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  Abstract   Appropriate fertilizer nitrogen (N) management can optimize tuber yield 
and quality, and reduce the risk of environmental N losses. However, the optimal 
fertilizer N management can vary among  fi elds and years. Plant- and soil-based tests 
are examined in this chapter as diagnostic tools to improve fertilizer N management 
in rain-fed potato production in eastern Canada. Plant-based diagnostic tests assess 
potato N suf fi ciency and can be used to guide in-season fertilizer N management. 
The nitrogen nutrition index (NNI) based on whole plants, the petiole nitrate 
concentration, and the leaf chlorophyll meter reading (SPAD) have been shown to 
successfully diagnose the level of potato N nutrition during the growing season in 
eastern Canada. The use of gene expression, a promising tool for a direct measure-
ment of potato N suf fi ciency compared with chemical or optical methods, is also 
examined. Soil-based tests can be used to provide an estimate of soil N supply to 
adjust the at-planting fertilizer N rate. The use of pre-plant and in-season soil nitrate 
tests, ion exchange membranes, indices of soil mineralizable N, and near-infrared 
re fl ectance spectroscopy (NIRS) are examined. A combination of a soil-based test 
to guide at-planting fertilizer N application and a plant-based test to guide in-season 
N management may be most effective.      
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    11.1   Introduction 

 Potato (S olanum tuberosum  L.) crops frequently require high applications of fertilizer 
nitrogen (N) to achieve high tuber yield and quality. In eastern Canada, general 
fertilizer N recommendations vary between 125 and 200 kg N ha −1  (NBDAFA  2001 ; 
CRAAQ  2010  ) . The apparent recovery of applied fertilizer N in the growing crop, 
however, may average less than 50% (Cambouris et al.  2008 ; Ziadi et al.  2011  ) . 
Management of this fertilizer N is important from both economic and environmental 
standpoints (Zebarth et al.  2009  ) . Nitrogen de fi ciency results in poor crop growth, 
small tuber size, and low tuber yield (Bélanger et al.  2000  )  while excessive N can 
lead to poor tuber quality, delayed crop maturity, increased N 

2
 O emissions, and 

excessive nitrate leaching (Ojala et al.  1990 ; Bélanger et al.  2000 ; Burton et al. 
 2008  ) . However, the optimal fertilizer N rate can vary widely among  fi elds and 
among years (Zebarth et al.  2009  ) . This variation results from variation in both the 
crop N demand and the soil N supply. As a result, the development of tools which 
predict more precisely the fertilizer N requirement on an individual  fi eld basis in 
potato production can be used as a strategy to optimize tuber yield and quality and 
to minimize the risk of N losses to the environment. 

 In this chapter, we examine plant- and soil-based tests which can be used as 
diagnostic tools to improve fertilizer N recommendations for potato production on 
an individual  fi eld basis. Plant-based diagnostic tests have an advantage in that they 
commonly assess plant N suf fi ciency (i.e. the balance between crop N demand and 
N supply), whereas soil-based tests commonly assess only soil N supply. However, 
plant-based tests can often only be used later in the growing season whereas soil-
based tests are commonly used early in the growing season. As a result, use of a 
combination of soil- and plant-based tests may be most effective in optimizing fer-
tilizer N management.  

    11.2   Plant-Based Diagnostic Methods 

 Several plant-based diagnostic methods have been developed over the last 20 years. 
These methods use either whole plants or speci fi c plant parts (e.g. leaf or petiole) 
and they can include either chemical or optical measurements. 

    11.2.1   Nitrogen Nutrition Index (NNI) 

 The N concentration on a whole plant basis can be used as a diagnostic tool to assess 
crop N nutrition during the growing season. To do so, a critical N concentration 
(N 

c
 ), that is the minimum N concentration required for maximum crop growth, must 

be de fi ned. Crop N concentration decreases over time as crop biomass increases 
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because of an increased proportion of the structural and storage components that 
contain little N. Consequently, N 

c
  also decreases over time during the growing 

season. For that reason, N 
c
  is commonly expressed as a function of crop biomass 

with critical N curves. 
 The concept of a critical N curve, based on the N concentration of whole plants, 

was  fi rst developed in France for tall fescue by Lemaire and Salette  (  1984  )  and 
has been successfully applied in eastern Canada to other perennial crops [timothy 
(Bélanger and Ziadi  2008  ) ] and annual crops [wheat (Ziadi et al.  2010a  ) ; corn (Ziadi 
et al.  2008a  ) ], including potatoes (Bélanger et al.  2001b  ) . For the majority of crops, 
the N 

c
  can be represented by the following allometric function:

     
−=cN W ba    (11.1)  

where W is the total shoot biomass expressed in t dry matter (DM) ha −1 , N 
c
  is the 

total N concentration in shoots expressed in % of DM, and  a  and  b  are estimated 
parameters (Fig.  11.1 ). The parameter  a  represents the N concentration with 1 t DM 
ha −1  and the parameter  b  represents the coef fi cient of dilution which describes the 
relationship of decreasing N concentration with increasing shoot biomass. For pota-
toes, the function is applied to the vines plus tubers rather than to the above-ground 
plant for other crop species. Therefore, the values of the parameters  a  and  b  are 
estimated using the combined biomass of shoots and tubers, and the N concentration 
of this combined biomass.  

 The critical N curve can then be used to calculate the N nutrition index (NNI) 
as the ratio between the measured N concentration of the shoot biomass and the 

  Fig. 11.1    General concept of critical N concentration. W is the total shoot biomass expressed in 
t dry matter (DM) ha −1 , N 

critical
  is the total N concentration in shoots expressed in % of DM, and 

 a  and  b  are estimated parameters. NNI is the N nutrition index       
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predicted N 
c
 . This NNI describes the N nutrition status of a crop at different times 

during the growing season, independently of the stage of development. The critical 
N curve (Eq.  11.1 ; Fig.  11.1 ) discriminates three different types of N status. Data 
points below the curve (i.e. NNI < 1) indicate situations where N is limiting growth 
and additional N fertilizer would therefore increase growth. Data points above the 
curve (i.e. NNI > 1) indicate situations of excessive N nutrition where additional 
N fertilization would not increase growth. Data points located on or near the 
curve (i.e. NNI  »  1) correspond to situations where N does not limit growth and 
N nutrition is not excessive. 

 In potatoes, critical N curves were  fi rst proposed in France, Scotland, and the 
Netherlands (Greenwood et al.  1990 ; Duchenne et al.  1997  ) . In eastern Canada, 
the critical N curve of potato was determined for the cultivars Russet Burbank and 
Shepody under rain-fed and irrigated conditions (Bélanger et al.  2001b  ) . Critical 
N curves were found to be speci fi c to cultivars and water conditions. Parameters of 
the critical N curves are:

     
0.58

cShepody N 5.36W−=    (11.2)  

     
0.58

cRusset Burbank N 4.50W−=    (11.3)  

under rain-fed conditions (Fig.  11.2 ) and: 

     
0.42

cShepody N 5.04W−=    (11.4)  

     
0.42

cRusset Burbank N 4.57W−=    (11.5)  

under irrigated conditions. 
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  Fig. 11.2    Critical N curves for two potato cultivars under rain-fed conditions; data points correspond 
to maximum total biomass for each combination of site and cultivar (Bélanger et al.  2001b  )        
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 Using the NNI concept, relationships between potato relative yield and NNI 
were established for potatoes produced at six site-years in eastern Canada by 
Bélanger et al.  (  2001b  )  (Fig.  11.3 ). For a NNI equal to or greater than 1.0, the 
relative yield was near 1.0. In eastern Canada, there is limited evidence of yield 
depression at higher fertilizer N rates (Bélanger et al.  2000 ; Cambouris et al. 
 2007  ) .With decreasing NNI below 1.0, the relative yield decreased. These results 
indicate that the NNI is a reliable indicator of the level of N suf fi ciency during the 
potato growing season.  

 The concept of N 
c
  and the resulting NNI effectively identi fi ed situations of 

de fi cient and non-de fi cient N nutrition making it possible to quantify the level of 
potato N suf fi ciency. A major dif fi culty in using the NNI at the farm level, however, 
is the need to determine the actual crop biomass and its N concentration. For this 
reason, it may be more practical to use the NNI as a reference for calibration of 
simpler procedures (e.g. leaf chlorophyll measurements, petiole nitrate concentration) 
to determine the potato N status as described in the following sections.  

    11.2.2   Petiole Nitrate Concentration 

 Petiole nitrate concentration is one of the most widely used diagnostic tools to 
assess potato N suf fi ciency. Petiole nitrate concentration may be measured on a dry 
plant tissue basis or on freshly expressed petiole sap (Errebhi et al.  1998  ) . The for-
mer is commonly done using a water extraction followed by colorimetric determi-
nation of nitrate concentration in the extract in a laboratory (Porter and Sisson  1991  )  
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  Fig. 11.3    Relationship between relative yield and the N nutrition index (NNI) of two potato cultivars 
(R: Russet Burbank; S: Shepody) with (I) and without (NI) irrigation (Bélanger et al.  2001b  )        
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whereas the latter can be measured either by a Nitrate Speci fi c Electrode (Waterer 
 1997 ; Errebhi et al.  1998  )  or a combination of nitrate test strips with a hand-held 
re fl ectometer (Goffart et al.  2008  ) . Signi fi cant relationships between petiole sap 
nitrate concentrations and petiole nitrate concentrations on a dry matter basis have 
been attained (Waterer  1997 ; Errebhi et al.  1998  ) . Petiole dry matter content can 
vary widely among sampling dates in rain-fed potato production (Zebarth et al., 
unpublished data) and consequently petiole nitrate concentration on a dry tissue 
basis is likely more reliable in rain-fed production systems. 

 The concentration of nitrate in the petiole re fl ects the balance between nitrate 
reduction in the leaf and recent plant nitrate uptake from soil (Zebarth et al.  2009  ) . 
Petiole nitrate concentration can be in fl uenced by several factors including the stage 
of development or days after planting (DAP), fertilizer N application, water avail-
ability, and potato cultivar. Similar to the N concentration of whole plants, the peti-
ole nitrate concentration decreases over time (Bélanger et al.  2003  ) . Nitrogen 
fertilization consistently increases petiole nitrate concentration. For example in a 
study conducted at six sites and with two cultivars, the average petiole nitrate con-
centration at 63 DAP increased from 0.69% with no N applied to 2.60% when 
250 kg N ha −1  was applied (Bélanger et al.  2003  ) . A quadratic response to N applica-
tion was reported (Porter and Sisson  1991 ; Bélanger et al.  2003  )  which is attributed 
to the saturation of the plant uptake capacity at high N rates. 

 Petiole nitrate concentration was reported to be in fl uenced by water availability 
during the growing season. Insuf fi cient water may result in the accumulation of 
nitrate in potato petioles (Meyer and Marcum  1998  )  whereas excessive water may 
reduce petiole nitrate concentration (Stark et al.  1993  ) . Irrigation, however, had no 
consistent effect on petiole nitrate concentration in study conducted at several site-
years in New Brunswick (Bélanger et al.  2003  )  where the level of water stress might 
have been insuf fi cient to in fl uence petiole nitrate concentration. The petiole nitrate 
concentration also varies with cultivars (Lewis and Love  1994 ; Bélanger et al. 
 2003  ) . Greater petiole nitrate concentrations were reported for Shepody than for 
Russet Burbank on all sampling dates and all sites in a study conducted in New 
Brunswick (Bélanger et al.  2003  ) . 

 Critical values or ranges of petiole nitrate concentrations have been suggested 
for potatoes in several producing areas of the world (Porter and Sisson  1991 ; Waterer 
 1997 ; Bélanger et al.  2003  ) . The critical petiole nitrate concentration, that is the 
petiole nitrate concentration required to reach maximum yield, has most often been 
established using the relationship between petiole nitrate concentration and tuber 
yield or relative tuber yield. This relationship varies with sampling dates (DAP) and 
cultivars. In eastern Canada, petiole nitrate concentration increased linearly with 
relative yield for Russet Burbank (R 2  = 0.60) and Shepody (R 2  = 0.53) at approxi-
mately 59 DAP (Bélanger et al.  2003  ) . However, the use of relative yield to deter-
mine the critical petiole concentration has one major limitation. Petiole nitrate 
concentration keeps increasing even when relative yield has reached its maximum 
value, that is, with no corresponding increase in tuber yield. 

 A novel approach to de fi ning critical petiole concentrations was proposed by 
Bélanger et al.  (  2003  )  in which the NNI is used to determine critical petiole nitrate 



19311 Soil and Plant Tests to Optimize Fertilizer Nitrogen Management of Potatoes

concentrations. They con fi rmed that the relationship between petiole nitrate 
concentration and NNI was speci fi c to each cultivar and that it changed during the 
growing season (Fig.  11.4 ). Consequently, separate critical petiole nitrate concen-
trations for Russet Burbank and Shepody were proposed, taking the number of days 
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3
 -N concentration as a function of the N nutrition index on three sampling 
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after planting into account (Fig.  11.5 ). These critical values are relatively close to 
those reported by Porter and Sisson  (  1991  )  in Maine, which were based on tuber 
yield (Fig.  11.5 ).    

    11.2.3   Chlorophyll Content and Chlorophyll Fluorescence 

 Optical methods of quantifying plant N suf fi ciency have been developed. Most of 
these methods are based on quanti fi cation of leaf chlorophyll content, which in turn 
is well correlated with leaf N concentration (Vos and Bom  1993  ) . The SPAD-502 
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  Fig. 11.5    Critical petiole nitrate concentration curves for potato cultivars Shepody and Russet 
Burbank as a function of the number of days after planting from two independent studies conducted 
in Maine (Porter and Sisson  1991  )  and New Brunswick (Bélanger et al.  2003  ) . For Bélanger et al. 
 (  2003  ) , the estimation of critical concentrations is based on the relationship with the N nutrition 
index (NNI) with the upper limit corresponding to NNI = 1.0 and the lower limit to NNI = 0.90       
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meter (Minolta Camera Co., Osaka, Japan) is the most commonly used optical 
instrument to measure the leaf chlorophyll content of potatoes (Vos and Bom  1993 ; 
Minotti et al.  1994  ) . The SPAD values are the ratio of the intensities of the transmit-
ted light at two wavelengths: red at 640 nm and near infrared at 940 nm (Spectrum 
Technologies Inc  2009  ) . 

 Several factors, including cultivar, soil type, and climatic conditions, in fl uence the 
SPAD values for potato (Gianquinto et al.  2004  ) . This problem can be resolved by 
using reference plots that can be either over-fertilized or under-fertilized (i.e. no N 
applied). Denuit et al.  (  2002  )  concluded that over-fertilized plots were not effective 
for potatoes because the SPAD values were relatively insensitive to N rate at high N 
rates, and it was dif fi cult to discriminate between the fertilized and over-fertilized 
plots. Olivier et al.  (  2006  )  compared both over-fertilized and under-fertilized 
reference plots and concluded that the zero-N plots discriminated well which 
potato  fi elds responded to a second N application. Goffart et al.  (  2008  )  concluded 
that SPAD readings do not respond to potato N uptake when fertilizer N rates are 
above optimal and consequently can only be used to detect N de fi ciency. 

 In New Brunswick, for each date of measurements of SPAD values, relatively 
good positive correlations (0.45 < r < 0.79) between SPAD values and total tuber 
yield were obtained whereas SPAD values were poorly correlated with relative yield 
when all sampling dates were included (Zebarth et al.  2003b  ) . Those results indicate 
that the relationship between SPAD measurements and tuber yield are speci fi c to 
development stages (Zebarth and Rosen  2007  ) . More recently, the lack of sensitivity 
of the SPAD values to fertilizer N rate near the optimal rate during crucial develop-
ment stage for in-season N fertilization were demonstrated (Zebarth et al.  2011  ) . 
Similar to petiole nitrate concentration, expressing the chlorophyll readings or the 
relative chlorophyll readings as a function of NNI might provide a more reasonable 
approach to determine critical values. This has not yet been tested in potatoes, but it 
has proved useful in corn (Ziadi et al.  2008b  )  and wheat (Ziadi et al.  2010b  ) . 

 The popularity of the SPAD meter is linked to the fact that it is easier to use, 
faster and less costly than the current plant N tissue analyses which require destruc-
tive plant sampling. SPAD measurements are, however, still limited to small sam-
pling areas because they require physical contact (near sensing approach) with the 
leaves (Botha et al.  2007  ) . In addition, SPAD has been shown to detect N de fi ciency 
later than petiole nitrate diagnostic tool. Indeed, Wu et al.  (  2007  )  reported that N 
de fi ciency could be detected about 1 month and 2 weeks after emergence with SPAD 
and petiole nitrate concentrations, respectively. 

 Chlorophyll  fl uorescence analysis is another technique that can be used to 
determine the plant N status. It is based on the measurement of polyphenolics 
(Phen), which are secondary metabolites affected by stress factors (Goffart et al. 
 2008  ) . A N-stressed plant has a higher content of Phen than non-stressed plants. 
The Phen compounds have typical ultraviolet (UV) absorption peaks in the UV-A 
and UV-B region (Cerovic et al.  2002  )  and the value of leaf UV absorbance is 
directly correlated with the concentration of polyphenolics in leaf tissues. 

 The Dualex, a portable leaf-clip tool, has been developed by Goulas et al. 
 (  2004  )  in France (Force-A, Orsay, France) to measure Phen contents. The Dualex 



196 N. Ziadi et al.

provides an estimation of the absorbance by the leaf epidermis using two excitation 
wavelengths, one in the ultraviolet (375 nm) and one red 650 nm where the former 
is directly related to the concentration of Phen (Goulas et al.  2004  ) . Cartelat et al. 
 (  2005  )  showed that with increasing N fertilization in wheat, leaf chlorophyll content 
increased and leaf polyphenolics content decreased. They further suggested that the 
ratio of leaf chlorophyll to polyphenolics is potentially a better indicator of leaf N 
concentration at the canopy level than either individual measurement. Tremblay 
et al.  (  2007  )  reported similar results for corn produced in eastern Canada. The 
Dualex has been successfully used in eastern Canada for corn (Tremblay et al. 
 2007  ) , wheat (Tremblay et al.  2010  )  and strawberry (Fan et al.  2011  ) . However, this 
technique is still under investigation for potatoes.  

    11.2.4   Multispectral Leaf Re fl ectance Measurements 

 Light re fl ectance-based measurements are an alternative approach to measuring leaf 
chlorophyll content, and have the advantage of being suitable for use at both the leaf 
and canopy scales (Botha et al.  2006,   2007  ) . Re fl ectance measurements do not need 
a contact with the leaves and these measurements can be done with proximal or 
remote sensors. Re fl ectance measurements are therefore more suitable for measure-
ment over larger areas. Tractor-mounted sensors such as “Greenseeker” or “Hydro 
N Sensor” are commercially available to map spatial variability of crop N status in 
a  fi eld (Zebarth et al.  2003b  ) . 

 Recent studies had shown that hyperspectral leaf re fl ectance and transmittance 
measurements using a portable spectroradiometer and inverted analytical models 
such as PROSPECT or PROSAIL can be used to assess potato N status by estimat-
ing leaf or canopy chlorophyll contents (Botha et al.  2006,   2007  ) . When used at the 
canopy level, hyperspectral re fl ectance measurements with the inverted PROSAIL 
model were most effective when the canopy structure was homogenous, and was 
less effective before canopy closure or after vine collapse (Botha et al.  2007  ) . Spatial 
variability of potato N status in a  fi eld in New Brunswick was effectively mapped 
using the Hydro N Sensor (Zebarth et al.  2003b  ) . While light re fl ectance-based 
approaches are generally effective in assessing relative potato N suf fi ciency, practi-
cal means of using this information to guide in-season fertilizer N management are 
currently lacking.  

    11.2.5   Use of Gene Expression 

 A novel approach to quanti fi cation of potato N suf fi ciency using gene expression is 
currently being evaluated. Plant responses to their environment, including abiotic 
stresses, are mediated through changes in gene expression (Hazen et al.  2003  ) . 
Consequently, quanti fi cation of gene expression may provide a more direct measure 
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of plant N suf fi ciency than current chemical or optical methods. Several studies 
have identi fi ed stress-speci fi c plant gene expression pro fi les in response to single 
and combined abiotic stresses including nutrient de fi ciency (Hazen et al.  2003 ; 
Bohnert et al.  2006 ; Swindell  2006  ) , suggesting it may be possible to use this 
approach to identify and distinguish among multiple abiotic stresses. 

 Quantitative assessment of plant N status by gene expression was  fi rst done by Li 
et al.  (  2010  )  using potato plants from three potato cultivars grown in a hydroponic 
system in the greenhouse. Although the conditions of the study were somewhat 
arti fi cial, it demonstrated that a nitrate reductase gene could be used to quantita-
tively assess a change in potato N suf fi ciency within a few days of imposition of 
N de fi ciency stress. Subsequently, Zebarth et al.  (  2011  )  examined response of 
expression for 22 genes in leaf tissue of Shepody potatoes grown in the  fi eld at six 
fertilizer N rates. An ammonium transporter gene was identi fi ed which was as good 
as or better than petiole nitrate concentration and SPAD-502 meter readings for 
quantifying potato N status. While preliminary information on use of gene expres-
sion to quantify potato N status is promising, further information is required to 
determine the potential of this approach. In addition, practical application of 
this approach is currently limited by economics and by requirements for sample 
collection and handling protocols (Luo et al.  2011  ) .   

    11.3   Soil-Based Diagnostic Methods 

 In most cases, soil-based tests provide an estimate of soil N supply that can be used 
to adjust the at-planting fertilizer N rate of a given  fi eld. Alternatively, soil-based 
tests can be taken in-season to estimate crop N supply (i.e. soil N supply plus applied 
fertilizer N). Such tests do not, however, consider crop N demand, and consequently 
it may be useful to utilize plant-based tests to re fi ne in-season N management. 

    11.3.1   Soil Mineral Nitrogen Tests 

 Spring soil mineral N tests are the most commonly used soil-based diagnostic tests. 
In most cases, these tests are used to quantify the residual soil nitrate from the previous 
cropping season. Different terminology may be used to describe these tests such as 
the pre-plant nitrate test or the Nmin test. Such tests have been widely adopted for 
use in predicting fertilizer N requirements in North America (Hergert  1987  )  and 
Europe (Greenwood  1986  )  of several annual crops, including potatoes. 

 In humid regions such as eastern Canada, most residual soil nitrate from the 
previous growing season is lost over the autumn and winter period (Zebarth et al.  2009  ) . 
Despite this, spring soil nitrate concentration is often well correlated with soil 
N supply because it re fl ects early season soil N mineralization (McTaggart and 
Smith  1993 ; Shari fi  et al.  2008  ) . Spring soil nitrate used alone, however, is not suitable 
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as the basis for making fertilizer N recommendations for potatoes in eastern Canada 
(Bélanger et al.  2001a  ) . Soil nitrate concentrations change rapidly over time when 
sampling would occur, and the quantity of soil nitrate in spring is relatively small 
compared with soil N supply (Zebarth et al.  2005  ) . Therefore, the spring soil nitrate 
is not a reliable predictor of soil N supply. This is particularly true in some years 
when signi fi cant residual nitrate from the previous growing season is present 
(Zebarth et al.  2003a  ) . As a result, it may be more appropriate in these humid envi-
ronments to use spring soil mineral N as a N credit to adjust the fertilizer N recom-
mendations (Zebarth et al.  2009  ) . 

 An alternative approach is to use a mid-season nitrate test done at 32–47 DAP as 
a measure of crop N supply from the soil and spring-applied fertilizer to determine 
if supplemental N fertilizer is required. Bélanger et al.  (  2001a  )  suggested that a 
critical mid-season value of 80 mg NO 

3
 -N kg −1  soil, measured at the 0–30 cm depth 

in the potato ridge following banded at-planting fertilizer application, above which 
additional N fertilizer may not be needed. The high spatial variability in nitrate 
concentration within the potato ridge/furrow system, the presence of a signi fi cant 
proportion of soil mineral N as ammonium at this time (Zebarth and Milburn  2003  ) , 
and the variable geometry of the ridge/furrow system among grower  fi elds may, 
however, complicate practical application of this approach.  

    11.3.2   Ion Exchange Membranes 

 Ion exchange membranes placed in soil have been used as an alternative to measure-
ment of soil mineral N concentration. Both anionic and cationic exchange mem-
branes have been used to measure nitrate and ammonium, respectively, and are 
commercially available as “Plant Root Simulators” (PRS). These membranes 
accumulate N from soils through exchange reactions by a similar mechanism to the 
soil-root system (Yang et al.  1991 ; Shari fi  et al.  2009a  ) . Thus, these membranes 
detect soil mineral N present at the time of insertion, plus net soil N mineralization 
during the period during which they are deployed, and N adsorbed on the mem-
branes are not subject to loss through leaching or denitri fi cation. Results from a 
number of  fi eld studies across Canada suggest that ion exchange membranes pro-
vide a better index of plant N availability than measurements of soil mineral N alone 
(Paré et al.  1995 ; Qian and Schoenau  1995 ; Ziadi et al.  1999 ; Nyiraneza et al.  2009  ) . 
These membranes can be used to measure soil N supply when used on unfertilized 
plots, or crop N supply (i.e. soil N supply plus applied fertilizer N) when used on 
fertilized plots. 

 In potatoes grown in Prince Edward Island and Nova Scotia, Shari fi  et al.  (  2009a  )  
used PRS probes to measure soil N supply following different spring-applied organic 
amendments. Cumulative N supply measured over a 31 day period after planting 
was closely related to plant (vines plus tubers) N uptake measured at vine mechani-
cal removal (R 2  = 0.60), and plant N uptake plus soil mineral N (0–30 cm depth) at 
harvest (R 2  = 0.60). 
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 In Quebec, Ziadi et al.  (  2011  )  used anion exchange membranes (PRS-N) during 
three consecutive growing seasons in potatoes grown under different mineral 
fertilizer treatments. They concluded that PRS-N measured 40 to 50 DAP can be 
used as a tool to determine the need for additional N. A signi fi cant linear-plus-
plateau relationship between relative yield and PRS-N was obtained indicating a 
critical value of 15  m g PRS-N cm −2  d −1  above which no additional N application 
may be required. 

 Ion exchange membranes can be an effective means of quantifying crop N supply, 
particularly in the presence of an active crop root system (Zebarth et al.  2009  ) . 
Duration of deployment of the membranes should be limited to avoid the risk of 
saturation of the membranes (Qian and Schoenau  2002  ) . Given the high spatial 
variation in soil mineral N in the potato ridge/furrow system (Zebarth and Milburn 
 2003  ) , the location of placement of the ion exchange membranes should be care-
fully selected. In addition, the units of measurement for ion exchange membranes 
(i.e.  fl ux values) cannot be converted directly to units of concentration or mass, 
which makes it more dif fi cult to use them for making fertilizer N recommendations. 
While there has been increased interest in use of ion exchange membranes in 
research studies, their use in commercial potato production is limited.  

    11.3.3   Mineralizable Soil Nitrogen 

 The N mineralized from soil organic matter, organic amendments, and crop residues 
represents a signi fi cant proportion (between 20% and 80%) of crop N requirement 
(Broadbent  1984  ) . However, estimating this source remains a challenge because of 
the complex soil, management and environmental controls on the N mineralization 
process (Dessureault-Rompré et al.  2010a,   2011a ; Nyiraneza et al.  2010  ) . 

 The standard laboratory-based method to quantify soil mineralizable N was 
developed by Stanford and Smith  (  1972  )  to estimate soil potentially mineralizable 
N ( N  

 0 
 ). The  N  

 0 
  is determined using a long-term aerobic incubation, and therefore 

this approach is not feasible for practical use. Consequently, a number of indices of 
soil N availability have been evaluated as predictors of N 

0
  (St. Luce et al.  2011  ) . In 

many cases, these indices are chemical tests that target various mineralizable N 
pools or are biological assays of soil mineralizable N. 

 A number of studies have evaluated the indices of soil N availability by compari-
son with  N  

 0 
  (Shari fi  et al.  2007a ; Schomberg et al.  2009  ) . Some of the better predic-

tors of  N  
 0 
  included UV absorbance of a 0.01  M  NaHCO 

3
  extract at 205 nm or 260 nm 

(Fox and Piekielek  1978 ; Hong et al.  1990  ) , direct distillation with NaOH (50%) 
(Shari fi  et al.  2009b  ) , Illinois soil N test (ISNT) for amino sugar N (Khan et al. 
 2001  ) , particulate organic matter C or N (Gregorich and Beare  2007  ) , hot KCl 
extractable NH 

4
 -N (Gianello and Bremner  1986  ) , and hot KCl hydrolysable NH 

4
 -N 

(Wang et al.  2001  )  (Table  11.1 ). However in some cases, simple soil properties, for 
example soil organic C or clay content, may be almost as effective in predicting  N  

 0 
  

as these indices of soil N availability (Simard et al.  2001  ) .  
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 Some studies compared indices of soil N availability with  fi eld-based measures 
of soil N supply, most commonly for corn. For example, Hong et al.  (  1990  )  found 
strong positive correlations between soil N supplying capacity (N uptake in the 
above-ground plant less 75% of starter N) with spring soil nitrate, spring soil nitrate 
plus hot KCl extractable NH 

4
 -N, spring soil nitrate plus distillation with a phos-

phate-borate buffer solution (pH 11.2), and ultraviolet absorbance of a 0.01  M  
NaHCO 

3
  extract at 200 nm. The ISNT was highly correlated with check-plot corn 

yield (r = 0.79) and fertilizer N response (r = 0.82) of corn in Illinois (Mulvaney et al. 
 2001  ) , however, Barker et al.  (  2006  )  concluded that the ISNT is not a good predictor 
of corn relative grain yield. No single index of soil N availability has gained wide-
spread adoption. 

 Few studies compared indices of soil N availability with  fi eld-based measures of 
soil N supply in potatoes. Shari fi  et al.  (  2007b  )  compared potato plant (vines plus 
tubers) uptake and tuber relative yield against a series of indices of N availability for 
sites in New Brunswick, Canada and Maine, USA under rain-fed production from 
2000 to 2005. Spring soil mineral N was one of the best predictors of soil N supply, 
however, Shari fi  et al.  (  2007b  )  recommended use of spring soil N plus Pool I 
(a labile pool of mineralizable N measured using a 14 day aerobic incubation) as a 

 N availability indexZ   r  2 Y 

 NaHCO 
3
 -260  0.74 

 NaOH-DD  0.61 
 ISNT  0.51 
 POMC  0.47 
 NaHCO 

3
 -205  0.47 

 HKCl 
HYDR

   0.46 
 POMN  0.39 
 HKCl-NH 

4
   0.26 

 PBN 
HYDR

   0.13 
 PBN  0.11 
 MBC  0.11 
 Total organic C  0.60 
 Total organic N  0.67 
 Clay  0.46 

  Adapted from Shari fi  et al.  (  2007a  )  
 Y r  2   ³  0.26 were signi fi cant  P   £  0.001;  n  = 39 
 ZKCl   -NH 

4
  = extractable NH 

4
  with 1.7  M  KCl; HKCl-NH 

4
  = 

extractable NH 
4
 N with 2  M  100 °C KCl; HKCl 

HYDR
  = HKCl-NH 

4
  

- KCl-NH 
4
 ; NaHCO 

3
 -205 = UV absorbance of 0.01  M  NaHCO 

3
  

extract at 205 nm; NaHCO 
3
 -260 = UV absorbance of 0.01  M  

NaHCO 
3
  extract at 260 nm; ISNT = Illinois Soil N Test for 

amino sugar-N; NaOH-DD = direct distillation with NaOH 
(50%); MBC = microbial biomass C by fumigation extraction 
method; PBN = direct distillation with phosphate-borate buffer 
(pH = 11.2); PBN 

HYDR
  = PBN – (KCl-NH 

4
 ); POMC = particu-

late organic matter C; POMN = particulate organic matter N  

 Table 11.1    Proportion of 
variation in  N  

 0 
  (i.e.  r  2  values 

from linear regressions) 
explained by different indices 
of soil N availability  
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more robust predictor of soil N supply (Fig.  11.6 ). Interestingly,  N  
 0 
  was a poor 

predictor of soil N supply. This was attributed at least in part to the exclusion of the 
labile mineralizable N pool in estimating the value of  N  

 0 
 .  

 Soil N availability indices provide a measure of the potential for soil N mineral-
ization to occur, but they do not account for the effects of environmental conditions 
in in fl uencing actual soil net N mineralization. One option is to predict soil N supply 
using simple  fi rst order kinetic models of soil N mineralization:

     
−⎡ ⎤= −⎣ ⎦

t
min 0N 1 e kN

   (11.6)  

where N 
min

  is the cumulative amount of N mineralized at time t,  N  
 0 
  is potentially 

mineralizable N, and  k  is the mineralization rate coef fi cient (Stanford and Smith 
 1972 ; Curtin and Campbell  2007  ) . The value of the mineralization rate constant, 
 k , can be modi fi ed based on soil temperature (Dessureault-Rompré et al.  2010b  )  or 
soil water content (Paul et al.  2003 ; Dessureault-Rompré et al.  2011b  )  to re fl ect 
changes in environmental conditions. In some cases, satisfactory predictions of net N 
mineralization in the  fi eld have been achieved using a kinetic model (Stanford et al. 
 1977 ; Marion et al.  1981 ; Campbell et al.  1984  )  whereas in other cases soil N supply 
has been overestimated (Verstraete and Voets  1976 ; Grif fi n and Laine  1983 ; Cabrera 
and Kissel  1988 ; Mikha et al.  2006  ) . In eastern Canada, Dessureault-Rompré et al. 
 (  2011a  )  compared estimates of soil N supply from a kinetic model with plant (vines 
plus tubers) N uptake in unfertilized potato plots in New Brunswick, Canada and 
Maine, USA. Direct application of the kinetic model signi fi cantly underestimated 
 fi eld measured soil N supply, however when the model considered soil mineral N and 
the labile mineralizable pool (i.e. Pool-I), satisfactory results were obtained. However, 
practical application of kinetic models is currently limited by the requirement for 
long-term laboratory incubations to obtain estimates of the values of  N  

 0 
  and  k.  

a b

  Fig. 11.6    Relationships between spring soil mineral N (0–30 cm depth) (SMN 
p
 ) plus Pool-I (a labile 

mineralizable N pool) and ( a ) soil N supply as estimated by plant (vines plus tubers) N uptake 
measured at vine desiccation with no fertilizer N application (PNU 

0N
 ) and ( b ) relative yield in  fi eld 

experiments in New Brunswick, Canada and Maine, USA in 2000–2005 (Shari fi  et al.  2007b  )        
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 Substantial effort has been made to improve understanding and prediction of soil 
N mineralization, and promising progress has been made. However to date, there is 
limited use of soil mineralizable N tests in making fertilizer N recommendations for 
potato production.  

    11.3.4   Near-Infrared Re fl ectance Spectroscopy 

 Near-infrared re fl ectance spectroscopy (NIRS) is a rapid, non-destructive technique 
which can be used for soil analyses (Dunn et al.  2002  ) . The NIRS is commonly used 
in plant analysis, speci fi cally to determine the nutritive value of feedstuffs, but its 
application in soil analysis is still under investigation (Malley et al.  2002 ; 
Nduwamungu et al.  2009a,   b  ) . The soil N availability as measured by NIRS was 
previously demonstrated to be closely related to soil N supply as measured by crop 
N uptake in unfertilized plots for corn (R 2  = 0.49; Fox et al.  1993  )  and winter wheat 
(R 2  = 0.81; Börjesson et al.,  1999  ) . In eastern Canada, Nduwamungu et al.  (  2009a  )  
accurately predicted potentially mineralizable N calculated from soil organic matter 
and clay content (Simard et al.  2001  )  under corn production. The NIRS is a tech-
nique which merits further examination as a measure of soil N availability.   

    11.4   Agronomic Applications 

 Soil- and plant-based diagnostic tests have the potential to improve the ef fi ciency of 
N utilization, and hence provide economic bene fi ts to growers and environmental 
bene fi ts to society. It is necessary for test results to be interpreted and converted into 
N recommendations in order for them to be effective for action (Vos  2009  ) . 

 Some plant-based tests have been successfully used as a diagnostic of crop N 
status (e.g. petiole nitrate concentration in potatoes) or in crop models of several 
crops (e.g. NNI) to account for the effect of N on growth and yield. At the farm 
level, however, there are some limitations to their adoption by growers. Although, 
the NNI has been shown to have the potential to successfully diagnose the N status 
for different crops including potatoes, this tool requires the determination of the 
shoot biomass during the growing season and its N concentration, which is time-
consuming for growers. Furthermore, the critical N curve is only valid for shoot 
biomass greater than 1.0 Mg DM ha −1 . The window of opportunity for a remedial 
action is then limited in a relatively short season. The NNI could, however, be used 
as a reference for simpler procedures such as the chlorophyll meter readings and 
petiole nitrate concentration to determine the crop N status. These simpler proce-
dures are currently available but they are still not widely used in eastern Canada. 
The bene fi ts of multi or hyperspectral measurements have not yet been demon-
strated at the farm scale whereas further research is required to determine if gene 
expression can be used to reliably assess potato N suf fi ciency. 
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 Soil tests based on residual nitrate are most commonly used world-wide, but are 
not as effective in eastern Canada because most residual nitrate is lost over the fall 
and winter period. Signi fi cant progress has been made in use of ion exchange mem-
branes and in soil mineralizable N tests. However, further work is required before 
such approaches can be used as the basis of fertilizer N recommendations. 

 It is proposed that the most effective strategy will be the use of a combination of 
soil- and plant-based diagnostic tools. Soil-based tests can be used to predict soil N 
supply, and to adjust at-planting fertilizer N rates whereas plant-based tests can be 
used to assess crop N suf fi ciency as a guide to in-season fertilizer N management. 
Such an approach will facilitate the matching of the N supply to the crop N demand 
on an individual  fi eld basis and yield economic and environmental bene fi ts.      
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