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  Abstract   Soil-borne phytopathogens cause extensive damage to cultivated plants 
worldwide, resulting in yield loss worth billions of Euros each year. Soil fumigation 
is the most effective chemical treatment but is too expensive for many crops, and 
fumigants like methyl bromide are being phased out for environmental reasons. In this 
context, much is to be learned from disease-suppressive soils, where susceptible plants 
are protected from soil-borne pathogens by the indigenous microbiota, because these 
microbial interactions may be exploited to design sustainable crop protection strategies 
for ordinary farm soils. However, our knowledge of plant-protecting microorganisms 
and biocontrol mechanisms involved in soil suppressiveness remain very fragmented, 
as most knowledge on disease suppressive soils comes from studies restricted to 
individual plant-protecting microbial populations, mostly fl uorescent  Pseudomonas  
species. The phenomenon of disease suppressiveness remains therefore poorly 
understood, even in the most studied cases such as suppressiveness to wheat take-all. 
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 We reviewed the respective biocontrol contributions of fl uorescent pseudomonads 
and other plant-protecting microorganisms in disease-suppressive soils. The ability 
to inhibit soil-borne pathogens and to protect plants occurs both in  Pseudomonas  
and non- Pseudomonas  microorganisms, including diverse bacteria and fungi, and 
both play important roles in soil suppressiveness. In  Pseudomonas , antibiosis and 
competition were shown to be important mechanisms of pathogen suppression, 
though direct effects on plant, e.g. induced systemic resistance, phytohormone 
interference and plant-growth promotion, were also reported. These types of mech-
anisms occur also in non- Pseudomonas  biocontrol microbes, some of them also 
displaying hyperparasitism in certain types of suppressive soils. 

 This review shows that in suppressive soils where  Pseudomonas  play an important 
role, the roles of non- Pseudomonas  microorganisms were often neglected, and 
 vice versa . Yet,  Pseudomonas  and other microorganisms may interact with each 
other in the rhizosphere and with the plant, and some recent studies indicate that 
disease suppressiveness is an emerging soil property that can typically result from 
these multiple interactions. In conclusion, we propose that a parallel assessment 
of  Pseudomonas  and non- Pseudomonas  microorganisms in suppressive soils, 
e.g. using microarrays or metagenomics, may bring a better understanding of 
disease suppressiveness.  

  Keywords   Biocontrol  •  Disease-suppressive soil  •  Plant pathogen  •   Pseudomonas   
•  Rhizosphere      

    1   Introduction 

 Crop plants are faced with a wide range of bioagressors, including pests, parasites 
and pathogens (Agrios  1997  ) . Among them, phytoparasitic microorganisms are 
responsible for hundreds of billons Euros in crop loss worldwide. Many of them 
infect plant shoots and may be managed via chemical control. However, microor-
ganisms affecting crop health and yield may also reside inside agricultural soils, 
where they infect the plant via the root. These soil-borne phytoparasitic microor-
ganisms can be harder to control by chemical means, because they are physically 
protected by soil particles. Soil fumigation is the most effective chemical treatment but 
is expensive, has adverse effects on benefi cial microbes involved in soil fertility and 
quality, and may cause other environmental problems in relation to global change. 

 Soils harbour a wide range of phytoparasitic microorganisms, including patho-
genic fungi, oomycetes, nematodes and bacteria (Raaijmakers et al.  2009  ) , and these 
phytoparasites may cause extensive damage to crops (Agrios  1997  ) . However, the 
survival, infectivity and/or pathogenicity of plant-parasitic microorganisms in soil is 
generally reduced due to competition and other negative interactions exerted by the 
rest of the microbial community, and this common soil property is referred to as 
general disease suppression (Cook and Baker  1983  ) . In addition to general disease 
suppression, certain soils exhibit specifi c disease suppression towards a particular 
parasite (Haas and Défago  2005  ) . In these soils, disease incidence in presence of virulent 
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pathogen, susceptible plant and pathogen-favorable environmental conditions is much 
lower than expected, unlike in disease-conducive soils (i.e. allowing plant infection 
and spread of the disease; Baker and Cook  1974 ; Weller et al.  2002 ; Mazzola  2002 ; 
Borneman and Becker  2007 ; Janvier et al.  2007  ) . The microbial basis of suppressiveness 
has been shown in experiments where this property was eliminated by soil sterilization/
pasteurisation, and acquired by conducive or sterilized/pasteurised suppressive soil 
following the addition of small amount of suppressive soil (Baker and Cook  1974 ; 
Weller et al.  2002 ; Mazzola  2002 ; Haas and Défago  2005  ) . 

 The focus of this review is on specifi c disease suppressiveness, which has been 
documented for several phytoparasitic bacteria (Becker et al.  1997 ; Shiomi et al.  1999  ) , 
nematodes (Rimé et al.  2003 ; Borneman and Becker  2007  ) , oomycetes (Persson et al. 
 1999 ; Murakami et al.  2000  )  and especially fungi (Stutz et al.  1986 ; Weller et al.  2002 ; 
Janvier et al.  2007  ) . Soils specifi cally suppressive towards a pathogen occur worldwide 
(Fig.  1 ). They were originally defi ned by Baker and Cook  (  1974  )  as soils in which the 
pathogen does not establish, establishes but causes no or little disease, or causes disease 
that subsequently diminishes with continuous culture of the crop. The defi nition com-
prises two recognized types of specifi c suppressiveness, i.e. natural (long-standing) 
suppressiveness and suppressiveness induced by monoculture. Induced disease sup-
pressiveness develops as a result of crop monoculture, and is well documented espe-
cially for take-all disease of wheat (caused by the fungus  Gaeumannomyces graminis  
var.  tritici ), potato scab (caused by the actinobacterium  Streptomyces scabiei ), 
Rhizoctonia root rot of wheat and caulifl ower (caused by  Rhizoctonia solani ) and dam-
age caused by the cereal-cyst nematode  Heterodera avenae  (Kerry  1982 ; Roget  1995 ; 
Weller et al.  2002 ; Postma et al.  2010  ) . Often, repeated growth of a same crop favours 
the pathogen, and disease severity increases year after year. In the case of induced 

  Fig. 1    Countries with emblematic case studies of soils with specifi c suppression towards soil-
borne phytoparasites.  1   Streptomyces scabiei  (potato scab);  2–5   Fusarium oxysporum  (Fusarium 
wilt of watermelon, banana and fl ax);  6–9   Gaeumannomyces graminis  var.  tritici  (wheat take-all); 
 10   Thielaviopsis basicola  (black root rot of tobacco);  11–12   Plasmodiophora brassicae  (clubroot 
disease of cabbage);  13   Ralstonia solanacearum  (tomato wilt);  14   Heterodera schachtii  (endop-
arasitic nematode; damage to sugarbeet roots);  15   Xiphinema elongatum  and  Paratrichodorus 
minor  (ectoparasitic nematodes; damage to sugarcane roots)       
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disease suppressive soils, however, rhizosphere populations of plant-protecting micro-
organisms build up after a few years, and they lead then to disease suppressiveness, 
which explains why this phase is often referred to as disease decline (Weller et al. 
 2002  ) . Induced disease suppressiveness lasts as long as the monoculture is not inter-
rupted using a non-host plant. In contrast, natural disease suppressiveness does not 
require monoculture (Haas and Défago  2005  ) , although it is likely that the extent of 
disease suppression may be infl uenced by past conditions of crop rotation (Ramette 
et al.  2003a  ) . It has been extensively studied for several soil-borne diseases, such as 
 Thielaviopsis basicola -mediated black root rot (Stutz et al.  1986  )  and Fusarium wilt 
caused by  Fusarium oxysporum  (Alabouvette  1986  ) . Although microrganisms play the 
key role in disease suppressiveness, soil physicochemical properties may also contri-
bute to the phenomenon (especially in the case of natural disease suppressiveness, e.g. 
Höper et al.  1995  ) . Indeed, soil factors such as pH and clay mineral composition may 
favour the establishement of plant-protecting populations or expression of plant-
benefi cial traits (Höper et al.  1995 ; Keel    et al.  1992 ; Ramette et al.  2006  ) .  

 In a majority of studies, the assessment of disease-suppressive soils has focused 
on the role of the fl uorescent  Pseudomonas  spp. (Lemanceau et al.  2006  ) , especially 
in a context of antibiosis (Haas and Défago  2005 ; Weller  2007  ) , without considering 
the potential role of other microorganisms in specifi c disease suppression. This is 
particularly the case for soil suppressiveness to take-all or black root rot disease. 
However, it is likely that non-pseudomonads contribute also to disease suppression 
in many cases (Rimé et al.  2003 ; Ramette et al.  2006 ; Borneman and Becker  2007  ) . 
In a smaller number of studies, other plant-protecting microorganisms have been 
considered, e.g.  Bacillus ,  Streptomyces ,  Pasteuria penetrans ,  Trichoderma  or non-
pathogenic  Fusarium oxysporum  (Weller et al.  2002 ; Janvier et al.  2007  ) , but typi-
cally without parallel analysis of fl uorescent  Pseudomonas  populations. 

 Both  Pseudomonas  and non- Pseudomonas  microorganisms display a range of 
biocontrol traits that are likely to be involved in specifi c suppression. This review 
therefore aims at assessing current knowledge on the biocontrol properties and 
respective role of fl uorescent pseudomonads versus non- Pseudomonas  microorgan-
isms in specifi c disease suppressiveness of soils. We believe that this is a prerequi-
site for understanding the phenomenon of specifi c disease suppressiveness with its 
implications for sustainable soil management and prospecting for suppressive soils 
and novel biocontrol microorganisms.  

    2   Role of Fluorescent  Pseudomonas  in Disease-Suppressive Soils 

    2.1   Modes of Action of Fluorescent  Pseudomonas  

    2.1.1   Antibiosis 

 Several modes of plant protection are known for fl uorescent pseudomonads (Fig.  2 ; 
Couillerot et al.  2009  ) . The main one documented is antagonism mediated by the pro-
duction of secondary antimicrobial metabolites, noticeably 2,4-diacetylphloro glucinol 
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(DAPG), phenazines, and hydrogen cyanide (Chin-A-Woeng et al.  2000 ; Raaijmakers 
et al.  2002 ; Haas and Défago  2005 ; Weller  2007  ) . Antimicrobial metabolites also 
include pyrrolnitrin, pyoluteorin, lipopeptides and others, but they have been com-
paratively less studied. Only fragmented information is available on the mode of 
action of these compounds. In phytopathogenic fungi and oomycetes, DAPG can 
target the cell membrane, phenazines and pyrrolnitrin the electron transport chain, 
while hydrogen cyanide affects copper-containing cytochrome c oxidases (Haas and 
Défago  2005 ; Raaijmakers et al.  2009 ; Schouten et al.  2008  ) . Evidence for the 
implication of antimicrobial secondary metabolites in biological control has been 
obtained using mainly two different approaches. First, non-producing mutants pro-
tected less than the corresponding parental strains, which has been shown for 
instance in the case of DAPG (Fenton et al.  1992 ; Keel et al.  1992  ) , hydrogen cya-
nide (Voisard et al.  1989  ) , pyoluteorin (Maurhofer et al.  1994  )  and phenazines 
(Thomashow and Weller  1988  ) . However, the loss of the ability to produce a given 
metabolite is compensated in certain strains by excess production of another metab-
olite (Haas and Keel  2003  ) , which complicates data interpretation. Second, the 
introduction into non-producing wild-type strains of genes conferring the ability to 
produce antimicrobial secondary metabolites conferred (or enhanced) plant protec-
tion ability (Fenton et al.  1992 ; Timms-Wilson et al.  2000  ) . Similarly, the develop-
ment by genetic means of overproducing derivatives could also result in improved 
biocontrol (Haas and Keel  2003 ; Mark et al.  2006  ) .  

 Quantifi cation of antimicrobial secondary metabolites in the rhizosphere is 
tricky. DAPG has been detected at levels up to 250 ng/g root in bulk samples 
from the wheat rhizosphere (Raaijmakers et al.  1999  ) , but it is likely that the 
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  Fig. 2    Interplay between  Pseudomonas  and non- Pseudomonas  biocontrol microorganisms and 
protection of plant roots from soil-borne phytopathogens (Modifi ed from Couillerot et al.  2009  )        
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actual concentration faced locally by pathogens in root surface micro-habitats is 
higher. Concentrations needed for  in vitro  inhibition of phytopathogenic bacteria, 
oomycetes, fungi and nematodes vary according to the target, from a few  m g/ml to 
more than 100  m g/ml (Keel et al.  1992 ; de Souza and Raaijmakers  2003  ) , and 
biocontrol pseudomonads are more effective against highly-sensitive pathogenic 
strains than less sensitive ones (Mazzola et al.  1995  ) . Often, pseudomonads with 
plant-protection ability can produce more than one antimicrobial secondary 
metabolite (Raaijmakers et al.  2002 ; Haas and Keel  2003  ) , certain compounds 
being more effective in some pathosystems than in others. Parallel analysis of the 
plant-protection effi cacy of several biocontrol pseudomonads indicated that strains 
producing hydrogen cyanide protected better than the others in a pea- Pythium 
ultimum  pathosystem (Ellis et al.  2000  ) , whereas strains producing DAPG pro-
tected better overall than non-producing strains in cucumber- P. ultimum  and 
tomato- F. oxysporum  f. sp.  radicis-lycopersici  pathosystems (Sharifi -Tehrani 
et al.  1998  ) . In the latter pathosystems, the ability to produce DAPG was more 
infl uential than the one to produce hydrogen cyanide when a much larger collec-
tion of biocontrol pseudomonads was used (Rezzonico et al.  2007  ) . 

 The role of antimicrobial metabolites of  Pseudomonas  in antagonism is in fact 
diffi cult to ascertain, because these compounds can have multiple effects. Indeed, 
they may inhibit non-pathogens as well (Keel et al.  1992 ; Walsh et al.  2003  ) , which 
in turn might interfere with phytopathogens. Furthermore, certain antimicrobial 
metabolites may have a direct impact on plant physiology. For instance, DAPG can 
modify root system architecture (Brazelton et al.  2008  )  and stimulate root exudation 
of amino acids (Phillips et al.  2004  ) , which in turn affects perhaps the rhizosphere 
microbial community including phytopathogens, and it triggers an induced systemic 
response in the plant (see below). In addition to biocontrol functions, the ability to 
produce secondary antimicrobial metabolites may also contribute to ecological fi t-
ness, as shown for DAPG on potato (Cronin et al.  1997b  )  (but not on sugarbeet; 
Carroll et al.  1995  )  and phenazine on wheat (Mazzola et al.  1992  ) . It has been 
hypothesized that certain genes encoding antimicrobial secondary metabolites in 
the fl uorescent  Pseudomonas  spp. noticeably  phlD  (DAPG synthesis) could have 
been acquired from the plant, where perhaps they were also involved in plant defense 
functions (Cook et al.  1995 ; Ramette et al.  2001  ) .  

    2.1.2   Other Biocontrol Mechanisms 

 Certain fl uorescent pseudomonads may antagonize phytopathogens via the produc-
tion of lytic enzymes or effectors (Raaijmakers et al.  2009  ) . Data are scarce on the 
possible role of cell wall-degrading extracellular lytic enzymes e.g.  b -1,3-glucanase 
and chitinase in  Pseudomonas  antagonism (Lim et al.  1991  ) , and they seem to play 
a minor role in the plant-protection ability of pseudomonads (Sharifi -Tehrani et al. 
 1998  ) . Another type of antagonistic interaction, in which pathogen virulence is tar-
geted, implicates putative effectors. Indeed, mutation of type III protein secretion 
gene  hrcV  lowered the ability of  P. fl uorescens  KD to reduce both polygalacturonase 
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activity in  Pythium ultimum  and Pythium damping-off of cucumber (Rezzonico 
et al.  2005  ) . Type III secretion system genes are a basic feature of many biocontrol 
pseudomonads (Preston et al.  2001 ; Mazurier et al.  2004  ) , but in  P. fl uorescens  KD 
they may have been acquired horizontally in more recent time, apparently from 
pathogenic  Pseudomonas syringae  (Rezzonico et al.  2004  ) . 

 In addition to antagonism, competition by pseudomonads is thought to contrib-
ute to pathogen control (Fig.  2 ), although to a lesser extent than antagonism (Haas 
and Défago  2005  ) . Competition may take place for nutrients (Kamilova et al.  2005  ) , 
especially organic carbon and/or iron (Lemanceau et al.  1992 ; Paulitz et al.  1992 ; 
Duijff et al.  1993  ) . Besides conferring protection from disease (noticeably Pythium 
damping-off and Fusarium wilt), competition is also important for successful estab-
lishment of biocontrol pseudomonads in the rhizosphere (Moënne-Loccoz et al. 
 1996  )  and expression of antagonistic traits (Chin-A-Woeng et al.  2000  ) . 

 Even if biocontrol fl uorescent pseudomonads are effective at inhibiting phyto-
pathogens, direct effects on the plant are also documented (Fig.  2 ), noticeably 
induced systemic resistance (ISR; Pieterse et al.  2003  ) . During ISR, several plant 
defence mechanisms are activated and the plant resists better to a range of patho-
gens (van Loon  2007  ) . ISR can be triggered by different surface constituents of 
 Pseudomonas  cells, such as the  O -antigenic sidechain of lipopolysaccharides and 
fl agella (Pieterse et al.  2003  ) , and by metabolites released by these bacteria, e.g. the 
siderophore pyoverdine (Maurhofer et al.  1994  ) , a benzylamine derivative (Ongena 
et al.  2007  ) , and the antimicrobial metabolite DAPG (Iavicoli et al.  2003  ) . 

 In addition to ISR, certain pseudomonads can also act on the plant by phytohor-
mone interference, as follows. Ethylene levels in roots may be infl uenced by bacterial 
deamination of its precursor 1-aminocyclopropane-1-carboxylate (ACC), which 
is thought to diminish the quantity of plant ACC left for ethylene synthesis 
(Glick et al.  1998  ) . This can contribute to plant health by promoting growth and 
alleviating stress (Glick  2005  ) . Transfer of the ACC deaminase locus into 
 Pseudomonas protegens  CHA0 (previously  P. fl uorescens  CHA0; Ramette et al. 
 2011  )  enhanced biocontrol of Pythium damping-off of cucumber (Wang et al. 
 2000  ) . Unlike strain CHA0, a large range of biocontrol pseudomonads display 
ACC deaminase activity (Blaha et al.  2006  ) , but whether this trait actually contrib-
utes to biocontrol in any of these strains remains to be established. Phytohormone 
interference may also result from production of the phytohormone indole-3-acetic 
acid (IAA), a trait occurring in many plant-benefi cial pseudomonads including 
several biocontrol strains (Kamilova et al.  2005  ) . Certain IAA-producing 
pseudomonads can stimulate root growth (Lippmann et al.  1995 ; Patten and 
Glick  2002  ) , and overproduction of IAA has the potential to enhance plant 
growth promotion effects (Dubeikovsky et al.  1993 ; Beyeler et al.  1999  ) . However, 
spontaneous or controlled mutations that reduced IAA synthesis ability or genetic 
modifi cations enhancing this ability did not have a signifi cant impact on the 
biocontrol effi cacy of pseudomonads (Oberhansli et al.  1991 ; Beyeler et al.  1999 ; 
Suzuki et al.  2003  ) . 

 Finally, a few plant growth-promoting pseudomonads are thought to act on 
the plant by enhancing nutrient availability, noticeably via nitrogen fi xation for 
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 P. stutzeri  strains and relatives (Mirza et al.  2006  )  or phosphate solubilization 
(Rodriguez and Fraga  1999 ; Peix et al.  2003  ) . However, its signifi cance in terms of 
plant protection from disease is unknown.   

    2.2   Prevalence and Biogeography of  Pseudomonas  in Soil 

 Fluorescent pseudomonads are often found at rather high population levels in bulk 
soil (e.g. 10 6  CFU/g soil; Troxler et al.  1997a  )  and the rhizosphere (10 5–7  CFU/g 
root; Troxler et al.  1997b  ) , where they may represent 0.1–1% of the total culturable 
bacterial community (Haas and Défago  2005  ) . These population levels are in accor-
dance with estimates obtained using quantitative PCR (Johnsen et al.  1999  )  and are 
consistent with their high root-colonization ability (Fig.  3 ). Certain types of fl uores-
cent pseudomonads have been monitored in greater detail, especially those produc-
ing DAPG. The latter may represent 10–15% of all culturable fl uorescent 
pseudomonads from the rhizosphere (Picard et al.  2004  ) , and from less than 1% 

  Fig. 3    Colonization of wheat roots by the biocontrol strain  Pseudomonas protegens  CHA0 labelled 
with a P 

lac
 - egfp  plasmid fusion, which makes the cells green (they appear in light grey when printed 

in black and white) via the expression of autofl uorescent green protein EGFP. Plants were grown 
under gnotobiotic conditions and roots assessed by confocal laser scanning microscopy. Results 
show that  P. protegens  CHA0 colonized roots extensively. It was found as a combination of 
individual cells and cell patches, forming discontinued biofi lms prevalent in the intercellular spaces 
between epidermal cells (Source: C. Prigent-Combaret)       
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(McSpadden Gardener and Weller  2001  )  to up to 30% of all culturable fl uorescent 
pseudomonads in certain suppressive soils (Ramette et al.  2003b  ) . The prevalence 
of  phlD  +  isolates in the rhizosphere depends on plant genotype and growth stage 
(Picard et al.  2004  ) .  

 Soil fl uorescent pseudomonads display a cosmopolitan distribution worldwide 
when considering broad groups of strains defi ned by restriction of 16S rRNA gene 
 rrs  (Cho and Tiedje  2000  ) . At (almost) strain level, however, endemism was evi-
denced when assessing isolates from large geographic distances (based on BOX-
PCR clusters; Cho and Tiedje  2000  )  as well as within a same fi eld (based on RAPD 
markers; Moënne-Loccoz et al.  2001  ) . The same may apply to the case of plant-
protecting pseudomonads based on analysis of strains producing DAPG (Wang 
et al.  2001 ; Ramette et al.  2006  )  and/or HCN (Ramette et al.  2003b  ) , in that they 
have been documented across several continents, climatic regions and soil types, yet 
with a rather endemic distribution (except pyoluteorin-producing DAPG +  strains; 
Wang et al.  2001  )  when considering strain properties and/or population structure 
(Ramette et al.  2006 ; Weller et al.  2007  ) . In addition, the genetic diversity of  phlD  +  
 Pseudomonas  populations from a given site may fl uctuate with plant genotype and 
development (Picard et al.  2004  ) .  

    2.3   Suppressive Soils Where Plant Protection Is Attributed 
Mainly to  Pseudomonas  

    2.3.1    Pseudomonas  and Take-All Suppressive Soils 

 Soil suppressiveness to take-all disease is largely attributed to antagonistic root-
colonizing fl uorescent pseudomonads (Smiley  1979 ; Sarniguet and Lucas  1992 ; 
Weller et al.  2002  ) , especially those producing antimicrobial compounds such as 
phenazines or DAPG (reviewed by Weller et al.  2007  ) . Work in Washington State 
and elsewhere showed that rhizosphere DAPG +  pseudomonads were recovered at 
higher levels in take-all decline soils (i.e. at or above the threshold population 
density of 10 5  CFU/g root necessary for disease suppression) than in conducive 
soils (Raaijmakers and Weller  1998  ) , where they remained below this threshold, 
both in greenhouse experiment (Raaijmakers and Weller  1998  )  and in the fi eld 
(Weller et al.  2007  ) . The amount of DAPG recovered from the rhizosphere of 
wheat was proportional to cell number of inoculated DAPG +   P. fl uorescens  Q2-87, 
and accordingly DAPG was detected in the rhizosphere of plants colonized by 
indigenous DAPG +  pseudomonads in take-all-suppressive soil but not in conducive 
soil (Raaijmakers et al.  1999  ) . 

 Wheat monoculture is thought to enrich selectively for certain types of antago-
nistic  Pseudomonas  during take-all decline (Chapon et al.  2002 ; Weller et al.  2007  ) . 
Comparison of neighboring fi elds under crop rotation of wheat or fl ax monoculture 
showed that DAPG +  pseudomonads were enriched in the two monoculture soils, 
but that distinct  Pseudomonas  genotypes predominated on wheat versus fl ax roots 
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(Landa et al.  2006  ) . In western France, the decline of wheat take-all correlated with 
changes in the prevalence of two major  Pseudomonas  (sub)populations (Sanguin 
et al.  2008  ) . Evidence was also obtained for parallel modifi cations in the genetic 
structure of the  G. graminis  var.  tritici  population, leading to predominance of less 
aggressive genotypes once suppressiveness was reached (Lebreton et al.  2004  ) . The 
relation between antagonistic pseudomonads and  G. graminis  var.  tritici  is complex, 
as multiple changes in gene expression take place in the bacterium when it is in 
presence of the pathogen (Barret et al.  2009  ) . 

 When DAPG +  isolates from take-all decline soil were tested, inoculation into 
conducive soil resulted in take-all suppression (Raaijmakers and Weller  1998  ) , 
whereas DAPG-defi cient  Pseudomonas  mutants displayed reduced biocontrol. In 
addition, the DAPG +  strain  P. fl uorescens  Q2-87 controlled DAPG-sensitive strains 
but not DAPG-tolerant strains of  G. graminis  var.  tritici  (Mazzola et al.  1995  ) .  

    2.3.2    Pseudomonas  and Black Root Rot Suppressive Soils 

 Natural soil suppressiveness to  T. basicola -mediated black root rot of tobacco is thought 
to result from antagonistic effects of root-colonizing fl uorescent pseudomonads, 
especially strains producing DAPG and/or HCN (Stutz et al.  1986 ; Voisard et al. 
 1989 ; Keel et al.  1992  ) . DAPG +  strains isolated from black root rot suppressive soil 
inhibited  T. basicola in vitro , and one of them ( P. protegens  CHA0) protected 
tobacco from the pathogen when inoculated to a conducive soil (Stutz et al.  1986  ) . 
The percentage of root-associated DAPG +  pseudomonads among the total cultura-
ble fl uorescent  Pseudomonas  spp. was higher for suppressive versus conducive 
soils (Ramette et al.  2003a  ) , but the difference was not extensive and fl uctuated 
from one sampling to the next. In addition, the number of culturable  phlD  +  
rhizosphere pseudomonads was comparable or even sometimes higher with black 
root rot conducive soils than in suppressive counterparts (Ramette et al.  2003a ; 
Frapolli et al.  2010 ). 

 Analysis of  phlD  +  rhizosphere isolates from black root rot suppressive and con-
ducive soils indicated that their population structure depended more on fi eld loca-
tion than soil suppressiveness status (Ramette et al.  2006  ) , but as many as a quarter 
of  phlD  DGGE bands and one third of  phlD  alleles identifi ed by band sequencing 
were only found in suppressive soils (Frapolli et al.  2010 ). Whether these differences 
in  phlD  +   Pseudomonas  population structure are important for disease suppression 
remains to be determined, but results raise the possibility that suppressiveness could 
require particular consortia of DAPG +  pseudomonads interacting with one another 
(Haas and Défago  2005  ) . 

 In the Swiss region of Morens, black root rot suppressive soils are developed on 
morainic deposits and conducive soils on molasse sandstone (Stutz et al.  1989  ) . 
Although both types of soil display very similar physicochemical properties, they 
differ in clay mineralogy. Indeed, vermiculite (which releases iron during weather-
ing) is prevalent in suppressive soils and illite (of lower iron content) in conducive 
soils (Stutz et al.  1989  ) . Iron availability is important for production of biocontrol 
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metabolites such as HCN by Morens isolate  P. protegens  CHA0 (Keel et al.  1992  ) , and 
DAPG +  HCN +  pseudomonads from conducive soils did protect tobacco from black 
root rot when inoculated in artifi cial vermiculitic soil (Ramette et al.  2006  ) , pointing 
to the importance of gene expression conditions specifi c to suppressive soils.    

    3   Role of Non- Pseudomonas  Microorganisms 
in Disease-Suppressive Soils 

    3.1   Non- Pseudomonas  Microorganisms 
with Plant Protecting Abilities 

 A large number of studies have documented the ability of non- Pseudomonas  micro-
organisms to protect plants from soil-borne disease when used as inoculants (Fig.  2 ). 
These biocontrol microorganisms include Gram-negative and Gram-positive bacteria, 
as well as oomycetes and fungi (Table  1 ). Bacteriophages were also considered for 
their biocontrol properties (Goodridge  2004  ) , but they are out of the scope of this 
review. Biocontrol Gram-negative bacteria ( Proteobacteria ) are mainly documented 
in the eight families  Pseudomonadaceae ,  Xanthomonadaceae ,  Enterobacteriaceae  
( Gammaproteobacteria ),  Burkholderiaceae ,  Comamonadaceae  ( Betaproteobacteria ), 
 Rhizobacteriaceae ,  Rhodospirillaceae  and  Acetobacteraceae  ( Alphaproteobacteria ). 
Biocontrol Gram-positive bacteria belong to the  Firmicutes  (genera  Bacillus ,  Pasteuria  
and  Paenibacillus ) or the  Actinobacteria  (genera  Streptomyces ,  Rhodococcus , 
 Cellulomonas ,  Kocuria ,  Actinoplanes  and  Nocardioides ). Most plant-protecting fungi 
are documented among the mitosporic  Ascomycetes , e.g. non-pathogenic  Fusarium , 
 Coniothyrium ,  Phoma ,  Arthrobotrys  and especially  Gliocladium  and  Trichoderma  
(Howell  2003  ) , as well as several arbuscular mycorrhizal fungi (the  Glomeromycota  
genus  Glomus ). A smaller number of reports are available on biocontrol  Basidio-
mycetes  (e.g. binucleate  Rhizoctonia ) and oomycetes (particularly non-pathogenic 
 Pythium ). Nevertheless, knowledge on the biogeography, diversity and mode of action 
of non- Pseudomonas  biocontrol microorganisms is often fragmented. In addition, 
there is rather limited information on their possible role in soil disease suppressive-
ness (Mazzola  2002 ; Borneman and Becker  2007 ; Janvier et al.  2007  ) .   

    3.2   Modes of Action of Non- Pseudomonas  Plant-Benefi cial 
Microorganisms 

    3.2.1   Antibiosis 

 Antimicrobial secondary metabolites that can affect plant pathogens are produced 
by a wide range of non- Pseudomonas  microorganisms from the  Proteobacteria , 
 Firmicutes ,  Actinobacteria  and  Ascomycetes  (Table  1 ). Among  Gammaproteobacteria , 
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 Pantoea  (previously  Enterobacter )  agglomerans  may produce pyrrolnitrin (Chernin 
et al.  1996  ) ,  Serratia  pyrrolnitrin (Kamensky et al.  2003  ) , prodigiosin (Kalbe et al. 
 1996  ) , chlorinated macrolides (Shen et al.  2007  )  and surfactants (Roberts et al. 
 2007  ) ,  Stenotrophomonas  and  Lysobacter  the macrocyclic lactams xanthobaccins 
(Islam et al.  2005  )  and maltophilin (Jakobi et al.  1996 ; Li et al.  2008  ) . Within the 
 Betaproteobacteria , species from the  Burkholderia cepacia  complex are well known 
for synthesis of pyrrolnitrin (Cartwright et al.  1995 ; El-Banna and Winkelmann 
 1998  ) , phenazines (Cartwright et al.  1995  )  and lipopeptide AFC-11 (Kang et al. 
 1998  ) . Antimicrobials affecting phytopathogens are much less documented in the 
other proteobacterial subdivisions. In the  Alphaproteobacteria ,  Azospirillum brasi-
lense  may release phenylacetic acid (Somers et al.  2005  )  and  Rhizobium  hydrogen 
cyanide (Antoun et al.  1998 ). Among the  Deltaproteobacteria ,  Myxococcus fulvus  
may produce pyrrolnitrin (Gerth et al.  1982  )  and other myxobacteria (e.g.  Sorangium , 
 Chondromyces ) a range of antimicrobials (Reichenbach  2001  ) . 

 The  Firmicutes  produce a variety of antimicrobials that can affect phytopatho-
gens, particularly non-ribosomally synthesized peptides and lipopeptides (Donadio 
et al.  2007  ) . Thus,  Paenibacillus  may produce polymyxins, fusaricidins, gasaverin 
and saltavalin (Pichard et al.  1995 ; Kajimura and Kaneda  1996  ) , and  Bacillus  sev-
eral amphiphilic cyclic lipopeptides from the iturin, fengycin and surfactin families 
(Asaka and Shoda  1996 ; Touré et al.  2004  ) , the macrolide macrolactin A (Han et al. 
 2005a  ) , and (noticeably in the well-studied biocontrol strain  B. cereus  UW85) the 
aminopolyol zwittermycin A (Silo-Suh et al.  1994  )  and kanosamine (Milner et al. 
 1996  ) .  Actinobacteria  are well known for production of a very wide range of anti-
microbial metabolites, and many of them are used as antibiotics in medical and 
veterinary contexts. However, several antimicrobials from the  Actinobacteria  (gen-
erally not used against animal or human pathogens) are active against plant patho-
gens. In  Streptomyces , they include the polyketide geldanamycin, the polyether 
nigericin, the polyene-like compounds guanidylfungin A (all three documented in 
the biocontrol strain  Streptomyces violaceusniger  YCED-9; Trejo-Estrada et al. 
 1998  )  and faerifungin (in  Streptomyces griseus ; Smith et al.  1990  ) , the aminoglyco-
side paromomycin (Lee et al.  2005  ) , the macrolide oligomycin A (Kim et al.  1999  ) , 
as well as 1-propanone,1-(4-chlorophenyl) and 2-methylheptyl isonicotinate 
(Bordoloi et al.  2002 ; Ezziyyani et al.  2007  ) . 

 Among  Ascomycetes , antimicrobials relevant for plant protection are best docu-
mented in  Trichoderma  and include gliovirin (Stipanovic and Howell  1982  ) , glio-
toxin (Lumsden et al.  1992  )  and (lipo)peptaibol peptides (Szekeres et al.  2005 ; 
Xiao-Yan et al.  2006  ) . Terreic acid and butyrolactons are reported in  Aspergillus 
terreus  (Cazar et al.  2005  ) . 

 Although a wide range of phytopathogen-inhibiting metabolites are known in 
many non- Pseudomonas  microorganisms, the contribution of a given compound to 
plant protection is often not established, especially for biocontrol strains producing 
several of them. The importance of antibiosis in biological control was evidenced 
by gene deletion (and in some cases, gene complementation) for iturin A produced 
by  B. subtilis  (biocontrol of  Rhizoctonia solani -mediated damping-off of cotton; 
Asaka and Shoda  1996  ) , zwittermycin A produced by  B. cereus  (biocontrol of 
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 Phytophthora medicaginins -mediated damping-off of alfalfa; Silo-Suh et al.  1994  ) , 
pyrrolnitrin (biocontrol of Rhizoctonia stem rot of poinsettia; Hwang and Benson 
 2002  )  and AFC-BC11 (biocontrol of  Rhizoctonia solani -mediated damping-off of 
tomato; Kang et al.  1998  )  produced by  B. cepacia , and Eh252 produced by  Pantoea 
agglomerans  (biocontrol of  Erwinia amylovora -mediated fi re blight of pear; 
Stockwell et al.  2002  ) . The mode of action is documented for only some of these 
antimicrobial metabolites. Lipopeptides (e.g. iturins, fengycins and surfactins from 
 Bacillus ) act on cell membranes as surfactants (Deleu et al.  1999  ) , lipopeptaibols 
(produced by  Trichoderma ) form tunnels in cytoplasmic membrane (Cosette et al. 
 1999  ) , nigericin acts on membrane as an ionophore exchanging K +  for H +  (Bergen 
and Bates  1984  ) , aminoglycosides (produced by  Streptomyces  spp.) affect prokary-
otic and mitochondrial translation (Recht et al.  1999  ) , while oligomycin inhibits 
mitochondrial ATPase (John and Nagley  1986  ) .  

    3.2.2   Other Biocontrol Mechanisms 

 As in the case of  Pseudomonas , antagonism in non- Pseudomonas  biocontrol 
agents is not restricted to production of antimicrobial metabolites, as it can also 
be mediated by lytic enzymes that act against pathogen cell wall or virulence 
factors (enzymes and signal molecules). A variety of cell wall-degrading 
chitinases, glucanases, proteases and lyzozymes are produced by plant-protecting 
bacteria, such as in the  Proteobacteria Lysobacter  (Palumbo et al.  2005  ) ,  Pantoea 
agglomerans  (Chernin et al.  1995  ) ,  Serratia  (Kalbe et al.  1996  )  and 
 Gluconacetobacter diazotrophicus  (Pinon et al.  2002  ) , the  Firmicutes Bacillus  
(Leelasuphakul et al.  2006  ) ,  Brevibacillus  (Huang et al.  2005  )  and  Paenibacillus  
(Budi et al.  2000  ) , the  Actinobacteria Streptomyces  (Trejo-Estrada et al.  1998  ) , as 
well as several fungi such as  Trichoderma  biocontrol strains (Metcalf and Wilson 
 2001 ; Djonovic et al.  2007  ) . In contrast to  Pseudomonas , production of cell wall-
degrading extracellular lytic enzymes seems to be one of the major modes of 
action of many non- Pseudomonas  biocontrol strains against phytopathogens. Their 
chitinases act on several fungal (Chernin et al.  1995 ; Metcalf and Wilson  2001  )  
and nematode phytoparasites (Cronin et al.  1997a ; Kishore et al.  2005  ) , their  b -
1,3- and  b -1,6-glucanases on the oomycete  Pythium ultimum  (Palumbo et al. 
 2005 ; Djonovic et al.  2007  ) , their lysozyme-like enzymes on the  Proteobacteria 
Xanthomonas albilineans  (Pinon et al.  2002  ) , and their proteases on phytoparasitic 
nematodes (Sharon et al.  2001 ; Huang et al.  2005 ; Lian et al.  2007  ) , oomycetes 
(Dunne et al.  1997  )  and fungi (De Marco and Felix  2002  ) . 

 Certain enzymes operate instead on the pathogen enzymes or toxins, resulting in 
lower disease severity (Elad and Kapat  1999 ; Zhang and Birch  1997a,   b  ) , although 
this is mainly documented for shoot pathogens. Others interfere with pathogen sig-
nalization, such as the lactonase AiiA from  Bacillus  sp. 240B1, which cleaves 
 N -acylhomoserine lactone quorum sensing signals of  Pectobacterium carotovorum , 
thus decreasing production of extracellular enzymes by the pathogen and the extent 
of soft rot disease on potato and other plants (Dong et al.  2000  ) .  N -Acylhomoserine 
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lactone degradation has been found in other soil bacteria (Uroz et al.  2005 ; 
Yoon et al.  2006 ; Medina-Martinez et al.  2007  )  and may play a role in biocontrol of 
bacterial phytopathogens (Dong et al.  2004  ) . 

 Like their  Pseudomonas  counterparts, non- Pseudomonas  biocontrol agents com-
pete with plant pathogens for space and nutrients. Competition for root colonization 
sites is documented for non-pathogenic  F. oxysporum  (against pathogenic  F. oxysporum ; 
Eparvier and Alabouvette  1994  )  and arbuscular mycorrhizal fungi (against fungal, 
oomycete and nematode pathogens; Azcón-Aguilar and Barea  1996  ) . Competition 
for carbon and nitrogen usually concerns biocontrol microorganisms closely related 
to the pathogen e.g. non-pathogenic  F. oxysporum  (for suppression of Fusarium 
wilt; Lemanceau et al.  1993  )  or  Streptomyces  (for suppression of potato scab; 
Neeno-Eckwall et al.  2001  ) , but sometimes also microorganisms that are unrelated 
e.g. the fungi  Trichoderma  (Howell  2003 ) and  Collimonas  (Kamilova et al.  2007  ) , 
as well as  Enterobacter cloacae  (van Dijk and Nelson  1998,   2000  ) . Siderophores 
were found in several biocontrol strains from e.g.  Enterobacter  (Loper et al.  1993  ) , 
 Serratia  (Kamensky et al.  2003  )  and  Burkholderia  (Bevivino et al.  1998  ) , but com-
petition with phytopathogen for iron has not been evidenced. 

 Certain non- Pseudomonas  biocontrol agents can act on phytopathogens via 
hyperparasitism (Fig.  2 ), a mode of action not documented with  Pseudomonas  
counterparts. The  Firmicute Pasteuria penetrans  is an obligate (hyper)parasite of 
root-knot nematodes (Siddiqui and Mahmood  1999  ) . It occurs worldwide and dis-
plays a wide host range (Siddiqui and Mahmood  1999  ) , but individual  P. penetrans  
isolates seem to be mainly adapted to one or a few nematode species (Dutky and 
Sayre  1978  )  or even nematode strains (Duponnois et al.  2000  ) . Among hyperpara-
sitic fungi, the mitosporic  Ascomycete Dactylella oviparasitica  may survive sapro-
phytically and sporulate in soil (Stirling and Mankau  1979  ) , and it parasites fourth 
stage juveniles, females, and eggs of different nematodes, including  Heterodera 
schachtii  (Borneman and Becker  2007  ) . A related phenomenon occurs with preda-
tion of phytoparasitic  Meloidogyne  spp. by the fungus  Arthrobotrys oligospora  
(Duponnois et al.  1995  ) . Mycoparasitic  Trichoderma  penetrate and disrupt the 
mycelium of phytopathogenic fungi and oomycetes (Chet et al.  1981 ; Gupta et al. 
 1999  )  whereas  Acremonium  targets oospores of  Pythium ultimum  (Khan et al.  1997  ) . 
Mycoparastism was also reported in oomycetes  Pythium oligandrum  and  Pythium 
nunn , which may penetrate mycelia of plant-pathogenic  Pythium  species as well as 
of certain fungi (Lifshitz et al.  1984 ; Berry et al.  1993  ) . 

 Many non- Pseudomonas  strains may enhance plant health by acting directly on 
plant physiology and growth (Fig.  2 ). The induction of resistance in the plant is 
documented in the case of bacteria, e.g.  Bacillus pumilus  (Yan et al.  2002  )  and 
 Serratia  (Press et al.  1997 ; Benhamou et al.  2000  ) , and fungi, e.g.  Trichoderma  
(Yedidia et al.  2000  ) ,  Phoma  (Meera et al.  1995  ) ,  F. oxysporum  (Fuchs et al.  1997  )  
and binucleate  Rhizoctonia  (Hwang and Benson  2003  ) . Only few studies, however, 
focused on molecular mechanisms involved (inducers implicated, possible involve-
ment of salicylate/jasmonate/ethylene, pathogenesis-related protein production in 
plant), so the knowledge about induced resistance mediated by non- Pseudomonas  
microorganisms remains fragmented. In  Trichoderma virens , an 18-mer peptaibol 
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was shown to trigger ISR (Viterbo et al.  2007  ) .  T. harzianum  induced resistance in 
cucumber, which was accompanied by production of typical pathogenesis-related 
(PR) proteins such as chitinases and ß-1,3-glucanases (Yedidia et al.  2000  ) . ISR in 
cucumber, mediated by  S. marcescens , is independent from the salicylic acid path-
way (Press et al.  1997  ) . 

 Production of phytohormones corresponding to cytokinins, gibberellins and aux-
ins has been shown in a large range of plant-benefi cial  Proteobacteria , such as 
 Azospirillum  (Dobbelaere et al.  1999  ) ,  Phyllobacterium  (Larcher et al.  2003  ) , and 
 Herbaspirillum  (Bastián et al.  1998  ) , as well as  Firmicutes  such as  Paenibacillus  
(Timmusk et al.  1999  )  and  Bacillus  (Gutierrez-Manero et al.  2001  ) . This can result 
in enhanced plant development and growth (Dobbelaere et al.  1999 ; Larcher et al. 
 2003  ) . ACC deaminase activity has been reported in various plant-benefi cial strains 
from the  Alphaproteobacteria  ( Azospirillum ,  Mesorhizobium ,  Bradyrhizobium , 
etc.),  Betaproteobacteria  ( Burkholderia , etc.) and  Gammaproteobacteria  
( Enterobacter , etc.) (Shah et al.  1998 ; Glick  2005 ; Blaha et al.  2006  ) , but evidence 
for a role of this trait in biological control is lacking in the case of non- Pseudomo-
nas  microorganisms. 

 Various plant growth-promoting properties, such as symbiotic (by nodulating 
bacteria  Rhizobium  and  Frankia ; Mylona et al.  1995  )  and associative nitrogen fi xation 
(by endophytic or rhizosphere bacteria from  Alpha -,  Beta -,  Gammaproteobacteria , 
 Firmicutes  and  Cyanobacteria ; Ghosh and Saha  1993 ; Kennedy et al.  2004  ) , nitro-
gen mineralization (Griffi ths and Robinson  1992  ) , phosphorus solubilization (by 
several  Proteobacteria ,  Firmicutes , and  Actinobacteria , as well as  Trichoderma  and 
 Aspergillus ; Banik and Dey  1982 ; Altomare et al.  1999 ; Rodriguez and Fraga  1999  )  
and enhanced mineral uptake (by arbuscular mycorrhizal fungi, George et al.  1995  )  
are extensively documented. These properties are considered as important for plant 
vigor and health, with the potential to help plants to overcome disease, but direct 
experimental evidence is often missing (Bally and Elmerich  2007  ) . However, sev-
eral plant growth-promoting microorganisms display biocontrol effects, for example 
 Gluconacetobacter diazotrophicus  (against  Meloidogyne incognita  in cotton; Bansal 
et al.  2005  ) ,  Azospirillum brasilense  (against  Rhizoctonia  spp. in  Prunus ; Russo 
et al.  2008  ) ,  Burkholderia cepacia  (against  Fusarium  spp. in maize; Bevivino et al. 
 1998  )  or  Delftia tsuruhatensis  (against rice blast, rice bacterial blight and rice 
sheath; Han et al.  2005b  ) , but their biocontrol properties have been generally less 
studied than their plant growth-promoting traits.  

    3.2.3   Conclusion 

 The distribution of plant-protecting traits in non- Pseudomonas  microorganisms is 
rather contrasted, regardless of whether bacteria or fungi are considered. Some of 
these traits are rather widespread, such as the synthesis of particular types of lytic 
enzymes involved in antagonism, or bacterial constituents triggering induced resis-
tance (Neilands  1995 ; van Loon  2007  ) . Other traits are restricted to a limited num-
ber of genera, such as the ability to produce pyrrolnitrin in  Proteobacteria  including 
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certain pseudomonads (de Souza and Raaijmakers  2003  )  or to certain species within 
a particular genus, as illustrated by the case of the antifungal metabolite zwittermycin 
A in  Bacillus cereus  (Stabb et al.  1994  ) . In many cases, however, plant-benefi cial 
properties are not found in all members of the species but rather in selected strains 
or groups of strains (Berg  2000  ) . 

 As for pseudomonads, certain non- Pseudomonas  species are comprised of both 
biocontrol strains and pathogens, e.g.  F. oxysporum  (Fravel et al.  2003 ; Bolwerk 
et al.  2005  )  and  S. scabiei  (Liu et al.  1995  ) . In addition, some traits contributing to 
plant-benefi cial effects can occur both in biocontrol strains and in deleterious or 
pathogenic strains. This is for instance the case for ACC deaminase activity (Blaha 
et al.  2006  ) , auxin production (Spaepen et al.  2007  )  and synthesis of hydrogen cya-
nide (Schippers et al.  1990  ) . The unexpected distribution of several plant-benefi cial 
traits is sometimes related to the fact that the corresponding genes may have been 
subjected to horizontal gene transfer (de Souza and Raaijmakers  2003 ; Hopwood 
 2003 ; Hontzeas et al.  2005 ; Blaha et al.  2006  ) .   

    3.3   Suppressive Soils Where Plant Protection Is Mainly 
Attributed to Non- Pseudomonas  Microorganisms 

 Plant protection by non- Pseudomonas  microorganisms is documented for several 
types of suppressive soils. These microorganisms include bacteria (mostly  Firmicutes  
and  Actinobacteria ), fungi and nematodes. In contrast, disease suppressiveness due 
to bacteriophages has not been evidenced so far. Plant protection effects often stem 
from negative interactions with the pathogen, which are implemented by avirulent 
strains of the same species (e.g. soils suppressive to Fusarium wilt) and/or genus 
(e.g. soils suppressive to potato scab), or hyperparasitic microorganisms (for certain 
soils suppressive to nematodes). Some of the best understood cases are presented 
below. 

    3.3.1   Non- Pseudomonas  Microorganisms and Potato Scab Suppressive Soils 

 While potato scab is caused by  Streptomyces scabiei  strains that produce the phyto-
toxin thaxtomin (Kinkel et al.  1998  ) , potato scab suppressiveness, which is induced 
by potato monoculture, is attributed to non-pathogenic strains from  Streptomyces 
scabiei ,  Streptomyces diastatochromogenes  or  Streptomyces albogriseolus  
(Liu et al.  1995 ; Lorang et al.  1995  ) . The pathogenic and non-pathogenic strains are 
genetically close. They could not be separated by repetitive intergenic DNA fi nger-
printing (rep-PCR; Sadowsky et al.  1996  ) , but were distinguished based on fatty 
acids profi ling (Kinkel et al.  1998  ) . The introduction of two biocontrol  Streptomyces  
strains into infested soil negatively affected the population size of pathogenic 
strains, with no impact on the whole microbial community (as assessed with PLFA; 
Bowers et al.  1996  ) . This correlated with a reduction of potato scab incidence. 
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Experiments with spontaneous non-inhibitory mutants of  Streptomyces  biocontrol 
strains and spontaneous pathogen mutants resistant to at least one antimicrobial 
produced by the biocontrol strains revealed that both antibiosis and competition 
contributed to suppression of pathogenic strains (Schottel et al.  2001 ; Neeno-
Eckwall et al.  2001  ) . The composition of the  Streptomyces  soil subcommunity can 
be modifi ed according to the type of organic soil amendment, suggesting that the 
biocontrol potential of suppressive indigenous strains could be enhanced via appro-
priate choice of farming practices (Schlatter et al.  2009  ) . So far, the assessment of 
potato scab suppressive soils has focused on biocontrol  Streptomyces  strains, and 
the potential role of non- Streptomyces  microorganisms (including  Pseudomonas ) in 
these soils has been neglected.  

    3.3.2   Non- Pseudomonas  Microorganisms and Fusarium 
Wilt Suppressive Soils 

 Soil suppressiveness to Fusarium wilt implicates non-pathogenic strains of 
 F. oxysporum . In soils from southern France naturally suppressive to the disease, 
competition was identifi ed as an important mode of action of non-pathogenic  F. 
oxysporum  against pathogenic  F. oxysporum  strains (Alabouvette  1986  ) . The estab-
lishment of a  Pueraria  cover crop in an oil palm grove increased the size of the  F. 
oxysporum  population in soil (without changing its genetic structure) and the level 
of soil suppressiveness to Fusarium wilt of oil palm, strengthening the competition 
hypothesis (Abadie et al.  1998  ) . In the case of Fusarium wilt suppressiveness 
induced by monoculture, which is documented for certain watermelon cultivars, 
protection by non-pathogenic  F. oxysporum  strains is attributed to induced resis-
tance in host plant (Larkin et al.  1996  ) . Indeed, the possibility of induced resistance 
was shown for a non-pathogenic  F. oxysporum  strain using tomato in split-root and 
other systems (Fuchs et al.  1997  ) . The dose of non-pathogenic strain necessary for 
tomato protection differed according to its main mode of action, i.e. high for strains 
effective at competing with the pathogen and low for strains whose main mode of 
action was induced resistance (Larkin and Fravel  1999  ) . 

 So far, non-pathogenic  F. oxysporum  strains cannot be distinguished from patho-
genic ones unless plant inoculation tests are performed, which complicates monitor-
ing of their dynamics in soil. There is a high intraspecies diversity in  F. oxysporum , 
but pathogenic strains did not form a separated clade based on molecular phylogeny 
(Baayen et al.  2000  ) . High diversity was also found within natural populations of  
F. oxysporum  (Steinberg et al.  1997  ) . Indigenous fi eld populations of  F. oxysporum  
remained stable for years and differed across fi elds of different geographical loca-
tions in France (Edel et al.  2001  ) , which is compatible with a functional implication 
of these microorganisms in long-standing disease suppressiveness. 

 Interestingly, antagonistic properties of certain non-pathogenic  F. oxysporum  
strains may depend on their bacterial ectosymbionts (e.g.  Serratia, Bacillus  and 
 Achromobacter ), which are attached to the hyphae. For instance,  F. oxysporum  
strain MSA 35 (isolated from an Italian suppressive soil) lost its antagonistic 
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properties and even became pathogenic when it was cured of its ectosymbionts 
(Minerdi et al.  2008  ) . The original strain produced volatile compounds that repressed 
the expression of virulence genes in the pathogenic strain tested while the cured 
strain did not, showing a new potential long-distance mechanism of  F. oxysporum  
antagonism mediated by volatile compounds (Minerdi et al.  2009  ) . 

 The importance of certain soil abiotic properties, e.g. smectite clay, soluble 
sodium, sodium adsorption ratio and soil aggregate stability, has been shown for 
several Fusarium wilt suppressive soils (Stotzky and Martin  1963 ; Höper et al. 
 1995 ; Domínguez et al.  2001,   2003  ) . It is likely that these properties may infl uence 
antagonistic populations and gene expression, but this has not been clearly shown 
so far.  

    3.3.3   Non- Pseudomonas  Microorganisms and Rhizoctonia Suppressive Soils 

 Though a non-pathogenic  Rhizoctonia  strain could be used for biocontrol of 
Rhizoctonia rot in a pot experiment (Hwang and Benson  2003  ) , the potential role of 
indigenous non-pathogenic  Rhizoctonia  spp. in Rhizoctonia suppressive soils is 
unknown. In the case of Rhizoctonia damping-off of radish, soil suppressiveness 
was induced by repeated culture of radish and was attributed to  T. harzianum . 
Hyperparasitism was suggested as the mode of action by which  T. harzianum  sup-
pressed  R. solani  (Chet et al.  1981 ). In addition, suppressiveness to Rhizoctonia 
potato rot correlated with the extent of  Bacillus  genetic diversity, raising the 
possibility that these bacteria could also play a part (Garbeva et al.  2006  ) , while on 
caulifl ower suppressiveness correlated with the abundance of  Lysobacter  (Postma 
et al.  2010  ) .  

    3.3.4   Non- Pseudomonas  Microorganisms and Soils Suppressive 
to Endoparasitic Nematodes 

 Soil suppressiveness towards the endoparasitic nematodes  Heterodera schachtii  or 
 Meloidogyne  spp. was shown to be associated with nematode-parasitic microorgan-
isms. In the case of soils suppressive to the beet cyst nematode  H. schachtii  (which 
may be induced by monoculture), suppressiveness could be transferred to a condu-
cive soil using solely nematode cysts isolated from a suppressive soil (Westphal and 
Becker  1999,   2000  ) . rRNA gene analysis of microorganisms associated with these 
cysts identifi ed  Rhizobium -like bacteria and the fungus  Dactylella oviparasitica , 
which were consistently associated with highly-suppressive soils (Yin et al.  2003a,   b  ) . 
 D. oviparasitica  can parasite eggs of  H. schachtii , and one  D. oviparasitica  strain 
protected Swiss chard against the nematode when inoculated to conducive soil 
(Olatinwo et al.  2006  ) . Other microorganisms that can act on  H. schachtii , e.g. 
 Bacillus megaterium  and  F. oxysporum , were isolated from nematode cysts or beet 
roots in suppressive soils, but their importance in suppressiveness is debated 
(Jorgenson  1970 ; Neipp and Becker  1999 ; Yin et al.  2003a  ) . 

 Soil suppressiveness towards root-knot-causing  Meloidogyne  spp. is induced 
by monoculture, and is associated with hyperparasitim by  Pasteuria penetrans.  



119 Pseudomonas  and other Microbes in Disease-Suppressive Soils

The  Firmicute P. penetrans  is an obligate nematode parasite. Its endospores adhere 
to second-stage juveniles and germinate, the germ tube penetrating the cuticle 
(Sayre and Wergin  1977  ) , and it is also found in mature females (Weibelzahl-Fulton 
et al.  1996  ) .  P. penetrans  sporulates within the nematode and prevents its reproduc-
tion (Sayre and Wergin  1977  ) .  

    3.3.5   Non- Pseudomonas  Microorganisms and Soils Suppressive 
to Ectoparasitic Nematodes 

 In the case of sugarcane monoculture soils suppressive to ectoparasitic nematodes, 
such as  Xiphinema elongatum  and  Paratrichodorus minor , no hyperparasite has 
been identifi ed so far. Rather, soil suppressiveness was associated with a higher soil 
content in weak ectoparasitic nematodes, especially  Helicotylenchus dihystera  
(Rimé et al.  2003  ) , whose competitive interactions with the more aggressive ectone-
matodes limit the ability of the latter to parasite roots (Spaull and Cadet  1990 ; Mateille 
et al.  2008  ) . In addition, sandy soils suppressive and conducive to ectoparasitic 
nematodes from the same South African region differed in sugarcane rhizobacterial 
community structure (Rimé et al.  2003  ) , indicating a possible benefi cial role for 
root bacteria. Interestingly,  Burkholderia tropica  correlated positively with the less 
pathogenic species  Pratylenchus zeae  (endoparasite) and  H. dihystera , and nega-
tively with aggressive  X. elongatum , and it was hypothesized that the rhizobacte-
rium could be one factor infl uencing the composition of the ectonematode community 
towards a lower prevalence of aggressive species (Omarjee et al.  2008  ) .  

    3.3.6   Conclusion 

 Several non- Pseudomonas  microorganisms play a major role in different suppres-
sive soils, the most studied ones being the  Firmicute Pasteuria , the  Actinobacteria 
Streptomyces , and the mitosporic  Ascomycetes Fusarium ,  Dactyllela  and (to a lesser 
extent)  Trichoderma . A substantial amount of information is available on their 
possible mode(s) of action, e.g. antibiosis, competition, induced resistance or 
parasitism, but relatively few detailed studies have targeted the implementation of 
these modes of action in suppressive soils. In comparison with  Pseudomonas , less 
is known about root colonization by non- Pseudomonas  biocontrol strains, their 
population levels in soil necessary to achieve suppressiveness, and their diversity 
within and between suppressive soils. Furthermore, it is striking to note that most 
information on the role of non- Pseudomonas  microorganisms originates from 
suppressive soils for which the ecology and role of  Pseudomonas  biocontrol 
strains is poorly documented or unknown. Similarly, it appears that the poten-
tial role of non- Pseudomonas  microorganisms remains neglected in suppressive 
soils where plant protection by fl uorescent pseudomonads has been extensively 
studied (Lemanceau et al.  2006  ) , e.g. take-all decline soils and soils suppressive to 
 T. basicola -mediated black root rot. This limits our ability to compare and contrast 
the relative importance of  Pseudomonas  versus non- Pseudomonas  microorganisms 
in soil suppressiveness.    
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    4   Interactions Between  Pseudomonas  and Non- Pseudomonas  
Microorganisms 

    4.1   Interactions Between  Pseudomonas  
and Non- Pseudomonas  Microorganisms 
from Biocontrol Studies 

  Pseudomonas  and non- Pseudomonas  biocontrol microorganisms are present in the 
same rhizosphere environment, where they have coevolved with the plant, its guild 
of phytoparasites, and perhaps also with one another. On this basis, it is likely that 
multiple rhizosphere interactions take place between  Pseudomonas  and non-
 Pseudomonas  biocontrol microorganisms (Couillerot et al.  2009  ) . Some of these 
interactions may be indirect, as plant-associated microorganisms may infl uence 
plant development and behaviour, which in turn will determine ecological condi-
tions for the other plant-benefi cial populations in the rhizosphere (Fig.  2 ). This is 
documented for  Pseudomonas  strains and/or metabolites (especially DAPG), in 
terms of root system architecture and plant growth (Patten and Glick  2002 ; Brazelton 
et al.  2008  ) , plant physiology (Iavicoli et al.  2003  )  and root exsudation (Phillips 
et al.  2004  ) . Similar effects are also known with non- Pseudomonas  plant-benefi cial 
microorganisms (Heulin et al.  1987 ; Dobbelaere et al.  1999  ) . 

 The direct interactions between  Pseudomonas  and non- Pseudomonas  plant-
benefi cial microorganisms may range from antagonism and competition to coop-
eration (Fig.  2 ; Couillerot et al.  2009  ) . On one hand, rhizosphere incompatibility was 
shown for some  Pseudomonas  and non- Pseudomonas  strains (e.g.  Bradyrhizobium ; 
Siddiqui and Ehteshamul-Haque  2001  ) . In addition, various root bacteria were 
inhibited  in vitro  by the  Pseudomonas  metabolites DAPG and/or pyoluteorin 
(Natsch et al.  1998  ) . Certain pseudomonads may inhibit  T. harzianum  (de Boer 
et al.  2007  ) , a fungal species playing an important role in disease suppression, and 
compound(s) produced by biocontrol  P. protegens  CHA0 reduced expression of chi-
tinase genes  nag1  and  ech42  in  T. atroviride  (Lutz et al.  2004  ) . Similarly,  P. fl uore-
scens  A506 produced a protease that cleaved an antimicrobial metabolite of  P. 
agglomerans  Eh252 involved in  Erwinia amylovora  antagonism (Anderson et al. 
 2004  ) , but it is not known whether this metabolite is also active against root 
pathogens. 

 On the other hand, positive effects may also take place.  P. fl uorescens  F113 can 
stimulate mycelial growth of the symbiotic fungus  Glomus mosseae  and mycor-
rhization of tomato roots (Barea et al.  1998  ) . Combining  Pseudomonas  and non-
 Pseudomonas  microorganisms with complementary modes of action lead often to 
enhanced biological control (Mazzola  2002  ) , as shown using wild-type strains and 
mutants. This was for instance the case for proteolytic  Stenotrophomonas malto-
philia  W81 and DAPG-producing  P. fl uorescens  F113 against  Pythium -mediated 
damping-off of sugarbeet (Dunne et al.  1997  ) , as well as non-pathogenic  F. oxyspo-
rum  Fo47 and iron-competing  Pseudomonas putida  WCS358 against Fusarium wilt 
of fl ax (Duijff et al.  1993  ) , although combining  Pseudomonas  and non-pathogenic 
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 Fusarium  did not lead to improved tomato protection from Fusarium wilt (Larkin 
and Fravel  1998  ) . Co-inoculation of  Pseudomonas alcaligenes  with  Glomus intra-
radices  and  Bacillus pumilus  improved control of a chickpea root-rot disease com-
plex caused by the root-knot nematode  Meloidogyne incognita  and the root-rot 
fungus  Macrophomina phaseolina  (Sayeed and Siddiqui  2008  ) , but the biocontrol 
mechanisms involved were not determined. DAPG +   P. protegens  CHA0 and 
 Trichoderma atroviride  P1 displayed enhanced expression of respectively DAPG 
biosynthetic gene  phlA  (in presence of P1 culture fi ltrate) and chitinase gene  nag1  
(in presence of DAPG) (Lutz et al.  2004  ) , illustrating the potential of molecular 
interactions between  Pseudomonas  and non- Pseudomonas  biocontrol microorgan-
isms. The importance of such interactions is also illustrated by the observation that 
certain soil bacteria (including one  Pseudomonas  strain related to  P. koreensis ) 
unable alone to interfere with growth of fungal phytopathogens did inhibit the latter 
when they were used in combination (presumably via antibiosis), which also means 
that their potential role in soil suppressiveness could have been easily overlooked in 
previous investigations (de Boer et al.  2007  ) .  

    4.2   Interactions Between  Pseudomonas  and Non- Pseudomonas  
Microorganisms in Suppressive Soils 

 The signifi cance of microbial interactions between  Pseudomonas  and non-
 Pseudomonas  microorganisms in suppressive soils is very poorly documented. The 
only clear example of such interaction is from a French soil suppressive to Fusarium 
wilt. Here, plant protection implicated both non-pathogenic  F. oxysporum  and fl uo-
rescent  Pseudomonas  spp., and competition between non-pathogenic and patho-
genic  F. oxysporum  strains was enhanced following iron sequestration effects 
mediated by  Pseudomonas  siderophores (Lemanceau and Alabouvette  1991  ) . The 
remaining studies focused either on  Pseudomonas  or non- Pseudomonas,  or assessed 
both but without considering the signifi cance of their interactions for disease sup-
pression (reviewed below in Sects.  4.3  and  4.4 ).  

    4.3   Importance of  Pseudomonas  in Suppressive Soils 
Where the Suppression Is Attributed Mainly 
to Non- Pseudomonas  Microorganisms 

    4.3.1    Pseudomonas  and Rhizoctonia Suppressive Soils 

 Suppression of  Rhizoctonia  and  Pythium  damage to apple in orchard replant soils 
was induced by repeated culture of wheat, which also changed the population struc-
ture of fl uorescent pseudomonads towards a higher prevalence of  Pseudomonas 
putida  (Mazzola and Gu  2000  ) . In addition, a correlation was found between the 
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ability of wheat cultivars to recruit antagonistic pseudomonads and the effi cacy of 
replant disease control (Mazzola  2002  ) . These results pointed to fl uorescent 
pseudomonads as a likely factor accounting for (at least part of) disease suppres-
siveness. Similarly, suppressiveness to  Rhizoctonia solani  AG3-mediated potato rot 
might implicate antagonistic  Pseudomonas  populations (Garbeva et al.  2006  ) . 
Antagonistic pseudomonads were also recovered from soils suppressive to 
 Rhizoctonia solani  AG 2-1 in caulifl ower, but their abundance (in contrast to that 
of antagonistic  Lysobacter ) did not correlate with soil suppressiveness level 
(Postma et al.  2010  ) .  

    4.3.2    Pseudomonas  and Fusarium Wilt Suppressive Soils 

 Fluorescent pseudomonads have been extensively considered in relation to Fusarium 
wilt control, especially in California (Scher and Baker  1982  )  and southern France 
(Alabouvette  1986  ) , and competition for iron (Scher and Baker  1982  )  and phenazine 
production (Mazurier et al.  2009  )  were identifi ed as mechanisms by which these bac-
teria suppressed the disease in these soils. ISR is also an important mode of action of 
biocontrol pseudomonads against  F. oxysporum  (Lemanceau and Alabouvette  1991, 
  1993  ) , but evidence for a role of ISR in soil suppressiveness is lacking. On green-
house tomato,  Pseudomonas  isolates were not as effective as non-pathogenic iso-
lates of  F. oxysporum  and  F. solani  collected from a Fusarium wilt-suppressive soil 
(Larkin and Fravel  1998  ) . 

 Antagonistic DAPG +  pseudomonads have been isolated from Fusarium wilt sup-
pressive soils from different continents (Wang et al.  2001  ) , and they reached signifi -
cant population levels on pea roots in a pea-monoculture soil suppressive to Fusarium 
wilt in Washington State (Landa et al.  2002  ) . The analogy with the case of monoculture-
induced take-all decline of wheat suggests that a similar phenomenon, resulting in 
pea protection by DAPG +  pseudomonads, might take place in this Fusarium wilt 
suppressive soil. At another location, culturable fl uorescent pseudomonads were 
recovered in higher numbers from the watermelon rhizosphere after monoculture 
induction of Fusarium wilt suppressiveness, but only non-pathogenic  F. oxysporum  
strains seemed able to play a major role in this case (Larkin et al.  1996  ) .  

    4.3.3    Pseudomonas  and Soils Suppressive to Ectoparasitic Nematodes 

 In South African sandy soils suppressive or conducive to damage caused by ectopar-
asitic nematodes, fl uorescent pseudomonads were recovered at levels below 
10 4  CFU/g rhizosphere soil (Rimé et al.  2003  ) . Therefore, it is very unlikely that 
these bacteria could play a signifi cant role in the suppressiveness of these soils. The 
production of DAPG can affect phytoparasitic  Globodera  (Cronin et al.  1997c  )  but 
DAPG +  pseudomonads have not been considered so far in soils suppressive to such 
nematodes.   
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    4.4   Importance of Non- Pseudomonas  Microorganisms 
in Suppressive Soils Where the Suppression Is Attributed 
Mainly to  Pseudomonas  

    4.4.1   Non- Pseudomonas  Microorganisms and Take-All Suppressive Soils 

 In take-all decline soils, the potential role of non- Pseudomonas  microorganisms has 
been considered, and a rather wide range of bacteria and fungi have been proposed 
as being implicated in suppressiveness (reviewed by Weller et al.  2002  ) . Certain 
studies pointed at a possible role of  Trichoderma , especially  T. koningii , in take-all 
suppressive soils (Simon and Sivasithamparam  1989 ; Duffy et al.  1997  ) . A  T. kon-
ingii  strain affecting  G. graminis  var.  tritici  probably via mycoparasitism and anti-
biosis was isolated from a take-all suppressive soil in Australia (Simon and 
Sivasithamparam  1989  ) , but little was done since to assess the ecological role of 
 T. koningii  in soil suppressiveness to take-all. Similarly, a fungal isolate from 
 Phialophora  originating from a take-all suppressive fi eld protected wheat in condu-
cive soil (Mathre et al.  1998  ) , but its signifi cance in take-all decline remains 
unknown. 

 In western France, the bacterial rhizosphere community of fi eld-grown wheat at 
the start of wheat monoculture, during take-all outbreak and after take-all decline 
was assessed using a 16S rRNA gene-based taxonomic microarray (Sanguin et al. 
 2009  ) . Changes in rhizobacterial community composition were evidenced during 
disease, as found elsewhere with  rrs  T-RFLP (McSpadden Gardener and Weller 
 2001  ) . Signifi cant differences were also observed when comparing the disease 
and the suppressive stages. Indeed, a wide range of bacterial taxa were less preva-
lent, i.e.  Bacteroidetes ,  Flavobacteria ,  Verrucomicrobia  and  Actinobacteria , or 
more prevalent, i.e.  Planctomycetes ,  Nitrospira ,  Acidobacteria ,  Chlorofl exi , 
 Alphaproteobacteria  (including  Azospirillum ) and  Betaproteobacteria , in the sup-
pressive stage than in the disease stage. Similarly, differences in rhizobacterial com-
munity structure were observed by T-RFLP during the decline of barley take-all 
(Schreiner et al.  2010  ) . Whether these taxa actually contribute to suppressiveness 
remains to be shown, but it is interesting to note that at least some of them are 
known to contain strains that display biocontrol or plant growth-promoting 
properties.  

    4.4.2   Non- Pseudomonas  Microorganisms and Black Root Rot 
Suppressive Soils 

 For Swiss soils of Morens, in which black root rot is controlled, a possible func-
tional role of non-pathogenic  T. basicola  strains in suppressiveness was discounted 
in early work (Stutz et al.  1986  ) . However, the hypothesis of Ramette et al.  (  2006  )  
that suppressiveness could also result from the contribution of non- Pseudomonas  
microorganisms was strengthened by 16S rRNA gene-based microarray observations 
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that differences in rhizobacterial community composition were rather extensive in 
terms of abundance of a wide range of bacterial taxa between suppressive and con-
ducive soils (Kyselková et al.  2009  ) . Taxa associated with suppressiveness included 
 Alphaproteobacteria  ( Sphingomonadaceae ,  Gluconacetobacter  and  Azospirillum ), 
 Betaproteobacteria  ( Nitrosospira / Nitrosovibrio ,  Comamonas , various  Burk -
holderia  species and  Herbaspirillum seropedicae ),  Gammaproteobacteria  (e.g. 
 Xanthomonadaceae  and  Stenotrophomonas / Xanthomonas ),  Deltaproteobacteria  
( Polyangiaceae ),  Actinobacteria  ( Agromyces  and  Collinsella ),  Firmicutes  
( Paenibacillus alginolyticus ),  Cyanobacteria  ( Lyngbia ), and  Acidobacteria . The 
role of these taxa in black root rot suppression will be important to assess. The 
wheat take-all study of Sanguin et al.  (  2009  )  was performed using the same metho
dology but with a smaller probe set, limiting possibilities of comparison. Yet, cer-
tain taxa (i.e.  Acidobacteria  and  Azospirillum ) were associated with disease sup-
pressiveness in both types of suppressive soils.    

    5   Outlook 

 Soil suppressiveness to disease is not completely understood, in part because indi-
vidual phytoprotecting populations have been studied rather in isolation from the 
rest of the rhizosphere community. Indeed, biocontrol capacities of microorganisms 
cannot always be predicted from the knowledge of their behaviour under simplifi ed 
conditions (Kamilova et al.  2007  ) . On one hand, the plant-protecting effects of cer-
tain biocontrol microorganisms was largely mediated by the impact they had on 
composition and functioning of the microbial community, whose members, in turn, 
were responsible for disease suppression (Ramos et al.  2003  ) . On the other hand, 
even though plant protection in suppressive soils may result mainly from the contri-
bution of one or a few prominent microbial groups, functional redundancy may be 
important and it could be also that interactions with the rest of the microbial com-
munity may infl uence signifi cantly root colonization and expression of biocontrol 
traits in the former (McSpadden Gardener and Weller  2001 ; Weller et al.  2002  ) . 

 It is likely that new ecogenomic approaches (‘omics’) assessing the relative 
importance of all community members and the  in situ  expression of microbial genes 
and functions implicated in plant protection will help reach a better comprehension 
of the mechanisms behind soil suppressiveness. Microbial community analysis car-
ried out on soils of contrasted suppressiveness levels is a promising approach to 
identify taxa more prevalent or more active in suppressive situations, which repre-
sent candidate plant-protecting microbes (Borneman and Becker  2007 ; Benítez and 
McSpadden Gardener  2009  ) . With this type of approach, it is likely that parallel 
changes in the prevalence of (antagonistic)  Pseudomonas  populations may corre-
late with other changes in rhizobacterial community composition, as already found 
in certain types of suppressive soils (McSpadden Gardener and Weller  2001 ; 
Hjort et al.  2007 ; Kyselková et al.  2009 ; Sanguin et al.  2009 ; Schreiner et al.  2010  ) . 
In addition, metagenomic analyses (using microarrays or deep sequencing) of 
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suppressive soils in combination with clever experimental set-ups may be useful to 
reveal novel biocontrol microorganisms and novel genes involved in plant protection 
(van Elsas et al.  2008 ; Hjort et al.  2010  )  while metaproteomics and metabolomics 
are promising for identifying molecular effectors.      
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