
Chapter 4
Stability to Finite Disturbances: Energy Method
and Landau’s Equation

The main part of Chap. 2 and the whole of Chap. 3 were devoted to topics of linear
stability theory dealing with the evolution of very small flow disturbances satisfying
the linearized fluid dynamics equations. In Chap. 2 it was shown that the classical
normal-mode method of the linear theory of hydrodynamic stability often leads to
results which strongly disagree with experimental data. It was also indicated there that
these disagreements are apparently due to nonlinear effects, which make linearization
of the equations of motion physically unjustified. In Chap. 3 it was explained that
the necessity for consideration of the full nonlinear dynamic equations often follows
from the fact that many solutions of the initial-value problems for linearized fluid
dynamics equations grow considerably at small and moderate values of the time
t even in the cases when the normal-mode analysis shows that these solutions decay
asymptotically (i.e. at t → ∞).

The nonlinear theory of hydrodynamic stability has achieved a high level of de-
velopment. Although the theory is still far from being completed, it has elucidated
many formerly mysterious properties of fluid flows which are interesting for physi-
cists and important for engineers. There is now an enormous literature on this subject
and only a small part of it, dealing with relatively simple flows of incompressible
fluids, will be considered in this book. In the present Chapter two topics from the
nonlinear stability theory will be discussed: the energy method of stability analysis
(short introductory consideration of this method was included in Sect. 3.4 above)
and Landau’s approach to the weakly nonlinear stability theory which described the
initial period of the nonlinear development of flow disturbances.

4.1 The Energy Method of Stability Analysis
and its Generalisations

4.1.1 Flows of Fluids of Constant Density

Remember first of all what was said about the energy method in Sect. 3.4 of
Chap. 3. There, a flow of an incompressible constant-density fluid in a domain V was
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considered, where V is either bounded by solid walls or is unbounded in the directions
of some coordinate axes xj . It was assumed that the velocity and pressure fields of
the flow are of the some of the form U(x) + u(x, t) and P(x) + p(x, t), where {U(x),
P(x)} are the velocity and pressure of some steady ‘undisturbed flow’(which, in the
case of unbounded flow, has the property that U and ∇P do not depend on those
coordinates xj that correspond to directions of flow unboundedness), while u(x, t),
p(x, t) are the velocity and pressure of some disturbance of arbitrary size (which in
the case of unbounded V is periodic, with given periods lj = 2π/kj , with respect to
the coordinates xj ). Hence {U(x), P(x)} and {U(x) + u(x, t), P(x) + p(x, t)} both
satisfy the Navier–Stockes (for short, N-S) equations with “no-slip” boundary con-
ditions at solid walls. Note also that the derivation of the energy-balance equation is
unchanged if the undisturbed flow is unsteady and spatially periodic (with periods
lj ) in directions in which V extends to infinity; moreover, the walls bounding the
domain V can be moving, and V can depend on t.

The energy-balance equation for a flow disturbance follows easily from the equa-
tions of motion for u = (u1, u2, u3), which are the differences between the N-S
equations for Ui + ui and those for Ui alone, for i = 1, 2, 3:
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where, as usual, the summation is carried out over all three values of any indices which
occur twice in single-term expressions (“repeated indices”). Let us now multiply Eq.
(4.1a) by ui , sum the equations obtained for i = 1, 2, 3, and then integrate the sum
over the regionV ′, whereV ′ coincides withV ifV is bounded, while ifV is unbounded
then V ′ includes only one period lj in directions in which V extends to infinity. It is
easy to see that the result of the integration can be written in the form
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where dx is an element of volume in the three-dimensional space of points x and

E(t) = 1
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is either the total kinetic energy of a disturbance (if V is bounded) or the energy
density per wavelength (the unimportant factor ρ representing the constant density
of the fluid is here omitted for simplicity). Equations (4.2) and (4.3) are just Eqs.
(3.74) and (3.73) of Sect. 3.4 and the first of them is just the Reynolds-Orr (or R-O)
equation of the energy balance. This was first derived more than a hundred years ago
by Reynolds (1894) (who took U as the average flow velocity and u as the deviation
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of the velocity at a point from the average) and was later studied and used by Orr
(1907) (whose interpretation of the velocities U and u was the same as that given
above). It was noted in Sect. 3.4 that the single nonlinear term of Eq. (4.1a) for the
velocity ui—the last term of the left-hand side—makes no contribution to Eq. (4.2),
since it produces a divergence term which drops out after the integration by virtue
of boundary conditions. As a result, all the terms of the R-O equation turn out to be
quadratic in the disturbance velocities ui ; therefore, the sign of the left-hand side of
the R-O equation does not change when the velocity u(x, t) is multiplied by some
factor (i.e., this sign does not depend on the disturbance intensity). It was also noted
in Sect. 3.4 that changing to dimensionless quantities transforms the energy-balance
Eq. (4.2) into an equation of the same form but with dimensionless coordinates and
velocities (measured in appropriate length and velocity units L and U) and with the
dimensional factor v replaced by the dimensionless combination v/UL = 1/Re.

From the R-O Eq. (4.2), where all the velocities and coordinates are now assumed
to be non-dimensionalized, it follows that if UL/v = Re takes a value which is greater
than the value of the ratio

[
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for a given solenoidal (zero-divergence) vector field u(x) = {u1(x), u2(x), u3(x)}
which satisfies all the necessary boundary and periodicity conditions, and if u(x,
t = 0) ≡ u(x), then dE(t)/dt> 0 at t = 0. On the other hand, if Re is smaller than
(or equal to) the greatest value of R[u(x)] accessible for the class of solenoidal
fields u(x) satisfying the necessary boundary and periodicity conditions, and if the
undisturbed flow is a steady one, then for any shape and size of the initial field u(x,
t = 0) of disturbance velocity for derivative dE/dt will be nonpositive at any t ≥ 0.
Therefore, we may conclude that the minimal Reynolds number Recr min, which first
appears in the paper by Reynolds (1883), coincides with the minimum value of
R[u(x)] over all solenoidal vector fields u(x) representing possible initial values of
the disturbance velocity. Such a definition of Recr min implies that at Re<Recr min

the undisturbed flow considered is globally (i.e., unconditionally) and monotonically
stable (for more details about these concepts see, e.g., Joseph (1976); Manneville
(1990); Dauchot and Manneville (1995), and Chap. 2 in Godreche and Manneville
(1998)). Later it was also shown that if the flow region V is bounded in at least one
spatial direction (and hence can be contained between some pair of parallel planes),
then for any Re<Recr min there exists a positive constant �=� (Re) such that
E(t) ≤ E(0) exp(−�t) for any t> 0; therefore, in this case the disturbance energy
falls off exponentially with time (see, e.g., Serrin (1959), and also the books by Joseph
(1976), Sect. 4, Galdi and Rionero (1985), Chap. 1, Georgescu (1985), Sect. 1.1.5,
and Straughan (1992), Chap. 3).

If Re∗ is the smallest value of R[u(x)] corresponding to some subset of all ad-
missible disturbance velocities u(x), then the inequality Recr min <Re∗ is clearly
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valid, and hence Re∗ is an estimate of Recr min from above. Reynolds (1894) used
his version of Eq. (4.2) for just such an estimate from above of Recr min for plane
Poiseuille flow. For this purpose he determined the minimum value of R[u(x)] for
one special family of admissible two-dimensional vector fields u(x) = {u(x, z), 0,
w(x, z)} depending on two numerical parameters (not counting the amplitude whose
value is unimportant) and thus proved that in this case Recr min ≤ 517, where Re
is based on the distance H between the walls and the mean velocity of the undis-
turbed flow Um = 2Umax/3. Later Sharpe (1905) carried out a similar computation
for a quite different two-parameter family of two-dimensional disturbances u(x),
and in this way found a considerably lower estimate, Recr min ≤ 167, of the minimum
Reynolds number for plane Poiseuille flow. Sharpe also applied this method to esti-
mation from above of Recr min for the circular Poiseuille flow in a round tube; here
the value of minu(x)R[u(x)] for a particular two-parameter family of axisymmetric
velocity disturbances gave Recr min < 470, where Re is based on the tube diameter
D and the undisturbed mean velocity Um. Then Lorentz (1907), computed the value
of minu(x)R[u(x)] for a class of ‘elliptic whirls’ disturbing a plane Couette flow and
found that for this case Recr min ≤ 288 where Re = HU/v, H is the flow thickness and
U is the velocity of the moving wall.

It was already clear to Orr (1907) that only very crude estimates of Recr min can
be found from investigations of special low-parametric subsets of disturbance ve-
locities u(x). For this reason Orr did not consider any such subsets, but set up the
variational problem of finding the solenoidal vector field u(x) which satisfies the
required boundary conditions (and periodicity conditions, if V is unbounded), and
minimizes the functional (4.4) where U(x) is a given undisturbed velocity field. Orr
noted that he tried to solve this problem for three-dimensional vector fields u(x) but
found it to be too difficult (remember that this was written in 1907). Therefore he
considered only two-dimensional disturbances u(x) = {u(x, z), 0, w (x, z)} (or, in the
case of tube flow, {ux(x, r), 0, ur(x, r)} assuming that such disturbances must be less
stable than three-dimensional ones. For two-dimensional disturbances the solenoidal
vector field u(x) may be represented in terms of the scalar stream function Ψ(x, z) (or
Ψ(x, r)) and substituted in this form into Eq. (4.4). In particular, for a plane-parallel
undisturbed flow with velocity profile U(z), the functional R[u(x)] in the case of a
two-dimensional disturbance can be written as

R[Ψ(x, z)] =
∫∫

(�Ψ)2dxdz
∫∫

∂Ψ
∂x

∂Ψ
∂z

dU
dz dxdz

; (4.5)

and a similar equation may be obtained for tube flow. Therefore, determination of the
value of Recr min corresponding to two-dimensional disturbances can be reduced to the
variational problem of finding the minimum value of functional (4.5) (or some similar
functional for an axisymmetric primary flow) over the set of twice-differentiable
functions Ψ(x, z) (or Ψ(x, r)) satisfying the appropriate boundary conditions (in
particular, conditions ∂Ψ/∂z = ∂Ψ/∂x = 0 at plane solid walls). This was just the
variational problem Orr tried to solve for the cases of plane Couette flow and plane
and circular Poiseuille flows. Unfortunately, his assumption that two-dimensional
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disturbances are the most unstable was later found to be incorrect, and also some of
his numerical methods proved to be not sufficiently precise. However, this fact does
not diminish Orr’s main achievement, the first accurate formulation of the general
variational problem of the energy method of stability theory.

Subsequent investigations of the stability of some simple parallel flows by the
energy method were carried out during the 1910s and 1920s, in particular by Hamel
(1911); Havelock (1921), and von Kármán (1924) (the first publication of the author’s
results of 1910, presented at the time only in a lecture). These workers also considered
only two-dimensional disturbances, and used rather crude approximate solutions of
Orr’s variational problem. The papers by Tamaki and Harrison (1920) and Harrison
(1921) were devoted to the study of the stability of circular Couette flow by the energy
method, but the first of these papers was erroneous, while in the second the extremum
was sought only among a rather special and narrow set of disturbances. However,
for many years the inaccuracy of these calculations seemed to be an insufficient
explanation of the fact that all estimates of the critical Reynolds numbers obtained
by this method (often being ‘estimates from above’) turned out to be considerably
lower than both the values of Recr given by the normal-mode method of linear stability
theory and the experimentally observed values of Re corresponding to transition of
real flows to turbulence. This circumstance gave rise to extensive criticism of the
energy method by a number of authors, proclaiming that, even in principle, this
method can give only serious underestimates of Recr. The observed inadequacy of the
method was usually explained by the fact that the minimization of the functional (4.4)
(or (4.5)) was carried out over a set of disturbance velocities (or stream functions)
satisfying only the required boundary and incompressibility conditions, while the
equations of motion were not taken into account at all. Critical remarks of this
kind can be found, e.g., in the books by Lin (1955), p. 59, Monin and Yaglom
(1971), p. 152 (here a reference is given to the paper by Petrov (1938), where it
was allegedly shown ‘that the value ofΨ(x, z) minimizing the functional (4.5) cannot
generate a dynamically possible motion’), and Hinze (1975), p. 77, and also in papers
by Serrin (1959), p. 4, and Joseph (1966), pp. 181–182 (these two papers will be
considered below at greater length). However, this criticism is in fact unjustified;
the energy method considers only the flow conditions at one instant of time, and at
fixed time t the velocity u(x, t) can take any value satisfying the above boundary
and incompressibility conditions. (This fact was stressed by Lumley (1971) who
also analyzed the arguments by Petrov (1938) to show their inconsistency). Since in
the energy method minu(x)R[u(x)] is taken over all possible instantaneous values of
disturbance velocity, then—if the undisturbed flow is steady—at any Re below this
minimum dE(t)/dt will be negative at any non-negative value of t, i.e., the energy of
the disturbance will decay monotonically with time for any intensity and shape of
the initial disturbance.

Let us stress, however, that the validity of the inequality Re ≤ Recr min = minu(x)

R[u(x)], which guarantees the monotonic decrease of the disturbance energy with
time, is only a sufficient (but not necessary) condition for flow stability. On the other
hand, the validity of the opposite inequality Re>Recr min is a necessary (but not
sufficient) condition for flow instability. Remember also that in Chap. 2 it was noted
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Fig. 4.1 Schematic
representations of various
stability regions of a given
flow in the (E(0), Re)-plane.
(After Joseph (1976))
Re1 = Recr min; Re2 = Re0,cr;
Re3 = Recr; 1-the region of
global and monotic stability;
2-the region of global
nonmonotonic stability; 3-the
region of conditional stability;
4-the region of instability

that the normal-mode method of the linear stability theory gives the value of Recr

such that Re>Recr is a sufficient (but not necessary) condition for flow instability
(while the opposite condition Re<Recr is a necessary, but not sufficient, condition
for flow stability). Therefore, the value of Recr min can be quite different from both
the value or Recr of the linear stability theory and the value of Re characterizing real
transition to turbulence. Thus it is only natural that, even when sufficiently precise
computations of minu(x)R[u(x)] = Recr min are used, the energy method often leads to
values of Re which are far below the Reynolds numbers observed at transition of flow
to turbulence (and below the linear-theory values of Recr which are usually higher
than Reynolds numbers at laminar-turbulent transition). Let us stress again in this
respect that Recr min determines only the threshold value of the Reynolds numbers
corresponding to global (unconditional) monotonic stability of the flow considered,
i.e., the validity of the condition Re<Recr min is both necessary and sufficient for
being sure that any initial disturbance will decay monotonically tending to zero as
t → ∞. However, certain range Recr min <Re<Re0, cr of Reynolds number exceed-
ing Recr min can exist, having the property that if Re belongs to it then any disturbance
will necessarily decay to zero as t → ∞ but the energy of some disturbance will
transiently grow during some finite time intervals. This range corresponds to global
(but nonmonotonic) flow stability and it is clear that transition to (undamped) turbu-
lence cannot happen at Re<Re0, cr. The range of Reynolds numbers corresponding
to conditionally stable flows adjoins the globally-stable-flow range 0 ≤ Re ≤ Re0, cr;
at values of Re from this range the disturbances satisfying some definite condition
necessarily decay to zero while others can grow indefinitely. The most usual con-
ditions guaranteeing the decay of disturbances have the form of energy limitations:
the disturbance necessarily decays as t → ∞ if its initial energy E(0) does not
exceed some threshold value E0(Re) depending on Re. The value of E0(Re) clearly
must decrease monotonically with the increase of Re apparently tending to zero at
Re = Recr (where Recr is the critical value of the linear stability theory dealing with
the infinitesimal disturbances) and to infinity at Re = Re0, cr (see schematic Fig. 4.1;
additional information may be again found in Joseph (1976); Manneville (1990);
Dauchot and Manneville (1995), and Godrèche and Manneville (1998)). As to the
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transition to turbulence, it occurs most often at some Reynolds number intermediate
between Re0, cr and Recr.

Earlier in this section some very early papers on the energy method of the sta-
bility theory were mentioned. In the 1930s, 1940s, and early 1950s this theory did
not attract much attention; note, however, two remarkable papers by Sorokin (1953,
1954) which will be discussed later in this section. Slightly later the important paper
by Serrin (1959) appeared, stimulating a number of authors to resume stability inves-
tigations by the energy method. This resulted in a great number of new publications
relating to many different problems on hydrodynamic stability.

Serrin began with an accurate derivation of the fundamental R–O Eq. (4.2) under
rather general conditions (he considered a general unsteady flow in the presence of
an external force in the region V bounded by walls which could be moving). Then
he formulated the variational problem by Orr as a problem of finding the maximum
of the functional

∏
[u(x)] = ∫

v′
ujui(∂Uj/∂xi)dx under the following conditions:

D[u(x)] = ∫
v′

3∑

i,j=1
(∂uj /∂xi)2 d x = 1 and div u(x) = 0, where u(x) satisfies the nec-

essary boundary and periodicity conditions. Serrin wrote down the Euler-Lagrange
(E-L) equations corresponding to this variational problem, which included Lagrange
multipliers (since a conditional extremum was sought). He also showed that the
equations obtained can be easily transformed into an eigenvalue problem for a sys-
tem of partial differential equations similar to the N-S equations of fluid dynamics.
(A slightly different derivation of these E-L equations, under slightly more general
conditions, was given by Lumley (1971), while the corresponding eigenvalue prob-
lem was also considered by Galdi and Rionero (1985), Chap. 1, Geovgescu (1985),
Sects. 1.1.2 and 1.3.1, and Straughan (1992), Chap. 3.) However, in the 1950s the
determination of the exact solution of the eigenvalue problem seemed to be very
difficult. Therefore Serrin concentrated his main efforts on the derivation of some
approximate results, based on some relatively crude general inequalities.

In particular, Serrin showed that in the case of an arbitrary bounded region V with
smooth enough boundary and a maximum diameter D the following inequality holds:
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2 π2 ≈ 32.6, for any solenoidal vector field u(x) in V vanishing on
the boundary of V (this is a particular case of the known Poincaré inequality; see,
e.g., Straughan (1992)). Using then the obvious relations
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where Umax is the maximum of the modulus of the undisturbed velocity U(x).
Equations (4.2), (4.3), (4.6) and (4.7) easily imply that
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π ≈ 5.71. This ‘estimate from below’ of the critical

Reynolds number may seem to be too low but we must remember that the value of
Recr min can be much smaller than that of Recr found from transition experiments,
and we should also take into account that the result (4.8) is based on rather crude
inequalities and is very universal, being applicable to any bounded region of diameter
D or less and to any flow in this region.

Serrin obtained similar estimates for flows in arbitrary straight channels of vari-
able width not exceeding D (i.e., with width H(y) which can depend on y and satisfies
the condition maxy H(y) ≤ D) and straight tubes of arbitrary cross section with di-
ameter not exceeding D. Serrin proved that the inequalities (4.6) and (4.7) are valid
for these cases too (with region V replaced by V ′), except that the constant a in
Eq. (4.6) is equal to π2 in the case of a straight channel and to 2π2 in the case
of a straight tube. Therefore, the new universal stability estimates have now the
forms: Recr min = (Umax D/v)cr min ≥ π ≈ 3.14 for channels of maximum width D and
Recr min = (UmaxD/v)cr min ≥ √

2π ≈ 4.43 for tubes of maximum diameter D.
Finally Serrin applied analogous arguments to a circular Couette flow between

concentric cylinders of radii R1 and R2 rotating with angular velocities �1 and �2

(where index 1 relates to the inner cylinder and �1 > 0). Here (see e.g. Eq. (2.10),
Sect. 2.6) the undisturbed velocity is given by
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Using these equations it is easy to show that
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Fig. 4.2 Position of the region of instability to infinitesimal disturbances, and the region of stability
to any finite disturbance, for Couette flow between rotating cylinders, studied by Taylor (1923).
The upper dashed region corresponds to instability to infinitesimal disturbances, while flows cor-
responding to points of the shaded strip are definitely stable to any finite disturbance. (After Serrin
(1959)) the continuous straight line in the figure is the boundary of the region of instability for the
case of an inviscid fluid (Chap. 2)

where, as usual, V ′ is a part of the flow region having a width in the z direction
equal to one disturbance wavelength (which can take an arbitrary value). Combining
inequalities (4.10) with the R-O Eq. (4.2), Serrin obtained the relation
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∫
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which, together with the expressions for the coefficients B and b, implies that circular
Couette flow is stable to arbitrary disturbances if
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≤ (R2
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R1R2 log (R2/R1)

]2

(4.12)

(another proof of condition (4.12) was given by Joseph (1976), Sect. 37). The region
(4.12) of the (�1, �2)-plane is usually only a small part of the region of stability to
infinitesimal disturbances (see, for example, Fig. 4.2 for the case whereR1 = 3.55 cm,
R2 = 4.03 cm, so that R2/R1 = 1.13, which was studied experimentally by Taylor
(1923); his results for this case were presented in Chap. 2, Fig. 2.10). The smallness
of the region of universal stability in comparison to that of stability to infinitesimal
disturbances may seem to be only natural, but let us also note that the result (4.12)
is far from being exact, being based on the rather crude inequalities (4.10).

Shortly after the appearance of Serrin’s paper of 1959, Velte (1962) improved the
possible values of the coefficient a in the Poincaré inequalities (4.6) relating to the
particular classes of fluid flows considered by Serrin. Namely, he showed that this
coefficient is in fact not less than 6π2 in the case of flows in bounded regions of
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diameter D, not less than 3.74π2 for flows in straight channels of bounded width,
and not less than 4.7π2 for flows in straight tubes of bounded diameter. These results
imply the following sharpening of Serrin’s estimates: Recr min ≥ √

6π ≈ 7.7 for flows
in bounded regions, Recr min ≥ √

3.74π ≈ 6.1 for flows in straight channels, and
Recr min ≥ √

4.7π ≈ 6.8 for flows in straight tubes, where Reynolds number is
based on the maximum flow velocity and the maximum diameter or width of the
flow region.

The indicated estimates from below of Recr min may be made more precise if their
‘universality’is relaxed, i.e. if they are sought in more restricted sets of spatial regions
V and/or velocity fields U(x). One of the first such attempts was made by Payne and
Weinberger (1963) who considered the special case where V is a sphere of diameter
D. These authors found that in this case the maximal possible value of the coefficient
a in Eq. (4.6) is 4a2

1 where a1 is the lowest positive root of the equation tan a1 = a1. It
follows from this that a ≈ 80 and hence Recr min ≥ 8.94 in the case considered. Since
it is clear that the coefficient a cannot decrease when the region is shrinking, the
last result gives the final improvement of Serrin’s estimate of Recr min for bounded
regions of fixed maximal diameter, admitting no further corrections.

Later Sorger (1966a) (see also Joseph (1976), Sects. B7 and B8) independently
considered the more general case of a region V bounded by two concentric spheres of
radii R1 and R2, (where 0 ≤R1 <R2, and 2R2 = D) and proved that here

√
a = 4a2

1
where a1 is the minimal zero of some combination of the Bessel functions of
the first and second kinds, of order 3/2, taken at arguments a1 and ηa1 where
0 ≤ η=R1/R2 < 1 (for η= 0 this combination of Bessel functions becomes a func-
tion proportional to tan a1 − a1, as it must do according to the result of Payne and
Weinberger). Sorger (1966a) also found exact analytical solutions of the variational
problem of determininig the largest possible value of a for two-dimensional flows
in a planar region V, bounded by a circle of diameter D or by two concentric cir-
cles of radii R1 and R2 = D/2>R1; he used these solutions to determine relatively
narrow ranges for the true values of a (and thus also for values of Recr min = a2) in
the cases of flows in a circular tube or in a circular channel between two concentric
cylinders. Some energy-method estimates of Recr min for flows in unbounded regions
which cannot be confined between a pair of parallel planes were given by Galdi and
Rionero (1985), Chaps. 2 and 3; see also Chap. 5 of Straughan’s book (1992).

In the second half of the 1960s, numerical methods began to be widely applied
to solution of the main variational problem of the energy theory of hydrodynamic
stability, for a number of primary flows U(x) given in various spatial regions V
(some of these methods were considered by Straughan (1992), pp. 217–224). This
allowed the determination, with good accuracy, of values of the stability bounds
Recr min = minu(x)R[u(x)] (cf. Eq. (4.4)) for many important flows, both of homoge-
neous fluids of constant density ρ and of inhomogeneous fluids of variable density
ρ(x, t) (dependent, for example, on the temperature T (x, t)). The main results ob-
tained in the late 1960s and early 1970s were summarized in the two-volume book
by Joseph (1976). Let us recall in this respect that in Chap. 3, Sect. 3.4, it was
mentioned that both Busse (1969) and Joseph and Carmi (1969) solved numerically
the general (three-dimensional) variational problem of the energy stability theory



4.1 The Energy Method of Stability Analysis and its Generalisations 301

for plane Poiseuille flow and found that Recr min = 49.6, while Joseph and Carmi si-
multaneously found that Recr min = 81.5 for circular Poiseuille flow in a round tube,
and Joseph (1966) calculated that Recr min = 20.7 for plane Couette flow in a layer
bounded by two parallel walls. (For Poiseuille flows Re is formed with the maximal
velocity Umax and the channel half-width H1 or the tube radius R, while in the case
of Couette flow the half-difference of wall velocities U0 and half-distance between
wallsH1 are used as velocity and length scale). The paper by Joseph and Carmi also
contains the energy-method determination of the value of Recr min for Poiseuille flow
(produced by a constant axial pressure gradient) in the annuli between two concen-
tric round cylinders of different radii, while Joseph (1966) considered in addition the
case of stratified Couette flow between parallel walls where the temperature of the
lower wall is higher than that of the upper one (his main result for this case will be
presented later). Note in conclusion that all the above-mentioned papers include the
determination of the ‘most dangerous’ disturbances which correspond to the maxi-
mum value of R[u(x)] (i.e., are the most unstable). The results presented here, and
also many results of the energy method of stability theory for more complicated flows
(e.g., the pressure-gradient flows in annuli between concentric cylinders which are
either sliding with respect to each other or rotating, or flows between rotating con-
centric spheres) can be found in the book by Joseph (1976). However, we wil not
linger here to consider these more complicated flows. Instead, we will return to the
applications of the energy method to the classical stability problem of Couette flow
between concentric rotating cylinders.

Above, we mentioned the early, rather inaccurate, papers of Tamaki and Har-
rison (1920) and Harrison (1921) devoted to this problem, and also described the
derivation by Serrin (1959) of the important universal stability condition (4.12). Note
now that in the same paper Serrin supplemented the exact inequality (4.12) by some
stronger but not fully rigorous conclusions. Namely, he assumed without proof that
Orr’s variational problem in the case of a Couette flow between rotating cylinders
has an axially symmetric solution of the form u(x) = û(r)eikz where cylindrical coor-
dinates r, φ, z are now used and the wave number k takes arbitrary real values. Then
the system of Euler-Lagrange differential equations determining the solution of the
energy-method variational problem relating to such disturbances can be reduced to
an eigenvalue problem for a linear system of two ordinary differential equations, with
unkown functions ûr (r), ûφ(r). Serrin could not solve this problem in the general
case but he showed that in the case of a ‘small gap’ between the cylinders, i.e. where
R2 −R1 � (R2 +R1)/2, his system of differential equations can be approximated
by a pair of simpler equations, leading to an eigenvalue problem whose solution is
known from previous work on hydrodynamic stability. Then the smallest eigenvalue
of the problem studied (which depends on k so that the minimum over all real values
of k must be considered) will determine the new stability criterion (with respect to
axisymmetric disturbances) valid in the small-gap case. According to Serrin it has
the form

|�2 −�1|
v

≤ 2
√

1708√
R1R2(R2 − R1)

. (4.13)
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This somewhat tentative criterion gives the ‘stability region’ in the form of a strip
similar to that presented in Fig. 4.2 but having much greater width.

Later Sorger (1966b, 1967) proved, under rather wide conditions, the existence of
an axially symmetric solution of the form u(x) = û(r)eikz for Orr’s variational prob-
lem for the case of circular Couette flow. He also developed a method to determine
numerical values of the function ûr (r) = ûr (r; k), and of the corresponding critical
Reynolds number Recr min (k), where Re = U(R1)(R2 −R1)/v, for various values of k
and η=R1/R2. (Reynolds number Recr min (k) determines the boundary of stability
with respect to axisymmetric disturbances with wave number k).The results obtained
were then compared with those obtained from the linear theory of hydrodynamic sta-
bility, and used to determine the dependence of the value of Recr min = min0 ≤ k≤ ∞
Recr min (k) on the value of η.

More detailed study of the stability of circular Couette flow was carried out by
Hung (1968) and Joseph (see Joseph and Hung (1971) and Joseph (1976), Chap. 5).
In particular, Hung (1968) solved numerically the general (three-dimensional) Orr’s
variational problem relating to the circular Couette flow for a number of values of
η=R1/R2, A and B (see Eq. (4.9)). The found solution determined the region of
‘universal stability’ of Couette flow to arbitrary disturbances. According to Hung’s
results (partially presented by Joseph (1976) in Sect. 37) the stability region in all
cases studied was of the form |�2 −�1| /v ≤ R̃cr(η)(R2

2 − R2
1)/(R1R2)2, where

R̃cr(η) is some universal function of η. We see that here again the stability region
has the shape of a strip, similar to that presented in Fig. 4.2, whose width depends
on values of R1 and R2. It was also found that the disturbances which first become
unstable when |�2 −�1| /v is increasing are axisymmetric in all the cases studied,
and similar to the Taylor vortices described in Sect. 2.6. Remember that in this
section it was also noted that according to experimental results over a wide range of
flow conditions, when circular couette flow becomes unstable the appearing unstable
disturbance mode is a set of axisymmetric Taylor vortices. These results stimulated
Joseph and Hung to began a more complete energy-balance investigation of the
stability of Couette flow to axisymmetric disturbances.1

Joseph and Hung integrated the equations of motion for the squares u2
r = w2, u2

φ =
v2 and u2

z = u2 of the velocity components of an axisymmetric disturbance over
the spatial region V ′ (whose span in the z-direction is equal to the wavelength
of the disturbance), and considered equations for 1

2
d
dt

〈w2 + u2〉 = d
dt
E(1)(t) and

1
2
d
dt

〈v2〉 = d
dt
E(2)(t) (where angle brackets denote the integrals over V ′) neither of

which contains pressure terms (since ∂p/∂φ = 0 in the case of axisymmetric dis-
turbances). Summing these two equations one will obtain the R-O energy Eq. (4.2)
for E(t) = E(1)(t) + E(2)(t), which is used in the energy method of stability theory.

However, it is easy to see that the convergence to zero of E(t) = 1
2

〈
3∑

i=1
u2
i

〉

is only

1 Joseph and Hung’s paper of 1971 in fact represented a continuation of the work, unknown to them,
of Pritchard (1968) who studied the same problem by the same method but restricted himself to
consideration of linearized dynamic equations. (Pritchard’s paper will be described at greater length
in Sect. 4.12).
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one of many consequences of the decay to zero of disturbance velocity u(x, t) as
t → ∞. Since the half-sum of squared velocity components has an important phys-
ical meaning, the requirement that E(t) → 0 is a very attractive stability condition.
Nevertheless, instead of this we may in principle require that the spatial average of
some other nondegenerate positive-definite quadratic form of velocity components
converges to zero as t → ∞. Such convergence also shows that the disturbance
decays to zero (and quite often it implies also the convergence to zero of E(t)); hence
the absence of an explicit physical meaning of the selected quadratic form cannot
be considered as a radical defect of the new method. These arguments clearly allow
one to suggest a great number of modifications of the classical energy method of
stability analysis.

Joseph and Hung (1971) (see also Joseph (1976), Sect. 40) proposed to use the con-
dition d[E(1)(t) +λE(2)(t)]/dt = dEλ(t)/dt < 0, where λ is some positive constant
and the disturbance velocity field u(x) is axisymmetric, as a new condition of stability
with respect to axisymmetric disturbances (replacing the more usual requirement of
negativity of dE(t)/dt). The new condition implies that Eλ(t) = E(1)(t) + λE(2)(t)
decays to zero monotonically as t → ∞; since E(t) ≤ min[1, λ] Eλ (t), the energy
E(t) also decays to zero in this case. However, if λ �= 1, the set of primary Couette
flows, and of initial disturbances u(x) for which dEλ (t)/dt< 0, does not coincide
with the similar set corresponding to the condition dE(t)/dt ≡ dE1(t)/dt< 0. There-
fore, the study of exact conditions guaranteeing that dEλ (t)/dt< 0 for λ �= 1 leads to
the possibility of finding some new classes of stable disturbances of circular Couette
flows.

The Reynolds–Orr energy-balance Eq. (4.2) implies that the given class
%

D of
velocity disturbances u(x) is certainly stable (and what is more, its kinetic energy
decays monotonically as t → ∞), if Re < min

u(x)⊂%
D
R[u(x)] = Recr min, where

R[u(x)] is given by Eq. (4.4) and all lengths and velocities are measured in the
units L and U used in the definition of Re. (Below it will be assumed that class

%

D
consists of all axisymmetric velocity fields, therefore the value Recr min will refer to
axisymmetric disturbances only). However the balance equation for the ‘modified
energy’Eλ(t) with λ �= 1 differs from Eq. (4.2); therefore, conditions guaranteeing
that dEλ(t)/dt< 0 must also differ from conditions guaranteeing the negativity of
dE(t)/dt. The most important difference between the balance equations for Eλ(t)
and for E(t) is due to the fact that the nonlinear terms of the N–S equations for
u(x, t) do not contribute to the dynamic equation for dE(t)/dt but do affect the
value of dEλ(t)/dt. It was noted above that the absence from Eq. (4.2) of the terms
produced by the nonlinear terms in these N–S equations means that all terms on
the right-hand side of this equation are of second order with respect to the velocity
components ui . Therefore, the ratio R[u(x)] of such terms does not depend on the
intensity (‘amplitude’) of the disturbance u(x). However, if λ �= 1, then the equation
for dEλ(t)/dt contains a term of third order in the velocity components (equal to
(1 − λ) (wv2/r)). This makes the sign of dEλ (t)/dt dependent not only on v (i.e. on
Reynolds number Re), the parametersR1,R2 and�1,�2 of the primary Couette flow,
and the shape of the initial disturbance u(x), but also on some characteristic of the
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Fig. 4.3 Schematic
representation of Joseph and
Hung’s (1971) results for
stability of a flow between
rotating cylinders to
axisymmetric disturbances.
Re1 = Recr min; Re2 = Reλ,cr ;
1-the region of global stability
and monotonic decay of E(t);
2-the region of conditional
stability and monotonic decay
of Eλ (t); 3-combined region
of nonmonotonic stability and
instability

intensity of u(x) (it is convenient to use the value of Eλ(0) as such characteristic).
As a result the main conclusion derived by Joseph and Hung from the study of
conditions guaranteeing the negativity of dEλ(t)/dt has the form of a theorem about
the conditional stability of axisymmetric disturbances in a circular Couette flow,
determining a new stability region for such disturbances. The new stability region is
a part of the (Re,Eλ)-plane which consists of such points that at the Reynolds number
Re the ‘generalized energy’ Eλ(t) of any axisymmetric disturbance with the initial
‘energy’Eλ (0)<Eλ decays monotonically to zero as t → ∞ (and hence the energy
E(t) also decays to zero but its decay can be nonmonotonic). Note that for some
nonnegative values of λ the new stability region can perfectly well include some
points where Re>Recr min and hence the energy E(t) will not decay monotonically.
In this case the new result represents an informative specification of the general
statement about the possible existence of conditionally stable flows illustrated in
Fig. 4.1 (see schematic Fig. 4.3 which represents graphically just this case of the
Joseph and Hung theorem).

We will not give here the exact formulation of the theorem by Joseph and Hung
but only its general character. The role of the functional (4.4) is now played by the
functional Rλ[u(x)] = 〈Dλ[u(x)〉/〈Pλ[U(x), u[x]〉 , where 〈Dλ[u(x)]〉 is the sum of
the viscous terms in the equation of motion for Eλ (t) = 〈

u2 + λ v2 + w2
〉
/2, di-

vided by the kinematic viscosity v (more exactly, by (Re)−1 since the equation forEλ
(t) is now assumed to be non-dimensionalized) while 〈Pλ [U(x), u(x)] 〉 is the sum
of production terms, linear in the undisturbed velocity gradient dU(r)/dr. The new
functionalRλ [u(x)] is a natural replacement for the functional (4.4) when the ‘mod-
ified kinetic energy’Eλ (t) is considered instead of the energy E(t). Let Reλ,cr denote
minu(x)Rλ [u(x)], where the minimum is taken over the whole class of disturbance
velocities considered (i.e., over the class of velocities of all axisymmetric distur-
bances). Then, if Re<Reλ,cr, the sum of all right-hand-side terms of the equation for
dEλ(t)/dt which are of second order in the components ui will be negative. However,
this does not mean that the derivative dEλ(t)/dt will necessarily be negative, since
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the term of the equation for dEλ(t)/dt which is of third order in the components ui is
not taken into account here. Remember that the size of this term, relative to the terms
which are quadratic in ui , depends on the intensity of the disturbance u(x) (which can
be measured, e.g., by the modified kinetic energyEλ(0)) and increases with increase
of this intensity. Therefore, a condition guaranteeing the negativeness of dEλ(t)/dt
must in some way restrict possible values of the initial disturbance intensity and thus
diminish the possible influence of the third-order term.

These circumstances explain the following final form of the theorem found by
Joseph and Hung (1971): if Re<Reλ,cr and Eλ(0) < G (Reλ,cr −Re, λ, R1, R2, �1,
�2), where G is a definite function of given arguments proportional to (Reλ,cr −Re)2,
then dEλ (t)/dt< 0 for any nonnegative value of t, and Eλ (t) decays to zero mono-
tonically and not slower than expotentially (hence E(t) = min[1, λ] Eλ (t) also
decays to zero not slower than expotentially). This theorem clearly makes sense only
if Reλ,cr >Recr min = minu(x)R[u(x)] and also Re>Recr min, since at Re<Recr min

the energy of any axisymmetric disturbance decays monotonically to zero. How-
ever, if Recr min <Re<Reλ,cr, then Joseph and Hung’s theorem contains valuable
information: it proves that here the ‘generalized energy’ Eλ(t) of any axisymmet-
ric disturbance, with an initial amplitude so small that Eλ(0) < G =Gλ (Re) (for
the sake of simplicity other arguments of the function G are here omitted) decays
monotonically to zero in a circular Couette flow. This means that for Re within
this interval, axisymmetric disturbances are conditionally stable (namely, stable
under the condition that Eλ(0) <Gλ(Re)). Since the value of G is proportional to
(Reλ,cr −Re)2, it vanishes at Re = Reλ,cr and hence at this value of Re the theorem
can be applied only to infinitesimal disturbances (see again the schematic Fig. 4.3
illustrating the Joseph–Hung theorem). In this figure Re2 = Reλ,cr represents the
smallest Reynolds number at which there exists an axisymmetric disturbance having
arbitrarily small value ofEλ (0) and such that its ‘generalized energy’Eλ(t) does not
decay monotonically to zero as t → ∞. The value Reλ,cr, which clearly must be
greater than Recr, depends on the choice of ‘energy’Eλ(t)(and of the class of con-
sidered disturbances). This value differs from the Reynolds number Re1 = Recr min,
determining the threshold below which the energy E(t) of any axisymmetric distur-
bance decays monotonically, and can exceed this number. Figure 4.3 refers just to this
case.

It was noted above that λ can be chosen as any positive number. Note now that the
usefulness of the Joseph-Hung theorem increases as the number Reλ,cr and the func-
tionGλ (Re) shown in Fig. 4.3 increase, leading to enlargement of the region of stable
disturbances indicated in this figure. Joseph and Hung showed that when Re<Reλ,cr

is fixed, the value of Gλ(Re) increases without limit as R1/R2 → 1 orλ→ 1 (the last
result agrees well with the known fact that no restriction of the disturbance amplitude
is needed at λ= 1). Moreover, these authors also considered the problem of deter-
mination of the optimum value λ0 of λ corresponding, at given values of R1, R2, �1

and�2, to the maximum possible value of Reλ,cr. They proposed a relatively simple
numerical method for computation of λ0. Especially simple results were obtained for
the case where R2

2�2 < R2
1�1 and�2/�1 > 0. In this case an analytic approxima-

tion of high precision was found for the optimal value λ0. Using this approximation it
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was possible to compute quite accurately the values of Reλ0,cr (i.e., of the maximum
value of Re at which Joseph and Hung’s theorem makes sense). It was found that
here the values ofReλ0,cr practically coincide with the values of the critical Reynolds
numbers Recr given by the linear theory of hydrodynamic stability. This coincidence
may be considered as being natural, since the critical values Recr and Reλ0,cr both
apply here only to infinitesimal axisymmetric disturbances u(x) (because for the
class of Couette flows studied by Joseph and Hung the linear stability theory shows
that Recr is just the boundary of stability with respect to axisymmetric disturbances).
Neverthelss, the coincidence is interesting, since it connects results obtained by two
different approaches to the same problem. Note also that the approach by Joseph and
Hung inspired many subsequent studies of various stability problems which will be
considered at the end of Sect. 4.13.

An even more surprising coincidence relating to the same problem was found
slightly earlier by Busse (1970). He considered the classical energy method of
Reynolds and Orr, and compared stability results given by this method with
those following from the linear theory of hydrodynamic stability. He analyzed
the ‘narrow gap’ approximation, where (R2 −R1)/(R2 +R1) � 1, assuming that
the relative difference of angular velocities also asymptotically vanishes simulta-
neously, so that (�2 −�1)/(�2 +�1) � 1. Busse found that then, if in addition
(�2 −�1)/(�2 +�1) = −4(R2 −R1)/ (R2 +R1), the Reynolds-Orr energy method
leads to an eigenvalue problem which coincides exactly with the eigenvalue prob-
lem (2.17–2.17′) arising in the linear theory of hydrodynamic stability for circular
Couette flow. Therefore, in this case the stability boundaries (the critical Reynolds
numbers, Re, or Taylor numbers, Ta = �2

1R1(R2 − R1)3/v2 often used instead of
Re) given by the linear stability theory for the case of infinitesimal disturbances and
by the energy method for disturbances of arbitrary size are exactly the same (and
hence Recr = Recr min, Tacr = Tacr min). A similar result was obtained by Busse for a
plane Couette flow rotating around the y-axis with some definite angular velocity;
in this case it was again found that Recr = Recr min. Some other examples (dating as
far back as the 1950s) of flows where the critical values of the dimensionless flow
parameter given by the linear stability theory and by the energy method coincide
with each other will be considered in the following subsection; see also the paper by
Wahl (1994) which contains further examples.

The discovery of flows where Recr = Recr min evidently refutes the opinion, which
was popular in the first half of the twentieth century, that the stability region given
by the energy method must in principle be much smaller than the stability region
determined by the linear theory of hydrodynamic stability. This discovery was then
supplemented by the development by Joseph and Hung (1971) of the method which
enlarged the region of validity of ‘energy stability’ results by introduction of the
concept of ‘conditional stability’ and replacement of the energy density E(t) by
some other positive-definite functional of disturbance variables. This work led to
a considerable revival of interest in the energy (and generalized-energy) methods
of stability theory. Many of the papers devoted to this subject concerned motion
of fluids with varying temperature (and hence also density) in a gravitational field
producing a significant buoyancy effect. Therefore it will be reasonable to begin the
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next subsection by considering energy-method investigations of flow stability for a
fluid with variable temperature.

4.1.2 Stability of Convective Motions and Related Stability
Problems

In Subsect. 4.11 much attention was given to the classical Taylor problem of stability
of Couette flow between coaxial rotating cylinders. However, there is another classi-
cal problem which also played a very important part in the early development of the
linear theory of hydrodynamic stability. This is the famous Bénard–Rayleigh prob-
lem of stability of a stationary horizontal layer of fluid heated from below, which
was considered in Sect. 2.7. Now we will turn to the applications of the energy
method to this and to some other stability problems where buoyancy forces are of
great importance.

In the case of motion of a fluid of variable temperature under gravity, the N–S
dynamic equations must be replaced by some more general equations. Under rather
general conditions, which in this book will be assumed to be always valid, we can
neglect density variations except in the buoyancy term and, as in Sect. 2.7, use the
Boussinesq equations. Let U(x) be the primary velocity field (it can also depend on
time t but we will not consider this case) and T (x) be the undisturbed temperature
field. Then the nonlinear Boussinesq, continuity and heat conduction equations for
the disturbances ui and ϑ of the velocity and temperature will have the following
form:

∂ui
∂t

+ Uj
∂ui
∂xj

+ uj
∂Uj

∂xj
+ uj

∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ v∇2ui + δi3gβϑ , i = 1, 2, 3,

(4.14a)

∂ui
∂xi

= 0, (4.14b)

∂ϑ

∂t
+ ui

∂T

∂xi
+ Ui

∂ϑ

∂xi
+ ui

∂ϑ

∂xi
= χ∇2ϑ , (4.14c)

where p is the deviation of the pressure field from the undisturbed pressure P, g is
the acceleration due to gravity, and β is the coefficient of thermal expansion of the
fluid. The boundary conditions on stationary solid walls at constant temperature have
a very simple form: u(x, t) =ϑ (x, t) = 0. More complicated boundary conditions
must be used in the cases of moving walls, solid walls of non-constant temperature
(i.e., those which have fixed finite thermal conductivity, or are characterized by fixed
heat flux normal to the wall), and free surfaces of liquids; see e.g. the discussion of
this question in Sect. 2.7 of this book, and in Sect. 55 of Joseph’s book (1976) where
some additional references relating to this subject can also be found. However, in the
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discussion below most attention will be given to the simplest case of zero boundary
conditions for velocity and temperature disturbances at the walls.

The Boussinesq Eq. (4.14a) differ from the N-S equations only by the additional
term gβϑ in the equation for u3 = w. This term produces an extra term in the energy-
balance Eq. (4.2) which now takes the form

dE(t)

dt
= −

∫

v′

ujui
∂Uj

∂xi
dx + gβ

∫

v′

u3ϑdx − v
∫

v′

3∑

j ,i=1

(
∂uj
∂xi

)2

dx

= −
〈

ujui
∂Ui

∂xi

〉

+ gβ 〈u3ϑ〉 − v

〈
3∑

j ,i=1

(
∂uj
∂xi

)
2
〉

= P1 + P2 − vD (4.15)

which differs from the R-O Eq. (4.2) by the extra term P2 = gβ 〈u3ϑ〉 on the right
side. This term can be easily estimated by the following crude inequality

gβ〈u3ϑ〉 ≤ gβ〈|u3ϑ |〉 ≤ gβ〈u2
3〉〈ϑ2〉1/2 ≤ 2gβ[E(t)ET (t)]1/2 (4.16)

where ET (t) = 0.5〈ϑ2〉 is an integral measure of the intensity of temperature dis-
turbance (while 〈ϑ2〉 is often called the ‘temperature variance’). Moreover, the
heat-conduction Eq. (4.14c), together with the boundary conditions given above,
leads to the following balance equation for the temperature-disturbance intensity
ET (t)

dET (t)

dt
= −

〈

ϑui
∂T

∂xi

〉

− χ

〈
3∑

i=1

(
∂ϑ

∂x
i

)2
〉

= PT − χDT . (4.17)

Here the first term on the right-hand side is clearly less than or equal to
2γ [E(t)ET (t)]1/2 where γ = maxx∈v |∇T (x)| , while the following analog of the
inequality (4.6) can be proved for the factor DT in the second term

DT =
〈

3∑

i=1

(
∂ϑ

∂xi

)2
〉

≥
aT π

2

D2
〈ϑ2〉 = 2aT π2

D2
ET (t). (4.18)

In Eq. (4.18)aT = 3 ifV is a bounded region of diameter D, andaT = 1 for a horizontal
layer of maximal thickness D. Combining the balance Eqs. (4.15) and (4.17) with
the estimates of the terms of these two equations given above, we may obtain for the
derivative d[

√
E(t) + λ

√
ET (t)]/dt (where the dimensional factor λ has a positive

value) an inequality of the form

d[
√
E(t) + λ

√
ET (t)]

dt
≤ λ1

√
E(t) + λ2

√
ET (t) (4.19)

where expressions for the coefficients λ1 and λ2 include the dimensional constants
λ; γ = max |∇T| ; and the coefficients entering Eqs. (4.6), and (4.15–4.18). If
λ =

√
(a − Re2)gβv/2aT π2γχ = λ0

√
gβv/γχ , where Re = UmaxD/v, λ2

0 =
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(a − Re2)/2aT π2 is a dimensionless constant, and it is assumed that a>Re2,
then the inequality (4.19) takes an especially useful form. In this case λ1 =
−ξ [

√
(a − Re2)aT π/2 − √

Ra] = −ξ (λ0aT π
2 − √

Ra), λ2 = λλ1, where ξ =
λ0v/D2 if λ0(Pr)1/2 ≤ 1 and ξ = χ/λ0D

2 if λ0(Pr)1/2 > 1, and where Ra =
gβγD4/vχ and Pr = v/χ (cf. Joseph (1965)). It follows from this result that the
convective motion will be universally (in other words, unconditionally or globally)
stable to any disturbance of the velocity and/or temperature if

0 ≤ Ra <
aT π

2(a − Re2)

2
(4.20)

since under this condition, for the value of λ indicated above, we have
√
E(t) + λ

√
ET (t) ≤ [

√
E(0) + λ

√
ET (0)]

exp

{

−ξ [
√

aT π2(a − Re2)/2 − √
Ra]t

}

. (4.21)

The results (4.20–4.21) (obtained by Joseph(1965, 1966) in slightly different from)
are similar to the Serrin-Velte-Sorger results of 1959–1967, derived for constant-
density (non-convective) flows: they do not depend on any specific details of the
flow geometry or on the distributions of the primary velocity and temperature fields.
For the special case of a stationary horizontal fluid layer (for which aT = 1, a = 3.7π2,

and Re = 0) we obtain the result: Racr min > 1.85π4 ≈ 180. The last result can easily
be improved; in fact the inequality (4.7) is clearly unsatisfactory in the case of
stationary fluid where its left-hand side is equal to zero. If we simply omit the first
term on the right-hand side of (4.15) and then repeat all the arguments, we obtain
twice as good an estimate: Racr min > 360 (which is still much smaller than the value
Racr = 1,708 given by linear theory). A similar improvement can also be made in the
estimate (4.20) of the boundary of the universal stability region in the (Ra, Re)-plane
if one uses a different estimate of the first term on the right-hand side of Eq. (4.15)
(giving zero for fluid at rest) and another definition of Reynolds number (see Joseph
(1965)). Note however that in the case of primarily stationary fluid all the results
obtained in this way were much weaker than the older results of Sorokin (1953, 1954)
and several other workers who studied conditions for the appearance of convection
in fluids at rest.

Sorokin considered the stability problem for a stationary fluid in a given spatial
region V (he assumed it to be bounded but his arguments can be applied to many
unbounded regions too). Using Eqs. (4.14a–c) he proved that under very general con-
ditions (which are satisfied in almost all situations of practical interest) Racr min = Racr

where Racr is the critical Rayleigh number determined by the linear theory of hy-
drodynamic stability, while Racr min is the stability boundary given by the energy
method. (This means that for Ra<Racr min both E(t) andET (t) decay monotonically
with time).

Morcover, Sorokin also proved that the principle of exchange of stabilities is valid
here, i.e. that the eigenfrequency ω corresponding to the most unstable mode, if such
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a mode exists, is real (and that all other eigenfrequencies ωj are also real here).
(Remember, that for the Bénard problem, where V is an infinite horizontal layer,
the principle of exchange of stabilities was first proved by Pellew and Southwell
(1940); see Sect. 2.7). At first, these important papers by Sorokin did not attract
much attention, and some of his results were later independently rediscovered by a
number of authors (in particular, by Ukhovskii andYudovich (1963); Howard (1963);
Sani (1964), and Platzman (1965)). Then Joseph (1965, 1966) also independently
derived Sorokin’s results, and some of their generalizations, by a new method and
under more general conditions than those used in the previous publications. His
derivation was later described in the book by the same author (see Joseph (1976),
Chap. VIII) which played a very important part in the revival of interest in energy
methods. Therefore only Joseph’s approach will be outlined below.

Seeking the stability boundary in the (Ra, Re)-plane, Joseph investigated condi-
tions guaranteeing the decay with time of the quantity Eλ(t) = E(t) + λET (t) where,
as above, λ is a dimensional factor having positive value. According to Eqs. (4.15)
and (4.17), the right-hand side of the equation for dEλ(t)/dt includes three “produc-
tion terms”, P1, P2 and λPT, and two “dissipation terms”, −v D and −λχDT. The
production terms can take positive values and they then describe the growth of the
intensity of the velocity and temperature disturbances, caused by the interaction of
flow disturbances with the primary flow. As to the dissipation terms, they are al-
ways negative and represent the decay of disturbance velocity and temperature fields
caused by molecular viscosity and heat conductivity. Therefore, for decay of the
‘modified energy’ Eλ(t) of a disturbance with given velocity and temperature fields
{u(x),ϑ(x)}, the sum of the absolute values v D and λχ DT of the dissipation terms
must be greater than P1 + P2 + λPT.

Joseph made the balance Eqs. (4.15), (4.17) and the equation for dEλ(t)/dt
dimensionless, replacing the dimensional independent and dependent variables
xi , t ,Ui , ui , T ,ϑ ,E,ET , and the coefficient λ by x+

i = xi/L, t+ = tv/L2,U+
i =

Ui/U0, u+
i = uiL/v, T + = T/#0,ϑ+ = ϑ(χgβL3/v3#0)1/2,E+ = E/v2L,E+

T =
ET χgβ/v3#0, and λ+ = λ(#0/gβL) where L, U0 and θ0 are typical length, velocity
and temperature scales of the primary flow (these scales must be chosen in a reason-
able way for every specific problem). It is easy to verify that Eqs. (4.15) and (4.17)
then take the following forms

dE+(t+)

dt+
= − Re

〈

u+
j u+

i

∂U+
j

∂x+
i

〉

+ √
Ra〈u+

3 ϑ
+〉 −

〈
3∑

i,j=1

(
∂u+

i

∂x+
j

)2〉

, (4.15a)

and

Pr
dE+

T (t+)

dt+
= −√

Ra

〈

ϑ+u+
i

∂T +

∂x+
i

〉

−
〈

3∑

i=1

(
∂ϑ+

∂x+
i

)2
〉

(4.17a)

where Re = U0L/v, Ra = gβ#0L
3/vχ , Pr = v/χ , and angular brackets now de-

note integration, with respect to dimensionless coordinates x+
i , over the region V ′.
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Also, changing to dimensionless variables makes the quantityEλ(t) = E(t) + λET (t)
proportional toE+(t+)+λ+PT E

+
T (t+). In the rest of this section we will use only di-

mensionless variables, and for simplification of notation we will omit the superscript
‘plus’ signs. Hence, the symbolEλ(t) will now denote the sum E(t) + λ PrET (t), and
according to Eqs. (4.15a)and (4.17a) the balance equation for this quantity has the
form

∂Eλ(t)

∂t
= − Re

〈

uiuj
∂Uj

∂xi

〉

+ √
Ra

(

〈u3ϑ〉 − λ

〈

ϑui
∂T

∂xi

〉)

−
〈

3∑

i,j=1

(
∂ui
∂xj

)2

+ λ

3∑

i=1

(
∂ϑ

∂xi

)2
〉

= Re P1 + √
Ra(P2 + λPT ) − D − λDT . (4.22)

Equation (4.22) takes an especially simple form in the case of stationary fluid, where
Re = 0. Here the critical Rayleigh number of the energy theory, Racr min, can be
determined from the equation

Racr min =
[

maxλminu(x),ϑ(x)
D + λDT

P2 + λPT

]2

(4.23)

where the minimum is taken over all solenoidal vector fields u(x) and scalar fields
ϑ(x) satisfying the boundary conditions appropriate to the problem considered, and
the maximum over all nonnegative values of λ (thus, the value of λ is varied in the
search for the highest estimate of Racr min). It can be shown that in the case whereλ= 1
the Euler–Lagrange equations corresponding to the variational problem of finding
the minimum in the right-hand side of (4.23) can be reduced to the same eigenvalue
problem that appears in the linear stability theory applied to a given volume of
stationary fluid with given temperature field T (x). The critical Rayleigh number of
linear stability theory, Racr, is determined by the solution of this eigenvalue problem
for the case of zero frequency (i.e. the eigenvalue ω = 0) in exactly the same way
that Recr min is determined by the solution of the eigenvalue problem derived from
the Euler-Lagrange equations.This means that Recr min = Recr in this case, and that
the optimal value of λ in Eq. (4.23) is λ= 1 (since the value of Recr min clearly cannot
be greater than Recr). In particular, for the Bénard-Rayleigh problem of stability of a
horizontal layer of stationary fluid heated from below we find that Recr min ≈ 1,708
in the case of two rigid walls at constant temperatures, while Racr min ≈ 1,101 for
one rigid and one free boundary and Racr min ≈ 657 for the idealized case of two
free boundaries, if the values L = H (the distance between two walls) and #0 =ΔT
(the difference between lower-wall and upper-wall temperatures) are used in the
definition of the Rayleigh number (see Sect. 2.7).

In the more general case of a flow satisfying the Boussinesq equations and hav-
ing given velocity and temperature fields U(x) and T (x), the energy method can be
used to find the stability boundary in the (Re, Ra)-plane, determining the region
of (Re, Ra)-values that guarantes the decay of any initial disturbance regardless



312 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

of its size. Such decay will clearly occur if, for at least one positive value of λ,
the sum of dissipation terms D + λDT for any initial disturbance {u(x), ϑ(x)} is
greater than the sum of production terms Re P1 + √

Ra(P1 + λ PT ). Hence the sta-
bility boundary in the (Re, Ra)-plane will now coincide with the boundary of the
largest region in this plane in which, for some positive value of λ, the ineaqual-
ity (D + λDT) ≥ (ReP1 + √

Ra(P2 + λPT )) is valid for any values of {u(x), ϑ(x)}
satisfying the boundary conditions of the problem considered.

Determination of the boundary curve in the (Re, Ra)-plane is a more difficult
problem than in the case of fluid at rest, when only a boundary point on the Ra-
axis must be found. Joseph (1966) proposed to assume at the beginning that that
Re/

√
Ra =μ is fixed. Then at fixed values of λ and μ the boundary value of Ra (and

hence also of Re =μ
√

Ra) may be found from the equation

Ra(λ,μ) =
[

minu(x),∂(x)
D + λDT

μP1 + P2 + λPT

]2

. (4.24)

It follows that, at a fixed value of μ, the optimal value of Ra (i.e., the value of
Ra(μ)cr min) is equal to maxλ > 0 Ra(λ, μ). Then (μ

√
Racr min(μ), Racr min (μ)) is

a point of the boundary curve in the (Re, Ra)-plane and the set of all such points
corresponding to nonnegative values of μ forms the whole of this curve.

As an example Joseph considered the case of a plane Couette flow heated from
below, i.e., of a Couette flow in a layer between rigid planes at z = 0 and z = H having
different temperatures T0 and T1 = T0 −Θ0 where Θ0 > 0. The determination of the
boundary curve in the (Re, Ra)-plane can be simplified here, since it can be proved
that the optimal value of λ is 1 (hence maxλ < 0 Ra(λ, μ) = Ra(1, μ) at any μ). (This
is connected with the fact that the temperature gradient ∇T is directed everywhere
along the negative z-axis, i.e., has the same direction as the acceleration due to gravity;
see Joseph (1976), Sect. 61, and Straughan (1992), pp. 60–61). Moreover, it can be
shown that the most-unstable disturbance {u(x), ϑ(x)} minimizing the functional on
the right-hand side of Eq. (4.24) has the form of streamwise rolls independent of the
horizontal coordinate x. This allows the search for the minimum in the right side of
(4.24) to be reduced to an eigenvalue problem for a system of ordinary differential
equations. It turns out that this system may be transformed, by simple replacement of
parameters, into a system equivalent to that appearing in the linear stability theory of
a stationary layer of fluid heated from below. Using the known results of this theory,
Joseph proved that any disturbance u(x), ϑ(x) will decay in a plane Couette flow
heated from below if the values (Re, Ra) satisfy the inequality 4Re2 + Ra< 1,708,
where Ra has the same meaning as above and Re =U0H1/v where U0 is the half-
difference of the two wall velocities and H1 = H/2 is the half-width of the channel
(this is the definition of Re for a plane Couette flow already used in Sects. 2.1, 3.3
and 3.4). This result shows again that for the case of fluid at rest (when Re = 0)
the energy method gives the estimate Racr min = 1,708, the same as the critical value
given by linear stability theory. At the same time, for the unstratified problem (when
Ra = 0) the estimate found (Recr min = √

1,708/2 ≈ 20.7) is much smaller, not only
smaller than the critical value Recr = ∞ given by the normal-mode method of linear
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stability theory but also smaller than the minimal values Re1 of Re at which the
instability of a plane Couette flow has been observed in the most accurate modern
experiments and numerical simulations. (Recall that according to results presented in
Sect. 2.1 of Chap. 2, Re1 lies in the range from 320 to 370. Note also the conclusion
by Hamilton et al. (1995) that turbulence cannot be sustained in a plane Couette
flow at Re ≤ 300, and the results of recent experiments by Bottin et al. (1998a, b)
and Bottin and Chaté (1998), and numerical simulations by Barkley and Tuckerman
(1998, 1999) according to which Re1 ≈ 325). It is, however, incorrect to say, as
it often is, that it follows that the energy method is exact in the case of the pure
convection problem but gives very poor results when applied to the non-convective
Couette flow. In fact the results show only that for the Bénard-Rayleigh problem
Racr min = Racr (which is an exception), while for a plane Couette flow Recr min is
much smaller than Recr, while the minimal value of Re at which instability is observed
is here greater than Recr min but smaller than Recr (this may be considered as being
normal).

The methods for determination of the stability boundaries by the energy method
and its modifications developed by Joseph (1965, 1966) can be applied to many other
fluid-dynamic problems. A number of such problems was considered in Joseph’s
book (1976). Thus, for example, stability was studied for flows of a liquid with
density depending on disturbed fields both of temperature, T (x) +ϑ (x, t), and of
concentration of some admixture (e.g., salinity), C(x) + c(x, t). The Boussinesq
approximation was assumed to be valid here too but now it leads to an equation
for u3 = w which includes a term proportional to c; therefore the diffusion equa-
tion must now be added to Eq. (4.14). In this case, Joseph replaced the function
Eλ(t) = E(t) + λET (t) by the functionEλ1 ,λ2

(t) = E(t)+λ1ET (t)+λ2EC(t), where
EC(t) = 〈c2

〉
. It was shown that if the liquid is stationary, while the temperature gra-

dient is directed downwards and the salinity gradient is directed upwards (‘heating
from below and salting from above’) the critical parameters obtained from the linear
and energy theories coincide, as in the case where only heating from below takes
place. However, if both gradients ∇T and ∇C are directed downwards (the case of
heating and salting from below) the two gradients produce opposite effects and here
quite new solutions can appear. Other applications of energy methods considered
in Joseph’s book include, in particular, the cases of Boussinesq fluids with internal
heat sources; convection in spherical layers, in porous media heated from below and
in some non-Newtonian fluids; and stability of magneto-hydrodynamic flows. For
more details relating to these and other applications of energy methods see, e.g., the
papers by Joseph and Shir (1966); Joseph and Carmi (1966); Shir and Joseph (1968);
Joseph (1970, 1988); Bhattacharyya and Jain (1971), and Ayyaswami (1971), and
the numerous publications on this subject appearing in the 1980s and early 1990s.
These newer publications include special monographs by Straughan (1982, 1992)
and Galdi and Rionero (1985), a collection of papers edited by Galdi and Straughan
(1988), an extensive survey paper by Galdi and Padula (1990) (these sources contain
several hundred references), and a great number of research papers only a small part
of which will be referred to below.
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In the more recent literature on the energy method in hydrodynamic stability,
most effort has been devoted to the extension of the classical Reynolds–Orr method
of nonlinear stability analysis. Remember that in some of the above-mentioned sta-
bility investigations conditions were considered for the decay, not of E(t) but of
some other positive functions Eλ(t) (or Eλ1,λ2 (t)). Thus, the stability criteria were
based, not on the kinetic energy of disturbance but on some other positive-definite
quadratic forms of disturbance variables. It was therefore only natural that later some
authors began the search for possible improvements of known results of the energy
method by replacing the energy functional E(t) by another integrated positive definite
quadratic form. Some of these methods of stability analysis were called weighted
energy methods while the name generalized energy methods was often applied to all
such methods. However, even more often they are called Lyapunov methods since
in fact they represent an application to fluid mechanics of the well-known direct
(or second) Lyapunov method of stability analysis. (This method forms the most
important part of the general theory of stability of motion developed by Lyapunov
(1892) in his doctoral dissertation2). The direct Lyapunov method later gained wide
popularity and was expounded in a great number of textbooks, special monographs,
and collections of papers (see, e.g., Zubov (1957); LaSalle and Lefschetz (1961);
Kazda (1962); Hahn (1963); Yoshizawa (1996), and Rouche et al. (1977)). In the
first half of the twentieth century this method was mostly used to study the stability
of dynamic systems having a finite number of degrees of freedom and described
by ordinary differential equations; later, however, some of its applications to sys-
tems described by partial differential equations were also considered, e.g., by Zubov
(1957); Movchan (1959); Knops and Wilkes (1966), and Lakshmikantham and Leela
(1969). In the 1960s the first applications of the Lyapunov method to fluid mechanics
appeared, quite independently of work based on the R-O Eq. (4.2). Later, Lyapunov’s
approach to stability of fluid motion underwent considerable development, and in
fact formed a new branch of hydrodynamic stability theory having many points of
contact, but nevertheless not merging, with work on generalizations of the classical
energy method of Reynolds and Orr.

4.1.3 Applications of the Direct Lyapunov Method and
Generalized Energy Functionals. Arnol’d’s Variational
Method

Lyapunov’s stability was mentioned in Sects. 3.21 and 3.23, when the papers by
Dikii (1960a, b) were considered. As was explained in Sect. 3.21 (see in particu-
lar footnote no. 1 there) Lyapunov’s stability presupposed that some norm ‖ • ‖

2 About 25 years later, in 1918, this brilliant Russian scientist, a member of the Russian Academy
of Sciences, died at the age of 61 from hunger and lack of appropriate medical help in the city of
Odessa enveloped in a civil war between bolsheviks and their opponents.
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was introduced in the phase space H of the dynamical system considered, mak-
ing H a linear normed space3. In problems on hydrodynamic stability, Lyapunov’s
stability of the ‘primary flow’ U0(t), 0 ≤ t<∞ (where U = U(x) is a collection of
hydrodynamic fields uniquely determining the flow), means that for any ε > 0 there
exists such a number δ(ε)> 0 that the inequality ‖U(0) −U0(0) ‖< δ(ε) implies that
|| U(t) −U0 (t) ||<ε for any nonnegative t. (Sometimes it is also additionally required
that ||U(t) −U0(t) || → 0 as t → ∞, either for any U(0) or under the condition that
‖U(0) − U0(0)‖< d for some given d> 0; if so then Lyapunov’s stability is called
asymptotic). The phase space H is here the functional space of all possible values
of U(x) (in the cases where the velocity field uniquely determines the flow, H is
the space of all solenoidal vector fields u(x) satisfying the appropriate boundary
conditions). The norm in such a space is usually given by the square root of the
integral, over the set of points x, of some non-degenerate positive-definite quadratic
form of componentsU1(x), U2(x), Un(x) of the vector function U(x). Then ‖U (x)‖2,
the square of the norm of U(x), is a function of the functional argument U(x).
Functions of functional arguments in mathematics are called functionals; therefore
‖U(x)‖2 = L[U(x)] is a functional in the space H. The Lyapunov condition for
stability (representing the main theorem of Lyapunov’s second method) in applica-
tion to stability of the primary flow U0(x, t) has the following form: If U(x, t) =
U0(x, t) + u (x, t) (so that u(x, t) is a disturbance of the flow U0(x, t)), then the flow
U0(x, t) will be stable with respect to the norm ‖ • ‖ if dL[u(x, t)]/dt’< 0 for any
u(x, t) ∈ H and any t> 0. The functional L[u(x, t)] satisfying the given conditions is
called the Lyapunov functional (in the case of dynamic systems with a finite number
of degrees of freedom the simpler name Lyapunov function is used). Some other
formulations of conditions characterizing Lyapunov’s functionals, and much addi-
tional information about the direct Lyapunov method of the study of stability, can
be found in the literature on this subject mentioned above. Note only that since the
definition of the norm ‖ • ‖, the existence of such a functional does not guarantee
the stability of the given flow with respect to norms different form ‖ • ‖; in fact, a
flow which is stable with respect to one norm can perfectly well be unstable with
respect to some other norm.(Some examples of this phenomenon will be considered
later in this subsection). Note also that, unfortunately, “there are no clear guidelines
of how to choose Lyapunov’s functionals; what is required is a little experience and a
lot of luck” (this remark is due to Payne (1975); see also Rionero (1988)). However,
Lyapunov’s method of stability analysis has nevertheless proved to be very useful in
many applications, and has been repeatedly applied to problems of hydrodynamic
stability.

One of the first applications of Lyapunov’s method to problems of hydrodynamic
stability was due to Dikii (1960a, b), who did not indicate this explicitly but in fact
investigated precisely the Lyapunov stability of the flows he considered. Since this
author used only linearized dynamic equations, his results were given in Chap. 3 of

3 The definition of such spaces and description of their main properties can be found, for example,
in the book by Kolmogorov and Fomin (1957).
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this book, the present Chapter being nominally on nonlinear methods. Dikii stud-
ied the stability of two-dimensional disturbances of plane-parallel inviscid flows;
therefore, here a scalar field of the stream function Ψ(x, z, t) =Ψ(z, t)eikx (or of the
vertical velocity w = ∂Ψ/∂z) of a disturbance could be used as the field of functions
U(x, t) −U0(x, t) = u(x, t). In Dikii’s paper (1960b) the flow of homogeneous fluid
between two solid walls was investigated and it was proved that under certain condi-
tions the values of |Ψ(x, z, t)| (where x and z are fixed, but t can take any nonnegative
value) are bounded by a constant decreasing to zero when the initial values of the
function Ψ, and of its spatial derivatives of the first and second orders, tend to zero.
It is clear that this means that the flow is stable according to Lyapunov, with respect
to a norm ‖Ψ(z, t)‖ given by the square root of the integral with respect to z of a
linear combination of |Ψ|2, |Ψ|2 and |Ψ”|2 where primes denote d/dz (the appropri-
ate norm is given by Eq. (2.75); see also Dikii (1976)). In the paper (1960a) the
flow of an inhomogeneous fluid with the density profile ρ(z) = ρ0exp(–az), where
0 ≤ z<∞, was studied; here the Lyapunov stability was considered for a norm given
by the square root of the integral with respect to z of a linear combination of |Ψ|2 and
|Ψ′|2 only. The Lyapunov stability of the flows considered was proved by Dikii for
the same conditions under which their asymptotic stability (i.e., asymptotic decay of
the function Ψ(x, z, t) as t → ∞) was independently proved in the papers by Case
(1960a, b) (see Chap. 3 for additional details).

Later Pritchard (1968) applied Lyapunov’s method to a study of the two most
famous problems of hydrodynamic stability—the Rayleigh-Bénard problem of con-
vection in a layer of stationary fluid heated from below, and the Taylor-Couette
problem of stability of flow between coaxial rotating cylinders. Like Dikii, he consid-
ered only linearized dynamic equations but took into account the effects of molecular
viscosity and thermal diffusivity neglected by Dikii. In Sect. 2.7 it was shown that,
in the case of the Rayleigh-Bénard problem, linearized equations for the disturbance
u(x, t), ϑ(x, t) can easily be transformed into a system of two equations with un-
knowns u3 = w and ϑ ; therefore here the space of pairs of scalar functions {w(x, t),
ϑ(x, t)}, periodic with respect to coordinates x1 = x and x2 = y and satisfying definite
boundary conditions at x3 = z = 0 and z = H, can be taken as the space H. (The bound-
ary conditions are naturally different for the cases of two rigid, two free, and one
rigid and one free surfaces considered by Pritchard; see the discussion of this topic
in Sect. 2.7). In the case of Taylor–Couette flow, only disturbances that were axisym-
metric (independent of φ) and periodic in the z-direction were studied in Pritchard’s
paper. Therefore, here H was the space of functions {u(r, z, t), v(r, z, t), w(r, z, t)}
satisfying the axisymmetric continuity equation r−1∂(ru)/∂r+∂w/∂z = 0, periodic
with respect to z and vanishing on the walls at r =R1 and r =R2. The Lyapunov
functional L = ‖ • ‖2 in H in the case of the Rayleigh–Bénard problem was cho-
sen to have the form L[w,ϑ] =‖(w,ϑ)‖2 = ∫

v′ [w2 + k−2(∂w/∂z)2 + λP rϑ2]dx,
where k = k3 is the wavenumber, Pr = ν/χ is the Prandtl number and λ is a
positive constant whose value can be varied in search of the strongest stability
criterion. In the case of the Talylor–Couette problem, Pritchard assumed that
L[u, v, w] = ‖(u, v, w‖2 = π

∫

v′
(u2 + λν2 + w2) rdrdz, i.e. the norm ‖(u, v, w)‖=
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[Eλ(t)]1/2 was used which was independently applied, slightly later, to the nonlinear
extension of the same problem by Joseph and Hung (1971). (Remember that these au-
thors also considered only disturbances which were axisymmetric and periodic with
respect to z). To find conditions guaranteeing the negativity of the derivative dL(t)/dt,
where L(t) = L[w(x, t), ϑ(x, t)) or alternatively L(t) = L[u(r, z, t), v (r, z, t), w (r, z, t)],
Pritchard derived a number of new integral inequalities. Using them he found that the
inequality dL/dt< 0 is valid for values of the dimensionless primary-flow parameters
Ra (the Rayleight number) or Ta (the Taylor number) smaller than some value of Rac

or Tac, depending on λ and on the wavenumber k = (k2
1 + k2

2)
1/2

or k = k3. The
maximum values, Racr = maxλ,k Rac and Tacr = maxλ,k Tac are then just the critical
values given by the version of the Lyapunov stability theory considered. Pritchard
found that these critical values of Ra and Ta (and also the critical wave numbers
kcr (corresponding to them) agreed quite well with the critical values given by the
normal-mode method of the linear stability theory. This clearly agrees with the earlier
finding that the linear stability theory and the energy method lead to the same value
of Racr in the case of the Rayleigh–Bénard problem, and also agrees with subsequent
results by Joseph and Hung (1971) relating to small disturbances in circular Couette
flow.

Dikii’s and Pritchard’s applications of the Lyapunov method produced no appre-
ciable repercussions. However the use of a related method by Arnol’d (alias Arnold)
(1965a, 1966a, b, c) attracted much more attention which led to a definite revival of
interest in the subject (see, e.g., the books by Arnol’d (1989a, Appendix 2); Marsden
and Ratiu (1994); Marchioro and Pulvirenti (1994), and Arnol’d and Khesin (1998)
and the references therein). Arnol’d considered two-dimensional disturbances in
steady planar flows of inviscid (‘ideal’) fluid, but in contrast to Dikii and Pritchard
he used in his studies the full nonlinear dynamic equations, not their linear approx-
imation. Here we will pay most attention to the simplest case of two-dimensional
disturbances having velocities u(x, t) = {u(x, z, t), w(x, z, t)} = {−∂Ψ/∂z, ∂Ψ/∂x}
in a plane-parallel channel flow with velocity profile U (z) = −dΨ0(z)/dz, and only
later will briefly describe the general results by Arnol’d relating to steady curvi-
linear plane fluid motions. Let us assume that all lengths are made dimensionless
with a characteristic length L0 and all velocities with a characteristic velocity U0;
then all quantities may be considered nondimensional (which means that we may
take arbitrary functions of them, and add together any two quantities). The functions
ψ(x, z, t), ψ0(z) and ψ(x, z, t) = ψ0(z)+ψ(x, z, t) are non-dimensional stream func-
tions of the disturbance, the undisturbed flow and the instantaneous disturbed flow,
respectively, so �ψ = ∂w/∂x − ∂u/∂z,�ψ0 = d2ψ0/dz2 and �ψ are the corre-
sponding vorticities. The nonlinear Euler equations of motion here reduce, as is well
known, to a single equation for the conservation of vorticity �ψ:

∂

∂t
�ψ − ∂ψ

∂z

∂�ψ

∂x
+ ∂ψ

∂x

∂�ψ

∂z
= 0. (4.25)

As usual, we will assume that disturbances are periodic in the coordinate x and that
the period can take any value. Since the total energy of an inviscid flow is conserved



318 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

in time and the vorticity �Ψ is also conserved, it is clear that both the integrals

E = 1

2

∫ ∫

v′

(∇ψ)2dxdz and J� =
∫ ∫

v′

�(�ψ)dxdz

(where� is an arbitrary function of a single variable and V ′ is the rectangular region
in the (x, z)-plane with width and length equal to the width of the channel and the
length of disturbance period, respectively) are independent of time (i.e., are invariants
of the disturbed motion). (Their invariance may easily be deduced from Eq. (4.25)).
Following Arnol’d, let us consider the invariant functional G = E + Jφ of the stream
function *. It is easy to see that then the first variation of the functional G (i.e., the
main part of the increment δG = G[ψ0 + Ψ] − G[ψ0] for a small disturbance Ψ)
may be represented in the form

δG[ψ]|ψ=ψ0 =
∫ ∫

v′

[�′(�ψ0) − ψ0]�Ψdxdz (4.26)

where�′ is the derivative of the function�. Now let us assume that the velocity profile
U (z) = −dψ0(z)/dz has no inflection points. Then d2U (z)/dz2 = −d3ψ0(z)/dz3 �=
0 for all z, so that �ψ0 = d2ψ0/dz2 is a monotonic function of z. This means that
Δψ0 may be used as a new transverse coordinate instead of z. Hence, in particular,
the stream function ψ0 = ψ0(z) may also be considered as a function of Δψ0, i.e. it
satisfies the equation

ψ0 = φ(Δψ0) (4.27)

for some function φ. (Arnol’d showed that in fact Eq. (4.27) is also valid under
a number of other conditions; in particular, under Fjørtoft’s condition mentioned
below). If now � is so chosen that �′ =φ, then, according to (4.26) and (4.27),
δG[Ψ0] = 0, i.e., Ψ = Ψ0 will be the stationary value of the functional G[ψ]. It is
known that in the case of a function of a finite number of variables, the stationary
points most often encountered are the points of its local maxima and minima. Now let
Ψ=Ψ (t) describe some dynamic system in a finite-dimensional space, withΨ0 a local
extremal point of a time-invariant function G[Ψ(t)] andΨ0 a disturbance of the initial
value ψ(t) = ψ0. The values ofG[Ψ0 +Ψ(t)] corresponding to various disturbances
Ψ0 will clearly belong to the contour surfacesG[Ψ0+Ψ(t)] = G[Ψ0+Ψ0] = constant
of the function G(Ψ). At small values of the initial disturbanceΨ0 the contour surfaces
topologically have the appearance of the surfaces of small ellipsoids surrounding the
extremal point Ψ0. Therefore, if Ψ0 =Ψ (0) is small, then the values of Ψ (t) will
remain small at all values of t. This finite-dimensional analogy illustrates visually
the main idea of the theory of Arnol’d. To make these arguments rigorous, we must
now describe conditions guaranteeing thatΨ0 is an external point of G[Ψ], determine
the strict sense of the statement that Ψ=Ψ(x, z, t) is small and, finally, present a
strict proof of the assertion for the case of an infinite-dimensional space of functions
Ψ(x, z, t).
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The stationary point Ψ0 of the functional G[Ψ] will be a local extremum if, in
some inertial system of coordinates, the second variation δ2G[Ψ0] is either positive
or negative definite, i.e. has the same sign for all disturbances Ψ(x, z, t). It is easy to
see that in the case considered the second variation of G[Ψ0] has the form

δ2G[ψ]|ψ=ψ0 =
∫ ∫

v′

[{
U (z)

U ′′(z)

}

(�Ψ)2 + (∇Ψ)2

]

dxdz (4.28)

where U ′′(z) denotes the second derivative of U(z). It is clear that ifU ′′(z) �= 0 for all z
(i.e., if Rayleigh’s condition given in Sect. 2.82 is valid) then it is possible to choose
an inertial coordinate system such that U (z)/U ′′(z) will be positive everywhere,
and hence Ψ0 will correspond to a local minimum of the functional G[Ψ]. The
same conclusion will also be true if there exists a constant K such that [U (z) −
K]/U ′′(z) ≥ 0 for all z, i.e., if the more general condition of Fjørtoft (given in the
same section) is valid. The main stability theorem proved by Arnol’d states that the
positive-definiteness of the quadratic form in the integrand on the right-hand side of
Eq. (4.28) implies the Lyapunov stability of the flow with respect to the functional
L[Ψ(x, z, t)] on the right-hand side. (The proof of this statement can be found, e.g.,
in Monin andYaglom (1971, 1971), pp. 158–160 of Vol. 1 and p. 853 of Vol. 2, while
Arnol’d (1965a, 1966a, 1989a, App. 2) outlined the proof for a more general case
of arbitrary steady planar motions). Note also that in the above-mentioned cases the
ratio U (z)/U ′′(z) (or, respectively, [U (z) − K]/U ′′(z)] is bounded from above and
from below. Therefore in these cases the Lyapunov functional L[Ψ(x, z, t)] = L(t)
given by the right-hand side of Eq. (4.28) may be replaced by an equivalent but
simpler function of the form

L(t) = ||Ψ||2 =
∫ ∫

v′

[(∇Ψ)2 + (�Ψ)2]dxdz =
∫ ∫

v′

[u2 + (∇ × u)2]dxdz

(4.29)

representing the sum of integrated squares of velocity and of vorticity (i.e. kinetic
energy and enstrophy). Arnol’d’s stability theorem gives rigorous quantitative sense
to the qualitative assertion in the paragraph preceding Eq. (4.28), and shows that the
‘size’ of the disturbances considered must be measured by the norm given by Eq.
(4.29).

Let us now pass on to the general case of an arbitrary steady planar flow with the
velocity field U(x, z) = {U(x, z), W (x, z) = {−∂ψ0(x, z)/ ∂z, ∂ψ0 (x, z)/∂x}, where
x = {x, z} ∈D, D is an arbitrary (bounded or unbounded) two-dimensional domain
with smooth impermeable boundaries (if they exist). Using the arguments similar
to given above, Arnol’d (1966a, 1989a) (see also Marchioro and Pulvirenty (1994),
Sect. 3.2, and Arnold and Khesin (1998), Sect. II.4) showed that in this case if the
condition (4.27) is valid and there exist two constant c and C such that

0 < c ≤ ∇ψ0

∇�ψ0
≤ C < ∞, (4.30)
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then under sufficiently wide conditions the steady planar flow considered is stable in
the Lyapunov sense with respect to the norm (4.29). (The inequalitites (4.30) make
sense since for any steady flow in two dimensions the gradient vectors of the stream
function and of its Laplacian are collinear; in particular, ∇ψ0/∇�ψ0 = U (z)/U ′′(z)
in the case of a plane-parallel flow with velocity profile U(z)). The statement printed
in italics is the First Stability Theorem of Arnol’d. His second Stability Theorem is
relating to the case where the ratio ∇ψ0/∇�ψ0 takes negative values. Here condition
(4.30) must be replaced by the condition

0 < c ≤ − ∇ψ0

∇�ψ0
≤ C < ∞. (4.30a)

The Second Theorem states that if inequalities (4.30a) are valid, then under all the
other conditions guaranteeing the validity of the First Stability Theorem and one
rather general additional condition the two-dimensional steady flow considered will
be again stable in the Lyapunov sense with respect to a norm of the same type as the
norm (4.29).

Marchioro and Pulvirenti (1994) noted that Arnol’d’s condition (4.30) cannot be
fulfilled in domains D without boundary. However, these authors also showed that
the stability theorem is often valid for flows in such domains too, if the domain D and
the primary flow in it possess some symmetry properties (see Sect. 3.3 in their book).
Moreover, they showed that the inequality c> 0 can be replaced in the conditions of
the First Stability theorem by the weaker inequality c ≥ 0. Slight weakening of the
conditions included by Arnol’d in the formulation of his Second Stability Theorem
was indicated by Wolansky and Ghil (1996).

Arnol’d’s results have a direct relation to the important question of the admissi-
bility of linearization in the investigation of hydrodynamic stability. This question
concerns the extent to which the stability (or instability) of solutions of linearized
equations of fluid mechanics entails also the stability (or instability) of the corre-
sponding solutions of the full nonlinear equations of motion. Before answering this
question it is of course necessary to define exactly when the solution of the nonlinear
system is called ‘stable’. The most appropriate such definition is precisely that given
by Lyapunov, who himself bore in mind this use of it (in application to motions
described by systems of ordinary differential equations).

In the case of a finite-dimensional dynamic system described by the nonlinear vec-
tor equation dx(t)/dt = f(x), the admissibility of linearization means that a one-to-one
relationship exists between the stability in the sense of Lyapunov of a time-invariant
solution x0 of this equation and its linear stability (the condition for the latter be-
ing that none of the eigenvalues of the equation linearized in the neighborhood of
the point x0 shall have a positive imaginary part). For this case the existence of the
one-to-one relation was proved under sufficiently general conditions of Lyapunov
himself (indeed, the method of linearization is just Lyapunov’s first method of stabil-
ity analysis). However, in the case of dynamic systems in functional spaces described
by nonlinear partial differential equations the situation is more complicated.

Let us remember that Luyapunov stability of fluid motion depends on the chosen
norm in the functional space of fields of the flow quantities considered; therefore,
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there are in fact many different types of such stability. The proof of the admissibility
of linearization must indicate which type of Lyapunov stability of solutions of the
nonlinear system proves to be equivalent to the usual (‘normal-mode’) stability of
solutions of the linearized equations, i.e., to the absence of normal-mode frequencies
ω with positive imaginary parts. It easy to give simple arguments supporting the idea
that in cases where the flow is unstable according to the linear theory (i.e., where
there is an eigenvalue ω with �mω = ω(i) > 0), Lyapunov’s stability conditions is
usually also untrue. In fact, if the initial disturbance is chosen very small then it will
evidently be well described by linearized equations. Hence in the cases considered
a small initial disturbance may be chosen, such that for small t it grows proportional
to exp[ω(i)t], where ω(i) > 0. Then, as the disturbance becomes relatively large, the
linear approximation ceases to apply and the nonlinear terms changes the character
of evolution of the disturbance (usually diminishing at first the rate of its growth and
in many cases later even halting the growth entirely; see Sect. 4.21, below). If we
now decrease the size of the initial disturbance (keeping its form), we merely achieve
a longer time interval during which the linear theory is a suitable description of the
flow, the subsequent fate of the disturbance being the same. Thus the maximal values
achieved by the disturbance cannot be changed by diminishing its initial amplitude,
and therefore it seems very likely that the flow considered must be unstable in the
sense of Lyapunov. However, the rigorous proof of this assertion proved to be a far
from easy matter.

It is quite plausible that under sufficiently broad conditions the reverse implication
also holds—from the stability of a solution of linearized equations it follows that the
corresponding solution of the complete non-linear system of equations is stable in the
sense of Lyapunov. The assumption that linearization of equations of motion is pos-
sible for stability investigations has just this sense. In hydrodynamic stability theory
this assumption is usually taken on trust (see, e.g., Lin (1955), Sect. 1.1, or Drazin
and Reid (1981), Sect. 3; however, the book by Georgescu (1985) is an exception to
this rule), but in most cases it is not at all easy to prove this rigorously. (Moreover,
such a proof must clarify what disturbance norm provides Lyapunov stability of a
flow in the case where all normal modes of linearized equations are decaying—this
rather subtle question is also usually ignored in texts on hydrodynamic stability). The
work of Arnol’d discussed above gives just such a proof for some particular cases.
Remember, that Rayleigh’s and Fjørtoft’s conditions were introduced in Sect. 2.82 as
sufficient conditions for the absence of unstable normal modes of the corresponding
Rayleigh equation. Now we see that these conditions also guarantee the Lyapunov
stability with respect to the norm (4.29) for two-dimensional solutions of the corre-
sponding nonlinear equations. Arnol’d also showed that Fjørtoft’s condition (which
is weaker than Rayleigh’s) can be replaced in his theorem on Lyapunov stability
by some even weaker conditions which are valid, in particular, for velocity profiles
which do not satisfy the Fjørtoft condition but, according to Tollmien (1935), never-
theless guarantee stability for solutions of linearized equations (again see Sect. 2.82).
Thus, it was proved that, here again, linear stability implies Lyapunov instability for
solutions of nonlinear equations.
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Let us however emphasize that only two-dimensional disturbances of inviscid
plane fluid flows were considered in the above-mentioned papers by Arnol’d. In fact,
for three-dimensional disturbances of a flow (and three-dimensional flows), the rea-
soning presented above proved to be insufficient. Arnol’d (1965b) and Dikii (1965a)
found only a few partial results relating to these cases, which do not resolve the
question of interrelation between linear stability and nonlinear Lyapunov stability
of three-dimensional disturbances. Abarbanel and Holm (1987) also tried to apply
Arnol’d’s method to nonlinear stability analysis of three-dimensional inviscid flows
but they also found that the method does not work so successfully here as in the case
of flows in two dimensions. Since the Squire theorem of the linear stability theory,
given in Chap. 2, Sec. 2.8, cannot be generalized to the case of nonlinear stability
theory (where only some much weaker statements are valid; cf. Sect. II.5.D in the
book by Arnol’d and Khesin (1998)), the search for sufficiently general conditions of
instability with respect to three-dimensional finite-amplitude disturbances presents
a problem of considerable importance. Some arguments suggesting that the method
developed by Arnol’d for investigation of stability of planar flows with respect to
two-dimensional disturbances must be inadequate in the case of hydrodynamics in
three dimensions were briefly noted by Arnol’d in the early paper (1966c); later this
conclusion was explained more clearly by Arnol’d (1989a, App. 2); Rouchon (1991);
Sadun and Vishik (1993) and in Sect. II.5.G of Arnol’d and Khesin’s book (1998).
Note however that, as early as the late 1960s and early 1970s, it was discovered that
Arnol’d’s variational approach (presented in the general form in his paper (1966b),
which surprisingly linked up with some early ideas by Kelvin (1887)) can be success-
fully applied to studies of nonlinear Lyapunov stability for many types of disturbances
encountered in a number of inviscid flows of practical interest. Such methods were
first widely applied in geophysics; the works by Dikii (1965b, 1976); Blumen (1968,
1971); Dikii and Kurganskii (1971); Pierini and Salusti (1982); Benzi et al. (1982);
Holm et al. (1983); Grinfeld (1984); Abarbanel et al. (1986), and Kurganskii (1993)
are just typical examples. Somewhat later the same methods were used in many
studies of stability magnetohydrodynamic flows and plasma oscillations. These new
applications led, in particular, to the appearance of the excellent extensive survey by
Holm et al. (1985) of the modern state of nonlinear stability investigations by meth-
ods developed by Arnol’d, which contains more than 150 references. For further
examples of applications of this approach to the theory of hydrodynamic stability
see, e.g., the books by Marsden (1992) and Marsden and Ratiu (1994), and papers
by McIntyre and Shepherd (1987); Davidson (1998) and Vladimirov and Ilin (1998,
1999). Many other references to modern developments of the approach considered
above can be found in Chap. II of the book by Arnol’d and Khesin (1998); here we
will only mention the paper byVladimirov (1990) where the direct Lyapunov method
is applied to stability studies for some flows of viscous liquids affected by surface
tension.

The question of the admissibility of linearization is also quite important in stability
studies relating to steady flows of viscous fluids. In the case of viscous flows in
smooth bounded domains one part of the linearization principle states that if all
eigenfrequencies ωj of the linearized dynamic equations corresponding to a given
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flow have negative imaginary parts, then the flow is also stable in the sense of
Lyapunov (with respect to the norm (4.31), below). This was proved under sufficiently
general conditions by Prodi (1962) (see also the detailed exposition of his proof by
Georgescu (1985), Sect. 2.4.2, where a number of additional references relating to
this topic can be found). The Lyapunov norm ||•|| used by these authors is given by
the equation

||u(x)||2 =
∫

v

[
3∑

i=1

u2
i (x) +

3∑

i,j=1

{∂ui(x)/∂xj }2]dx. (4.31)

The rigorous proof of the other part of the linearization principle (also for viscous
flows in bounded domains) was briefly sketched in a note by Yudovich (1965) and
was later given in detail in his special monograph (see Yudovich (1984)). A more
elementary proof of admissibility of linearization for viscous flows in bounded do-
mains, under slightly less general conditions, was given by Sattinger (1970). A quite
different approach to the linearization principle was developed within the framework
of the modern bifurcation theory (this theory will be briefly discussed in Sect. 4.22
and will be also mentioned in some subsequent parts of this book). Bifurcation theory
allowed one to obtain some rather general conditions under which the solutions of the
linearized equations certainly approximate faithfully the phase-space dynamics of a
flow disposed in the vicinity of the steady primary flow. (The phase space has here the
same meaning as in Sect. 2.3). These conditions are given by the so-called Hartman-
Grobman theorem (see, e.g., Sect. 1.3 in Guckenheimer and Holmes (1993)), but
they are based on the use of some new concepts which cannot be considered here.

Yudovich’s monograph (1984) also contains a discussion of many other aspects of
the general linearization problem, requiring the introduction of a number of different
Lyapunov norms in functional spaces and the use of quite sophisticated mathematical
techniques. Yudovich showed, in particular, that different norms are often needed for
different purposes, and the answer to the question whether a flow is stable or unstable
in Lyapunov’s sense depends on the selection of the norm which is most appropriate
for the given purpose. To illustrate the possibility of paradoxical disturbance be-
havior, Yudovich considered the simple case of a two-dimensional disturbances of
an inviscid plane Couette flow. Here the velocity and vorticity of the disturbance
remain bounded, but the vorticity derivatives grow unboundedly with time. There-
fore in this case the vorticity ΔΨ at large times t is reminiscent of a continuous but
nowhere-differentiable Weierstrass function, and the flow is clearly unstable with
respect to any norm which includes the square of the vorticity derivative. In the
case of three-dimensional disturbances in the same flow, the velocity vector remains
bounded but the vorticity vector grows unboundedly (see also Sect. 3.21, where
related results were obtained for some other steady plane-parallel inviscid flows);
hence the flow considered is unstable with respect to any norm including the square
of the vorticity vector. However, there is no space for us to discuss the results in
Yudovich’s monograph in more detail. Let us only remember, in connection with the
last remarks, the results by Arnol’d (1972) presented in Sect. 3.21 (and expounded
in more detail in Sect. II.5 of Arnol’d and Khesin’s book (1998)), which show that in
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three-dimensional inviscid flows disturbances can sometimes have extremely para-
doxical asymptotic behavior, making the flow unstable with respect to rather simple
norms.

Let us now return to the remark made at the end of Sect. 4.12, that Joseph’s book
(1976) prompted the appearance of a number of works investigating the possibility
of improving the known energy-theory stability results by replacing the traditional
energy functional E(t) by some ‘generalized energy’ (i.e., by some new Lyapunov
functional L(t)). We postponed the discussion of this remark until now, since the
method used in the majority of these investigations is not in fact the traditional Lya-
punov method considered above in this subsection. To explain this it is necessary
to refer to particular examples. One of the first problems investigated in the above-
mentioned way was that of convection in a horizontal fluid layer of thickness H,
heated from below and rotating around a vertical axis with angular velocityΩ. Since
the Coriolis force is orthogonal to the velocity and hence does no work, rotation
does not change the energy-balance Eq. (4.2). Therefore the energy-method stability
results are identical in the cases of rotating and non-rotating convection. However,
the computations of the corresponding normal modes by linearized dynamic equa-
tions, carried out long ago by Chandrasekhar (1953, 1961), and the subsequent
experiments by Rossby (1969) and some other workers (see, e.g., the survey by
Bubnov and Golitsyn (1995)) both showed that the critical Rayleigh number Racr,
increases considerably with rotation rate (measured, e.g., by the so-called Taylor
number Ta =Ω2H4/v2) and also depends on the Prandtl number Pr. Thus, while in
the case of stationary layers of fluid the linear normal-mode theory and the energy
method give the same value of Racr, in the case of rotating layers, the values of Racr

given by the energy method prove to be considerably smaller than those predicted by
the linear stability theory or observed in experiments. Consequently, Joseph (1966)
noted that the stabilizing influence of rotation on the emergence of convection in a
fluid cannot be explained by the energy method of stability theory.

Later, however, some authors tried to replace Joseph’s ‘energy functional’
Eλ[u(x, t),ϑ(x, t)] = E(t) + λ PrET (t) = 0.5[〈u2〉 + λPr 〈ϑ〉2] by another
Lyapunov functional (‘generalized energy’) L[u(x, t),ϑ(x, t)] in the hope of ob-
taining a larger value of the energy stability boundary Racr = Racr (Ta) for rotating
flows. In one of the first such attempts Galdi and Straughan (1985a) (see also
the subsequent works by Mulone and Rionero (1989); Galdi and Padula (1990),
and Straughan (1992), Sect. 6.1) tried to use a Lyapunov functional of the fol-
lowing form: L[u(x, t),ϑ(x, t)] = 〈u2〉 + λ1 Pr 〈ϑ〉2 + λ2

〈
(ζ + λ3 Pr ∂ϑ/∂z)2

〉 +
λ4
〈
(∇u)2 + λ5 Pr (∇ϑ)2

〉
, where ζ = ∂v/∂x − ∂u/∂y is the vertical vorticity and

λi, i = 1, . . . ,5, are adjustable constants. Of course, the equation for dL[u(x, t),
ϑ(x, t)]/dt = dL(t)/dt will then also include terms which are cubic in the distur-
bance fields ui , i = 1, 2, 3, and ϑ.To deal with the resulting nonlinear problem, all the
above-mentioned authors used the approach by Joseph and Hung (1971), i.e., they
neglected the cubic terms at first and only later calculated corrections to their results
due to the nonlinearity of the system studied. Thus, the stability results obtained
in the first stage of these investigations were only conditional, i.e., guaranteeing
stability only for disturbances having very small norm ||(u,ϑ)|| = {L[u,ϑ]}1/2.
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Fig. 4.4 Bounds in the (Ta, Ra)-palne of four stability regions for a rotating layer of fluid with
Pr ≥ 1 heated from below and bounded by two free surfaces. (After Malkus and Worthing (1993))
L: Chandrashekhar’s neutral curve of the linear stability theory; S-the boundary of the maximal
region of conditional stability (i.e., of the limit as α → 0 of the regions of stability with respect to
disturbances with the nondimensionalized ‘initial amplitude’A0 satisfying the inequality A0 <α);
B: the boundary of the region of stability with respect to disturbances with A0 < 10−6; A: the
energy-theory stability boundary of the region of global monotonic stability

However, for disturbances with such a small norm that the cubic terms of the equa-
tion dL/dt = 0 can be neglected, it was found that the values of coefficients λI can
be chosen in such a way that the stability region in the (Ra, Ta)-plane (i.e., the re-
gion where dL/ (t)/dt< 0), turns out to be very close to the region determined by
the linear theory of hydrodynamic stability (see, for example, Fig. 4.4 below in
this section). This result is clearly analogous to the previously-mentioned results
of Joseph and Hung (1971) relating to the Taylor–Couette stability problem. Sim-
ilar results for the case of fluid layers heated from below (and also for some such
layers of constant temperature) which are rotating with horizontal angular velocity
�= {�x ,�y , 0} were obtained by Wahl (1994), who used the ordinary energy norm
but a special representation of divergence-free velocity field u(x, t). The same rep-
resentation of u(x, t) was also used by Wahl (1994) and Kagel and Wahl (1994) in
studies of Lyapunov stability (with respect to some particular Lyapunov functionals
L[u(x, t),ϑ(x, t)] including derivatives of fields u andϑ) of arbitrary steady solutions
of Boussinesq equations describing possible stationary disturbances in a horizontal
fluid layer heated from below (see also the related paper by Schmit and Wahl (1993)
where Lyapunov functionals of this type were used in detailed study of the onset of
convection in a stationary layer of fluid heated from below).

Another stability problem which has often been studied by the method of Lya-
punov is the magnetic Bénard problem of convection in a horizontal layer of a fluid
conductor in the presence of a homogeneous vertical magnetic field; see, e.g., Galdi
(1985); Rionero (1988); Rionero and Mulone (1988), and Galdi and Padula (1990).
Here the main results found were similar to those obtained in the cases of the Taylor-
Couette and rotational Bénard problems, but it was also shown that in this case the
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Lyapunov functional can be chosen so that, for some range of flow parameters, the
linear and Lyapunov nonlinear stability bounds coincide with each other. Note that in
earlier studies of stability of magnetohydrodynamic flows by the energy method, car-
ried out by Rionero (1967, 1968); Carmi and Lalas (1970); Bhattacharyya and Jain
(1971), and Joseph (1976, Addendum to Chap. IX), a linear combination of integrated
kinetic and magnetic energies was used as Lyapunov functional L, such that all cubic
terms cancelled in the equation for dL/dt. However, this condition was not fulfilled
in the cases of the more complicated Lyapunov functionals L used in publications
appearing in 1980s and 1990s. Therefore in this later work the stability boundaries
obtained were valid only under the condition that disturbances were small enough.
This relates to the general conditions guaranteeing the coincidence of the critical
parameters given by the linear and Lyapunov nonlinear stability theories, whose
discussion plays a very important part in the work of Galdi and Straughan (1985b);
Galdi and Padula (1990), and Straughan (1992). In fact, as a rule these conditions
use only the linear parts of the differential equations determining the time evolution
of flow disturbances, and hence presuppose the smallness of the latter—unless the
cubic terms cancel in the equation for dL/dt.

The above-mentioned stability results, derived by the Lyapunov direct method
employing Lyapunov’s functionals L where dL/dt contains cubic terms, concern con-
ditional stability only, and this clearly diminishes the practical usefulness of these
results. This was specially emphasized in the review by Malkus and Worthing (1993)
of the book by Straughan (1992). The reviewers considered the popular example of
convection in a rotating horizontal layer of fluid. They illustrated the importance of
amplitude restriction of results on conditional stability by supplementing curves L
and S, shown in Fig. 6.2 of the book by Straughan (1992) (and relating to the case of
a rotating layer of fluid with Pr ≥ 1 bounded by two free surfaces), by two additional
curves A and B (see Fig. 4.4). The straight line A represents Joseph’s (1966) energy-
theory stability boundary Racr ≈ 657, which is independent of Ta and Pr. Hence points
of region I in Fig. 4.4 correspond to flows stable with respect to disturbances of any
size. The curve L is the linear stability curve computed by Chandrasekhar (1961)
(and hence the region IV corresponds to instability with respect to arbitrarily small
disturbances and the region below curve L—to stability with respect to infinitise-
mal disturbances). S is the boundary of the maximal region of conditional stability
(corresponding to condition L(0) = 0) calculated by Galdi and Straughan (1985a)
starting from the form of the functional L[u(x, t), ϑ(x, t)] given above, with the
optimal values of coefficients λi . Therefore, flows corresponding to points between
curves L and S are linearly stable (i.e., exponentially-growing infinitesimal wave-like
disturbances do not exist in these flows) but nevertheless L[u(x, t),ϑ(x, t)] = L(t)
can grow here with time for disturbances with an arbitrarily small value of L(0). On
the other hand, in the case of flows represented by points below curve S, such growth
is impossible if L(0) is small enough. However, the meaning of the words “small
enough” was not explained in the book by Straughan. Trying to do this, Malkus and
Worthing used an equation in the paper by Galdi and Straughan (1985a) which deter-
mines the maximal value G(Ra, Ta, Pr) of the dimensionless initial ‘energy’ L(0) of
disturbances, which certainly do not destabilize a flow with given values of Ra, Ta,
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and Pr. This equation allowed them to compute the boundary B of the region of sta-
bility with respect to disturbances having initial ‘amplitude’ [L(0)]1/2 less than10−6

times the appropriately defined ‘unit amplitude’ (so that the region III corresponds to
flows unstable to at least one disturbance with initial dimensionless amplitude equal
to 10−6 but stable to all smaller disturbances). We see that this region is rather large;
therefore Malkus and Worthing were in doubt whether the curve S can be considered
as a real boundary for the ‘region of nonlinear stability’, giving their opinion that, in
almost all practical situations, even the curve B (bounding the region of stability to
disturbances with dimensionless amplitudes not exceeding 10−6) will be not useful
as such a boundary.

Above, some applications of the “generalized energy method” determining the
“conditional-energy bounds” were listed, and at the end we considered the review by
Malkus and Worthing (1993) which sharply criticizes the usefulness of some of the
results obtained by this method. (Note that this review also contains formulations of
several interesting unsolved problems which are worth investigating by traditional
and generalized energy methods). Let us now stress that the energy (and more general
Lyapunov’s methods) have already yielded some important new results concerning
stability of fluid flows. The classical Reynolds–Orr energy-balance Eq. (4.2) and its
generalization to the case of convective flows led to the discovery, for many cases, of
exact or almost exact minimal-critical values of dimensionless global characteristics
of laminar flows (e.g., of Recr min or Racr min) determining the boundary of the region
of ‘absolute’ (i.e., ‘unconditional’ or ‘global’) stability of a flow to disturbances of
any size. Such bounds, which have already been mentioned in Sect. 2.1, clearly have
considerable theoretical and practical value. Energy methods also showed that there
exist two quite different types of fluids flows. The first type consists of flows where
the region of the normal-mode stability with respect to infinitesimal disturbances
coincides with the region of energy stability with respect to disturbances of arbitrary
size, while for flows of the second type the latter of these two regions covers only a
small part of the first region. It is clear that the nonlinear development of disturbances
and transition to turbulence must have quite different forms in flows of these two
types. Moreover, Lyapunov’s generalized energy method led to the discovery of
a great number of explicit conditions for both nonlinear and linear flow stability,
often concerning flows of great practical importance; see in this connection the
survey by Holm et al. (1985) mentioned above, and the papers and books by Arnol’d
(1965a, b; 1966a, b, c; 1989a); McIntyre and Shepherd (1987); Marsden and Ratiu
(1994); Marchioro and Pulvirenti (1994); Arnol’d and Khesin (1998), and Davidson
(1998). As to results relating to conditional Lyapunov stability, they imply physically-
observable stability diagrams of the type shown in Fig. 4.3, where for given ‘energy’
Eλ the exact shape of the curve in the diagram can be determined from the equations
of generalized energy theory. The possible extension of the region of conditional
stability by means of replacement of the Reynolds–Orr energy functional E(t) by
some Lyapunov functional L(t) also clearly leads to extension of the range of Re
(or Ra, Ta, etc.) numbers covered by such a diagram. In particular cases where
the Lyapunov method yields the same critical numbers that follow from the linear
normal-mode theory, the diagram in Fig. 4.3 covers the whole range between the
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region of unconditional (global) stability with respect to arbitrarily large disturbances
and the region of absolute instability with respect to arbitrarily small (infinitesimal)
disturbances.

An important feature of the energy methods is their ability to determine the most-
unstable types of disturbance, which capture the energy of the primary flow most
efficiently and hence grow faster than all the others. In this connection Lumley (1971)
conjectured that some modifications of the classical energy method might also be
useful in investigations of developed turbulence. As an example, he tried to apply
such a method to the study of the near-wall region of a turbulent boundary layer.
Within this region he replaced the constant molecular viscosity v by an empirical
function vm(z) describing, with reasonable accuracy, the combined influence of the
molecular viscosity and small-scale turbulent fluctuations on the mean flow and
the accompanying large-scale structures. Then he appropriately modified the R–O
energy-balance Eq. (4.2) and with its help determined the most unstable longitudinal
(i.e., x-independent) disturbances. It was found that these disturbances agreed satis-
factorily with the longitudinal structures actually observed in the near-wall regions
of turbulent flows along flat plates. Later Poje and Lumley (1995) further developed
the same idea, suggesting the use of the energy-balance method to identify the large-
scale organized (‘coherent’) structures which, according to data accumulated during
the second half of the twentieth century, exist everywhere in turbulent flows and play
a rather important role in them. However, we cannot linger here on this subject which
clearly lies outside the content of the present chapter.

4.2 Landau’s Equation, its Generalizations and Consequences

4.2.1 The Landau Equation for the Amplitude of a Disturbance

The energy method of stability analysis deals with general (quite arbitrary) flow
disturbances; the highly-developed linear theory of hydrodynamic stability is not
used at all here. This theory suggests that in the case when the initial disturbance
is rather weak its most-unstable normal-mode component (or the least stable, if
unstable normal modes do not exist) will play the main part in the primary disturbance
development. Therefore the study of the development of a normal-mode disturbance
is important for understanding the behavior of disturbed flows, and such a study must
take into account the influence of the nonlinear terms of the equations of motion,
which clearly affect the disturbance evolution if the disturbance is not very small.
The results obtained will be of interest both in the case where Re<Recr, where
Recr is the critical Reynolds number4 defined from the linear stability theory (in
this case an investigation of the nonlinear normal-mode development can yield the

4 For simplicity, we shall speak only of Reynolds number, although in some cases the initiation of
instability will be determined by transition through a critical value of some other dimensionless
control parameter of the same type.



4.2 Landau’s Equation, its Generalizations and Consequences 329

critical Reynolds number for finite disturbances of fixed amplitude) and in the case
where Re>Recr (in this case the nonlinear results describe further evolution of weak
disturbances, which increase exponentially according to linear theory).

The great importance of nonlinear effects in the development of flow disturbances
was already fully appreciated by Reynolds in 1883, and some attempts to incorporate
these effects into theoretical analysis were also made very early (in particular, by
Noether (1921) and Heisenberg (1924)). However, the first really significant step
towards the creation of the nonlinear theory of hydrodynamic stability was taken
in a short note by Landau (1944) whose contents was described also in the books
by Landau and Lifshitz (1944), Sect. 24; (1958), Sect. 27; and (1987), Sect. 26
(in the last of these, the presentation was partially changed to reflect more recent
developments of the theory which will be considered later in this book). Landau’s
arguments were quite general and did not use any specific form of the equations of
motion.

Landau considered simply the development of a normal-mode disturbance in a
steady laminar flow. He was especially interested in the evolution of an unstable
(exponentially-growing) wave-like mode of very small initial amplitude (which may
be considered as being infinitesimal) at a slightly supercritical value of Re (i.e., only a
little larger than Recr). However his reasoning can be equally well applied to slowly-
decaying infinitesimal normal-mode disturbances at slightly subcritical Re<Recr;
hence we will consider both these cases here. To Landau, it was only important that
the velocity field of the mode considered could be represented in the form

u(x, t) = A(t)f(x), (4.32)

where f(x) is the eigenfunction of the corresponding eigenvalue problem while A(t)
is the complex disturbance amplitude, which can be represented in a form A(t) =
e−iωt = eγ t−iω1t for values of t at which the linear stability theory is valid. Here
ω1 = �e ω and γ = �mω so that γ > 0 for growing waves, γ < 0 for decaying waves
and γ → 0 as Re → Recr (and therefore |γ | � |ω1| for sufficiently small |Re −Recr|
if ω1 �= 0). The form of A(t) given above makes it clear that the real disturbance
amplitude |A(t)| satisfies the equation

d|A|2
dt

= 2γ |A|2. (4.33)

However, Eq. (4.33) is correct only within the framework of linear stability theory. If
Re>Recr and A(t) increases, there will inevitably come a point at which this theory
is no longer valid and must be replaced by a more complete one, which takes into
account those terms in the equations of motion that are nonlinear in the disturbances.
Then the right side of Eq. (4.33) must be considered as the first term of the expansion
of d|A|2/dt in a series of powers of A and A∗ (where as usual the asterisk denotes the
complex conjugate). In the case where Re<Recr, A(t) is a decreasing function and
here Eq. (4.33) is true for all t, but only in cases where the initial amplitude A(0) is
small enough. If, however, A(0) is not sufficiently small, then at small values of t
this equation represents only the first term of the expansion in powers of A and A∗.
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If |A(t)| is small, but not small enough for all the higher-order terms of the above-
mentioned expansion to be neglected, then it is necessary to take into account the
terms of the next order of the series, i.e. the third-order terms. However, it must also
be remembered that the motion (4.32) is accompanied by periodic oscillations in
the expression for A(t), rapid in comparison with the characteristic time 1/|γ | of an
appreciable change in the value of |A(t)|), and described by the factor e−iω1t , where
|ω1| � |γ |. These periodic oscillations do not interest us; hence to exclude them,
it is convenient to average the expression d|A|2/dt over a period of time that is large
in comparison with 2π/|ω1| (but small in comparison with 1/|γ |). Since third-order
terms in A and A∗ will inevitably contain a periodic factor, they will all disappear
during the averaging.5 In the case of the fourth-order terms, there will remain, after
averaging, only one term, which is proportional to A2A∗2 = |A|4. Thus, retaining
terms of no higher than fourth order, we will have an equation of the form

d|A|2
dt

= 2γ |A|2 − δ|A|4. (4.34)

Since the period of averaging is much less than 1/|γ | the terms |A|2 and |A|4 will be
practically unchanged by averaging, so that Eq. (4.34) may be considered as an exact
equation for the amplitude of the averaged disturbance. (In the case where ω1 = 0
the third-order terms also often disappear because of the symmetry properties of the
problems considered, and hence Eq. (4.34) is valid here too; certain examples of
this kind will be considered below). Equation (4.34) is called the Landau equation,
and its coefficient δ, which can be either positive or negative (and can also be zero,
but only in exceptional cases), is the Landau constant. Positive values of δ show
that nonlinear effects stabilize the disturbance considered, decreasing the growth
of its amplitude, while negativity of δ means that nonlinear effects destabilize the
disturbance.

Equation (4.34) can be also rewritten as the following linear equation in |A|−2

d|A|−2

dt
+ 2γ |A|−2 = δ, (4.35)

whose general solution is easily seen to be

|A(t)|2 = A2
0e

2γ t

(

1 − δ

2γ
A2

0

)

+ δ

2γ
A2

0e
2γ t

(4.36)

Where A0 = |A(0)| is the initial amplitude of the disturbance. From Eq. (4.36) it
follows that if δ > 0, if the initial disturbance is sufficiently small, and if γ > 0 (i.e.
Re>Recr and the evolution of an unstable mode is studied), the amplitude A(t) will

5 To be more exact, we must say that third-order terms do not fully disappear after averaging but
generate some terms of the fourth order which can be included in the fourth-order terms of the
expansion considered.
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Fig. 4.5 The dependence of
the disturbance amplitude
|A(t)| on time t in the case
where δ > 0 and Re>Recr

(and hence γ > 0) for
disturbances with the initial
amplitude A0 <Ae =
(2γ /δ)1/2 and A0 >Ae (but
A0 −Ae small) according to
Landau’s Eq. (4.34)

first increase exponentially (in accordance with the linear theory), but then the rate of
the increase slows, and as t →∞ the amplitude will tend to a finite ‘equilibrium value’
A(∞) =Ae = (2γ /δ)1/2 independent of A(0) (see the lower part of Fig. 4.5). Note now
that γ is a function of the Reynolds number which becomes zero at Re = Recr and
may be expanded as a series in power of Re −Recr (the latter fact may be deduced
from the small-disturbance theory) while δ �= 0 for Re = Recr. Thus γ ≈ b (Re −Recr)
at small enough values of |Re −Recr| where b is a positive constant. Consequently,
A(∞) = |A|max ∝ ( Re −Recr)1/2 for δ > 0 and small positive values of Re −Recr

(see Fig. 4.7a below). Hence A(t) remains small at all values of t if Re −Recr is
small enough (therefore, even the inclusion in Eq. (4.34) of higher-order terms, for
example one proportional to |A|6, will not qualitatively change the behavior of the
function A(t)). In the case where A0 >Ae = (2γ /δ)1/2 but is nevertheless small (this
is possible when Re −Recr is small) Eqs. (4.34) and (4.36) can again be used as a
reasonable first approximation; the corresponding behavior of A(t) is shown in the
upper part of Fig. 4.5. We see that here, at Re slightly exceeding Recr, any disturbance
containing the unstable component transfomrs the primary laminar flow into a new
laminar flow which is practically independent of the initial conditions. (In fact this
new flow can turn out to be unstable to some disturbances neglected in the fluid-
dynamic derivation of Landau’s equation considered below. However, here we will
not linger on this topic). If, however, δ > 0 but Re<Recr and hence γ < 0, then
Eq. (4.36) shows that the disturbance decays monotonically and in accord with the
linear theory (i.e., A(t) ∝ eγ t as t → ∞). Here evidently neither the last term on
the right side of Eq. (4.33), nor the terms of higher order omitted from this equation,
significantly affect the disturbance evolution.

Let us now consider briefly the case where δ < 0. If in this case γ < 0 (i.e.,
Re<Recr), then for A0 < (2γ /δ)1/2 the solution |A(t)| decays monotonically to
zero (see the lower part of Fig. 4.6); hence in this case too the inclusion of the
higher-order terms of the amplitude equation will not change the behavior of A(t)
qualitatively. If δ < 0, γ < 0, but A0 = (2γ /δ)1/2, then A(t) =A0 at any t> 0; how-
ever; for A0 > (2γ /δ)1/2 the function A(t) grows with t (see again Fig. 4.6) and here
the inclusion of higher-order terms in Eq. (4.34) becomes necessary at moderate
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Fig. 4.6 The dependence of
the amplitude A(t) on t in the
case where δ < 0 and
Re<Recr (i.e., γ < 0) for
disturbances with the initial
amplitude A0 <Ae =
(2γ /δ)1/2 and A0 >Ae

according to Landau’s
equation

positive values of t. The possible influence of such terms will be illustrated later by
a simple example; for now, we merely note that, according to the above argument,
if δ < 0 and Re<Recr then very small disturbances decay, but some disturbances
which are not small enough grow with time; this is the subcritical instability of
finite-amplitude disturbances. If now δ< 0 but γ > 0 (i.e., Re>Recr) then, for any
A0 > 0, solution (4.36) quickly becomes infinite; hence in this case the behavior of
the amplitude A(t) as t → ∞ cannot be determined from Eq. (4.34) for any initial
value A0. To obtain a sensible result we must take into account the next term of
expansion in the power of A and A∗ and to assume it to be negative. Let the next term
be −β|A|6 where β > 0. Then, neglecting all terms of higher than the sixth order we
obtain

d|A|2
dt

= 2γ |A|2 + |δ||A|4 − β|A|6, (4.37)

and hence

|A|2max = |δ|
2β

±
[ |δ|2

4β2
+ 2γ

β

]1/2

(4.37a)

where |A|2max is the value of |A|2 at which d|A|2/dt = 0 and γ ≈ b( Re −Recr). The
relation (4.37a) is shown in Fig. 4.7b, while Fig. 4.7a. corresponds to the case where
δ > 0. (The dotted lines in this figure correspond to amplitudes of unstable waves). In
Fig. 4.7b two values |A1|2max ≈ |δ|

β
+ 2b

|δ| ( Re −Recr) and |A2|2max ≈ 2b
|δ| (Recr − Re ),

given by Eq. (4.37a), are shown for the case where Re<Recr. (If Re>Recr, then only
the first of these is meaningful, while the second becomes negative and must therefore
be replaced by the value |A2|2max = 0 which also corresponds to a vanishing right-
hand side of Eq. (4.37)). Since d|A|2/dt < 0 for |A| > |A1|max and |A| < |A2|max,
while d|A|2/dt > 0 if |A2|max < |A| < |A1|max, we see that for δ < 0, β > 0 the pri-
mary flow is unconditionally stable only for Re<Re’cr (where Re′

cr ≈ Re −|δ|2/8bβ
is the value of Re at which two roots (4.37a) coincide). For Re′

cr x < Re < Recr

this flow is ‘conditionally stable’, i.e., stable with respect to small disturbances with
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Fig. 4.7 The dependence of
the equilibrium amplitude
|A(t)| =Ae, satisfying the
equation d|A(t)|/dt = 0, on the
Reynolds number Re in the
cases where either δ > 0 (a),
or δ < 0 but the amplitude
equation has the form (4.37)
with β > 0 (b) Recr the critical
Reynolds number; Re1 = Recr

the threshold of subcritical
instability. The solid and
dotted lines represent
amplitudes of stable and
unstable equilibrium
disturbances, respectively

a

b

A0 < |A2|max, but if A0 ≥ |A2|max then the disturbance amplitude grows rapidly to
the ‘equilibrium value’ |A1|max (this conclusion makes more precise the above state-
ments about the possibility of subcritical finite-amplitude instability when δ< 0).
For Re>Recr the primary flow is unstable to disturbances of any amplitude and
the normal-mode disturbance grows to the value corresponding to the point on the
solid line (of course, this is correct only if |Re – Recr| is small enough to justify the
expansion in powers of A and A∗ up to the approximation (4.37)).

The above results describe only a part of the contents of Landau’s paper (1944).
Landau, assuming that δ > 0, considered the development of flow structures with
further increase of Re beyond Recr. It was natural to assume that at some higher
value of the Reynolds number, Re2, cr >Recr, the oscillatory stable flow (with fre-
quency ω1) arising from the primary steady flow at Re = Recr may itself become
unstable to small disturbances, transforming it to a new stable oscillatory motion
which includes oscillations of two frequencies ω1 and ω2 and therefore has two de-
grees of freedom. (Steady laminar motion is fully determined by the general flow
conditions and hence has no degrees of freedom; in the case of oscillatory motion
with fixed frequency ω1 the phase θ1 can take any value and hence this motion has
one degree of freedom; while quasi-periodic oscillations with two periods 2π/ω1

and 2π/ω2 possess two degrees of freedom). This new motion in its turn becomes
unstable at Re = Re3, cr >Re2, cr generating a motion with three degrees of freedom,
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and so on. Several short series of such successive transformations of a steady flow
into an oscillatory one, and then into more complicated oscillations, were in fact
observed after 1944 in some particular flows when the corresponding value of Re (or
of another appropriate dimensionless control parameter) was increased step by step;
some of these series will be mentioned later in this chapter. However Landau also
assumed that, as Re increases, the intervals between consecutive critical Reynolds
numbers Ren, cr and Ren + 1, cr will become smaller and smaller, so that at large, but
not excessively large, values of Re – Recr the number of degrees of freedom of the
resulting motion will reach a very high value. According to Landau, the complicated
and disordered motion appearing in this way just represents the fully developed tur-
bulent flow. This Landau’s (or, as it is also often called reflecting the contribution
of Hopf (1948), Landau-Hopf’s) scenario of transition to turbulence seemed at first
to be physically quite convincing, and during many years it was considered by the
majority of experts as being correct in its main features even though it was often
stressed that its validity was not proved rigorously and that it cannot be universal;
see, e.g., Monin and Yaglom (1971), p. 165, or Drazin and Reid (1981), p. 370.
However later it was found that Landau’s theory of transition to turbulence is far less
satisfactory than was thought earlier and must be radically revised; this conclusion
was based on some amazing new developments which will be described later in this
book. These new results concern Landau’s ideas about the development of irregular
fluctuations at Re � Recr, but they do not diminish the importance of his equation for
the description and explanation of the initial stage of evolution of small disturbances
at values of Re close to Recr.

The coefficient γ of Landau’s Eq. (4.34) is equal to the imaginary part of the
eigenvalue ω=ω1 + iγ corresponding to the normal-mode disturbance considered
(originally Landau assumed that this disturbance was the one with the greatest imagi-
nary part of ω). So, to determine this coefficient one need merely solve the eigenvalue
problem of linear stability theory (in the case of a plane-parallel flow this is the fa-
mous Orr-Sommerfeld eigenvalue problem). Solutions of this eigenvalue problem
may nowadays be calculated rather easily. However Landau’s derivation of Eq. (4.33)
gave no instructions about possible methods for determination of the numerical value
of δ. It was clear from the outset that here the full nonlinear equations of motion must
be used, but at first it was not known how to do this. Three-dimensionality of the
Navier-Stokes equations complicates the problem considerably; therefore in the book
by Eckhaus (1965) (which was the first one on nonlinear stability theory) much at-
tention was given to simplified model problems in one-dimensional space (a related
model was considered also in Sect. 50 of Drazin and Reid’s book (1981)) and then
only two-dimensional disturbances of two-dimensional flows were studied. The first,
still imperfect, attempts to estimate the numerical value of Landau’s constant δ for
some particular flows with the help of the equations of motion were made by Meksyn
and Stuart (1951) and Stuart (1958). In the first of these papers much attention was
given to nonlinear effects leading to distortion of the primary velocity profile by
disturbances in a plane Poiseuille flow, while in the second paper an approximate
estimate of the value of δ for two-dimensional plane waves in a plane Poiseuille
flow, and axisymmetric wave-like disturbances in a circular Couette flow, was based
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on the assumption that the disturbance’s shape is preserved during its evolution. In
both papers it was assumed that the Reynolds number Re has a slightly supercriti-
cal value and that the disturbances studied are unstable according to linear stability
theory. (Note also that ω1 = �e ω differs from zero in the case of a plane Poiseuille
flow but is equal to zero in a circular Couette flow). Meksyn and Stuart (1951) used
the full Navier–Stokes system to compute the velocity distortion, and came to the
conclusion that δ can have either sign. However, Stuart (1958) found that, according
to the assumptions he made, the single Reynolds-Orr energy Eq. (4.2), which is
only a particular consequence of the N-S system, implies Landau’s Eq. (4.34) for
disturbance amplitude A = A (t) with a definite value of δ which is always positive.

Since some of the conclusions obtained by Meksyn and Stuart (1951) and by Stuart
(1958) contradicted each other, Stuart (1960) (see also his survey papers (1962a,
1971)) and Watson (1960a) developed more precise methods to compute Landau’s
constant for small two-dimensional normal-mode disturbances in a plane Poiseuille
flow. Stuart took into account that in the nonlinear development of a two-dimensional
disturbance with given wave number k (i.e., having at t = 0 an initial velocity field of
the form u(x, 0) = {u(z), 0, w(z)} eikx), higher harmonics (proportional to einkx, n = 2,
3,. . . ) will also be generated. Therefore, he represented the disturbance velocity field
u(x, t) for t> 0 in the form

u(x, t) = u0(z, t) + u1(z, t)eikx + u2(z, t)ei2kx + ... . (4.38)

Here un(z, t)einkx , n = 0, 1, 2,. . . , are two-dimensional solenoidal vectors (in gen-
eral complex; remember that the true velocity is equal to the real part of the given
expression) depending on t, and the term u0(z, t) describes the distortion of the
laminar Poiseuille-flow velocity profile by the disturbance. Further, it was assumed
that as t → 0, only the term on the right-hand side of Eq. (4.38) which is propor-
tional to eikx is conserved, while for very small t> 0, this term becomes the solution
u(x, t) = u1(z)ei(−ωt+kx) = u1(z)eik(x−ct) of the Orr-Sommerfeld equation describing
a growing or damped wave-like disturbance. Then, for slightly greater, but neverthe-
less small, positive t the first harmonic will be leading term on the right-hand side
and u1(z, t) may be written as

u1(z, t) = A(t)u1(z) + higher-order terms. (4.39)

Stuart (1960) substituted Eqs. (4.38) and (4.39) into the nonlinear Navier–Stokes
equations (which he replaced by the equivalent non-linear equation for the stream
function Ψ(x, z, t)] corresponding to the velocity field U + u(x, t), where U = {U(z),
0, 0} is the Poiseuille-flow velocity (instead of using only Eq. (4.2) as in his 1958
paper). Assuming now that |γ | = |�mω| is a small quantity (i.e., considering a
disturbance with small amplification or damping corresponding to a point in the (k,
Re)-plane close to the neutral-stability curve) and using expansion in powers of this
quantity, he obtained for the complex amplitude A(t) an approximate Landau-type
equation of the form

dA

dt
= −iωA− 1

2 l|A|2A (4.40)
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where ω is the same complex frequency as above and l = δ+ iδ′ is another complex
coefficient. (Later Fujimura (1989); Dušek et al. (1994), and Park (1994) reconsid-
ered the derivation of Eq. (4.40) from the Navier–Stokes equations and indicated
several sets of assumptions implying its validity, while Zhou (1991) indicated that
in some cases the computation of the second term on the right-hand side of (4.39)
is necessary for obtaining the satisfactory agreement with the experimental data).
Equation (4.40) is usually called either the complex Landau equation or the Stuat-
Landau equation (see e.g., Kuramoto (1984)) and l is the complex Landau constant.
Representing the complex amplitude A(t) as |A(t)| eiφ(t), it is easy to show that the
real part of Eq. (4.40) is equivalent to Landau’s Eq. (4.34) for |A|2 = AA∗, where
γ = �mω and δ = �el. On the other hand, the imaginary part of Eq. (4.40) can
be written as the following equation for the phase φ(t), supplementing Landau’s
equation:

dφ

dt
= −ω1 − 1

2δ
′|A|2 (4.34a)

where ω1 = �eω, δ′′ = �ml.
According to Stuart’s results, δ = δ1 + δ2 + δ3 where the three terms correspond

to three different physical processes affecting the nonlinear development of a wave-
like disturbance. He also noted that only the term δ1 (which is always positive) was
taken into account in his paper of 1958 (hence the conclusion of this paper that δ was
positive was an inevitable consequence of the assumptions made); and only terms δ1

and δ3 were considered (and imprecisely estimated) by Meksyn and Stuart (1951).
For all three terms Stuart obtained explicit expressions, which were however rather
cumbersome and contained the eigenvalues and eigenfunctions of the correspond-
ing Orr-Sommerfeld equation (and also of the adjoint equation) in a complicated
manner. These expressions clearly depend on k and Re; however, the numerical cal-
culation of them (and of their sum δ) seemed to a very difficult problem in the early
1960s.

In the paper by Watson (1960a) accompanying that by Stuart a more complete
Fourier representation of the disturbance velocity was used and the technique, tradi-
tional for the disturbance theory, of expansion into powers of the amplitude (instead
of the powers of γ = �mω considered by Stuart) was applied to the fluid-dynamic
equations describing disturbance development. (However, expansion in powers of
|γ | was also used here and hence |γ | was assumed to be small in Watson’s derivations
too). As a result, Watson obtained a new and more rigorous reformulation of Stuart’s
theory, leading to the generalized Landau equation of the form

d|A|2
dt

= |A|2
∞∑

m=0

am|A|2m (4.41)

for the squared amplitude |A|2. Here evidently a0 = 2γ , a1 = −δ, while expressions
for the coefficients am with m> 1 were found to be much more complex than for
the Landau coefficient δ. Another rigorous analytical method allowing the investi-
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gation of streamwise periodic solutions of nonlinear equation for two-dimensional
disturbances in a plane Poiseuille flow, which supplemented the expansion in powers
of the small quantity |γ | = |�mω| by expansion of all relevant functions of z in
terms of the eigenfunctions of the linear O-S equation, was developed by Eckhaus
(1965); it also led to confirmation of Stuart’s (1960) results. Note, however, that the
assumptions about the smallness of |γ | used by Stuart, Watson, and Eckhaus made
their theories inapplicable in principle to plane Couette and circular Poiseuille flows
(for example), where unstable normal modes do not exist and therefore |γ | cannot
be very small. Therefore Ellingsen et al. (1970) and Itoh (1977a, b), who wanted
to apply Stuart-Watson’s theory to just these two exceptional flows, were forced
to modify this theory to a form where only the smallness of the amplitude A was
assumed. It was found in these papers that in fact the smallness of the disturbance
amplitude is sufficient for the possibility of rigorous derivation of the Landau equation
from the Navier-Stokes equations. More detailed analysis of assumptions utilized
in the rigorous derivations of Eq. (4.41) was undertaken in particular by Herbert
(1983b) and Fujimura (1989, 1991, 1997) whose papers will be discussed later in this
subsection.

Stuart (1960) and Watson (1960a) investigated only the temporal nonlinear de-
velopment of a two-dimensional wave disturbance in a steady plane Poiseuille flow.
Two-dimensionality of the waves significantly simplified the theory, and could be
justified to a certain degree by the results of Watson (1960b) and Michael (1961)
mentioned in Chap. 2, they showed that, in the framework of the linear stability
theory, there always exists for any steady plane-parallel flow a range of supercritical
values of Re, Recr <Re<Re1, within which the most rapidly growing normal-mode
disturbance is necessarily two-dimensional. However, Benney and Lin (1960) (see
also Benney (1961, 1964)) indicated that when the nonlinear development is stud-
ied, interactions between two- and three-dimensional waves must be also of great
importance. In this context Stuart (1962b) (see also his surveys (1962a, 1971)) gen-
eralized his and Watson’s weakly-nonlinear disturbance theory of 1960 to the case of
the evolution in plane Poiseuille flow of a disturbance which is composed of a two-
dimensional and a three-dimensional plane wave with the same streamwise number
k1. Assuming that both disturbances are slowly growing or decaying, it is permissi-
ble, for relatively small values of t, to represent the velocity field of the disturbance
considered in the form

u(x, t) = A1(t)u1(z)eik1x + A2(t)u2(z)ei(k1x+k2y) + higher-order terms (4.42)

including two time-dependent amplitudes A1(t) and A2(t). Then, using the expan-
sion technique given in Stuart’s and Watson’s papers of 1960, Stuart obtained, for
both amplitudes A1 and A2, two generalized Landau-type equations differing from
(4.41) by the presence of their right-hand sides of the sums of composite terms
am,n|A1|2m|A2|2n. In the lower non-linear approximation the “amplitude equations”
for real amplitudes A1(t) and A2(t) (obtained when the complex exponential func-
tions in Eq. (4.42) are replaced by real trigonometric functions) had the following
form:
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dA1

dt
= γ1A1 − (δ1A

2
1 + β1A

2
2)A1,

dA2

dt
= γ2A2 − (β2A

2
1 + δ2A

2
2)A2, (4.43)

which, for A2 = 0 or A1 = 0, clearly yield an equation which is equivalent to Lan-
dau’s Eq. (4.34) for the amplitude of a single wave disturbance. The system (4.43),
under the condition that γ1/δ1, γ2/δ2 and the ratios of bilinear combinations of the
coefficients entering Eq. (4.44) below are positive, evidently has the following four
steady solutions:

(I) A1 = A2 = 0,

(II) A1 = 0, A2 = (γ2/δ2 )1/2 ,

(III) A1 = (γ1/δ1 )1/2 , A2 = 0,

(IV) A1 = (γ1δ2 − γ2β1)1/2 (δ1δ2 − β1β2)1/2 ,

A2 = (γ2δ1 − γ1β2)1/2 (δ1δ2 − β1β2)1/2 .

(4.44)

The stability of these solutions, which may be verified by known methods of stability
theory of nonlinear differential equations (or nonlinear oscillations), is of consider-
able interest, and it was only natural that Stuart considered this question, paying
special attention to cases where solution (IV), which represents an equilibrium state
consisting of a combination of two- and three-dimensional wave oscillations, is sta-
ble. Stuart’s two-mode weakly-nonlinear theory of 1962 was developed further by
Itoh (1980) who supplemented it by some numerical examples illustrated by graphs.

In all the above-mentioned papers devoted to rigorous derivation of amplitude
equations of the Landau type, only the nonlinear temporal development of wave-like
disturbances with fixed wave numbers was considered. However, it was explained
in Chap. 2 of this book that, in the case of steady flows with significant stream-
wise velocity U(z) (e.g. boundary layers along flat plates or plane Poiseuille flows),
the model of a streamwise developing disturbance of fixed real angular frequency
ω corresponds better to observations in real experiments on flow instability, and
therefore seems to be more appropriate. Taking this into account Watson (1962)
modified the theory developed in his paper (1960a) assuming that a two-dimensional
wave-like disturbance in a plane Poiseuille flow has fixed real frequency ω but com-
plex streamwise wave number k = k1 + ik2, determined from the Orr-Sommerfeld
eigenvalue problem with fixed real ω and unknown complex eigenvalue k. Then,
according to the weakly nonlinear stability theory, the leading term of the evolving
disturbance will have the form u(x, t) = A(x)u(z)eiωt , where u(z) is the eigenfunc-
tion of the spatial O-S eigenvalue problem and A(x) = eikx for very small values
of x. Then, representing the velocity field u(x,t) = u(x, z, t) (or the streamfunction
field Ψ(x, z, t)) for x> 0 as a Fourier series in powers of eiωt (instead of the spatial
Fourier series (4.38)) and applying appropriately-modified arguments from his paper
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(1960a), Watson obtained for the spatially evolving amplitude A(x) an equation of
the form

d|A|2
dx

= |A|2
∞∑

m=0

bm|A|2m (4.41a)

which is completely similar to Eq. (4.41) (and turns into the spatial version of Lan-
dau’s Eq. (4.34) when only the first two terms on the right-hand side are retained).
It is clear that the value of b0 = −2k2 = −2�mk can be now calculated by nu-
merical solution of the spatial O-S eigenvalue problem (which is somewhat more
complicated than the corresponding temporal problem but nevertheless accessible to
computation; see Sect. 2.92). However, the expression found by Watson for the co-
efficients bm with m> 0 turned out to be much more complex than the—also rather
complicated—expressions for the corresponding coefficients am; therefore in the
early 1960s their evaluation seemed to be impossible. But somewhat later Itoh (1974a,
b) showed that by that time the values of the ‘spatial Landau constant’ δs = –b1

might already have been calculated with satisfactory accuracy for some important
plane-parallel flows (see Figs. 4.11 and 4.17 below).

Note that Stuart (1960; a, 1962a,b) and Watson (1960a, 1962) used the fluid
dynamics equations only for rigorous derivation of amplitude equations, and did not
try to determine numerical values of the coefficients of the latter. Simultaneously,
Stuart stressed that the early estimates of the value of δ by Meksyn and Stuart (1951)
and Stuart (1958) are not trustworthy. Therefore it was natural to think that Stuart’s
and Watson’s papers would stimulate other authors to find, at last, some accurate
estimates of Landau’s constant and of other coefficients of amplitude equations. And
in fact papers devoted to such estimation began to appear soon after those mentioned
above. We will now pass on to results of this subsequent work.

4.2.2 Evaluation of Coefficients of Amplitude Equations
and Equilibrium Disturbances for Plane Poiseuille Flows

One of the first attempts to find a more or less reliable value for the Landau constant δ
was made by Davey (1962) for the case of the growth of axisymmetric Taylor vortices
in a Couette flow between rotating cylinders. Davey reformulated for this case all
the arguments of Stuart (1960) and found that Stuart’s equation δ= δ1 + δ2 + δ3,
where the three terms δi have the same physical meaning as in the case of plane
Poiseuille flow, also appears here. He also found that in this case the expressions for
these terms are again rather complicated but are nevertheless accessible to numerical
computation. So, he calculated the value of δ for three particular combinations of
the ratios μ=Ω2/�1 and η=R1/R2. The values found turned out to be positive in
all cases considered, for all vertical wave numbers k and Reynolds numbers Re, and
these values agreed satisfactorily with the then-available experimental data. However,
we will not linger here on these results of Davey, since nonlinear stability of circular
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Couette flow will be considered separately later in this book. So now we will turn
again to cases of plane-parallel (or nearly plane-parallel) primary flows.

Let us revert first of all to the model case of plane Poiseuille flow. Recall that
Stuart’s and Watson’s nonlinear-stability papers of 1960 were both devoted to just
this case, which was also considered rather early by Meksyn and Stuart (1951),
then by Stuart (1958), and later by Eckhaus (1965). This was only natural, since
plane Poiseuille flow is a classical example of steady, strictly plane-parallel, laminar
flow having a very simple velocity profile, and had been extensively investigated
within the framework of the linear theory of hydrodynamic stability. Thus, it was
not surprising that relatively accurate estimates of the values of the Landau constant
for disturbances in a plane Poiseuille flow were among the first applications of the
Stuart-Watson theory to appear.

The above-mentioned estimates were calculated independently and almost si-
multaneously by Reynolds and Potter (1967) and Pekeris and Shkoller (1967).
Reynolds and Potter used some extension and modification of the Stuart-Watson
approach where determination of the equilibrium disturbances, introduced in
application to another problem by Malkus and Veronis (1958), played a very im-
portant part, while Pekeris and Shkoller based their computations on the Eckhaus
eigenfunction-expansion method. In both papers the computations were carried out
for two-dimensional normal-mode disturbances corresponding to the unstable (or, if
Re<Recr, to the least stable) solution of the Orr-Sommerfeld eigenvalue problem
under the condition that |γ | = |�mω| is sufficiently small. However, Reynolds and
Potter also included in their paper some remarks relating to three-dimensional dis-
turbances, and presented some numerical results for the more general case of plane
Couette–Poiseuille flows (these results will be discussed in Sect. 4.23). For plane
Poiseuille flow Reynolds and Potter calculated values of δ at five different points
of the neutral stability curve in the (k, Re)-plane (including the critical point (kcr,
Recr)), and at two points in the neighborhood of the neutral curve, while Pekeris
and Shkoller evaluated the coefficient δ = δ(k, Re ) for an extensive region of the (k,
Re)-plane (using equations which are in fact reasonable only in the vicinity of the
neutral curve). The results of these two papers do not coincide numerically (one rea-
son being that they used different normalizations and somewhat different definitions
of the amplitude |A|, besides which some of the assumptions and approximations
taken for granted in the two papers were different), but both results have the same
general behavior and imply close agreement for ratios of the values δ= δ (k, Re) at
different points of the (k, Re)-plane.

In Fig. 4.8, results by Pekeris and Shkoller (agreeing, in general, with Reynolds
and Potter’s conclusions) are presented, including the neutral curve but without
numerical values for γ and δ. (As to the values of Re and k, it is here assumed, as
usually, that Re =UmaxH1/v and k is made dimensionless by multiplication by H1).
These results show, in particular, that at the critical point (the point of the neutral
curve farthest to the left), and at all points of the upper branch of the neutral curve, δ is
negative. Some unstable two-dimensional disturbances of finite amplitude with wave
number k must correspond to values of (k, Re) at points lying close to the neutral
curve in the region where δ< 0 and γ < 0; this means that at these values of (k, Re),
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Fig. 4.8 The regions of
positive and negative values
of the coefficients γ and δ in
the (k, Re)-plane for the case
of plane Poiseuille flow.
(After Pekeris and Shkoller
(1967))

subcritical finite-amplitude instabilities exist in plane Poiseuille flow. Therefore, in
the region where δ< 0, the neutral curve (which bounds the set of points (k, Re)
corresponding to unstable two-dimensional disturbances) shifts, in the case of finite
disturbances, from the neutral-stability curve of linear stability theory (which relates
to infinitesimal disturbances) and takes the shape shown in the schematic Fig. 4.9.
On the other hand, for points (k, Re) in the region where δ < 0, γ > 0 the negativity
of δ means that supercritical finite-amplitude equilibrium states are rather unlikely
to be observed here. Figure 4.8 shows also that δ > 0 on the main part of the lower
branch of the neutral curve. At the points (k, Re) close to this part the subcritical
finite-amplitude instability does not exist for disturbances with γ < 0; however, if

Fig. 4.9 Schematic form of the neutral-stability curve DBF for wave disturbances of plane Poiseuille
flow having a fixed finite amplitude A. (After Pekeris and Shkoller (1969b)) the curve ABC is the
neutral curve for infinitesimal disturbances where γ = 0, and the dotted curve represents points
where δ= 0
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Fig. 4.10 Deviations of the
neutral curves for wave dis-
turbances of plane Poiseuille
flow having finite amplitudes
(characterized by the value of
some dimensionless
‘amplitude parameter’ A∗)
from the neutral curve for
infinitesimal disturbances
(corresponding to A∗ = 0) in
the region where δ < 0,
computed by Pekeris and
Shkoller (1969b). The dotted
curve have the same meaning
as in Figs. 4.8 and 4.9

γ = 0 and δ > 0 for a small but not infinitesimal disturbance, then this disturbance
will decay according to Eq. (4.34). Thus, the neutral curve for finite disturbances
corresponding to points where δ > 0 must shift into the supercritical region where
γ > 0, and hence finite-amplitude equilibrium states must exist.6

Reynolds and Potter’s and Pekeris and Shkoller’s papers stimulated the appear-
ance of many subsequent papers on the nonlinear evolution of wave disturbances
in a plane Poiseuille flow. These later papers, only some of which will be referred
to below, include various amendments, modifications and revisions of results pre-
sented in the publications of 1967. In particular, Pekeris and Shkoller (1969a,b;
1971) computed some approximate solutions of the nonlinear initial-value problem
for the least-stable Tollmien–Schlichting (T–S) wave with given wave number k, i.e.,
for the two-dimensional disturbance having the initial stream function of the form
Ψ(x, z, 0) = Af1(z)eikx where f1(z) is the normalized first (least stable) O-S eigen-
function of the plane Poiseuille flow and A is a disturbance amplitude which is finite
(but small enough, since an expansion in powers of amplitude was used here). Using
the computed results Pekeris and Shkoller tried to estimate quantitatively the shifts
of the neutral curves for finite-amplitude disturbances of the form given above, for
various values of A (see Fig. 4.10, taken from their paper (1969b)), and to determine
the value of the finite-amplitude critical Reynolds number Recr(A) (which corre-
sponds to the point which is farthest to the left on the neutral curve for disturbances
of amplitude A). The same problem was studied by Georg and Hellums (1972) and
Georg et al. (1974) who considered another initial form of disturbance (i.e. they
did not use the traditional approach of considering the least-stable T–S wave) and
another method of numerical solution of the nonlinear initial-value problem (which
used neither the Eckhaus expansion into O-S eigenfunctions nor the expansion in
powers of the amplitude, and hence was applicable to disturbances of any initial size).

6 According to Eq. (4.34) and Fig. 4.8, the lower branch of the neutral curve in the case of finite
disturbances must shift upward (to points where γ ≈ δ|A|2/2). This very small shift is exaggerated
in Fig. 4.9 to simplify its representation in the figure but later it will be neglected.
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Fig. 4.11 The regions of positive and negative values of the coefficients γs and δs in the (ω,Re)-
plane for the case of plane Poiseuille flow. (After Itoh (1974a))
ABC: the curve γs(ω, Re) = 0 (the spatial neutral-stability curve of the linear stability theory
bounding the region where γs > 0); DBE: the curve δs(ω, Re) = 0 bounding the region where δs > 0

Georg et al. (whose estimates of the values of critical numbers Recr(A) were later
found by Orszag and Kells (1980) to be too high because of the use of a non-optimal
initial form of the disturbance) compared their results with those of several previous
papers (including those by Reynolds and Potter and Pekeris and Shkoller). They found
that the quantitative results of different authors sometimes do not agree adequately
well, but all of them demonstrate the same general tendency. One more method for
approximate determination of the neutral curve for two-dimensional finite-amplitude
wave disturbances in a plane Poiseuille flow was proposed by Struminskii and Sko-
belev (1980), who used for this purpose the generalized Landau equation of the form
(4.37). Later Luo (1994) reexamined the previously used methods of determination
of complex coefficients ω and l in the Stuart-Landau Eq. (4.40). He suggested some
improvements and showed that in the case of plane Poiseuille flow they lead to val-
ues of coefficients which agree well with those given by numerical simulation of
disturbance evolution in this flow.

Itoh (1974a) studied the development of a spatially-evolving two-dimensional
disturbance of frequency ω in a plane Poiseuille flow, using the theory by Wat-
son (1962) modified by accounting more accurately for distortion of the mean
flow by the disturbance. Using the modified version of Watson’s theory, he com-
puted approximate shapes of the curves γs(ω, Re ) = 0 and δs(ω, Re ) = 0 (where
γs = b0/2 and δs = −b1 are coefficients of the ‘spatial Landau equation’, and ω
is non-dimensionalized by multiplication by H1/Umax) on the (ω, Re)-plane. These
curves are shown in Fig. 4.11; they determine location of the regions of positive and
negative values of γs and δs in the (ω, Re)-plane and proved to be qualitatively similar
to Pekeris and Shkoller’s curves in Fig. 4.8 which correspond to temporally-evolving
disturbances in the same flow.
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Related computations were performed by Herbert (1976, 1977, 1978) (see also
his review (1983a)) who used a quite different method. This author followed the
approach initiated by Zahn et al. (1974) (and outlined in rudimentary form as far
back as Noether (1921) and Heisenberg (1924)), and studied approximate numeri-
cal solutions of the nonlinear initial-value problem for stable Tollmien-Schlichting
waves (i.e., those which are exponentially damped according to the linear stability
theory), which at small values of t are represented by the O-S eigensolutions. He
paid most attention to equilibrium solutions (i.e., to wave disturbances satisfying
the condition that d|A|2/dt = 0) at various values of k and Re. To find the value
of the stream function Ψ(x, z, t) corresponding to an evolving T–S wave, both Zahn
et al. and Herbert represented Ψ by a strongly truncated Fourier series of the form
(4.38), and then solved numerically a system of coupled nonlinear equations for the
corresponding Fourier coefficients, simplifying this system greatly for the case of
equilibrium solutions.

Herbert found numerous equilibrium two-dimensional disturbances in a plane
Poiseuille flow which are periodic in the streamwise direction and have finite ampli-
tudes. His results agree well with results of preceding numerical studies by Zahn et al.
(1974), and of subsequent more accurate computations by Orszag and Kells (1980);
Orszag and Patera (1980, 1981); Milinazzo and Saffman (1985); Ehrenstein and Koch
(1991); Balakumar (1997); Hewitt and Hall (1998), and some others (see also the
survey by Bayly et al. (1988)). Measuring the size of a two-dimensional wave distur-
bance by the ratio E of its kinetic energy (per unit length of the channel) to the energy
of primary Poiseuille flow (E is clearly a single-valued function of A and is propor-
tional to |A|2 with good accuracy), Herbert determined the shape of the neutral surface
(corresponding to the set of all two-dimensional equilibrium waves) in the three-
dimensional (E, k, Re)-space; this surface is shown schematically in Fig. 4.12. (See
also Ehrenstein and Koch (1991) and Sect. 2.8.3 in Godrèche and Manneville (1998)
where a slightly different presentation of this surface is given. Two intersections of
this surface with the plane Re = const. will be shown in Sect. 4.2.3 in Fig. 4.14a, b
where, however, Umax is replaced by Uave = 2Umax/3 in the definition of Re; some
of its other intersections with planes Re = const. and k = const. can be found in
Sect. 2.8.3 of Godrèche and Manneville (1998) and in the paper by Hewitt and Hall
(1998)). The intersection of the neutral surface with the plane E = 0 clearly coincides
with the Poiseuille-flow neutral curve of linear stability theory (shown, in particular,
in Figs. 2.22 and 4.8), while the intersections of this surface with the planes E = const.
(where also A = const.) coincide with the neutral-stability curves for finite-amplitude
disturbances with given value of E (or A; cf. Figs. 4.9 and 4.10). The projection of
the whole neutral surface in (E, k, Re)-space on the (k, Re)-plane is also indicated in
Fig. 4.12; this projection determines the region of the (k, Re)-plane corresponding to
unstable two-dimensional waves of any amplitude. This region is clearly much larger
than the region of unstable infinitesimal waves, which is bounded by the neutral curve
of linear theory. The projection of the leftmost point of the neutral surface in (E, k,
Re)-space on the (k, Re)-plane determines the lowest Reynolds number Re∗

cr at which
there exist also undamped two-dimensional waves of any amplitude, and the critical
wave number k∗

cr corresponding to the undamped wave at Re = Re∗
cr . Similarly,
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Fig. 4.12 Schematic shape of the nonlinear neutral surface in the three-dimensional (E, k, Re)-space
corresponding to the set of all two-dimensional equilibrium waves in plane Poiseuille flow. (After
Herbert (1977, 1978, 1983a))

the leftmost points of the neutral curves for waves with fixed energy E (and ampli-
tude A) determine the critical Reynolds numbers Recr(E) (or Recr(A)) for waves of
fixed energy (and amplitude) and their wave numbers kcr(E) (or kcr(A)). According to
Herbert’s approximate computations, Re∗

cr ≈ 2935 (as usual, channel half-thickness
and Poiseuille-flow maximum velocity are used here as length and velocity scales)
and to this corresponds the critical wave number k∗

cr ≈ 1.32. Later Herbert’s results
were confirmed also by Orszag and Kells (1980); Ehrenstein and Koch (1991), and
Balakumar (1997).

Note that the ‘nonlinear critical Reynolds number’ Re∗
cr is considerably smaller

than the ordinary (linear) critical Reynolds number Recr ≈ 5772 which relates to
infinitesimal wave disturbances. However Re∗

cr is much greater not only than the value
Recr min ≈ 50 which is given by the energy method and applies to disturbances of any
shape and size, but also much greater than the value Re1 ≈ 1,000 which, according
to data by many authors (e.g., by Davies and White (1928); Patel and Head (1969);
Kao and Park (1970); Nishioka and Asai (1985), and Alavyoon et al. (1986); see also
Sect. 2.1) is typical for transition to turbulence in laboratory experiments on plane
Poiseuille flow. During the 1980s and early 1990s a number of authors (in particular,
Orszag and Kells (1980); Orszag and Patera (1982, 1983); Saffman (1983); Herbert
(1983c, 1984, 1986); Soibelman and Meiron (1991); see also the surveys by Bayly
et al. (1988) and Herbert (1988)) suggested the idea that the difference between
values of Re∗

cr and of Re1 can be explained by secondary instability of stable two-
dimensional waves to small three-dimensional disturbances at values of Re smaller
than Re∗

cr . To verify this idea these (and some other) authors performed a number
of numerical simulations (i.e., solutions of the corresponding nonlinear initial-value
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problems for the N-S equations) of development, in a plane Poiseuille flow, of stable
two-dimensional waves of finite amplitude in the presence of small three-dimensional
disturbances with the same streamwise wave number. The results obtained showed
that three-dimensional disturbances often destabilize two-dimensional waves, and
cause rapid growth of two-mode disturbances at Reynolds numbers of the order of
700–1,000, much smaller than Re∗

cr (and close to Re1). (The simulations by Pugh
and Saffman (1988) and the subsequent study by Barkley (1990) showed that the
instability of two-dimensional equilibrium waves with respect to superimposed three-
dimensional disturbances has a more complex character than was assumed earlier.
Moreover, there were several attempts to explain the secondary instability of two-
dimensional waves by triad interactions of such a wave with two three-dimensional
ones, and these attempts also led to critical Reynolds number close to Re1; see,
e.g., Goldshtik et al. (1983, 1985); Craik (1985); Ehrenstein and Koch (1991), and
Ehrenstein (1994). And still later Reddy et al. (1998) considered some quite different
scenarios of the primary and secondary instabilities of a plane Poiseuille flow where
two-dimensional waves play no part at all. However, we will not consider all these
works in this section). The secondary instability of two-dimensional periodic waves
usually generates, not a new equilibrium cellular state but a very complicated three-
dimensional structure reminiscent developed turbulence; see, e.g., Saffman (1983);
Rozhdestvensky and Simakin (1984); Bayly et al. (1988), and Jiménez (1987, 1990).
In some of this work several successive transitions of Poiseuille flow to more and more
complex behavior were also simulated numerically (more details of this will be given
later).

Numerically-simulated equilibrium and developing wave disturbances in a
Poiseuille flow may in principle be used to get some information about the values
of Landau’s constant and other coefficients of the amplitude equations for one-mode
or composite two-mode waves. The estimates of δ implied by the results of Her-
bert’s and Orszag and Kell’s numerical simulations of two-dimensional equilibrium
waves in a plane Poiseuille flow proved not to contradict values found earlier by
Reynolds and Potter (1967); Pekeris and Shkoller (1967), and other authors by the
quite different methods initiated by Stuart, Watson, and Eckhaus.

Quite another approach was applied to study of development of two-dimensional
finite-amplitude waves in a plane Poiseuille flow by Andreichikov and Yudovich
(1972) and Chen and Joseph (1973). This approach was based on the general theory
of bifurcations, which is a special part of nonlinear science closely connected with
stability problems. The word bifurcation means here the appearance of a supple-
mentary solution of a given nonlinear ‘dynamic equation’ (or system of equations),
describing the evolution of a definite object, when some dynamic parameters vary.
The ‘dynamic equation’ (or equations) may be here algebraic, ordinary differential,
partial differential or any other type. Bifurcation theory deals with the most typical
features of the nonlinear evolution, namely, with the frequent occurrence of qual-
itative changes of the object’s behavior corresponding to small variation of some
dynamic parameters. Drazin and Reid (1981), p. 403, reasonably noted that this
theory arose from particular early work by Poincaré and Lyapunov on figures of
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equilibrium of rotating self-gravitating masses of fluid, but the sphere of its appli-
cations has broadened enormously. Therefore it is natural that in recent years this
theory attracted much attention, and gave rise to extensive and quite diverse liter-
ature. As typical examples we may mention here the books and survey papers by
Sattinger (1973); Marsden (1978); Mittleman and Weber (1980); Seydel (1988);
Arnol’d (1989b); Iooss and Joseph (1990); Baker (1991); Hale (1991); Iooss and
Adelmeyer (1992); Guckenheimer and Holmes (1993); Arnol’d et al. (1994), and
Field (1996).

An example of an instability-generated bifurcation in a fluid flow is given in
Fig. 4.7a, where the dependence on Reynolds number Re of the equilibrium ampli-
tudeAe = |A|max of a normal-mode disturbance in a primary steady flow is presented
for the case where δ > 0. Here Ae = 0 for Re<Recr; however, if Re>Recr (but
Re − Recr is small), then γ ∝ Re − Recr > 0, and the amplitude of a small dis-
turbance tends to the equilibrium value Ae = (2γ /δ)1/2 ∝ ( Re − Recr)1/2 (see the
upper part of Fig. 4.5). Thus, the flow consisting of the primary flow and a super-
imposed two-dimensional periodic wave of amplitude Ae bifurcates at Re = Recr

from the pure primary flow. Figure 4.7b corresponds to the case where δ < 0 and
shows another type of bifurcation: here, according to the figure the ‘secondary so-
lution’ which includes a finite-amplitude wave appears at Re = Re′

cr < Recr but
transition from the primary steady solution to this new solution can be caused only
by a wave disturbance with amplitude exceeding |A2|max. Let us now consider the
complex Landau amplitude A(t) which satisfies Eq. (4.40) and describes the time-
dependence of the leading term of the disturbance velocity u(x, t). As we know,
here A(t) = |A(t)| ei(−ωt+θ ), where |A(t)|2 satisfies the Landau Eq. (4.34) and the
constant θ depends on the initial disturbance u(x, 0). According to Fig. 4.7a, if δ > 0,
then for Re<Recr the complex amplitude A(t) for any initial value A(0) tends to
zero (i.e., to the origin of the complex-variable plane) as t → ∞. In other words,
for Re<Recr all trajectories A = A(t) in the complex-variable plane corresponding
to various solutions of the complex Landau Eq. (4.40) are attracted to a focus at the
origin. If, however, Re>Recr, then |A(t)| → Ae ∝ ( Re −Recr)1/2 as t → ∞ and
hence the trajectoryA(t) = |A(t)| ei(−ωt+θ ) is here attracted to the circle of radiusAe

in the complex-variable plane which makes up the limit cycle of the two-dimensional
dynamical system corresponding to dynamic Eq. (4.40) (i.e., to a system of two Eqs.
(4.34) and (4.34a) for real and imaginary parts of A(t)). This is just a specific case of
the so-called Hopf bifurcation7, where a periodic solution bifurcates from a steady

7 This term reflects the contribution by Hopf (1942) to this subject. However sometimes its use meets
objections since such bifurcations were in fact explicitly studied by A. A. Andronov (partially in
collaboration with A. A. Vitt) in the early 1930s and were described at length in the book by
Andronov and Khaikin (1937). It was also sometimes noted that the so-called ‘Hopf bifurcation’
first appeared in fact in the works of Poincaré; therefore, Marsden and McCracken (1976) wrote in
the preface to their book that apparently the term ‘Poincaré-Andronov-Hopf bifurcation’ would be
the most just. However, the short term ‘Hopf bifurcation’ is now universally accepted; so it will be
used in this book too.
Note in conclusion that the classical book by Andronov and Khaikin was in fact written by three
authors. Only in the late 1950’s it was permitted to S. E. Khaikin, the only one author who was then
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one when the latter becomes unstable. Hopf bifurcations form the most elementary
class of bifurcations, which are encountered very often in various applied fields (see,
e.g., the books by Marsden and McCracken (1976); Hassard (1981), and Moiola
and Chen (1996) specially devoted to such bifurcations); some more complicated
bifurcations will also be discussed later in this book.

Above, for the sake of simplicity, we discussed only bifurcations of solutions of
Landau’s amplitude equations (which are ordinary and not partial differential equa-
tions). In fact only ordinary differential equations were considered in the early works
on bifurcations by Poincaré, Andronov, Vitt, and Hopf. The general theory of periodic
flow bifurcations from a steady solution of Navier–Stokes equations was developed
independently by Yudovich (1971, 1972); Iooss (1972) and Joseph and Sattinger
(1972) (see also Chaps. 9 and 9A in the book by Marsden and McCracken (1976),
and references to early examples of such fluid-dynamic bifurcations in the book by
Drazin and Reid (1981), p. 407). The papers mentioned contain, in particular, defi-
nite conditions under which such bifurcation necessarily occur. Then Andreichikov
and Yudovich (1972) and Chen and Joseph (1973) showed that the results of the
above-mentioned papers lead to definite assertions about the uniqueness, stability
and properties of the two-dimensional periodic solutions which bifurcate from the
steady Poiseuille flow at points of the corresponding neutral-stability curve. These
assertions proved to be in good qualitative (and in satisfactory quantitative) agree-
ment with the conclusions about disturbance development obtained earlier by other
authors who used quite different, and often less rigorous, arguments based on the
Stuart–Watson theory and its modifications.

Let us briefly discuss now results of some further work concerning the nonlin-
ear evolution of normal-mode wave disturbances in plane Poiseuille flow. Recall
that approximate estimates of the numerical values for the Landau constant for two-
dimensional wave disturbances spatially evolving in a plane Poiseuille flow were
first given by Itoh (1974a). Early comparisons of the available theoretical estimates
with the experimental data by Nishioka et al. (1975), referring to development of
waves generated by a vibrating ribbon in a laboratory channel flow, seemed to sup-
port both the results by Itoh (1974a) and the conclusions of Herbert (1977). However,
subsequent more careful analysis detected some appreciable discrepancies between
theory and experimental data, apparently connected with three-dimensional effects
affecting measurements by Nishioka et al. and with some inaccuracies of Itoh’s cal-
culations; see, e.g., Zhou (1982); Herbert (1980, 1983a), and Sen and Venkateswarlu
(1983). Another method for calculation of Landau’s constant was proposed by Itoh
(1977a); as was indicated by Davey (1978) and Herbert (1983b), this method differs
from that of Reynolds and Potter (1967) only by rearrangement of the terms in some

alive, to publish the revised edition of the book as a book by Andronov et al. (1959) with a strange
remark in the Preface (which was repeated in the English translation of 1966 too) that ‘the name of
one of the authors was by an unfortunate mistake not noticed on the title page of the first edition’.
The ‘unfortunate mistake’ was due to the fact that A. A. Vitt, a young talented scientist, was arrested
in 1937 by Stalin’s notorious secret police (which chose its victims for reasons incomprehensible
to any normal mind) and died in prison the next year.
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infinite series, and is appropriate only for the case where A =Ae is the equilibrium
amplitude of a disturbance.

The accuracy of estimates of the value of Landau’s constant is clearly affected by
the absence of a unique, universally-accepted definition of the disturbance amplitude
A and by possible influence of further terms of Eqs. (4.41) and (4.41a) which were
neglected in most of the early papers. (The first attempts to estimate, for a plane
Poiseuille flow, the values of two coefficients am, m = 1 and 2, of Eq. (4.41) (in
other words, of the coefficients δ and β of Eq. (4.37)) and of the corresponding
complex coefficients λm, m = 1 and 2, of Eq. (4.41b) presented below were due
to Gertsenshtein and Shtemler (1997) and Shtemler (1978). These authors applied
the modified method of Reynolds and Potter (1967) to compute the values of the
coefficients a1, a2, and λ1, λ2 for several points (k, Re) of the plane-Poiseuille-flow
neutral curve and then, assuming that A =Ae, studied the influence of the terms with
m = 2 on the values of the equilibrium amplitudeAe and the shape and stability of the
equilibrium waves). Later it was stressed by Herbert (1980, 1983b) that many theories
leading to determination of the higher-order terms do not exclude equally-justified
alternative methods of computation, leading to changes in the values of these terms.
In the paper of 1980 Herbert developed a consistent method of perturbation expansion
for solution of the Navier-Stokes equations which included a unique definition of
the real amplitude A(t) and led to Eq. (4.41) with unique values of the Landau
constants am of all orders. Then he showed how the values of these constants can
be determined, and he calculated, for plane Poiseuille flow, the values of the first
seven constants am at the critical point (kcr, Recr) of the (k, Re)-plane and at one
subcritical point with Re<Recr. The results obtained showed that the coefficients
am increase rapidly with m. Therefore Eq. (4.41) is in fact useful only in the case of
a very small amplitude A. In Herbert’s paper (1983b) a survey and also a comparison
of various expansion methods based on different assumptions was presented, and
the ranges of applicability and shortcomings of these methods were discussed. In
particular he showed that the method of Watson (1960a) is exact only at points
of the neutral curve where a0 = 2γ = 0, while if γ �= 0, then Watson’s value of
δ differs from the value given by the more rigorous method of Herbert (1980) (see
Fujimura (1987) for a more detailed analysis of this matter). Later Crouch and Herbert
(1993) proposed a new general method for determination of the complex Landau
constants λm of all orders m ≥ 0 entering the equation for the complex disturbance
amplitude A

dA

dt
= A

∞∑

m=0

λm|A|2m (4.41b)

which is a simple generalization of both the Stuart-Landau Eq. (4.40) and the Watson-
Landau Eq. (4.41) (where am = 2�eλm). The same problem was also considered by
Sen and Venkateswarlu (1983) and Fujimura (1989, 1991, 1997) whose papers will
be discussed below.

Zhou (1982) developed an improved version of the classical Stuart-Watson method
of 1960, assuming that both the amplitude A(t) and the angular frequency ω1(t) of
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the unstable wave disturbance vary with time. He expanded the derivatives dA/dt
and dω1/dt in powers of a suitable small parameter ε (which represents the order of
magnitude of nonlinear corrections), and numerically computed the solutions of the
resulting system of coupled differential equations for the terms of ε-expansions up
to fourth order. In this way Zhou obtained a much more detailed representation of
the nonlinear development of subcritical (unstable) wave disturbances, for values of
Re from 1,000 up to 5,500 and several values of k. It was found that the accuracy of
the method decreases with increasing Re −Recr, but the experimental observations
by Nishioka et al. (1986) concerning the terminal equilibrium states of disturbances
at relatively small values of Re–Recr are represented more satisfactorily by the new
results than by the results presented in the preceding papers.

Weinstein (1981) applied Watson’s (1960a) method to calculate values of the Lan-
dau constants am = am (k, Re) up to m = 3 for the Poiseuille-flow wave disturbances
corresponding to small values of both |Re −Recr| and |k −kcr |. His main purpose was
to compare results following from his version of Watsons method with those given
by quite another method, the so-called method of multiple scales first applied to some
turbulent-flow calculations by Stewartson and Stuart (1971) (for other applications
of the method see, e.g., Cole (1968); Kevorkian and Cole (1981); Nayfeh (1981), or
Godrèche and Manneville (1998)). This method uses two different time scales (the
‘slow’ and ‘rapid’ ones) which allow the slow evolutionary processes to be isolated
from the rapid high-frequency oscillations. (In Landau’s original derivation of Eq.
(4.34) averaging over a time period intermediate between ‘slow’ and ‘rapid’ time
scales was used to the same end). Weinstein found that in the cases he considered
both methods lead to exactly the same results; however, no numerical data were
presented in this paper.

New calculations of the higher-order Landau coefficients for nonlinear wave
disturbances in a plane Poiseuille flow, corresponding to both subcritical and su-
percritical regions of the (k, Re)-plane, were carried out by Sen and Venkateswarlu
(1983) by both the Reynolds and Potter (1967) and the Watson (1960a) methods. It
was found that in the supercritical region the results of both methods are relatively
close (in the subcritical region the majority of the computations performed was based
on the use of the R-P method). The authors supplemented the results of Pekeris and
Shkoller shown in Fig. 4.8, by new lines separating the regions of positive and nega-
tive values for Landau’s constants a2 and a3 in the (k, Re)-plane (see Fig. 4.13, based
on their results). They also investigated the region of convergence of the Landau–
Watson series (4.41) (it was found that the radius of convergence is rather short here,
which agrees with the conclusions of Herbert (1980)) and indicated the summation
methods appropriate for computations in the cases of slow convergence (or slow
divergence) of this series. The equilibrium amplitudes and equilibrium velocity dis-
tributions were also determined for the subcritical region, and the values of a great
number of complex Landau coefficients λm = λm(k, Re ) were presented for some
particular cases. Some comparisons of the results obtained with experimental data
by Nishioka et al. (1975) were discussed in the paper and were found to be encour-
aging. Note however that Reynolds and Potter’s method and the original Watson
methods, considered by Sen and Venkateswarlu, are not of high precision, and many
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Fig. 4.13 Stability diagram showing the regions of positive and negative values of coefficients γ ,
δ, and the next two Landau’s constants a2 and a3 in the (k, Re)-plane for the case of plane Poiseuille
flow. (After Sen and Venkateswarlu (1983)) (1) curve where γ = 0 (neutral curve of the linear
stability theory, inside it γ > 0); (2) curve where δ= 0 (inside it δ > 0); (3) curve where a2 = 0
(inside it a2 > 0); (4) curve where a3 = 0 (inside it a3 < 0)

researchers even supposed that they are inapplicable at points (k, Re) which are far
from the neutral curve.

Fujimura (1989) compared two different methods of derivation of the general Lan-
dau Eq. (4.41b) for the complex disturbance amplitude A(t) from the Navier-Stokes
equations—his own modification of the amplitude-expansion method of Watson and
the above-mentioned method of multiple scales (which can be applied to derivation
of Eq. (4.41b) if a whole hierarchy of longer and longer time scales is introduced).
He began by stressing that the results obtained by both methods depend essentially
on the strict definition of the amplitude A(t). Then he showed that if this definition
is based on a special normalization condition for the fundamental mode, then in
the case of slight supercriticality the method of multiple scales gives results equiv-
alent to those which follow from the modified amplitude-expansion procedure (but
not from its original form proposed by Watson). Some results of computations by
both methods of the values of the first four complex Landau constants for slightly
supercritical wave disturbances in a plane Poiseuille flow are also presented in this
paper.

Later Fujimura (1991, 1997) studied one more method of derivation of the com-
plex Landau Eq. (4.41b) from the equations of fluid motion. Note that this equation
represents a crucial reduction of the infinite-dimensional dynamical system of flow
disturbances evolving in time, to a one-dimensional system fully determined by its
amplitude A(t). On the other hand, the modern development of the dynamical system
theory led to the appearance of a promising new method of the dimension reduction
(i.e., reduction of the numbers of degrees of freedom), called the method of center
manifold (see, e.g., the books by Carr (1981); Wiggins (1990); Manneville (1990),
and Guckenheimer and Holmes (1993)). The method is based on the concept of a
center manifold—a part S of the phase space R of all possible states of the consid-
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a

b

Fig. 4.14 Intersections of the nonlinear neutral surface in the three-dimensional (E, k, Re)-space
with the plane Re = 4,000 for Couette-Poiseuille flows with Â = 0, 0.12, 0.144, and 0.147 (a), and
with the plane Â = 6,000 for C-P flows with Â = 0, 0.2, and 0.218 (b). (After Balakumar (1997)).
Here Â = ÂB = UW/[ 4

3Umax + Uw], Re = UaveH1/v = [ 4
3Umax + Uw]H1/2v, and the increase of

� corresponds to s hrinking of the closed curves in the figure

ered system having some special properties. These properties imply, in particular,
that any phase trajectory (the curve in R describing time evolution of the system),
whose point at time t0 belongs to S will remain in S also at any t> t0, while a tra-
jectory which is outside of S at time t0 enters S, under rather general conditions, at
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some subsequent time moment. (For more information about specialized subspaces
of a phase space and their properties see, e.g., Kelley (1967) In the case of a fluid
flow the phase space R consists of all admissible values of the main fluid dynam-
ical fields; see Sect. 2.3). The center manifold reduction consists in projection of
the full phase space R, together with trajectories of a dynamical system lying in R,
into some center manifold S of smaller dimension than that of the space R. In the
extreme case when the dimension is reduced to one, the state of the nonlinear system
becomes fully determined by the amplitude A, and hence the evolution of the system
is described by the function A(t) which under a wide range of conditions satisfies
an equation of the Landau type. Note however that the center manifold (and thus
also the center manifold reduction) may not be unique (see, e.g., Guckenheimer and
Holmes (1993)). This nonuniqueness is analogous to the nonuniqueness of Landau’s
constants because of their dependence on the selected definition of the disturbance
amplitude.

Some examples of derivations of Landau’s amplitude equations for nonlinear sys-
tems with infinite dimensions by the method of center manifold may be found in Carr
(1981) and Carr and Muncaster (1983); a number of applications of this method to
fluid mechanical problems were considered by Guckenheimer and Knobloch (1983);
Iooss (1987); Laure and Demay (1988); Renardy (1989); Manneville (1990); Cheng
and Chang (1990, 1992, 1995); Chen et al. (1991), and Chossat and Iooss (1994),
among many others. Fujimura at first considered (in the paper of 1991) the most
common scheme of the center manifold reduction, applicable to infinite-dimensional
systems arising from the partial differential equations (exemplified by the Navier–
Stokes system). He applied the method to the classical example of the disturbance
development in plane Poiseuille flow, which was also investigated by the center
manifold method, in passing, by Renardy (1989) (whose paper was mainly de-
voted to more general problems). Renardy evaluated the Landau constant δ for a
plane Poiseuille flow by this method, and compared her results with those found by
Pekeris and Shkoller (1967) and Reynolds and Potter (1967). However, her com-
parisons had a serious deficiency, indicated by Fujimura (1991) who also showed
that her value of δ was identical with that implied by the original Watson’s method
and hence, according to Fujimara’s (1989) conclusion, was different from the value
given by the method of multiple scales. Moreover, he also noted that, when ap-
plied to derivation of higher-order Landau equations, Renardy’s reduction scheme
leads to values of the higher Landau constants differing even from those given by
Watson’s original method. Therefore, Fujimura (1991) carried out a new careful
evaluation of the complex Landau constants λm, with m = 0, 1, 2 and 3, for a plane
Poiseuille flow by the methods of center manifold and of multiple scales, com-
pared the results obtained by these two methods, and explained how the disturbance
amplitude must be defined to make the results of two methods equivalent to each
other.

In the paper of 1997 Fujimura applied, to the derivation of Landau’s Eq. (4.41b),
another center manifold reduction scheme (called by him “the reduction scheme of
the second category”), which starts with an infinite, or finite, system of ordinary
differential equations (in the cases where original equations are partial-differential,
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this system can be derived by means of a Galerkin projection or/and a normal-mode
expansion). Such reduction scheme was used, in particular, in the above-mentioned
papers by Guckenheimer and Knobloch, Cheng and Chang, and Chen et al. The main
objecjtive of Fujimura (1997) was to prove the equivalence of Landau’s equations, as
given by this reduction scheme, to those derived by the method of multiple scales. To
reduce the Navier–Stokes equations to a system of ordimary differential equations,
a double expansion of flow fields in Fourier series and in eigenfunctions of the
linear stability theory was used. Then the first and second Landau constants λ2 and
λ3 were evaluated by the second-category method of center manifold, for plane
Poiseuille flow and for two other simple fluid dynamical problems. Comparison
of the values obtained with those given by the method of multiple scales showed
that in all three cases the values of λ2 and λ3, computed by this version of the
method of center manifold, approach their values given by the method of multiple
scales as the truncation level of the eigenfunction expansion increases. Hence the
three papers by Fujimura (1989, 1991, 1997), taken together, show that Landau’s
Eq. (4.41b) given by two versions of the center manifold reduction scheme, the
method of multiple scales, and the modified Watson amplitude-expansion method
are equivalent to each other if the disturbance amplitude is defined in a consistent
way.

Stewartson and Stuart (1971) considered the propagation, in plane Poiseuille
flow, of a group of two-dimensional waves undergoing both spatial and temporal
development. In this case the disturbance amplitude A depends on both the time
and the streamwise coordinate, i.e., A = A (t, x). Therefore for small positive values
of Re − Recr, weakly nonlinear theory now leads to a nonlinear parabolic partial
differential equation for A (t, x), differing from the complex Landau Eq. (4.40) by an
additional term proportional to ∂2A/∂ξ 2, where ξ = x−cgt , cg being the streamwise
group velocity. (This equation is now usually called the Ginzburg–Landau equation
since it appeared in a quite different connection in the paper by Ginzburg and Landau
(1950) on the theory of superconductivity. We will meet some other equations of the
Ginzburg–Landau type in Sect. 4.24, parts (b) and (d)). To derive this equation,
Stewartson and Stuart used the above-mentioned multiple scale analysis. Results
similar to those by Stewartson and Stuart were found independently by DiPrima
et al. (1971) while Hocking and Stewartson (1972) studied some exact solutions of
the Ginzburg–Landau equations. Weinstein (1981) extended Stewartson and Stuart’s
theory, supplementing their amplitude equation by two more terms of higher order
in A (and in addition showed that this equation may also be obtained by Watson’s
(1960a) method). A theory of Stewartson and Stuart’s type, referring to groups
of three-dimensional waves in a plane Poiseuille flow, was developed by Davey
et al. (1974) but in this case it leads to a more complicated pair of coupled partial
differential equations for the disturbance amplitude and for some characteristic of
the pressure-gradient.
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4.2.3 Amplitude Equations and Equilibrium Disturbances
in Other Parallel and Nearly Parallel Wall Flows

4.2.3.1 Plane Couette-Poiseuille Flows

Passing to other parallel and nearly parallel fluid flows we will begin with the case
of strictly-parallel plane Couette-Poiseuille flows. The combined Couette-Poiseuille
(briefly C-P) flows are simpler in some respects than pure Couette flows, since unsta-
ble infinitesimal wave disturbances and a finite neutral-stability curve exist sin such
combined flows, if only in cases where the relative strength of the Couette compo-
nent is not too high, but they never exist in pure plane-Couette flows (see Sect. 2.91).
Therefore methods developed by Stuart, Watson, Eckhaus, Reyunolds and Potter, and
Pekeris and Shkoller, which are applicable only at (k, Re)-points close to the neutral
curve, can be applied at least to some C-P flows, but are always inapplicable in the
case of a Couette flow. Reynolds and Potter (1967), who were the first to investigate
weakly nonlinear stability of C-P flows, considered only those relative strengths of
the Couette component for which unstable infinitesimal disturbances exist. In these
cases, the neutral curve in the (k, Re)-plane can be determined, and on this curve the
critical point (kcr, Recr) can be found. Reynolds and Potter carried out nonlinear sta-
bility analysis only for neutrally-stable wave disturbances with γ = 0, corresponding
to critical points at various values of the relative strength of the Couette component.
In this analysis they used the same method they applied to disturbances in plane
Poiseuille flow. According to the results obtained, δ is negative at the critical point
(and hence finite-amplitude instabilities exist at subcritical values of (k, Re) close to
the critical point (kcr, Recr)) in all C–P flows where there are unstable infinitesimal
disturbances (and hence Recr is finite though it can be arbitrarily large). This result
makes it probable that some finite-amplitude disturbances are unstable in C-P flows,
even in cases where all infinitesimal disturbances are stable (and hence Recr = ∞).

Shtemler (1978) supplemented Reynolds and Potter’s computations by the esti-
mation of the next-order coefficients a2 and λ2 of the generalized real and complex
Landau Eqs. (4.41) and (4.41b) at the leftmost points (kcr, Recr) of the neutral curves
of C–P flows for a number of values of the relative strength of the Couette components
corresponding to flows having finite values of Recr. A more detailed investigation of
both linear and weakly-nonlinear stability of C–P flows was carried out by Cowley
and Smith (1985) and Balakumar (1997). Studying the linear stability Cowley and
Smith discovered that in a C-P flow the stability diagram of the linear theory can
have a more complex form than was supposed by Potter (1966), Hains (1967), and
Reynolds and Potter (1967). In these early papers it was assumed that if the stream-
wise wave number k is given, then at any values of Re and of the relative strength Â
of the Couette component either there exists one unstable two-dimensional normal
mode or there are no such modes at all. Therefore, the above-mentioned authors
thought that if the neutral curve in the (k, Re)-plane, which corresponds to the set of
all neutrally-stable waves, exists in a C-P flow (and for this the inequality Â < Âcr

must be valid where Âcr is some critical value of the relative strength Â), then this
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Fig. 4.15 Comparison of the nonlinear critical Reynolds numbers Re∗
cr (Â), where Â = ÂB, for C-P

flows with various values of Â with the ordinary (linear) critical Reynolds numbers Recr (Â) for
the same C–P flows. (After Balakumar (1997))

curve will have qualitatively the same form as the neutral-stability curve of a plane
Poiseuille flow. However Cowley and Smith found that in a C–P flow with a relative
strength of the Couette component that is sufficiently small (appreciably smaller
than Âcr), but non-vanishing, several neutral-stability curves (two or even three, if Â
takes very small values), corresponding to several unstable two-dimensional normal
modes can exists simultaneously. This means that in addition to the critical value
Âcr there also exist in C–P flows the critical values Â2,cr < Âcr and Â3,cr < Â2,cr

corresponding to the appearance of additional unstable modes (growing more slowly
than the most unstable mode appearing at Â = Âcr); these new critical numbers
clearly signify qualitative changes in the shape of the stability diagram. Balakumar
(1997), in his study of the linear stability of C–P flows, considered only the most
unstable modes; for them he computed, very accurately, first the value of Âcr then the
neutral curves in the (k, Re) and (c, Re) planes (where c =ω/k is the phase velocity
of a neutral wave) at a number of values of Â in the range 0 ≤ Â < Âcr, and finally
the shape of the functions Recr(Â) and kcr(Â) (the first of these functions is shown
in Fig. 4.15).

Note also that the relative strength Â of the Couette component was defined dif-
ferently by different authors, who also often used different forms of the C-P velocity
profile U(z) and different length and velocity scalesL0 andU0. So, Potter, Hains, and
Balakumar defined U(z) as the sum of a parabolic profile Up(z) of a Poiseuille flow
with maximal velocityUP(H/2) =Umax and a linear Couette’s profileUC(z) growing
from the value UC(0) = 0 up to the value UC(H) =Uw, while both Reynolds and
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Potter, and Cowley and Smith assumed that UC(0) = −UW/2 and UC(H ) = UW/2.
Potter (1966) and Hains (1967) used the channel thickness H as the scale L0,
while in the papers by Reynolds and Potter (1967), Cowley and Smith (1985),
and Balakumar (1997) L0 was taken as H1 ≡ H/2. Moreover, Hains assumed that
U0 = U (H/2) = UP (H/2) + UC(H/2), Potter that U0 = UP (H/2) = Umax, and
Reynolds and Potter, Cowley and Smith, and Balakumar thatU0 = Uave (whereUave,
the averaged C-P velocity U(z), clearly depends on the selected Couette-component
profile UC(z)). Thus, Hains (1967) measured the relative strength of the Couette
component by the value of ÂH = UW/U (H/2) = UW/[Umax + 1

2UW] (this mea-
sure was used also in Sect. 2.91 where it was denoted as A); while Potter (1966)
assumed that Â = ÂP = UW/Umax; and Reynolds and Potter (1967); Cowley and
Smith (1985), and Balakumar (1997) defined Â as UW/2Uave. Complying with this
definition and with the accepted form of the profile UC(z), Reynolds and Potter,
and Cowley and Smith used the measure Â = ÂRP = ÂCS = 3UW/4Umax, and
Balakumar the measure Â = ÂB = UW/[ 4

3Umax + UW]. It is easy to see that the

measures ÂH, ÂP, ÂRP = ÂCS and ÂB of the relative Couette-component strength
are in fact simple one-valued functions of each other so that the value of any of
them determines the values of all the others. Moreover, the seemingly different
critical values found by the above-mentioned authors, namely Âcr ≈ 0.55 (Hains;
see also Sect. 2.91 of this book), Âcr ≈ 0.7 (Potter), Âcr ≈ 0.528 (Reynolds and
Potter, and Cowley and Smith), and Âcr ≈ 0.3455 (Balakumar) only indicate that
ÂH,cr ≈ 0.55, ÂP,cr ≈ 0.7, ÂRP,cr = ÂCS,cr ≈ 0.528, and ÂB,cr ≈ 0.3455; one may
verify easily that these values agree rather satisfactorily with each other (only Hains’
estimate is overstated by about 7 %).

As to the weakly nonlinear stability of the C-P flows, Cowley and Smith showed,
in particular, that at all values of Â which are close enough, above or below, to
the critical value Âcr, δ(k, Re ) is negative for the least-stable two-dimensional wave
disturbances corresponding to some parts of the stable region of the (k, Re)-plane.
Therefore, equilibrium wave disturbances of small but finite amplitudes can exist in
a C-P flow with any such value of Â. (These results by Cowley and Smith also agree
with conclusions by Milinazzo and Saffman (1985) who independently found that a
family of two-dimensional equilibrium waves of finite amplitude exists in the C–P
flows). In the case of a subcritical C-P flow, where Â < Âcr, unstable disturbances
correspond to periodic solutions of the N–S equations bifurcating from the steady C–
P solutions at points of the neutral curve. However in the case of a supercritical flow
with Â > Âcr the neutral curve does not exist at all. Therefore it is clear that the usual
form of bifurcation theory, which requires the existence of a point of loss of stability
at which the bifurcation begins, cannot be applied here. (A similar conclusion was
also reached simultaneously by Milinazzo and Saffman). In this connection Cowley
and Smith recalled rather exotic bifurcations from infinity of solutions of nonlinear
equations which were considered by Rosenblat and Davis (1979) in their search of a
possible origin of finite-amplitude equilibrium flow disturbances, observed in flows
where stable infinitesimal disturbances do not exist. This recollection proved to be
quite appropriate: Cowley and Smith (1985) succeeded in showing that just such a
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‘bifurcation from infinity’occurs in the supercritical C–P flows with Â > Âcr (where
the ‘critical value’ may be considered as the infinite one, since one may assume

that (Â − Âcr)
−1

and not Â is the true stability parameter). Their results stimulated
subsequent studies by Cherhabili and Ehrenstein (1995, 1997) and Nagata (1997) of
some other types of bifurcations from infinity relating to finite-amplitude equilibrium
states in C–P flows. Results of the last-named authors and also of the paper by
Rosenblat and Davis (1979), where ‘bifurcations from infinity’ first appeared, will
be discussed later in this section.

Balakumar (1997) did not use bifurcation theory at all in his studies of the
nonlinear stability of C-P flows. He concentrated his attention on computations
of finite-amplitude equilibrium two-dimensional waves at different values of Â =
UW/2Uave = UW/[ 4

3 Umax +UW].His computations were based on application to C–
P flows of the method outlined in the early papers by Noether (1921) and Heisenberg
(1924), and then used by Zahn et al. (1974) and Herbert (1976, 1977, 1978) in their
investigations of nonlinear stability of plane Poiseuille flows (for more details see
Sect. 4.22 above). The main objective of Balakumar was to determine the evolution
with Â of the ‘nonlinear neutral surface’ in the three-dimensional (E, k, Re)-space
consisting of points corresponding to two-dimensional equilibrium waves (here E
and k have the same meaning as in Fig. 4.12 in Sect. 4.22, and Re =UaveH1/v). Some
of his results are presented in Figs. 4.14 and 4.15. Figure 4.14 shows the intersections
of the neutral surfaces in (E, k, Re)-spaces corresponding to C–P flows with several
values of Â with the planes Re = 4,000 and Re = 6,000. (For Â = 0 these intersec-
tions clearly coincide with those shown in Fig. 4.12, but the values of Re in Fig. 4.14
are equal to 2/3 of the values Re =UmaxH1/v used in Fig. 4.12). All the intersections
shown (whose boundaries represent the nonlinear ‘neutral curves in the (E, k)-plane’)
have similar shapes but they gradually shrink in size with increasingÂ and, as Balaku-
mar’s extensive computations showed, completely disappear at Â ≈ 0.1472 when
Re = 4,000 and at Â ≈ 0.2182 when Re = 6,000. However similar computations for
Re = 7,000 showed that at this high Reynolds number the ‘neutral curves in the (E,
k)-plane’ have the shape similar to that in Figs. 4.12 and 4.14 only for Â< 0.2, and
when Â increases further their shapes change very rapidly and begin to include a
second loop at low values of E and k.

Figure 4.15 shows the dependence on Â = UW/2Uave of the ‘nonlinear critical
Reynolds number’ Re∗

cr = Re∗
cr (Â) the lowest Reynolds number at which unsta-

ble two-dimensional waves of finite amplitude exist in the C–P flow with relative
strength Â of the Couette component. For comparison the same figure includes also
the computed values of a function Recr = Recr(Â) where Recr is the ordinary (linear)
Reynolds number indicating the lowest value of Re at which there exist infinites-
imal unstable two-dimensional waves (the computations of Recr are simpler than
those of Re∗

cr and allow more precise results to be obtained). We see that Re∗
cr (Â)

is always much smaller that Recr(Â), as it must be. The value of the linear criti-
cal Reynolds number Recr(Â) increases significantly as Â grows from zero (where
Recr ≈ 2 × 5772/3 = 3848) up to a value of about 0.1, then it remains almost
constant until Â ≈ 0.3, and later increases sharply to infinity as Â approaches the
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value of Âcr ≈ 0.3455. The value of the nonlinear critical Reynolds number Re∗
cr (Â)

increases as Â increases from zero (where Re∗
cr ≈ 2×2935/3 ≈ 1957) up to value of

about 0.2, then remains approximately constant until Â ≈ 0.58 and after this again
begins to increase with the relative strength Â of the Couette component. As to the
higher values of Â, Balakumar found no steady two-dimensional waves in any C-P
flow with Â ≥ 0.59. Then he remembered that earlier several authors (in particular,
Orszag and Kells (1980) and Milinazzo and Saffman (1985)) were unsuccessful in
their attempts to simulate two-dimensional finite-amplitude equilibrium waves in a
plane Couette flow, where Â = ∞, and they concluded that apparently such waves
cannot exist in this flow. Therefore he assumed that there exists the nonlinear critical
relative strength Â (close to 0.59) above which equilibrium two-dimensional wave
cannot exist in a C-P flow (and hence Re∗

cr (Â) = ∞). However, the real situation
is not so simple, since Cherhabili and Ehrenstein (1995, 1997) (whose work was
apparently unknown to Balakumar) found that even in a pure plane Couette flow (i.e.
at Â = ∞) two-dimensional finite-amplitude equilibrium states exist if Re exceeds
the critical value close to 1500, but these states are not of the form of traveling
nonlinear two-dimensional waves, as considered by Balakumar, but are stationary,
spatially localized (solitary-like) waves (more details of this will be presented be-
low). Therefore the question of the possible two-dimensional equilibrium states in
C-P flows with relatively high strength of the Couette component requires further
investigation.

4.2.3.2 Plane Couette and Circular Poiseuille Flows

Now we will turn to the cases of plane Couette and circular Poiseuille flows. It is
known that these flows are stable at any Re with respect to infinitesimal disturbances,
i.e. are similar in this respect to C-P flows with Â > Âcr. Rosenblat and Davis
(1979) noted that in plane Couette and circular Poiseuille flows there exist sets of
infinitesimal disturbances whose decay rates tend to zero as Re → ∞. Therefore,
they suggested that perhaps the value Re = ∞ may be regarded here as a bifurcation
point in the following sense: a branch of finite-amplitude solutions of the complete
nonlinear disturbance equations which, according to experimental data definitely
exists in these cases, may have the property that for Re→ ∞ these solutions tend to
coalesce with the primary (‘basic’) laminar solution of dynamic equations. Rosenblat
and Davis proposed to say in such cases that the corresponding finite-amplitude
solutions bifurcate from infinity. Then they showed that at least for some model
nonlinear differential equations containing a real parameter μ, having the property
that bifurcation of a steady solution cannot occur at any finite value of μ, such
‘bifurcation from infinity’ (i.e., at μ= ∞) can really occur.

Let us begin with the case of plane Couette flow (briefly PCF). Since all infinites-
imal wave disturbances are stable here (i.e., decay as t → ∞), those methods for
rigorous derivation of Landau’s equations and evaluation of their coefficients which
use the assumption that the disturbance studied corresponds to a point of the (k,
Re)-plane lying near the neutral-stability curve cannot be applied here. On the other
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hand, studies of the nonlinear stability of PCF are of particular interest, since only
nonlinear theory can explain the striking contradiction between the prediction of the
linear stability theory about the stability of PCF and the experimental data which
definitely show that, when Re is increasing gradually, PCF becomes unstable at
Reynolds numbers Re (based upon half the channel depth H1 and half-difference of
the wall velocities U1) in the range from 320 to 370, while with further increase of
Re it rapidly becomes turbulent (see Sect. 2.1, pp. 16–17, and the discussion of sta-
bility of Couette flow heated from below in Sect. 4.12). These arguments stimulated
a number of attempts to develop such nonlinear stability theory which can be applied
to PCFs.

Relatively crude attempts of this type undertaken by Kuwabara (1967) and Lessen
and Chiefetz (1975) will be briefly described later. However, we will first consider
the papers by Ellingsen et al. (1970) and Coffee (1977), and, related to their results,
the remarks about stability of PCF by Davey and Nguyen (1971); Itoh (1977a, b) and
Davey (1978), who paid most attention to the nonlinear stability of circular Poiseuille
flow in tubes. All these authors tried to apply, to computation of the development
of two-dimensional normal-mode finite-amplitude disturbances in the PCF, some
modifications of the Reynolds-Potter method which take into account that in the
case considered |γ | cannot be assumed to be small. Remember that in this method
the determination of threshold (‘equilibrium’) amplitudes Ae = Ae(k, Re ) of the
wave disturbances, having the property that dAe/dt = 0, plays the main part.

Ellingsen et al. (1970) showed that in the case of a PCF with a high enough value
of Re, a slightly modified Reynolds–Potter method yields Landau’s Eq. (4.34) for
the amplitude of the least damped two-dimensional wave with given wave number k
and also yields an equation for the coefficient δ allowing its numerical computation.
The computations showed that δ is negative over a large region of the (k, Re)-plane.
Therefore, subcritical instability is possible here and hence the PCF is unstable with
respect to finite-amplitude disturbances. Later Itoh (1977a) showed that the results
of Ellingsen et al. may also be obtained by another more rigorous method without
some of the simplifying assumptions of the latter authors.

Davey and Nguyen (1971) considered slightly different modifications of Reynolds
and Potter’s method. They applied this modification mainly to the study of nonlinear
stability of a tube Poiseuille flow at high values of Re, but also presented some results
of calculations for PCF, giving the dependence of the threshold disturbance energyEe
(corresponding to amplitude Ae) on k and Re. According to their results Ee( Re )3/2

practically depends only on k/( Re )1/2 in PCF with Re ≥ 500, and has a minimum
value at k/( Re )1/2 ≈ 0.13 (we recall that k is made dimensionless by multiplication
by H1). This means that in PCF two-dimensional waves with k ≈ 0.13( Re )1/2

are the most unstable. Later Davey (1978) found that the results of his paper with
Nguyen relating to disturbances in PCF are very close to those which follow from
the application to the same problem of another method of the same type proposed by
Itoh (1977b). More detailed calculations of the values ofAe(k, Re) andEe(k, Re) for
numerous values of the arguments (k, Re), also based on a version of the Reynolds–
Potter method, were made by Coffee (1977), whose results agree satisfactorily with
earlier estimates by Ellingsen et al. and Davey and Nguyen. Since γ < 0 for all



4.2 Landau’s Equation, its Generalizations and Consequences 361

Fig. 4.16 Approximate
location of the curve in the (k,
Re)-plane separating the
regions of positive and
negative values of δ for plane
Couette flow. (After Coffee
(1977)) according to Coffee’s
calculations, δ < 0 to the left
of the given curve but δ > 0 to
the right of it

wave disturbances in a PCF, finite values of Ee and Ae show that δ < 0, while for
δ > 0 the approximate theory based on Landau’s equation leads to the conclusion that
Ee = ∞, so that the flow is stable to disturbances of any size. Coffee’s calculation
implies that the region of the (k, Re)-plane where Ee = ∞ (and hence δ > 0) is
given approximately by the inequality Re ≤ 1.7k2; his graph of the curve dividing
the region where δ < 0 from that where δ > 0 is shown in Fig. 4.16 (here this curve
replaces the dotted curve in Fig. 4.8 showing the points where δ= 0 in the case of
plane Poiseuille flow). Negativity of both γ and δ at a point (k, Re) means that a
two-dimensional equilibrium wave with the wave number k can exist at this value
of Re. Recall, however, that Orszag and Kells (1980) and Milinazzo and Saffman
(1985) were unsuccessful in their attempts to stimulate two-dimensional equilibrium
waves in PCF at any Re while Cherhabili and Ehrenstein (1995) found that some,
quite specific, waves nevertheless exist in PCF, but only for Re close to 1,500 or
even higher (this circumstance was mentioned in part (a) of this section and will be
considered at greater length slightly later). Moreover, in Sect. 4.11 it was indicated
that it follows from the Reynolds-Orr energy-balance Eq. (4.2) that disturbances of
any shape and size must decay monotonically in a PCF if Re ≤ 20.7. These facts
show that the early modifications of the Reynolds-Potter method discussed above,
which had the object of making it applicable to linearly stable flows without a neutral
curve, are apparently inaccurate and deserve no credit.

Let us say now a few words about the papers by Kuwabara (1967) and Lessen and
Cheifetz (1975). Kuwabara’s theory was based on crude assumptions, introduced by
Meksyn and Stuart (1951), which do not require the smallness of the damping rate
|γ |. Moreover, he also used some supplementary hypotheses which seemed dubious
to some later authors (see, e.g., Lessen and Cheifetz (1975)). Kuwabara found that
his assumptions imply the existence of some equilibrium two-dimensional finite-
amplitude disturbances (and hence the positiveness of δ) in PCF if Re is high enough.
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According to his calculations, Re∗
cr ≈ 45, 000 in the case of PCF. Such a high value

of Re∗
cr clearly disagrees with the experimental data and makes one suspect that the

assumptions made are invalid.
A quite different ‘quasilinear’ theory, also strongly influenced by Meksyn and

Stuart’s arguments, was proposed by Lessen and Chiefetz (1975). They took into
account only the distortion of the mean motion by a disturbance. This distortion af-
fects the solutions of the Orr-Sommerfeld equation which determines the shapes of
infinitesimal normal-mode disturbances. A rather crude finite-difference integration
in time of the coupled equations for the distorted mean flow, and the least-stable dis-
turbance corresponding to it, suggested a slow convergence of the disturbed Couette
flow to some stable state.

Above, we mentioned some papers where the determination of the amplitudes for
possible equilibrium two-dimensional finite waves in a plane Couette flow (PCF)
played an important part. However, attempts to simulate such two-dimensional equi-
librium waves numerically were unsuccessful for a long time. In this connection
Orszag and Kells (1980); Patera and Orszag (1981a); Orszag and Patera (1981);
Milinazzo and Saffman (1985), and Balakumar (1997) especially stressed that two-
dimensional finite-amplitude equilibrium waves can be easily simulated in plane
Poiseuille flow and combined Couette–Poiseuille (C–P) flows with not-too-high rel-
ative strength Â of the Couette component, but apparently such waves do not exist
in plane Couette flow. (As was said above, Balakumar even tried to determine the
upper bound of Â-values at which such equilibrium waves exist in a C-P flow; see
Fig. 4.15 and explanations relating to it in the text at the end of Sect. 4.2.3.1).

Recall now that Andreichikov and Yudovich (1972) and Chen and Joseph (1973)
showed that finite-amplitude periodic waves in a plane Poiseuille flow bifurcate
from the steady laminar solutions of the Navier-Stokes equations at the points of the
neutral-stability curve, and Cowley and Smith (1985) found that bifurcations of the
same type occur in C-P flows with Â < Âcr. Since such a curve does not exist in
a PCF, bifurcations of this type are impossible here, and this fact was sometimes
used to explain the non-existence of finite-amplitude wave solutions of the equations
of motion in the case of pure Couette primary flow. However, when discussing the
problem of equilibrium waves in combined Couette-Poiseuille flows we mentioned
that in the ‘supercritical’ cases, where Â > Âcr so that a neutral curve does not
exist, such waves can be produced by a ‘bifurcation from infinity’. Hence it is
natural to think that such bifurcations can also lead to appearance of finite-amplitude
equilibrium wave solutions in the case of primary plane Couette flow.

Apparently the first attempt to find some finite-amplitude solutions of the equa-
tions for disturbances in PCF which correspond to a ‘bifurcation from infinity’ was
due to Nagata (1990). He applied such a bifurcation to find three-dimensional finite-
amplitude standing waves in PCF. In order to find some finite-amplitude disturbance
in PCF corresponding to ‘bifurcation from infinity’, one must first of all determine
a family of auxiliary flows which i) depend on some parameter � and tend to PCF
as � → �0, and ii) have the property that a neutral-stability curve corresponds to
an auxiliary flow with a certain value of the parameter �, and that at a point on the
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neutral curve some finite disturbance bifurcates from the solution of the N–S equa-
tions describing this auxiliary flow. Then it is often possible to extend the ‘composite
solution’ thus obtained (which includes the auxiliary flow and the finite disturbance
superimposed on it) varying the value of �. Assuming now that � → �0 one will
obtain the required finite-amplitude disturbance in PCF.

Nagata considered the family of primary flows between infinite concentric co-
rotating cylinders (i.e., having angular velocities,�1 and�2 of the same sign). Here
the steady solution (describing ‘circular Couette flow’) and solutions correspond-
ing to flows appearing after the most common first supercritical bifurcation (‘Taylor
vortex flows’) are well known, and the three-dimensional steady solutions which
bifurcate from the Taylor vortices as Re increases further have also been investigated
(in particular, by Nagata (1986, 1988)). Assuming that the dimensionless ‘Coriolis
parameter’ Co = (�1 +�2)(R2 − R1)2/v tends to zero (i.e., d =R2 −R1 → 0), Na-
gata (1990) found numerically a branch of three-dimensional finite-amplitude steady
solutions (‘standing waves’) in the limiting plane Couette flow which, according to
his computations, appear abruptly at a Reynolds number Re =U1H1/v around 125.

Nagata’s paper led to a strong revival of interest in finding new finite-amplitude
equilibrium disturbances in PCF arising from bifurcations from infinity. Nagata used
the family of ciruclar Couette flows as auxiliary flows satisfying the above-mentioned
conditions (i) and (ii), but shortly afterwards Clever and Busse (1992) considered,
instead of this, the family of plane Couette flows between lower and upper walls
at different temperatures. They began by considering the well-studied longitudinal
convective rolls in a layer of motionless fluid heated from below, then passed to the
wavy rolls that bifurcate from two-dimensional rolls when the latter become unstable,
and finally replaced the motionless fluid layer by a layer having a linear velocity
profile (the stability of convection rolls in such a flow was studied earlier by Clever
et al. (1977)). Assuming now that Ra → 0 (where Ra is the Rayleigh number) Clever
and Busse determined a family of finite-amplitude three-dimensional standing waves
(of the same type as those found by Nagata) relating to the limiting (non-buoyant)
case of PCF.At the same time Clever and Busse (see also Busse and Clever (1996a, b))
studied many interesting three-dimensional disturbances in a wide class of unstably-
stratified Couette flows which are of great interest in geophysical fluid dynamics.
And later Nagata (1996) considered disturbances in PCF in a conducting fluid, in
the presence of a transverse magnetic field (which destabilizes the fluid motion and
at large enough intensity makes the flow linearly unstable, i.e., a definite neutral-
stability curve appears here, with a finite value of Recr; see Kakutani (1964)). Using
such hydromagnetic auxiliary flows and then letting the intensity of the magnetic
field tend to zero, Nagata again found three-dimensional standing waves of finite
amplitude in PCF, as first found by him in 1990, and even succeeded in considerably
improving the accuracy of computation of their characteristics.

Cherhabili and Ehrenstein (1995) tried to apply the same method to find two-
dimensional equilibrium states in PCF. They began by considering the family of
two-dimensional equilibrium traveling waves of finite amplitude in plane Poiseuille
flow found by Herbert (1977, 1978). Then, adding a Couette component to the pri-
mary Poiseuille flow, they numerically extended the Poiseuille-flow wave solutions
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to the combined Couette-Poiseuille (C-P) flow and then also to the limiting case of
pure Couette flow. The limiting Couette-flow solutions unexpectedly proved to have
the form of spatially-localized two-dimensional standing waves which can exist at
Reynolds numbers (defined in terms of the channel half-thickness and half-difference
of wall velocities) exceeding the ‘critical value’of about 1,500. The authors suggested
that previous attempts to compute finite-amplitude two-dimensional waves in PCFs
failed because everybody looked for the usual traveling waves whereas only stand-
ing two-dimensional waves exist in PCF. Later Cherhabili and Ehrenstein (1997)
investigated stability of these two-dimensional equilibrium states with respect to
secondary two-dimensional and three-dimensional disturbances. The authors found
that the three-dimensional disturbances are the most destabilizing ones; they give rise
to some specific three-dimensional stationary equilibrium states (spanwise-periodic
but streamwise-localized, and thus differing from the three-dimensional states found
by Nagata and by Clever and Busse), bifurcating at points of the neutral-stability
surface corresponding to equilibrium two-dimensional waves of finite amplitude.
These new equilibrium states were found at values of Re close to 1,000.

In 1997 Nagat noted that none of the available experimental data relating
to disturbances in PCF confirmed the existence of time-independent two- and
three-dimensional waves of finite amplitude corresponding to the solutions found
numerically by Cherhabili and Ehrenstein (1995, 1997) and by Nagata himself (see
his papers (1990, 1996)). Therefore he returned to computations of various finite-
amplitude solutions of equations for disturbances in C–P flows, and of their limits
when the relative intensity of the Poiseuille component Q (which can be, e.g., set
equal to the ratio Umax/U(H) of the maximal velocity of the Poiseuille component
to the velocity of the upper wall) tends to zero. This time the main attention was
given to traveling-wave solutions (well known in plane Poiseuille flows). Nagata
(1997) showed that in C-P flows at not too high values of Q there exist two different
branches of finite-amplitude three-dimensional traveling-wave solutions. Only the
first of them was considered in Nagata’s paper (1990); as Q → 0 these solutions tend
to time-independent (‘standing’) three-dimensional waves discovered and studied in
his papers (1990, 1996) (and also found in PCF by Clever and Busse (1992)). How-
ever, there is also a second branch of three-dimensional traveling-wave disturbances
in C–P flows, which was unknown earlier. It was found now that this second branch
may also be located over a wide range of values for Q, and as Q → 0 it turns into two
branches of finite three-dimensional shape-preserving traveling waves. These waves
represent a new class of finite equilibrium wave disturbances which can appear in
PCF if its Reynolds number U1H1/v exceeds 150.

Clever and Busse (1997) (see also Busse and Clever (1996a) and the more gen-
eral earlier discussion of this matter by Busse (1991)) stressed that the steady
three-dimensional equilibrium disturbances found in PCF by Nagata (1990, 1996)
and by themselves (1992), which are also present in circular or stratified Couette
flows, correspond to tertiary solutions of the equations of motion, arising from
the solution describing a steady laminar flow after two subsequent bifurcations.
The two-dimensional steady waves found by Cherhabili and Ehrenstein (1995)
correspond to secondary solution, but the three-dimensional streamwise localized
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equilibrium states discovered by Cherhabili and Ehrenstein in 1997 (and also the
three-dimensional traveling waves found in 1997 by Nagata) again represent tertiary
solutions. Clever and Busse noted the large difference between the ‘critical Reynolds
number’ Re ≈ 125 corresponding to Nagata’s three-dimensional steady equilibrium
states (and also the ‘critical value’ Re ≈ 150 found by Nagata’s (1997) for three-
dimensional finite-amplitude traveling-wave solutions), and the values of Re in the
range from 1,000 to 1,500 which determine the thresholds above which Cherhabili
and Ehrenstein (1995, 1997) found the two- and three-dimensional streamwise-
localized steady equilibrium solutions of equations of motion. Nagata’s ‘critical
values’ are appreciably smaller than the results of experiments and numerical sim-
ulations for the lowest Reynolds numbers Recr at which some disturbances are not
decaying in a PCF but produce persistent turbulent spots there, and also much smaller
than the smallest values of Re at which the turbulence can be sustained in a PCF
(those values do not differ much from Recr). At the same time the ‘critical Reynolds
numbers’ found by Cherhabili and Ehrenstein are much greater than all observed
values of Recr.

These facts forced Clever and Busse (1997) to consider anew the data relating to
the tertiary steady three-dimensional states (having the form of wavy rolls similar
to those often observed in the case of convection) found by Nagata (1990, 1996)
and by themselves in 1992. They recalled that instability of these states had already
been proved by Clever and Busse (1992); Nagata (1993) and Busse and Clever
(1996a), and noted that because of this it was important to study the quaternary
solutions bifurcating from the tertiary ones. Then they found that some interesting
quaternary solutions bifurcate from the tertiary ones at Reynolds numbers not too
much exceeding the ‘critical Reynolds numbers’ at which steady tertiary solutions
start to exist. These quaternary solutions have the form of oscillatory way rolls,
basically differing from tertiary steady waves only by the time variation of their
amplitudes. The comparison of the solutions found with available experimental and
numerically simulated data relating to instabilities in PCFs is not an easy matter,
but the authors noted that some features of the quaternary solutions are similar to
those of the longitudinal vortices found in Couette-flow experiments by Dauchot
and Daviaud (1995) and Dauchot et al. (1996) and in Couette-flow simulations by
Bech et al. (1995) and Hamilton et al. (1995). (Results of more detailed experimental
investigations of the instabilities in PCFs by Bottin et al. (1997, 1998a, b) and Bottin
and Chaté (1998), and numerical simulations by Barkley and Tuckerman (1998,
1999) appeared only later. These papers showed very convincingly the leading role
of streamwise vortices in transition of PCFs to turbulence, and Bottin et al. (1998a),
noting some qualitative differences between the structures detected by the indicated
authors and the equilibrium solutions of Navier–Stokes equations found by Nagata,
Busse and Clever, and Cherhabili and Ehrenstein, nevertheless related these two
types of vortical formations with each other). The possible relation of sequences
of three bifurcations, each of which decreases flow symmetry and makes the flow
structure more complicated, to final transition to turbulence was also discussed in
the papers by Clever and Busse (1993) and Busse and Clever (1996a); moreover,
then Busse and Clever (1996b, 1998) considered also some tertiary and quaternary
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equilibrium states in plane Couette flows between differently heated horizontal walls.
However, at present there are not enough data to make the situation clear. Note
also that the numerical methods used for the study of solutions produced by several
subsequent bifurcations are very complex and their complexity increases greatly with
any loss of symmetry properties; therefore, the accuracy of the current computations
of higher-order states may not be very good.

Now we will pass to the case of circular Poiseuille flow (CPF) in tubes. It has been
already noted in Sect. 2.94 that, in many respects relating to stability, this flow is
similar to plane Couette flow but is much more complicated. Its greater complexity
is reflected, in particular, in the fact that the strict proof of the linear stability of
plane Couette flow was found as long ago as the 1970s, while for CPF such a proof
is unknown up to now although there is no doubt that this flow is linearly stable.
Greater complexity also explains why studies of the nonlinear stability of CPF are
appreciably less numerous than those relating to plane Couette flow and mostly deal
only with axisymmetric disturbances; moreover, the same complexity has led to
some contradictions between the results of different authors.

One of the first attempts to investigate the nonlinear stability of the CPF to ax-
isymmetric wave disturbances, and to estimate the value of the corresponding Landau
constant δ, was made by Davey and Nguyen (1971). They applied Reynolds and Pot-
ter’s (1967) method to this problem and found that δ takes negative values for a wide
range of wave numbers k and Reynolds numbers Re. This means that nonlinearity
destabilizes the flow. Hence the tube flow must be unstable to finite axisymmetric
disturbances, and evaluation of δ allows the determination of the equilibrium ampli-
tudes Ae =Ae (k, Re) and of the neutral-stability surface in the three-dimensional
(A, k, Re)-space. Itoh (1977b), who also considered only axisymmetric disturbances,
developed another method of stability analysis. His theory showed that the spatial
Landau constant δs is positive for all values of Re and of frequency ω considered by
him. (Itoh studied spatial, not temporal, development of disturbances; therefore in his
work the frequency ω replaced the wave number k, and δs replaced δ). Thus, accord-
ing to Itoh’s theory, nonlinear effects stabilize CPF and therefore finite-amplitude
instabilities and equilibrium disturbances cannot exist in this flow (at least to the ap-
proximation that neglects higher powers of amplitude A). The evident contradiction
between Davey and Nguyen’s and Itoh’s conclusions clearly cannot be due only to
the difference between temporal and spatial stability analysis, and in fact Itoh easily
showed that his results directly contradict those of Davey and Nguyen.

In this connection Davey (1978) reconsidered the derivations of the equations for
the Landau constant proposed in his 1971 paper with Nguyen and in Itoh’s paper
(1977b). He found that slightly different approximations were used in these papers
and this led to some difference in the final equations; however, according to Davey,
a special investigation was needed to determine which approximations are more ac-
curate. He noted also that in applications to plane Couette flow the two theories
imply almost identical results, and the difference is also relatively small for some
particular axisymmetric disturbances in CPF which were not considered by Itoh;
but in applications to disturbances in CPF which were actually studied in both pa-
pers, the results of the two theories prove to be contradictory. To clarify the situation,
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Patera and Orszag (1981b) applied direct numerical simulation to development of ax-
isymmetric disturbances in CPF, i.e. they solved the corresponding nonlinear (N-S)
initial-value problems numerically. They paid particular attention to those distur-
bances which were found to be undamped either by Davey and Nguyen (1971) or
by Davey (1978) (who mentioned some axisymmetric disturbances which tended to
equilibrium states according to both the theory proposed by Davey and Nguyen and
that of Itoh). Numerical simulation showed, however, that in fact all these distur-
bances (and also all the other axisymmetric disturbances considered by Patera and
Orszag) are damped. Therefore, Patera and Orszsag concluded that apparently all
axisymmetric disturbances decay in CPF and that the methods used by Davey and
Nguyen (1971) and Itoh (1977b) are probably both inapplicable to CPF. (Remember
however that the remark by Orszag and Patera (1980) about the nonexistence of two-
dimensional equilibrium waves in plane Couette flow was dismissed by Cherhabili
and Ehrenstein (1995)).

Another method for the study of nonlinear stability of CPF, applicable to small but
finite, and in general non-axisymmetric, disturbances in high-Reynolds-number tube
flow was proposed by Smith and Bodonyi (1982). Their theory further develops the
approach initiated independently by Benney and Bergeron (1969) and Davis (1969),
applied to two-dimensional disturbances in plane-parallel flows and then used in a
large number of subsequent papers (see, e.g., discussion of this topic in the book
by Drazin and Reid (1981), Sect. 52.5, and more recent survey papers by Maslowe
(1986) and Churilov and Shukhman (1995)). Benney and Bergeron, and Davis noted
that if Re � 1 andA � 1 (where A is the dimensionless amplitude of the disturbance),
then the linear stability theory (i.e., the linear Orr-Sommerfeld equation) is applicable
only when λ = A( Re )2/3 � 1. However, if λ� 1 or λ≈ 1, then some specific
nonlinear effects play an important part in the vicinity of the ‘critical layer’ where
the phase velocity c of a normal-mode disturbance coincides with the undisturbed
flow velocity U(z). Smith and Bodonyi considered the time evolution of a normal-
mode disturbance with velocity of the form u(x, t) = A exp [i{k(x− ct)+nφ}]F(r),
where all independent and dependent variables are non-dimensionalized by using the
maximal Poiseuille-flow velocity U0 and the tube radius R as units of velocity and
length, F(r) is an O(1) vector function (having all components of the order of one)
and A is a small amplitude factor which determines the order of magnitude of the
true amplitude (whose definition is not unique, though this topic was not considered
in the paper). For the sake of simplicity it was also assumed here that A = Re−2/3,
although it was noted that the majority of the conclusions obtained is also valid
in the case where 1 � A � Re−2/3. The authors looked for equilibrium (neutrally-
stable) solutions and hence the dimensionless phase velocity c (which varies with
k, n, and Re) was assumed to be real; moreover, they also accepted that 0< c< 1.
Careful analysis of the dynamic equations for the disturbance velocities showed that
here (exactly as in the problems studied by Benney and Bergeron (1969) and Davis
(1969)), the nonlinear terms prove to be quite important in the thin ‘nonlinear critical
layer’ (whose thickness is determined just by this condition) where U(z) ≈ c. It was
also found that neutrally-stable disturbances of the form considered here exist in
CPF for 0.284< c< 1 and n = 1 (and the shapes of these disturbances were also
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determined by Smith and Bodonyi); at the same time, arguments were presented
suggesting that no neutral solutions of this form exist for other values of c and n.
The existence of neutrally stable disturbances implies that the Landau constant δ is
negative, and hence unstable disturbances of finite amplitude can exist here. Thus,
Smith and Bodonyi proved that at large values of Re the CPF is unstable to some
small non-axisymmetric disturbances of finite amplitude.

Slightly later the nonlinear stability of the CPF was investigated by Sen et al.
(1985), who used in their work the same version of the equilibrium-amplitude method
of Reynolds and Potter (1967) that was applied by Sen and Venkateswarlu (1983)
to the problem of the stability of plane Poiseuille flow. Sen et al. disagreed with
the popular opinion that Reynolds and Potter’s method has an acceptable precision
only at points (k, Re) near the neutral curve (this opinion prompted Itoh (1977b) to
announce that the indicated method is inapplicable to CPF). Therefore they tried to
use it to study the stability of tube flow to both axisymmetric (with the azimuthal
wave number n = 0) and non-axisymmetric (with n = 1) least-stable central normal-
modes of disturbance (i.e., the modes with the disturbance energy concentrated
mainly near the tube axis; it was for this mode with n = 0 that the results by Davey
and Nguyen (1971) and by Itoh (1977) proved to be contradictory). As in all versions
of Reynolds and Potter’s method, it was assumed beforehand that there exists the
equilibrium state of the normal mode considered, with the time-independent finite
amplitude Ae (i.e., the existence of undamped finite-amplitude disturbances was
postulated). Then the disturbance stream function Ψ(x, r , t) if (n = 0) or velocity
and pressure u(x, r ,φ, t) and p(x, r ,φ, t) if (n = 1) where expanded in powers of
ei[nφ+k(x−ct)] (where n and k are the azimuthal and streamwise wave numbers and c
is the phase speed of the normal wave given by the linear stability theory) and the
terms of the series obtained were represented as the appropriate powers of ampli-
tude multiplied by the normalized disturbance functions. When such forms of the
flow fields were substituted into the equations of motion and the boundary condi-
tions, the solvability conditions for the equations for different terms of power series
allowed successive determination of the values of the complex Landau constants
λm(k, Re ),m = 1, 2, 3, ...., and then to evaluate the equilibrium amplitude Ae from
the real part (4.41) of Eq. (4.41b).

According to the numerical results of Sen et al. there is, for axisymmetric or
non-axisymmetric disturbances and at any Re, a definite range of wave numbers
k for which a finite equilibrium amplitude Ae exists, showing that there are some
undamped finite-amplitude disturbances. As Re→ ∞, Ae → 0 as Re−4/3, and hence
the velocities of the equilibrium disturbances tend to zero as Re−2/3. Some examples
of the radial velocity distributions for equilibrium disturbances, of the dependences
of amplitudes of velocity components on Re, and of the numerical values of about
ten Landau constants λm for some specific values of k and Re, and for n = 0 and 1,
are also presented in the paper. The authors stressed that their analysis had a number
of limitations (relating, e.g., to the ranges of k and n studied, and to the choice
of normal modes), and was based on very complicated calculations which used a
number of approximations; therefore, a check of these results by other methods,
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and their further extension, would definitely be worthwhile. However, apparently no
attempts to carry out such a check were undertaken up to now.

4.2.3.3 Nearly Plane-parallel Boundary-layer Flows

In the constant-pressure boundary-layer flow (BLF) on a flat plate a neutral-stability
curve, and unstable modes of infinitesimal disturbances, certainly exist; in this respect
the stability properties of the flow are simpler to investigate than those of the linearly-
stable plane Couette and circular Poiseuille flows. However in some other respects
BLF is more complex than the two flows mentioned above. First of all, BLF is not
strictly parallel; here the primary steady flow has non-zero vertical velocity W (x, z)
and the conventional thickness of BLF, d(x),8 is not constant but increases in the
streamwise direction Ox. Moreover, BLF extends to infinity in the vertical direction
Oz; therefore the Orr-Sommerfeld eigenvalue problem (corresponding to a simplified
plane-parallel flow model) now has a spectrum which includes both discrete and
continuous components. Infinite vertical extent of the flow also complicates the upper
boundary conditions for the BLF disturbances. It was explained in Chaps. 2 and 3
that in linear-stability studies of boundary layers the parallel-flow approximation is
usually used, i.e., the real BLF with the thickness d(x) is usually replaced by a definite
plane-parallel model (usually by the so-called parallel Blasius model of a flow in the
half-space 0 ≤ z<∞ with the velocity field of the form {U(z), 0, 0}, where U(z) is
the standard Blasius profile corresponding to some fixed boundary-layer thickness
d(x0) which does not depend on the x coordinate). Such a parallel-flow approximation
is often used in studies of the nonlinear stability of BLF too, but here it has a much
more narrow domain of applicability (therefore Stuart in his highly authoritative
review (1971) of nonlinear stability theory expressed doubt about the validity of the
approximation in this case). All these reasons complicate the determination of the
Landau equations for disturbance amplitudes in BLF.

Apparently the first investigation of the Landau equation for boundary-layer flow
was carried out by Itoh (1974b) (some of his results were previously announced
by Tani (1973)). Exactly as in his Poiseuille-flow paper (1974a), Itoh studied the
spatial development of disturbances, using a modification of Watson’s (1962) theory
combined with an extension of the Stuart–Watson approach of 1960. He took it for
granted that at large values of x and Re the streamwise variation of the flow condi-
tions is of minor importance, and hence the streamwise growth of the boundary-layer
thickness d(x) (and of Re(x) =U0d(x)/v where U0 = U(∞) is the free-stream veloc-
ity outside the boundary layer) may be taken into account rather crudely. Thus, he
introduced the contracted streamwise coordinate ξ = (x − x0)/ε, where x0 corre-
sponds to a point far from the leading edge of a plate at x = 0 and ε = d(x0)/x0 is

8 Since the letter δ is now used to denote the Landau constant, the boundary-layer thickness will be
denoted in this (and only in this) subsection as d = d(x). Similarly, the displacement thickness of
the BLF, which is the most widely used vertical length scale of this flow, will be denoted here as
d* = d* (x).
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Fig. 4.17 The regions of
positive and negative values
of the coefficients γs and δs in
the (ω, Re∗)-plane for the
constant-pressure boundary-
layer flow. (After Itoh
(1974b)) ABC: the curve
γs (ω, Re∗) = 0 (the spatial
neutral-stability curve of the
linear stability theory,
bounding the region where
γs > 0); DBE: the curve δs(ω,
Re∗) = 0 bounding the region
where δs > 0

a small parameter. Then he treated the flow in the neighborhood of the point x0 as
homogeneous with respect to the coordinate ζ , and neglected the terms in the equa-
tions of motion which are of order ε2 or higher. The assumption used (which is close
to the plane-parallel approximation) allowed Itoh to evaluate both coefficients of the
spatial Landau equation (corresponding to a two-dimensional wave-like disturbance
proportional to ei(kξ−ωt) where ω is real but k is complex) by a method similar to that
applied in his paper (1974a) to strictly plane-parallel Poiseuille flow. He thus deter-
mined the spatial neutral-stability curve γs(ω, Re∗) = 0 in the (ω, Re∗)-plane (where
Re∗ = d∗ U0/v; U0 and d∗—the displacement thickness of the BLF—will now be
used as velocity and length units in all considerations of the results relating to this
flow making in all physical quantities dimensionless). Then the curve δs(ω, Re∗) = 0
was also computed (recall that γs = b0/2) and δs = −b1 are coefficients of the ‘spatial
Landau equation’). The curves obtained are shown in Fig. 4.17; they are of the same
general shape as the curves for plane Poiseuille flow in Fig. 4.11, and again show that
the spatial Landau constant δs is negative along the upper branch of the neutral curve
but positive on the main part of the lower branch. Finally Itoh tried to compare his
theoretical results with the experimental data of Klebanoff et al. (1962), relating to
disturbances generated by a vibrating ribbon located not far from the leading edge of
a plate in a wind tunnel. However he found that his theory could explain the behavior
of real periodic disturbances only in the case of disturbances with rather small initial
amplitude.

Independetly of Itoh, Herbert (1975) also studied Landau’s equations for the BLF.
However, he considered not spatial but temporal development of two-dimensional
disturbances of given wave number k, i.e. he tried to evaluate coefficients of the
temporal Landau Eqs. (4.34) and (4.40) and the corresponding equilibrium ampli-
tudes Ae = (2γ /δ)1/2. The results obtained were then used to determine the curves
γ (k, Re∗) = 0 and δ (k, Re∗) = 0 in the (k, Re∗)-plane. Herbert’s computations were
based on an approximation of the same type as that introduced by Itoh (1974b) and
naturally led to quite similar results. Similar approximation was used also by Gert-
senshtein and Shtemler (1997), who applied it to computation of the real coefficients
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a1 and a2 and complex ceofficients λ1 and λ2 of Eqs. (4.41) and (4.41b) at the points
of the BLF neutral curve in (k, Re)-plane.

The results of Itoh (1974b) provoked Smith’s (1979b) distrust, since in his paper
(1979a) Smith found that nonparallelism of BLF appreciably affects the disturbance
development. Therefore Smith (1979b) proposed a quite different asymptotic theory
of the nonlinear evolution of two-dimensional disturbances in BLF. He considered
the case where Re is very high and the disturbance amplitude A is sufficiently small
and, using the results of his paper (1979a), derived new values of the coefficients
of the spatial Landau equation for the disturbance amplitude. This derivation will
not be considered here at length; note only that Smith’s computations, relating to
a nonparallel model of BLF, confirmed Itoh’s (1974b) conclusion that the spatial
Landau constant δs , corresponding to two-dimensional disturbances, takes positive
values near the main part of the lower branch of the BLF neutral curve. At the
same time Gajjar and Smith (1985), who used similar methods which also took into
account the flow nonparallelism, found that the influence of nonparallelism does not
change the conclusion, obtained for the parallel model of BLF, according to which δs
is negative near the upper branch of the BLF neutral curve. Let us remind the reader
in this respect that in Chap. 2 it was noted that direct numerical simulations by Fasel
and Konzelmann (1990) and Bertolotti et al. (1992) of the disturbance development
in BLF, and also the careful measurements of this development by Klingmann et al.
(1993), led to the conclusion that the actual effect of nonparallelism of the BLF is
apparently considerably smaller than was suggested in many previous theoretical
papers on this subject (which often contradicted each other). The comparison of the
results of Itoh (1974b); Herbert (1975); Smith (1979b), and Gajjar and Smith (1985)
with each other shows that this conclusion is at least qualitatively (when only the
signs of quantities are taken into account) applicable to values of Landau’s constants
of the BLF too. The same conclusion also follows from the results of a study by
Itoh (1984) of the values of Landau’s constants in the BLF, supplementing his earlier
investigation (1974b).

Trying to improve the simplified treatment of flow non-parallelism used in his
paper (1974b); Itoh (1984) referred to his paper (1977a) where a more accurate
approach to derivation of Landau’s equations for two-dimensional normal-mode
disturbances was suggested. He stressed that this approach is applicable only to
subcritical (i.e., linearly stable) disturbances, and therefore proposed a new modifi-
cation of the Stuart–Watson method, which leads to results similar to those found in
his paper (1977a); this modification made the results applicable to the cases where
supercritical (linearly unstable or neutral) disturbances are studied. Simultaneously,
he also developed a more accurate method for taking the slight flow nonparallelism
into account. Using these modifications he re-evaluated the neutral-stability curve in
the (k, Re∗)-plane for two-dimensional temporally-evolving infinitesimal wave dis-
turbances and computed a new the location of the maximum-growth-rate line of the
supercritical region in this plane, and also the values of Re∗

cr, kcr andωcr (he found that
Re∗

cr ≈ 519, kcr ≈ 0.30, andωcr ≈ 0.12). Then he computed the values of the com-
plex Landau coefficient l = δ+ iδ′ of Eq. (4.40) at the points of the neutral-stability
curve and of the maximum-growth-rate line of the supercritical region (consisting
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of the points (k, Re∗) where γ (k, Re∗) = maxk′ γ (k′, Re∗) and is positive). Compu-
tations of the values of l at points on the maximum-growth-rate line were carried
out by two different methods, the first of which used a version of the parallel-flow
approximation while the second took the flow nonparallelism into account more ac-
curately. The results given by both methods showed that the real Landau constant
δ takes positive values on the main part of the line considered, and that corrections
due to the more accurate accouinting for nonparallelism are inessential at points far
from the neutral-stability curve, but become significant at points near the ‘critical
point’ (kcr, Re∗

cr ) where this line intersects the neutral-stability curve. Therefore the
computations of the values of l on the neutral curve were now performed only by
the second (‘non-parallel’) method. The new computations led to negative values of
δ at all points of the upper branch of the neutral curve, and to positive values of δ
at almost all points of the lower branch (except only the ‘critical point’ and its small
surroundings, where δ takes slightly negative values). These results agree with Itoh’s
previous results shown in Fig. 4.17, and with the above-mentioned results of Herbert
(1975); Smith (1979b), and Gajjar and Smith (1985), showing also that the temporal
and spatial Landau constants γ (k, Re∗) and γs(k, Re∗) apparently usually have the
same signs.

Numerical values of l and δ= �el clearly depend on the definition of the com-
plex amplitude A. In the earlier discussions, the approach developed in the papers by
Stuart and Watson of 1960 was always used, and therefore it was assumed that A(t)
represents the numerical factor entering the leading term of the Fourier expansion of
the initially-infinitesimal normal-mode disturbance satisfying the Orr-Sommerfeld
equation (see, e.g., Eqs. (4.38) and (4.39)). However Itoh (1984) used in the begin-
ning of his paper another particular definition of the disturbance amplitude, based on
the distribution of the vertical velocity w(x, z, t). This definition is mathematically
convenient but it is difficult to measure the corresponding amplitude A in labora-
tory experiments and thus to compare the proposed theory with experimental data.
Therefore Itoh later repeated the computation, now using as A some typical value
of the streamwise disturbance velocity u at the height z = d∗/2. The new values of
l were approximately four times greater than the old ones, but the form of their de-
pendence on Re∗ proved to be practically the same. Itoh also computed the values of
the Landau constant l for three-dimensional disturbances of a special type, namely,
for some special wave packets composed of three-dimensional plane waves. In this
case the values of real and imaginary parts of l proved to be much smaller than the
values corresponding to two-dimensional waves.

Recall that when two coefficients of Landau’s equation (either temporal, or spatial)
are of the same sign, they determine the value of the amplitude Ae of the equilib-
rium disturbance (subcritical if γ < 0, δ < 0, and supercritical if γ > 0, δ > 0). In
the theories where some higher-order real Landau constants am, m ≥ 2, are also
taken into account, the equilibrium amplitude Ae can be determined as the smallest
positive root of the appropriately-truncated Eq. (4.41), if such root exists. On the
other hand according to Reynolds and Potter (1967), the existence of an equilibrium
disturbance can considerably simplify the derivation of the corresponding Landau’s
equation from the equations of motion. Sen and Vashist (1989) applied the method
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of Reynolds and Potter to derivation of the higher-order complex Landau equations
for two-dimensional normal-mode wave disturbances in the plane-parallel model of
the Blasius boundary layer. This derivation was carried out quite similarly to those
of Sen and Venkateswarlu (1983) and Sen et al. (1985) for two-dimensional wave
disturbances in plane and circular Poiseuille flows. Sen and Vashist again considered
the unstable (or the least stable) two-dimensional wave corresponding to given values
of k and Re =U0d/v (or Re∗ =U0d∗/v—they used both definitions of the Reynolds
number) and computed the values of the complex coefficients λm, m = 1, 2, . . . ,8,
for a number of values of Re and k. Then they determined the nonlinear neutral curve
in the (k, Re∗)-plane corresponding to their nonlinear model of the eighth order. It
was shown that the nonlinear effects decrease the value of Recr and increase the
values of kcr approaching the non-linear neutral curve to the experimental data then
available. However, at that time the authors had no accurate enough experimental
data for quatitative comparison with their theory, and they did not try to estimate the
influence of the non-parallelism of BLF, which they neglected in the computations.

Note now that in the case of a strictly parallel flow, equilibrium disturbances
can also be computed by direct numerical simulation (DNS), i.e., by numerical
solution of the corresponding N-S equations (see, e.g., Herbert’s work (1976, 1978,
1983a) relating to plane Poiseuille flow). However, in the case of BLF an additional
difficulty arises from the fact that the Blasius boundaryu layer is not an exact solution
of the N-S equations with standard boundary conditions. Moreover, the boundary-
layer thickness d = d(x) depends on x and hence the disturbance cannot be assumed
to be proportional to eikx

, with k = const. Therefore, to compute the equilibrium
two-dimensional wave-like disturbances in the BLF, Milinazzo and Saffman (1985)
supplemented the N–S equations by a fictitious counter-streamwise ‘force’ which
suppresses the boundary-layer growth and makes the two-dimensional flow with
velocity {U(z) 0, 0}, where U(z) is a standard Blasius profile, an exact solution
of the equations of motion considered. (The authors noted that the inclusion of
such a force is an ‘old well-known idea’ which apparently was due originally to L.
Prandtl). Later Fischer (1995) used the same modification of the equations of motion
for careful evaluation of the Landau constants δ(k, Re) and equilibrium amplitudes
Ae corresponding to a plane-paralle model of the Blasius BLF. On the other hand
Lifshits and Shtern (1986); Lifshits et al. (1989), and Koch (1992) also used the
plane-paralle approximation in their calculations of the BLF equilibrium solutions,
but modified, not the equations of motion but the boundary conditions. Note also
that local parallelism of the flat-plate boundary layer and streamwise periodicity of
the disturbances were simply assumed to be valid in the important studies of BLF
nonlinear stability of Laurien and Kleiser (1989) and Zang and Hussaini (1990).

Milinazzo and Saffman (1985) and Lifshits et al. (1989) considered some partic-
ular examples of equilibrium two-dimensional disturbances in BLF (Lifshits et al.
also presented some examples of special periodic-halving bifurcations). Lifshits and
Shtern (1986) and Koch (1992) tried to determine the neutral surface in the thre-
dimensional (E, k, Re)-space similar to that computed by Herbert (1978, 1983a)
for plane Poiseuille flow (see Fig. 4.12 above). However, in their computations of
equilibrium solutions Lifshits and Shtern (1986) used only the terms of orders zero
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and one in the Fourier expansion of the disturbance stream function Ψ(x, z, t) similar
to (4.38), while Koch discovered in 1992 that in the case of BLF such severe trun-
cation of Fourier series leads to results which can even be qualitatively incorrect.
Therefore Koch also showed results of neutral-surface computations where the sec-
ond harmonic was included in truncated Fourier series forΨ(x, z, t), and additionally
presented graphs of several cross-sections of this surface by the planes Re = const.
and k = const. computed with the help of Fourier series truncated after the nth har-
monic, where n varied from 1 to 6. The results obtained gave much information about
the complicated shape of the neutral surface in the case of BLF and also allowed
an estimate of what truncation is sufficient for obtaining the necessary degree of
precision. Then Koch passed to the important problem of secondary instability of
two-dimensional equilibrium disturbances to small three-dimensional disturbances.
His results relating to this topic, and also the results of simultaneously-published
papers by Stewart and Smith (1992) and Smith and Bowles (1992), provide a very
valuable supplement to the survey of the same subject by Herbert (1988) and shed
additional light on the process of boundary-layer transition.

4.2.4 Amplitude Equations for Disturbances in Free Flows
in an Unbounded Space

4.2.4.1 Plane Mixing Layers and Jets

Now we will pass to consideration of parallel (or nearly parallel) free flows in the un-
bounded space –∞< z<∞ and begin with the case of a strictly plane-parallel plane
mixing layer between two parallel flows in contiguous half-spaces –∞< z< 0 and
0< z<∞, having constant but different velocities {−U0, 0, 0} and {U0, 0, 0} where
U0 is positive. In Sect. 2.93 it was mentioned that a very convenient and widely-used
analytic approximation to the mixing-layer profile is the hyperbolic-tangent profile:
U(z) =U0 tanh(z/H) where H characterizes the mixing-layer thickness. Therefore
we will also use this approximation.

In Sect. 2.93 it was explained that Recr = 0 for the hyperbolic-tangent mixing
layer, i.e. this flow is linearly unstable at any value of Re =U0H/v. The corresponding
neutral-stability curve in the (k, Re)-plane was shown in Fig. 2.35; it suggests that in
an inviscid fluid, where Re = ∞, this flow must be linearly unstable with respect to
two-dimensional wave-like disturbances if kH < 1. This is in fact so, as was proved
long ago by Tatsumi et al. (1964) (see also Sect. 31.10 in the book by Drazin and Reid
(1981)). Assuming that the influence of viscosity must be insignificant at large values
of Re, Schade (1964) tried to calculate the value of the Landau constant δ for the
neutral two-dimensional disturbances with kH = 1 in inviscid flow with a hyperbolic-
tangent velocity profile. He based his calculation on the method of Stuart (1960)
but supplemented it by some simplifying assumptions (in particular, he neglected
the mean-flow-distortion effect on δ). To overcome the difficulty arising from the
singularity of the inviscid Rayleigh Eq. (2.48) (see Sect. 2.82) at the ‘critical level’
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where U(z) = c, Schade introduced viscosity in some of his equations (but, as we will
see below, this was insufficient for obtaining the correct results). His calculation led
to the conclusion that δ > 0 (equal to 32/3π, ifU0 and H are taken as the velocity and
length units) at kH = 1, and hence small unstable disturbances in the mixing layer
with wave numbers slightly smaller than (H)−1 must tend to a finite equilibrium state
as t → ∞. This conclusion also agreed with the results of Stuart’s (1967) study of
equilibrium finite-amplitude disturbances in various inviscid laminar mixing layers
(including the hyperbolic-tangent one). Later Maslower (1977a), who used a method
quite similar to that of Schade (1962), computed, for a hyperbolic-tangent mixing
layer with finite value of Re, the values of δ corresponding to two-dimensional
disturbances with wave numbers k which are equal to or slightly smaller than the wave
number k0 of the neutrally-stable disturbance. His results for neutral disturbances
with k = k0 agreed with Schade’s result for the case where Re = ∞, and showed that
the value of δ is positive at any Re and decreases with decreasing Re. Simultaneously
Maslowe also noted at the end of his paper, that the effect of the mean-flow distortion,
which was neglected in his and Schade’s studies, apparently also affects the value of
δ but he did not elaborate on this remark.

Maslowe (1977a) apparently did not know at the time about the paper by Gotoh
(1968) who also calculated values of the Landau constant δ and of the equilibrium
amplitudeAe = (2γ /δ)1/2 for small finite disturbances in viscous mixing layers, with
very large but finite values of Re and with values of k near the neutral-stability curve.
Gotoh gave special consideration to the contribution of the ‘nonlinear critical layer’
(which also included the effect of the mean-flow distortion) and found that in the
case of a hyperbolic-tangent mixing layer, δ is positive at all the values of Re and k
he considered, and is given by equations

δ = 16.35( Re )1/3
[
1 + 0.25

(γ

k

)
Re
]

, if
γ

k
< ( Re )−1/3, (4.45)

and

δ = 0.5k4

γ 3
, if

γ

k
> ( Re )−1/3, (4.45a)

where δ, γ and k are non-dimensionalized in the usual way. (Note also that γ is
a smooth function of k, vanishing at the wave number k0 of the neutral distur-
bance; therefore, under the natural assumption that this function is differentiable
with nonzero first derivative, γ ∝ (k0 − k) near the neutral curve). These results
clearly disagree with Schade’s conclusion relating to Re = ∞. However, Michalke
(1972), who supported Gotoh’s criticism of the results of Schade (1964), asserted at
the same time that Gotoh’s results are also erroneous, since the value of δ must be in-
dependent of the value of γ . As will be indicated below, this conclusion by Michalke
was later found to be groundless; nonetheless, it was possibly one of the reasons why
Gotoh’s paper was totally forgotten for a number of years, while the incorrect result
by Schade was repeatedly reproduced, as a particular case of some more general re-
sults, in papers by Stuart (1967); Benney and Maslowe (1975); Maslower (1977a,b),
and Huerre (1977) (Fig. 4.18).



376 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

Fig. 4.18 Comparison of the
values of λ1(Re) = −δ(Re)/2
for the neutral wave
disturbances in a
hyperbolic-tangent mixing
layer, computed by Fujimura,
with Gotoh’s asymptotic
equation λ1 = λG

1 =
−8.177Re1/3 for Re � 1
(After Fujimura (1988))

Huerre (1980) tried to develop a new theory of the nonlinear stability of small free-
shear-layer disturbances, based on the approach applied by Benney and Bergeron
(1969); Stewartson and Stuart (1971) and Benney and Maslower (1975) to studies
of the space-time development of wave packets with amplitude A = A (t, x) in high-
Reynolds-number parallel shear flows and leading to a nonlinear parabolic partial
differential equations of the Ginzburg–Landau type for the function A (t, x) (see the
last paragraph of Sect. 4.22 and the related paper by Huerre and Scott (1980)). In his
paper of 1980 Huerre came to the incorrect conclusion that in the hyperbolic-tangent
mixing layer Landau’s constant δ= δ (k, Re) is negative for wave numbers k near
the neutral curve, and hence no equilibrium finite-amplitude states can exist here for
waves which are slightly unstable according to linear theory. However later he found
an error in his paper of 1980, whose correction (presented in Huerre (1987)) led him
to the conclusion that δ is positive at all large enough values of Re and small values
of k0 −k, and is proportional to Re1/3 (with the same coefficient of 16.35 which
was earlier found by Gotoh) in cases when Re is sufficiently large and k = k0 (i.e.
γ = 0). The inaccuracy of Huerre’s paper (1980) was discovered independently by
Churilov and Shukhman (1987) who also solved the same problem more accurately
and obtained, under the condition that Re � 1 and (Re)−1 � γ � (Re)−1/3, the same
Eq. (4.45) for δ which was found by Gotoh (1968). (Apparently neither Churilov and
Shukhman, nor Huerre, knew in 1987 about Gotoh’s paper of 1968). Finally Fujimura
(1988) applied the general amplitude expansion proposed by Herbert (1983b) to the
computation of Landau’s constant δ for small, slightly-unstable, disturbances in
a hyperbolic-tangent mixing layer. He found that, for large enough values of Re,
numerical values of δ obtained in this way agree well with Gotoh’s asymptotic Eqs.
(4.45) and (4.45a), and computed also the Landau constants a2 and a3 of the next two
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Fig. 4.19 The dependence on
Re =U0D/v of the values of
γD2/v (a), ω1D2/v (b), and
δ’/δ (c) in the circular-
cylinder wake according to
measurements of the
development of controlled
wake oscillations at the point
x = {x, y, z} = {8D, 0, 4D}
behind the cylinder. (After
Schumm et al. (1994)).
Symbols O and � correspond
to two different methods of
wake-oscillation control

a

b

c

orders, showing in particular that a2 is negative (i.e., stabilizes the flow) in a wide
ragne of Re and k values. An example of Fujimura’s results is given in Fig. 4.19 where
computed values of λ1 = −δ/2 for neutral disturbances with k = k0 (i.e., with γ = 0)
and Reynolds numbers in the range 20 ≤ Re ≤ 50,000 are compared with Gotoh’s
asymptotic equation λG1 = −δG/2 = −8.177( Re )1/3, valid at Re � 1.9 Note also

9 Fujimura found numerically, and also proved analytically, that for neutral two-dimensional dis-
turbances for the difference δ−δG in fact tends to a constant�δ as Re → ∞. According to both his
computations and his analytical results �δ is close to 57.
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that still later, in their extensive survey of work on the influence of the critical layer
on nonlinear development of small disturbances in weakly supercritical shear flows,
Churilov and Shukhman (1995) also indicated that the old paper by Gotoh (1968) gave
correct results. Simultaneously they showed that the critical-layer contribution alone
often leads to very high values of the Landau constant δ, and sometimes produces
amplitude equations of a form quite different from that proposed by Landau in 1994.

Comparision between experimental data and the above theoretical estimates for
the values of Landau’s constant in a mixing layer (or similar estimates relating to
other parallel flows in unbounded space) is rather difficult. In fact the the theory con-
sidered above deals mainly with slowly-growing wave disturbances in such flows
corresponding to (k, Re)-points near the neutral curve, while in real life the most im-
portant role in instability phenomena is played here by modes which are maximally
(or almost maximally) amplified, and hence far from neutral. The rapidly-growing
most-unstable waves later generate subharmonic waves with half the frequency of
the dominant mode, and the interaction of the dominant mode with subharmonic
ones and with the mean flow cannot be described by the Landau-type theory (see,
e.g., the old survey of appropriate experimental data by Miksad (1972) and the more
recent paper by Monkewitz (1988a) containing many additional references). How-
ever, this does not mean thtat Landau’s theory is useless for quantitative description
of instability phenomena in free shear flows; see in this respect the discussion of
wake-flow instabilities below.

Plane jets in an unbounded space represent type of plane-parallel flows having
some similarities with the parallel mixing layers. It was mentioned in Sect. 2.93 that
the most widely-used model of the corresponding velocity profile U(z) is the so-called
Bickley jet profile U(z) =U0 sech2 (z/H), where –∞< z<∞ and H characterizes
the jet thickness (see Eq. (2.87), unlike the hyperbolic-tangent approximation for
the mixing layer this profile is an exact analytical solution of the boundary-layer
equations). The problem of nonlinear evolution of normal-mode disturbances in the
Bickley jet has attracted less attention than the same problem for the hyperbolic-
tangent mixing layer and we will not discuss it in detail. Note only that Gotoh
(1968), in parallel with his work on development of disturbances in the mixing layer,
considered the same problem for the case of Bickley’s jet and found that here again
equations of the form (4.45) and (4.45a) are valid. However, now the numerical
coefficients 16.35 and 0.25 in Eq. (4.45) must be replaced by coefficients 2.19 and
1.5., while the new value of the coefficient in Eq. (4.45a) was not indicated by Gotoh.
His results relating to the Bickley jet, unlike his results for the hyperbolic-tangent
mixing layer, have not yet been confirmed by other authors but one may conjecture
that they are valid too. Some remark about the instabilities of round jets will be made
at the very end of this section.

4.2.4.2 Wake Flows: the Case of a Circular-cylinder Wake

Let us now consider nearly plane-parallel wake flows with velocity profiles of the
type shown in Fig. 2.31c. In Chap. 2 it was indicated that the ‘Gaussian’ velocity
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profile (2.89) describes, accurately enough, the velocity distribution in the laminar
wake behind a thin flat plate parallel to the free stream. Some remarks about the
nonlinear instability of wakes behind flat plates will be made in the part (c) of this
section, but most attention will be paid here to the most important and most widely
studied plane wakes behind long cylindrical bluff bodies of constant cross-section, in
uniform flows with free-stream velocity U0. constant and normal to the body length.
As in Sect. 2.93 it will be assumed below that the axis Oy is parallel to the cylinder
axis (and defines the ‘spanwise’ direction), while the axis Ox is directed along the
direction of the oncoming uniform flow and the midpoint of the body is chosen as
the origin of coordinates.

Let us begin with the case of circular-cylinder wakes, while the wakes behind some
other spanwise homogeneous bodies will be briefly considered later. It is well known
that when Reynolds number Re =U0D/v is gradually increased the flow around a
circular cylinder of diameter D undergoes a whole series of remarkable transforma-
tions produced by a number of instability phenomena (see, e.g., Sects. 3.3 and 17.8
in the textbook by Tritton (1988), the survey by Coutanceau and Defaye (1991), the
nice old survey paper by Morkovin (1964), and-for more details-the recent book by
Zdravkovich (1997), vol. 1 of which (vol. 2 has not appeared at the time of writing)
is about 700 s long and contains a huge bibliography which, however, does not in-
tersect too much with that at the end of this chapter). In the present section devoted
to Landau’s equation, the first two transformations of the cylinder wake are the most
interesting. The first of them takes place at Re ≈ 4 (this Recr = Re0, cr corresponds
to the origin of linear instability of a laminar wake) and leads to a steady wake flow
of a new type characterized by the appearance of the recirculation zone just behind
the cylinder, the size of which slowly increased with Re and which consists of two
symmetrical stationary vortices attached to the rear of the cylinder (for more data
about this flow see, e.g., Coutanceau and Bouard (1977) or Zdravkovich (1997)).
The second transformation leads to the formation at some Re = Re1, cr above 40 of
the von Kármán (or, as it is also sometimes called, the Bénard-von Kármán) vortex
street10, consisting of a double row of opposing vortices, convected downstream
and producing wake oscillations (see, e.g., the excellent Photos 94–98 in the album
by Van Dyke (1982)). The appearance of the vortex street is due to the ‘shedding’
of vortices periodically torn away from the back of a cylinder with a frequency f
coinciding with the frequency of the wake oscillations. The next transition to a three-

10 These names mark the contributions by Kármán (1911) (and Kármán and Rubach (1912)) and by
Bénard (1908) to the investigation of this phenomenon. Note, however, that in fact the formation
and subsequent ‘shedding’ of vortices behind bluff bodies was observed and repeatedly sketched
by Leonardo da Vinci about the year 1,500 (one of his brilliant drawings opens Zdravkovich’s book
of 1997) and has been studied at least from the days of Strouhal (1878) who, in particular, first
measured the frequency f of arising wake oscillations.
Experimental data show that critical Reynolds number Re1,cr depends on the cylinder aspect ratio
L/D (where L is the length of the cylinder) and boundary conditions at the cylinder ends; usually this
number takes values between 40 and 50. It was however noted that under some special conditions
a short vortex street (which is not stable and is wholly located in a region near the cylinder) can be
excited at smaller values of Re between 22 and 40 (see, e.g., Plaschko et al. (1993)).
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dimensional flow regime occurs usually at Re = Re2,cr ≈ 170–190; it will be briefly
considered at the end of the present part b of this subsection.

The Reynolds number Re1, cr (below it will often be simply denoted as Recr) is the
threshold value for the appearance of instability of the steady wake flow arising at
Re = Re0, cr, which leads to its transition to a new oscillating regime. Such a transition
clearly represents a Hopf bifurcation. The corresponding value of Recr was theoret-
ically evaluated by a number of researchers-in particular, by Zebib (1987); Jackson
(1987); Morzyński and Thiele (1991, 1992, 1993), and Noack and Eckelmann (1992,
1994a) whose results do not differ too muich from each other, from the available
experimental data, or from estimates of this number given by numerical simulations.
The methods used by by these authors were different from those described in Sects.
2.8 and 2.9, since here non-parallel stability analysis was used (i.e. the flow around
the cylinder was not assumed to be plane-parallel). However, as a rule this flow
was assumed to be two-dimensional (independent of the spanwise y coordinate) and
was given as the steady solution of the two-dimensional Navier-Stokes equations
satisfying the appropriate boundary conditions. The use of the two-dimensionality
assumption clearly means that here only the centrial part of the wake behind a long
cylinder with large enough value of L/D (where L is the cylinder length) is consid-
ered. As to the temporal development of the wake oscillations occurring at Re>Recr,
it was successfully described by Landau’s equations in a number of papers which
will be considered below. Note that in contrast to the above discussion of the cases
of plane mixing layers and jets, these papers concentrated, not on the mathemati-
cal evaluation of the Landau coefficients for some given primary velocity profiles
U(z), but on the investigations of the disturbance development in real wake flows.
Therefore below Landau’s equations will not be applied to the idealized neutral or
nearly-neutral normal modes, corresponding to points of the (k, Re)-plane neigh-
boring the neutral curve, but to the most-unstable disturbances, which suppress all
the others and play the dominant part in the observed disturbance development. This
implies, in particular, that the coefficients of these equations will now depend on Re
but not on k, since the value of Re uniquely determines the wave number of the most
unstable wave disturbance.

Apparently Mathis (1983) and Mathis et al. (1984) where among the first ex-
perimenters to show that the ‘shedding of vortices’ and formation of the vortex
street in a flow around a long circular cylinders represents a Hopf bifurcation which
can be described by Landau’s equation. Therefore the complex Landau Eq. (4.40).
(which, as mentioned above, is also often called the Stuart–Landau equation), having
the complex coefficients ω and l, was introduced here for the complex amplitude,
A(t) = |A(t)| eiφ(t), of the ‘vertical’(i.e. ‘transverse’or z-wise) velocity w (t) of wake
oscillations at a fixed point inside the wake (namely, at the point with coordinates
(5D, 0, 0)). The complex equation for A(t) was then replaced by two real equations
for the functions |A(t)| and φ(t) (both of which have been already given in Sect. 4.21):

d|A|2
dt

= 2γ |A|2 − δ|A|4, (4.34)
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dφ

dt
= −ω1 − 1

2δ
′|A|2 (4.34a)

where ω1 + iγ =ω, δ+ iδ′ = l.
Laser-Doppler-anemometer measurements by Mathis, and Mathis et al., of the

velocity w (t) in the wakes of a number of cylinders plaed in a wind-tunnel were
made at various values of Re and confirmed that γ ≈ b( Re −Recr) at small values
of Re–Recr where Recr ≈ 47 and b = const. ≈ v/5D2 if the aspect ratio L/D is large
enough. (At small values of L/D, Recr takes greater values—this observation by
Mathis et al. agreed with results of some preceding experiments and later it was
confirmed, in particular, by Lee and Budwig (1991) and Norberg (1994)). At the
same time the coefficients δ, δ’ and ω1, in contrast to γ , do not vanish at Re = Recr,
and their values at small values of Re – Recr may be approximated by two-term
relations:

δ ≈ δ0 + δ1( Re − Recr), δ′ ≈ δ′
0 + δ′

1( Re − Recr),

ω1 ≈ ω10 + ω11( Re − Recr),
(4.46)

where δ0, δ′
0 and ω10 are the values of these coefficients at Re = Recr, and δ1, δ ’1

and ω11 are their derivatives with respect to Re at this point. As has been already
repeatedly noted above, it follows from Eq. (4.34) that if δ > 0, then a Hopf bifurca-
tion of the disturbed flow occurs at Re = Recr and, at slightly supercritical conditions
(i.e., when Re>Recr but Re – Recr is small), a small initial disturbance tends to a
equilibrium state with the amplitude Ae = (2γ /δ)1/2 ≈ (2b/δ0)1/2 (Re – Recr)1/2. The
existence of equilibrium amplitude Ae in supercritical wake flows was confirmed by
the experimental data of Mathis et al. (and of many other authors); thus, the data
definitely show that δ > 0 in the case of the most unstable disturbance in the wake
behind a circular cylinder. The data show also that the relation Ae ∝ (Re – Recr)1/2,
which corresponds to the first term of the Taylor-series expansion of (2γ /δ1/2) in
powers of Re – Recr, is valid even when Re – Recr is not too small. Hence the
derivative δ1 is rather small in absolute value and may usually be neglected. (The
same conclusion follows from the validity of the relation (4.47), below, over a wide
range of Reynolds numbers). Moreover, measurements of the values of δ/δ′ at vari-
ous Reynolds numbers, which will be described below (see, in particular, Fig. 4.19c)
show that this quantity also is independent of Re over a considerably range of super-
critical Reynolds numbers. Hence the derivative δ′

1 may also be neglected, and both
coefficients δ and δ′ may be considered as being independent of Re.

Note that (1/2π )(dφ/dt) = f is just the local frequency of oscillations of the
wake amplitude A(t), while peak-to-peak value 2|A| of these oscillations is equal
to the double equilibrium 2Ae. Hence Eqs. (4.34) and (4.34a) (the first of which
determines the value of Ae) together with the equation γ = b( Re − Recr) imply the
equation

Ro = aRe − a1, (4.47)

Where Ro = fD2/v is the so-called Roshko number, a = −[(b(δ′/δ) − ω11]D2/

2πv, and a1 = {ω10 − [b(δ′/δ) − ω11]Recr}D2/2πv. The dimensionless quantity
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fD2/v was introduced by Roshko (1953, 1954), who also showed that over a wide
range of Reynolds numbers its dependence of Re =U0D/v is given by an equation
of the form (4.47) with constant coefficients a and a1. Therefore Eq. (4.47) is often
called the Roshko equations though in fact the same equation, written in the form

St = a − a1/Re, (4.47a)

where St = fD/U0 = Ro/Re is the so-called Strouhal numbers was employed
by Rayleigh (1915) (see also Rott (1992) and Williamson (1995, 1996a)). Thus,
the empirical ‘Ro-Re’ and ‘St-Re’ relations (4.47–4.47a) are fully compatible with
Landau’s equation.

The experimental data by Mathins et al. (1984), for cylinders with not too small
values of the aspect ratios L/D, agreed with Roshko’s eqution (4.47) with constant
coefficients a and a1 only in a limited range of Reynolds numbers from Re = Recr ≈
47 to Re≈ 90. When the value of Re was increased further, the character of the wake
oscillations changed discontinuously and then the values of a and a1 also changed.
Mathis et al. noted that abrupt changes of the regime of wake oscillations found
by them agree with earlier results of Tritton (1959, 1971) and Gaster (1971). Later
the nature of these changes, their dependence on the value of L/D and on the end
conditions at y = ± L/2, and possible methods for getting rid of the changes were
discussed by a number of authors; see, eg., Slaouti and Gerrard (1981); Lee and
Budwig (1991); Szepessy (1993), and the subsequent discussion of this topic after
Eq. (4.49) where additional references will be given.

More detailed experimental studies of disturbance behavior in wakes behind circu-
lar cylinders were later carried out both by the group with which Mathis collaborated
(see Provansal et al. (1987); Provansal (1988)) and by some other researchers (see,
e.g., Strykovski (1986), whose dissertation covered much the same ground as that
of Mathis (1983); Sreenivasan et al. (1987); Strykovski and Sreenivasan (1990);
Schumm (1991); Schumm et al. (1994); Park (1994), and the survey by Monkewitz
(1996)). These authors also based their studies on the Landau model and performed a
number of careful measurements which allowed them to determine, at some points of
the cylinder wake, the values of all coefficients of Landau’s Eqs. (4.34) and (4.34a) at
various values of Re. These determinations used methods of wake control allowing
the wake oscillations (always existing if Re>Recr) to be switched off (completely
or partially) and then switched on again very rapidly. Observing, at different values
of Re, the rate of growth with time of the amplitude |A(t)| of the disturbance velocity
from the initial small value to the final equilibrium value Ae, one may find the coef-
ficients γ and δ of Eq. (4.34) and their dependence on Re. In this way it was found
that δ is usually independent of Re, while γ satisfies the relation γ = b( Re − Recr)
where the values of Recr and b can also be determined from experimental data. More-
over, measurements of the frequency f of equilibrium wake oscillations at various
Reynolds number determined the dependence of Ro = fD2/v on Re, verified the
Roshko Eq. (4.47) and gave the values of coefficients a and a1. Using these values,
and also the values of δ, b and Recr given by the results of amplitude measurements,
one may also determine the values of bδ′/δ−ω11 and ω10. On the other hand, one
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may observe, at various values of Re, the increase with time of the frequency f of
wake oscillations from the moment of their switching on (when |A| = 0 and hence
f = –ω1/2π) to the final equilibrium conditions (when |A| =Ae). Such observations
make it possible to determine the dependence of ω1 on Re (and the values of coeffi-
cients ω10 and ω11) and to chek the value of Recr already found. When this is done,
the coefficients a and a1 may be computed a new, to compare their new values with
those implied by the experimental verification of the Rayleigh-Roshko laws (4.47)
and (4.47a).

The method of control used by Strykovski, and Sreenivasan et al. (and also by
Mathis, and Mathis et al). consisted of the quick reduction, perhaps to zero, of the
free-stream velocity, with a subsequent quick return to its initial value U0 (corre-
sponding to given Re>Recr). Schumm, Schumm et al., and Park, also employed
several other control methods such as bleeding of fluid from the rear part of the cylin-
der, wake heating, or forced vertical vibrations of a cylinder with a small amplitude
a0 � D. (All these operations at supercritical Re>Recr strongly suppress vortex
shedding; see, e.g., Monkewitz’s surveys (1993, 1996) and the papers on wake
control by Roussopoulos (1993); Schumm et al. (1994); Park et al. (1993, 1994);
Park (1994); Roussopoulos and Monkewitz (1996); Gunzburger and Lee (1996),
and Gillies (1998) containing many additional references). However, the above-
mentioned control methods are applicable only at supercritical Reynolds numbers
and can provide no information about the values of coefficients of Eqs. (4.34–4.34a)
at Re<Recr. To obtain such information Sreenivasan et al., Schumm et al., and
Park used some methods of ‘subcritical wake control’, i.e. of artificial forcing of the
vortex shedding and wake oscillations of the appropriate frequency at subcritical con-
ditions characterized by the given value of Re which is smaller than Recr. Applying
this forcing, and then switching it off rapidly and observing the subsequent damping
of oscillations, one may obtain data relating to values of the Landau coefficients at
subcrtical Reynolds numbers.

Sreenivasan et al. (1987) measured (by both hot-wire and laser-Doppler anemome-
ters) wake velocity fluctuations behind the central parts of three cylinders with aspect
ratios L/D = 60, 27 and 14 at several values of x/D and z/D and values of Re in the
range 35<Re< 100. They found (as Mathis et al. did earlier) that the characteristics
of wake oscillations vary (though not too much) with the cylinder aspect ratio, and
most attention was paid to the case where L/D = 60, in the hope that the results would
also be representative of greater values of L/D. It is natural to think that the com-
plex constant ω=ω1 + iγ is simply the most unstable eigenvalue (i.e., that having
the greatest imaginary part) of the Orr-Sommerfeld equation corresponding to the
plane-parallel model of the wake velocity profile. If so, then this constant is a global
stability characteristic which does not depend on the point in the wake at which
observation is carried out (see the closing paragraph in Sect. 2.93, and the supple-
mentary discussion of this topic at the beginning of the subsequent small-type text).
However, the constants δ and δ′ are apparently position-dependent and depend also
on the choice of the measured flow characteristic and the definition of the amplitude
A. (However Sreenivasan et al. found that the in the range 3< x/D< 7 the spatial
variations of these constants are small and may be neglected). As to the ratio δ′/δ, it
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affects the values of coefficients a and a1 of the Roshko equation and hence must be
independent of both the point of observation and the value of the Reynolds number.
According to measurements by Sreenivasan et al., Recr ≈ 46 in the wake behind a
circular cylinder with L/D> 60 and

γD2/v ≈ 0.20( Re − Recr), ω1D
2/v ≈ −34.3 − 0.7(R − Recr), (4.48a)

δD2/v ≈ 134, δ′D2/v = −404 (4.48b)

(so that Rocr = (−ω1D
2/2πv)cr ≈ 5.45, δ′/δ ≈ −2.90).Note that Sreenivasan et al.,

who did not know about the work of Mathis (1983) and Mathis et al. (1984), found
exactly the same dependence of γD2/v on Re – Recr as the latter authors and nearly the
same value of Recr. Results of more numerous and careful measurements by Schumm
(1991) and Schumm et al. (1994), who investigated wakes behind several circular
cylinders with L/D ≥ 50 and applied several different methods of wake control, prove
to be very close to that found by Sreenivasan et al.: according to Schumm et al.

Recr = 46.7 ± 0.3, γD2/v = [0.21 ± 0.005]( Re −Recr), (4.49a)

ω1D
2

v
= −[33.6 ± 0.3] − [0.64 ± 0.02)( Re −Recr),

δ′

δ
= −[2.90 ± 0.45]

(4.49b)

(see Fig. 4.19 where results of their measurements of coefficients of Eqs. (4.34) and
(4.34a) at different values of Re =U0D/v are shown). Close results were obtained
also by some other researchers; for example, Albarède and Monkewitz (1992) came
to the conclusion that δ′/δ= −3 ± 0.6, while numerical simulations of wake flows
by Dusék et al. (1994) led to the estimate δ′/δ ≈ −2.7, and according to laboratory
measurements by Albarède and Provansal (1995) δ′/δ= – 2.6 ± 0.7.

Sreenivasan et al. (1987) noted that the values of coefficients a and a1, implied by
their estimate of Recr and of the Landau coefficients (4.48), do not differ too much
from empirical values of a and a1 recommended by Roshko (1954), while Monkewitz
(1996) more methodically compared values of a and a1 given by estimates (4.49)
with values which agree best with empirical St-Re relations. Such a comparison
is not an easy matter, since the Strouhal number in a cylinder wake depends on a
number of factors. As was shown by Gerrard (1978) and Williamson (1989, 1995,
1996a), the empirical forms on the St-Re relation for the wakes behind circular
cylinders, collected over a period of more than one hundred years (beginning with
the frequency data of Strouhal (1878)), are very scattered. This scatter evidently
cannot be explained by errors of measurements since both Re and St numbers can be
easily measured with a high accuracy. (Oscillations of two-dimensional wakes have
the unique frequency f = f (Re) coinciding with the frequency of vortex shedding;
in the case of three-dimensional wakes, several discrete oscillation frequencies and
even the continuous frequency spectrum often exists, but at small and moderate
values of Re here too the unique dominant frequency f can be measured accurately
by means of numerical or instrumental spectral analysis). Therefore, the scatter must
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have another explanation. Recall now that, according to the above discussion of the
experimental data by Mathis et al. (1984), the values of a and a1, which correspond
to these data depend on both the cylinder aspect ratio L/D and the range of Reynolds
numbers considered, and this dependence was also found to be in agreement with
results of some earlier observations of wakes behind circular cylinders. Let us add
to this that more recent experimental and numerically-simulated data both show that
the character of the vortex street behind a cylinder strongly depends on the boundary
conditions at the cylinder’s ends, and that usually the ordinary ‘parallel shedding’ is
replaced at some Res >Recr by ‘oblique shedding’at some angle θ to the cylinder axis
(see the papers mentioned at the end of the first new paragraph after Eq. (4.47a), and
the papers by Williamson (1988a, 1989, 1995, 1996a); Norberg (1994); Persillon
and Braza (1998) and references therein). The data show also that the frequency
of wake oscillation f and the Roshko and Strouhal numbers Ro and St, which are
proportional to it, in the case of oblique shedding depend on the ‘shedding angle’ θ .
It is clear that such dependence must affect the Ro-Re and St-Re relations violating
their universality. Moreover, the data presented in the above-mentioned papers (and in
those by Williamson (1988b, 1996b, c); Coutanceau and Defaye (1991); Konig et al.
(1990, 1992, 1993); Hammache and Gharib (1993); Brede et al. (1994); Zhang et al.
(1995); Thompson et al. (1996); Henderson (1997), and Leweke and Williamson
(1998), among many others) show that at some greater value of Re the primary mode
of ‘oblique shedding’ is replaced by another three-dimensional mode, which in its
turn can be replaced by a more complicated flow regime in the range of still greater
Re numbers.

In the late 1980s and 1990s it was also proved that at moderate values of Re the
oblique shedding is always due to ‘end effects’ caused by finite length L of a cylinder
and that the shedding angle θ depends on the spanwise boundary condition at cylinder
ends which play a very important part even at large aspect ratios L/D> 100. This
dependence allows the value of θ to be changed by a proper modification of either
the cylinder end conditions (dependent on the method of supporting the cylinder)
or the flow near the cylinder ends. Therefore one may pass to the parallel regime
of vortex shedding by appropriate change of flow configuration near the cylinder
ends. In particular, it was found that the parallel regime may be caused by small
increase of the undisturbed velocityU0 =U0(y) near y = ± L/2, or by suction of small
amounts of fluid from just downstream of the ends of a cylinder, whereas without
any manipulation affecting boundary conditions, parallel shedding at relatively large
values of Re can be attained only at an aspect ratio wellover 1000 (see again the papers
referred above and also those by Eisenlohr and Eckelmann (1989); Hammache and
Gharib (1989, 1991); Albarède and Monkewitz (1992); Norberg (1994); Miller and
Williamson (1994); Monkewitz (1996), and Monkewitz et al. (1996)).

Since the changes of boundary conditions may often be achieved in laboratory
experiments by means of some simple mechanical devices, and can also be easily
incorporated in numerical simulations, a number of high-quality frequency deter-
minations was carried out during the last decade, in circular-cylinder wakes near
mid-span, under conditions guaranteeing the regime of ‘parallel vortex shedding’.
The results obtained in numerous experiments were collected by Williamson (1988a,
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Fig. 4.20 ‘Universal St-Re relation’ found by Williamson for the case of purely parallel vortex-
shedding regime of the wake behind a circular cylinder at moderate Reynolds numbers, and its
comparison with available experimental data. (After Williamson (1996a)). Various symbols repre-
sents experimental data by Williamson and his coworkers, various curves–the data of other authors;
WT : wind-tunnel data; XYTT : results obtained in a special water tank facility. The numbers after
the facilty marks indicated the cylinder aspect ratios L/D

1989, 1995, 1996a) in the form of ‘universal St-Re relation’ shown in Fig. 4.20. The
data in this figure include the measurements made both in wind tunnels and water-
tank facilities, by a number of different techniques, and covering the Re-range from
Recr ≈ 50 and to Re≈ 180. Very similar results were also found in numerical simula-
tions of the cylinder wake by Karniadakis and Triantafyllou (1989); Thompson et al.
(1996); Persillon and Braza (1998), and some others. Moreover, Prasad and Willaim-
son (1997) showed also that, by the appropriate adjustment of boundary conditions
at cylinder ends, one can make vortex shedding parallel also in the case of wakes
characterized by high Reynolds numbers much exceeding the values considered in
Fig. 4.20. However, in this case the parallel-shedding flow regime quickly becomes
three-dimensional and its St-Re relation is no longer universal (this matter will be
discussed at greater length at the end of this part of Sect. 4.24).

According to Williamson the empirical St-Re relation shown in Fig. 4.20 may
be best approximated by a three-term equation of the form St = a − a1/Re + a2Re
(where a = 0.1816, a1 = 3.3265, and a2 = 1.6 × 10−4). However, Monkewitz
(1996) found that two-term approximation (4.47a), with coefficients a = 0.199 and
a1 = 3.94, which corresponds to estimates (4.49), in indistinguishable at small and
moderate values of Re – Recr from approximation suggested by Williamson, and
only at Re≈ 100 this two-term equation leads to results which fall slightly below
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those giving by Williamson’s approximation. Thus, we must conclude tha the Lan-
dau model gives quite a good description of the data relating to wake oscillations
generated by ‘parallel shedding’ under the conditions of small and moderate (but
not great) supercriticality, and that the empirical estimates (4.49) give, with good
accuracy, the values of coefficients of the corresponding complex Landau equation.
In fact, it is quite surprising that Landau’s equation, with coefficients computed un-
der that conditions that Re – Recr is small, leads to results which agree so well with
experimental data for Re/Recr up to 1.5.

Note that time-amplified global oscillations of the entire near wake are intimately
connected with local absolute (in contrary to convective, see the closing part of
Sect. 2.93) instability of the wake flow. In fact, the wake flow is not strictly plane-
parallel, and hence its local velocity profile, and the Orr-Sommerfeld eigenvalues
depending on it, vary slowly with the streamwise coordinate x. Hence, the local
values of all coefficients of the complex Landau (i.e., Stuart-Landau) Eq. (4.40)
here on x (and this dependence becomes more significant with the increase of non-
parallelism of the flow). This means, in particular, that the local oscillation frequency
f = –ω1/2π slowly changes with increase of distance from the cylinder. However the
observation definitely show that the near wake, having a considerable streamwise
extent, usually oscillates as a whole with constant frequency f, somehow selected
from the collection of weakly varying local values. Such ‘oscillation as a whole’
characterizes the global instability mode, which occurs in the wake behind a solid
body only in the cases where a considerable regions of the absolute flow instability
exists near a body. Thus, one may say that the Bénard-von Kármán vortex street is
due to the absolute instability of the flow in the near wake. Just this circumstance
stimulated numerical investigations of wake regions of local absolute instability,
typified by the papers of Koch (1985); Huerre and Monkewitz (1985); Monkewitz
and Nguen (1987); Monkewitz (1988b, c); Yang and Zebib (1989); Hannemann
and Oertel (1989), and Delbende and Chomaz (1998). The complex amplitude of
global wake oscillations can depend on the spatial coordinates (on x and z in the case
of a two-dimensional vortex street, and on three coordinates in more complicated
cases) but its dependence on t in the case of a non-steady regime of global mode
development will satisfy Landau’s equation with the same coefficient ω=ω1 + iγ at
all points x. The data relating to the spatial distribution of the oscillation amplitudes
A(x, t) will be considered at greater length below, for more details and additional
references concerning the general properties of the global instability modes of nearly
plane-parallel flows see, e.g., the papers by Triantafyllou et al. (1987); Karniadakis
and Triantafyllou (1989); Huerre and Monkewitz (1990); Monkewitz (1990, 1996);
Chomaz et al. (1991); Monkewitz et al. (1993); Le Dizès (1994), and Le Dizès et al.
(1996).

As to the problem of ‘oblique shedding’, williamson (1988a, 1989, 1995, 1996a)
showed that, in the cases where the ‘shedding angle’ θ is fixed, the ‘universal St-Re
relation’ of Fig. 4.20, which corresponds to parallel shedding, is valid with good
accuracy for ‘modified Strouhal number’ Stm = St/cosθ . This Williamson’s ‘cosine
law’ of oblique vortex shedding was confirmed in a number of experimental pa-
pers (see, e.g., König et al. (1993); Miller and Williamson (1994), and Monkewitz
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et al. (1996)) but its theoretical explanation requires the use of some special ana-
lytical techniques. Since it was shown that ‘oblique shedding’ is strongly affected
by the ‘spanwise boundary conditions’ at y = ± L/2, the ‘cosine law’ can be derived
theoretically only from a model which takes into account the influence of the flow
configuration near the cylinder ends on the oscillations of the middle part of the
wake. This simplest way to achieve this is to introduce a y-dependent oscillation
amplitude A (y, t) and replace the complex Landau Eq. (4.40) by the more general
complex Ginzburg–Landau (G–L) equation for this amplitude, having the form

∂A

∂t
= −iωA+ μ

∂2A

∂y2
− 1

2
l|A|2A (4.50)

where ω, μ, and l are three complex coefficients and the second term on the right-
hand side describes the spanwise diffusion of oscillations. (For more information
about this equation see, e.g., the extensive survey by Cross and Hohenberg (1993)
containing a comprehensive bibliography, Chap. 5 of the book of Bohr et al. (1998),
the paper by van Saarloos (1995) and other papers in Cladis and Palffy-Muhoray
(1995) where a number of modifications, generalizations, and various applications of
Eq. (4.50) are collected. A typical example of the useful generalization of Eq. (4.50) is
provided by the ‘quintic G-L equation’ containing an additional term proportional to
|A|4 A; this equation was used, in particular, by Shtemler (1978) and Bottin and Lega
(1998), who applied it to stability studies relating to plane Poiseuille and Couette
flows, and by Iwasaki and Toh (1992), who based on this equation their model
description of turbulence structures at high Reynolds numbers). Equation. (4.50)
and some other related nonlinear model equations were applied to description of the
spanwise-varying cylinder wakes, in particular, by Albarède et al. (1990); Albarède
(1991); Noack et al. (1991); Park and Redekopp (1992); Albarède and Monkewitz
(1992); Triantafyllou (1992); Chiffaudel (1992); Albarède and Provansal (1995),
and Monkewitz et al. (1996). Models by Albarède and Monkewitz, Triantafyllou,
Monkewitz et al., and some others lead to results which explain the approximate
validity of the ‘cosine law’. However, this was not the primary purpose of introduction
of these models.

The point is that according to available experimental data of a number of authors
(e.g., of Williamson (1988a, 1989, 1992, 1995, 1996a, b); Ohle and Eckelmann
(1992); König et al. (1992, 1993); Brede et al. (1994), and Miller and Williamson
(1994)), wakes behnd circular cylinders at relatively low Reynolds numbers often
have rather complicated spanwise structure. It was found, in particular, that at mod-
erately subcritical values of Re spanwise cell structures frequently appear in such
wakes, i.e., several spanwise regions with constant shedding frequency are formed
which are separated by the so-called ‘nodes’ where the frequency changes discon-
tinuously and vortex dislocation is observed. In the cases of ‘perfectly symmetric’
boundary conditions at the two ends of the cylinder and at large values of Re (and
sometimes at relatively small Re but not too small values of x), symmetricalV-shaped
(downstream-pointing) ‘chevron’ structures are often observed, i.e., the vortices on
both sides of the cylidner midpiot have shedding angles of equal magnitude but op-
posite sign. The search for an explanation of these strange features of the observed
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wakes behind circular cylinders stimulated the introduction of the G–L model (4.50)
and its investigation by Albarède et al. (1990); Albarède and Monkewitz (1992);
Albarède and Provansal (1995), and Monkewitz et al. (1996) (see also Monkewitz’s
survey (1996)).

The G-L model can in principle describe the influence of the end conditions on
the angle of obliquie shedding and explain the experimental result that the oblique
shedding can be converted back into the parallel shedding by changing the flow
configuration near the cylinder ends. However, to derive even qualitative conclusions
from the G-L model, it is necessary first of all to determine the values of all the
coefficients of Eq. (4.50). Since the complex coefficients ω and l have the same
meaning here as in Eqs. (4.40) and (4.34–4.34a), it seems natural to make, as a first
approximation, the assumption that these two coefficients of Eq. (4.50) do not depend
on y, and have the same values as in the case of strictly parallel vortex shedding where
oscillations are spanwise homogeneous. This simplifying assumption was accepted
in the above-mentioned papers, where the empirical estimates of ω=ω1 + iγ and
l = δ+ iδ quite close to the above estimates (4.48) and (4.49) were used. However
the third coefficientμ=μr + iμ1 of Eq. (4.50) is a new one, and it can be determined
only from data of measurements relating to the dependence of cylinder wakes on the
spanwise end conditions.

Albarède and Monkewitz (1992) tried to use for this purpose the data for the
dependence of Recr on the aspect ratio L/D of the cylinder generating the wake. If
the oscillation amplitude A depends on y and satisfies Eq. (4.50), then the growth of
A from the initial infinitesimal value will be described, not by the linearized Landau
Eq. (4.32), but by the linearized G-L equation, which differs from Eq. (4.50) by the
absence of the cubic term on the right-hand side. Also the measured rate of amplitude
growth at Re>Recr must evidently be equal, in this case, to the rate of growth of
the most unstable spanwise-inhomogeneous mode. The normal modes are now given
by the eigenfunctions of the linearized Eq. (4.50), which depend on the boundary
conditions at y = ± L/2. However, it seemed natural to assume that, at large values
of L/D, the boundary conditions will not very essentially affect the rate of growth
of normal modes. Therefore Albarède and Monkewitz used the simplest boundary
conditions A (y, t) = 0 at y = ±L/2, hoping that their use could hardly lead to very
significant errors. The above arguments allow Recr to be determined approximately,
as the smallest value of Re at which the imaginary part of at least one eigenvalue of
the linearized G–L equation is not negative but equal to zero. Recr clearly depends
on the aspect ratio L/D and of μ (recall that ω and l are assumed known); hence
Recr = Recr (L/D, μ). Therefore, the measured values of Recr at various values of
L/D may be used for estimation of the value of μ.

Albarède and Monkewitz at first attempted to use the results of the measurements
by Mathis et al. of the values of Recr at a number of values of L/D but found that their
data were insufficiently accurate eand complete. Therefore they carried out additional
careful measurements of the values of Recr at various aspect ratios L/D and the results
led them to the conculsion that μr/v = 32 ± 6. To find the imaginary part μi of the
complex coefficientμ, two different methods were used byAlbarède and Monkewtiz,
both based on data for the angular frequencyω1 of the most unstable mode at different
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values of Re and L/D. The two methods led to not-too-different results, and showed
that apparently (μi/μr ) = −0.3 ± 0.6. Later Albarède and Provansal (1995) arranged
a more careful determination of the values of the various coefficients of Eq. (4.50)
(first of all of μr ). They used somewhat modified boundary conditions, and carried
out more complete and accurate measurements of the dependence of characteristics
of steady cylinder wakes on Re and L/D. As a result they obtained the new estimate
μr/v = 10 ± 4 for Re< 100, which differs considerably from the preceding estimate
by Albarède and Monkewitz. (This great difference was apparently mainly due to the
change of boundary conditions, which were found to be more important than it was
assumed earlier). The value of μi was unimportant for the majority of applications
considered by Albarède and Provansal; in rare cases where it was needed they used
the estimate by Albarède and Monkewitz.

A quite different method of determining the values of μr and μi was used by
Monkewitz et al. (1996). Here, special experiments were arranged in which nonsym-
metric time-dependent boundary conditions were realized at the cylinder ends. The
coefficients of the G-L model were then determined from both the steady shedding
data (the only data used previously) and the data of measurements of the ‘spanwise
wave number shocks’, i.e. abrupt increases in shedding angle across the span of a
cylinder initiated by appropriate impulsive changes of ends conditions. The observed
gradual reduction of the shedding angle θ along the Oy axis was then compared with
predictions of the G-L model. Under the condition that the G-L model with coeffi-
cients independent of y is valid, this comparison allowed the values ofμr/v andμi/μr

to be determined with considerably greater accuracy than was achieved in the previ-
ous investigations. Monkewitz et al. published the results obtained for Re = 100, 120
and 140; the values of μi/μr proved to be practically independent of Re and close
to −1, while all values of μr/v were found to be fairly close to 20, growing slightly
with Re (from 18.7 at Re = 100 to 25.6 at Re = 140).

Albarède and Monkewitz (1992) found that their version of the G-L model de-
scribes, quite well, many phenomena observed in cylinder wakes in the laboratory.
The model led to correct dependence of Recr on L/D and showed, in full agree-
ment with the experimental data, that after the impulsive switching on of an external
stream of constant velocity, vortex shedding always starts as the parallel mode while
the regions of ‘oblique shedding’ develop from the cylinder ends and, in the case
of symmetric end conditions, lead to steady-state ‘chevron patterns’. The possi-
bility of forcing the transition from the ‘oblique’ to ‘parallel’ vortex shedding by
means of change of flow configuration at the cylinder ends can also be derived from
the G-L model considered. Moreover, the plan views (in the (x, y)-plane) of cylinder
wakes observed in flow visualizations agree well with results of model computations.
Albarède and Provansal (1995) showed that their improvements of the previous ver-
sion of the G-L model gives a theoretical explanation of a number of even more
subtle features of wake development. In addition to this, Monkewitz et al. (1996)
demonstrated that the samc G-L model satisfactorily describes many surprising non-
steady wake phenomena which can be produced in laboratory experiments where
non-symmetric, impulsive (i.e., time-dependent) spanwise boundary conditions are
realized. Note however the remark by Leweke and Williamson (1998) indicating that
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the explanation of the loss of stability of a two-dimensional cylinder wake at super-
critical values of Re proposed by Leweke and Provansal (1995), which was based on
the G-L model, disagrees with some known properties of the observed cylinder-wake
instability. On the other hand, while Landau’s Eqs. (4.34) and (4.40) were derived
from Navier–Stokes equations as long ago as the early 1960s by Stuart, Watson, and
Eckhaus (and then more thoroughly by Fujimura (1989) and Duśek et al. (1994)),
who used for this purpose definite asymptotic expansion procedures (see Sect. 4.21
above), apparently no rigorous derivation of this type has yet been given for the G-L
Eq. (4.50) (the references of the G-L equations at the end of Sect. 4.22 concerned
quite different flows and other equations of the Ginzburg-Landau type). Thus, the
problem of the strict derivation of this equation and the accurate determination of
conditions for its validity remains unsolved.

Equation (4.50) is the ‘transverse’Ginzburg-Landau equation, taking into account
the spanwise ‘diffusion’ of wake oscillations which often becomes apparent in labo-
ratory experiments and numerical simulations. As to the spatial development of these
oscillations, it was always neglected above, i.e., it was assumed that none of their
characteristics depends on the streamwise coordinate x. This assumption was based
mainly on the fact that, according to the available wake observations, the oscillation
frequency f is practically the same within a large spatial region, as it must be in the
case of a global instability mode. However visualisations of wake flows clearly show
that some local characteristics of the oscillations vary considerably when coordinates
of the observation point are changed. In particular, it will be explained below that
the local oscillation amplitude at the point (x, 0, 0) first gorws with the value of x
but then reaches a maximum and begins to decrease when x increases further. Recall
that when discussing the experiments by Sreenivasan et al. (1987) we noted (just
above Eq. (4.48)) that the assumption about complete streamwise homogeneity of
oscillations is just a convenient simplification, applicable only to regions of short
streamwise extent.

To take into account the possible dependence of wake oscillations on the stream-
wise coordinate x one must use some new analytical models differing from the
Landau and transverse Ginzburg-Landau models (4.40) and (4.50) by the presence
of terms describing the streamwise variability of the flow characteristics. One of
the simplest methods of accounting for the streamwise variability is to replace the
Stuart–Landau Eq. (4.40) by the ‘longitudinal’ Ginzburd-Landau equation for the
streamwise-dependent oscillation amplitude A(x, t). The simplest version of this
G-L equation includes, instead of the transverse-diffusion term of Eq. (4.50), a
streamwise-diffusion term proportional to ∂2A/∂x2. Then the streamwise advection
may be taken into account by the inclusion of the term U∂A/∂x on the left-hand side
of th G-L equation and/or by the replacement of the simple second derivative ∂2A/
∂x2 on the right-hand side by ∂2A/∂ξ 2, where ξ = x − Ut.As was indicated at the
end of Sect. 4.22, the longitudinal G-L equation has definite theoretical grounds, and
it has been repeatedly used in studies of the weakly nonlinear instability of plane-
parallel and nearly plane-parallel flows. Some attempts to apply the longitudinal
G-L equation to the study of plane wake flows were briefly considered by Park and
Redekopp (1992) (in the initial part of their paper), Le Dizès et al. (1993, 1996) and
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Hunt (1993). In additional, Park et al. (1993) used the longitudinal G-L equation
for the quantitative analysis of control methods for a two-dimensional x-dependent
global mode of circular-cylinder wake oscillations, and Xiao et al. (1998) briefly
outlined a new application of the longitudinal G-L model to development of control
methods regulating the value of the amplitude A (x, t).

A more complete two-dimensional Ginzburg–Landau equation for anoscillation
amplitude A = A (x, y, t) dependent on two spatial coordinates was applied to wake
flows by Park and Redekopp (1992) and Chiffaudel (1992), and Roussopoulos and
Monkewitz (1996). Park and Redekopp considered the G–L equation of the form
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while Chiffaudel used a more complicated model equation which included also the
third- and fourth-order derivatives of the amplitude. (The fourth-order G-L equation,
containing amplitude derivatives up to the fourth order, was also studied by Raitt
and Riecke (1995); however, this model will not be considered in the present book).
Generally speaking all four coefficient ω, μ1, μ2 and l of Eq. (4.51) can be complex
and dependent on the two coordinates x and y (and the real advection velocity U can
also depend on x and y), but Park and Redekoppp restricted themselves to the model
where U = const., μ1, μ2 and l are complex constants while ω(x, y) = iγ (x, y) is
purely imaginary (i.e., γ is real) and has the form ω(x, y) = i[c0(y)− c1(y)x] where
c0 and c1 are real functions of one variable and c1(y) < 0 at any y. Analyzing solu-
tions of Eq. (4.51) in the region 0 ≤ x < ∞, −L/2 ≤ y ≤ L/2, under the boundary
conditions A(0, y, t) = 0,A(x, −L/2, t) = F1(x, t),A(x,L/2, t) = F2(y, t), and
choosing reasonable values of constants μ1, μ2 and l and functions c1, c2, F1 and
F2, the authors determined the (x, y)-region of the absolute instability of the wake
flow considered, and showed that many observed features of the spatial and temporal
development of circular-cylinder wake oscillations (e.g., the observed interrelation
of parallel and oblique sheddings and formation of ‘chevron patterns’) can be ex-
plained if one assumes that oscillation amplitude satisfies Eq. (4.51). Roussopoulos
and Monkewitz, who studied the feedback control of oblique vortex shedding for
Reynolds numbers close to Recr considered another model: they assumed that the
oscillation amplitude A1 (x, y, z, t) can be represented as a product A (x, y, t) B(z)
where A (x, y, t) satisfies the G-L Eq. (4.51) in which U = U (x) depends linearly on
x, ω=ω(x) is a complex function quadratic in x, and μ1, μ2 and l are complex con-
stants. Then the authors used the results of the stability theory for circular-cylinder
wakes and the data of wake oscillation measurements presented in Monkewitz’s pa-
per (1988b) to evaluate approximately all coefficients of Eq. (4.51). To apply the
G-L amplitude equation to description of wake-oscilltion control methods, Rous-
sopoulos and Monkewitz added to the right-hand side of Eq. (4.51) a function F(x,
y, t) representing the effect of the feedback control. Then solving numerically the
obtained equation under the appropriate initial and boundary conditions and varying
the values of F(x, y, t) they could calculate the influence of various control actions on
the wake oscillations and compare the calculation results with conclusion following
from their laboratory measurements of control effects.



4.2 Landau’s Equation, its Generalizations and Consequences 393

Another method of investigating the dependence of cylinder wake flows on stream-
wise coordinate x was used by Dušek et al. (1994) and Dušek (1996). Dušek et al.
systematically studied the interrelation between the coupled nonlinear equations for
the spatially-varying temporal Fourier components (corresponding to expansion of
the disturbance velocity u(x, t) in powers of eiω1t where ω1 is the oscillation fre-
quency) and the local Landau equations for oscillation amplitudes A of the dominant
harmonic at various points x. They found, in particular, that for validity of the Lan-
dau equation the shape of the unstable mode must vary much more slowly than its
amplitude. Then Dušek et al. considered the application of the results obtained to a
cylinder wake flow, and compared the conclusions implied by direct numerical simu-
lation of this flow, at Re slightly above the first Hopf bifurcation threshold Recr, with
predictions based on approximate amplitude equations. Later Dušek (1996) used the
results of the above-mentioend paper of 1994 to develop a numerical method for
computing the spatially-varying temporal Fourier coefficients of velocity compo-
nents in the cylinder wake. He evaluated the spatial structure of several terms of the
Fourier series (the zeroth term describing the distortion of the primary steady flow by
a disturbance, the first one which usually corresponds to the dominant harmonic, and
a few subsequent terms describing higher harmonics) at two different supercritical
values of Re, and showed that far downstream all harmonics behave like parallel trav-
eling waves. Dušek also found that global characteristics of the dominant wave (its
frequency, wavelength and phase velocity) agreed well with the experimental data
of Williamson (1989). However, he did not try to compare the results of his compu-
tations with more complete experimental data for the spatial structure of the cylinder
wake since very few such data were then available. Nevertheless, some experimental
and numerically-simulated data on the spatial structure of two-dimensional wakes
were obtained in the mid 1990s and these data, which will be considered below,
agree in general with numerical results by Dušek et al. (1994) and Dušek (1996).

Let us begin with the paper by Goujon-Durand et al. (1994) who investigated
the velocity oscillations at various spatial positions behind a spanwise homogeneous
bluff body placed in a water tunnel. (In this paper a cylinder with the trapezoidal
cross-section shown in Fig. 4.21a, and not a circular cylinder, was used for generation
of the wake, but the general features of wake oscillations are similar in this case to
those in a circular-cylinder wake). The authors measured the transverse flow velocity
w(x, t) at a number of points x and numerous Reynolds number Re =U0D/v (where D
is the ‘trapezoid thickness’ indicated in Fig. 4.21a) ranging from Recr ≈ 58 to 2Recr.
Instead of characterization the disturbance intensity by the value of the equilibrium
amplitude Ae of velocity oscillations at a fixed spatial point x, Goujon-Durand et al.
measured the peak to peak amplitudes A(x) at a number of points (x, 0, 0) and
then analyzed the values of the maximal amplitude Amax = maxx > 0A(x) and of the
distance from the body, xmax, at which the amplitudeAmax was observed. They found
that in the range of Reynolds numbers from Recr to about 1.6Recr, power laws of the
form Amax ∝ (Re – Recr) and xmax ∝ (Re – Recr)−1/2 are valid. In the same range
of Reynolds numbers the local oscillation amplitude A(x) satisfies the following
similarity law: A(x)/Amax = F(x/xmax) where F(ζ) is an universal function which does
not deped on Re.
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a b

Fig. 4.21 a Trapezoidal cross-section of the cylinder used in experiments by Goujon-Durand et al.
(1994) and Wesfreid et al. (1996). b Equilateral triangular cross-section of the cylinder used in
the numerical simulations of a cylinder wake by Zielinska and Wesfreid (1995) and Wesfreid et al.
(1996)

Simple similarity laws found by Goujon-Durand et al. for Amax, xmax and
A(x)/Amax had not yet received a theoretical explanation. Moreover, the relation
Amax ∝ (Re – Recr) seems strange, since it is known that the equilibrium amplitude
Ae at a fixed point x is proportional to (Re – Recr)1/2 over a considerable range of
positive values of Re – Recr. Therefore, Zielinska and Wesfreid (1995) tried to verify
these laws from the results of a numerical simulation of the purely two-dimensional
wake behind a cylinder with a cross-section in the form of an equilateral triangle with
the apex pointing upstream (see Fig. 4.21b). Their data were based on the analysis of
numerical solutions of the two-dimensional Navier-Stokes equations describinb the
flows in the (x, z)-plane around an impenetrable equilateral triangle; the solutions
were computed for various values of Re =U0D/v (where D is the length of triangle
sides, and U0 is the velocity of the uniform flow upstream of the body). The solu-
tions gave the values of vertical and horizontal velocity oscillations w(x, z, t) and u(x,
z, t) and of the mean-flow distortion (i.e., of the zeroth harmonic Δu(x, z, t) of the
streamwise disturbance velocity) at a number of the points (x, z) where x ran through
a set of positive values, while z took two values, z = 0 and z = 0.5D. (Note that the
oscillations w(x, z, t) and u(x, z1, t), where z can take arbitrary values but z1 �= 0,
mainly represent the contributions of the dominant first harmonic with frequencyω1,
while the main contribution to the value of the streamwise velocity u(x, 0, t) at the
symmetry axis z = 0 is due to the second harmonic with doubled frequency 2ω1; see,
e.g., Stuart (1960); Hannemann and Oertel (1989); Dušek et al. (1994) and Dušek
(1996)). Then the values of the peak-to-peak oscillation amplitudesAw, Au andA�u

of the two velocity components w and u, and of the mean flow distortion at the chosen
points, were computed for a number of Re values. The results showed that the flow
undergoes a Hopf bifurcation at Re = Recr ≈ 38, which can be described by Landau’s
Eq. (4.40) with a coefficient ω which depends only on Re (and represents a linear
function of Re – Recr at small values of |Re – Recr|) and a coefficient l depending
on x. The maximum values of Aw, max, Au, max and A�u, max of the three amplitudes
on the lines z = 0 and z = 0.5D and streamwise coordinates xw, max etc. of the points
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corresponding to these maximum amplitudes were also determined by Zielinska and
Wesfreid.

Zielinska and Wesfreid then showed that the normalized streamwise and trans-
verse velocity amplitudesAu(x)/Au, max andAw(x)/Aw, max (where both the local and
maximum amplitudes correspond to the wake oscillations at points with z = 0) are
represented in the case considered by two different universal functions Fu(x/xu, max)
and Fw(x/xw, max) of the normalized coordinate x/xmax. These conclusions clearly
agree with those of Goujon-Durand et al. (1994) for the transverse velocity oscilla-
tions in a slightly different but related wake flow. As to the distances xmax from the
bluff body to the points where the oscillation amplitudes take maximal values, it was
shown that the values of xw, max, corresponding to lines z = 0 and z = 0.5D, and of
xu, max, corresponding to the line z = 0.5D, are proportional to (Re – Recr)−1/2 in the
range of supercritical Reynolds numbers extending up to about 1.3Recr. This result
agrees with the similar conclusion found by Goujon-Durand et al. by analysis of the
experimental data. However, the values of xmax corresponding to oscillations of the
streamwise velocity u, and of the mean-flow distortion U0 − u on the symmetry axis
z = 0, which are unrelated to the dominant harmonic of the velocity field, depend
on Re – Recr in a more complicated manner which cannot be described by a simple
power law. Moreover, according to numerical simulations of Zielinska and Wesfreid,
the maximal oscillation amplitudes Aw, max at the axis z = 0 and Au, max at the line
z = 0.5D, which characterize the dominant first harmonic of the wake velocity, are
both proportional to (Re – Recr)1/2 (and not to (Re – Recr), as Goujon-Duran et al.
claimed) at Recr <Re< 1.3Recr.

Since some of the results found by Goujon-Durand et al. (1994) and by Zielinska
and Wesfreid (1995) contradicted to each other, it was decided to repeat the corre-
sponding measurements and the analysis of the numerically-simulated data, to extend
to span of the investigation and to improve its accuracy. Results of this new work
were presented in the paper by Wesfreid et al. (1996). The new experiments used
the same trapezoidal bluff body and water tunnel as before, but now a laser-Doppler
anemometer was used to scan the values of the streamwise velocity u(x, y,z, t) in the
central part of the wake (near y = 0 where no variations of the oscillation frequency
were fond) and the (x, z)-region extendind from x = 0.7D to x = 25D and from z = 0
to z = 2.8D. The time series of u(x, t) was fed to a spectrum analyzer to determine the
frequency and amplitude of the dominant harmonic of velocity oscillations. The mea-
surements covered the range of Reynolds numbers from 1.1Recr to 1.6Recr, where
this time it was found that Recr = 60.8. The numerical simulation repeated the previ-
ous computations of two-dimensional wake oscillations behind a triangular cylinder
with the cross-section shown in Fig. 4.21b. However, now the fluctuations u(x, z, t) of
the streamwise velocity was evaluated for the region 0.7D< x< 25D, 0< z< 2.75D
of the (x, z)-plane, and the range of Reynolds numbers was from Re = 1.016 Recr

to Re = 1.6Recr (where Recr = 36.2). The measured values of u(x, y, z, t) and cal-
culated values of u(x, z, t) were both used to find the amplitude A(x, z, Re) of the
u-velocity oscillations at various points (x, z) and various values of Re. Then the
maximal amplitudeAmax(Re) = maxx,zA(x, z, Re) was determined for various values
of Re and the Re-dependent point (xmax, zmax) was found where the amplitude Amax
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Fig. 4.22 Universal
representation of the
dependence of the normalized
amplitude A(x, z, Re)/Amax

(z, Re) of cylinder-wake
oscillations on the coordinate
x. (After Wesfreid et al.
(1996)) (a) Values of A(x, z,
Re)/Amax(z, Re)
corresponding to velocities
u(x, y, z, t) measured in the
wake behind a cylinder of
trapezoidal cross-section at
y ≈ 0 and z = zmax ≈ 0.7D;
(b) values of A(x, z,
Re)/Amax(z, Re)
corresponding to numerically
simulated velocities u(x, z, t)
in the two-dimensional wake
behind a triangular cylinder at
z = 0.5D< zmax. The various
symbols correspond to
different values of Re in the
ranges 1.21Recr ≤ Re ≤
1.59Recr (a) and
1.02Recr ≤ Re ≤ 1.31Recr (b)

a

b

is reached. The experimental and numerical results had the same general character
and both showed that, at given values of z and Re, the amplitude A(x, z, Re) increases
with x at small values of x, takes a maximal value Amax(z, Re) at some point xmax(z,
Re) and then begins to decrease as x increases further. The values of Amax(Re) and
Amax(z, Re) for z> 0 increase with Re in proportion to (Re – Recr)1/2 over a wide
range of Re values (this conclusion agrees with results of Zielinska and Wesfreid
(1995)), xmax(Re) ∝ (Re – Recr)−1/2 in the same range of Re values, but zmax(Re)
changes very little when Re is changing. Finally, according to both the experimental
and the numerical data, the normalized amplitude values A(x, z, Re)/Amax(z, Re) are
represented rather accurately by universal functions of x/xmax(z, Re), both for a fixed
arbitrary value of z and z = zmax where Amax(z, Re) =Amax(Re); see, e.g., Fig. 4.22.
This result clearly extends the conclusions found earlier by Goujon-Durand et al.
and Zielinska and Wesfreid.

Above we considered the wake flow behind a circular cylinder only in the re-
stricted range of Reynolds numbers from Recr ≈ 47 up to about 100–170 or even less
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(see, e.g., Figs. 4.19–4.20). This was quite natural, since we were interested in the
regime of wake oscillations which an be described by the simple Landau Eq. (4.40).
Generated by a Hopf bifurcation at Re = Recr, the two-dimensional regime of parallel
vortex shedding is often then transformed into a three-dimensional regime of oblique
shedding by the influence of spanwise end conditions, but, as indicated above, one
may prevent this transformation (and thus return to a two-dimensional wake regime)
by some modification of the flow conditions at the cylinder ends. However, as Re
increases, the wake flow inevitably acquires three-dimensional features. This cir-
cumstance was discovered rather early, in particular, by Roshko (1953, 1954); Hama
(1956) and Bloor (1964) and was later studied and described (often together with
descriptions of some subsequent wake bifurcations at still larger values of Re) in nu-
merous sources dealing with either experimental or numerically-simulated data (see,
e.g., Williamson (1988b, 1995, 1996a, b, c); König et al. (1990, 1993); Coutanceau
and Defaye (1991); Karniadakis and Triantafyllou (1992); Tomboulides et al. (1992);
Hammache and Gharib (1993); Roshko (1993); Norberg (1994); Mansy et al. (1994);
Brede et al. (1994, 1996); Willams et al. (1995); Zhang et al. (1995); Mittal and Bal-
achandar (1995a, b); Thompson et al. (1996); Wu et al. (1996a, 1966b); Zdravkovich
(1997); Henderson (1997); Persillon and Braza (1998), and Leweke and Williamson
(1998)). Results of different authors sometimes contradict each other in detail, but all
show that at some Re = Re2,cr, in the range 150<Re2,cr < 200, the regime of parallel
vortex shedding becomes unstable with respect to some spanwise-periodic modes of
disturbance, and transforms into a three-dimensional vortical regime. A number of
the cited papers also include information about the appearance, at a Reynolds number
of around 160 (clearly exceeding the threshold value for the primary instability of a
two-dimensional wake), of the second three-dimensional unstable mode, which has
smaller spanwise period and different symmetry properties. The existence of these
two unstable modes was pointed out by Williamson (1988b, 1989) and was later con-
firmed in the experiments of Mansy et al. (1994); Williams et al. (1995); Brede et al.
(1996); Wu et al. (1996a, b) and of some other researchers, and also in a number of
direct numerical simulations of circular-cylinder wakes (e.g., those by Karniadakis
and Triantafyllou (1992); Mittal and Balachandar (1995a, b); Zhang et al. (1995),
and Thompson et al. (1996)). At present these modes are suaully referred to as modes
A and B (see, e.g., the papers by Williamson (1996a, b, c); Henderson (1997) and
Leweke and Williamson (1998) where the symmetry properties of these modes and
the physical mechanisms of their instability are discussed in detail; in particular,
Henderson also considered the Landau constants corresponding to development of
theA and B modes). Both modesA and B oscillate with the same dominant frequency
coinciding with the frequency of vortex shedding (i.e., they are periodic in time with
period T equal to the shedding period). However, the simultaneous existence, at
large enough values of Re, of two unstable modes makes transitions between them
possible, producing discontinuities in the frequency of mode oscillations and the
appearance of oscillations of double period 2T (or having even period mT of higher
multiplicity); see, e.g., the general theory presented by Ioos and Joseph (1990) and
the specific examples of period doubling of wake oscillations found by Tomboulides



398 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

et al. (1992); Karniadakis and Triantafyllou (1992); Mittal and Balachandar (1995a)
and Thompson et al. (1996).

The experimental and numerical-simulation data which illustrate wake transition
to three-dimensional regimes of vortex shedding are characterized by considerable
scatter in the observed values of the transition Reynolds number Re2,cr. According
to Roshko (1953, 1954) and Tritton (1959) Re2,cr = 150 (though in the later sur-
vey by Roshko (1993) the higher estimate Re2,cr = 180 was proposed), while Zhang
et al. (1995) found that Re2,cr = 160, Norberg (1994)–that Re2,cr = 165, Williamson
(1989)–that Re2,cr = 178 (but in the survey of 1995 the latter author gave the much
higher estimate Re2cr = 205, and in the survey (1996a) he came to the conclusion
that Re2,cr = 194 is the best estimate). In parallel, Williamson (1996a, b) stated
that the next transition, leading to the emergence of the mode B, takes place at
Re = Re3,cr in the range between 230 and 260. The scatter of experimental values
of Re2,cr and Re3,cr can be explained by the influence of free-stream turbulence, the
difference btween between parallel and oblique vortex shedding, and/or the influ-
ence of the variability of end conditions (see Williamson, 1996a). Less scattered
resutls are given by the careful theoretical investigations of the linear stability of
parallel-shedding flows by Noack et al. (1993); Noack and Eckelmann (1994a, b);
Barkley and Henderson (1996) and Henderson and Barkley (1996). These stability
papers prove that at Re = Re2,cr lying between 170 and 190 the two-dimensional
Kàrmàn street generated by paralle vortex shedding becomes unstable with respect
to small three-dimensional disturbances with a spanwise wavelength equal to a few
cylinder diameters. According to the most precise computations by Barkley and Hen-
derson, Re2,cr = 188.5 and the spanwise wavelength λy, cr = 2π /ky, cr of the mode A,
the three-dimensional disturbance losing stability at this Re, is close to 4D (the
authors suggested the even more precise estimate λy, cr = 3.96D). Barkley and Hen-
derson computed neutral-stability curves in the (λy, Re)-plane, corresponding to
neutrally-stable wave disturbances in a two-dimensional Kármán-street flow; these
curves are shown in Fig. 4.23. The upper curve in this figure bounds the region
of A-mode instability, while the lower curve represents the neutral-stability curve
for the mode B of three-dimensional disturbances which becomes unstable at round
Re = Re3,cr ≈ 260 and at this Re has the spanise wavelength λ2,y,cr ≈ D (more pre-
cisely Re3,cr ≈ 259, λ2,y,cr ≈ 0.82D). The results of Barkley and Henderson for mode
A agree, to high accuracy, with williamson’s (1996b, c) laboratory measurements. As
to the results of Barkley and Henderson for mode B, the validity of their comparison
with experimental data may raise some doubts, since these results were obtained by
application of the linear stability theory for two-dimensional wake flows to condi-
tions in which the two-dimensional wake is always unstable and where nonlinear
effects are inherent. Therefore the fact that the main features of the observed sec-
ond instability mode do not deviate much from those given by the application of
the linear stability theory to a two-dimensional primary flow may be considered as
somewhat surprising. However, the agreement of the linear theory developed for
the second unstable mode of three-dimensional disturbances in the two-dimensional
wake with the experimental data for mode B was confirmed by many authors, and it
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Fig. 4.23 The neutral-stability curves in the (λy, Re)-plane, where λy = 2π /ky is the spanwise
wavelength (and U0 and D are used as velocity and length units), which correspond to two types
of neutral three-dimensional wave disturbances in the two-dimensional circular-cylinder wake.
(After Barkley and Henderson (1996)). The upper shaded region corresponds to unstable A modes,
while points of the lower shaded region correspond to unstable B modes; Re2 ≡ Re2,cr ≈ 188.5,
Re′

2 ≡ Re3,cr ≈ 260

will be shown later that a similar situation occurs also in the study of wakes behind
a square cylinder and a sphere.

The final transition to fully turbulent wake flow apparently takes place after sev-
eral successive transformations, at higher and higher values of Re, into more and
more asymmetric flow regimes. Breaking of symmetry properties leads not only to
more complicated spatial patterns but also to increasingly complex dynamics, i.e.,
makes the flow more and more tangled (see, e.g., Crawford and Knobloch (1991);
Dangelmayr and Knobloch (1991), and Hirschberg and Knobloch (1996)). Some of
these further transformations possibly represent Hopf bifurcations which increase by
one the number of degrees of freedom of the considered flow and may be described
by modified Landau’s equations.

Experimental data relating to circular-cylinder wake oscillations at very high
Reynolds numbers showed quite early that here the standard definition of the Strouhal
number does not allow a universal form of the St-Re relation to be obtained. There-
fore Roshko (1961) concluded that at such values of Re the cylinder diameter D
cannot be used as an appropriate length scale entering the definition of St; instead,
he recommended using the wake thickness H as a length scale and changing the
definition of the velocity scale (let us recall in this respect that just H was used as the
length scale in the linear stability theory of wake flows considered Sect. 2.93). Later
Bearman (1967) and Griffin (1981), trying to obtain the universal form of the St-Re
relation, suggested some other choices of length and velocity scales to make the wake-
oscillation frequency f dimensionless. Still later Adachi et al. (1966) measured, in a
range 1.5 × 104 <Re< 107 of Reynolds numbers Re =U0D/v, the vortex-shedding



400 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

frequencies f for eight rough circular cylinders of a fixed diameter D with surfaces
covered by homogeneous roughnesses with the heights h of roughness elements sat-
isfying the inequalitites 4.54 × 10−6 < h/D< 2.5 × 10−3. Then they calculated for
all round frequencies f four different dimensionless combinations St = fL/V (differ-
ing by the used length and velocity scales L and V ; the definitions of St proposed by
Roshko, Bearman and Griffin were included in their list) and analyzed the depen-
dence of the obtained values of St on h/D and Re. They found that at h/D< 5 × 10−4

the roughness of the cylinder does not affect the wake characteristics and that at
such values of h/D the St-Re relation has the most universal form when Bearman’s
definition of St is used (such St preserves practically the same value in the whole
studied range of Reynolds numbers).

4.2.4.3 Wakes Behind Non-Circular Cylinders and Rectangular Plates

Above, wakes behind circular cylinders were considered almost exclusively. The
only exceptations were brief remarks about the two-dimensional wakes behind two
particular non-circular cylinders: one which was studied in experiments by Goujon-
Durand et al. (1994) and Wesfreid et al. (1996) and the other which was numerically
simulated by Zielinska andWesfreid (1995) andWesfreid et al. (1996) (see Fig. 4.21a,
b). In the remarks it was stated that these wakes are similar in many respects to the
circular-cylinder wake and, exactly like the latter, undergo a Hopf bifurcation at
Re = Recr of the order of a few tens. Now these remarks will be supplemented by
brief considerations of some other results relating to wakes behind non-circular
cylindrical bodies.

Let us beign with the results of Jackson (1987), who calculated the points of on-
set of vortex shedding in flows past a whole collection of non-circular cylinders. He
considered only purely two-dimensional wakes (i.e., the wake flows were assumed
to be independent of spanwise coordinate y) and did not try to apply time-consuming
direct numerical simulation to this problem. Instead, Jackson used a modification
of the simple method of direct location of the Hopf-bifurcation points outlined by
Griewank and Reddien (1983) (who in their turn relied on some ideas presented
in the collection edited by Mittelmann and Weber (1980)). This method deals with
dynamical systems described by systems of ordinary differential equations, and em-
ploys some general properties of bifurcating solutions at the Hopf-bifurcation points
to compute the position of these points without solving the given equations and
computing their eigenvalues.

In the case of flow around a cylindrical body the equations of motion depend on the
parameter Re, and its threshold value above which the periodic solution exists is just
the critical value Recr = (U0D/v)cr, symbolizing the emergence of a Hopf bifurcation.
Jackson’s method allows this value Recr to be computed directly, together with the
coordinate iω1 of a point of the imaginary axis where, at Re = Recr, the spectrum
of the Navier–Stokes eigenvalues crosses this axis indicating the appearance of flow
instability. The value of ω1 determined the shedding frequency fcr = −ω1/2π and
the Strouhal and Roshko numbers Stcr = fcrD/U0 and Rocr = fcrD2/v = StcrRecr at
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Fig. 4.24 Cross-sections of
the non-linear cylinders for
which Jackson (1987)
determined the points of onset
of the vortex shedding from
the cylinder body. (a) ellipses
oriented along the flow; (b)
ellipses oriented at angles θ to
the flow; (c) flat plates with
normals at angles θ to the
flow; (d) isosceles triangles
with apexes directed upstream

a

b
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Re = Recr. (HereU0 is the constant velocity of the oncoming flow and D is the cross-
stream ‘thickness’ of this body indicated in Fig. 4.24). Jackosn made calculations
for cylindrical bodies with the following cross-sections: (a) ellipses with a principal
axis of length D perpendicular to the flow and a principal axis of length cD along
the flow direction, where c varies from 10−4 to 2; (b) ellipses with the major axis
twice as long as the minor axis, oriented at various angles θ to the flow direction
where 0◦ ≤ θ ≤ 90◦; (c) straight segments of finite length at various orientations θ
to the flow where 0◦ ≤ θ ≤ 60◦ (here ‘cylindrical bodies’ turn into thin flat plates, at
θ = 0 such a plate does not differ in fact from ellipse (a) with c = 10−4); (d) isosceles
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a b

Fig. 4.25 Dependence of the critical Reynolds number Recr (a), and the critical Strouhal number
Stcr (b) on the parameter c for wakes behind elliptic cylinders with cross-sections shown in
Fig. 4.24(a). (After Jackson (1987))

triangles with base of lengh D perpendicular to the flow, the apex toward the flow and
the height h of length cD where 0 ≤ c ≤ 2 (see again Fig. 4.24). For all these bodies
the values of Recr and Stcr were computed, and their dependence on the parameters
c and θ was presented in the form of tables and graphs (as an example, Fig. 4.25
shows the graphs for elliptic cylinders (a)). It was noted that in the case of a circular
cylinder (corresponding to the shape (a) with c = 1) the results agree well with those
of the previous experiments and numerical simulations by various authors (cf. the
similar remark on p. 110 where some references to earlier papers were given). The
results relating to some other elliptic cylinders (shapes (a) with c �= 1) were later
verified by Morzyński and Thiele (1991, 1992) who used another numerical method
and obtained the results close to those by Jackson. (Direct numerical simulation of
flows past some elliptic cylinders were carried out, in particular, by Mittal (1994)
and Mittal and Balachandar (1995b, 1996); here the values of St were determined for
several supercritical values of Re sometimes also exceeding the threshold value Re2,cr

for wake transition to three-dimensionality). For the case of the equilateral triangular
cross-section Jackson found that Recr ≈ 35; this estimate proved to be slightly lower
than the estimate Recr ≈ 38 found for this case by Zielinska and Wesfreid (1995)
but it agreed somewhat better with the subsequent results by Wesfreid et al. (1996)
according to which Recr = 36.2.

Jackson determined values of Recr and Stcr making use of the nonlinear bifur-
cation theory, but these results relate to the linear stability theory and hence they
might as well have been discussed in Chap. 2. (However, in Chap. 2, as a rule, only
results obtained in the framework of the parallel-flow approximation were consid-
ered while Jackson’s and Morzyński and Thiele’s computations dealt with the two
dimensional but non-parallel model). Similar stability computations were performed
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Fig. 4.26 Cross-sections of the square cylinder at zero incidence (a); of the square cylinder at
nonzero incidence angle α (b); of the oblong cylinder (c); and of the rectangular cylinder (d)

by Kelkar and Patankar (1992) for the case of a flow around a square cylinder at
zero incidence (i.e., with a plane face perpendicular to the stream; see Fig. 4.26a).
These authors calculated the solutions of two-dimensional Navier–Stokes equations
describing laminar steady flows around a square cylinder having constant velocity
U = {U0, 0, 0} far from this cylinder and corresponding to several moderate val-
ues of Re =U0D/v. Then the onset of unsteadiness (i.e., the emergence of a Hopf
bifurcation) was determined by numerical solution of the linear stability problem
for the computed laminar flows. Thus, the values of Recr and Stcr, corresponding to
the beginning of vortex shedding, were found for the wake behind a square cylinder
placed normal to an uniform flow (in particular, it was found that Recr = 53). Values
of St = St(Re) computed by Kelkar and Patankar for values of Re close to Recr were
compared with the results of Okajima’s (1982) laboratory measurements of Strouhal
numbers of the square-cylinder wake, and it was found that the numerical simulation
leads to results which agree well with the experimental ones.
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Table 4.1 Critical values Recr and Rocr corresponding to the start of vortex shedding from a square
cylinder at incidence, versus incidence angle α. (After Sohankar et al. (1997, 1998))

α 0◦ 10◦ 20◦ 30◦ 45◦

Recr 51.2 51.0 48.7 44.0 42.0
Rocr 5.9 6.2 6.1 5.4 5.2

Later Sohankar et al. (1997, 1998) and Sohankar (1998) carried out the nu-
merical simulation of flows around square cylinders at variable incidence (with
0◦ ≤ α ≤ 45◦ where α is the angle of incidence shown in Fig. 4.26b) at a number
of values of Re and deduced the dependence on the angle α of Recr = (U0D/v)cr and
Rocr = (fD2/v)cr = StcrRecr (where D = (cosα + sinα) D1 is the cross-stream ‘thick-
ness’ of the cylinder and D1 is the length of the square side; see again Fig. 4.26b).
Found by them values of Recr and Rocr at α= 0◦ proved to be close enough to Kelkar
and Patankar’s results; they are presented in Table 4.1 together with the results for
other values of α.

The method used by Sohankar et al. to obtain these results will be described at
greaterlength a little later, but now we will return to some results of Schumm et al.
(1994) which were omitted in discussion of this paper earlier in this section. The
point is that the results relating to the vortex-shedding flow behind a circular cylin-
der (which were summarized in Eq. (4.49) and Fig. 4.19 above) were supplemented
by Schumm et al. by results of similar experimental studies of wakes behind some
non-circular cylinders. Namely, together with the case of a circular-cylinder wake,
Schumm et al. investigated also the vortex shedding from an oblong cylinder without
sharp corners, with the cross-section sketched in Fig. 4.26c (where D = 0.69 mm,
D1 = 1.68 mm), and two rectangular cylinders (thick plates parallel to the flow di-
rection) with cross-sections of the shape shown in Fig. 4.26d. The wake behind
a piezoceramic oblong cylinder with the same cross-section was first studied by
Berger (1964, 1967) (see also Berger and Wille (1972)) who paid most attention
to the influence of cylinder oscillations on the wake flow. Schumm et al. used the
same cylinder and measured the oscillations of the transverse (‘vertical’) velocity
w(x, y, z, t) at the point (x/D, y/D, z/D) = (10, 0, 1) of its wake at different values
of Re =U0D/v and different stages of oscillation development. These measurements
allowed the calculation, in exactly the same way as for a circular-cylinder wake,
of the values of Recr and of all the coefficients in the corresponding Landau Eqs.
(4.34) and (4.34a). It was found that here Recr ≈ 79.2; γD2/v ≈ 0.116 (Re – Recr);
ω1D2/v ≈ 58.1; δ′/δ≈ −1.85. Moreover, it was also shown that here the growth rate γ
and the oscillation frequency ω1 have the same values at all points (x/D, 0, z/D) with
z/D = 1 and 10 ≤ x/D ≤ 40. These facts confirm that at Re = Recr a Hopf bifurcation
occurs, leading to a global mode of oscillations satisfying the Landau equation (see
the final paragraph of Sect. 2.93 and the beginning of the small-type text above).

Similar, but less complete, experimental results were obtained by Schumm
et al. for the wake behind a rectangular plate with D = 4 mm, D1 = 60 mm, and
the spanwise length L = 200 mm. (The second rectangular plate used by the au-
thors was noticeably larger, and its wake was studied only at greater values of Re
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which will not be considered here). It was shown that in the case of the first plate
Recr = (U0D/v)cr ≈ 135, and γD2/v ≈ 0.083 (Re – Recr). The authors remarked that
the coefficient 0.083 in the latter equation proved to be close to the value obtained
by Hannenmann and Oertel (1989) for the numerically-simulated two-dimensional
wake behind the rectangular plate (values of D and D1 were especially chosen by
Schumm et al. so that the ratio D1/D had the same value 15 as in the numerical
simulation). However, the value of Recr in the numerically-simulated wake was con-
siderably smaller than the value found in the laboratory experiment. Schumm et al.
assumed that this discrepancy can be due to deviation of the experimentally-produced
wake from the idealized purely two-dimensional numerical model of Hannemann and
Oertel.

For the case of square cylinders at zero incidence (where D1 =D2 = D) more
detailed investigations of wakes at moderate Reynolds numbers were carried out
by Sohankar et al. (1995, 1997, 1998, 1999) and Robichaux et al. (1999) (some
parts of this work were also considered in detail in Robichaux’s (1997) and So-
hankar’s (1998) theses). These authors based their work mainly on the analysis of
DNS (‘direct numerical simulation’) data but Sohankar et al. also included in their
papers experimental results of Norberg (partially presented in his paper of 1989),
which were also compared with the data of Okajima (1982, 1995) and of a few other
experimenters. It has been already stated above that Sohankar et al. (1997, 1998)
used numerical simulations of flows around square cylinders at various angles of
incidence α to determine the dependence of the critical values Recr and Rocr on the
value of α (the results were presented in Table 4.1). Now a little more will be said
about this work. Referring to Schumm et al. (1994) and Park (1994); Sohankar et al.
stressed that the onset of flow oscillations, caused by a Hopf bifurcation, can be
described by the Stuart-Landau Eq. (4.40) for the complex disturbance amplitude
A(t) (or, what is the same, by two real Eqs. (4.34) and (4.34a) for th real amplitude
|A| and phase φ). Following Park (1994), they chose the amplitude of the lift force
on the cylinder to be the amplitude A(t) (recall that the wake oscillations produced
by vortex shedding are due to a global instability mode where the values of γ (Re)
and ω1(Re) do not depend on the choice of amplitude A). Then they investigated the
growth of |A(t)| with t at various values of Re and α (in the ranges 45<Re< 200,
0◦ ≤ α ≤ 45◦) and determined the growth rate γ (Re, α) (representable as b(α)[Re –
Recr(α)] at small and moderate values of Re – Recr) and the Landau constant δ(Re,
α). Values of γ (Re, α) were used to determine the function Recr(α) while values
Stcr(α) = −ω1,cr(α)D/2πU0 were found with the help of Eq. (4.34a).

Moreover, the wake-flow simulations and/or measurements at supercritical
Reynolds numbers Re>Recr allowed determination of the dependence of a number
of a physical characteristics of vortex shedding (the Roshko and Strouhal numbers
Ro and St are typical examples) on Re and α. In particular, it was shown by Sohankar
et al. (1997, 1998) (who based their conclusion on the unpublished experimental data
of Norberg, supplemented by some new DNS data) that at α= 0◦ (i.e., for square
cylinders with one plane side facing the flow) the dependence of the Roshko number
Ro = St × Re = fD2/v on Re =U0D/v at Recr <Re< 200 is described with reason-
able accuracy by the Roshko law (4.47) (which agrees well with the Stuart–Landau
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Fig. 4.27 The dependence of
the Strouhal number St = fD/
U0 on the Reynolds number
Re =U0D/v for wakes behind
square cylinders at zero
incidence according to
various experimental and
numerically-simulated data.
(After Sohankar et al. (1997,
1999) and Robichaux et al.
(1999)) (a) Summary graph
by Sohankar et al. collecting
various experimental (Exp)
and numerically simulated
(relating to a two-dimensional
(2D) or a three-dimensional
(3D) wake model) data. The
solid line represents the
empirical law (4.52): St =
0.18-3.7/Re. (b) Numerically
simulated data (Robichaux
et al. 1999) corresponding to
a 3D wake model, and their
comparison with the
experimental data of
Williamson (1996b) for
circular-cylinder wake
oscillations

b
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Eq. (4.34) and (4.34a)). According to Sohankar et al. this law here as the form:

Ro = 0.18 Re −3.7 (4.52)

(and hence a = 0.18, a1 = 3.7 for wakes behind square cylinders at zero incidence).
This conclusion was repeated for the indicated range of Reynolds numbers in the
next paper by Sohankar et al. (1999); see Fig. 4.27a reproduced in the papers of
1997 and 1999. Then Robichaux et al. (1999) independently determined from their
two-dimensional DNS data the St-Re relation for the square-cylinder wake in the
range 70<Re< 230; their result is presented in Fig. 4.27b together with the similar
curve for the circular-cylinder wake (this curve is based on the results collected by
Williamson (1995, 1996a, b, c) and it extends only slightly the ‘universal St-Re
relation’ shown in Fig. 4.20). One can see that St-Re data in Fig. 4.27b relating
to square-cylinder wakes are much less scattered than those in Fig. 4.27a, where
data from a number of quite different sources (having different accuracy) sources
are collected, but on the whole data of Robichaux et al. for 70<Re< 200 do not
disagree greatly with the results presented in Fig. 4.27a and with Eq. (4.52).
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As to the comparison of St-Re relations for square—and circular-cylinder wakes,
Robichaux et al. noted that the considerably smaller values of St, and their non-
monotonic dependence on Re, in the case of a square cylinder may be explained by
the fact that such a cylinder is a much bluffer body than the circular one. The blunt
upstream face of the square cylinder, and its sharp edges, lead to flow separation
and the formatin of recirculation regions on the top and bottom faces. These features
lead to increase of the effective cross-stream thickness of the body. Therefore, the
flow upstream of the cylinder actually sees a body with the increased ‘effective
thickness’ D∗>D. Since St = fD/U0 contains the body thickness as a factor, the
use of an underestimated value of the effective thickness leads to an underestimate
of the prompted by physical arguments value of St and, since this underestimate
increases with the growth of Re, it can lead to non-physical decrease of St as Re
increases. Robichaux et al. introduced a plausible Re-dependent estimate of the
‘effective thickness’ D∗ of the square cylinder and showed that replacement of D by
D∗ in the expression for St implies an St-Re relation for a square cylinder which does
not differ much from the relation for a circular cylinder. It will be shown later that
similar reasoning can be used to explain the form of the measured St-Re relation for
wakes of flat plates parallel to the stream direction.

Let us stress, however, that the study of the St-Re relation for the square-cylinder
wake in a limited range of moderate Reynolds numbers was not the main purpose
of the papers by Sohankar et al. (1999) and Robichaux et al. (1999). Both groups of
authors took into account the available results of investigations of circular-cylinder
wakes, which showed that the simple two-dimensional wake transforms into a more
complicated three-dimensional form at Re = Re2,cr ≈ 190, while at still greater Re
the wake even contains two different three-dimensional modes, A and B, having
specific symmetry properties (see the end of part (b) of this section). Therefore,
they decided to check whether or not a similar transition to three-dimensionality
takes place in the square-cylinder wake. With that end in view, Sohankar et al.
collected and analyzed numerous results of measurements in air and water flows
and of two- and three-dimensional (2D and 3D) direct numerical simulations of
unsteady flows around a square cylinder at zaero incidence for a wide ragne of
Reynolds numbers, Re = 150 −1,000 (see Fig. 4.27a). Note that the analyzed data
included the experimental and 2D an 3D simulated results of the authors themselves
at Re = 150 −500; this range also extends well above the circular-cylinder critical
value of Re2,cr. The data in Fig. 4.27a show that Re = 200, which was the highest
value of Re inspected in the papers of 1987 and 1988, is close to the upper bound
of the Re-region where Eq. (4.52) is valid. At higher values of Re this equation is
clearly incorrect, and there the results of 3D numerical simulations agree much better
with the experimental data than the results of 2D simulations. (The incorrectness, at
large values of Re, of the results of 2D simulations of flows around cylindrical bodies
was also noted by Tamura et al. (1990)). The 3D numerical simulations performed
by Sohankar et al. also showed that the two-dimensional square-cylinder-wake flow
becomes unstable and undergoes transition to a three-dimensional form at some Re
between 150 and 200. It was also shown that three-dimensional wake flow includes
both the three-dimensional instability modes, A and B, which were observed in
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circular-cylinder wakes, and in a square-cylinder wake these modes have spatial
structures similar to those of circular-cylinder modes A and B. There are, however,
also some new features specific to square-cylinder wakes; e.g., at Re = 200 −300 in
such wakes some low-frequency lift force pulsations were detected, which apparently
do not exist in circular-cylinder wakes. At the same time the Strouhal numbers and
mean drag values given by 3D numerical simulations were found to be in satisfactory
agreement with experimental results (for St, the validity of this conclusion is seen in
Fig. 4.27a).

Robichaux et al. (1999) performed only 2D numerical simulations of the square-
cylinder wake and considered a restricted range of Reynolds numbers, 70 ≤ Re ≤ 300.
However, they then applied to the simulated two-dimensional models of wake flows
a three-dimensional linear theory of hydrodynamic stability of the same type as that
used by Barkley ad Henderson (1996) on a 2D model of the circular-cylinder wake.
That is, they investigated the stability of 2D wake flows to infinitesimal 3D dis-
turbances depending periodically on the spanwise coordinate y. This investigation
showed that at Re ≡ Re2,cr ≈ 160 (more precisely, at some Re in the range 162 ± 12)
the 2D square-cylinder wake becomes unstable to 3D disturbances with a spanwise
wavelength (non-dimensionalized by the side length D) λy, cr ≈ 5.22. The corre-
sponding three-dimensional unstable mode oscillates with a frequency equal to that
of the vortex shedding and has a spatial structure similar to that of mode A of the
circular-cylinder wake; therefore it was natural to call it mode A too. The second
3D unstable mode (‘mode B’), with the same frequency as the first one and a spatial
structure similar to that of mode B of the circular-cylinder wake, was also discovered
in the square-cylinder wake by stability analysis of Robichaux et al.; it becomes un-
stable at a slightly greater Reynolds number Re3,cr ≈ 190 (more precisely, 190 ± 14)
and has dimensionless spanwise wavelengthλ2,y, cr ≈ 1.2. Moreover, Robichaux et al.
found that in the square-cylinder wake there also exists a third mode of unstable 3D
disturbances (having specific spatial structure) which apparently does not exist in
the wake of a circular cylinder; this mode (which was called ‘the mode S’ by the
authors) becomes unstable at Re ≡ Re4,cr ≈ 200 (more precisely, 200 ± 5), which
differs very little from Re3,cr, and has dimensionless wave length λ3,y, cr = 2.8 inter-
mediate between λy, cr and λ2,y, cr. However, this new mode is subharmonic, with an
oscillation period twice the shedding period of the primary two-dimensional state
(and hence with half the shedding frequency). The discovery of modes A and B by
the linear stability analysis of Robichaux et al. confirmed the corresponding results
by Sohankar et al. found by a quite different method, specifically a fully-nonlinear
three-dimensional DNS, while the discovery of the subharmonic mode S by Ro-
bichaux et al. had something in common with the discovery by Sohankar et al. of
low-frequency oscillations of the DNS data. (The lack of complete coincidence of the
results of two groups seems only natural since the methods used were too different;
in particular, the 3D DNS results depend on the choice of the spanwise aspect ratio
L/D, which took values of only 6 and 10 in the simulations of Sohankar et al., while
the two-dimensional primary flow of the stability analysis correspond to L/D = ∞).

Let us now return to the elongated rectangular cylinders with D1/D = 15 used
in the wake studies of Hannemann and Oertel (1989) and Schumm et al. (1994).
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These cylinders represent some examples of rectangular plates of finite thickness
placed parallel to the flow direction. Other examples of such plates were considered
by Nakayama et al. (1993) who performed 2D numerical simulations of the wakes
behind plates, parallel to the flow, of thickness D with values of D1/D varying
from 3 to 10 for two Reynolds numbers U0D/v = 200 and 400. For both values of
Re it was found that the Strouhal number, St = fD/U0, varies when the value of
D1/D changes. More detailed numerical simulation of velocity oscillations in the
wake behind a rectangular plate of finite thickness were performed by Hammond
and Redekopp (1997) who used another idealized two-dimensional model of such
a wake. Namely, these authors assumed that the plate, of thickness D, is semi-
infinite (filling the volume −∞< x ≤ 0, −∞< y<∞, −D/2< z<D/2) and that
along opposite sides of this plate two independent plane-parallel streams are flowing
in the Ox direction, with the same (nominally Blasius) velocity profile corresponding
to given velocity U0 outside the boundary layer. (The authors also investigated the
case of an asymmetric wake where the limiting velocities U1 and U2 outside the
upper and lower boundary layers differ from each other; however, we will not linger
on the results of this case). Hammond and Redekopp studied the oscillations of the
streamwise and transverse (‘vertical’) velocity components u(x, z, t) and w(x, z, t)
at the point (x/D, z/D) = (1, 0.5) and found that at not too large positive values of
Re – Recr (where again Re =U0D/v) the amplitudes of both these oscillations satisfy,
with high accuracy, the same Landau Eqs. (4.34) and (4.34a) with the coefficients:
γD/U0 ≈ 0.0078(Re −Recr) where Recr ≈ 120 (this value is greater than that found
by Hannemann and Oertel and does not differ too much from experimental value of
Schumm et al)., ω1(Recr)D/U0 ≈ −0.61, and δ′/δ≈ −1.37. It was also verified that
the values of these coefficients were independent of position over a large region of
the (x, z)-plane. Thus we see that this numerical simulation also confirms the fact
that at Re = Recr a Hopf bifurcation occurs in the flow behind a rectangular plate,
and leads to the appearance of a global mode of oscillation with a complex amplitude
A(t) that satisfies the Landau Eq. (4.34–4.34a).

Plates of rectangular section, whose wakes were investigated by Hannemann and
Oertel (1989); Nakayama et al. (1993); Schumm et al. (1994) and Hammond and
Redekopp (1997), can be considered as models of an idealized infinitely thin flat
plate parallel to the flow direction. It was indicated in Sect. 2.93 and recalled again
on p. 108 of the present section that the laminar wake behind such a plate has the
‘Gaussian’ velocity profile of Eq. (2.89). The results of linear stability analysis were
presented in Fig. 2.34, and from these the values of Recr, kcr andω1,cr for the wake of
a thin flat plate can be evaluated. However, selection of the most appropriate length
and velocity scales is not a trivial matter in this case, since it is clear that the very
small ‘thickness’ of the plate cannot be used now as a reasonable length scale. In
Sect. 2.93 and Fig. 2.34 the half-width of the laminar wake was used as the length
scale H (the increase of the width with x was neglected) and the difference between
U0 and the velocity at the laminar wake center-line was chosen as the velocity scale,
but both these scales are irrelevant when wake behavior at supercritical Reynolds
numbers Re>Recr is considered. Therefore, when Eisenlohr and Eckelmann (1988)
investigated, in a wind tunnel, the wakes behind eight different thin plates with blunt
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Fig. 4.28 The dependence of the Strouhal number St = fD +/U0 on the Reynolds number
Re =U0D +/v, where D + = D + 2δ∗, in the case of wake oscillations behind thin plates of thickness
D. (After Eisenlohr and Eckelmann (1988)) the dotted line represents the empirical relation (4.52a):
St = 0.286 −39.2/Re. Different symbols (which are often superimposed on each other) correspond
to different plates

trailing edges (and having a thickness D varying from 1 to 8 mm, with spanwise
width L and streamwise length D1 in the ranges from 280 to 500 mm and from 200
to 800 mm, respectively), they utilized quite different scales for reduction of wake
characteristics to dimensionless form. Namely, they used the undisturbed velocity
U0 of the oncoming stream as the velocity scale while the sum D + = D + 2δ∗, where
δ∗ is the displacement thickness of the upper or lower boundary layer near the trailing
edge of the plate, was taken to be the length scale. (the length D + , which was first
introduced by Bauer (1961), evidently characterizes the real ‘height’ of a barrier
restraining the flow. This length is similar in many respects to the length scale D∗
used by Robichaux et al. (1999) for reduction of the great difference between the St-
Re relations for circular-cylinder and square-cylinder wakes; see Fig. 4.27b above
and explanations relating to it in the text). Eisenlohr and Eckelmann showed that
this definition of the length scale leads to a universal value of the critical Reynolds
number, Recr = (U0D +/v)cr ≈ 140, and to a universal form of the general flat-plate
Roshko law (4.47):

Ro = 0.286 Re −39.2 (4.52a)

(where Ro = fD + 2/v and f is the frequency of wake oscillations) which was found to
be valid with quite satisfactory accuracy for all the plates and all the considered (rather
large) values of Re (see Fig. 4.28). Since the boundary-layer thickness δ∗ grows with
the stream length D1 of the plate, one may try to use Eq. (4.52a) to explain of the
dependence of the values of StD = fD/U0 at fixed ReD =U0D/v on D1/D found by
Nakayama et al. (1993), but Nakayama et al. did not do this. However later Hammond
and Redekopp (1997) recalculated some of their results, in which the plate thickness
D had been used as the basic length scale, by including the displacement thickneses of
the two boundary layers in the length scale. They found that, with this normalization,
their numerically-simulated data led to dimensionless values of f which agreed quite
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satisfactorily (with a difference of about 4 %) with those observed by Eisenlohr and
Eckelmann (1988) at the same values of Re (calculated using the new length scale).
This agreement clearly provides additional validation of the results of both these
papers.

As was explained above, the law (4.47) (whose particular cases include (4.52) and
(4.52a)) is in fact a consequence of the Landauf-Stuart Eqs. (4.34–4.34a) and Eq.
(4.46) Since in the case of a flat-plate boundary layer δ∗ ∝ (U0)−1/2 (more precisely,
δ∗ ≈ 1.73(vL1/U0)1/2; see, e.g., Eq. (1.56) in the book by Monin andYaglom (1971)),
Eq. (4.52a) explains the old observation by Taneda (1958), who discovered that in
the wake behind a thin flat plate parallel to the flow the oscillation frequency f grows
with the flow velocity U0, not linearly (as in the case of a circular-cylinder wake
where the linear relation between f and U0, i.e. the constancy of St, was established,
for a wide range of Reynolds number, by Strouhal (1878) and Rayleigh (1894) and
at large values of Re follows from Eq. (4.47a)), but in proportion to (U0)3/2. In fact,
when the thickness D of a plate is much smaller than the boundary-layer thickness
δ∗, D + = D + 2δ∗ is practically proportional to (U0)−1/2 while Re =U0D +/v ∞
(U0)1/2. Then Eq. (4.52a) implies that f ∝ (U0)3/2 at large values of U0—this is just
the result found by Taneda (1958) which was confirmed by the data by Eisenlohr
and Eckelmann shown in Fig. 4.28. However, in flows around circular cylinders
δ∗ is much smaller than the cylinder diameter D; therefore here the boundary-layer
thickness may be neglected and hence f ∝ U0 approximately.

Computations of Hannemann and Oertel, Nakayama et al., and Hammond and Re-
dekopp, and also the measurements by Schumm et al. and Eisenlohr and Eckelmann,
concern two-dimensional flat-plate wakes only. However Meiburg and Lasheras
(1988) and Lasheras and Meiburg (1990) have demonstrated, both experimentally
and by numerical simulations, that two different three-dimensional vorticity modes
can be generated at moderate values of Re in the two-dimensional wake behind a
thin flat plate, by introducing spanwise-varying disturbances in the flow near the
trailing edge of the plate. The authors described the symmetry properties of these
two modes, which later proved to be practically coincident with the symmetries of
the modes A and B in circular-cylinder wakes, first discovered at approximately the
same time (in particular, by Williamson (1988b)), but investigated in detail only later.
According to Julien et al. (1997) both these modes can also occur in the undisturbed
flat-plate wake (apparently at greater values of Re). Therefore, one may surmise that
the evolution of the wake of a thin flat plate with increasing Re is similar to that of the
wake behind a circular cylinder. Let us recall in this respect that the same similarity
to circular-cylinder wakes was discovered by Sohankar et al. (1999) and Robichaux
et al. (1999) for wakes behind square cylinders facing the flow.

A thin flat plate parallel to the flow direction corresponds to the special case
of a rectangular cylinder with cross-section shown in Fig. 4.26d where D �D1

(and hence it is possible to consider the limiting case where D/D1 → 0). Another
interesting limiting case occurs when D �D1; it corresponds to flows around long
thin plates of finite width D placed in a uniform stream of velocity U0 but this
time normal to the stream direction. The two-dimensional vortex-shedding regime
of the wake behind such a plate was briefly considered by Jackson (1987) (the case



412 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

Fig. 4.29 General view of the
cross-section of a rectangular
cylinder at angle of
incidence α

of the cross-section shown in Fig. 4.24c corresponding to θ = 0); according to this
computations the transition from a steady wake regime to an oscillating, vortex-
shedding, regime occurs here at Re = Recr ≈ 27.77 and the frequency of oscillations
arising at this Re corresponds to a Strouhal number Stcr ≈ 0.1237. More detailed
investigations of the normal-plate wake regime at higher values of Re were carried out
by many researchers; here we will mention only Roshko’s (1993) survey paper and the
short announcement, and rather long subsequent paper, by Najjan and Balachandar
(1996, 1998) devoted to discussion of the recent DNS results and also containing (in
the paper of 1998) an extensive list of references relating to this subject.

The cited papers on square-cylinder and flat-plate wakes represent only a few
examples of numerous studies of wakes behind square and non-square rectangular
cylinders, placed along the spanwise axis Oy, in a uniform stream at different angles
of attack α between 0 and 90◦ (see Fig. 4.29). Many characteristics of such wakes (in
particular, frequencies of wake oscillations, fluctuating velocities at various points,
and pressure, drag and lift forces) were measured by Okajima (1982); Okajima and
Sugitani (1984); Knisely (1990), and Norberg (1993), among others, while papers
by Davis and Moore (1982); Davis et al. (1984); Franke et al. (1990); Okajima
(1990, 1995); Okajima et al. (1992); Li and Humphrey (1995); Sohankar et al.
(1995, 1997, 1998, 1999), and some other authors concentrated mainly on analysis
of numerical-simulation data but often included supplementary experimental results
and cited many additional references. Below we will briefly consider only a small
part of the material presented in the above list of papers, which is itself very far from
being complete.

Franke et al. (1990) numerically simulated square-cylinder wakes at zero in-
cidence and 40 < Re < 300, and compared the resulting St-Re relation with the
experimental data of Okajima (1982) and the experimental and numerical data of
Davis and Moore (1982) and Davis et al. (1984). They found relatively large dis-
crepancies between the results, and came to the conclusion that there were apparently
some significant uncertainties in both experiments and simulations. Knisely (1990)
performed numerous measurements (both in a wind tunnel and a water channel) of
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characteristics of wakes behind square and non-square rectangular cylinders with
side ratios D2/D1 ranging from 0.04 to 1 and with angles of attack α from 0 to
90◦ (the data for α = 0 and 90◦ were naturally the most numerous) and supple-
mented his experimental results by an informative review of similar data from other
researchers. In particular, Knisely presented many graphs showing the dependence
of the Strouhal number St = fD/U0 (where f is the frequency of wake oscillations,
U0 is the free-stream velocity, and D = D1cos α+ D2sin α is the apparent thickness
of the rectangle seen from the front, as indicated in Fig. 4.29) on the angle of attack
α, for wakes of cylinders with various D2/D1 (but Re was often not held constant
in his experiments). Norberg (1993) measured, in a wind tunnel, the values of the
Strouhal numbers St and pressure forces for wakes behind rectangular cylinders of
high aspect ratio L/D1 > 50 (where L is the spanwise length of a cylinder) having
various side ratios D2/D1 (in the range from 1 to 5), and placed at various angles
of attact α in streams corresponding to various Reynolds numbers Re =U0D/v. The
values of St were first of all measured for the case where α= 0o is fixed but the
ratios D2/D1 and Reynolds numbers Re take various values. This allowed Norberg
to determine the dependence of the number St on D2/D1 at different values of Re,
and on Re (in the range 400 ≤ Re ≤ 3 × 104) at a number of values of D2/D1. Then
the values of St were measured at various values of all three parameters Re, D2/D1

and α and the dependence of St on α was graphically presented at a number of values
of Re andD2/D1. Li and Humphrey (1995) analyzed the numerically-simulated data
on the St-Re relation for wakes behind square cylinders at various orientations and
100<Re< 1,000.

The examples of rectangular-cylinder-wake studies presented here should give
a general idea of this extensive field of research, which is quite important in prac-
tice. The studies of the wakes behind non-circular and non-rectangular cylindrical
bodies are much less numerous than those for the cases of circular and rectangular
cylinders, and here only two typical examples of such studies will be mentioned.
Eibeck (1990) compared, for Re =U0D/v = 1.3 × 105, the data of circular-cylinder
wake measurements with results of similar measurements behind a cylinder with
the tapered cross-section having a circular (of diameter D) upstream part turning
smoothly into a triangular downstream part with a sharp angle at the apex (so that the
streamwise lengthD1 of the considered cylindrical body was almost 2.5 times greater
than its thickness D). He found that the vertical structures differed appreciably in
two compared wakes. Breier and Gatzmanga (1995) measured, in a wide range of
Reynolds numbers, the St-Re relations for wakes behind cylindrical bodies of rect-
angular, triangular, trapezoidal, and a more complicated combined cross-sections,
trying to determine in which case St is practically independent on Re in the most
wide range of Reynolds numbers. Their purpose was to find the cross-section guar-
anteeing that the wake-oscillation frequency is proportional to flow velocity U0 in a
wide ragne of velocities, and hence the velocity measurements can be replaced by
more simple frequency measurements. (The utilization of wake-frequency measure-
ments for determination of flow velocity was first suggested by Roshko (1953, 1954)
and later was practiced on a large scale; see, e.g., the discussion of this subject by
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Takamoto (1987)). Some recommendations relating to this matter are included in the
Breier and Ganzmanga’s paper.”

4.2.4.4 Wakes Behind Tapered Cylinders and Circular Rings

Now we will turn to wakes behind bluff bodies nonhomogeneous in the ‘spanwise’
direction (in contract to ‘spanwise homogeneous bodies’ considered above). We will
begin with the case of vortex shedding from linearly tapered cylinders of length
L with diameters D1 and D2 <D1 of two ends at the points with coordinates (0,
0, 0) and (0, L, 0) (if D2 = 0, the cylinder clearly becomes a cone). As in the cases
considered above, the axis Oy (directed along the cylinder or cone axis) is assumed
to be orthogonal to the stream direction Ox, but now circular cross-sections of a
cylinder have diameters diminishing linearly with y. The study of vortex shedding
from tapered cylinders was initiated by two papers by Gaster (1969, 1971) who
investigated the wakes behind such cylinders placed in a water tunnel at first (in the
paper of 1969) for the cases of the taper ratios RT = L/(D1 − D2) equal to 36 and
18 and then (in 1971) for the case of a more mildly tapered cylinder with RT = 120
(the wake behind a circular cylinder was also studied in the latter paper which has
been already referred to above in this connection). Later, further measurements of
vortex shedding from linearly tapered cylinders and cones, with different values of
RT (ranging from 13 to about 600) and φ= tan−1 [(D1 −D2)/2L] were obtained, in
particular, by Piccirillo (1990); Van Atta and Piccirillo (1990); Noack et al. (1991);
Papangelou (1991, 1992), and Piccirillo and Van Atta (1993), while Jespersen and
Levit (1991) carried out a numerical simulation of the flow past a tapered cylinder
with RT = 100.

In 1969 Gaster found that wake oscillations behind a tapered cylinder do not
have one dominant frequency f but are characterized by a combination of two quite
different main frequencies f1 and f2 � f1 (the frequency f2 modulates the high-
frequency wake oscillations and depends only on (U0)2/v but not on the body length
scales). In the second paper (1971) his measurements at RT = 120 showed that the
wake oscillations have a definite cellular nature, i.e. are composed of spanwise
cells with a constant dominant shedding frequency which changes from cell to cell.
Later such cells were discovered in all the wakes of tapered cylinders and cones
considered in the above-mentioned papers, whenever Remax =U0D1/v was not too
large. It was found that the cells often have clear boundaries and quite definite
dominant frequencies (see, e.g., a typical example shown in Fig. 4.30a). Recall that
cellular structure was also found by many authors in the wakes of circular cylinders,
but there the cells usually depended essentially on conditions at the cylinder ends,
while in the cases of tapered cylinders no influence of the end conditions on the cell
structure was found. (In this respect the cells behind tapered cylinders are similar to
cells of circular-cylinder wakes in shear flows with undisturbed velocity U0 =U0(z)
having a constant velocity gradient dU0/dz, studied, e.g., by Griffin (1985) and Woo
et al. (1989)).
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a

b

Fig. 4.30 (a) The dependence of the measured dominant frequency f of wake oscillations at
points {x, 0, y} (where x ≈ 15 mm is fixed) behind the tapered cylinder on the spanwise coor-
dinate y. (After Papangelou (1991, 1992)). The cylinder with the end diameters D1 = 2.57 mm,
D2 = 1.55 mm and the length L = 202 mm was placed normal to the air flow of velocity U0 such
that Remax =U0D1/v = 123, (b) Values of the frequencies f (y) computed by the Ginzburg–Landau
model Eq. (4.50) with the appropriately chosen coefficients. (After Papangelou (1991, 1992))

The dependence of the cell lengths and frequencies on the values of the taper
ratio RT and of the maximal and mean Reynolds numbers Remax and Remean =
U0(D1 +D2)/2v was investigated carefully by Van Atta and Piccirillo (1990); Piccir-
illo and Van Atta (1993) and Papangelou (1991, 1992). It was found in particular that
the difference in shedding frequencies between adjacent spanwise cells is a constat,
coinciding with Gaster’s modulation frequency f2, and that the spanwise length of
a cell divided by the cylinder diameter at the cell midpoint Dcm multiplied by RT

is also constant if Recm =U0Dcm/v> 100. Piccirillo and Van Atta (1993) also found
that the dependence of the cell Strouhal number Stc = fcDcm/U0, where fc is the
frequency of cell oscillations, on the cell Reynolds number Rec =U0Dcm/v may be
approximated with reasonable accuracy by the Rayleigh-Roshko law (4.47a) with
constant coefficients a ≈ 0.195 and a1 ≈ 5.0.

The Roshko law is a consequence of the Landau Eq. (4.34) and (4.34a) but now Stc
and Rec vary with the spanwise coordinate y. Therefore an analytic model describing
wake oscillations behind tapered cylinders and cones must include the dependence
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on y in some way. The first, rather crude, model of this type was proposed by
Gaster (1969) who described the wake oscillations u(x, t) by a system of coupled
equations representing nonlinear van der Pol oscillators (with a coupling described
by a spanwise-diffusion term proportional to ∂2u/∂y 2) and corresponding to different
spanwise coordinates y. This model was later refined by Noack et al. (1991), who
applied their modification of Gaster’s model to describe the cellular structure of wakes
behind both untapered and tapered circular cylinders. However Papangelou (1992)
found that the model of Noack et al. successfully describes only the appearance of
spanwise cells, not their quantitative characteristics. Therefore he tried to utilize the
Landau–Ginzburg model (4.50) for this purpose. The estimates (4.48) of complex
coefficients ω=ω1 + iγ and l = δ+ iδ′ given by Sreenivasan et al. (1987) were used
in Papangelou’s model, together with their estimate Recr ≈ 46 of the critical Reynolds
number (but now the values of D and Re =U0D/v were dependent on y) while the
coefficient μwas assumed to be real and positive (contrary to the applications of Eq.
(4.50) to modeling of wakes behind non-tapered cylinders described above, whereμ
was always assumed to be complex). Solutions of the corresponding Eq. (4.50) with
various positive values of μ showed that this value may be chosen in such a way that
the solution will satisfactorily describe many (though not all) quantitative features
of the observed cell structure (see, e.g., Fig. 4.30b).

Tapered cylinders and cones with axes orthogonal to the stream direction represent
only one special class of spanwise-inhomogeneous bluff bodies. Now we will turn
to another class of such bodies, to whose wakes the G-L model (4.50) was also
applied with definite success. Recall first of all that this model, supplemented by
the appropriate boundary conditions at cylinder ends, allows a number of important
characteristics of wakes behind circular cylinders to be calculated with satisfactory
accuracy. However the experiments show that the flow regime of such a wake depends
very substantially on the details of flow conditions near the cylinder ends, and this
circumstance essentially complicates the determination of the boundary conditions
which are ‘appropriate’ for a given experiment. Therefore as a rule, calculations
based on the G-L model use some artificial boundary conditions selected by the
requirement to produce results consistent with the available data. Because of this,
Leweke et al. (1993a, b) and Leweke and Provansal (1994, 1995) applied the same
model to the case where a cylinder of finite length was curved into a torus (a circular
ring) so that no end conditions were needed.

Roshko (1953, 1954) was apparently one of the first researchers to study the
wake behind a circular (toroidal) ring placed perpendicular to a uniform stream of
velocity U0. He showed that for L/D ≥ 10 (where L is the ring outside diameter and
D is its cross-section diameter) and for a not-too-small value of Re =U0D/v, vortices
are shed from a ring in almost the same way as from a straight cylinder, and form
an annular vortex street. Later it was realized that frequency measurements in such
wakes can be successfully used for the flow-velocity determinations (see the remark
at the end of the previous part (c) relating to this matter) and this fact stimulated more
detailed experimental investigations of wakes behind rings by Takamoto and Izumi
(1981); Monson (1983); Takamoto (1987) and Bearman and Takamoto (1988) (in
the two latter papers, wakes behind circular rings of trapezoidal cross-section were
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studied in detail, and wakes of some rings with rectangular and triangular cross-
sections were also considered in passing), and finally by Leweke and his coworkers,
whose studies of 1994 and 1995 of wakes behind toroidal rings contain the most
interesting experimental data for the subject considered here. It was found in these
works that the vertical structure behind a ring of circular shape can have a number
of different forms: the wake can consist of an array of counter-rotating vortex rings
parallel to the central plane of the toroidal solid ring, or of counter-rotating inclined
vortex rings (i.e., shed at some angle θ with respect to the plane of symmetry of the
torus), or of a pair of counter-rotating helical vortices (i.e., any inclined vortex after
one ‘round’connects to the next one) with discrete helix steps of 2πn/k (where n is an
integer and k is a fixed streamwise wave number of wake oscillations), or of groups
of interwoven helical vortices, and so on. Thus, a number of different normal modes
can exist in the ring wakes. The number n (which can take either sign) also determines
the dependence of the phase � of the wake velocity oscillations on the ‘spanwise
coordinate’y =Lφ/2 (where φ is the angular coordinate of the cylindrical coordinate
system (x, r, φ) with the origin at the center of symmetry of the toroidal ring). Namely,
as y increases from y = 0 (at an arbitrary point of the ring) to y =πL =L1 (where
L1 is the length of the outer circle of the torus), the difference �(y) −�(0) changes
from zero to 2πn. If n = 0, the vortex rings are parallel to the torus midplane and
hence correspond to ‘parallel shedding’ with θ = 0, while the wake structures with
n �= 0 are produced by ‘oblique shedding’, with shedding angle θ �= 0 depending in
a definite way on n, D, L and k. Leweke and Provansal (1995) constructed graphs
representing the St-Re relations (where again St = fD/U0, Re =U0D/v and f is the
frequency of wake oscillations) for various values of n and showed that Williamson’s
‘cosine law’ of oblique shedding is valid here too, with high accuracy. (This means
that if St is the Strouhal number corresponding to oblique shedding at angle θ , the
Stm = St/cosθ practically coincides with the value of St corresponding to parallel
shedding, i.e. n = 0, at the same values of Re and L1/D). Generally speaking, the
values of St depend on three variables-the aspect ratio L1/D, n and Re, if n = 0 the
St-Re relation for the ring wake tends, asL1/D → ∞, to the straight-cylinder relation
shown in Fig. 4.20 (see Fig. 4.31).

The experiments also show that in the wake of a ring, every mode of wake os-
cillations is characterized by its own critical Reynolds number Recr, n, so that at
Re<Recr, n the nth-mode disturbances cannot exist at all (any such disturbance dies
down to zero whatever the initial amplitude). The Reynolds numbers Recr, n are
ring-wake equivalents of the critical Reynolds number Recr ≈ 46 characterizing the
beginning of the vortex shedding in the circular-cylinder wake, but now the tran-
sition Reynolds number depends on the number n of the emerging vertical mode,
and hence the whole family of integers n must be considered. Moreover, the nth
mode is itself stable only for a definite Reynolds-number range Recr,n < Re < Re∗

cr,n
while at Re > Re∗

cr,n this mode becomes unstable to small disturbances and therefore
transforms into a different, more complicated, vortical structure. (Reynolds number
Re∗

cr,n is the nth-mode ring-wake equivalent of the Reynolds number Re2,cr ≈ 190
characterizing the beginning of instability of the two-dimensional Bénard-Kármán
vortex street produced by parallel vortex shedding; now it also depends on the mode
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Fig. 4.31 Comparison of the St-Re curves for parallel vortex shedding (i.e., n = 0) from rings of
different aspect ratios L1/D with the curve for a straight cylinder: L1/D = 99.5 (- - -), 59.0 (- - - - -),
and 31.5 (- - � - -); straight cylinder (——) (After Leweke and Provansal (1995))

Fig. 4.32 Stability domains
Recr,n < Re < Re∗

cr,n of
periodic-vortex-shedding
modes with different values
of n for the wake of a ring
with aspect ratio L1/D = 59.0.
(After Leweke and Provansal
(1995)). The numbers
indicate the critical Reynolds
numbers Recr,n and Re∗

cr ,n

number n). The ‘stability regions’ Recr,n < Re < Re∗
cr,n corresponding to various

modes of ring-wake oscillations often overlap (see the typical Fig. 4.32 showing
some experimental data of Leweke and Provansal (1995)). Therefore for many val-
ues of Re several normal modes are stable simultaneously. Apparently the initial
conditions alone determine which mode will dominate the wake oscillations in such
cases. It was also shown that the vortical structure of the wake depends significantly
on the aspect ratio L1/D. In particular, for aspect ratios smaller than about 20, the
ring wake behaves similarly to the wake of a solid disk. On the other hand, for
20<L1/D< 100 the ring curvature plays relatively minor role, and locally the wake
has an appearance similar to that of the wake of a straight long cylinder. (However the
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minimal critical Reynolds number Recr = Recr,0 depends here on the body-curvature
parameter K = D/L1 and increases nearly linearly with K; see again the paper by
Leweke and Provansal (1995)). Referring to the similarity of the ring wake to that of
straight cylinder, Leweke et al. (1993a, b) applied the G-L Eq. (4.50) to the wake of
a ring, with the same numerical coefficients as were used successfully in the case of
the wake of a straight circular cylinder. However, later Leweke and Provansal (1994,
1995) carried out a direct experimental determination of some coefficients of Eq.
(4.50) for ring wakes.

Leweke and Provansal used the fact that the boundary conditions for the amplitude
A(y, t) of wake oscillations in the case of the wake of a ring have a very simple form:
here evidently 0 ≤ y ≤L1 and A(0, t) = A(L1, t) for any t ≥ 0. It follows from this
that the amplitude A(y, t) can be represented as a sum of Fourier components of a
formAn(y, t) =Bnexp{i[Ωnt +Qny]}, whre n takes integer values (only components
with |n| = 0, 1, 2 and 3 were in fact detected in their experiments),Qn = 2πn/L1, and
the real amplitudes Bn and angular frequencies �n can be determined from the G-L
Eq. (4.50). In particular, the real and imaginary parts of Eq. (4.50) imply that the
equilibrium values of amplitude Bn and angular frequencyΩn (which do not depend
on t) are given by the following expressions

Bn =
[

2(γ − μrQ
2
n)

δ

]1/2

, �n = −
(

ω1 + γ
δ′

δ

)

−
(

μi − μr
δ′

δ

)

Q2
n (4.53)

where, as usual, ω1 + iγ =ω, δ+ iδ′ = l, and μr + iμi =μ. (Equation (4.53) gener-
alized the known equations determining the equilibrium amplitude Ae and Strouhal
frequency f =�0/2π which follow from Landau’s Eqs. (4.34) and (4.34a) and corre-
spond to parallel shedding where μ=μr + iμI = 0). Leweke and Provansal used for
γ and δ′/δ the values γ = 0.2(v/D2) (Re – Recr) and δ′/δ= −3.0 which were obtained
earlier from data of circular-cylinder wake experiments; this means that the effect
of the ring curvature was neglected (relying on measurements by the authors which
show that this effect does not play an important part if D/L1 is small enough; see,
e.g., Fig. 4.31). However to find μr Leweke and Provansal used the equations

B2
0 = 0.4v

δD2
( Re − Recr),

B2
n

B2
0

= 1 − 4π2μr/v

0.2(L1/D)2( Re − Recr)
n2 (4.54)

which follows from the first Eq. (4.53) and the expression for γ given above. Eq.
(4.54) were verified by measurements of (B0)2 and (Bn/B0)2, where B0 and Bn are
the amplitudes of the zeroth and n th modes of the streamwise-velocity oscillations,
in the wake behind a ring of outer diameter L = 56.9 mm and cross-sectional diam-
eter D = 3.03 mm (so that the aspect raito πL/D =L1/D was 59.0). The oscillations
of the streamwise velocity u(x, t) wre measured at the point with coordinates (7D,
0, −2D) in a coordinate system with the origin at the ring center and the Ox axis
pointing in the downstream direction. Measured values of the squared normalized
amplitude (B0D/v)2 of the zeroth oscillation mode at various values of Re =U0D/v
are shown in Fig. 4.33; they confirm the proportionality of (B0)2 to Re – Recr over



420 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

Fig. 4.33 Dependence of the normalized square of streamwise velocity fluctuations, (B0D/v)2, on
Re =U0D/v for the parallel shedding mode with n = 0 at the point {x, y, z} = {7D, 0, −2D} behind
a ring with aspect ratio L1/D = 59.0. (After Leweke and Provansal (1995))

a considerable range of Re, and allow the critical Reynolds number Recr and the
value of δ corresponding to streamwise-velocity oscillations at the measurement
point to be estimated with good accuracy. The measured values of (BnB0)2, where
n took the values 1, 2, and 3, proved to be more scattered than the values of (B0)2,
but on the whole they agreed with the second Eq. (4.54) and led to the conclusion
that μr/v ≈ 10 over a range of not-too-high values of Re – Recr. Above Re = 100,
however, μr/v begins to increase with Re. Moreover, the second Eq. (4.53) allows
μi − μr (δ′/δ) = μr [(μi/μr ) − (δ′/δ)] to be determined from measurements of
the difference of two angular frequencies �n −�m (or of two ordinary frequencies
fn −fm = (�n −�m)/2π ) corresponding to two different oscillation modes of the
ring wake. Leweke and Provansal (1994) measured the differences fn −fm for a
number of integer values of n and m and various values of Re, and deduced the de-
pendence of (μr/v)[(μi/μr )− (δ′/δ)] on Re over a wide range of Reynolds numbers.
The results were compared with estimates of (μr/v)[(μi/μr ) − (δ′/δ)] from mea-
surements of wake oscillations behind circular cylinders made by Williamson (1989)
and Monkewitz, Williamson and Miller (whose results were known in 1994 but were
published only in 1996). The comparison showed that the estimates derived from
data on wake oscillations behind straight cylinders and behind rings agree rather sat-
isfactorily with each other. Analyzing the data of both types Leweke and Provansal
recommended in 1994, for a wide range of not too high supercritical values of Re,
the estimate: (μi/μr ) − (δ′/δ) = 2.9 ± 0.8, but in 1995 they replaced this by two
separate estimates: μi/μr ≈ −0.65, δ′/δ ≈ 3.0. Then they showed that the G–L
Eq. (4.50) with the above values of coefficients describes, quite satisfactorily, the
general development of wakes behind rings placed normal to the flow and also many
observable features of such wakes. Let us recall, however, the remark by Leweke and
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Williamson (1998), which has been already mentioned at the end of the discussion
of the transverse Ginzburg-Landau Eq. (4.50). They commented that the application
by Leweke and Provansal (1995) of the G-L model for the determination of the in-
stability threshold for the wake flow implied a type of instability differing from that
observed in laboratory experiments or numerical simulations of wake flows.

4.2.4.5 Wakes Behind Spheres and Other Axisymmetric Bodies

Wakes behind circular rings placed normal to the flow represent a special example
of wakes behind axisymmetric bluff bodies. However in the above discussion of ring
wakes, we emphasized first of all their similarity to wakes behind straight circular
cylinders, paying only secondary attention to their axial symmetry. Now we will
consider some other axisymmetric wakes, concentrating mainly on the consequence
of axisymmetry.

Axisymmetry wakes appear behind any body of revolution submerged in an uni-
form stream directed along the body axis. Vortex shedding from the downstream parts
of such bodies, and global oscillations of the resulting wakes, have been observed
by many researchers. It was found that these features are related to the existence in
the wakes behind axisymmetric bodies, in the cases when the Reynolds number Re
is not too small, of zones of absolute instability with respect to non-axisymmetry
disturbances with azimuthal wave number n = 1 (see, e.g., Monkewitz (1988c)).
Since the sphere is a prototype axisymmetric body, the wakes behind spheres are
clearly the most significant axisymmetric wakes. Flows past spheres can be easily
produced in the laboratory and are encountered in some engineering devices and
natural phenomena; therefore sphere wakes began to attract attention very early and
were studied quite extensively. In Sect. 2.2 it was mentioned that the dependence of
the drag of a sphere submerged in a fluid flow on the Reynolds number Re was stud-
ied long ago by Eiffel (1912) and Prandtl (1914) (in fact there were also many other
early studies of sphere drag); all these studies inevitably included the consideration
of sphere wakes. The formation of vortices behind a sphere and vortex shedding
from spheres were described in the 1930s in particular by Winny (1932); Foch and
Chartier (1935), and Möller (1938), while later the vortical structures and quantitative
characteristics of sphere wakes were studied by Taneda (1956, 1978); Torobin and
Gauvin (1959); Magarvey and Bishop (1961a, b); Magarvey and MacLatchy (1965);
Goldburg and Florsheim (1966); Zikmundova (1970); List and Hand (1971); Calvert
(1972); Masliyah (1972); Achenbach (1972, 1974); Nakamura (1976); Pao and Kao
(1977); Perry and Lim (1978); Kim and Durbin (1988); Sakamoto and Haniu (1990,
1995); Berger et al. (1990); Bonneton and Chomaz (1992); Wu and Faeth (1993);
Provansal (1996); Provansal and Ormières (1998); Ormières et al. (1998); Ormières
and Provansal (1999), and many other experimenters. Nevertheless experimental data
for sphere wakes continue to be scattered and sometimes contradictory. The scatter
can be explained by a number of factors complicating the wake measurements, such
as the influence of the sphere supports, the effect of free-stream turbulence, and
the weakness and slowness of wake oscillations at values of Re near the instability
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threshold. The influence of support devices can be diminished or even annulled by
the use of spheres towed through, or freely falling or rising in, quiescent fluid but
here some other complications often emerge. However the general features of sphere
wakes are now known rather well, and many of them are quite similar to those of
wakes behind circular cylinders.

The available data show that in the case of uniform external stream the flow
around a sphere at low Reynolds numbers is steady, axisymmetric, and attached to
the whole sphere body. At some greater value of Re, flow separation occurs and an
axisymmetric, toroidal recirculation eddy, which is attached to the segmental area
on the downstream side of the sphere, appears. According to experiments by Taneda
(1956), the separation is first observed at Re = Re0,cr ≈ 24 (where Re =U0D/v is
based on the sphere diameter and free stream velocity). This estimate agrees with the
results of some relatively early theoretical investigations of flows around a sphere,
using either analytical or numerical approximations of the corresponding solutions
of the Navier-Stokes equations (see, e.g., the summary of a number of such studies
by Pruppacher et al. (1970) which implies that Re0,cr ≈ 20). There were also some
experimenters who obtained different estimates of Re0,cr (e.g., Nakamura (1976)
found that Re0,cr ≈ 10, and this estimate was also given by Wu and Faert (1993)
who, however, made no measurements at so small value of Re). On the other hand,
numerical simulations of flow past a sphere by Shirayama (1992), and the subsequent
more careful and explicit simulations by Tomboulides (1993) (see also Tomboulides
et al. (1993)) and Johnson (1996) (see also Johnson and Patel (1999)), which will be
discussed at greater length later, confirmed the old estimates of Re0,cr given by Taneda
and Pruppacher et al. (all of them show that Re0,cr ≈ 20). As Re increases further, the
flow remains axisymmetric and steady, but the downstream extent of the recirculating
wake zone, and the separation angle which determine the sphere segment adjoining
to this zoen, progressively increase. The increase with Re of the streamwise length
of the recirculating zone and of the separation angle were measured in Taneda’s and
Nakamura’s experiments and were also determined from the numerically-simulated
data by Pruppacher et al. (1970); Fornberg (1988); Shirayama (1992); Tomboulides
(1993); Magnaudet et al. (1995), and Johnson (1996) who found that the numerical
results agree quite well with each other and with the experimental ones (with the sole
exception of Taneda’s values of the length of recirculating zone at large values of Re,
which were obviously underestimated; see, e.g., Fig. 4.34 and the above-mentioned
papers by Shirayama, Tomboulides et al., and Johnson and Patel). The same is also
true for values of the drag coefficient of a sphere which were also computed by
Shirayama, Tombulides, and Johnson in a range of Reynolds numbers not too far
above the critical value Re0, cr; here again the computed values agree excellently with
values given by Ross and Willmarth (1971) who accurately measured the sphere drag
and compared their results to those of numerous previous drag studies. However, at
some Re = Re1,cr in the range between 100 and 350, the steady axisymmetric wake
flow becomes unstable, and this leads to an abrupt change of the wake structure.
At this value of Re a new wake regime emerges which, according to the results
of many recent studies, is non-axisymmetric and steady, while in some older work
it was found to be non-axisymmetric and oscillating (more will be said about this
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Fig. 4.34 Comparison of the dependence of the dimensionless streamwise length xrc/D of the
recirculation zone (measured on the wake axis) on Re given by Johnson and Patel’s computations
(the solid line with black dots) with results of Taneda’s experiments and of earlier computations by
Tomboulides, and Magnaudet et al. (After Johnson and Patel (1999))

below). The transition to an oscillating flow regime means that the periodic shedding
of vortices begins at this Re, and signifies a Hopf bifurcation which may be described
analytically by the complex Landau Eq. (4.40); while the replacement of one steady
flow by another is a regular (non-Hopfian) bifurcation whose description does not
require consideration of a complex amplitude equation.

In many cases, values of the critical Reynolds number Re1,cr (which for the sake
of simplicity will often be denoted below by Recr) given by different experimenters
disagree with each other. Recently Johnson and Patel (1999) stated that the ob-
served onsets of the oscillatory shedding regime of a sphere wake covers the range
290<Recr < 400; however, if all the results indicated below were taken into account,
then this range would be expanded to at least 130 ≤ Recr < 400. According to the
experiments of Möller (1938), who towed a sphere through water, 170<Recr < 200.
Later Taneda (1956) found that a weak oscillation with a long period appears in
the sphere wake at Re = Recr ≈ 130. A value of Recr close to this was also found
by Zikmundova (1970), who concluded from her observation of aluminum spheres
dropped through the solutions of glycerol and water that 130<Recr < 150. Taneda’s
value of Recr was accepted by some other authors (e.g., by Fornberg (1988)) but
almost all recent data show that Taneda’s and Zikmundova’s estimates of this value
were appreciably too low. (Note, however, that Provansal and his coworkers, whose
work will be discussed at the end of this paragraph, found in the late 1990s that at
Re ≈ 150 the sphere wake undergoes a bifurcation, but of a different type from that
found by Taneda and Zikmundova). Magarvey and MacLatchy (1965), who made
rather accurate observations of the wakes behind freely-falling solid spheres, found
that the recirculation zone becomes unstable, and the wake begins to oscillate, only
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at Re ≈ 300. The start of wake oscillations at Re ≈ 300 (accompanied by an abrupt
change of the vortical wake structures leading to the appearance of hairpin-shaped
vortex loops) was later detected also by Levi (1980) and Sakamoto and Haniu (1990).
Magarvey and Bishop (1961a, b) presented a number of photographs of wakes pro-
duced by liquid drops settling in a immiscible liquid; these photos show that the
wake became non-axisymmetric at Re ≈ 210 but lost its steadiness only at Re ≈ 270.
Goldburg and Florsheim (1966) also studied the wakes behind freely-falling solid
spheres at moderate values of Re, and found that the dependence of the Strouhal
numbers St = fD/U0 of wake oscillations on Reynolds number is described, with
good accuracy, by the Rayleigh–Roshko Eq. (4.47a) with a ≈ 0.387 and a1/a ≈ 270
over a considerable range of Re. As was shown above, Eq. (4.47a) follows from
Landaus equation for the complex amplitude of wake oscillations. These values of
coefficients a and a1 show that the oscillatory wake regime was observed at Re> 270,
but Goldburg and Florsheim also noted that in their experiments the wake lost its
axisymmetry at Re ≈ 210. Ross (1968) and Roos and Willmarth (1971) stated that
their observations of spheres towed through water showed that 215<Recr < 290.
According to Nakamura’s (1976) experiments with falling spheres, some change
in the nature of the wake occurs at Re = 190, but the change was not described in
detail and therefore Kim and Pearlstein (1990) interpreted it as a transition to non-
axisymmetric oscillating wake regime while Natarajan and Acrivos (1993) took it as
the loss only of the axisymmetry, but not the steadiness, of the wake flow. Shirayama
(1992) described some experiments according to which Recr ≈ 250, but he paid his
main attention to flow simulation for Re = 500. Then Wu and Faeth (1993) towed
a polished plastic ball through a rectangular bath filled with quiescent water and
glycerol mixture, visualized the flow near the towed sphere, and measured by laser
velocimeter the mean streamwise velocities and root-mean-square velocity fluctua-
tions at a number of points. Their measurements cover the range of Reynolds number
Re =U0D/v from 30 to 4,000, but for the topic discussed in this subsection the range
30 ≤ Re ≤ 400 represents the main interest. According to the results of these au-
thors, the recirculation region on the downstream side of the sphere was steady and
axisymmetric at Re< 200, steady but non-axisymmetric at 200<Re< 280, and un-
steady with vortex shedding at Re> 280. Still later the French researchers (Provansal
(1996); Provansal and Ormières (1998); Ormières et al. (1998) and Ormières and
Provansal (1999); see also beautiful photos presented by Leweke, et al. (1999)) used
flow visualization in a water channel to observe the flow behind a fixed sphere (held
by a thin upstream metallic pipe with three holes allowing to inject the dye into
the water), and laser-Doppler and hotwire anemometers to measure velocities in a
wind tunnel flow behind another sphere held inside the tunnel by four thin wires.
According to their data, the sphere wake is steady and axisymmetric at Re< 150,
while at Re ≈ 150 its axisymmetry breaks and for 150<Re< 180 the wake is non-
axisymmetric but remains steady and has the vortical structure including a single
linear vortical thread. At Re ≈ 180 this structure changes and becomes more com-
plicated (begins to include a pair of vortical threads) but at 180<Re< 280 the wake
continues to be steady and non-axisymmetric. However, if Re grows further, then
at Re = Recr ≈ 280 the sphere wake begins to oscillate with a frequency f which
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Fig. 4.35 Dependence of
Ro = fD2/v on Re =U0D/v in
the wake behind a sphere at
supercritical Reynolds
numbers Re ≥ Recr according
to measurements of Ormières
et al. (1998)

does not depend on the point of observation, and corresponds to a Roshko num-
ber Ro = fD2/v ≈ 38. Spectral analysis of streamwise velocity fluctuations was then
used to measure the values of Ro in the Reynolds-number range 280<Re< 340,
corresponding to the periodic vortex-shedding regime. Data by Ormièdes et al. (see
Fig. 4.35) show that in this range the Ro-Re relation can be approximated by the
linear Eq. (4.47), while according to the 1998 and 1999 papers by Provansal and
Ormières even higher precision can be reached if Eq. (4.47) will be replaced by
the three-term equation Ro = aRe −a1 + a2Re2 where a = 0.391, a1 = −48.2, and
a2 = −3.6 × 10−4 (recall that an equation of such form was earlier proposed by
Williamson for the Ro-Re relation in the supercritical circular-cylinder wake; see the
explanation relating to Fig. 4.20 in part (b) of this section).

The experimental results listed above (which clearly do not exhaust all the avail-
able results) must be supplemented by consideration of a few attempts to compute
the value of Recr by applying linear stability theory to the axisymmetric steady flow
around a sphere. The first such attempt was due to Kawaguti (1955), but his re-
sults (Re1,cr = 51, corresponding to instability of the steady sphere wake to unsteady
axisymmetric disturbances) contradicts all other available results of stability compu-
tations (and also of experiments or simulations), and must therefore be disregarded.
However the paper by Kim and Pearlstein (1990), whose results are apparently also
incorrect, signified a more serious attack on the problem. Modifying Fornberg’s
(1988) approach, the authors computed a new the axisymmetric solution of the
Navier–Stokes equations corresponding to the laminar flow past a sphere in a free
stream with constant velocity U0 = {U0, 0, 0}. Then they investigated, in the frame-
work fo the linear theory of hydrodynamic stability, the stability of this solution to
infinitesimal disturbances proportional to exp[i(nφ−ωt)], where φ is the angular
cylindrical coordinate, n = 0, 1, 2.., and possible values of ω are determined by the
eigenvalue problem of linear stability theory. (Hence, both axisymmetric (azimuthal
wave number n = 0) and non-axisymmetric (n �= 0) disturbances were considered by
the authors). The analysis showed that as Re =U0D/v increases the disturbance which
becomes unstable first of all has the azimuthal wave number n = 1. According to Kim
and Pearlstein’s computations, the instability of disturbances with n = 1 emerges at
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Re = Recr = 175.1 and leads to a non-axisymmetric oscillating flow regime. As to
disturbances with other values of n, the authors did not find instability for any of them
in the whole investigated range of Reynolds numbers. Let us recall from Sect. 2.94
that the linear-stability-theory results of Batchelor and Gill (1962) and some other
authors showed that the disturbances with n = 1 are the most unstable in a number
of other axisymmetric jet and wake flows, and that Monkewitz’s (1988c) results also
indicated the paramount role of disturbances with n = 1 in formation of the global
instability modes in axisymmetric spatially-developing flows.

Kim and Pearlstein compared their theoretical results with the results of previous
experimental work and concluded that the agreement of their theory with the experi-
mental data is more or less satisfactory. However later Natarajan and Acrivos (1993),
who solved the same stability problem by a more advanced numerical method leading
to different results, reconsidered Kim and Pearlstein’s conclusion. The new authors
applied to the computation of the solution of the equations of motion, describing
the steady axisymmetric flow past a sphere, the numerical procedures developed for
other purposes by Fornberg (1991) and Natarajan et al. (1993). This allowed them
to describe the flow more explicitly than was possible earlier. Then Natarajan and
Acrivos applied a new numerical method to solution of the linearized equations de-
scribing the evolution of small disturbances in the flow past a sphere. This method
confirmed the result of Kim and Pearlstein, according to which the disturbances
which become unstable at the smallest value of Re have the azimuthal wave number
n = 1 (and instability to disturbances with n �= 1 was again not found for any Re).
However, the new computations showed that the unstable disturbance with n = 1 first
appears at Reynolds number Re1,cr ≈ 210, greater than was found by Kim and Pearl-
stein, and the disturbance differs qualitatively from the unstable disturbance of Kim
and Pearlstein’s theory. Namely, according to Natarajan and Acrivos the disturbance
which becomes unstable at Re = Re1,cr is non-axisymmetric but also nonoscillatory,
i.e., it corresponds to a purely imaginary eigenvalueω= iγ with the imaginary part γ
(determining the growth rate of the disturbance) proportional to (Re – Re1,cr) which
is negative for Re<Re1,cr but positive for Re>Re1,cr (see Fig. 4.37b below). Hence
the critical Reynolds number Re1,cr signifies a regular bifurcation (not of the Hopf
type), the replacement of the axisymmetric steady flow by a new steady flow which
includes a non-axisymmetric velocity mode with azimuthal wave number n = 1. This
means that the transition of the axisymmetric wake regime to instability here pro-
ceeds through a steady state, corresponding to zero eigenvalue ω= 0, i.e., it is of
the same “exchange of stabilities” type which was encountered in this book when
the instabilities of the Taylor-Couette flow between two rotating cylinders and of an
immovable fluid layer heated from below were considered (see Sects. 2.6 and 2.7).

Natarajan and Acrivos computed, for the stability problem relating to small non-
axisymmetric disturbances with n = 1, not only the eigenvalue ω=ω0 with the
greatest imaginary part γ0 (reducing to zero at Re = Re1,cr) but also a number of
other complex eigenvalues ωj = −ω1,j + iγj , j = 1, 2,. . . . Some of these eigen-
values are represented in Fig. 4.36 which shows that besides the eigenvalue ω0

(which at Re = Re1,cr crosses the imaginary axis at the zero point), there is an-
other eigenvalue (which will be temporarily denoted as ω1) whose imaginary part
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Fig. 4.36 Values of complex eigenvalues iω= γ − iω1 corresponding to the eigenvalue problem of
the linear stability theory for non-axisymmetric disturbances with n = 1 in the steady axisymmetric
flow of velocity U0 past a sphere of diameter D. The eigenvalues are made dimensionless by using
U0 and D as velocity and length units and are presented for three values of Re =U0D/v. (After
Natarajan and Acrivos 1993)

also approaches zero (only slightly more slowly than that of ω0) as Re increases.
Accurate computations showed that the eigenvalue ω1 crosses the imaginary axis
at Re = Re2,cr ≈ 277.5. Figure 4.36 showed that ω1 has nonzero real part; accord-
ing to the computations, this eigenvalue crosses the imaginary axis at the point
where −�eω1 = ω1,1 ≈ 0.710U0/D. Thus, Natarajan and Acrivos found that the
axisymmetric steady sphere wake loses its axisymmetry (but not steadiness) and
acquires the azimuthal wave number n = 1at Re ≈ 210, and at Re ≈ 277.5 the sec-
ond unstable mode of disturbance, which is also non-axisymmetric with n = 1 but
is unsteady, appears in the flow. This could mean that at Re> 277.5 the flow pre-
serves the azimuthal wave number n = 1 but begins to oscillate with the frequency
f =ω1,1/2π ≈ 0.113U0/D. If so, then the wake transformation at Re = Re2,cr clearly
represents a Hopf bifurcation produced by the emergence of periodic shedding of
vortices from the sphere; the wake oscillations arising at this Re correspond to a
Strouhal number Stcr ≈ 0.113.

The cautious description (using the expression “could mean. . . ”) of the result
relating to Re2,cr is due to the fact that the theory only shows that at Re> 277.5 the
axisymmetric flow past a sphere becomes unstable with respect to non-axisymmetric
oscillatory disturbances. However, the theory also shows that at some lower value
of Re axisymmetric flow becomes unstable to infinitesimal disturbances of another
type. The situation here is quite similar to that in the case of the stability studies
for the circular-cylinder wake performed in 1996 by Barkley and Henderson, and
Henderson and Barkley. As was noted in part (b) of this section, the critical Reynolds
number Re3,cr ≈ 260 (and the whole lower stability curve in Fig. 4.23) found by these
authors was also obtained by application of the linear stability theory to an obviously-
unstable primary flow. It was explained, however, that the resulting value of Re3,cr

nevertheless agrees well with the experimental threshold for the appearance of the
second unstable mode B. A similar situation apparently occurs in the case of the
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square-cylinder wake (see the discussion of the paper by Robichaux et al. (1999) in
part (c) of this section). As will be indicated below, the value of Re2,cr determined
by Natarajan and Acrivos by means of linear stability analysis also agrees well with
the available experimental data.

Natarajan and Acrivos noted that the loss of axisymmetry of the sphere wake, at
a smaller value of Re than that at which the wake becomes unsteady, was observed
in experiments by Magarvey and Bishop (1961a, b) and Goldburg and Florsheim
(1966). Moreover, the values of the two critical Reynolds numbers, indicating the
thresholds of the two bifurcations, which were found by these authors, are quite close
to the values of Re1,cr and Re2,cr given by Natarajan and Acrivos’ stability calcula-
tions. The experimental results by Nakamura (1976) may also be considered as being
in good agreement with the calculated results, if one assumes that the bifurcation
observed by this author corresponds to the loss of wake axisymmetry but not steadi-
ness. Thus, Natarajan and Acrivos concluded that the available experimental data are
substantially more favorable to their results than to those of Kim and Pearlstein. Note
however that, during the preparation of the paper of 1993, Natarajan and Acrivos did
not know about the paper by Wu and Faeth (1993), which contains a very convincing
experimental confirmation of their theoretical results11. In fact, the latter authors
observed both bifurcations predicted by Natarajan and Acrivos and gave, quite inde-
pendently, the estimates Re1,cr ≈ 200 and Re2,cr ≈ 280 for the two critical Reynolds
numbers, which are very close to the values computed by Natarajan and Acrivos. The
later experimental results of Provansal and coworkers (Provansal (1996); Provansal
and Ormières (1998) Ormières et al. (1998) and Ormières and Provansal (1999)), and
the results of the sphere-wake observations by Johnson and Patel (1999), also show
that the sphere wake loses its axisymmetry at a smaller value of Re than its steadi-
ness and begins to oscillate only at Re ≈ 280. The results of Johnson and Patel in
fact agree in many other details with Natarajan and Acrivos’ theoretical predictions.
These new discoveries increase considerably the cogency of the statement made by
Natarajan and Acrivos, that the available experimental data agree much better with
their results than with Kim and Pearlstein’s stability computations.

Of course, Natarajan and Acrivos did not analyze all the available experimen-
tal data relating to sphere wakes which, as mentioned above, are rather scattered.
Moreover, they also did not look for a possible error in Kim and Pearlstein’s com-
plicated and tedious computations, which could explain the difference between the
conclusions of two papers devoted to the same problem. However, Natarajan and
Acrivos indicated one more very important confirmation of their results: namely,
they stressed that their results agree very well with the results of independent stabil-
ity computations for three-dimensional flows past a sphere, by a completely different
method, carried out by Tomboulides (1993) and Tomboulides et al. (1993) practically
simultaneously with Natarajan and Acrivos’ investigation.

11 Experimental results presented by Wu and Faeth (1993) are described at greater length in the
thesis by Wu (1994). In addition Wu’s thesis also contains descriptions of experimental studies
of wakes behind spheres placed in a uniform stream where considerable velocity disturbances are
presented; see in this respect also the papers by Wu and Faeth (1994, 1995).
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Tomboulides, and Tomboulides et al., did not use the linear theory of hydrody-
namic stability as in the papers discussed above but used a nonlinear approach based
on direct numerical simulation (i.e., on numerical solution of the full nonlinear equa-
tions of fluid dynamics). First of all, they numerically solved the nonlinear equations
describing the steady flow of a uniform stream with a constant velocity U0 = {U0,
0, 0} past a sphere of diameter D. The solutions found were axisymmetric, and the
results for the Reynolds-number dependence of the streamwise length of the recircu-
lation zone, the separation angle, and the sphere drag coefficient, discussed above,
were computed from just these solutions. After this, at Reynolds numbers 200, 220,
250, 270, 285, and 300 a non-axisymmetric velocity disturbance with the azimuthal
wave number n = 1 was added to initial conditions corresponding to the computed
axisymmetric solution of equations of motion. The disturbance had the total energy
equal to 10−8 of the energy of the axisymmetric flow and was randomly generated
in such a way that its initial energy was distributed over all the eigenmodes with
n = 1. Then the full equations of motion were solved numerically for the new initial
conditions and the energy of all modes with n = 1 was traced in time.

It was found that the energy of the initial non-axisymmetric disturbance decayed
in time, and the flow eventually returned to full axisymmetry, only at Re = 200. For
all other inspected values of Re the energy of the disturbance grew and asymptoted to
a finite constant value. This showed that 200<Re1,cr < 220. The observed dependen-
cies of the disturbance amplitudes A(t) on time (exemplified in Fig. 4.37a) allowed
easy detection of the regions of initial exponential decay or growth, yielding the
initial growth rate (positive or negative) γ = � mω (where ω is the corresponding
eigenvalue of the linear stability problem) of the least-stable mode with n = 1. Values
of γ obtained in this way are shown in Fig. 4.37b, together with the same quantity
computed by Natarajan and Acrivos from linear stability theory. One may see that the
agreement between the results of linear and nonlinear computations is remarkable.
Note also that the data shown in Fig. 4.37b agree well with the approximate equation
γ ≈ b (Re – Recr) which according to Landau’s theory must be valid at small values
of |Re – Recr|.

As to the exact value of Re1,cr, Natarajan and Acrivos found that Re1,cr = 210
while a thorough investigation of this question by Tomboulides led to the conclusion
that Re1,cr = 212; the difference between these two estimates is clearly negligible.
The above-mentioend experimental estimates by Magarvey and Bishop (1961a, b)
(Re1,cr ≈ 210) and Wu and Faeth (1993) (Re1,cr ≈ 200) of the threshold Reynolds
number signifying the transition to non-axisymmetric wake regime are also very
close to the corresponding results of Tomboulides, and Tomboulides et al. The re-
cent experiments of Provansal (1996); Provansal and Ormières (1998); Ormières
et al. (1998), and Ormières and Provansal (1999), confirmed that the sphere wake
loses its axial symmetry at a value of Re below the onset of wake oscillations, and im-
plied an estimate of the oscillation threshold Re2,cr which is very close to that found
by Natarajan and Acrivos and by Tomboulides. However this recent work led to re-
sults relating to the value of Re1,cr which deviate from the conclusions of Natarajan
and Acrivos’ linear and Tomboulides’ nonlinear stability theory. In fact, according
to Provansal and his coworkers there exist two different bifurcations, both leading
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Fig. 4.37 a Dependence on
time (measured in
conventional units) of ln(uφ)
where uφ is the
non-dimensionalized
azimuthal disturbance
velocity at the point {x, r} =
{D, 0.2D} of the wake behind
a sphere at Re = 250. (After
Tomboulides 1993)
b The dependence of the
dimensionless growth rate
γD/U0 of the least stable
mode with n = 1 on Re in the
wake behind a sphere. (After
Tomboulides 1993 and
Tomboulides et al. 1993).
Circles: results following
from the linear stability
analysis of Natarajan and
Acrivos, filled circles: values
given by nonlinear direct
numerical simulation of
Tomboulides

a

b

to the emergence of some non-axisymmetric steady flow regimes, which occur at
smaller Re than the value Re1,cr ≈ 210 at which the wake regime first becomes non-
axisymmetric according to Natarajan and Acrivos’ and Tomboulides’ computations.
However, only the second of the found by the French researchers non-axisymmetric
regimes conforms to the non-axisymmetric steady wake regime predicted by the
linear and nonlinear stability theories and the corresponding to it critical Reynolds
number Re ≈ 180 does not differ very much from the value Re1,cr implied by the
above-mentioend stability studies. As to the another non-axisymmetric sphere-wake
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regime detected by the French experimenters at 150<Re< 180, it apparently re-
quired further investigation. Without it this specific result (which may have been
affected by the influence of the sphere supports) can hardly outweigh the available
data supporting Natarajan and Acrivos’ and Tomboulides’ conclusions.

The linear-theory results of Natarajan and Acrivos determine only the character
of the initial evolution of a very small disturbance in the sphere-wake flow. However,
the results of Tomboulides’ nonlinear analysis lead to asymptotic values A∞ of the
disturbances as t → ∞ and hence to values of the Landau constants δ = 2γ /A2∞
(proved to be positive) at various Reynolds numbers and positions in the sphere wake.
(Note that Landau’s equation describing the emergence of sphere-wake oscillations
was considered by Ormières et al. (1998) and Ormières and Provansal (1999) who,
in particular, showed that the increase of the energy of the streamwise velocity fluc-
tuations with the Reynolds number Re is linear at small supercritical values of Re, as
it must be according to Landau’s theory). It was also found by Tomboulides that the
non-axisymmetric steady wake structure emerging at Re = Re1,cr preserves planar
symmetry with respect to some plane parallel to the flow direction. Such symme-
try, which is weaker than the axial symmetry but not incompatible with azimuthal
wave number n = 1, was also observed by Magarvey and Bishop (1961a) and Levi
(1980), and was later found in the numerically-simulated supercritical sphere wakes
computed by Shirayama (1992) and Johnson and Patel (1999). The time history of
velocity disturbances described by numerical solution of the nonlinear equations of
motion computed by Tomboulides show that the mode with n = 1 begins to oscillate
at some value of Re in the interval 270 ≤ Re ≤ 285. Recall that according to the linear
theory by Natarajan and Acrivos the transition to an oscillating wake regime takes
place at Re = Re2,cr = 277.5 while according to the experimental results by Magarvey
and Bishop Re2,cr ≈ 270, and both Wu and Faeth, and Provansal and his coworkers
(who used wake control to observe the time evolution of velocity disturbances at
subcritical and supercritical values of Re close to the critical value Re2,cr) found that
Re2,cr ≈ 280. We see that here again the conclusions of nonlinear numerical stability
analysis agree very well with results given by linear stability theory and by several
trustworthy experimental investigations. Let us also re-emphasize that the computa-
tions by Natarajan and Acrivos, and by Tomboulides, and experimental investigation
by Wu and Faeth were carried out practically simultaneously and independently from
each other. Therefore the remarkable coincidence of the results obtained indepen-
dently by three very different methods gives good reason to trust them. It is now
possible to support this conculsion by reference to results of a subsequent successful
numerical simulation of the flow past a sphere at a number of moderate Reynolds
numbers, combined with visual observation of the wake regimes at different values
of Re.

Let us mention at first a numerical simulation by Gebing (1994) of the flow of a
compressible fluid past a sphere at Reynolds numbers from 20 to 1,000 and a Mach
number of 0.4. This simulation also showed the existence of two subsequent transition
of the same type as those found for incompressible flows—a loss of axial symmetry
at Re ≈ 300 and the emergence of an oscillatorty wake regime at Re ≥ 400. However,
up to now compressible flows have not been considered at all in this book; therefore,
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the main attention will be given below to the results of accurate numerical simulations
of the incompressible flows past a sphere at 20 ≤ Re ≤ 300 performed by Johnson
(1996). He employed a numerical method differing from that of Tomboulides, and
presented the final version of his results in the paper by Johnson and Patel (1999),
where numerically simulated data were accompanied by results of dye-injection
observations of the wake flow behind a sphere towed through a water tank. Both the
simulations and visual observations showed that, at Reynolds numbers from 20 to
approximately 210, the wake flow is steady, axisymmetric, and does not undergo
any substantial topological transformations. As has been noted above, the length of
the recirculation zone, the separation angel, and the drag coefficient computed for
Re-values in this range coincided very well with many previous experimental and
numerical results. However, at a Reynolds number of 211 the calculated solution of
the equations of motion becomes non-axisymmetric, but preserves planar symmetry
with respect to some plane parallel to the flow direction, and remains steady.

Steady non-axisymmetric numerical solutions were found for all investigated
values of Re ≥ 211 up to Re = 270. However at Re = 280, which was the next higher
Reynolds number considered, the solution, obtained for the initial conditions leading
at Re = 270 to steady non-axisymmetric solution, was found to be oscillating with
a fixed frequency f. Hence, Johnson’s numerical simulations show that Re1,cr = 211
and 270<Re2,cr ≤ 280. These results agree excellently with those found in numerical
studies of Natarajan andAcrivos (1993); Tomboulides (1993), and Tomboulides et al.
(1993), and in experiments of Magarvey and Bishop (1961a, b) and Wu and Faeth
(1993) (and in the part relating to the onset of wake oscillations at Re = Re2,cr also
with experimental results of Provansal and his group). Wishing to understand (and
to explain) the physical mechanisms leading to the loss of wake axisymmetry at
Re = 211 and the transition to unsteady vortex-shedding regime at Re ≈ 275, Johnson
and Patel analyzed very thoroughly all the numerical and visualization data relating to
Re = 250 and Re = 300, and presented in their paper of 1999 an extensive collection
of graphs, photos, and model pictures illustrating the properties of the wake regimes
at these two Reynolds numbers.

The collected data gave reasons to associated the transition to a non-axisymmetric
steady regime at Re = Re1,cr = 211 with an azimuthal instability of the low-pressure
core of the toroidal vortex, emerging at Re = Re0,cr ≈ 20 and then growing with
Re, becoming more unstable with the decrease of the role of viscosity. Relying on
this general idea, Johnson and Patel proposed a physical mechanism describing the
transition process. This mechanism allowed them to interpret physically their visu-
alization results for Re = 250 and 300, and to explain the appearance at Re>Re1,cr

behind a sphere of two streamwise vortices extending downstream and forming two
parallel vortical threads. (These vertical threads were first observed in the liquid-drop
experiments by Magarvey and Bishop, whose results were later confirmed by visu-
alization experiments of Levi (1980), Provansal and his coworkers (who found the
two-thread regime for 180<Re< 280), and Johnson and Patel, and by numerically-
simulated data of Shirayama (1992), Tomboulides, and Johnson and Patel). The value
of St = fD/U0 at Re = 300 computed by Johnson was equal to 0.137, and coincided
almost exactly with the result St = 0.136 of Tomboulides’ computations and with the
value given by the experimental form of the Roshko law (4.47) given by Provansal
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and Ormièdes in their papers of 1998 and 1999. (The experimental values of St for
vortex shedding from a sphere found by Johnson and Patel were slightly higher than
the corresponding numerical results but they agree well with experimental values of
St found by Sakomoto and Haniu (1990, 1995) for nearby values of Re). The calcu-
lated drag coefficient at Re = 300 was also close enough to previous experimental
and numerical results.

A similar physical mechanism was also proposed for explanation of the transition
to unsteadiness at Re = Re2,cr ≈ 275. This mechanism explains not only the observa-
tions of Achenbach (1974); Perry and Lim (1978), and Sakamoto and Haniu (1990,
1995) of periodic shedding, at Re>Re2cr, of hairpin vortices of consistent orien-
tation, but also the shedding of previously-unrevealed oppositely-oriented hairpin
vortices which were seen in the new visualizations of the sphere wake and, accord-
ing to Johnson and Patel, may have a rather simple physical origin. However, space
limitations forbid more detailed discussion of this subject.

The results of Natarajan and Acrivos, Tomboulides (and Tomboulides et al)., and
Johnson (and Johnson and Patel) may be applied in principle to determination of
the coefficients γ and δ of the real Landau Eq. (4.34), describing the bifurcation at
Re = Re1,cr of the steady axisymmetric wake flow observed at smaller values of Re
(see, in particular, Fig. 4.37b where data relating to the coefficient γ = γ (Re) are
presented). The transition at Re = Re2,cr of a steady non-axisymmetric wake flow to a
non-axisymmetric oscillating vortex-shedding regime represents a Hopf bifurcation
and requires the use of a complex Landau Eq. (4.40) (or, what is the same, two real
Eqs. (4.34) and (4.34a)) for its theoretical interpretation. Coefficients γ and δ in both
cases can be estimated if some method of control of wake development is used, so that
the time history of the real amplitude of some appropriately chosen characteristics
of the wake flow can be observed from the initial instant of this development (cf.
the discussion of Eqs. (4.48) and (4.49) in part (b) of this section). This procedure
was applied to the study of the sphere wake at Re near Re2,cr by Ormières et al.
(1998); Provansal and Ormières (1998), and Ormières and Provansal (1999) who, in
particular, determined the values of γ (Re) (it was found that γD2/v ≈ 0.9(Re – Re2,cr)
at small values of Re – Re2,cr) and the coefficients of the Ro-Re relation corresponding
to the vortex-shedding regime of the sphere wake. As to the coefficients ω1 and δ’,
which are needed for the description of a Hopf bifurcation at Re = Re2,cr, the first
coincides with the real part of the corresponding complex eigenvalue (denoted by ω1

in the above discussion of the paper by Natarajan and Acrivos), while the second can
be easily determined from the values of γ , δ, and the frequency f of the observed
wake oscillations. The values of f were given for a number of values of Re by both
Tomboulides (1993) and Johnson (1996), who used their own numerical simulations
for this purpose, and by Provansal and his group who used spectral analysis of
measured velocity fluctuations in the wake; the results of all studies were practically
the same. Moreover, the French researchers also measured the dependence of the
energy of streamwise-velocity oscillations E (more exactly, of the normalized energy
E/Emax) on the streamwise coordinate x of the observation point in a sphere wake and
of Re, and the dependence on Re of the coordinate xmax at which the amplitude of the
velocity oscillations takes the greatest value. The results of these measurements were
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found to be similar in many respect to the results of Wesfreid et al. (1996) relating
to spatial variations of velocity oscillations in the wake of a circular cylinder.

Many details of the flow past a sphere at larger values of Re can be found, in partic-
ular, in the papers by Achenbach (1974); Pao and Kao (1977); Perry and Lim (1978);
Taneda (1978); Kim and Durbin (1978); Sakamoto and Haniu (1990, 1995); Shi-
rayama (1992); Bonneton and Chomaz (1992); Wu and Faeth (1993); Tomboulides
(1993), and Tomboulides et al. (1993). The values of the wake-oscillation frequency
f and of the Strouhal number St at many values of Re were determined, in particular,
by Achenbach (1974); Taneda (1978); Kim and Durbin (1988), and Sakomoto and
Haniu (1990, 1995); the last-named of them includes a general sketch of the shape
of the St-Re relation for a wide range of Re, both for a sphere in a constant-velocity
stream and in streams with various constant transverse velocity gradients. Note,
however, that at large enough values of Re wake oscillations often have the shape
of supperpositions of several harmonics of different frequencies. (For example, Shi-
rayama (1992) found that at Re = 500 two frequencies, corresponding to different
Strouhal numbers, are clearly seen in the spectrum of sphere-wake oscillations). With
further growth of Re the number of different spectral components of wake oscilla-
tions increases and the transition to turbulence leads to the appearance in the wake of
a continuous frequency spectrum. In the above-mentioned papers, many topological
transformations of the vorticity field of sphere wakes are described; however, these
high-Re wake transitions will not be considered in this chapter.

Let us now say a few words about the wakes behind some other axisymmetric
bodies. We will begin with the wakes behind flat circular disks perpendicular to a
uniform steady flow. Such wakes were studied in experiments by Schmiedel (1928)
(who considered spheres and round disks freely falling in a liquid), Marshall and
Stanton (1931); Fail et al. (1957) (here wakes behind circular plates were considered,
together with those behind some other plates perpendicular to the flow), Carmody
(1964); Willmarth et al. (1964); Calvert (1967a, b) (who also studied wakes behind
cones with axes parallel to the stream direction and flat disks non-orthogonal to the
stream); Roos (1968); Roos and Willmarth (1971); Fuchs et al. (1979); Takamoto
(1987); Bearman and Takamoto (1988); Berger et al. (1990); Lee and Bearman
(1992); Cannon et al. (1993); Provansal (1996) (who indicated that he had studied
wakes behind discs and cones parallel to the stream, together with the sphere wakes
discussed above, but mentioned only one specific result relating to cones), Miau
et al. (1997), and some other researchers. However, the results of this work are
much less definite than those relating to sphere wakes. The vortical structures in disk
wakes were investigated at various Reynolds numbers and by various experimental
methods, in particular, by Fuchs et al., Berger et al., Lee and Bearman, Cannon
et al., and Miau et al., but the results obtained are still very scattered. Apparently the
only attempt to calculate the stability characteristics of wakes behind circular disks
was due to Natarajan and Acrivos (1993), using the same method as in their study
of the stability of sphere wakes. They found that, as in the case of a sphere wake,
a steady axisymmetric disk wake loses its stability first of all to a nonoscillatory
non-axisymmetric disturbance with n = 1. According to their calculations, this loss
occurs at Re = Re1,cr = 116.5 (where Re is based on the disk diameter and free-stream
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velocity). However, the non-axisymmetric steady flow past a circular disk emerging
at this Re loses its stability at only slightly lager Reynolds number, Re2,cr = 125.6,
when a new oscillating non-axisymmetric wake regime (again with n = 1) appears
with a frequency of oscillation corresponding to Stcr ≈ 0.125. Natarajan and Acrivos
noted also that the results of experiments by Willmarth et al. (1964), who oserved the
behavior of freely falling circular disks, can be interpreted as a crude confirmation
of their theoretical results.

A number of observations of wake regimes behind axisymmetric bodies differing
from spheres and round disks can be also found in the literature, but only a few
quantitative conclusions can be obtained from the results. It was noted above that
Calvert (1967a) studied wakes behind cones with axes parallel to the flow direction,
apexes directed upstream, and various apex angles. Such wakes were investigated in
more detail by Goldburg and Florsheim (1966) who observed wakes behind freely
falling cones (with apexes directed downwards) together with wakes behind falling
cone-spheres (hemispheres attached to the base of cones). They showed that the
Rayleigh-Roshko law (4.47a) with constant coefficients a and a1 is valid for the
oscillation frequencies of these wakes (in particular, in the case of a cone with 20◦
apex angle, a ≈ 0.454 and a1/a ≈ 160; this means that periodic vortex shedding from
such a cone is observed for Re> 160). Provansal (1996) indicated that, according to
his experiments, Recr ≈ 185 determined the threshold of a periodic vortex-shedding
regime behind an upstream-pointing cone, but gave no further details. Zikmundova
(1970) (whose results relating to the value of Re1,cr for the sphere wake gave rise
to doubt) studied, together with the sphere wake, the wake behind a spheroid, and
also Masliyah (1972) observed both sphere wakes and wakes behind several oblate
spheroids. Hama and Peterson (1976); Hama et al. (1977), and Peterson and Hama
(1978) studied the wakes behind slender bodies of revolution, and found that here
instability appears at much greater Reynolds numbers (based on the body diameter)
than in the cases of bluff bodies (such as disks, spheres and cones). The number of
references to papers dealing with wakes behind various axisymmetric bodies can be
easily increased, but we will not linger on this subject here.

4.2.4.6 Axisymmetric Jet Flows

At the beginning of this section a short remark was made relating to the Landau
constant δ for the plane Bickley jet. Now, in conclusion of the present section we will
mention several papers dealing with amplitude equations for unstable disturbances
in axisymmetric jets issuing from a circular orifice into a space filled with a fluid at
rest. Let us recall that at the end of Sect. 2.93 it was indicated that if the fluid in a jet
does not differ from the fluid in the surrounding space, then only convectively (but
not absolutely) unstable disturbances can exist in jet flow, while in the case of a jet
which is heated (or for some other reason has appreciably smaller density than that
of the surrounding fluid) absolute instability can take place. It has been mentioned
several times in this section that the presence of regions of absolute instability is
necessary for the excitation of the global mode of self-sustained oscillations in a
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nearly-parallel fluid flow. Therefore the development of disturbances in non-heated
jets must inevitably differ from the same process observed in wakes or heated jets
above the Hopf-bifurcation threshold.

Danaila et al. (1997) applied direct numerical simulation to investigate the spatial
disturbance development in round (unheated) jets with some widely-used initial ve-
locity profiles from the list given by Michalke (1984) (see also Sect. 2.9.4 in Chap. 2)
and several initial Reynolds numbersU0D/v (whereU0 is the typical jet velocity at the
orifice and D is the orifice diameter). It was shown that at relatively small, slightly-
supercritical Reynolds numbers ‘helical modes’ with n = ± 1 are most unstable (i.e.
their amplitudes grow most quickly) while at highly-supercritical Reynolds numbers
the axisymmetric mode with n = 0 becomes the most amplified. At some stage of the
disturbance development in a slightly-supercritical round jet a Hopf-like bifurcation
was detected which however led to a quasiperiodic (and not purely periodic) final
state. In the subsequent paper by Danaila et al. (1998) the nonlinear disturbance
development of a Hopf bifurcation leading to the production of oscillating helical
modes with n = ± 1 was studied by analysing the corresponding amplitude equations.
Since here amplitudes of two modes, with n = 1 and n = −1, must be considered and
the higher harmonics (whose frequencies are multiples of the dominant frequency)
also play a definite role (cf. the discussion of papers by Dušek et al. (1994) and Dušek
(1996) in part (b) of this section), these amplitude equations are more complicated
than the simple Landau equation and may be considered as its generalizations (of
the same type as Stuart’s Eqs. (4.43) which were considered in Sect. 4.21).

Let us now pass to the case of heated round jets. At the end of Sect. 2.93, literature
was cited, in which it was proved that absolute instability can emerge under certain
conditions in heated jets, and some conditions making such emergence possible were
indicated. (Sect. 2.93 was devoted to plane free flows in an unbounded space but in
discussion of heated jets it was specially noted that the statements made are valid for
both plane and round jets). Some examples of experimental confirmation of results
relating to the absolute instability of heated jets with negligible buoyancy effects can
be found in papers by Monkewitz and Sohn (1988) and Sreenivasan et al. (1989)
referred to in Sect. 2.93; valuable supplementary data of the same type can be found
in papers by Monkewitz et al. (1989, 1990). In the case of a heated jet the regime
of jet oscillations depends on two dimensionless parameters: the Reynolds number
Re =U0D/v and the ratio ρ0/ρ∞ = S of the density of fluid issuing from the orifice
to the ambient density far from the jet. (Here we again assume that the influence of
buoyancy can be neglected in comparision with the influence of the inertia of moving
fluid. This assumption is usually true near the orifice; the case where buoyancy is
essential was considered by Krizhevsky et al. (1996) but will be not treated here).
The above-mentioned experiments show that over a wide range of Reynolds numbers
strong global oscillations of the ‘jet column’ arise automatically, if the value of the
parameter S lies below Scr ≈ 0.62. It follows from this that at such values of S a
Hopf bifurcation takes place, which corresponds to Landau’s equation with positive
Landau constant δ > 0. Just this situation will be considered below in line with the
presentation given by Raghu and Monkewitz (1991).
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Raghu and Monkewitz analyzed the experimental data for a jet of hot air issuing
from a round nozzle of diameter D = 15 mm into unheated still air (this arrangement
and experimental conditions were practically the same as used by Monkewitz et al.
(1990)). Since wake oscillations were observed only at S<Scr ≈ 0.62, it was possible
to suppress the oscillations by extending the length of the nozzle by another 15 mm
and then cooling the nozzle extension to reduce the air temperature, in this way
increasing the density ratio S above the critical value Scr. Thus, jet control could be
realized by regulating the jet temperature. By switching off the cooling system it
was possible to return S quickly to its initial low value S0 <Scr and hence to create
conditions promoting the excitation of jet oscillations. After this the researchers could
observe, at a selected point of the jet, the transient growth of the complex oscillations
amplitude A(t) = |A(t)|eiφ(t) from zero up to its equilibrium value corresponding to the
selected position of the observation point and the value S0 <Scr of the parameter S.
This transient growth is determined by the complex Landau (otherwise, Stuart–
Landau) Eqs. (4.34) and (4.34a); the observations described allow evaluation of all
four real coefficients γ , ω1, δ and δ" of these equations as in the papers by Mathis
et al. (1984); Provansal et al. (1987); Sreenivasan et al. (1987) and Schumm et al.
(1994) on cylinder-wake oscillations, described in part (b) of this section.

Let us replace the complex amplitude A(t) by the normalized amplitude
A(t)/Ae = R(t)eiϑ(t), where Ae = (2γ /δ)1/2 is the real equilibrium amplitude and
R(t) = |A(t)|/Ae is the real normalized amplitude which can vary in the range
0 ≤ R(t) ≤ 1 (it is assumed here that S<Scr and therefore γ > 0 and δ > 0). Then
Eqs. (4.34) and (4.34a) can be rewritten in the following form:

1

R

dR

dt
= γ (1 − R2), (4.55)

dφ

dt
= −ω1 − δ′γ

δ
R2. (4.55a)

Switching off the cooling system at first and then switching it on again, one could
measure, at a given point of observation, values of the real amplitude |A(t)| (gradually
growing from zero at t = 0 to its equilibrium valueAe at large t) together with the jet
oscillation frequency (1/2π )(dφ/dt) = f (t).Values of |A(t)| andAe determine R(t),
and in Fig. 4.38 the values of [dR/dt]/R and dϑ /dt measured by Raghu and Monke-
witz at the point with coordinates (x, r) = (1.3D, 0.5D) (where x is the streamwise
coordinate measured from the jet orifice and r is the radial cylindrical coordinate
indicating the distance from the jet axis) are presented in their dependence on the
value of R2

, varying from zero to one, for the case where S = 0.546. We see that
the experimental data agree well with the linear dependence of both presented in
Fig. 4.38 quantities on R2, predicted by Eqs. (4.55) and (4.55a), and allow evaluation
of all coefficients of these equations for the given observation point, value of S, and
flow conditions. (Recall that in the case of the global mode of wake oscillations, the
values of γ and ω1 do not depend on the observation points and that the results of
similar cylinder-wake observations presented in part (b) of this section showed that
the ratio δ′/δ is also practically constant over a large spatial region). Resutls of Raghu
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Fig. 4.38 Dependence of
[dR/dt]/R (o) and of dφ/dt
(�) on R2 at the point {x, r} =
{1.3D, 5D} of a heated
circular jet with S =
0.546<Scr . (After Raghu and
Monkewitz 1991)

and Monkewitz’s measurements at different values of the parameter S showed that
the global oscillations of the heated jet come to an end at S = Scr ≈ 0.62 (this value is
slightly less than the estimate Scr ≈ 0.63 found by Monkewitz et al. in 1990). More
precisely, Raghu and Monkewitz found that at their chosen point of observation the
critical value Scr and the coefficients of Landau’s Eqs. (4.55) and (4.55a) for the
heated jet take the following values:

Scr = 0.62 ± 0.01, γD/U0 = [1.15 ± 0.15](Scr − S), (4.56a)

ω1D/U0 = −[0.68 + 0.01] − [0.88 + 0.02](Scr − S), δ′/δ = −2.5 + 0.6.
(4.56b)

We see that the measurements of the transient growth of the jet oscillations confirm
the emergence of a Hopf bifurcation at a critical density ratio S = Scr, and yield
rather accurate estimates of the values of Scr and of coefficients of Landau’s Eqs.
(4.55–4.55a).

This example will conclude the present section of the book, devoted to various ap-
plications of the real and complex Landau equations (and in some cases also of more
general Ginzburg–Landau equations) to description of the nonlinear instabilities of
fluids flows.
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