
Chapter 5
Advances in the Use of Synchrotron Radiation
to Elucidate Environmental Interfacial Reaction
Processes and Mechanisms in the Earth’s
Critical Zone

Donald L. Sparks

Abstract Reactions occurring at biogeochemical interfaces such as mineral/water,
mineral/microbe, and plant/soil, greatly influence a number of important processes
in soil and water environments. These include: sorption, desorption, oxidation-
reduction, and precipitation, dissolution. It is useful to study these processes over
a range of spatial and temporal scales. The use of molecular scale techniques,
especially those that are in-situ and synchrotron-based, have provided a wealth of
information on reactivity at biogeochemical interfaces. This review focuses on the
use of these techniques, especially X-ray absorption spectroscopy, to speciate and
elucidate reaction mechanisms of metal(loids) in soils and plants.

Keywords Critical zone • Multi-scale approach • Kinetics • Synchrotron-based
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5.1 Introduction

The Earth’s Critical Zone is that region of Planet Earth where we live. It extends
from the tops of the trees to the water table (Fig. 5.1). There are an array of
spatial and temporal scales in the Critical Zone. The spatial scales extend from
the atomic to the global and the temporal scales range from milliseconds to eons.
Additionally, there are a plethora of physical, chemical, and biological reactions
and processes that are coupled and influence some of the major environmental
challenges of our time including: water, soil, and air quality, human health, the
health of oceans, climate change, and indeed economic vitality and development.
There are also a number of significant biogeochemical interfaces such as the
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Fig. 5.1 Schematic of the Critical Zone. The Critical Zone includes the land surface and its canopy
of vegetation, rivers, lakes, and shallow seas, and it extends through the pedosphere, unsaturated
vadose zone, and saturated groundwater zone. Interactions at this interface between the solid Earth
and its fluid envelopes determine the availability of nearly every life-sustaining resource (Reprinted
with permission NRC 2001)

mineral/water, microbe/mineral, and plant/soil that play pivotal roles in the fate,
transport, toxicity, speciation (form), and bioavailability of nutrients and inorganic
and organic contaminants in the environment (Sparks 2005a). It is for all of
these reasons that an enhanced understanding of biogeochemical processes and
reactivity at Critical Zone interfaces, over a range of spatial and temporal scales,
is fundamental to sustaining and enhancing Planet Earth.

This review will focus on the use of synchrotron radiation to further advance
our understanding of the reactivity and mechanisms at important environmental
biogeochemical interfaces. It will include past successes and future opportunities.
Arguably, the use of synchrotron-based techniques such as X-ray absorption
spectroscopy has revolutionized the soil and environmental sciences over the past
two decades by greatly advancing discovery research and forging important inter-
and multi-disciplinary collaborations that are integral to solving some of the
grand, complex challenges we face globally. As a result of these collaborations
the interdisciplinary field of molecular environmental science, which involves the
study of the chemical and physical forms and distribution of contaminants in soils,
sediments, waste materials, natural waters, and the atmosphere at the molecular level
(Sparks 2002), is a vibrant interdisciplinary field of research.

There are a number of areas where the application of molecular environmental
science is propelling major frontiers. These include speciation of contaminants,
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which is essential for understanding release mechanisms, spatial resolution, chemi-
cal transformations, toxicity, bioavailability, and ultimate impacts on human health;
mechanisms of microbial transformations on mineral surfaces; phytoremediation;
humic substance structure and chemistry; air and terrestrial emanated particulate
reactivity and composition; soil structure; development of predictive models;
effective remediation and waste management strategies; and risk assessment (Sparks
2002; Ginder-Vogel and Sparks 2010; Sparks and Ginder-Vogel 2011).

This review will focus on the use of X-ray absorption spectroscopy (XAS), X-ray
fluorescence (XRF) spectroscopy, and X-ray computed microtomography to eluci-
date important information on speciation, binding mechanisms, and contaminant
distribution and associations in mineral, soil, and plant systems with emphasis on
biogeochemical interfacial processes.

5.2 Synchrotron Radiation

Intense light is produced at a synchrotron facility. Synchrotron radiation is produced
over a wide range of energies from the infrared region with energies <1 eV to
the hard X-ray region with energies of 100 keV or more. There are more than 60
synchrotron light sources in over 30 countries (www.lightsources.org). For more
information on synchrotron user facilities around the globe and their capabilities in
the geosciences, the reader should consult Sutton (2006). It is not the purpose of this
review to delve into detail about synchrotron radiation and techniques. The reader
can refer to several excellent reviews on the use of synchrotron techniques in the
environmental sciences that have been published in the past decade. These reviews
focus on the use of synchrotron techniques in low-temperature geochemistry and
environmental science (Brown and Parks 2001; Brown and Sturchio 2002; Fenter
et al. 2002), clay and soil science (Schulze et al. 1999; Kelly et al. 2008; Ginder-
Vogel and Sparks 2010; Sparks and Ginder-Vogel 2011), and the study of heavy
metals in the environment (Sparks 2005a). However, some detail is provided on
XAS, one of the most widely used synchrotron-based spectroscopic techniques used
in the environmental sciences.

5.2.1 X-Ray Absorption Spectroscopy

XAS was developed in the early 1970s (Sayers et al. 1971). It has a number of
desirable features that makes it the technique of choice for studying environmental
samples such as minerals, humic materials, soils, biosolids, plants, and particulates.
XAS can be used to study most elements in crystalline or non-crystalline solid,
liquid, or gaseous states over a concentration range of a few ppm to the pure element.
It is also an in-situ technique, which means that one can study reactions in the
presence of water. This is a major advantage over many molecular scale techniques,

www.lightsources.org
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Fig. 5.2 Energy regions of a XAS spectrum

which are ex-situ, and often requiring drying of the sample material, placing it in an
ultra-high vacuum (UHV), heating the sample, or employing particle bombardment.
Such conditions can alter the sample, creating artifacts, and do not simulate most
natural soil conditions (Ginder-Vogel and Sparks 2010; Sparks and Ginder-Vogel
2011).

An XAS experiment, which results in a spectrum (Fig. 5.2), consists of exposing
a sample to an incident monochromatic beam of synchrotron X-rays, scanned over a
range of energies below and above the absorption edge (K, L, M) of the element of
interest (Sparks 2002). The energy region extending from just below to about 50 eV
above the absorption edge is the XANES (X-ray absorption near edge structure)
portion of the spectrum (Fig. 5.2). Fingerprint information (e.g., oxidation states)
can be obtained from this region of the XAS spectrum. The XANES region of the
spectrum, while not providing as much quantitative information as the extended
X-ray absorption fine structure (EXAFS) region, can provide qualitative or semi-
quantitative information on the oxidation state of the measured element (Brown
et al. 1995). Such information can be obtained by comparing the features of
the XANES spectrum of the sample with features of XANES spectra for well-
characterized reference compounds. Some species, such as Cr, yield remarkably
different, easily recognizable XANES spectra such as the pre-edge feature that is
diagnostic for Cr(VI).

The energy region from 50 to 1,000 eV above the absorption edge is the EXAFS
(extended X-ray absorption fine structure) portion of the spectrum (Fig. 5.2).
Analysis of an EXAFS spectrum provides information on interatomic distances (R),
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coordination numbers (CN), and identity of first, second, and more distant shells of
neighbors around an absorber (Brown et al. 1995; Sparks 2002; Ginder-Vogel and
Sparks 2010; Sparks and Ginder-Vogel 2011).

Additional detail on XAS principles, methodology, sample preparation, and data
analyses can be found in a number of excellent sources (Brown 1990; Manceau
et al. 1992; Fendorf et al. 1994; Schulze and Bertsch 1995; O’Day 1999; Brown and
Parks 2001; Bertsch and Hunter 2001; Fenter et al. 2002; Brown and Sturchio 2002;
Kelly et al. 2008; Ginder-Vogel and Sparks 2010; Sparks and Ginder-Vogel 2011).

Other synchrotron-based techniques that allow for investigations of heteroge-
neous materials, which are characterized by multiple species of metal(loids) and
nutrients, at micron and smaller scales include microfocused XAS and XRF and
microtomography. Additionally, to study rapid processes in real-time at subsecond
time scales and at the molecular level one can employ quick X-ray absorption
spectroscopy (Q-XAS).

5.2.2 Micro-focused XAS and XRF

With micro-focused XAS and XRF one can investigate square micron areas and
focus the beam to spatial resolutions of <5 um to determine speciation and
elemental distribution and associations. Such ability is critical for understanding
heterogeneous systems such as soils and plants. While bulk XAS can and should
be used to provide what major species are found in such systems, one often needs
to couple these studies with �-XAS and �-XRF investigations to more precisely
quantify major species and determine associations and distributions of elements
over small areas in heterogeneous systems where multiple species exist. Standard
bulk XAS techniques explore an area of several square millimeters and provide
information on the average local chemical environment. In heterogeneous natural
systems where more than one type of surface species is present, bulk XAS will
detect only the primary (or average) type of surface product/species in the bulk
sample. Soils have particle sizes in the micrometer range, and metal speciation may
vary over regions of a few 100 �m2. Consequently, the presence of multiple species
in soils results in overlapping atomic shells which makes precise speciation with
bulk XAS challenging (McNear et al. 2005b; Ginder-Vogel and Sparks 2010; Sparks
and Ginder-Vogel 2011).

Some excellent reviews have appeared on the experimental details and appli-
cation of �-XAS and �-XRF to speciate contaminants in heterogeneous systems
(Bertsch and Hunter 1998; Hunter and Bertsch 1998; Bertsch and Seaman 1999;
Manceau et al. 2002). A number of investigations have appeared over the past
10 years on the speciation of metals and oxyanions in soils, plants, biosolids, and
fly ash (see references in Brown and Sturchio 2002; Ginder-Vogel and Sparks 2010;
Sparks and Ginder-Vogel 2011).
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5.2.3 Quick XAS

Many important processes (e.g., adsorption, oxidation-reduction, precipitation)
occurring at environmental surfaces are characterized by a rapid initial reaction on
time-scales of milliseconds to minutes (Scheidegger and Sparks 1996). In many
cases, a significant portion of the entire reaction process has occurred before the
first measurements can be made using traditional batch and flow techniques. Thus,
a knowledge of these initial reaction rates is critical to determining chemical kinetic
rate constants and reaction mechanisms and understanding how the initial reactions
impact succeeding processes. Chemical relaxation techniques such as pressure jump
(p-jump) and concentration jump (c-jump such as stopped-flow) allow rapid data
collection on time scales of milliseconds. However, rate “constants” are calculated
from linearized rate equations that include parameters that were determined from
equilibrium and modeling studies. Consequently, the rate “constants” are not
directly determined (Ginder-Vogel et al. 2009; Ginder-Vogel and Sparks 2010;
Sparks and Ginder-Vogel 2011). Direct, in situ, molecular- scale measurement of
rapid reactions has, until recently been quite limited. Fendorf et al. (1993) used stop-
flow electron paramagnetic resonance (SF-EPR) spectroscopy to measure Mn(II)
sorption to birnessite (•-MnO2) on a time scale of milliseconds. More recently,
Parikh et al. (2008) used in situ, Fourier Transform infrared (FTIR) spectroscopy
to measure As(III) oxidation rates by hydrous manganese(IV) oxide (HMO) at a
time scale of 2.5 s. However, both of these techniques suffer from limitations. EPR
can only be used to measure EPR active nuclei, while FTIR requires both IR active
functional groups and relatively high concentrations of the reactants being examined
(Parikh et al. 2008).

Quick-scanning X-ray absorption spectroscopy overcomes both of these limi-
tations. Depending on beamline instrumentation and flux, quick-scanning X-ray
absorption spectroscopy (Q-XAS) can be used to probe most of the atoms on the
periodic table and to relatively low concentrations (Khalid et al. 2010). However,
using a unique, cam-operated, continuous-scanning setup at beamline X18B at the
National Synchrotron Light Source (NSLS), it is possible to collect XANES and
EXAFS spectra as the monochromator travels both up and down in energy (Khalid
et al. 2010) on sub-second time scales. Landrot et al. (2010) employed Q-XAS at
the NSLS to determine the initial kinetics of Cr(III) oxidation by HMO, and Ginder-
Vogel et al. (2009) studied the rates and mechanisms of As(III) oxidation at the
HMO mineral surface. In the study of Landrot et al. (2010), Cr(III) oxidation to
Cr(VI) was exceedingly rapid as illustrated by the quick appearance of the pre-
edge feature (Fig. 5.3), indicative of the appearance of Cr(VI). In both of the
Q-XAS studies of Ginder-Vogel et al. (2009) and Landrot et al. (2010) there is
strong indication that chemical kinetics are being measured. This is suggested in
the study of Landrot et al. (2010), in which initial rate constants were similar as
initial concentration of Cr(III) was increased (Sparks 1989).
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Fig. 5.3 Cr(III) oxidation kinetics using a Q-XAFS technique, at pH 2.5, [Cr(III)] D 100 mM,
[HMO] D 20 g/L, and 0–240 s. Each XANES spectrum shown represents 3 s of the reaction
(average of four 0.75 s spectra) (Reprinted with permission Landrot et al. 2010)

5.2.4 Applications of Synchrotron-Based Techniques
to Elucidate Soil Chemical Processes and Reactions

5.2.4.1 Adsorption of Metals and Oxyanions on Soil Components

A multitude of studies, using bulk XAS to study mineral/water interfacial processes,
have appeared in the scientific literature since the first published study by Hayes
et al. (1987), who determined the surface complexation products for selenate and
selenite on goethite (Sparks 1995, 2005b; Brown and Parks 2001; Brown and
Sturchio 2002; Brown et al. 2006). These investigations have provided enlightening
information on metal and oxyanion sorption on metal hydr(oxides), clay minerals,
humic substances, and other natural materials, including structure, stiochiometry,
attachment geometry (inner- vs. outer-sphere, monodentate vs. bidentate or tri-
dentate), the presence of multinuclear complexes and precipitate phases, and the
presence of ternary surface complexes when complexing ligands are present in
solution (Brown and Parks 2001; Brown and Sturchio 2002; Sparks 2005b). The
type of surface complexes on clay minerals and metal-(oxyhydr)oxides that occur
with low atomic number elements, such as Al, B, Ca, Mg, S and Si, are not easy to
ascertain using XAS under in-situ conditions. However, major advances are being
made in the area of soft x-ray XAS spectroscopy that will enable one to directly
determine the types of surface complexes that form with these metal(loids) (Ginder-
Vogel and Sparks 2010; Sparks and Ginder-Vogel 2011).
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Results from XAS studies, as well as from investigations using other in-situ
molecular scale techniques such as Fourier transform infrared (FTIR) spectroscopy,
allow one to make general conclusions on the predominate types of surface
complexes that can occur on soil minerals. Although there are technical difficulties
in analyzing alkaline earth cations, i.e., Mg2C, Ca2C, Sr2C, and Ba2C, they primarily
form outer-sphere complexes. The divalent first-row transition metal cations Mn2C,
Fe2C, Co2C, Ni2C, Cu2C, and Zn2C, and the divalent heavy metal cations such as
Cd2C, Hg2C, and Pb2C primarily form inner-sphere complexes. At higher metal
loadings and pHs, sorption of metals such as Co, Cr, Ni, and Zn on phyllosilicates
and metal-(oxyhydr) oxides can result in the formation of surface precipitates. The
formation of these multinuclear and precipitate phases will be discussed in more
detail later.

Experimental limitations are such that it is difficult to directly determine the
type of surface complexes that NO3

–, Cl–, and ClO4
– form on mineral surfaces.

However, one can propose that they are sorbed as outer-sphere complexes and
sorbed on surfaces that exhibit a positive charge. Some researchers have shown
that SO4

2– (Zhang and Sparks 1990) can be sorbed as an outer-sphere complex;
however, there is other evidence that SO4

2– can also be sorbed as an inner-sphere
complex (Manceau and Charlet 1994). There is direct spectroscopic evidence to
show that selenate can be sorbed as both an outer-sphere and an inner-sphere
complex, depending on environmental factors (Hayes et al. 1987; Wijnja and
Schulthess 2000).

Most other anions such as molybdate, arsenate, arsenite, selenite, phosphate, and
silicate are strongly sorbed as inner-sphere complexes, and sorption occurs through
a ligand exchange mechanism. The sorption maximum is often insensitive to ionic
strength changes. Sorption of anions via ligand exchange results in a shift in the pzc
of the sorbent to a more acidic value (Sparks 2002, 2005b).

However, bulk XAS probes an area of several square millimeters and only
provides information on the average local chemical environment of a surface.
Thus, if there is more than one type of surface species present, bulk XAS will
detect only the primary (or average) type of surface product/species in the bulk
sample. Therefore while the data may indicate that the primary surface product is
an inner-sphere, this does not mean that outer-sphere complexes are not present.
In fact, recent studies, such as those of Catalano et al. (2008), who employed
X-ray scattering measurements to study metal(loid) binding on single crystal
surfaces, showed that arsenate was sorbed simultaneously as inner- and outer-sphere
complexes.

Environmental factors such as pH, surface loading, ionic strength, type of
sorbent, and time all affect the type of sorption complex or product. Examples of
this include the work of Strawn and Sparks (1999) who investigated Pb sorption
on montmorillonite over an ionic strength (I) of 0.006–0.1 and a pH range of
4.48–6.77. At a pH of 4.48 and I of 0.006, outer-sphere complexation on basal
planes in the interlayer regions of the montmorillonite predominated. At a pH of
6.77 and I of 0.1, inner-sphere complexation on edge sites of montmorillonite was
most prominent, and at pH of 6.76, I of 0.006 and pH of 6.31, I of 0.1, both
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inner- and outer-sphere complexation occurred. These data are consistent with other
findings that inner-sphere complexation is favored at higher pH and ionic strength.
Recently, Lafferty et al. (2010), investigating As(III) oxidation kinetics on hydrous
manganese oxide(HMO) showed that at shorter times (a few hours) As(V) was
bound on HMO as bidentate binuclear and monodentate mononuclear complexes,
but at longer times, a third arsenate complex, a bidentate-mononuclear complex
appeared. Clearly, there is a continuum of adsorption complexes that can exist in
soils (Sparks 2002, 2005b; Ginder-Vogel and Sparks 2010).

5.2.4.2 Metal(loid) Surface Precipitation/Dissolution

In addition to two-dimensional surface complexes, three dimensional Co2C, Cr3C,
Cu2C, Ni2C, and Pb2C metal hydroxide and mixed metal-Al surface precipitates,
can form on metal oxides, phyllosilicates, soil clays, and soils (Charlet and Manceau
1992; Chisholm-Brause et al. 1994; Fendorf et al. 1994; Scheidegger et al. 1996a;
Scheidegger et al. 1996b; Scheidegger et al. 1997; Scheidegger et al. 1998; Towle
et al. 1997; Elzinga and Sparks 1999; Roberts et al. 1999; Thompson et al. 1999a;
Thompson et al. 1999b; Ford and Sparks 2000; Scheckel and Sparks 2001b;
Nachtegaal and Sparks 2004; McNear et al. 2006; Peltier et al. 2010). These metal
hydroxide phases occur at metal loadings below theoretical monolayer coverage and
in a pH range well below the pH where the formation of metal hydroxide precipitates
would be expected, according to the thermodynamic solubility product (Scheidegger
and Sparks 1996; Sparks 2002, 2005b; Borda and Sparks 2008; Ginder-Vogel and
Sparks 2010).

Scheidegger et al. (1997) were the first to show that sorption of metals, such
as Ni, on an array of phyllosilicates and Al-oxide, could result in the formation
of mixed metal-Al hydroxide surface precipitates. The precipitate phase shares
structural features common to the hydrotalcite group of minerals and the layered
double hydroxides (LDH) observed in catalyst synthesis. The LDH structure is
built of stacked sheets of edge-sharing metal octahedra, containing divalent and
trivalent metal ions separated by anions between the interlayer spaces. The LDH
structure exhibits a net positive charge x per formula unit which is balanced by
an equal negative charge from interlayer anions An–, such as Cl–, Br–, I–, NO3

–,
OH–, ClO4

–, and CO3
2–; water molecules occupy the remaining interlayer space

(Taylor 1984). Recently, Livi et al. (2009), using an array of microscopic techniques
including analytical electron microscopy (AEM), high resolution transmission
electron microscopy (HRTEM), and powder X-ray diffraction, conducted studies
to elucidate the nature of Ni hydroxide precipitates, using the same environmental
conditions employed by Scheidegger et al. (1996b, 1997) and reaction times ranging
from 1 h to 5 years. While the precipitate phase had a bonding environment similar
to Ni-Al LDH, the precipitate was amorphous.

The formation of metal hydroxide surface precipitates can significantly sequester
metals (Scheckel and Sparks 2001a). As the surface precipitates age, metal release
is greatly reduced (Fig. 5.4). Thus, the metals are less prone to leaching and being
taken up by plants and microbes.
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Fig. 5.4 Dissolution of Ni
from surface precipitates
formed on pyrophyllite at
residence times of 1 h to
2 years. The figure shows the
relative amount of Ni2C

remaining on the pyrophyllite
surface following extraction
for a 24 h period (each
replenishment represents a
24 h extraction) with HNO3

at pH 6.0 (Reprinted with
permission Scheckel and
Sparks 2001a)

The decrease in metal release and bioavailability is linked to the increasing
silication of the interlayer of the LDH phases with increased residence time,
resulting in a mineral transformation from a LDH phase to a precursor phyllosilicate
surface precipitate (Ford et al. 1999; Ford and Sparks 2000). The mechanism for this
transformation is attributed to diffusion of Si, originating from weathering of the
sorbent, into the interlayer space of the LDH, replacing the anions such as NO3

�.
Peltier et al. (2006), using acid-solution calorimetry, and results from previous
calorimetry studies, showed that the enthalpy of formation of LDH phases is more
exothermic, indicating great stability, in the order of Cl < NO3 < SO4 < CO3 < Si
of interlayer anionic composition, and that LDH phases were much more stable
than a Ni(OH)2 phase. The results of these and other studies show that with
time, metal sorption on soil minerals involves a continuum of processes, from
adsorption to precipitation to solid phase transformation, particularly in the case
of certain metals, such as Co2C, Ni2C, and Zn2C. The formation of metal surface
precipitates is a way that metals can be naturally attenuated such that they are less
mobile and bioavailable. Such products must be considered when modeling the
fate and mobility of metals like Co2C, Mn2C, Ni2C, and Zn2C in soil and water
environments (Sparks 2002; Sparks 2005b; Borda and Sparks 2008; Ginder-Vogel
and Sparks 2010).

5.2.5 Speciation of Metal(loids) in Soils

Some examples of studies that have used �-XAS and �-XRD to speciate
metal(loids) in soils include those by Hunter and Bertsch (1998), Manceau et al.
(2000), Isaure et al. (2002), Strawn et al. (2002), Ginder-Vogel et al. (2005),
Nachtegaal et al. (2005), Roberts et al. (2005), Arai et al. (2006), McNear et al.
(2007), and Gräfe et al. (2008).
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Nachtegaal et al. (2005) investigated the speciation of Zn in smelter contaminated
soils, employing u-XAS and u-XRF, from a large site in Belgium in which part
of the site had been remediated by adding beringite, an aluminosilicate material,
compost, and planting metal tolerant plants. The other portion of the site was not
treated. The objectives of the study were to determine how Zn speciation differed
in the remediated (treated) and non-remediated (non-treated) soils, to investigate if
Zn-LDH phases were present in the soils, and to establish the stability of the zinc
under different environmental conditions.

A number of �-XAS spectra for the treated (Fig. 5.5b) and non-treated (Fig. 5.5d)
soils were collected at various regions of interest from the XRF spectra (Fig. 5.5a,
treated and Fig. 5.5c, non-treated soils), as well as spectra for reference mineral,
sorbed, and solution phases that were probable species in the soils. The �-XAS
spectra of the soils were analyzed via Principle Component Analysis, target
transformation, and linear least squares fitting (LLSF) to determine the quantity
(%) of each standard species within the individual sample spectra constituting the
dataset (Manceau et al. 2002; Nachtegaal et al. 2005). Nachtegaal et al. (2005) found
that both mineral (e.g., willemite, hemimorphite, spalerite) and sorbed (Zn-LDH) Zn
species predominated in the treated and non-treated soils. The speciation differences
in the treated and non-treated soils were minimal, with the major difference being
the presence of kerolite, a Zn phyllosilicate phase, that was present in the treated
soil (Fig. 5.5b). Significant quantities of Zn-LDH phases were formed in the non-
treated soil (Fig. 5.5d). Desorption studies showed that the Zn in both remediated
and non-remediated soils was quite stable, reflecting again the role that metal surface
precipitates, i.e., Zn-LDH phases, play in sequestering metals such that mobility and
bioavailability are diminished.

5.2.6 Speciation of Metals in Hyperaccumulator Plants

A very important biogeochemical interface in the Earth’s Critical Zone is the
plant/soil interface. Despite numerous studies, the biochemistry and dynamics of
the rhizosphere are still poorly understood. As a way to advance our understanding
of the plant/soil interface, scientists have used synchrotron-based XAS, XRF, XRD,
and microtomography to investigate plant/soil interfacial processes and reactivity
(Sarret et al. 2002, 2006; Küpper et al. 2004; Scheckel et al. 2004; McNear
et al. 2005a, b; Tappero et al. 2007). Of particular interest is elucidating the
speciation and uptake mechanisms of metals into hyperaccumulator plants. Such
an enhanced comprehension could prove invaluable in increasing the effectiveness
of phytoremediation in decontaminating metal polluted sites around the world.
Phytoremediation is a “green” technology that uses plants to remove contaminants
from the environment. Phytoextraction depends on unique plants, capable of
accumulating higher than normal metal concentrations (e.g., >1,000 ppm for Ni
and Co and >10,000 ppm for Zn) (Baker 1981; McNear et al. 2005a, b). To better
understand the mechanisms involved in metal hyperaccumulation and tolerance,
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Fig. 5.5 (a) �-SXRF tricolor maps for the treated soil samples. The numbers indicate the spots
where �-EXAFS spectra were collected. Red is indicative of the distribution of iron, green of
copper and blue of zinc. (b) �-EXAFS spectra from selected spots on thin sections from the
treated soil. (c) �-SXRF tricolor maps for the non-treated soil samples. (d) �-EXAFS spectra from
selected spots on thin sections from the non-treated soil. The solid line indicates the raw k3c(k) data
and the dotted line indicates the best fits obtained with a linear fitting approach (Reprinted with
permission Nachtegaal et al. 2005) (Color figure online)

it is critical to know whether accumulated metals are bound by strong (specific)
ligands or loosely associated with common organic acids (i.e., speciation) as well as
where these metals are stored (i.e., localization or compartmentalization). The use
of synchrotron-based methods to explore metal speciation and uptake mechanisms
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Fig. 5.5 (continued)

in plants is especially attractive because one can use “fresh” hyperaccumulator
plant tissues (in vivo) with micrometer resolution and investigate distribution and
association of the metals in the plant tissue on two-dimensional (�-XRF) and
three dimensional (microtomography) scales and determine direct metal speciation
(�-XAS). Several studies have employed these techniques to elucidate Ni and Co
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Fig. 5.5 (continued)

speciation in Alyssum murale, an important Ni hyperaccumulator plant from the
Brassicaceae family that is native to serpentine soils throughout Mediterranean
southern Europe (McNear et al. 2005a, b; Tappero et al. 2007; Ginder-Vogel and
Sparks 2010; Sparks and Ginder-Vogel 2011).

Tappero et al. (2007) studied metal localization and elemental associations
in Alyssum murale plants exposed to metal (Ni, Zn, and Co) co-contaminants
using synchrotron-based �-XRF, �-XAS, and computed microtomography. Two
dimensional XRF images of Alyssum murale leaves showed a marked localization
pattern for Co compared to Ni and Zn. The Ni distribution was predominately
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Fig. 5.5 (continued)

uniform (Fig. 5.6) which is consistent with previous findings that Ni is compart-
mentalized in epidermal tissues, i.e., vacuolar sequestration (Krämer et al. 1997,
2000; Broadhurst et al. 2004a, b). Zinc distribution was similar to Ni and was
not hyperaccumulated. Cobalt however, was preferentially localized at the tips and
margins of A. murale leaves as precipitate phases (Fig. 5.7). Differential absorption
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Fig. 5.6 Synchrotron X-ray microfluorescence (�-SXRF) images of the nickel (Ni), cobalt (Co),
and zinc (Zn) distributions in a hydrated Alyssum murale leaf from the Ni C Co C Zn treatment.
Leaf trichomes are depicted in the Ca channel. The camera image shows the leaf region selected
for SXRF imaging (Reprinted with permission Tappero et al. 2007)

Fig. 5.7 Synchrotron X-ray microfluorescence (�-SXRF) tricolor image (nickel (Ni), cobalt (Co),
and calcium (Ca)) of a hydrated Alyssum murale leaf from the Ni C Co C Zn treatment, plus a line
profile (fluorescence intensity vs. position) for a segment from the leaf center towards the leaf tip
(indicated by a white arrow) (Reprinted with permission Tappero et al. 2007)
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Fig. 5.8 Differential absorption (DA-CMT) tomographic projections (5.1 �m slices) of hydrated
Alyssum murale leaves depicting (a) cobalt (Co) distribution in the leaf-tip region, (b) Co
distribution in the bulk-leaf region, (c) Co distribution in relation to the leaf cell structure (grey),
and (d) nickel (Ni) distribution in the leaf-tip and bulk-leaf regions. Leaves were collected from a
Co-treated plant (a–c) and from a Ni-treated plant (d). Sinograms recorded above and below the
Co or Ni K-edge energy (C30 and �100 eV, respectively) were computationally reconstructed and
the resulting projections were subtracted (above – below) to reveal the metal distribution in leaves.
Distances are relative to the leaf tissue at the tip as determined from leaf structure images (i.e.
below-edge projections) (Reprinted with permission Tappero et al. 2007)

computed microtomography (DA-CMT) images (Fig. 5.8) of hydrated A. murale
shows leaf Co enrichment in apoplasm tissue. Cobalt near leaf tips was localized
primarily on the leaf exterior and the hyperaccumulation mechanism was via
exocellular sequestration (Tappero et al. 2007).

5.2.7 Future Needs

As our knowledge of environmental systems continues to advance, it is critical
that synchrotron-based techniques continue advancing with the field. Currently, a
primary limitation of the application of these techniques to environmental systems
is the availability of adequate amounts of beamtime. This problem can begin
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to be resolved by advances in both user support and instrumentation. Several
improvements in user administration and services, including standardized data
collection software, state-of-the-art data analysis software, increased beamline
support staff, and improvements in laboratory support facilities would allow for
the more efficient use of limited beamtime. The heterogeneity of environmental
samples requires both the application of a wide array of techniques, including
X-ray spectroscopic and traditional ones, and more time using each individual
technique. The enhanced intensity and flux of third generation synchrotron light-
sources allow for the analysis of both lower elemental concentrations and smaller
samples; however, many environmental samples also require a broad energy range
(5–50 keV), high energy resolution (0.1 eV) and a range of spatial resolutions (bulk,
micro, and nano). Additionally, unique endstation capabilities, including flow-
through reaction cells and anaerobic gloveboxes, coupled with fast-scanning, high
energy resolution fluorescent detection and simultaneous collection of XRD and
XAS data, will take advantage of the unique ability of X-ray absorption to analyze
samples in situ, allowing a new generation of complex environmental problems to
be solved (Ginder-Vogel and Sparks 2010; Sparks and Ginder-Vogel 2011).
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