is total ionic
strength (spectator ions plus
substrate)

around the negatively charged active site, which serves to screen the Coulomb in-
teraction between ACh molecules and AChE, hence slowing the association. When
Csubs is considered in the PNP model, to maintain the same ionic strength, C+ needs
to be reduced by Csubs compared with that in the familiar Debye–Hückel theory.
This leads to a thinner counter-ion atmosphere around the active site, and it can not
be compensated by the additional substrate (ACh) density that is relatively low due
to reactant depletion that results from the absorbing boundary condition. In other
words, in the resulting non-equilibrium state, the sum of counter-ion density and
ACh density near the active site is lower than that obtained with the Boltzmann dis-
tribution for a+1e particle. The consequences are a reduced overall screening effect
and thereby an enhanced reaction rate.

The ionic atmosphere always screens the electrostatic interactions, and hence re-
duces the rate coefficients. At very high ionic strength, due to strong ionic screening
effects, the electrostatic interactions become very weak. This is close to the pure
diffusion case, and all the rate constants for different substrate concentrations are
close to the pure diffusion-reaction rate constant.
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The phenomena observed in above rate coefficient predictions are expected to be
general for attractive substrate-enzyme systems.

6 Conclusions

A finite element method is described for solving the PBE and PNP equations with
permanent atomic charges within molecular region. The electrostatic PB or Pois-
son equation is regularized by analytically removing the singular component of the
electrostatic potential from the numerical solution. A harmonic component is de-
fined inside biomolecules to partially compensate the removed singular component
such that the remaining electrostatic component is continuous on the molecular sur-
face. This remaining regular component is governed by an elliptic interface problem,
with interface conditions computed from the singular and the harmonic components.
For PNP system, it is shown that the diffusion in the solvent region is completely
drifted by the regular component, which gives rise to regularized Poisson–Nernst–
Planck equations. An inexact-Newton method was used to solve the regular PBE
and the regular steady-state PNP systems. For unsteady diffusion a second-order
Adams–Bashforth–Crank–Nicolson method is proposed for time integration. Vari-
ous test problems to examine the accuracy and the stability of the proposed 3D finite
element methods and time integration scheme.

In the application to simulations of the electro-diffusion controlled reaction pro-
cesses, we find that the DHL only applies to very dilute situations. Our numerical re-
sults show that for electrostatically steered diffusion-controlled reaction processes,
the rate coefficients strongly depend on both ionic strength and substrate concen-
tration. In particular, at the same ionic strength, the current model predicts that in-
creasing substrate concentration results in significant increase in rate coefficients
for the attractive substrate-enzyme systems in case the product concentration can be
ignored (the product effects is not considered in current model).

We also show that the non-linear PB model is a special case of the PNP model,
and can be implicitly achieved through the solution of the PNP model by appropri-
ately controlling the boundary/interface conditions. By taking such an advantage,
a recent work [55] shew that a more complicated, non-uniform ionic size-modified
PB model can be numerically achieved through solution of a size-modified PNP
model. This indicates that PNP-like model seems a powerful framework to achieve
extended PB or PNP models beyond the current mean field approximation. Because
all of those models, in addition to possessing all the features such as permanent
charges, irregular interface and so on as aforementioned, are intrinsically strong
non-linear, and may be coupled, finite element method can serve as a powerful tool
for numerical simulation of these models. The other type of nonlinear models, such
as a coupled elastic equation and a Poisson equation describing the elastic deforma-
tion of a protein-membrane interacting system was also effectively solved using a
finite element method [88].

The accurate and stable FEM scheme can also achieve high efficiency with
contemporary developments in adaptive, multi-level multi-grid, and parallelization
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techniques in FEM area. Some FEM soft packages, such as FETK [40] that uses
AMG technique, PHG [85] that is parallelized, are also available. This makes it a
promising numerical method for some future applications to such as supermolecular
energy/mechanics analysis, ion-channel simulation, molecular conformation sam-
pling, and multi-scale multi-physics modeling of other molecular/cellular activities.
Finally, the current FEM PB/PNP solvers, combining with our new mesh genera-
tion tool TMSmesh [17], can be standalone and complete computational tools for
modeling protein/DNA systems in ionic solution.
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