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  Abstract   Environmental changes, irrespective of source, cause a variety of stresses 
in plants. These stresses affect the growth and development and trigger a series of 
morphological, physiological, biochemical and molecular changes in plants. Abiotic 
stress is the primary cause of crop loss worldwide. The most challenging job before 
the plant biologists is the development of stress tolerant plants and maintenance of 
suf fi cient yield of crops in this changing environment. Polyamines can be of great 
use to enhance stress tolerance in such crop plants. Polyamines are small organic 
polycations present in all organisms and have a leading role in cell cycle, expression 
of genes, signaling, plant growth and development and tolerance to a variety of 
abiotic stresses. High accumulation of polyamines (putrescine, spermidine and 
spermine) in plants during abiotic stress has been well documented and is correlated 
with increased tolerance to abiotic stress. Genetic engineering of PA biosynthetic 
genes in crop plants is the way to create tolerance against different stresses. The present 
review throws light on the role of polyamines in plants.  

  Keywords   Abiotic stress tolerance  •  Polyamines  •  ADC  •  ODC  •  SAMDC      

    1   Introduction 

 Plants are exposed continuously to a variety of adversely changing environmental 
factors such as heat, cold, light, drought, acidity, alkalinity, oxidative damage and 
metal damage, which affect plant distribution, growth, development and productivity 
(Ahmad et al.  2008,   2010a,   b  ) . These stressful conditions are associated with the 
losses in the productivity of many of the agriculturally important crops and there-
fore, affect the economic returns of the country. Thus, concerted efforts are underway 
worldwide to understand the mechanism of plant resistance against these stresses. 
There are several natural ways of self-defense in the plants to cope with these stressful 
conditions: they can induce several functional or regulatory genes (Bartels and 
Sunkar  2005  )  or can undergo different physiological or biochemical changes. The 
accumulation of some functional substances, such as compatible solutes and protective 
proteins, is an important element of the physiological and biochemical response of 
plants to the stressful conditions (Liu et al.  2007 ; Ahmad    and Sharma  2008 ; Ahmad 
et al.  2010a,   b,   2011  ) . In addition to these responses by the plants, molecules known 
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as ‘polyamines’, have also been known to be an integral part of plant stress response 
(Bouchereau et al.  1999 ; Walters  2003a,   b ; Alcázar et al.  2006b  ) . 

 Polyamines (putrescine, spermine, spermidine and cadaverine), are the widely dis-
tributed of N containing organic molecules, which were discovered more than 
100 years ago and hold their signi fi cance from the minutest bacteria to multicellular 
pants, animals and mammals. In addition to their stabilizing effects, which they confer 
by binding to the intracellular anions (DNA, RNA, chromatin and proteins), they are 
also known to possess several regulatory functions (Igarasahi and Kashiwagi  2000 ; 
Alcázar et al.  2006b,   2010 ; Kusano et al.  2008  ) . In plants, they have been associated 
with regulating many physiological processes, such as organogenesis, embryogenesis, 
 fl oral initiation and development, leaf senescence, fruit development and ripening, 
and abiotic and biotic plant stress responses (Galston and Kaur-Sawhney  1990 ; Kumar 
et al.  1997 ; Walden et al.  1997 ; Malmberg et al.  1998 ; Bouchereau et al.  1999 ; Bagni 
and Tassoni  2001 ; Alcázar et al.  2006b,   2010 ; Kusano et al.  2008  ) . 

 Several changes in concentrations of polyamines in plant cells take place while 
responding to the stressful conditions (Bouchereau et al.  1999 ; Alcázar et al.  2006b, 
  2010 ; Groppa and Benavides  2008  ) . The importance of this process can be exempli fi ed 
by the fact that the levels of Put may account for 1.2% of the dry matter, representing 
at least 20% of the nitrogen (Galston  1991  )  under stressful conditions. Though the 
exact mechanism of involvement of polyamines during stressful conditions is not 
fully understood, studies are ongoing to study the molecular mechanisms (Liu et al. 
 2007 ; Alcazar et al.  2010  ) . Evaluating the complete genome sequence of Arabidopsis 
has facilitated the use of global ‘omic’ approaches in the identi fi cation of target 
genes in polyamine biosynthesis and signaling pathways (Alcazar et al.  2010  ) . The 
advantages of the progress made in these directions have made possible the generation 
of Arabidopsis transgenic plants, which are resistant to various stresses (Alcazar 
et al.  2010  ) . Efforts can be made towards the development of such varieties for the 
agriculturally important crops as well. Such studies add to the economic potential 
from the agricultural sector touched by the biotechnological advances and hence, 
further research in these directions is noteworthy.  

    2   Polyamine Biosynthesis in Different Organisms 

 The biosynthetic pathways of polyamines have been established for many organisms 
ranging from bacteria to plants to mammals (Kusano et al.  2007  ) . The synthesis 
essentially starts from the two amino acid precursor molecules, L-arginine and 
L-methionine. An overview of the general pathway is given in Fig.  19.1 .  

 In mammals and fungi, putrescine (Put, 1,4-diaminobutane) is produced by a single 
pathway catalyzed by ornithine decarboxylase (ODC, EC 4.1.1.17) whereas, in plants 
two alternative pathways operate, namely the ODC-catalyzed reaction, as in mammals 
and the second is from arginine (Arg), as a result of the action of Arg decarboxylase 
(ADC, EC 4.1.1.19), via agmatine. A few plant species, including  Arabidopsis thaliana , 
lack the ODC pathway (Hanfrey et al.  2001 ; Kusano et al.  2007  ) . The polyamines in 
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plants are not only found in the cytoplasm, but also in certain organelles like mitochondria, 
chloroplasts and vacuoles (Kumar et al.  1997 ; Kusano et al.  2008  ) . The genes encoding 
enzymes for the polyamine biosynthesis pathway have been cloned and characterized 
from various plant species (   Bell and Malmberg  1990 ; Michael et al.  1996 ; Bagni and 
Tassoni  2001 ; Liu et al.  2007 ; Kusano et al.  2008  ) . 

 Brie fl y, starting from arginine, the diamine putrescine is synthesized via ornithine 
by arginase (EC 3.5.3.1) and ornithine decarboxylase (ODC, EC 4.1.1.17). Putrescine 
can also be synthesized via agmatine by three sequential reactions catalyzed by 
arginine decarboxylase (ADC, EC 4.1.1.19), agmatine iminohydrolase (AIH, EC 
3.5.3.12), and  N -carbamoylputrescine amidohydrolase (CPA, EC 3.5.1.53), 
respectively (Kusano et al.  2008  ) . Putrescine is further transformed to Spd and 
Spm by successive transfers of aminopropyl groups from decarboxylated 
 S -adenosylmethionine (dSAM) catalysed by speci fi c Spd and Spm synthases. The 
aminopropyl groups are derived from methionine, which is  fi rst converted to 
 S -adenosylmethionine (SAM) by methionine adenosyltransferase (EC 2.5.1.6), and 
then decarboxylated in a reaction catalyzed by  S -adenosylmethionine decarboxylase 
(SAMDC, EC 4.1.1.50). The resulting decarboxylated SAM is utilized as an 
aminopropyl donor (Fig.  19.1 ). 
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  Fig. 19.1    Biosynthetic pathway of polyamines in plants       
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 The use of the polyamine inhibitors have helped in the evaluation of their respective 
roles. Four commonly used inhibitors of PA synthesis are: (1) di fl uoromethylornithine 
(DFMO), an irreversible inhibitor of ODC; (2) di fl uoromethylarginine (DFMA), an 
irreversible inhibitor of ADC; (3) methylglyoxyl- bis-guanylhydrazone (MGBG), a 
competitive inhibitor of  S -adenosyl-methionine decarboxylase (SAMDC); and 
(4) cyclohexylamine (CHA), a competitive inhibitor of spermidine synthase. Common 
oxidases are diamine oxidase and polyamine oxidase (PAO), Each PA has been 
found to be catabolized by a speci fi c oxidase (Kaur-Sawhney et al.  2003  ) .  

    3   Polyamine Catabolism 

 The concentrations of the polyamines in the cells is also maintained by the catabolic 
pathways (Bagni and Tassoni  2001 ; Cona et al.  2006  ) . Copper containing diamine 
oxidases (CuAO, EC 1.4.3.6) and  fl avine-containing polyamine oxidases (PAO, EC 
1.5.3.11) catalyse the oxidative de-amination of PAs. CuAO, which prefers diamine 
substrates, oxidizes Put and cadaverine (1,5-diaminopentane) with concomitant pro-
duction of pyrroline, NH 

3
  and H 

2
 O 

2
 , and the resulting aldehyde is further metabolized 

to  g -aminobutyric acid via Δ 1 -1-pyrroline (Bagni and Tassoni  2001 ; Kusano et al. 
 2008  ) . On the other hand, PAO oxidizes Spd and Spm, producing 4-aminobutanal and 
 N -(3-aminopropyl)-4-aminobutanal, respectively, in addition to 1,3-diaminopropane 
and H 

2
 O 

2
  (Kusano et al.  2007  ) . This means that plant PAOs are involved in the ter-

minal catabolism of polyamines (Kusano et al.  2008  ) . These enzymes are associated 
with the cell walls of tissues, where ligni fi cation, suberization and wall stiffening 
occur (Slocum  1991  ) . Spermine oxidase (SMO), a FAD-dependent amine oxidase, 
which directs the back-conversion of spermine to spermidine with concomitant pro-
duction of 3-aminopropanal and H 

2
 O 

2
 , was initially identi fi ed in mammalian cells 

(Wang et al.  2001 ; Vujcic et al.  2002 ; Cervelli et al.  2003 ; Kusano et al.  2008  ) . 
Diaminopropane can be converted into  b -alanine, whereas pyrroline can be further 
catabolized to  g -aminobutyric acid (GABA) in a reaction catalysed by pyrroline 
dehydrogenase (PDH). The  g -aminobutyric acid is subsequently transaminated and 
oxidised to succinic acid, which is incorporated into the Krebs cycle. Thus, this 
pathway ensures the recycling of carbon and nitrogen from Put. Far from being only 
a means of eliminating cellular PAs, the enzymes involved in PA catabolism and the 
products deriving from their action, have been demonstrated to be involved in 
important physiological processes (Bouchereau et al.  1999  ) . A simple illustration of 
the catabolic pathways has been shown in Fig.  19.2 .   

    4   Role of Polyamines in Plants 

 The  fi rst reference of the polyamines in plants can probably be dated back to 1911 
when Ciamician and Ravenna demonstrated the presence of putrescine in  Datura 
stramonium  (Bagni and Tassoni  2001 ). In plant cells, the diamine putrescine (Put), 
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triamine spermidine (Spd) and tetramine spermine (Spm) constitute the major PAs. 
Cadaverine is also present in legumes. These occur either in the free form or as 
conjugates bound to phenolic acids and other low molecular weight compounds or 
to macromolecules such as proteins and nucleic acids owing to their positive charge 
(Kaur-Sawhney et al.  2003 ). Besides stimulating DNA replication, transcription and 
translation, they have contributed to various biological processes in plant morpho-
genesis, growth, embryogenesis, organ development, leaf senescence, abiotic and 
biotic stress response and infection by fungi and viruses (Kumar et al.  1997 ; Walden 
et al.  1997 ; Malmberg et al.  1998 ; Bouchereau et al.  1999 ; Liu et al.  2000,   2010 ; 
Alcázar et al.  2006a,   b ; Groppa et al.  2008 ; Kusano et al.  2007,   2008  ) . Their biological 
activity has been attributed to their cationic nature. Plant polyamines also contribute 
towards several characteristics of agro-economical importance, such as phytonutrient 
content, fruiting and fruit quality, vine life,  fl owering and carnation plants (Kakkar 
and Rai  1993 ; Mehta et al.  2002 ; Piqueras et al.  2002 ; Matto et al.  2006 ; Paschalidis 
and Roubelakis-Angelakis  2005  ) . 

 Some of the observations suggest that PAs can act by stabilizing membranes, 
scavenging free radicals, affecting nucleic acids and protein synthesis, RNAse, protease 
and other enzyme activities, and interacting with hormones, phytochromes, and 
ethylene biosynthesis (Slocum et al.  1984 ; Galston and Tiburcio  1991  ) . Because of 
these numerous biological interactions of PAs in plant systems, it has been dif fi cult 
to determine their precise role in plant growth and development (Kaur-Sawhney 
et al.  2003  ) . However, recent use of genomic and proteomic approaches will lead to 
a better understanding of the functioning in the plants (Kaur-Sawhney et al.  2003 ; 
Franceschetti et al.  2004  ) . 

 The mechanisms involved in the polyamine interactions have been unveiled, at 
least to some extent with the help of speci fi c polyamine inhibitors, thus explaining 
their physiological roles in plant growth and development. Clearly, PAs are involved 
in many plant developmental processes, including cell division, embryogenesis, 
reproductive organ development, root growth, tuberization,  fl oral initiation and 
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  Fig. 19.2    Polyamine degradation in plants       
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development, fruit development and ripening as well as leaf senescence and abiotic 
stresses as mentioned above (Evans and Malmberg  1989 ; Galston et al.  1997 ; Bais 
and Ravishankar  2002 ; Kaur-Sawhney et al.  2003 ; Cona et al.  2006 ; Rhee et al. 
 2007 ; Groppa et al.  2008 ; Alcazar et al.  2010  ) . During these developmental 
processes, changes in the concentrations of the free and conjugated PA’s and the 
enzymes associated with their biosynthesis (ADC, ODC, SAMDC, etc.) take place. 
Many authors have reported that the increase in the PA levels and the associated 
biosynthetic enzymes are associated with the rapid cell division in many plant systems 
e.g., carrot embryogenesis (Montague et al.  1978 ; Feirer et al.  1984  ) , tomato ovaries 
(Heimer and Mizrahi  1982 ; Neily et al.  2011  ) , tobacco ovaries (Slocum and Galston 
 1985 ; Franceschetti et al.  2004  ) , and fruit development (Kakkar and Rai  1993 ; 
Paschalidis and Roubelakis-Angelakis  2005 ; Falasca et al.  2010  ) . It has been 
observed that cells undergoing division (apical shoots, meristems,  fl owers, etc) contain 
higher levels of PAs whereas cells undergoing expansion and elongation contain 
lower levels of PA synthesized via ADC (Kaur-Sawhney et al.  2003  ) . This has been 
further exemplied as follows: higher levels of endogenous PAs were found in  fl owers 
and siliques as compared to their levels in leaves and bolts of certain strains of 
Arabidopsis; addition of the PA biosynthetic inhibitors, DFMA and CHA to the 
culture medium, at time of seed germination, inhibited bolting and  fl ower formation 
and this was partially reversed by addition of exogenous Spd (Applewhite et al. 
 2000 ; Kaur-Sawhney et al.  2003  ) . These results clearly show that Spd is involved in 
 fl ower initiation and development. Similar results have been reported in other plants 
also (reviewed by Galston et al.  1997 ; Bais and Ravishankar  2002  ) . The regulation 
of many important plant hormones such as auxins, gibberellins, ethylene, etc., which 
play a vital role in plant growth and developmental processes has been correlated 
with the changes in the PA metabolism. Of the important plant hormones, ethylene 
is of particular interest as PAs and ethylene are said to play antagonist roles (Kaur-
Sawhney et al.  2003  ) . While PAs inhibit senescence of leaves (Kaur-Sawhney et al. 
 1982  ) , cell cultures of many monocot and dicot species (Muhitch et al.  1983 ) and 
fruit ripening (Kakkar and Rai  1993  ) , ethylene promotes all these processes. The 
most commonly held view is that ethylene is an effective inhibitor of ADC and 
SAMDC, the key enzymes in PA biosynthetic pathway, and on the other hand, PAs 
tend to inhibit ethylene synthesis from SAM (Kaur-Sawhney et al.  2003  ) . Plants are 
exposed to continuous and rapid changing environmental factors (biotic and abiotic) 
such as light, temperature, water, nutrient availability, and water. These have a major 
impact on plant growth and productivity and PAs play an important role in these 
stresses as brie fl y discussed below.  

    5   Role of Polyamines in Plant Tolerance to Abiotic Stress 

 Richards and Coleman  (  1952  )  observed the presence of a predominant unknown 
ninhydrin positive spot that accumulated in barley plants when exposed to potas-
sium starvation. This compound was identi fi ed as putrescine. Later on, it was shown 
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that K-de fi cient shoots fed with L- 14 C-arginine produced labeled Put in a more rapid 
way compared to feeding with labeled ornithine (Alcazar et al.  2010  ) . These results 
suggested that decarboxylation of arginine was the main way of accumulation of Put 
under K de fi ciency (Smith and Richards  1962  ) . The relevance of the ADC pathway in 
plant responses to abiotic stress was later on established by Galston et al. at Yale 
University (Flores and Galston  1982  ) . It has been observed that polyamines 
accumulate in plants during various stressful conditions (see Bouchereau et al. 
 1999 ; Alcázar et al.  2006b,   2010 ; Groppa and Benavides  2008  ) . These all reports 
support the fact that polyamines do play a protective role during the stressful 
conditions. Several examples have been quoted by Alcazar et al.  (  2010  )  in which 
genetic modi fi cation of the genes involved in PA biosynthetic pathway have proven 
useful in developing plant tolerance against abiotic stresses. The different stress factors 
have been brie fl y discussed below. 

    5.1   Mineral De fi ciency 

 This is one of the most common stress related factors affecting plants almost 
everywhere. However, studies related to this type of stress are often performed on 
leaves and/or seedlings, as the external symptoms of de fi ciency become acute. The 
accumulation of Put in leaves of K-de fi cient barley plants was  fi rst reported by 
Richards and Coleman  (  1952  )  and subsequent studies by others have established 
that speci fi c role of Put in maintaining a cation- anion balance in plant tissues. As a 
result of K starvation, this diamine accumulation (via ADC activation), is widespread 
among mono- and di-cotyledonous species and may well be a universal response 
(Bouchereau et al.  1999  ) . The exact reason behind the increase in Put is unclear. 
The induced high levels of Put might be the cause of the stress injury. Put might also 
be bene fi cial for plants. Alternatively, high levels of Put could be one of the many 
physiological changes induced by mineral nutrient de fi ciency without any speci fi c 
signi fi cance (Bouchereau et al.  1999  ) . There are several other examples listing the 
changes in the polyamine content while responding to the mineral de fi ciencies 
(Geny et al.  1997  ) . However, the changes differed according to the tissue and the 
stage of development.  

    5.2   Cold Stress 

 The injury due to cold causes alteration in the membrane structure, and the chilling 
injury involves phase transition in the molecular ordering of membrane lipids 
(Raison and Lyons  1970  ) . This can cause several deleterious effects like increased 
membrane permeability and alteration of the activity of membrane proteins. Cold 
treatment has been reported to increase the levels of Put, and this correlates with the 
increase in the induction of arginine decarboxylase (ADC) genes (ADC1, ADC2 
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and SAMDC2) (Urano et al.  2003 ; Cuevas et al.  2008,   2009  ) . On the other hand, 
levels of free Spd and Spm remain constant or even decrease in response to cold 
treatment (Alcazar et al.  2010  ) . The absence of correlation between enhanced 
 SAMDC2  expression and the decrease Spm levels may be a result of increased Spm 
catabolism (Cuevas et al.  2008 ; Alcazar et al.  2010  ) . Boucereau et al.  (  1999  )  reported 
that in the chilling-tolerant-cultivar, chilling induced an increase in free abscisic 
acid (ABA) levels  fi rst, then ADC activity and  fi nally free Put levels. Fluridone, an 
inhibitor of ABA synthesis, inhibited the increase of free ABA levels, ADC activity 
and free Put levels in chilled seedlings of a chilling-tolerant cultivar. These effects 
resulted in a reduced tolerance to chilling and could be reversed by the pre-chilling 
treatment with ABA. All these results suggest that Put and ABA are integrated in a 
positive feedback loop, in which ABA and Put reciprocally promote each other’s 
biosynthesis in response to abiotic stress (Fig.  19.1 ). This highlights a novel mode 
of action of polyamines as regulators of ABA biosynthesis (Alcazar et al.  2010  ) .  

    5.3   Thermal Stress 

 When exposed to heat stress, plants have the ability to synthesize uncommon long 
chain PAs (caldine, thermine). The levels of free and bound PAs, as well as ADC 
and polyamine oxidases (PAO) activities, were higher in tolerant than in sensitive 
cultures of different crop. (Kuehn et al.  1990 ; Philipps and Kuehn  1991 ; Roy and 
Ghosh  1996 ; Bouchereau et al.  1999  ) . The increased activities of the transglu-
taminases indicated the high content of the polyamines. This indicates a correla-
tion between heat-stress tolerance, ADC, PAO and transglutaminase activities 
(Bouchereau et al.  1999  ) .  

    5.4   Drought Stress 

 Certain plants during water scarcity tend to accumulate putrescine (Put) which is 
supported by the fact that transcript pro fi ling under these conditions induces the 
expression of certain genes involved in the biosynthetic pathway. The expression of 
some of these genes is also induced by ABA treatment (Perez-Amador et al.  2002 ; 
Urano et al.  2003 ; Alcazar et al.  2010  ) . This throws light upon the fact that 
up- regulation of PA-biosynthetic genes and accumulation of Put under water stress 
are mainly ABA-dependent responses (Alcazar et al.  2010  ) .  

    5.5   Salt Stress 

 Differences in PA (Put, Spd, Spm) response under salt-stress have been reported 
among and within species. For example, according to Prakash and Prathapsenan  (  1988  ) , 
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endogenous levels of PAs (Put, Spd and Spm) decreased in rice seedlings 
under NaCl stress, whereas Basu et al.  (  1988  )  reported that salinity resulted in accu-
mulation of these compounds in the same material (Bouchereau et al.  1999  ) . Santa-
Cruz et al.  (  1997  )  reported that the (Spd + Spm):Put ratios increased with salinity 
in the salt-tolerant tomato species ( Lycopersicon pennellii , Carrel D’Arcy) but not in 
the salt-sensitive tomato species ( L .  esculentum ). In both species, stress treatments 
decreased the levels of Put and Spd. The Spm levels did not decrease with salinity 
in  L .  pennellii  over the salinization period, whereas they greatly decreased in 
 L .  esculentum . The effects of different NaCl concentrations on maize embryogenic 
cells derived from immature embryo cultures of a salt-sensitive inbred line (cv. 
w64) and a resistant hybrid (cv, Arizona) have also been reported where increased 
salt concentration remarkably decreased the growth of the calluses and showed a 
signi fi cant increase in the total PA (Put, Spd) content, especially caused by a rise in 
Put. It has been reported by Bouchereau et al.  (  1999  )  that using the inhibitors of Put 
synthesis, the ADC pathway in tomato plants operates in both stress and control 
conditions, whereas the ODC pathway is stimulated only under the stress condi-
tions. These  fi ndings are further supported by the studies of Urano et al.  (  2003  )  who 
concluded that the expressions of the arginine decarboxylase 2(ADC 2) and sper-
mine synthases (SPMS) during the 24 h stress treatment maintained and hence, 
increased the levels of Put and Spm. Yamaguchi et al.  (  2006  )  also suggested the 
protective role of Spm when its addition suppressed the salt sensitivity in Spm 
de fi cient mutants. Bouchereau et al.  (  1999  )  suggested that polyamine responses to 
salt stress are also ABA-dependent, since both  ADC2  and  SPMS  are induced by 
ABA. In fact, Alcazar et al.  (  2006a  )  reported that stress-responsive, drought respon-
sive (DRE), low temperature-responsive (LTR) and ABA-responsive elements 
(ABRE and/or ABRE-related motifs) are present in the promoters of the polyamine 
biosynthetic genes. This also reinforces the view that in response to drought and salt 
treatments, the expression of some of the genes involved in polyamine biosynthesis 
are regulated by ABA (Alcazar et al.  2010  ) . The study of the  Arabidopsis thaliana  
 fl owers by Tassoni et al.  (  2010  )  has also supported the hypothesis that polyamine 
levels (mainly Spm) increase with the increase in the salt concentration and 
therefore, contribute to plant tolerance during the stressful conditions.  

    5.6   Osmotic Stress 

 Osmotic treatments using sorbitol induced high levels of Put and ADC in detached 
oat leaves (Flores and Galston  1984  ) , whereas, Spd and Spm show a dramatic 
decrease. Bouchereau et al.  (  1999  )  reported that osmotica with widely different 
assimilation routes, such as sorbitol, mannitol, proline, betaine and sucrose, all 
induce a rise in Put. These changes are coincident with measurable signs of a stress, 
such as wilting and protein loss. Tiburcio et al.  (  1995  )  reported that when peeled oat 
leaves are incubated with sorbitol in the dark, they lose chlorophyll and senescence 
rapidly. Senescence could be delayed by including Spm in the incubation medium. 
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The senescence-retarding effect of Spm was correlated with increase in the 
incorporation of labeled precursors into proteins, RNA and DNA. They also concluded 
that osmotic shock in the dark induces an activation of the pathway catalyzed by 
ADC. Borrell et al.  (  1996  )  have reported the regulation of ADC synthesis by Spm 
in osmotically-stressed oat leaves using a polyclonal antibody to oat ADC and a 
cDNA clone encoding oat ADC. Treatment with Spm in combination with osmotic-
stress resulted in increased steady-state levels of ADC mRNA, yet the levels of 
ADC activity decreased. This absence of correlation has been explained by the fact 
that Spm inhibits processing of the ADC proenzyme, which results in increased 
levels of this inactive ADC form and a subsequent decrease in the ADC-processed 
form (Bouchereau et al.  1999  ) . They also showed that in osmotically-stressed oat 
leaves, degradation of cytochrome thylakoid proteins and the enzyme rubisco can 
be avoided by addition of Spm to the incubation medium. Thus post-translational 
regulation of ADC synthesis by Spm may be important in explaining its anti-
senescence properties. Interestingly, Masgrau et al.  (  1997  )  concluded that the over-
expression of oat ADC in tobacco resulted in similar detrimental effects to those 
observed by ADC activation induced by osmotic-stress in the homologous oat leaf 
and stem (chlorosis and necrosis). Therefore, optimum levels of polyamines are 
necessary for the proper growth and development of plants (Bouchereau et al.  1999  ) . 
Recently, Liu et al.  (  2010  )  have investigated the changes in the content and the form 
of polyamines (PAs) in the leaves of two wheat ( Triticum aestivum  L.) cultivars 
seedlings, differing in drought tolerance, under the osmotic stress by polyethylene 
glycol (PEG) treatment. The results suggested that free-Spd, -Spm and PIS-bound 
Put (perchloric acid insoluble bound putrescine) facilitated the osmotic stress tolerance 
of wheat seedlings. The important roles of reactive oxygen species in the relationship 
between ethylene and polyamines (PAs) have also been investigated in the leaves of 
spring wheat seedlings under root osmotic stress (Li et al.  2010  ) .  

    5.7   Hypoxia 

 There has been a lot of work done by Reggiani’s group on the role of polyamines 
under the hypoxic stress conditions. Reggiani et al.  (  1990  )  reported that there are 
many examples available where plant shoots and seedlings of different Gramineae 
species, when subjected to lack of oxygen, provide evidence of an association 
between tolerance and the capacity to accumulate Put. Species such as rice and 
barnyard grass which are adapted to germinate in an oxygen deprived environment, 
showed a greater capacity of Put accumulation than the anoxia-intolerant species 
(Reggiani and Bertani  1989  ) . This consideration supports the hypothesis for a role 
of Put as a protective compound against hypoxia (Reggiani and Bertani  1990 ; 
Bouchereau et al.  1999  ) . Reggiani et al.  (  1989  )  have reported that Put is required for 
the anaerobic elongation of rice coleoptiles, but it has no effect on aerobic elongation 
of rice coleoptiles where auxin is active. This group has also concluded that with a 
decrease in oxygen concentration, the conjugated Put became predominant in 
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comparison with the free forms (80% at 0.3% oxygen) and there is a negative 
correlation between Put accumulation (specially under conjugated forms) and shoot 
elongation (Reggiani and Bertani  1989 ; Bouchereau et al.  1999  ) . On the other hand, 
the results of Lee et al.  (  1996  )  have indicated that increase in the activities of ADC 
and ODC, and Put levels are essential for the elongation of  Scirpus  shoots grown 
under submergence.  

    5.8   Ozone Stress 

 Ozone, the protective gas in the upper atmosphere, is known to protect us from the 
harmful UV rays of the sun. But it is known to have serious effects on the vegetation. 
Experiments are ongoing throughout the world in this respect. According to Heagle 
 (  1989  )  O 

3
 -stress can lead to a signi fi cant decline in net photosynthesis, cause leaf 

injury and accelerate senescence, even when applied at low levels. Reaction to this 
stress triggers many biochemical changes in plants such as increase in ABA, peroxi-
dases, phenolic compounds, ethylene and polyamines, which form a part of the plant 
self-defense mechanism. Rowland-Bamford et al.  (  1989  )  observed that the ADC 
activity in the ozone treated barley leaves increased before the damage became 
apparent. Many more examples have been quoted by Bouchereau et al.  (  1999  )  
supporting the protective role of the polyamines during the ozone damage. Though 
the exact mechanism is not clear, there can be a possibility of PAs being involved 
in the free radical scavenging (Bors et al.  1989  ) . This is also supported by the fact 
that the levels of superoxide radical formed enzymatically with xanthine oxidase or 
chemically from ribo fl avin or pyrogallol were inhibited  in vitro  by Put, Spd or Spm 
at 10–50 mM (Drolet et al.  1986  ) . Also, superoxide radical protection was inhibited 
by PAs when added to microsomal membrane preparations. These  fi ndings have 
been also supported by the fact that PAs tend to inhibit lipid peroxidation (Tang and 
Newton  2005 ; Zhao and Yang  2008  ) . These conclusions were, however, disputed by 
the  fi ndings of Langebartels et al.  (  1991  )  as mentioned by Bouchereau et al.  (  1999  ) . 
Leaf injury, caused by O 

3
  in the tobacco cultivar Bel W3 could be prevented by 

feeding Put, Spd or Spm through the root. These exogenous treatments were 
correlated with a two to three-fold increase in soluble conjugated Put and Spd 
(monocaffeoyl forms). Conjugated Put and Spd associated with cell wall and mem-
brane fractions were increased four to six-fold. When free PAs were assayed  in vitro  
for their radical-scavenging properties, very low rate constants were found. On the 
other hand, PA conjugates had relatively high rate constants. It was thus concluded 
that free PAs could not account for the protection against O 

3
  damage. But assuming 

their role in the ozone damage, it was suggested that the protective effect of exoge-
nous free PAs was mediated by their prior conversion to conjugated forms. Consistent 
with this hypothesis, it was found that monocaffeoyl Put, an effective scavenger of 
oxyradicals, was present in the apoplastic  fl uid of tobacco leaves exposed to O 

3
  

(Dat et al.  2003 ). The results of Navakoudis et al.  (  2003  )  also support these  fi ndings 
showing that the enhanced atmospheric ozone is the accumulation of polyamines, 
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generally observed as an increase in putrescine level, and in particular its bound 
form to thylakoid membranes. A study by Schraudner et al.  (  1990  )  also discovered 
a relationship between ethylene emission and PA biosynthesis was found in O 

3
 -

treated potato and tobacco plants, the leaves of which show early senescence in 
response to the pollutant. In the presence of O 

3
 , all compounds of ethylene biosyn-

thetic pathway in tobacco leaves were up-regulated. Put and Spd levels also 
increased, as did ornithine decarboxylase (ODC) activity (Bouchereau et al.  1999  ) .   

    6   Polyamine Biosynthetic Genes and Stress Tolerance 

 The expression of genes responsible for the PA synthesis has bene fi ted the plants to 
withstand environmental stresses. The over-expression or the down-regulation of 
the genes for PA metabolism in transgenic plants have been reported by many workers 
during environmental stress (Kumar et al.  1997 ; Walden et al.  1997 ; Malmberg et al. 
 1998 ; Capell et al.  1998 ; Rajam et al.  1998 ; Roy and Wu  2001 ; Bhatnagar et al. 
 2002  ) . The genes which have been reported to be involved in the PA metabolism are 
 ODC ,  ADC  or  SAMDC . Bhatnagar et al.  (  2002  )  have demonstrated that the cellular 
levels of Put increases by overexpressing  ODC  or  ADC  cDNA. Panicot et al.  (  2002 a) 
have also reported that overexpression of  ODC  or  ADC  cDNA increases the Put 
levels in plants. Cheng et al.  (  2009  )  reported that transformation of yeast  SAMDC  in 
tomato increased Spm and Spd under high temperature stress. Overexpression of 
 SPDS  in Arabidopsis (Kasukabe et al.  2004  ) ; tobacco (Franceschetti et al.  2004  )  
and sweet potato (Kasukabe et al.  2006  )  plants have conferred tolerance to multiple 
stresses. Polyamines have been proved to act as antioxidants and protect the plants 
from oxidative damage and maintain homeostasis in plant cells (Rodrıguez-Kessler 
et al.  2006  ) . Accumulation of polyamines during environmental stresses in plants 
has been associated with increase in the levels of antioxidant enzyme activities like 
SOD, CAT, etc. Increase in MDA content has been observed during temperature 
stress in tomato, which leads to lipid peroxidation (Cheng et al.  2009  ) . Overexpression 
of  ySAMDC  in transgenic tomato increases the Spm and Spd levels, which in turn 
decreases MDA content (Cheng et al.  2009  ) . The overexpression of  SAMDC  gene 
in transgenic rice and tobacco showed increased levels of PA and confers tolerance 
to drought and salinity (Roy and Wu  2002 ; Waie and Rajam  2003  ) . Table  19.1  
provides further information about the PA transgenics.   

    7   Integration of Polyamines with Other Molecules 
During Stress Conditions 

 Polyamines affect several physiological processes in plants by activating the 
biosynthesis of signaling molecules like NO, H 

2
 O 

2
 ; they affect ABA synthesis and 

signaling and are involved in Ca 2+  homeostasis and ion channel signaling during the 
abiotic stress conditions. Figure  19.1  summarizes this information. 
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 Abscisic acid (ABA) is an anti-transpirant that reduces water loss through 
stomatal pores on the leaf surface in response to water de fi cit, resulting in the redis-
tribution and accumulation of ABA in guard cells and  fi nally closure of the stomata 
(Bray  1997  ) . Many authors (Liu et al.  2000 ; An et al.  2008 ; Alcazar et al.  2010  )  
have reported that Put, Spd and Spm also regulate stomatal responses by reducing 
their aperture and inducing closure, and Put modulates ABA biosynthesis in response 
to abiotic stress. Thus, polyamines are involved in the ABA mediated stress responses 
which affect the stomatal closure. Polyamines are also linked with reactive oxygen 
species (ROS) and NO signaling as amino oxidases during the catabolic process 
generate H 

2
 O 

2
  which is a ROS (associated with plant defense and abiotic stress) and 

also there is evidence in which polyamines are reported to enhance the production 
of NO (Tun et al.  2006  ) . NO is also known to enhance the salt stress tolerance in 
plants by regulating the content and proportions of the different types of free 
polyamines. According to Neill et al.  (  2008  ) , both H 

2
 O 

2
  and NO are involved in the 

   Table 19.1    Polyamine genes that can be expressed in plants for abiotic stress tolerance   

 Gene overexpressed  Plant  Response  Reference 

  ADC    Oryza sativa   Salt tolerance  Roy and Wu  (  2001  )  
  ADC    Brassica juncea   Chilling and salt  Mo and Pua  (  2002  )  
 ADC1, ADC2   Oryza sativa   Drought tolerance  Capell et al.  (  2004  )  
 ADC1, ADC2   Arabidopsis thaliana   Freezing  Cuevas et al.  (  2008  )  
  ADC    Malus domestica   Chilling, Salt and 

Dehydration 
 Hao et al.  (  2005  )  

  ADC    Oryza sativa   Chilling  Akiyama and Jin 
 (  2007  )  

  At ADC2    Arabidopsis thaliana   Salt tolerance  Urano et al.  (  2004  )  
  ADC    Solanum melongena   Chilling, Salt and 

Dehydration 
 Prabhavathi and 

Rajam  (  2007  )  
  ADC    Zea maize   Salt  Jimenez-Bremont 

et al.  (  2007  )  
  MdADC    Malus sylvestris  (L.) Mill. 

var. domestica 
 Salt tolerance  Liu et al.  (  2006  )  

  PaADC2    Pringlea antiscorbutica   Chilling and salt  Hummel et al.  (  2004  )  
 Mouse  ODC  cDNA   Populous nigra  X 

maximowiczii cells 
 Stress tolerance  Bhatnagar et al. 

 (  2001  )  
 Mouse  ODC  cDNA  tobacco  Salt stress  Kumria and Rajam 

 (  2002  )  
  MdSAMDC2    Malus sylvestris   Cold and salt  Hao et al.  (  2005  )  
  MdSAMDC2    Pyrus communis   salt  He et al.  (  2008  )  
 SPDS cDNA from 

Cucurbita  fi cifolia 
 Arabidopsis  Chilling, salinity, 

drought 
 Kasukabe et al. 

 (  2004  )  
 SPDS cDNA from 

Cucurbita  fi cifolia 
 Sweet potato  Increase in Spd  Kasukabe et al. 

 (  2006  )  
  MdSPDS1    Pyrus communis   Salt, Heavy metal 

and osmotic 
stress 

 Wen et al.  (  2008  )  
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regulation of stomatal movements in response to ABA, in such a way that NO 
generation depends on H 

2
 O 

2
  production. Thus, altogether, the available data indicate 

that polyamines, ROS (H 
2
 O 

2
 ) and NO act synergistically in promoting ABA 

responses in guard cells (Alcazar et al.  2010  ) . 
 Polyamines are positively charged compounds, which can interact electrostatically 

with negatively charged proteins, including ion channels. Indeed, polyamines at 
their physiological concentration block the fast-activating vacuolar (FV) cation 
channel in a charge-dependent manner (Spm 4+  > Spd 3+  >> Put 2+ ), at both whole-cell 
and single-channel levels, thus indicating a direct blockage of the channel by 
polyamines (Bruggemann et al.  1998  ) . According to Alacazar et al.  (  2010  ) , in 
response to different abiotic stresses, such as potassium de fi ciency, Put levels are 
increased drastically (reaching millimolar concentrations), whereas the levels of 
Spd and Spm are not signi fi cantly affected, and this increase of Put may signi fi cantly 
reduce FV channel activity. Bruggemann et al.  (  1998  )  have also reported that all PA 
levels increase in amount, and the enhanced Spm concentration probably blocks FV 
channel activity under salinity stress. These observations can be explained by the 
fact that polyamines in plants may thus modulate ion channel activities through 
direct binding to the channel proteins and/or their associated membrane compo-
nents (Delavega and Delcour  1995 ; Johnson  1996 ; Alcazar et al.  2010  ) . 
Phosphorylation and dephosphorylation of ion channel proteins are closely related 
to their activities. Thus, polyamines could also affect protein kinase and/or phos-
phatase activities to regulate ion channel functions (Bethke and Jones  1997 ; Michard 
et al.  2005 ; Alcazar et al.  2010  ) . However, Zhao et al.  (  2007  )  points out that for 
elucidating the molecular mechanisms underlying polyamine action, identi fi cation 
of ion channel structural elements and/or receptor molecules regulated by polyamines 
would be of great importance. 

 Polyamines also tend to maintain Ca 2+  homeostasis. Several examples have been 
reported by Alcazar et al.  (  2010  ) . Yamaguchi et al.  (  2006,   2007  )  proposed that the 
protective role of Spm against high salt and drought stress is a consequence of 
altered control of Ca 2+  allocation through regulating Ca 2+ permeable channels. The 
increase in cytoplasmic Ca 2+ results in prevention of Na + /K +  entry into the cytoplasm, 
enhancement of Na + /K +  in fl ux to the vacuole or suppression of Na + /K +  release from 
the vacuole, which in turn increases salt tolerance (Yamaguchi et al.  2006 ; Kusano 
et al.  2007 ; Alcazar et al.  2010  ) . Thus, polyamines have a de fi nite role in calcium 
homeostasis during stress conditions.  

    8   Conclusions and Future Prospects 

 Considerable evidence shows that polyamines (PAs) are involved in a myriad of 
plant processes including DNA regulation, gene transcription, organ development, 
fruit ripening, leaf senescence and various environmental stresses. The use of the 
genetic approaches, proteomic approaches and various analytical techniques have 
made it possible to further understand their mechanisms of action, binding, interaction, 
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transport, signaling, homeostatic control of their metabolic pathways and their 
defensive role in biotic and abiotic stress conditions, although the exact reasoning is 
still dif fi cult to interpret. Nevertheless, even this lack of information does not hamper 
further research into polyamines as they now constitute one of the widely distributed 
groups of organic molecules in nature with an important contribution towards main-
taining plant growth and development, increasing crop production, defensive actions 
during stress conditions, combating various diseases and more recently acting as 
biomarkers for cancer detection. Thus, a spectral range of their applications in 
plants, animals and mammals offer a wide scope into their further research. 

 Polyamines have now been considered as secondary messengers in addition to 
being known as vital plant regulators (Liu et al.  2007  ) . Although the exact mechanism 
of action of polyamines during the stressful conditions is not known, genetic tools 
have been found useful; traditional quantitative trait loci (QTL) mapping (Alonso-
Blanco et al.  2009  )  and genome-wide association mapping (Nordborg and Weigel 
 2008  )  can be used for the identi fi cation of the genes underlying the mode of action 
and regulation of polyamines (Alcazar et al.  2010  ) . Cloning of these genes would be 
another added advantage as these could be used in the same way as from chemicals 
to alleviate or mitigate stress derived injury for crop protection. Transfer of such 
technology to the other crops will help create germplasm which would be better 
adapted to the harsh stressful conditions and thus contributing to enhanced 
agricultural productivity.      
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